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Abstract

Nisan (STOC 1991) exhibited a polynomial which is computable by linear sized non-commutative
circuits but requires exponential sized non-commutative algebraic branching programs. Nisan’s
hard polynomial is in fact computable by linear sized skew circuits (skew circuits are circuits
where every multiplication gate has the property that all but one of its children is an input
variable or a scalar). We prove that any non-commutative skew circuit which computes the
square of the polynomial defined by Nisan must have exponential size. A simple extension of
this result then yields an exponential lower bound on the size of non-commutative circuits where
each multiplication gate has an argument of degree at most one-fifth of the total degree.

As a further step towards proving exponential lower bounds for general non-commutative
circuits, we also extend our techniques to prove an exponential lower bound for a class of
circuits which is a restriction of general non-commutative circuits and a generalization of non-
commutative skew circuits. More precisely, we consider non-commutative circuits of small non-
skew depth, which denotes the maximum number of non-skew gates on any path from the output
gate to an input gate. We show that for any k < d, there is an explicit polynomial of degree d
over n variables that has non-commutative circuits of polynomial size but such that any circuit
with non-skew depth k must have size at least nΩ(d/k). It is not hard to see that any polynomial
of degree d that has polynomial size circuits has a polynomial-sized circuit with non-skew depth
d. Hence, our results should be interpreted as proving lower bounds for the class of circuits with
non-trivially small non-skew depth.

As far as we know, this is the strongest model of non-commutative computation for which
we have superpolynomial lower bounds.

1 Introduction

If we want to design an efficient algorithm for a computational problem that is naturally stated
as a polynomial — such as the determinant or the permanent, matrix multiplication, Fast Fourier
Transform, etc. — then arithmetic circuits capture most natural candidate algorithms that we
might consider. An arithmetic circuit is an algorithm that starts with the input variables and
possibly some constants in the underlying field, and iteratively applies addition and multiplication
operations until it computes the desired polynomial. There has been a large body of work proving
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upper and lower bounds on the arithmetic circuit complexity of various polynomials (see, e.g. the
surveys [22, 6]). In particular, proving explicit superpolynomial lower bounds for general arithmetic
circuits is a celebrated open question in complexity theory and one of the possible approaches to
the P versus NP question (see, e.g., [4]). However, despite more than three decades of intensive
study, it has seen little tangible progress (in the sense of concrete lower bounds for general circuits).

In this paper, we concentrate on non-commutative arithmetic circuits, which compute poly-
nomials in the non-commutative polynomial ring F〈X〉: here, variables do not commute upon
multiplication; that is, xy and yx (for distinct x, y ∈ X) are distinct monomials. There are two
reasons for looking at such circuits. The first is that such circuits yield algorithms for polynomial
functions over non-commutative algebras, which arise naturally and can even have applications for
commutative computations (see [7, 2], in particular the use of non-commutative determinants to
approximate the commutative permanent). The second reason is that proving explicit lower bounds
for non-commutative arithmetic circuits is formally an easier problem than that of proving lower
bounds for (commutative) arithmetic circuits described in the previous paragraph, and it is hoped
that techniques discovered in the course proving non-commutative lower bounds will be useful in
the commutative setting as well.

The works of Hyafil [11] and Nisan [15] were among the first to motivate the study of arithmetic
circuits from this latter point of view. In a breakthrough result, Nisan [15] showed exponential
lower bounds for non-commutative arithmetic formulas (a restriction of general non-commutative
arithmetic circuits) and more generally for non-commutative algebraic branching programs (ABPs).
This might have led one to think that a superpolynomial lower bound for general (non-commutative)
arithmetic circuits1 was also close at hand. However, Nisan also showed using the same techniques
that general arithmetic circuits are exponentially more powerful than arithmetic formulas and
ABPs, hinting that his techniques are not sufficient to prove lower bounds for general arithmetic
circuits. Indeed, there is no known lower bound for general non-commutative arithmetic circuits
that is stronger than those that we already have for general commutative arithmetic circuits.

In a more recent work, Hrubeš, Wigderson, and Yehudayoff [9] suggested a new line of attack on
the general arithmetic circuit lower bound question. Their result introduces a “product lemma” for
general arithmetic circuits that generalizes a decomposition of ABPs due to Nisan [15]. Using this
lemma, they are able to show that superpolynomial lower bounds for general arithmetic circuits
would follow from a strong enough lower bound for the classical Sum-of-squares problem. However,
as of now, this approach has not yielded superpolynomial arithmetic circuit lower bounds. There-
fore, the strongest known computational model for which we have superpolynomial lower bounds
remains the ABPs from the work of Nisan [15].

In this work, we prove exponential lower bounds for skew circuits. Skew circuits are arithmetic
circuits where every multiplication involves at least one argument2 that is either an input variable
or a field element. They are a well-studied model of computation [23, 14, 1, 13], especially in the
commutative setting, where they are equivalent in power to ABPs and to the evaluation of the
determinant polynomial. However, the picture seems more complicated in the non-commutative
setting. Nisan [15] has shown that skew circuits are exponentially more powerful than ABPs.

1From here on, all circuits, formulas, ABPs, and polynomials, unless explicitly mentioned otherwise, will be
non-commutative.

2We assume fan-in 2 for all gates.

2



Thus, our lower bound for this model can be seen as one step towards the goal of superpolynomial
lower bounds for general non-commutative circuits.Note that a superpolynomial lower bound for
non-commutative skew circuits was claimed by Allender et al. [1], but, unfortunately, the proof
of this particular result in the paper (Theorem 7.12) seems to fail because it did not take into
account possible cancellations.3 Indeed, they argue that considering a non-commutative skew-
circuit and switching multiplication gates so that it is now left-skew yields a polynomial which is
weakly equivalent to the original one, i.e., which has exactly the same monomials with possibly
different coefficients. But this is not true, as there might have been cancellations of monomials in
the original skew circuit which do not happen anymore in the resulting left-skew one, because of
differing variable orders, thus leaving extraneous monomials.

Our result also clarifies the relative power of skew circuits vis-à-vis general arithmetic circuits.
In fact, our lower bound shows that skew circuits are exponentially less powerful than circuits with
just one non-skew gate (that is, neither of its arguments is an input variable or field element).
This is because the explicit polynomial for which we prove a lower bound is just the square of a
polynomial considered by Nisan, and this polynomial in turn has skew circuits of linear size.

We also consider the problem of extending our techniques to more powerful classes of circuits.
We obtain a first simple generalization of our lower bound to circuits where every multiplication
gate has an argument of degree at most δ, which we call δ-unbalanced circuits. For instance, this
yields an exponential lower bound for the same polynomial as above, when computed by circuits
where each multiplication gate has an argument of degree at most one fifth of the total degree.

Another natural way to extend our results (and one that is analogous to many works in the
Boolean circuit setting; see, e.g. [3, 5, 12]) is to augment a circuit for which we do have lower bounds
with a few “powerful” gates and see if one can still prove a lower bound. We therefore consider the
problem of proving lower bounds for skew circuits with a “few” non-skew multiplication gates.

We say that the non-skew depth of a non-commutative circuit is the maximum number of non-
skew gates on a path from a variable to the output gate in the DAG underlying the circuit. We
prove that for infinitely many d ∈ N and any k, n ∈ N, there exists a polynomial of degree d on n
variables which is computable by a polynomial sized non-commutative circuit of non-skew depth
O(k) but requires size nΩ(d/k) for any non-commutative circuit of non-skew depth k.

In particular our result implies that there exists a polynomial of degree d which is computable
by a polynomial sized non-commutative circuit of non-skew depth d, but requires a superpolynomial
size for any non-commutative circuit of non-skew depth k(d) = o(d). It is not hard to see that any
polynomial of degree d that can be computed by a polynomial-sized arithmetic circuit can also be
computed by a polynomial-sized arithmetic circuit of non-skew depth d: hence, strengthening our
lower bound substantially would prove lower bounds for general non-commutative circuits.

We also show that the determinant polynomial can simulate our hard polynomial, thus complet-
ing the picture in the non-commutative setting by showing that skew circuits are exponentially less
powerful than the determinant polynomial. Finally, we show that to prove superpolynomial lower
bounds for general non-commutative circuits, our complexity measure (to be defined formally in
the upcoming section) will need to be further refined. Slightly more precisely, we show that there
is a polynomial that has polynomial-sized non-commutative circuit, but for which our complexity
measure is as large as possible.

3Meena Mahajan, personal communication.
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The rest of the paper is organized as follows. We start with a proof outline in Section 2. We
then present some definitions in Section 3 and preliminaries in Section 4. The proof of the lower
bound for skew circuits is presented in Section 5, with the extension to unbalanced circuits, and
the proof of the lower bound for non-skew depth bounded circuits is presented in Section 64. We
also prove lower bounds for the permanent and determinant polynomials in Section 7. Finally, we
show the limits of these complexity measures in Section 8.

2 Proof Outline

Our overall proof strategy is similar to that of Nisan [15] for non-commutative formulas and al-
gebraic branching programs (ABPs). In his work, Nisan considered the partial derivative matrix
corresponding to a homogeneous polynomial f ∈ F〈X〉 of degree d — originally introduced by
Hyafil [11] — which is defined to be an nd/2 × nd/2 matrix M [f ] where the rows and columns are
labelled by monomials in X of degree d/2. The (m1,m2)th entry of the matrix M [f ] is defined to
be the coefficient of the monomial m1m2 in f .5

Nisan observed that if f has a formula or ABP of small size, then f can be decomposed as a
small sum of polynomials of the form g · h where g and h are homogeneous polynomials of degree
d/2. Crucially, it may be seen that for any such g, h the matrix M [g · h] has rank 1 and hence,
by subadditivity of rank, M [f ] has small rank. Thus, choosing an f such that rank(M [f ]) is large
gives us a lower bound.

Intuitively speaking, the rank of the matrix M [f ] is a measure of how “correlated” the first half
of a monomial appearing in f is with its second half: M [f ] being full rank would mean that they
are perfectly correlated, whereas M [f ] being low rank would mean that they are not very correlated
at all. Nisan’s argument shows that small ABPs have “information bottlenecks” at degree d/2 (and
indeed at any degree d′ ≤ d), and hence the amount of correlation is small.

A natural question to ask is if this argument can give a lower bound for non-commutative
skew circuits as well. Unfortunately, the answer is no, as is already implicit in Nisan’s work.
Consider the Palindrome polynomial PALd/2(X), which is the sum of all monomials of degree d
that are palindromes when viewed as strings of length d over the alphabet X. Nisan observed that
PALd/2(X) has a skew circuit of linear size but at the same time M [PALd/2(X)] has full rank: in fact,
M [PALd/2(X)] is a permutation matrix since the first half of a palindrome uniquely determines the
second half (thus, the first and second halves of monomials appearing in f are perfectly correlated).
Hence, the partial derivative matrix of polynomials with small skew circuits can have as large a
rank as possible. This means that in our lower bound argument for skew circuits, we need to use
a different measure of complexity.

The measure that we use is a modified version of the partial derivative matrix, defined as
follows: let f ∈ F〈X〉 be a homogeneous polynomial of degree d over n variables, and given an
ordered partition Π = (Y,Z) of [d] into two parts, we define M [f,Π] to be the matrix whose rows

4As skew circuits are a subset of bounded non-skew depth circuits, our lower bound for bounded non-skew depth
circuits subsumes the lower bound for skew circuits. However, for the sake of exposition we first describe the lower
bound proof for skew circuits and then prove the lower bound for bounded non-skew depth circuits.

