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Abstract

The information complexity of a function f is the minimum amount of information
Alice and Bob need to exchange to compute the function f . In this paper we provide
an algorithm for approximating the information complexity of an arbitrary function
f to within any additive error α > 0, thus resolving an open question as to whether
information complexity is computable.

In the process, we give the first explicit upper bound on the rate of convergence of
the information complexity of f when restricted to b-bit protocols to the (unrestricted)
information complexity of f .

1 Introduction

In 1948, Shannon introduced the field of information theory as a set of tools for understanding
the limits of one-way communication [15]. One of these tools, the information entropy
function H(X), measures the amount of information contained in a random source X.

The analogue of information entropy in communication complexity is information com-
plexity. The information complexity of a function f is the least amount of information Alice
and Bob need to exchange about their inputs to compute a function f . Just as the informa-
tion entropy of a random source X provides a lower bound on the amount of communication
required to transmit X, the information complexity of a function f provides a lower bound on
the communication complexity of f [4]. Moreover, just as Shannon’s source coding theorem
establishes H(X) as the asymptotic communication-per-message required to send multiple
independent copies of X, the information complexity of f is the asymptotic communication-
per-copy required to compute multiple copies of f in parallel on independently distributed
inputs [7, 3].

These properties make information complexity a valuable tool for proving results in com-
munication complexity. Communication complexity lower bounds themselves have a wide
variety of applications to other areas of computer science; for example, results in circuit com-
plexity such as Karchmer-Wigderson games and ACC lower bounds rely on communication
complexity lower bounds [12, 2]. In addition, techniques from information complexity have

∗Department of Computer Science, Princeton University, email: mbraverm@cs.princeton.edu. Research
supported in part by an NSF CAREER award (CCF-1149888), a Turing Centenary Fellowship, a Packard
Fellowship in Science and Engineering, and the Simons Collaboration on Algorithms and Geometry.
†Department of Computer Science, Princeton University, email: js44@cs.princeton.edu.

1

 

ISSN 1433-8092 

Electronic Colloquium on Computational Complexity, Report No. 23 (2015)



been applied to prove various direct sum results in communication complexity [9, 6, 11], in-
cluding the only known direct sum results for general randomized communication complexity
[4]. Information complexity has also been applied to prove a tight asymptotic bound on the
communication complexity of the set disjointness function [5].

Despite this, many fundamental properties of information complexity remain unknown
[5]. It is unknown how the information complexity of a function changes asymptotically as we
allow the protocol to fail with probability ε. It is unknown how the information complexity
of a function grows if we restrict our attention to protocols of bounded depth. Perhaps
most surprisingly, it is even unknown if, given the truth table of a function f , whether it is
possible to even compute (to within some additive factor of ε) the information complexity of
f . (Contrast this with the case of the information entropy H(X), which is easily computed
given the distribution of X).

In this paper, we resolve the last of these questions; we prove that the information
complexity of f is indeed computable. Our main technical result is an explicit bound on
the convergence rate of r-round information complexity to the unbounded-round information
complexity. More specifically, we show how to convert an arbitrary protocol π into a protocol
π′ that leaks at most ε more information than π, but requires at most (Nε−1)O(N) rounds
(Theorem 3.20). Equivalently, we show that the r-round information complexity of f is at
most r−O(N−1) larger than the information complexity of f . By combining this convergence
results with prior results connection information and communication complexity, we obtain
an algorithm that computes the information complexity of f to within an additive factor of

α in time 2exp((Nα−1)O(N)) (here N is the size of the truth table of f) .

1.1 Prior Work

In [13, 14], Ma and Ishwar present a method to compute tight bounds on the information
complexity of functions for protocols restricted to r rounds of computation. By examining
the limit as r tends to infinity, this method allows them to numerically compute the infor-
mation complexity of several functions (such as the 2-bit AND function). To make these
computations provably correct, one would need effective (computable) estimates on the rate
of convergence of r-round information complexity to the true information complexity. Such
estimates were unknown prior to the present paper.

Plenty of unsolved problems of this flavor — where the computability of some limiting
value is unknown despite it being straightforward to compute individual terms of this limit
— occur in information theoretic contexts. One famous problem is the problem of computing
the Shannon capacity of a graph, the amortized independence number of the kth power of a
graph (this limiting quantity also has an interpretation as the zero-error channel capacity of
a certain channel defined by this graph). While computing the independence number of any
given graph is possible (albeit NP-hard), the rate at which this limit converges is unknown.
Indeed, Alon and Lubetzky have shown that the limiting behavior of this quantity can be
quite complex; no fixed number of terms of this limit is guaranteed to give a subpolynomial
approximation to the Shannon capacity [1]. Another example, from the realm of quantum
information theory, occurs in computing the quantum value of games [8]. Here it is straight-
forward to compute the quantum value of a game when limited to n bits of entanglement,
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but no explicit bounds are known for how many bits of entanglement are required to achieve
within ε of optimal performance.