5More generally, Nisan also considered the matrix where the rows and columns are labelled by monomials of degree
d′ ≤ d and d− d′ respectively.
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and columns are indexed by monomials in X of degree |Y | and |Z| respectively. The (m1,m2)th
entry of M [f,Π] is defined to the coefficient of the unique monomial m of degree d which equals
m1 if we keep only the variables indexed by locations in Y and delete the others, and equals m2 if
we only keep the variables indexed by locations in Z. As above, the rank of M [f,Π] measures the
correlation between the restriction of a monomial to the locations in Y and the locations in Z. We
are usually interested in Π where |Y | ≤ |Z|, since in this case we know that the maximum possible
rank is min{n|Y |, n|Z|} ≤ n|Y |.

In this notation, the measure of complexity used by Nisan is rank(M [f, ([d/2], [d] \ [d/2])]) and
we have seen above that this measure is as large as it can be for, say, the Palindrome polynomial
PALd/2(X), which has a small skew circuit. However, it is an easy observation that if one considers
the partition Π0 = (Y0, Z0) where Z0 := [d/4 + 1, 3d/4] and Y0 := [d] \ Z0, then M [PALd/2(X),Π0]
has rank 1.

Thus, we might hope that for every polynomial f that has a small skew circuit, we could find a
Π such that M [f,Π] has low rank. We are in fact able to show something much stronger: we can
show in general that if f has a small skew circuit, then rank(M [f,Π0]) is ‘small’ for the particular
Π0 defined above. (Here, ‘small’ means that the rank is much smaller than full rank.) In terms of
correlation, this statement could be interpreted as saying that though skew circuits can compute
polynomials that are perfectly correlated w.r.t. Nisan’s partition ([d/2], [d] \ [d/2]), they can only
do so by correlating the initial few indices in the monomial with the final few indices, as in the
Palindrome polynomial. Consequently, these “extreme” indices end up uncorrelated with those in
the middle. This is the weakness of skew circuits that we exploit in our lower bound.

The proof of this fact rests on a decomposition of skew circuits that is motivated by the similar
ABP decomposition mentioned above. Like in the ABP decomposition, we can show that given
any homogeneous polynomial f of degree d that has a small skew circuit and any degree parameter
d′ ∈ [d], we can decompose f as a small sum of polynomials of the form g ×j h where g and h are
polynomials of degree d′ and d−d′ respectively (we refer the reader to Section 3 for the definition of
×j, but it intuitively means that the polynomial g is multiplied on the left by the sum of the prefixes
of the monomials of h of degree j and on the right by the sum of the suffixes of degree d− d′ − j).
The proof of this lemma is obtained by specializing the proof of a lemma of Hrubeš, Wigderson and
Yehudayoff [9] regarding general non-commutative arithmetic circuits to the case of skew circuits,
where it yields a stronger conclusion.

Given this decomposition lemma, we prove the lower bound as follows. We apply the lemma
with d′ being a large number close to d: for concreteness, say d′ = 3d/4. In other words, we
decompose f as a small sum of polynomials g ×j h where g and h are homogeneous polynomials
of degrees 3d/4 and d/4 respectively. In each such polynomial, a set Ig ⊆ [d] of 3d/4 indices
corresponds to g and a set Ih = [d] \ Ig corresponds to the polynomial h as shown below:

d/4 d/2 d/4

[d] \ Y0:Y0:

Ig
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As we mentioned above, we will consider the rank of the matrix M [g ×j h,Π0]. Now, it is easy
to show that

rank(M [g ×j h,Π0]) = rank(M [g,Πg ]) · rank(M [h,Πh])

where the partitions Πg = (Yg, Zg) and Πh = (Yh, Zh) are the natural restrictions of Π0 to Ig and
Ih respectively.

Note that if rank(M [g ×j h,Π0]) is to be close to full — i.e. n|Y0| — then we need both
rank(M [g,Πg ]) and rank(M [h,Πh]) to be close to n|Yg| and n|Yh| respectively. However, it is easily
seen that, irrespective of the value of j, the matrix M [h,Πh] is always a rank 1 matrix (this happens
since Yh occupies all of Ih and thus Zh = ∅) and hence rank(M [g×j h,Π0]) falls exponentially short
of its maximum possible value. Since f is a small sum of such polynomials, the same is true of
rank(M [f,Π0]) as well. More generally, the same strategy shows that rank(M [f,Π]) is small as
long as Π = (Y,Z) has the “left-right monochromatic” form (LRM partitions for short) shown in
Figure 1 (for d1, d2 large enough).

d1 d2

Y or Z:Y :

Figure 1: Left-right monochromatic (LRM) partitions, where segments on both the left and right
ends are contained in Y

The above argument implies a strong exponential lower bound on the size of a skew circuit
computing any homogeneous polynomial F of degree d such that M [F,Π0] is full rank. It is easy
to find explicit examples of such polynomials: for example, we could take F to be the square of
PALd/4(X) or the Lifted Identity polynomial of Hrubeš et al. [9]. In either of these cases, it can
be checked that M [F,Π0] is again a permutation matrix and hence full rank. Since (PALd/4(X))2

can be computed by a small circuit with just a single non-skew gate, this also gives an exponential
separation between skew circuits and circuits with one non-skew gate. However, this also implies
that if we want to extend our lower bound to non-commutative circuits of small non-skew depth,
then we need to modify our measure further.

We prove our lower bound for circuits of small non-skew depth by induction on the non-skew
depth k of the circuit. As in the skew case, we choose a partition Πk of [d] such that no small
non-skew depth k circuit can compute a polynomial that has large rank w.r.t. the partition Πk. The
inductive argument is based on showing that if a non-skew depth k circuit C computes a polynomial
of large rank w.r.t. Πk, then it must contain a depth k − 1 circuit that computes a polynomial of
large rank w.r.t. Πk−1 (or an even ‘harder’ partition). We then apply the inductive hypothesis to
prove the lower bound.

Let us consider the problem of constructing such a partition in the case k = 1 (i.e. non-skew
depth 1). Ideally, we would like to construct a partition Π1 such that if C is a circuit of non-skew
depth 1 that is high rank w.r.t. Π1, then a sub-circuit of C is high rank w.r.t. an LRM partition
as in Figure 1 (with perhaps a slightly smaller degree). However, it can be checked that we cannot
choose such a partition even if we know beforehand that C is just a product of two skew circuits.
That is, for any candidate partition Π1, there are skew circuits of degree d′ ≤ d and d−d′ computing
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polynomials g1 and g2 such that neither the partition restricted to g1, nor the partition restricted
to g2, is LRM.

Hence, we are first led to the problem of enlarging the family of partitions that are hard for skew
circuits. Building on the techniques outlined for skew circuits above, we can also show that small
skew circuits cannot compute high rank polynomials w.r.t. the larger family of “extended LRM”
(XLRM) partitions — illustrated in Figure 2 — which are obtained by extending an LRM partition
on the left and right sides with segments of length ℓ that are contained in Y and Z respectively.6

Intuitively, a skew circuit that computes a large rank polynomial w.r.t. such a partition would try
to pairwise correlate indices in the segments (of length ℓ) on the two extremes. However, after
having done this, it is still left with the task of computing a high rank polynomial w.r.t. an LRM
partition, which we know to be a hard problem.

d1 d2ℓ ℓ

Y or Z:Y : Z:

Figure 2: Extended left-right monochromatic (XLRM) partitions

We are now ready to tackle the problem of proving lower bounds for circuits of non-skew depth
k. We choose our hard partition Πk = (Yk, Zk) to have the form shown in Figure 3. That is,
starting from the left, our partition assigns an initial segment of length roughly d/4 to Yk. The
remaining indices are assigned to Yk and Zk in k′ pairs of segments of length roughly d/4k′ and
d/2k′ respectively — for k′ = O(k) — so that overall we have |Yk| = |Zk| = d/2. Note that Πk is
in particular an XLRM partition, and hence is clearly hard for skew circuits. We show that any
small circuit C of non-skew depth at most k cannot compute a polynomial of large rank w.r.t. Πk.

To get an idea of the proof, consider first the easier case when the output of C is a non-skew
homogeneous multiplication gate and hence C is a product of two homogeneous polynomials g1
and g2 that have small circuits of non-skew depth at most k − 1. In this case, the indices in [d]
are distributed between g1 and g2 as shown in Figure 3. Now, as we have argued previously, if the
polynomial f computed by C is to have rank nearly n|Yk| w.r.t. Πk, then rank(M [gi,Πk,i]) should be
close to n|Yk,i| where Πk,i = (Yk,i, Zk,i) is the natural restriction of Πk to the indices corresponding
to gi for i ∈ [2]. For this to occur, however, we must have |Yk,i| ≈ |Zk,i| for each i: since otherwise
for some i, we will have |Zk,i| much smaller than |Yk,i|, and then rank(M [gi,Πk,i]) ≤ n|Zk,i| ≪ n|Yk,i|.
However, it is easy to check that if |Yk,i| ≈ |Zk,i| for each i, then the only possibility is that one of
g1 or g2 — say g1 for concreteness — has very small degree and the other “occupies” almost all the
indices in [d] and is hence already computing a polynomial of large rank w.r.t. Πk. Since g2 has a
small skew circuit of non-skew depth at most k − 1, this allows us to induct on g2.

The general case puts together a couple of arguments we have already outlined. Using a de-
composition lemma that is similar in spirit to the skew circuit decomposition lemma described
above, we can show that any homogeneous polynomial f of degree d computed by a small circuit

6The actually family of partitions we consider is a little more general.
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· · ·

d/4k′d/4 d/2k′

g1 g2

Y : Z:

Figure 3: The partition Πk

of non-skew depth at most k can be written as a small sum of polynomials of the form

(g1 · g2)×j h

where g1 and g2 are homogeneous polynomials computed by small circuits of non-skew depth at
most k − 1 and h has a small skew circuit. In the easy case above, we have already handled the
case when deg(h) = 0, and so now we try to see how h can help produce a polynomial of large rank
w.r.t. the partition Πk. As in the proof of the hardness of XLRM partitions, one would guess that
the worst that h could do is to match up the d/2k′ indices in Y and Z on either extreme. In this
case, we can argue as in the easier case above that one of g1 or g2 occupies all that is remaining,
which corresponds to a partition that is hard for non-skew depth at most k − 1, as desired.

As might be expected, the actual proof is not quite as neat, since we need to handle some other
cases that we have not describe above. It turns out, however, that these cases are easy, even if
somewhat tedious, to handle.

3 Definitions

Throughout, fix the set X = {x1, . . . , xn} of indeterminates. We work over the non-commutative
ring of polynomials F〈X〉.

For i, j ∈ N, we define [i, j] to be the set {i, i+1, . . . , j} (the set is empty if i > j). We also use
the standard notation [i] to denote the set [1, i].

For d ∈ N, we use Md(X) to denote the set of monomials over the variables in X of degree
exactly d.

Definition 1 (j-products). Given homogeneous polynomials g, h ∈ F〈X〉 of degrees dg and dh
respectively and an integer j ∈ [0, dh], we define the j-product of g and h — denoted g ×j h — as
follows:

• When g and h are monomials, then we can factor h uniquely as a product of two monomials
h1h2 such that deg(h1) = j and deg(h2) = dh−j. In this case, we define g×j h to be h1 ·g ·h2.

• The map is extended bilinearly to general homogeneous polynomials g, h. Formally, let g, h
be general homogeneous polynomials, where g =

∑

ℓ gℓ, h =
∑

i hi and gℓ, hi are monomials
of g, h respectively. For j ∈ [0, dh], each hi can be factored uniquely into hi1 , hi2 such that
deg(hi1) = j and deg(hi2) = dh − j. And g ×j h is defined to be

∑

i

∑

ℓ hi1gℓhi2 .
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h1 g h2

j dg dh − j

Figure 4: j product for monomials g, h

Note that g ×0 h and g ×dh h are just the products g · h and h · g respectively.

The following easily verifiable facts about j-products will be useful:

Fact 2. 1. The operator ×j is bilinear: i.e. (g1+g2)×j h = g1×j h+g2×j h and g×j (h1+h2) =
g ×j h1 + g ×j h2 provided that g, g1, g2, h, h1, h2 are such that all the above expressions are
well defined.

2. Assume g and h are such that g ×j h is defined and let f be a homogeneous polynomial of
degree d. Then (g ×j h) · f = g ×j (h · f) and f · (g ×j h) = g ×d+j (f · h).

3. Assume g and h are as above and further that g = g1 · g2. Then g ×j h = g1 ×j (g2 ×j h) =
g2 ×j+dg1

(g1 ×j h) where dg1 = deg(g1). If instead we have g = g1 ×k g2, then g ×j h =
g1 ×j+k (g2 ×j h).

Given a monomial m = xi1xi2 · · · xid ∈ F〈X〉 and a subset S ⊆ [d], we denote by mS the product
of all the variables in the locations indexed by S: i.e. mS =

∏

j∈S xij where the product is taken
in increasing order of j.

Let Π denote a partition of [d] given by an ordered pair (Y,Z), where Y ⊆ [d] and Z = [d] \ Y .
In what follows we only use partitions of sets into two parts.

Definition 3 (Partial Derivative matrix). Let f ∈ F〈X〉 be a homogeneous polynomial of degree
d. Given a partition Π = (Y,Z) of [d], we define a n|Y | × n|Z| matrix M [f,Π] with entries from
F as follows: the rows of M [f,Π] are labelled by monomials from M|Y |(X) and the columns by
elements of M|Z|(X). Let m′ ∈ M|Y |(X) and m′′ ∈ M|Z|(X); the (m′,m′′)th entry of M [f,Π] is
the coefficient in the polynomial f of the unique monomial m such that mY = m′ and mZ = m′′.

We will use the rank of the matrix M [f,Π] (for a suitably defined Π = (Y,Z)) as a measure of
the complexity of f . Note that since the rank of the matrix is at most the number of rows, we have
for any f ∈ F〈X〉

rank(M [f,Π]) ≤ n|Y |

As in many works on multilinear formulas and circuits [16, 17, 18, 19, 20, 8], we will be interested
in how close the rank of M [f,Π] can be to this trivial upper bound.

Definition 4 (Relative Rank). Let f ∈ F〈X〉 be a homogeneous polynomial of degree d. For any
Y ⊆ [d], we define the relative rank of f w.r.t. Π = (Y,Z) — denoted rel-rank(f,Π) — to be

rel-rank(f,Π) :=
rank(M [f,Π])

n|Y |

Clearly, rel-rank(f,Π) ∈ [0, 1] for any f and Y as above. Furthermore, note that since
rank(M [f,Π]) is also bounded by n|Z| — the number of columns in the matrix — when |Y | > d−|Y |,
this measure cannot approach 1 for any choice of f .
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d/4 d/2 d/4

Z:Y :

Figure 5: Example of Y for which rel-rank(PAL2d/4, (Y,Z)) = 1

Notation Fix any homogeneous polynomials g, h ∈ F〈X〉 of degree dg and dh respectively and
f = g ×j h, where j ∈ [0, dh]. Let d denote deg(f) = dg + dh and I denote [j + 1, j + dg].

For any pair of subsets S, I ⊆ [d] such that S ⊆ I, we denote by Collapse(S, I) the subset of
[|I|] which contains the ranks of all elements in I which are contained in S. Formally,

Collapse(S, I) = {j ∈ [|I|] | S contains the jth smallest element of I}.

For example, if I = {i1, . . . , i2t}, where i1 ≤ . . . ≤ i2t and S contains every other element of
I, i.e. S = {i2, . . . , i2t} then Collapse(S, I) = {2, 4, . . . , 2t}. For any partition Π = (Y,Z) of [d]
we use Yg to denote Collapse(Y ∩ I, I), i.e. the set of ranks of indices that g occupies in g ×j h
which overlap with Y . Similarly, we use Yh to denote Collapse(Y \I, [d]\I), i.e. the set of ranks of
indices that h occupies in g×j h which overlap with Y . Also we denote [dg] \Yg by Zg and [dh] \Yh

by Zh. Finally, we use Πg,Πh to denote partitions (Yg, Zg) and (Yh, Zh), respectively.
The non-skew depth of a non-commutative circuit C is the maximum number of non-skew gates

on a path from a variable to the output gate in the DAG underlying C.

4 Preliminaries

We need the following lemmas that are straightforward adaptations of previous work.

Lemma 5 (Homogenization Lemma [9]). Let f ∈ F〈X〉 be a homogeneous polynomial of degree d
computed by a non-commutative circuit C of size s. Then there is a homogeneous non-commutative
circuit C ′ of size at most O(sd2) computing f . Moreover, if C has non-skew depth at most k, then
so does C ′. In particular, if C is a skew circuit, then so is C ′.

Lemma 6 (Tensor Lemma). Let g, h ∈ F〈X〉 be homogeneous polynomials of degree dg and dh
respectively and let f = g ×j h for j ∈ [0, dh]. Let d denote deg(f) = dg + dh. Fix any partition
Π = (Y,Z) of [d]. Then,

rank(M [f,Π]) = rank(M [g,Πg ]) · rank(M [h,Πh])

where Πg,Πh are as defined in Section 3.

Proof. We observe that under a suitable labelling of the rows and columns of the matrices, the
matrix M [f,Π] = M [g,Πg] ⊗ M [h,Πh], where ⊗ represents the standard tensor (or Kronecker)
product of matrices. This will prove the lemma.

Let I denote the interval [j + 1, j + dg].

10



For each of the matricesM [f,Πf ],M [g,Πg ] andM [h,Πh], we have labellings from the definitions
of these matrices: i.e., the rows and columns of M [f,Πf ] are labelled by elements of M|Yf | and
M|Zf | respectively; and similarly for M [g,Πg ] and M [h,Πh]. For M [f,Π], we note that each
monomial m ∈ M|Y | can be identified with a pair of monomials (m′,m′′) of degree |Yg| and |Yh|
respectively using the map m 7→ (mY ∩I ,mY \I); this map is a bijection and hence, we also have an
alternate labelling of the rows of M [f,Π] by M|Yg| × M|Yh|; similarly, we also obtain a labelling
of the columns of M [f, Y ] by M|Zg| ×M|Zh|. Under this alternate labelling for M [f,Π], we show
that M [f,Π] = M [g,Πg]⊗M [h,Πh].

By the bilinearity of both the ⊗ and ×j maps, it suffices to do this when g and h are both
monomials. In this case, M [g,Πg] is a 0-1 matrix with a 1 only in the (gYg , gZg)th entry and
similarly for M [h,Πh]. Since f is also a monomial, the matrix M [f,Π] is also a 0-1 matrix with a
1 only in the (fY , fZ)th entry according to the original labelling. Under our alternate labelling of
M [f,Π], this corresponds to the ((fY ∩I , fY \I), (fZ∩I , fZ\I))th entry of M [f,Π]. It can be checked
from the definition of ×j that

fY ∩I = gYg , fZ∩I = gZg , fY \I = hYh
, fZ\I = hZh

Thus, f has a 1 in only the ((gYg , hYh
), (gZg , hZh

))th entry and hence, M [f,Π] is the tensor
product of M [g,Πg] and M [h,Πh] as claimed. This completes the proof of the lemma.

Corollary 7. Assume that f, Y, dg, dh are as in the statement of Lemma 6. Then

rel-rank(f,Π) = rel-rank(g,Πg) · rel-rank(h,Πh) ≤ min {rel-rank(g,Πg), rel-rank(h,Πh)} .

Moreover, we also have rank(M [g,Πg ]) ≤ n|Zg| and rank(M [h,Πh]) ≤ n|Zh|. Hence,

rel-rank(f,Π) ≤ min
{

n−(|Yg|−|Zg|), n−(|Yh|−|Zh|)
}

.

4.1 Hard polynomials

Let w = (w1, w2, . . . , wd) be a string in [n]d and let wR denote the reverse of the string w,
i.e., (wd, wd−1, . . . , w1). Let x̃w denote the monomial xw1xw2 . . . xwd

over the variable set X =
{x1, x2, . . . , xn}. We consider the n-variable palindrome polynomial :

PALd(X) =
∑

w∈[n]d

x̃w · x̃wR .

Nisan [15] studied the palindrome polynomial for n = 2. We denote by PAL
2
d(X) the squared

palindrome polynomial.

PAL
2
d(X) = (PALd(X))2 =

∑

w1,w2∈[n]d

x̃w1 · x̃wR
1
· x̃w2 · x̃wR

2
.
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5 Lower bound for skew circuits

In this section, we prove an exponential lower bound for skew circuits. We start by giving a
decomposition lemma for such circuits. A similar decomposition was given by Nisan [15] for non-
commutative ABPs. More recently Hrubeš et al. [9] proved a decomposition lemma for general non-
commutative circuits. Our result can be thought of as an interpolation between the decomposition
for ABPs and that for general non-commutative circuits.

We then formally define left-right monochromatic (LRM) partitions and prove that any skew
circuit of ‘small’ size has ‘small’ relative rank with respect to LRM partitions. Finally, we give an
explicit polynomial which has full relative rank with respect to a suitably chosen LRM partition.
This gives a lower bound for skew circuits.

Let us now give a decomposition lemma for skew circuits. We will prove two other decomposition
lemmas and, though they take slightly different forms, they can all be presented with similar
arguments, as ways of grouping the monomials computed by a circuit. We will use the notion of
parse trees from [14] to describe how a circuit computes monomials.

Definition 8. The set of parse trees of a circuit C is defined by induction on its size:

• if C is of size 1 it has only one parse tree: itself;

• if the output gate of C is a +-gate whose arguments are the gates α and β, the parse trees of
C are obtained by taking either a parse tree of the subcircuit rooted at α and the arc from α
to the output or a parse tree of the subcircuit rooted at β and the arc from β to the output;

• if the output gate of C is a ×-gate whose arguments are the gates α and β, the parse trees of
C are obtained by taking a parse tree of the subcircuit rooted at α, a parse tree of a disjoint
copy of the subcircuit rooted at β, and the arcs from α and β to the output.

A parse tree T computes a polynomial val(T ) in a natural way: this is the monomial equal to the
product of the variables labeling the leaves of T (from left to right). So parse trees are in one-to-one
correspondence with the monomials computed by the circuit (before regrouping), and summing the
values of the parse trees thus yields the computed polynomial.

Lemma 9 (Decomposition Lemma for skew circuits). Let f ∈ F〈X〉 be a homogeneous polynomial
of degree d ∈ N computed by a homogeneous skew circuit C of size s. Fix any d′ ∈ [d]. Let g1, . . . , gt
(t ≤ s) be the intermediate polynomials of degree d′ computed by C. Then, there exist homogeneous
polynomials hi,j (i ∈ [t], j ∈ [0, d − d′]) of degree d− d′ such that

f =
∑

i∈[t]

∑

j∈[0,d−d′]

gi ×j hi,j .

Proof. The polynomial f is the sum of the values of all the parse trees of C. Parse trees are obtained
by starting at the root and following along exactly one argument when encountering an addition
gate and along both arguments when encountering a multiplication gate. In a skew circuit at any
multiplication gate one argument will be an input gate, so the degree decreases by at most 1 and
the parse tree looks like a path with dangling input gates on the left or on the right (we will call
such a parse tree path-like). Therefore any parse tree will reach a unique gate of degree d′ (to get
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unicity if d′ = 1, at the last multiplication gate we choose the left argument). We will stop building
our parse tree once such a gate is found and consider the resulting partial parse tree.