1.2 Outline of Proof

The main result of our paper is that zero-error information complexity is computable. For-
mally, we prove the following theorem.

Theorem 1.1. There exists an algorithm which, given a function f : A×B → {0, 1}, initial
distribution µ ∈ ∆(A×B), and a real number α > 0, returns a value C between ICµ(f)−α
and ICµ(f) + α. This can be performed in time 2exp((Nα−1)O(N)), where N = |A × B|.

Throughout this paper, we will take the perspective of an outside observer watching in
as Alice and Bob execute some protocol. This observer starts with some probabilistic belief
about the inputs of Alice and Bob (initially this is just µ, the distribution of inputs to Alice
and Bob). As Alice and Bob execute the protocol, they send each other signals — Bernoulli
random variables that contain information about their inputs — which cause the observer to
update his belief. The total amount of information leaked by the protocol to the participants
can then be represented directly in terms of the final belief and initial belief (Lemma 2.11).
These notions are defined in more detail in Section 2.

The strategy of the proof is as follows. We start with a general protocol π for solving f ,
and whose information cost is very close to the information complexity of f . Unfortunately,
we do not know anything about π besides the fact that it’s a finite, discrete protocol that
computes f without error. Note that if we could restrict π to a finite family of protocols
(e.g. protocols that sent at most b bits, for an explicit bound b = b(α,N), then we could
just brute force over all such π’s and compute the approximate information complexity of f .
The proof shows that, indeed, there is always a protocol π′ that can be derived from π, and
which belongs to such an explicit family. The proof proceeds in several steps. In each step,
more structure is added to π (structure that is then exploited by the following steps). The
difficulty is, of course, ensuring at each step that π can be replaced with a more structured
protocol π′ while increasing its information cost by only, say, α/10. Ultimately, we manage
to turn π into a protocol with r back-and-forth rounds, where r is an explicit function of N
and α. Finally, it is shown that an r-rounds of interaction protocol can be replaced with a
b-bit protocol where b = b(α,N, r) = b(α,N) is an explicit function, while only increasing
its information cost by a controlled amount, completing the proof.

The actual proof of Theorem 1.1 is roughly structured into three parts. In the first part,
we begin by showing that we can ‘discretize’ any protocol π; that is, we can simulate any
protocol π with a protocol π′ that only uses a bounded number of different types of signals,
but that only reveals a marginal amount of additional information. This takes several steps.
In Section 3.1, we show that it suffices to only consider initial distributions µ with full
support. In Section 3.2, we show that we can modify protocols so that they never use signals
too close to the boundary of ∆(A× B). In Section 3.3, we show that, by dividing up large
signals into smaller parts, we can modify protocols so that all signals have roughly the same
‘size’. Finally, in Section 3.4, we show that for protocols with the previous three properties,
we can apply a ‘rounding scheme’ to each signal in this protocol and end up with a bound
on the number of different signals in our new protocol.
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In the second part, we show in Section 3.5 that we can transform any suitably discrete
protocol π (i.e. one that uses an explicitly bounded number of distinct signals) into a protocol
that uses few rounds. We achieve this via a bundling scheme; the main idea is that, where
Alice would ordinarily send Bob one instance of a signal, she instead sends Bob several
instances of this signal. Then, the next several times Alice would send that signal to Bob,
Bob simply refers to the next unused copy sent by Alice, thus decreasing the number of
rounds in the protocol.

Combining the above steps allows us to prove the following bound on the convergence
rate of r-round information complexity.

Theorem 3.20. Let π be a communication protocol with information cost C that successfully
computes function f over inputs drawn from distribution µ over A×B. Then there exists a
protocol π′ with information cost at most C + ε that also successfully computes f over inputs
drawn from µ, but that uses at most w(f, ε) alternations where

w(f, ε) = (Nε−1)O(N) (1.1)

where N = |A × B|.

Finally, in the third part of the proof in Section 3.6, we demonstrate how to approximate
the bounded-round information complexity of a function by computing the communication
complexity of several parallel copies of this function. We accomplish this by combining
an existing result of Braverman and Rao on the compression of bounded-round protocols
with a direct sum result for information complexity. Since we can compute (albeit fairly
inefficiently) the communication complexity of any function by enumerating all possible
protocols of a certain length, this completes our proof.

The proof we provide below shows that zero-error internal information complexity is
computable, but the same method (with a modification to Section 3.6; see Remark 3.30)
also shows that zero-error external information complexity is computable. We believe similar
techniques can be used to show that ε-error information complexity is computable, but do
not include such a proof in this paper.

1.3 Open Problems

Naturally, the most immediate open problem arising from our work is understanding whether
(and how much) the rate of convergence in Theorem 3.20 can be improved:

Open Problem 1.2. What is the (worst case) rate of convergence of the r-round information
complexity of f to ICµ(f)? In other words, for a given ε > 0 and truth table size N = |A×B|,
how large does r(N, ε) need to be to ensure that the r-round information complexity ICr,µ(f)
satisfies

ICr,µ(f) > ICµ(f)− ε?