Let α1, . . . , αt be the gates of C of degree d′. Consider a partial parse tree T stopping at αi. It
is possible that different partial parse trees will “stop” at αi, and each will compute a monomial
of the form L · gi ·R, where L (respectively R) is the monomial obtained by the multiplications by
input gates on the left side (respectively right side) in the parse tree. We can thus partition the
set of parse trees depending on which gate of degree d′ it stopped at. We can further partition it
with regard to the degree of L. Grouping monomials according to this partition we get the desired
decomposition.

Definition 10. We say that a partition Π = (Y,Z) of [d] is a (d1, d2)-left right monochromatic
partition ((d1, d2)-LRM) if [d1] ∪ [d− d2 + 1, d] ⊆ Y .

Figure 6 gives an illustration of a (d1, d2)-LRM partition.

Lemma 11 (Main Lemma: Relative rank of skew circuits). Let f ∈ F〈X〉 be a homogeneous
polynomial of degree d ∈ N computed by a homogeneous skew circuit C of size s. For any (d1, d2)-
LRM partition Π of [d] such that d1 + d2 ≤ d

rel-rank(f,Π) ≤ sd · n−min{d1,d2}.

Proof. Assume thatD = min{d1, d2}. Apply the Decomposition Lemma for skew circuits (Lemma 9)
to C with d′ = d −D to get polynomials gi and hi,j for (i, j) ∈ [t] × [0,D] as in the statement of
the lemma. By the subadditivity of rank, we have

rel-rank(f,Π) ≤
∑

(i,j)∈[t]×[0,D]

rel-rank(gi ×j hi,j ,Π) (1)

j dh − j

d1

gi

d2

Y or Z:Y :

Figure 6: For fixed d1, d2, a generic positioning of gi of degree d′ in gi ×j hi,j

Fix any (i, j) and consider rel-rank(gi ×j hi,j,Π). By Corollary 7, we have

rel-rank(gi × hi,j,Π) ≤ n−(|Yh|−|Zh|). (2)

where Yh = Collapse(Y \ [j + 1, j + d′], [d] \ [j +1, j + d′]) and Zh = [D] \ Yh. Note, however, that
since Y contains [d1] ∪ [d − d2 + 1, d], we have Y \ [j + 1, j + d′] = [d] \ [j + 1, j + d′] and hence
Yh = [D] and Zh = ∅. Using (2), we see rel-rank(gi × hi,j ,Π) ≤ n−D and hence by (1), we have the
claimed upper bound on rel-rank(f,Π).
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Theorem 12 (Lower bound for skew circuits). Any skew circuit for PAL
2
d/4(X) must have size

Ω̃(nd/4) where the Ω̃(·) hides poly(d) factors.

Proof. Let C be any skew circuit computing PAL
2
d/4(X) and let s denote its size. By Lemma 5, we

know that there is a homogeneous circuit of size s′ = O(sd2) computing the same polynomial.
Let Y = [d/4] ∪ [3d/4 + 1, d], Z = [d] \ Y , Π = (Y,Z). Note that Π is a (d/4, d/4)-LRM

partition of [d]. Apply Lemma 11 to the circuit C ′ with d1 = d2 = d/4. The lemma implies that
rel-rank(PAL2d/4(X),Π) ≤ (s′d) · n−d/4.

On the other hand, it is easy to verify that M [PAL2d/4(X),Π] is a square permutation matrix

and hence rel-rank(PAL2d/4(X),Π) = 1, which implies the claimed lower bound on s.

Remark 13. It is not hard to see that the lower bound of Theorem 12 is close to tight, since
PAL

2
d/4(X) does have a skew circuit of size O(nd/4).

A similar theorem can be proved for the Lifted Identity polynomial of Hrubeš et al. [9]: LIDr =
∑

e∈{0,1}2r zeze, where, for (e1, . . . , e2r) ∈ {0, 1}2r , ze = ze1 · · · ze2r . For the partition Π defined
above, M [LIDr,Π] is a square permutation matrix, since choosing the prefix and suffix of degree r
defines a unique monomial appearing in LIDr, and its relative rank is therefore 1.

A natural generalization of the skew circuits is the class of circuits wherein each multiplication
gate has a certain bound on the degree of one of its arguments. We call such circuits δ-unbalanced.
Formally, δ-unbalanced circuits can be defined as follows:

Definition 14. A circuit is called δ-unbalanced if every multiplication gate has an argument of
degree at most δ.

In the following corollary we observe that our exponential lower bound on skew circuits can
also be extended to δ-unbalanced circuits. For instance, it yields an exponential lower bound for
the computation of PAL2d/4(X) by circuits where every multiplication gate has an input of degree
at most d/5.

Corollary 15 (of Theorem 12). Any δ-unbalanced circuit for PAL2d/4(X) must have size Ω̃(nd/4−δ+1)

where the Ω̃(·) hides poly(d) factors.

Proof sketch. The corollary follows by the observation that any δ-unbalanced circuit can be con-
verted into a skew circuit with O(nδ) loss in size. Let g = g1 × g2 be a multiplication gate where
(without loss of generality) degree of g1 is at most δ. Then one can write down g1 as a sum of mono-
mials g1 =

∑t
i=1 mi, where the degree of each mi is at most δ and t = O(nδ). As g =

∑t
i=1mi× g2,

it can be computed as a sum of t terms of the form m×g2, where m is a monomial of degree at most
δ. It is easy to see that each m × g2 can be computed by a skew circuit (with a loss of additional
O(δ)).

6 Lower bounds for circuits with small non-skew depth

Recall that the non-skew depth of a non-commutative circuit is the maximum number of non-skew
gates on a path from a variable to the output gate in the DAG underlying the circuit. We call a
gate v in C top-most if there is a path from v to the output gate in C that does not pass through
any non-skew gates other than possibly v itself.
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6.1 A decomposition lemma for circuits of non-skew depth k

Lemma 16 (Decomposition Lemma for non-skew circuits). Let f ∈ F〈X〉 be a homogeneous poly-
nomial of degree d computed by a non-skew homogeneous circuit C of size s. Let g1, . . . , gt (t ≤ s)
be the polynomials computed by the top-most non-skew gates in C and let d′i = deg(gi) for i ∈ [t].
Then, there exist homogeneous polynomials hi,j (i ∈ [t], j ∈ [0, d − d′i]) of degree d − d′i and h0 of
degree d such that

f =
∑

i∈[t]

∑

j∈[0,d−d′i]

gi ×j hi,j + h0.

Furthermore, each hi,j and h0 can be computed by a homogeneous skew circuit of size at most sd.

Proof. For the decomposition, we will give a proof sketch in the spirit of the proof given for Lemma 9.
Any given parse tree of C is path-like until either it reaches exactly one of the top-most non-skew
gates or it ends with a multiplication of two input gates. Collecting the values of the parse trees in
the latter case yields the polynomial h0, while we can as before partition the remaining parse trees
depending on the top-most gate reached and the degree of the monomial multiplied on the left.

Let us now show that the resulting polynomials hi,j and h0 can each be computed by a homo-
geneous skew circuit of size at most sd. Let α1, . . . , αt be the top-most non-skew gates. When a
parse tree does not stop at one of these gates, it must end at a multiplication of two input gates:
we will call β1, . . . , βu the set of these multiplication gates. We start by replacing α1, . . . , αt by
input gates labelled with new variables y1, . . . , yt. Putting all these variables to 0 yields a circuit
for h0.

Putting all y1, . . . , yt to 0 except yi, and setting all the gates β1, . . . , βu to 0 and deleting gates
taking the value 0 yields a skew circuit C ′ computing

∑

j∈[0,d−d′i]
yi ×j hi,j : since a parse tree

cannot both contain an α gate and a β gate, putting the β gates to 0 does not modify the rest of
the computation. Note that, apart from input gates which are arguments of skew multiplications,
all the gates in this circuit belong to a path from αi to the output. In particular the arguments of
any addition gate belong to paths from αi to the output.

We now build a new circuit by replacing each gate γ on a path from αi to the output, i.e., each
gate which is not an input gate argument of a skew multiplication, by a set of “component” gates.
More precisely, we replace each such gate γ by gates γ0, . . . , γd−d′i

and we will think of the gate γk
as representing the sum of the monomials computed by γ where the degree to the left of yi is k.
Thus αi is replaced by a first gate labelled yi and d − d′i gates labelled 0, since the polynomial yi
has one monomial with degree 0 on the left of yi and no monomials with another degree on the left.
The circuit C ′ is then modified by induction to compute the desired values.

Let γ be a multiplication gate with left argument δ and right (skew) argument an input gate
labelled x. Then gate γk of the new circuit computes δk × x.

Let γ be a multiplication gate with right argument δ and left (skew) argument an input gate
labelled with a constant c. Then gate γk of the new circuit computes c× δk.

Let γ be a multiplication gate with right argument δ and left (skew) argument an input gate
labelled with a variable x. Then gate γk of the new circuit computes x× δk−1.

Finally addition gates are made component-wise. Replacing yi by 1, the j-th component of
the output gate computes hi,j . The size of the original circuit, s, has been multiplied by at most
d− d′ + 1, for a total size at most sd.
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6.2 More partitions w.r.t. which small skew circuits are low rank

For any n ∈ N
+ and θ ∈ R, we use expn(θ) to denote nθ.

Definition 17. We say that a partition Π = (Y,Z) of [d] is a (d1, d2, ℓ1, ℓ2)-extended left right
monochromatic ((d1, d2, ℓ1, ℓ2)-XLRM) partition if [d1 + ℓ1] ∪ [d− d2 − ℓ2 + 1, d − ℓ2] ⊆ Y .

Given below is an example of a (d1, d2, ℓ1, ℓ2)-XLRM partition.

d1 d2ℓ1 ℓ2

Y or Z:Y :

Figure 7: Extended left-right monochromatic (XLRM) partitions

Lemma 18 (Generalization of Lemma 11). Let f ∈ F〈X〉 be a homogeneous polynomial of degree
d ∈ N computed by a homogeneous skew circuit C of size s. Let Π = (Y,Z) be a (d1, d2, ℓ1, ℓ2)-
XLRM partition, where d1, d2, ℓ1, ℓ2 are non-negative integers with 4|d1 and 4|d2, ℓ2 ≤ ℓ1, and
d ≥ d1 + d2 + ℓ1 + ℓ2. Then

rel-rank(f,Π) ≤ (sd)2+O(
ℓ2
D
) · expn

{

−Ω

(

min

{

d1, d2,
d1D

ℓ2

})}

.

where D denotes min{d1, d2}.

We will only apply the above lemma when d2 = Θ(d1) and ℓ2 = O(d1), in which case the upper
bound on rel-rank(f,Π) is (sd)O(1) · expn(−Ω(d1)).

The idea of the proof is simple. When ℓ2 = 0, we have a (d1, d2)-LRM partition and we are done.
If that is not the case, we use induction on ℓ2. We first apply Lemma 9 to decompose f as a sum
of a small number of polynomials of the form g ×j h where g has degree roughly d− (D/2): if the
partition corresponding to h takes (roughly) as large a chunk out of the ℓ1 length initial segment
as it takes out of the final ℓ2 length segment, we can use the induction hypothesis and we are done;
otherwise, the partition corresponding to h has many more elements of Y than Z and we are done
since the relative rank of h w.r.t. this partition is small.

Proof. We start with defining some parameters. Let ∆ = D/2 and r = min{⌊d1∆8ℓ2
⌋, ∆2 }. Also, let

δ = ∆−r
2 . Note that ∆/4 ≤ δ ≤ ∆/2.