In this paper we prove that r(N, ε) ≤ (Nε−1)O(N). On the other hand, [5] shows that
when f is the two-bit AND (and thus N = 4 is a constant), the tight estimate for r is
r = Θ(ε−1/2). Therefore, the polynomial dependence on ε, even when N is a constant, is
necessary. On the other hand, we do not have any interesting lower bounds on r in terms
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of N . In particular, it is not known whether the exponential dependence on N is necessary
here.

The second open problem is in a similar vein, asking whether Theorem 1.1 can be im-
proved.

Open Problem 1.3. What is the computational complexity of computing the (zero-error
internal) information complexity of a function f within error α given its truth table? By

how much can the bound of 2exp((Nα−1)O(N)) be improved?

By the analysis in Section 3.6, any progress on Problem 1.2 will translate into progress on
Problem 1.3. For comparison, it is not hard to see that the trivial algorithm for computing
the average-case communication complexity of a function f : [n] × [n] → {0, 1} (so that

N = n2) within an additive error α runs in time 2n·N
N/α

= 2exp((Nα−1)O(1)). In other words,
there is an exponential gap between the trivial communication complexity upper bound and
the bound we obtain in Theorem 1.1.

2 Preliminaries

2.1 Information Theory

We briefly review some standard information theoretic definitions used throughout this pa-
per. For a more detailed introduction, we refer the reader to [10].

Definition 2.1 (Entropy). The entropy of a random variable X is H(X) =
∑

x Pr[X =
x] log(1/Pr[X = x]). The conditional entropy H(X|Y ) is defined to be Ey∼Y [H(X|Y = y)].

Definition 2.2 (Mutual Information). The mutual information between two random vari-
ables A, B, denoted I(A;B) is defined to be the quantity H(A)−H(A|B). The conditional
mutual information I(A;B|C) is H(A|C)−H(A|BC).

Definition 2.3 (Divergence). The informational divergence (also known as Kullback-Leibler
distance or relative entropy) between two distributions A and B is

D(A||B) =
∑
x

A(x) log(A(x)/B(x))

Proposition 2.4 (Chain Rule). Let C1, C2, D, B be random variables. Then I(C1C2;B|D) =
I(C1;B|D) + I(C2;B|C1D).

We will regularly make use of the following inequality for conditional mutual information.

Lemma 2.5. Let A,B,C,D be four random variables such that I(B;D|AC) = 0. Then

I(A;B|C) ≥ I(A;B|CD)
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Proof. We apply the chain rule twice:

I(A;B|CD) = I(AD;B|C)− I(D;B|C)

= I(A;B|C) + I(D;B|AC)− I(D;B|C)

= I(A;B|C)− I(D;B|C)

≤ I(A;B|C)

2.2 Protocols and Information Complexity

In the two-party communication setting, Alice is given an element a from a finite set A, while
Bob is given an element b from a finite set B, where (a, b) is drawn from some distribution µ
over A×B. Their goal is to compute f(a, b), where f : A×B → {0, 1} is a function known
to both parties. They would like to accomplish this while revealing as little information as
possible; either to each other (in the case of information cost) or to an outside observer (in
the case of external information cost). To do this, they execute a communication protocol,
which we view as being built out of signals.

Definition 2.6. A signal σ over a set S is an assignment of a probability σs ∈ [0, 1] to each
element s in S. For a given element s of S, we define σ(s) to be the Bernoulli random variable
that equals 1 with probability σs. The size of a signal σ is given by |σ| = maxs∈S

∣∣1
2
− σs

∣∣.
Definition 2.7. A communication protocol π is a finite rooted binary tree, where each non-
leaf node is labeled by either a signal over A (corresponding to Alice’s move) or a signal
over B (corresponding to Bob’s move), and each edge is labeled either 0 or 1. Alice and Bob
can execute this protocol by starting at the root and repeatedly performing the following
procedure; if the signal σ at the current node is a signal over A, Alice sends Bob an instance
of σ(a), and they both move down the corresponding edge; likewise, if the signal is a signal
over B, Bob performs the analogous procedure.

Each leaf node is labeled with a value 0 or 1. We say the communication protocol
successfully computes f with zero error if the value of the leaf node Alice and Bob finish
the protocol on is always equal to f(a, b) for all (a, b) ∈ A × B (in particular, even (a, b)
where µ(a, b) = 0). The communication cost CC(π) of protocol π is equal to the depth of
the deepest leaf in π.

This agrees with the usual definition of a private coins protocol (indeed, any bit Alice
can ever send in any protocol must be a signal over A, and likewise for Bob). A public coins
protocol is simply a distribution over private coins protocols. For our purposes, it suffices to
solely examine private coins protocols, since the information cost of a public coins protocol
is simply the expected information cost of the corresponding private coins protocols.

As is standard, we will let A and B be random variables representing Alice’s input
and Bob’s input respectively, and let Π be the random variable representing the protocol’s
transcript. We can then define the information cost of a protocol and the information
complexity of a function as follows.
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Definition 2.8. The information cost of a protocol π is given by

ICµ(π) = I(A; Π|B) + I(B; Π|A)

The external information cost of a protocol π is given by

ICext
µ (π) = I(AB; Π)

Definition 2.9. The information complexity of a function f is given by

ICµ(f) = inf
π
ICµ(π)

where the infimum is over all protocols π that successfully compute f . Likewise, the external
information complexity of a function f is given by

ICext
µ (f) = inf

π
ICext

µ (π)

where again, the infimum is over all protocols π that successfully compute f .

Throughout the remainder of this paper, it will be useful to think of signals as operating
on the space ∆(A×B) of probability distributions over A×B, which we term beliefs. At the
beginning of a protocol, an outside observer’s belief is simply given by µ, the distribution
(a, b) was drawn from. As this observer observes new signals, his belief evolves according to
Bayes’ rule; for example, if he observes the signal σ(a) sent by Alice, his belief changes from
the prior belief p to the posterior belief

p0(a, b) =
(1− σa)p(a, b)∑
i,j(1− σi)p(i, j)

(2.1)

if σ(a) = 0 (which occurs with probability P0 =
∑

i,j(1 − σi)p(i, j)) and to the posterior
belief

p1(a, b) =
σap(a, b)∑
i,j σip(i, j)

(2.2)

if σ(a) = 1 (which occurs with probability P1 =
∑

i,j σip(i, j)). As shorthand, we will
say that σ shifts belief p to (p0, p1). Note that the probabilities P0 and P1 are uniquely
recoverable given p0 and p1 (in particular, treating beliefs as vectors in R|A×B|, it must be
the case that P0p0 + P1p1 = p and that P0 + P1 = 1). If P0 = P1 = 1

2
, we say the signal is

balanced for the belief p (when it is clear from context, we will omit which belief p the signal
is balanced for).

We can write similar equations that describe the change in beliefs upon observing the
signal σ(b) sent by Bob. An important consequence of equations 2.1 and 2.2 is that signals
commute. That is, sending signal σ followed by signal σ′ results in the same probability
distribution over beliefs as sending signal σ′ followed by signal σ.

Given a protocol π, we can label all nodes of the protocol tree with the belief an observer
would have at that point in the protocol. We can therefore alternatively express the infor-
mation cost and external information cost of a protocol as a function of the final beliefs at
the leaves of the protocol.
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Definition 2.10. The information cost at a node v of protocol π with belief p = µv is
defined to be:

C(p) = Ea∼p[D(p(b|a)||µ(b|a))] + Eb∼p[D(p(a|b)||µ(a|b))] (2.3)

The external information cost at a node v of protocol π with belief p is defined to be:

Cext(p) = D(p(a, b)||µ(a, b)) (2.4)

Lemma 2.11. The information cost of a protocol is the expected value of the information
cost at the leaves of the protocol. The external information cost of a protocol is the expected
value of the external information cost at the leaves of the protocol.

Proof. We demonstrate the computation for information complexity; the computation for
external information complexity is similar. Write P (a, b, π) as shorthand for Pr[(A,B,Π) =
(a, b, π)]. Note that

I(A; Π|B) =
∑
b

P (b)
∑
a,π

P (a, π|b) log
P (a, π|b)

P (a|b)P (π|b)

=
∑
b

P (b)
∑
a,π

P (π|b)P (a|π, b) log
P (a|π, b)
µ(a|b)

=
∑
b,π

P (b)P (π|b)
∑
a

P (a|π, b) log
P (a|π, b)
µ(a|b)

=
∑
b,π

P (π)P (b|π)D(P (a|π, b)||µ(a|b))

=
∑
π

P (π)
∑
b

P (b|π)D(P (a|π, b)||µ(a|b))

=
∑
π

P (π)Eb∼p [D(p(a|b)||µ(a|b))]

The last equality follows from the fact that, P (a|b, π) is simply the belief about a given
b at the leaf given by the transcript π, and hence is p(a|b) (likewise, P (b|π) equals p(b) at
that leaf). Combining this with the analogous equation for I(B; Π|A), we find that ICµ(π)
is exactly the expected value of C(p) over the leaves of the protocol, as desired.

Alternatively, we can express the information cost of a protocol in terms of how much
information each signal in the protocol leaks.

Definition 2.12. Let σ be a signal in protocol π that shifts belief p to (p0, p1). Then, the
information cost C(σ, p) of σ is defined as

C(σ, p) = P0C(p0) + P1C(p1)− C(p) (2.5)

The external information cost Cext(σ, p) is similarly defined as

Cext(σ, p) = P0C
ext(p0) + P1C

ext(p1)− Cext(p)
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Lemma 2.13. For each node v in the protocol, let pv be the belief at node v, let qv be
the probability of reaching node v, and let σv be the signal we send at point v. Then the
information cost of π is equal to

ICµ(π) =
∑
v∈π

qvC(σv, pv)

Likewise the external information cost of π is equal to

ICext
µ (π) =

∑
v∈π

qvC
ext(σv, pv)

Proof. Expanding each C(σv, pv) out according to equation 2.5, all terms C(pv) for beliefs
corresponding to non-terminal nodes v in π cancel out, and we are left with∑

leaf nodes v

qvC(pv)

which is exactly the expected information cost at the leaves of π, which by Lemma 2.11
is equal to ICµ(π), as desired. (A similar computation holds for the external information
cost).