We prove a more general statement that is amenable to induction. For any integer i ≥ 0, we show
that for d1, d2, ℓ1, ℓ2 as in the statement of the lemma additionally satisfying ℓ2 ≤ iδ and i ≤ d1/2r,
then the maximum possible relative rank of f w.r.t. Π, which we denote by ρ(ℓ1, ℓ2, d1, d2), can be
bounded by

ρ(d1, d2, ℓ1, ℓ2) ≤ (sd)1+i · n−r. (3)

We will prove the above by induction on i. First, we note that it implies the lemma. For
i = ⌈4ℓ2∆ ⌉, we have both ℓ2 ≤ iδ (using δ ≥ ∆/4) and also i ≤ d1/2r by choice of r. Hence, (3)
implies the statement of the lemma.
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The base case is i = 0, which corresponds to ℓ2 = 0 and follows directly from Lemma 11 since
the partition Π is (d1, d2)-LRM.

For the inductive case, consider any i ≥ 1. We apply Lemma 9 to the circuit C with d′ = ∆.
For some t ≤ s, we obtain

f =
∑

i∈[t]

∑

j∈[∆]

gi ×j hi,j (4)

where g1, . . . , gt are the intermediate polynomials of degree d − ∆ computed by C (and hence
themselves are computed by skew circuits of size at most s).

We have rel-rank(f,Π) ≤
∑

i,j rel-rank(gi ×j hi,j ,Π) by the subaddivity of relative rank and
hence it suffices to bound each rel-rank(gi ×j hi,j ,Π). We analyze this term in two ways depending
on j.

The easier case is when j ≥ ∆−j+r. In this case, it can be seen that the partition Πh = (Yh, Zh)
corresponding to hi,j (i.e. Yh = Collapse(Y \[j+1, j+d−∆], [d]\[j+1, j+d−∆]) and Zh = [∆]\Yh)
satisfies |Yh|−|Zh| ≥ r and hence by Corollary 7, we have rel-rank(gi×hi,j,Π) ≤ rel-rank(hi,j ,Πh) ≤
n−r for each such j.

Now we consider the case when j ≤ ∆ − j + r. Note that in this case, we have j ≤ ∆+r
2 and

hence ∆ − j ≥ ∆−r
2 = δ. For each such j, we see that the partition Πg corresponding to gi (i.e.

Yg = Collapse(Y ∩ [j + 1, j + d−∆], [j + 1, j + d−∆]) and Zg = [d−∆] \ Yg) satisfies one of two
conditions:

• if ∆ − j ≤ ℓ2, then Πg is (d1, d2, ℓ1 − j, ℓ2 − (∆ − j))-XLRM, which can also be seen to be
(d1 − (j− (∆− j)), d2, ℓ1 − (∆− j), ℓ2 − (∆− j))-XLRM by ‘moving’ some of the degree from
the ‘d1 part’ to the ‘ℓ1 part’. As noted above, we have ∆ − j ≥ δ and hence ℓ2 − (∆ − j) ≤
iδ − δ = (i − 1)δ. Also, as j ≥ (∆ − j) + r, we have d1 − (j − (∆ − j)) ≥ d1 − r. Since
i ≤ d1/2r, we obtain i− 1 ≤ (d1 − r)/2r and the induction hypothesis along with Corollary 7
can be applied to yield rel-rank(gi × hi,j,Π) ≤ rel-rank(gi,Πg) ≤ (sd)1+(i−1) · n−r.

• if ∆−j > ℓ2
7, then Πg is always (d1−j, d2−(∆−j))-LRM, which in particular is (d1/2, d2/2)-

LRM. In this case, by Corollary 7 and Lemma 11, we immediately get rel-rank(gi×hi,j,Π) ≤
rel-rank(gi,Πg) ≤ n−min{d1,d2}/2 ≤ n−r.

Hence, for each i, j, we have shown

rel-rank(gi × hi,j,Π) ≤ (sd)1+(i−1) · n−r.

Putting this together with (4) and the subadditivity of relative rank, we obtain the inductive
statement (3).

6.3 The candidate hard partition for circuits of non-skew depth at most k

Throughout, let d0 ∈ N
+ be a fixed parameter.

Let d ∈ N. Given an (ordered) partition Π = (Y,Z) of [d], we define the signature of Π to be
the sequence sgn(Π) = σ = (i1, i2, . . . , ip) of non-negative integers such that the first i1 elements of

7this can only happen when ℓ2 ≤ ∆
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[d] belong to Y , the next i2 elements belong to Z, the next i3 again to Y , and so on. Formally,

Y =
⋃

q odd

[
∑

j<q

ij + 1,
∑

j≤q

ij ].

We denote by |σ| the quantity
∑

q≤p iq = d and use |σ|0 to denote p.

Given two signatures σ1 ∈ N
n and σ2 ∈ N

m, we use σ1◦σ2 ∈ N
m+n to denote their concatenation.

We also use σr
1 to denote the r-fold repetition of σ1.

Given a signature σ = (i1, . . . , ip), we say that a signature τ is a prefix of σ if τ = (i′1, . . . , i
′
q)

for q ≤ p, where i′j = ij for j < q and i′q ≤ iq.
Clearly, we may define a partition Π of [d] using its signature. For any k ∈ N, we now define a

partition Πk = (Yk, Zk) of [d] (for suitable d) such that small circuits of non-skew depth at most k
computing a homogeneous polynomial of degree d have low rank w.r.t. Πk.

Fix any k ∈ N and let Dk = 8d0 +12d0k. We define the partition Πk = (Yk, Zk) of [Dk] so that

sgn(Πk) = (3(k + 1)d0, 2d0) ◦ (d0, 2d0)
1+3k

Note that |Yk| = |Zk| = Dk/2. Figure 8 illustrates the partition Π0 and also the relation between
the partitions Πk and Πk−1, which will be important in our lower bound.

d03d0 2d0 2d0

Πk−1

d03d0 2d0

Y : Z:

Figure 8: The partition Π0 (above) and constructing Πk from Πk−1 (below)

We will later show that small circuits of non-skew depth at most k computing a homogeneous
polynomial of degree Dk cannot compute a polynomial that has high relative rank w.r.t. Πk. In
the remainder of this section, we show that there are small circuits of non-skew depth O(k) (in fact,
circuits using only O(k) many non-skew gates) that can compute a homogeneous polynomial fk of
degree Dk that has full rank w.r.t. Πk. The basic ‘gadget’ in this construction is the palindrome
polynomial, and the construction of fk involves ‘wrapping’ a copy of PALDk/4(X) around O(k)
copies of PALd0(X).

Lemma 19. Fix any positive integers k, d0 and let Dk be as above. Then, there is a homogeneous
polynomial fk ∈ F〈X〉 of degree Dk that is computable by a non-commutative arithmetic circuit of
size O(nDk) with O(k) many non-skew gates and s.t. rel-rank(fk,Πk) = 1.

Proof. We define the polynomials fk inductively. For k = 0, we define

f0 := (PAL2d0(X) · PALd0(X))×d0 PALd0(X)
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In the notation of Section 4.1, we can write f0 as

f0 =
∑

w1,w2,w3,w4∈[n]d0

x̃w1 · x̃w2 · x̃w3 · x̃wR
3
· x̃wR

2
· x̃w4 · x̃wR

4
· x̃wR

1

Figure 9 illustrates the positioning of the segments of the monomial corresponding to w1, w2, w3,
and w4 w.r.t. the partition Π0.

w1 w2 w3 wR
3 wR

2 w4 wR
4 wR

1

fk−1

w1 w2 w3 w4 wR
4 wR

3 w5 wR
5 wR

2 w6 wR
6 wR

1

Figure 9: The construction of polynomials f0 (above) and fk from fk−1 (below)

We observe that f0 can be computed by a homogeneous non-commutative arithmetic circuit of
size O(nD0) = O(nd0) with exactly one non-skew gate. To see this, note that g0 := (PAL2d0(X) ·
PALd0(X)) can be computed by first computing each of the terms of the product using homogeneous
skew circuits of size O(nd0) and then multiplying them using exactly one non-skew gate. We can
then compute f0 by using g0 and only homogeneous skew multiplication gates by using the following
inductive definitions:

g
(0)
0 := g0

g
(i+1)
0 :=

n∑

j=1

xj · g
(i)
0 · xj

The polynomial g
(d0)
0 is exactly f0. Note that computing g

(i+1)
0 from g

(i)
0 requires only O(n)

additional gates. Thus, the size of the circuit computing f0 is O(nd0).
For k > 0, we define the polynomial fk inductively as follows. The construction is illustrated

in Figure 9.

fk :=
∑

w1,w2,w3,w4,w5,w6∈[n]d0

(x̃w1 x̃w2x̃w3) · fk−1 · (x̃w4 x̃wR
4
) · x̃wR

3
· (x̃w5 x̃wR

5
) · x̃wR

2
· (x̃w6 x̃wR

6
) · x̃wR

1

It can be easily checked that the matrix M [fk,Πk] is an nDk/2×nDk/2 permutation matrix and
hence rel-rank(fk,Πk) = 1.

We need to check that fk defined as above has a small non-commutative circuit with O(k) many
non-skew gates. For k ≥ 1, we define

hk := (fk−1 · PALd0(X))×d0 PALd0(X)

gk := (hk · PALd0(X))×d0 PALd0(X)

Note that
fk = (gk · PALd0(X))×d0 PALd0(X)
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The circuit for hk is obtained from the circuit for fk−1 in a manner similar to the construction
of the circuit for f0, and similarly, we can obtain a circuit for gk and then a circuit for fk. We omit
the details. It is easy to check that only 3 additional non-skew multiplication gates are used by the
above procedure and hence the number of non-skew gates used overall is O(k).

6.4 The lower bound for circuits of non-skew depth k

In this section, we show that small non-commutative circuits of non-skew depth k computing a
homogeneous polynomial of degree Dk cannot compute a polynomial that has high relative rank
w.r.t. Πk. Throughout, let d0 ∈ N be a fixed parameter.

For ℓ ∈ N
+, we say that a pair (g,Π) is ℓ-good if g ∈ F〈X〉 is a homogeneous polynomial with

deg(g) = D ≥ Dℓ and Π = (Y,Z) is a partition of [D] such that sgn(Π) = (a, 2d0)◦(d0, 2d0)
1+3ℓ+r ◦

(b, c) where

• a ≥ 3(ℓ+ 1)d0, r ≥ 0, and

• either c = 0 and b ∈ [d0] or b = d0 and c ∈ [2d0 − 1].

Intuitively, the (g,Π) being ℓ-good means that D ≥ Dℓ and Π ‘contains’ a copy of Πℓ as a sub-
segment and Π is furthermore similarly contained in Πℓ′ for some ℓ′ ≥ ℓ. See Figure 10, where the
top partition corresponds to the case c = 0 and the bottom one to the case b = d0 as mentioned
above.

Πℓ · · ·

Πℓ · · ·

Dℓ

Figure 10: Partitions that arise in ℓ-good pairs

The main lemma is the following:

Lemma 20 (Main Lemma for circuits of non-skew depth k). Assume k, d0 ∈ N such that 64|d0.
Let f ∈ F〈X〉 be any homogeneous polynomial of degree Dk computed by a non-commutative circuit
C of size at most s with non-skew depth at most k and let Πk = (Yk, Zk) be the partition defined
above. Then, rel-rank(f,Πk) ≤ (sDk)

O(1) · n−Ω(d0).