Remark 2.14. Alternatively, one can show that (if Xv is the output of signal σv at node v)

C(σ, p) = I(Xv;A|B,Πpre = v) + I(Xv;B|A,Πpre = v) (2.6)

(one of these two terms will equal zero, depending on which party sends signal σv). Lemma
2.13 then follows from an application of the chain rule.

Throughout the remainder of the paper, we will let N = |A × B| = |A| · |B|. Note that
N is the size of the truth table of f and is thus (in some sense) the size of the input to the
problem of computing the information complexity of f . All logarithms are to base 2 unless
otherwise specified.

3 Computability of Information Complexity

3.1 Restricting to µ with full support

We begin by showing that we need only consider initial beliefs µ with full support; that is,
where µ(x, y) > ρ > 0 for all x ∈ A, y ∈ B. We accomplish this by showing we can perturb
µ while only slightly changing the value of ICµ(f). Recall that h : [0, 1]→ [0, 1] is Shannon’s
entropy function.

Theorem 3.1. Let µ ∈ ∆(A × B) be a distribution without full support (i.e., µ(a, b) = 0
for some a ∈ A and b ∈ B). Let ζ ∈ ∆(A× B) be the uniform distribution over pairs (a, b)
where µ(a, b) = 0. Then, for any ε ∈ (0, 1), if µ̃ = (1− ε)µ+ εζ,

1

1− ε
(ICµ̃(π)− 2h(ε)− ε logN) ≤ ICµ(f) ≤ 1

1− ε
ICµ̃(f)
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Proof. Fix a protocol π that successfully computes f . Let Z be a Bernoulli random variable
with probability ε. Note that we can sample from µ̃ by sampling from µ if Z = 0 and
sampling from ζ if Z = 1. Letting Iµ(Π;A|B) denote I(Π;A|B) when (A,B) is distributed
according to µ, we have that

Iµ(Π;A|B) = Iµ̃(Π;A|BZ = 0)

=
1

1− ε
(Iµ̃(Π;A|BZ)− εIµ̃(Π;A|BZ = 1))

≤ 1

1− ε
Iµ̃(Π;A|BZ)

≤ 1

1− ε
Iµ̃(Π;A|B)

where the last inequality follows from Lemma 2.5 since I(Π;Z|AB) = 0. Combining this
with the corresponding calculation for Iµ(Π;B|A), we see that

ICµ(π) ≤ 1

1− ε
ICµ̃(π) (3.1)

On the other hand, note that Iµ̃(Π;A|BZ = 1) ≤ H(A) ≤ log |A|. From this, we see
that

Iµ(Π;A|B) =
1

1− ε
(Iµ̃(Π;A|BZ)− εIµ̃(Π;A|BZ = 1))

≥ 1

1− ε
(Iµ̃(Π;A|BZ)− ε log |A|)

≥ 1

1− ε
(Iµ̃(Π;A|B)−H(Z)− ε log |A|)

≥ 1

1− ε
(Iµ̃(Π;A|B)− h(ε)− ε log |A|)

Combining this with the corresponding calculation for Iµ(Π;B|A), we see that

ICµ(π) ≥ 1

1− ε
ICµ̃(π)− 2h(ε)

1− ε
− ε

1− ε
logN (3.2)

By taking the infimum of both sides of equations 3.1 and 3.2 over all protocols π that
successfully compute f , we obtain the desired result.

As a corollary of Theorem 3.1, to compute ICµ(f) to within α, it suffices to choose ε in
the above theorem so that 1

1−ε(2h(ε) + ε logN) < α
2

(so that (1− ε)−1ICµ̃(f) is within α
2

of
ICµ(f)), and then compute ICµ̃(f) to within an additive error of (1− ε)α

2
.

For the remainder of the proof, we will therefore assume that µ has full support, and
define ρ = mina,b µ(a, b). Note that, by the proof of Theorem 3.1, we can always ensure that

ρ = Ω
(

α2

N logN

)
.
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3.2 Using signals far from the boundary

We next show that we can restrict our attention to protocols where the belief at each node
is sufficiently separated from the boundary of ∆(A× B).

Definition 3.2. A signal σ is a revealer if there exists an i such that σi = 1 and σj = 0 for
all j 6= i.

Definition 3.3. A belief p is γ-safe if, for all a ∈ A and b ∈ B, either p(a, b) ≥ γ or
p(a, b) = 0. A protocol π is γ-safe if the signal at every node in π without a γ-safe belief is
a revealer.

Theorem 3.4. Let π be a communication protocol with information cost C. Then, for all
γ ∈ (0, 1), there exists a γ-safe protocol π′ that computes the same function as π that has
information cost at most C + (|A|+ |B|)h(ρ−1

√
γ).

We will make use of the following two lemmas.

Lemma 3.5. If at some point in a protocol π, p(a, b) < γ, then either the probability that
A = a or the probability that B = b must be small:

min(pA(a), pB(b)) < ρ−1
√
γ

Proof. View the belief p as a |A| by |B| matrix of real numbers. Note that each time Alice
sends a signal, she updates this belief by multiplying each row of this matrix by a different
number; likewise, every time Bob sends a signal, he updates this belief by multiplying each
column of this matrix by a different number.

At this point in the protocol, for each a ∈ A, let λa be the product of all the updates to
row a; likewise, let κb be the product of all the updates to column b. It follows that

p(a, b) = µ(a, b)λaκb

Likewise, we can write

pA(a) = λa
∑
j

µ(a, j)κj (3.3)

pB(b) = κb
∑
i

µ(i, b)λi (3.4)

Multiplying equations 3.3 and 3.4, we obtain

pA(a)pB(b) = λaκb
∑
i,j

µ(i, b)µ(a, j)λiκj (3.5)

Finally, note that (since
∑

i,j p(i, j) = 1), we have that∑
i,j

λiκjµ(i, j) = 1 (3.6)
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It follows from equations 3.5, and 3.6 that

pA(a)pB(b) = λaκb
∑
i,j

µ(i, b)µ(a, j)λiκj

= λaκb
∑
i,j

µ(a, b)µ(i, j)
µ(i, b)µ(a, j)

µ(a, b)µ(i, j)
λiκj

≤ ρ−2µ(a, b)λaκb
∑
i,j

µ(i, j)λiκj

= ρ−2µ(a, b)λaκb

= ρ−2p(a, b)

< ρ−2γ

Therefore, min(pA(a), pB(b)) <
√
ρ−2γ = ρ−1

√
γ, as desired.

Lemma 3.6. Let π be a protocol with information cost C. Let v be a node in this protocol
with belief p. If, at v, Alice reveals whether a = i (with the rest of the protocol remaining
unchanged), then this modified protocol has information cost at most C + h(pA(i)). (Here h
is the binary entropy function).

The analogous statement holds for Bob.

Proof. Alice can reveal whether a = i by sending the revealer signal σ where σi = 1 and
σj = 0 for j 6= i. Since signals commute, Alice can equivalently reveal whether a = i at the
end of the protocol (assuming she passed through node v) instead of right after v.

At the end of the protocol (but before Alice reveals whether a = i), there may be
multiple possible terminal beliefs; label these beliefs p1 through pK , with belief pi occurring
with probability Qi. Since these are the terminal beliefs that are descendants of node v, it
follows that

K∑
k=1

Qkpk = p

In particular,
∑
Qkpk,A(i) = pA(i). Now, as a consequence of equation 2.3, revealing

whether a = i while at belief pk increases the expected information cost of the node by

∑
b

pk,B(b)h(pk,A|B(i|b)) =
∑
b

pk,B(b)h

(
pk(i, b)

pk,B(b)

)
(3.7)

≤ h

(∑
b

pk(i, b)

)
(3.8)

= h(pk,A(i)) (3.9)

where the inequality follows from Jensen’s inequality, since h(x) is concave. It follows that
the total expected increase in the information cost of this protocol is at most

12



K∑
k=1

Qkh(pk,A(i)) ≤ h

(
K∑
k=1

Qkpk,A(i)

)
= h(pA(i))

where the first inequality again follows from Jensen’s inequality. This completes the proof.

We can now complete the proof of Theorem 3.4.

Proof of Theorem 3.4. We will construct π′ from π in the following manner: follow π until
you reach a belief p satisfying p(i, j) < γ for some choice of i and j. Then, by Lemma 3.5,
either pA(i) or pB(j) is at most ρ−1

√
γ. Without loss of generality, assume pA(i) < ρ−1

√
γ.

Then, Alice will reveal whether a = i. We repeat this process until the resulting protocol is
γ-safe.

Note that on any complete path through π′, Alice and Bob perform at most |A| + |B|
reveals (since each reveal eliminates at least one of the |A| options for a or the |B| options
for b). By Lemma 3.6, this means the information cost of π′ is at most (|A|+ |B|)h(ρ−1

√
γ)

larger than the information cost of π, as desired.

3.3 Using signals of bounded size

We next show that we can restrict our attention to protocols that only use signals of a
bounded size. Here, by a bounded size, we require both that each individual component of
the signal is sufficiently small and that the amount the signal shifts the corresponding belief
is sufficiently large.

Definition 3.7. A signal σ that shifts p to (p0, p1) has power d at belief p if

d = max (||p− p0||∞, ||p− p1||∞)

(When it is clear from context, we will often omit the specific belief p).