The basic idea of the proof is to repeatedly use Lemma 16 to decompose the polynomial f
as a sum of polynomials computed by circuits with smaller non-skew depth. When we apply
Lemma 16, we repeatedly obtain polynomials of the form g ×j h where g and h are homogeneous
polynomials of degree dg andDk−dg respectively and j ∈ [0,Dk−dg]. Given a polynomial g ∈ F〈X〉,
j ∈ [0,Dk−dg], and ℓ ∈ [0, k], we say that the pair (g, j) is ℓ-admissible if the pair (g,Πg) is ℓ-good,
where Πg = (Yg, Zg) for Yg := Collapse(Yk ∩ [j + 1, j + dg], [j + 1, j + dg]) and Zg := [dg] \ Yg. See
Figure 11.
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Πℓ · · ·

g
j

Πk

Figure 11: Example of an ℓ-admissible pair (g, j)

Proof. First let us introduce some notation. Let the non-skew depth of a node v of C be the maxi-
mum number of non-skew gates on any path from a leaf to v. For ℓ ∈ [k], let Gℓ (resp.G=ℓ) be the set
of all polynomials computed by gates in the circuit that have non-skew depth at most ℓ (resp. exactly
ℓ); note that |G=ℓ| ≤ |Gℓ| ≤ s. We also denote by Aℓ the set {(g, j) | g ∈ Gℓ and (g, j) is ℓ-admissible}.
Finally, we define Vℓ by

Vℓ = {
∑

(g,j)∈Aℓ

g ×j H
g
j | Hg

j ∈ F〈X〉 homogeneous of degree exactly (Dk − deg(g))}

Note that Vℓ ⊆ F〈X〉 is a vector space over F.
Our proof proceeds in two steps:

1. We first show that for each ℓ ∈ [0, k], the polynomial f can be decomposed as f = pℓ+eℓ where
pℓ ∈ Vℓ and eℓ is such that rel-rank(eℓ,Πk) is small. The proof is by downward induction on
ℓ.

2. We then show that rel-rank(p0,Πk) is small for each p0 ∈ V0. Along with the above decom-
position, this will finish the proof.

We start with 1. above. Formally, we prove that there are absolute constants α, β > 0 such that
for each ℓ ∈ [0, k], the polynomial f can be written as

f = pℓ + eℓ (5)

where pℓ ∈ Vℓ and eℓ ∈ F〈X〉 is homogeneous of degree D0 and satisfies

rel-rank(eℓ,Πk) ≤ (sDk)
α · (k − ℓ) · n−βd0 . (6)

The proof is by downward induction on ℓ. We will choose α, β so that they satisfy some
constraints that come up during the course of the proof. The base case when ℓ = k is trivial, since
we can choose pk = f ∈ Vk and ek to be the zero polynomial. Both (5) and (6) are thus satisfied
for any choice of α, β.

Now for the induction case. Say that ℓ ∈ [0, k − 1]. By the induction hypothesis we have
f = pℓ+1 + eℓ+1, where pℓ+1 ∈ Vℓ+1 and rel-rank(eℓ+1,Πk) ≤ (sDk)

α · (k − ℓ − 1) · n−βd0 . By the
definition of Vℓ+1, we know that
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pℓ+1 =
∑

(g,j)∈Aℓ+1

g ×j H
g
j

=
∑

(g,j)∈A′
ℓ+1

g ×j H
g
j +

∑

(g,j)∈Aℓ

g ×j H
g
j

︸ ︷︷ ︸

p′
ℓ+1∈Vℓ

(7)

where A′
ℓ+1 := Aℓ+1 \Aℓ = {(g, j) | (g, j) is ℓ+ 1-admissible and g ∈ G=ℓ+1}. (Here, we have used

the fact that if (g, j) is (ℓ+ 1)-admissible and g ∈ Gℓ, then (g, j) is also ℓ-admissible.)
As noted above, the terms corresponding to (g, j) ∈ Aℓ already sum to a polynomial p′ℓ+1 ∈ Vℓ.

To prove the induction statement (5), it therefore suffices to decompose each polynomial g ×j H
g
j

where (g, j) ∈ A′
ℓ+1. To do this, we need the following claim, whose proof is deferred:

Claim 21. Fix any ℓ ∈ [k]. Also fix any g ∈ G=ℓ of degree dg ∈ [Dℓ,Dk], any homogeneous
polynomial H ∈ F〈X〉 of degree Dk−dg, and j such that (g, j) is ℓ-admissible. Then, the polynomial
g ×j H can be decomposed as

g ×j H = p+ e

where p ∈ Vℓ−1 and e ∈ F〈X〉 is homogeneous of degree Dk and satisfies rel-rank(e,Πk) ≤ (sDk)
O(1) ·

n−Ω(d0).

Applying the above claim (with ℓ replaced by ℓ + 1) to each pair (g, j) ∈ A′
ℓ+1 from the right

hand side of (7), we obtain for each such (g, j) that

g ×j H
g
j = pgj + egj

where pgj ∈ Vℓ and rel-rank(egj ,Πk) ≤ (sDk)
α1 · n−β1d0 for suitably large α1 > 0 and small β1 > 0.

Substituting in (7), we get

pℓ+1 = p′ℓ+1 +
∑

(g,j)∈A′
ℓ+1

pgj

︸ ︷︷ ︸

pℓ

+
∑

(g,j)∈A′
ℓ+1

egj

︸ ︷︷ ︸

e′
ℓ

.

Note that pℓ ∈ Vℓ (since Vℓ is a vector space). Also, as |A
′
ℓ+1| ≤ (sDk), we have rel-rank(e

′
ℓ,Πk) ≤

(sDk)
α1+1 · n−β1d0 ≤ (sDk)

α · n−βd0 for α ≥ α1 + 1 and β ≤ β1.
Setting pℓ as above and eℓ = eℓ+1 + e′ℓ, we have the required decomposition. The inequality (6)

follows since rel-rank(eℓ,Πk) ≤ rel-rank(eℓ+1,Πk) + rel-rank(e′ℓ,Πk). This finishes the proof of the
induction.

Thus, for ℓ = 0, we have
f = p0 + e0

for some p0 ∈ V0 and rel-rank(e0,Π0) ≤ k · (sDk)
α · n−βd0 ≤ (sDk)

α+1 · n−βd0 . To bound
rel-rank(f,Πk), we only need to bound rel-rank(p0,Πk). Since p0 ∈ V0, we have

p0 =
∑

(g,j)∈A0

g ×j H
g
j (8)

To analyze rel-rank(p0,Πk), we will need the following claim, the proof of which is also deferred:
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Claim 22. Assume that h ∈ F〈X〉 of degree dh ∈ [D0,Dk] is computed by a homogeneous skew
circuit of size s1.

(a) Let Πh = (Yh, Zh) be any partition of [dh] such that (h,Πh) is 0-good. Then rel-rank(h,Πh) ≤
(s1Dk)

O(1) · n−Ω(d0).

(b) Let H ∈ F〈X〉 be a homogeneous polynomial of degree dH = Dk − dh. Given j ∈ [0, dH ] is such
that (h, j) is 0-admissible, we have rel-rank(h×j H,Πk) ≤ (s1Dk)

O(1) · n−Ω(d0).

Fix (g, j) ∈ A0 and consider the polynomial g×j H
g
j in the right hand side of (8). By Claim 22

and using the fact that g is computable by a skew circuit of size at most s, we know that rel-rank(g×j

Hg
j ,Πk) ≤ (sDk)

O(1) · n−Ω(d0). Thus, we have

rel-rank(f,Πk) ≤ rel-rank(p0,Πk) + rel-rank(e0,Πk)

≤
∑

(g,j)∈A0

rel-rank(g ×j H
g
j ,Πk) + rel-rank(e0,Πk)

≤ (sDk)
O(1) · n−Ω(d0)

which finishes the proof of the lemma.

It remains to prove the two claims used in the proof of Lemma 20. We prove Claim 22 first and
then Claim 21.

Proof of Claim 22. We first prove Part (a) of the claim. Since (h,Πh) is 0-good, we have sgn(Πh) =
(a, 2d0) ◦ (d0, 2d0)

1+r ◦ (b, c), for a ≥ 3d0, r ≥ 0 and b, c such that either c = 0 and b ∈ [d0] or b = d0
and c ∈ [2d0 − 1].

We need to show that
rel-rank(h,Πh) ≤ (s1Dk)

O(1) · n−Ω(d0), (9)

We divide the analysis into the following cases (see also Figure 12).

· · ·

a ≥ 3d0 b ≥ d0/2

· · ·

b < d0/2

ℓ1 d1 d2 ℓ2

· · ·

c

ℓ1 d1 d2 ℓ2

Figure 12: Cases from Claim 22
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• c = 0 and b ≥ d0/2: In this case, we can apply Lemma 11 with d1 = 3d0 and d2 = d0/2 to
get (9).

• c = 0 and b < d0/2: In this case, we apply Lemma 18 with d1 = d0/2, d2 = d0, ℓ1 = 5d0/2,
and ℓ2 = b + 2d0 < 5d0/2. Note that Y ⊇ [3d0] ∪ [d − b − 3d0 + 1, d − b− 2d0] = [d1 + ℓ1] ∪
[d− d2 − ℓ2 + 1, d − ℓ2] and hence Lemma 18 implies (9).

• b = d0 and c > 0: We apply Lemma 18 with parameters d1 = d2 = d0, ℓ1 = 2d0, and
ℓ2 = c < 2d0, which gives (9).

Part (b) of the claim follows from Part (a) as follows. Let Yh := Collapse(Yk∩ [j+1, j+dh], [j+
1, j + dh]), Zh := [dh] \Yh, and Πh := (Yh, Zh). Since (h, j) is 0-admissible, we know that (h,Πh) is
0-good. By Corollary 7, we have

rel-rank(h×j H,Πk) ≤ rel-rank(h,Πh) ≤ (s1Dk)
O(1) · n−Ω(d0)

where the last inequality follows from Part (a).

Proof of Claim 21. Let Yg := Collapse(Yk∩ [j+1, j+dg], [j+1, j+dg]). Also define Zg := [dg]\Yg

and Πg := (Yg, Zg). Since (g, j) is ℓ-admissible, we know that (g,Πg) is ℓ-good.

Πℓ · · ·

Πℓ−1

3d0

Figure 13: The partition Πg (above) and the relation between Πℓ and Πℓ−1 (below)

To do this, consider the subcircuit Cg of C that computes g. Since g is at non-skew depth ℓ,
we may assume that Cg has non-skew depth ℓ also by removing gates at larger non-skew depths.
Recall that C and hence Cg has size at most s.

By applying Lemma 16 to the polynomial g, we can see that

g =
∑

i∈[t]

∑

m∈[0,dg−di]

gi ×m hi,m + h0

where g1, . . . , gt are the polynomials computed by the top-most non-skew gates in Cg and di =
deg(gi). Further, each of the hi,m and h0 have skew circuits of size at most sdg ≤ sDk. Thus, we
have

g ×j H =
∑

i

∑

j,m

(gi ×m hi,m)×j H + h0 ×j H (10)

We argue that polynomial on the right hand side of (10) either belongs to Vℓ−1 or has relative
rank at most (sDk)

O(1) · n−Ω(d0) w.r.t. Yk. Since Vℓ−1 is a vector space and rel-rank(·,Πk) is
subadditive, this will complete the proof.
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We consider first the polynomial h0 ×j H. Note that (h0, j) is ℓ-admissible — since (g, j) is —
and hence it is also 0-admissible. Moreover, h0 is computable by a skew circuit of size at most sDk.
Hence, by Claim 22, we have

rel-rank(h0 ×j H,Πk) ≤ (sDk)
O(1) · n−Ω(d0), (11)

which completes the analysis of this term.
Now consider any polynomial qi,m := (gi ×m hi,m) ×j H appearing in (10). For notational

simplicity, we let d′g := di = deg(gi) and d′h := deg(hi,m) = dg − di. We will show that either
qi,m ∈ Vℓ−1 or rel-rank(qi,m,Πk) is small; to prove the latter, we will use the following inequalities
which follow from Lemma 6 and Corollary 7:

rel-rank(qi,m,Πk) ≤ rel-rank(gi ×m hi,m,Πg) ≤ min{rel-rank(gi,Π
′
g), rel-rank(hi,m,Π′

h)}

≤ min{n−(|Y ′
g |−|Z′

g|), n−(|Y ′
h
|−|Z′

h
|)} (12)

where Π′
g = (Y ′

g , Z
′
g) and Π′

h = (Y ′
h, Z

′
h) are the natural restrictions of Πg to gi and hi,m respectively.