Recall that a signal is balanced if the probability P0 it is 0 is equal to P1 = 1/2. Also
recall that by Definition 2.6, the size of a signal is its maximum input-wise deviation from
1/2 given by |σ| = maxs∈S

∣∣1
2
− σs

∣∣. We prove:

Theorem 3.8. Let π be a γ-safe communication protocol with information cost C. Then,
for every ε > 0, there exists a γ-safe communication protocol π′ that computes the same
function as π with information cost at most C+ ε, but that only uses (in addition to revealer
signals) balanced signals of size at most γ−1δ and power at least δ, for some positive δ.

Remark 3.9. Note that unlike γ which is (an explicit, easily computable) function of ε, we
do not assert anything about the computability of δ in Theorem 3.8. We only need to know
that such a δ exists. The dependence on δ will be removed later in the analysis.

To prove Theorem 3.8, we will make use of two lemmas. The first lemma provides a
connection between the size and power of a (γ-safe) signal.

13



Lemma 3.10. If signal σ is balanced and has power at most 2δ at a γ-safe belief p, then
|σ| ≤ δ

γ
.

Proof. Since σ is balanced at p, P0 = P1 = 1
2
, so it follows from equations 2.1 and 2.2 that

p0(a, b) = 2p(a, b)(1− σa,b) (3.10)

p1(a, b) = 2p(a, b)σa,b (3.11)

(if Alice is sending this signal, then σa,b = σa; similarly, if Bob is sending this signal, then
σa,b = σb). From equation 3.11, we see that

σa,b =
p1(a, b)

2p(a, b)

and in particular, ∣∣∣∣σa,b − 1

2

∣∣∣∣ =
|p1(a, b)− p(a, b)|

2p(a, b)

Since belief p is γ-safe, p(a, b) ≥ γ, and since σ has power at most 2δ at p, |p1(a, b) −
p(a, b)| ≤ 2δ. It follows that ∣∣∣∣σa,b − 1

2

∣∣∣∣ ≤ δ

γ

and therefore that |σ| ≤ δ
γ
, as desired.

The second lemma allows us to ‘decompose’ a signal into a sequence of smaller subsignals.

Definition 3.11. Let σ be a signal that shifts the belief p to (p0, p1). A signal σ′ that shifts
q to (q0, q1) is a subsignal of σ if q lies on the segment connecting p0 and p1, q0 lies on the
segment connecting q and p0, and q1 lies on the segment connecting q and p1.

Lemma 3.12. If Alice can send a signal σ, then she can also send all subsignals of σ. The
analogous statement holds for Bob.

Proof. First, note that since q is a convex combination of q0 and q1, there is some signal
that shifts q to (q0, q1). Recall that Alice can send any signal that satisfies σa,b = σa,b′ for all

b, b′ ∈ B and all a ∈ A. Since σa,b = p1(a,b)
p(a,b)

∑
i,j σi,jp(i, j) (equation 2.1), we have that

p1(a, b)

p(a, b)
=
p1(a, b

′)

p(a, b′)

Since q1 and q are linear combinations of p1 and p, it follows that

q1(a, b)

q(a, b)
=
q1(a, b

′)

q(a, b′)

and therefore that σ′a,b = σ′a,b′ . It follows that Alice can send signal σ′.
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We can now proceed to prove Theorem 3.8.

Proof of Theorem 3.8. Let pmin be the minimum power of a signal in π. We will choose δ to
equal min

(
pmin
10
, γ
10

)
.

Let σ be an arbitrary signal in π that shifts the belief p to (p0, p1). We will replace σ
with the following ‘subprotocol’. Intuitively, the following subprotocol uses several small
signals of power roughly δ to perform a random walk on the segment between beliefs p0 and
p1, terminating when it hits one of the two boundary beliefs. Since this protocol ensures
that the belief p evolves to either belief p0 or belief p1 (with the corresponding uniquely
determined probabilities), it accomplishes the same effect on the distribution of beliefs as
sending signal σ.

More specifically, we can describe the subprotocol as follows. Assume our current belief
q lies on the segment between p0 and p1. Compute d, the L∞ distance from q to the nearest
endpoint (that is, d = min (||q − p0||∞, ||q − p1||∞)). If d ≤ 2δ, send a balanced subsignal
of σ of power d; this either sends q to the nearest endpoint, or increases d to 2d (since
||p1 − p0||∞ ≥ pmin ≥ 10δ). On the other hand, if d > 2δ, simply send a balanced subsignal
of σ of power δ; this decreases d by at most δ.

It is straightforward to see that in the above subprotocol, we only ever send balanced
signals of power between δ and 2δ (in particular, we never get closer than δ to an endpoint
until we reach it). Since π is γ-safe, it follows from Lemma 3.10 that each signal we use in
this subprotocol also has size at most γ−1δ.