That is, Y ′
g := Collapse(Yg ∩ [m + 1,m + d′g], [m + 1,m + d′g]), Y

′
h := Collapse(Yg \ [m + 1,m +

d′g], [dg ] \ [m+ 1,m+ d′g]), and Z ′
g and Z ′

h denote [di] \ Y
′
h and [di,m] \ Z ′

h respectively.
Since (g,Πg) is ℓ-good, we know that dg ≥ Dℓ and, furthermore, we have sgn(Πg) = (a, 2d0) ◦

(d0, 2d0)
1+3ℓ+r ◦ (b, c) where a ≥ 3(ℓ + 1)d0, r ≥ 0 and b, c such that either c = 0 and b ∈ [d0] or

b = d0 and c ∈ [2d0 − 1].
The upper bound on rel-rank(qi,m,Πk) is based on a case analysis. We refer the reader to the

accompanying figures for an intuitive description of each case.

1. m < 5d0/2 and dg − m − d′g < b + c + 3rd0 + 9d0: In this case sgn(Π′
g) = (ag, 2d0) ◦

(d0, 2d0)
1+3(ℓ−1) ◦ σ, where ag ≥ (3ℓ + 1/2)d0 and σ is some signature: in particular, d′g ≥

Dℓ−1 + d0/2. In what follows, we will argue that either gi has low relative rank w.r.t. Π′
g or

qi,m ∈ Vℓ−1.

Since gi is computed by a top-most non-skew gate in the circuit Cg, we can write gi =
gi,1 · gi,2 where gi,1 and gi,2 are homogeneous polynomials computed by homogeneous circuits
of size at most s and non-skew depth at most ℓ − 1. Let e1 and e2 = d′g − e1 denote the
degrees of gi,1 and gi,2 respectively. Let Π′

g,1 = (Y ′
g,1, Z

′
g,1) and Π′

g,2 = (Y ′
g,2, Z

′
g,2) be the

induced partitions on gi,1 and gi,2 respectively: i.e., Y ′
g,1 = Collapse(Y ′

g ∩ [e1], [e1]) and
Y ′
g,2 = Collapse(Y ′

g ∩ [e1 + 1, d′g], [e1 + 1, dg]).

Our analysis is further divided into two cases depending on e1:

(i) e1 < d0/2: In this case, we see that e2 = d′g − e1 ≥ Dℓ−1 and also sgn(Π′
g,2) = (ag −

e1, 2d0) ◦ (d0, 2d0)
1+3(ℓ−1) ◦ σ. Hence, (gi,2,Π

′
g,2) is (ℓ− 1)-good. Thus, the polynomial

qi,m — which by Fact 2 can be written as gi,2 ×j2 H2 for some homogeneous polynomial
H2 of degree Dk − d′g,2 and some j2 — belongs to Vℓ−1 and hence we are done.

(ii) e1 ≥ d0/2: If sgn(Π
′
g,1) = (ag, 2d0) ◦ (d0, 2d0)

1+3(ℓ−1) ◦ σ′ for some signature σ′, then as
in the previous case, we have qi,m = gi,1 ×j1 H1 for some suitable H1 and j1, and hence
qi,m ∈ Vℓ−1.
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Otherwise, we can use the fact that sgn(Π′
g,1) must be a prefix of (ag, 2d0)◦(d0, 2d0)

1+3(k−1)

and using the fact that |sgn(Π′
g,1)| = e1 ≥ d0/2, we see that |Y ′

g,1| − |Z ′
g,1| ≥ d0/2 and

therefore, we have rel-rank(gi,1,Π
′
g,1) ≤ n−(|Y ′

g,1|−|Z′
g,1|) ≤ n−Ω(d0). By Lemma 6, the

same bound holds for rel-rank(qi,m,Πk) as well.

Πℓ−1 . . .

m < 5d0/2 dg −m− d′ggi

gi,1 gi,2

Πℓ−1 . . .

gi,1 gi,2

Πℓ−1 . . .

gi,1 gi,2

Figure 14: The subcases in Case 1: The first figure represents Case 1(i), and the second and third
represent Case 1(ii).

2. m < 5d0/2 but dg−m−d′g ≥ b+c+3rd0+3d0: In this case, it can be checked that sgn(Πg) is

a prefix of (ag, 2d0) ◦ (d0, 2d0)
1+3(ℓ−1) for some ag ≥ (3ℓ+1/2)d0. We analyze in two different

ways depending on whether d′g is reasonably large or not.

(i) d′g ≥ d0/2: In this case, it follows that no matter what exactly sgn(Πg) is, we will always

have |Y ′
g | − |Z ′

g| ≥ d0/2 and hence by (12), we have rel-rank(gi ×m hi,m,Π′
g) ≤ n−Ω(d0).

(ii) d′g < d0/2: In this case, it can be checked that d′h ≥ Dℓ−1 and (h, sgn(Π′
h)) is (ℓ− 1, d′h)-

good and hence also (0, d′h)-good. Thus, we have

rel-rank(qi,m,Πk) = rel-rank((gi ×m hi,m)×j H,Πk) = rel-rank(gi ×j+m (hi,m ×j H),Πk)

≤ rel-rank(hi,m,Π′
h) ≤ (sD)O(1) · n−Ω(d0)

where the second equality uses Fact 2, the first inequality uses two applications of
Corollary 7, and the last inequality follows from Part 1 of Claim 22.

3. m ∈ [5d0/2, a]: In this case, we can show that rel-rank(hi,m,Π′
h) ≤ (sDk)

O(1) · n−Ω(d0). By
(12), the same upper bound holds for rel-rank(qi,m,Πk).

Instead of going through the explicit case analysis, we refer the reader to Figure 16 for the
various cases that can occur. It can be checked that in each of these, the resulting partition
Π′

h is (d1, d2, ℓ1, ℓ2)-XLRM, where d1 = d2 = d0/8, ℓ1 = (5/2)d0 and ℓ2 ≤ (2 + (1/8))d0 ≤ ℓ1
(ℓ2 can possibly be chosen to be 0 as in the second figure). By Lemma 18, this shows what
we wanted to prove.
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Πℓ−1 . . .

m dg −m− d′ggi

Πℓ−1 . . .

m gi

Figure 15: The subcases in Case 2: Case 2(i) above and Case 2(ii) below.

. . .

m gi

a b ≤ d0/8

. . .

m gi
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. . .

m gi

a c ≤ 2d0

Figure 16: The subcases that can occur in Case 3

4. m > a: Here again we can show that rel-rank(hi,m,Π′
h) ≤ (sDk)

O(1) · n−Ω(d0) by noting that
irrespective of the placing of gi, the partition Π′

h is (d1, d2, ℓ1, ℓ2)-XLRM for d1 = d2 = d0/2,
ℓ1 = 5d0 and some ℓ2 ≤ (4 + (1/2))d0 ≤ ℓ1 and using Lemma 18. See Figure 17.

The main lower bound for non-commutative circuits of small non-skew depth follows.

Theorem 23 (Lower bound for circuits of non-skew depth k). Let k, d ∈ N be any parameters
such that 64(8 + 12k)|d. There is a homogeneous polynomial f ∈ F〈X〉 of degree d such that
f is computable by a homogeneous circuit of size O(nd) with O(k) non-skew gates but any non-
commutative circuit of skew depth at most k computing f must have size at least Ω̃(nΩ(d/k)), where
the Ω̃(·) hides poly(d) factors.

Proof. We let f = fk as defined above with d0 := d/(8 + 12k) (and hence deg(fk) = Dk = d).
By Lemma 19, we know that f is computable by a homogeneous circuit of size O(nd) with O(k)
non-skew gates. Moreover, rel-rank(f,Πk) = 1, where Πk = (Yk, Zk) is the partition defined in
Section 6.3.
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Figure 17: Case 4

Let C be any non-commutative circuit of non-skew depth at most k computing f and let s
denote the size of C. By Lemma 5, we know that there is also a homogeneous circuit C ′ of
non-skew depth at most k and size at most sdO(1) computing f . Thus, Lemma 20 implies that
rel-rank(f,Πk) ≤ (sd)O(1)n−Ω(d0) = (sd)O(1)n−Ω(d/k). As rel-rank(f,Πk) = 1, we have the required
lower bound on s.

Remark 24. The divisibilty constraints on the degree in the statement of Theorem 23 can easily
be removed at the expense of additional constant factors in the exponent in the lower bound. For
example if the degree d does not have the required form, then we can find the largest d1 ≤ d of the
required form and consider the polynomial F = fk · z

d−d1 where z is a new variable and fk is the
hard polynomial of degree d1 as defined above. If F has a circuit of non-skew depth k of size s, then
so does fk, which yields s ≥ nΩ(d1/k). Since d1 = Ω(d), this yields an nΩ(d/k) bound.

7 Lower bound for the determinant and permanent

Nisan’s lower bounds from [15] held not only for the palindrome polynomial seen above, but also
for the permanent and the determinant polynomials, because it is easy to see that their partial
derivative matrices have high rank. In our case, we could also try to study the rank of the permanent
or the determinant, using our version of the partial derivative matrix. However it is simpler to use
the fact that the permanent and determinant can easily express the palindrome polynomial.

Recall the definitions of the non-commutative (Cayley) determinant and permanent of an n×n
matrix of variables X = (Xi,j)i,j∈[n]:

det(X) =
∑

σ∈Sn

sgn(σ)X1,σ(1) ·X2,σ(2) · · ·Xn,σ(n) per(X) =
∑

σ∈Sn

X1,σ(1) ·X2,σ(2) · · ·Xn,σ(n)

That is, we just take the commutative determinant and permanent and make it non-commutative
by ordering the variables in each monomial in increasing order of the rows in which they appear.

Lemma 25. Let Pd be the 2d× 2d matrix with x0 on the diagonal, x1 on the anti-diagonal, and 0
everywhere else. Let Dd be the 2d× 2d matrix with x0 on the diagonal, x1 on the first d positions
of the anti-diagonal and −x1 on the last d positions of the anti-diagonal. Then PALd(x0, x1) =
perPd = detDd.
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Proof. The permanent of Pd can be obtained by choosing in each row of Pd a column index, while
ensuring that each column index is taken only once; multiplying the values obtained; and then
adding the results for all possible choices. Since there are only two non-zero values per row, for
the row i (with 1 ≤ i ≤ d), we can either choose the index i with value x0 or the index 2d + 1− i
with value x1. In the first case, the column of index i is now forbidden and therefore for the row
2d+1− i the only available non-zero value is x0 with the column index 2d+1− i. In the the second
case, the column of index 2d+ 1− i is now forbidden and therefore for the row 2d+ 1− i the only
available non-zero value is x1 with column index i.

For the determinant, note that the above reasoning shows that a permutation yielding a non-
zero value is a combination of fixed points (when choosing the value x0 at row i in column i one
must then choose value x0 at row 2d+1− i in column 2d+1− i) and transpositions (when choosing
the value x1 at row 2d+1−i in column i one must then choose value x1 at row i in column 2d+1−i).
Therefore adding a minus sign to the last d values x1 cancels out the sign of the permutation in
the determinant.

Corollary 26. Let k, d ∈ N be any parameters such that (64(8 + 12k))|d. Any circuit of non-skew
depth k for the permanent or the determinant of an d× d matrix must have size 2Ω(d/k).

Proof. Let us show the corollary for the permanent only, since the case for the determinant is
similar. We will show that there exists a matrix Pk such that the permanent of Pk is f ′

k, where f ′
k

is fk but built with the 2-variable palindrome polynomial (n = 2). We will follow the construction
of fk from the proof of Lemma 19. Lemma 25 shows that there exists a matrix of order d0 whose
permanent is PALd0(x0, x1). To get f ′

0 from this polynomial, or to go from f ′
k−1 to f ′

k we basically
need two types of steps.

1. Computing the product of two previously obtained polynomials. If we have already built
two matrices M and N whose permanents are f and g respectively, then clearly f · g is the
permanent of the block diagonal matrix with M and N on the diagonal. The order of the
block matrix is the sum of the orders of M and N .

2. Computing a j-product of a previously computed polynomial with a palindrome polynomial.
If we have already built a matrix M whose permanent is the polynomial f , then we can build

a matrix whose permanent is f ×d0 PALd0(x0, x1) by considering the block matrix
(

D 0 A
0 M 0
A 0 D

)

,

where D is the order-d0 matrix with x0 on the diagonal and A is the order-d0 matrix with
x1 on the anti-diagonal (the reasoning is similar to the one in the proof of Lemma 25). The
order of this matrix is the order of M plus 2d0.

Thus f ′
0 is the permanent of a matrix of order 8d0 and going from f ′

k−1 to f ′
k increases the size of

the matrix by 12d0 (refer once again to the proof of Lemma 19). The order of the matrix Pk whose
permanent is f ′

k is thus d := Dk = (8 + 12k)d0. By Theorem 23, any circuit of non-skew depth k
for the permanent must have size 2Ω(d0) = 2Ω(d/k).

Remark 27. We note that a result similar to the one for the permanent proved above can be
deduced from the VNP-completeness of the permanent, which also holds in the non-commutative
setting as shown by Hrubeš, Wigderson, and Yehudayoff [10]. However, by making the reduction
explicit we gain slightly in terms of parameters and additionally, a very similar proof works also for
the determinant.
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8 Full-rank with respect to all partitions

Our lower bound proofs have been based on showing that any arithmetic circuit of non-skew depth
at most k cannot compute a polynomial that has large rank w.r.t. some fixed partition Πk. We
can ask if this strategy can yield lower bounds for general non-commutative arithmetic circuits
(i.e., with no restrictions on non-skew depth) as well. Our aim in this section is to show that the
answer to this question is possibly no: we show that over any large enough field F and any set
of n variables X, there is a polynomial p ∈ F〈X〉 that has non-commutative arithmetic circuits
of polynomial size, but which furthermore satisfies the property that for all partitions Π = (Y,Z)
with |Y | ≤ |Z|, rel-rank(p,Π) = 1. This shows that we cannot even hope to prove that for any
polynomial p computed by a polynomial-sized non-commutative circuit, there exists some partition
with respect to which p has small rank.

The proof follows closely a very similar construction due to Raz and Yehudayoff from [19] in
the context of commutative multilinear circuits.

Notation. We first introduce some notation. Given a finite set S of even cardinality, we define
an S-matching to be an unordered partition of S into sets of size two: i.e., M is an S-matching if
M ⊆

(S
2

)
and the sets in M partition S.

Fix any degree parameter d ∈ N that is even. For any i, j ∈ [d] with i < j and |[i, j]| = j− i+1
even, we define a set Mi,j of [i, j]-matchings as follows. The set Mi,j is defined by induction on
|[i, j]|. The base case is when j = i + 1 and in this case, we set Mi,j = {{i, i + 1}}. In the case
that j − i+ 1 = 2ℓ for ℓ > 1, we define the set Mi,j as follows:

Mi,j ={M ∪M ′ | M ∈ Mi,j′,M
′ ∈ Mj′+1,j for some j′ ∈ {i+ 1, i+ 3, . . . , j − 2}}

∪ {M ∪ {{i, j}} | M ∈ Mi+1,j−1}

Now, fix any λe ∈ F for each e ∈
([d]
2

)
. Given any set M ⊆

([d]
2

)
, we denote by λM the product

∏

e∈M λe. Finally, we define the polynomial pλ (where λ denotes the tuple (λ1,2, . . . , λd−1,d)) to be

pλ(X) =
∑

M∈M1,d

λM · pM (X) (13)

where pM is defined as follows.

pM(X) =
∑

w∈[n]d:wi=wj∀{i,j}∈M

x̃w

(Above, x̃w = xw1 · · · xwd
as defined in Section 4.1.) 8

We will show that for any choice of λe (e ∈
([d]
2

)
), the polynomial pλ has a non-commutative

circuit of size poly(n, d). On the other hand, if the field F is large enough, then there exists a choice

of λe (e ∈
([d]
2

)
) such that for any partition Π = (Y,Z) with |Y | ≤ |Z|, rank(M [pλ,Π]) = n|Y | (i.e.,

rel-rank(pλ,Π) = 1.
The first lemma gives us the circuit upper bound.

8The reader may find it instructive to note that each polynomial for which we have proved a lower bound so far
has been of the form pM for some [d]-matching M .
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Lemma 28. Fix any field F and d, n ∈ N such that d is even. For any choice of field elements
λe ∈ F (e ∈

([d]
2

)
), the polynomial pλ has a non-commutative arithmetic circuit of size poly(n, d).

Proof. We first define several intermediate polynomials that are computed in the course of com-
puting the polynomial pλ. For any i, j ∈ [d] such that i < j and ℓ := j − i + 1 is even, define the

polynomial pλi,j to be

pλi,j(X) =
∑

M∈Mi,j

λM · pM (X)

where pM , for M ∈ Mi,j is defined as

pM(X) =
∑

w∈[n]ℓ:ws−(i−1)=wt−(i−1)∀{s,t}∈M

x̃w.

Note that pλ is the same as pλ1,d. Our circuit for pλ computes pλi,j for each i, j ∈ [d]. The construction
is increasing order of the parameter ℓ.

When ℓ = 2 (the smallest value possible), the polynomial is simply pλi,i+1 = λ{i,i+1}

∑

x∈X xx,
which can be computed by a circuit of size O(n).

Now say we have a circuit C of size S that computes pλs,t when t− s+ 1 < ℓ. To compute pλi,j
where j − i+ 1 = ℓ, we use the following simple identity, which follows from the definition of Mi,j

pλi,j =




∑

j′∈{i+1,i+3,...,j−2}

pλi,j′ · p
λ
j′+1,j



+ λi,j

∑

x∈X

x · pλi+1,j−2 · x

Since each of the polynomials pλi,j′, p
λ
j′+1,j, and pλi+1,j−2 have already been computed by the circuit

C, the additional size required to compute pλi,j is O(d + n). We continue this way until we have

computed all the pλi,j.

The total number of pairs i, j is O(d2) and hence the size of the circuit thus constructed is
O(d2(d+ n)) = poly(n, d).

The second lemma tells us that it suffices to consider only balanced partitions (Y,Z): i.e.,
partitions such that |Y | = |Z| = d/2.

Lemma 29. Let d ∈ N be even. Let f ∈ F〈X〉 be any homogeneous polynomial of degree d. If
there is a partition Π = (Y,Z) with |Y | ≤ |Z| such that rel-rank(f,Π) < 1, then for any balanced
partition Π′ = (Y ′, Z ′) such that Y ′ ⊇ Y , we have rel-rank(f,Π′) < 1.

Proof. Consider the matrix M [f,Π′]. Each row is labelled by a monomial m of degree |Y ′|, which
can be identified with a pair (m′,m′′) where m′ is the natural restriction of m to the locations in
Y and m′′ is the restriction to the locations in Y ′ \ Y .

Fix any m′′ and consider all the monomials m that give rise to this particular m′′. The resulting
matrix has exactly n|Y | rows and n|Z′| columns. Each column is labelled by a monomial m′′′ of
degree |Z ′| and each row by a monomial m′ of degree |Y |. The (m′,m′′′)th entry of the the matrix
is the coefficient — in the polynomial f — of the monomial m which equals m′ when restricted to
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Y , equals m′′ when restricted to Y ′ \ Y , and equals m′′′ when restricted to Z ′. It is not hard to
check that this matrix is a submatrix of the matrix M [f,Π] (obtained by removing some columns).
Since rel-rank(f,Π) < 1, we have rank(M [f,Π]) < n|Y |.

Thus, for any fixed m′′, the rank of the submatrix obtained as above has rank < n|Y |. Since
there are n|Y ′|−|Y | such matrices, the rank of M [f,Π′] is strictly less than n|Y ′|−|Y | · n|Y | = n|Y ′|.
Hence, we have rel-rank(f,Π′) < 1.

Lemma 30. Let d ∈ N be even and F be any field such that F is either infinite or |F| > d22d. Then,
there is a choice of field elements λe ∈ F (e ∈

([d]
2

)
) such that for any balanced partition Π, we have

rel-rank(pλ,Π) = 1.

Proof. We fix any finite subset F ⊆ F of size at least d22d + 1 and choose each λe (e ∈
([d]
2

)
)

independently and uniformly at random from F . We will show that pλ(X) has the required property
with non-zero probability over the choice of the λe.

Fix any balanced partition Π = (Y,Z). We say that a [d]-matching M is good for Π if, for each
i ∈ Y , there is a j ∈ Z such that {i, j} ∈ M .

We use the following simple fact about the set of matchings M1,d.

Fact 31. For any balanced partition Π = (Y,Z), there is a matching M ∈ M1,d that is good for Π.

By Fact 31, there is a matching M0 ∈ M1,d such that M0 is good for Π. It follows then
from the definition of pM0 above that the matrix M [pM0 ,Π] is a permutation matrix and hence
rank(M [pM0 ,Π]) = nd/2. We argue that, with high probability over the choice of λ, this is true of

the polynomial pλ as well.
In order to do this, we consider det(M [pλ,Π]). By the definition of pλ, we have

M [pλ,Π] =
∑

N∈M1,d

λNM [pN ,Π] = λM0M [pM0 ,Π] +
∑

N∈M1,d\{M0}

λNM [pN ,Π]

Since M [pN ,Π] is a 0-1 matrix for each N , we see that det(M [pλ,Π]) is a polynomial in λe

(e ∈
(
[d]
2

)
) of degree at most d2d. We claim that this polynomial is in fact non-zero: to see this, note

that if we substitute λe = 1 for e ∈ M0 and 0 for e 6∈ M0 in the above expression for M [pλ,Π], we

obtain the matrix M [pM0 ,Π]; hence, under this substitution, the polynomial det(M [pλ,Π]) takes
the value det(M [pM0 ,Π]) which is non-zero since M0 is a permutation matrix. We have thus shown

that det(M [pλ,Π]) is a non-zero polynomial in λe (e ∈
(
[d]
2

)
). Since the degree of this polynomial is

at most d2d, for λe uniformly randomly chosen from F , we have by the Schwartz-Zippel lemma [21]

Pr
λ
[det(M [pλ,Π]) = 0] ≤

d2d

|F |
<

1

2d

since |F | > d22d. Union bounding over the
( d
d/2

)
≤ 2d choices for Π, we see that with probability

greater than 0 over the choice of λ, we have det(M [pλ,Π]) 6= 0 for each balanced partition Π and

hence, rel-rank(pλ,Π) = 1 for every balanced partition Π.
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Theorem 32. Let d ∈ N be even and F be any field such that F is either infinite or |F| > d22d. Let
X be any set of n variables. Then, there is a homogeneous polynomial p ∈ F〈X〉 of degree d such
that p has a circuit of size poly(n, d) but given any partition Π = (Y,Z) such that |Y | ≤ |Z|, we
have rel-rank(p,Π) = 1.

Proof. Follows directly from Lemmas 28, 29, and 30.
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