Since the L∞ distance between p0 and p1 is at most 1, this random walk will terminate
with probability 1 in finite time. Unfortunately, our resulting protocol is no longer finite. We
can remedy this by adjusting our subprotocol so that after some large number T of steps, the
two parties abort the protocol and simply exchange both of their inputs. This ensures the
two parties can successfully compute the function f but potentially increases the information
cost of the protocol. Since the information cost at any node of the protocol is bounded above
(by log |A|+ log |B|) and since the probability we have to abort our subprotocol decreases in
T , by choosing a sufficiently large value of T we can ensure, for any ε > 0, that this modified
protocol has information cost at most C + ε.

3.4 Using a bounded number of signals

We now show that we can convert any protocol into a protocol that only uses a bounded
number of distinct signals, while only increasing the information leaked by a small additive
factor.

Theorem 3.13. Let π be a γ-safe communication protocol with information cost C that only
uses (in addition to revealer signals) balanced signals of size at most γ−1δ and power at least
δ. Then, for any ε > 0, there exists a communication protocol π′ that computes the same
function as π with information cost at most C + ε but that only uses Q different signals,
where

Q =

(
648

εγ3 ln 2

)N/2
+ (|A|+ |B|)
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To show this, we first argue that signals that are close component-wise have similar effects
when they act on beliefs.

Lemma 3.14. Let σ and σ′ be two signals over a set of size N such that σ is balanced at
belief p, and for each i, |σi − σ′i| < ε (for some ε < 1/6). Let σ shift belief p to (p0, p1) and
σ′ shift belief p to (p′0, p

′
1). Then, as elements of RN , ||p0 − p′0||2 ≤ 9ε and ||p1 − p′1||2 ≤ 9ε.

Proof. Recall that

p1(i) =
σip(i)∑
i σip(i)

p′1(i) =
σ′ip(i)∑
i σ
′
ip(i)

Moreover, note that since σ is balanced at p,
∑

i σip(i) = 1
2
. Now, since |σi − σ′i| < ε for all

i, we have that

1

2
− ε ≤

∑
i

σ′ip(i) ≤
1

2
+ ε

It follows that

p1(i)− p′1(i) ≤
σip(i)

1/2
− (σi − ε)p(i)

1/2 + ε

=
σip(i)(1/2 + ε)− (1/2)(σi − ε)p(i)

(1/2)(1/2 + ε)

=
σip(i)ε+ (1/2)p(i)ε

(1/2)(1/2 + ε)

=

(
σi

(1/2)(1/2 + ε)
+

1

1/2 + ε

)
εp(i)

≤ (4 + 2)εp(i)

= 6εp(i)

(where this last inequality follows from the fact that σi is less than 1). Likewise,

p′1(i)− p1(i) ≤
(σi + ε)p(i)

1/2− ε
− σip(i)

1/2

=
(1/2)(σi + ε)p(i)− (1/2− ε)σip(i)

(1/2)(1/2− ε)

=
σip(i)ε+ (1/2)p(i)ε

(1/2)(1/2− ε)

=

(
σi

(1/2)(1/2− ε)
+

1

1/2− ε

)
εp(i)

≤ (6 + 3)εp(i)

= 9εp(i)
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It follows that |p′1(i)−p1(i)| ≤ 9εp(i), and therefore that ||p1−p′1||2 ≤ 9ε
√∑

|p(i)|2 ≤ 9ε.
The proof for p0 and p′0 follows similarly.

Our main strategy for reducing the number of distinct signals used by our protocol is
to choose a dense set S of signals and replace each signal in our protocol with a nearby
close signal in S. The following lemma bounds the additional information leaked by this
replacement procedure.

Lemma 3.15. Let σ be a signal in protocol π that shifts belief p to (p0, p1). Write σ as the
convex combination

∑n
i=1wiσ

(i) of n signals σ(i) (with all wi ∈ [0, 1] and
∑
wi = 1). Let qσ

be the probability that signal σ is sent as part of protocol π (i.e., the probability we reach the
corresponding node of π), and let πi be the protocol obtained by replacing signal σ with signal
σ(i). Then for some i,

ICµ(πi) ≤ ICµ(π) + qσ

((
n∑
i=1

wiC
(
σ(i), p

))
− C(σ, p)

)
Proof. Without loss of generality, let us assume that Alice is sending signal σ. Let us consider
two possibilities for Alice’s action when she is about to send signal σ.

In the first case, she chooses a signal σ(i) randomly with probability wi and sends that
signal. This is equivalent to just sending signal σ (in particular, the probability we send a 1

is
∑

iwiσ
(i)
a = σa), and altogether, this is equivalent to executing the original protocol.

In the second case, she chooses a signal σ(i) randomly with probability wi and sends that
signal, along with the index i that she chose. This is equivalent to choosing a protocol πi
randomly with probability pi and executing that protocol (in particular, she can choose the
index i at the beginning of the protocol). Note that, since π is a zero-error protocol that
computes f , πi must also compute f with zero-error, so πi is also a valid protocol for this
problem.

Let K be the random variable corresponding to the index that Alice chooses (if signal
σ is never sent, then K = −1), and as before, let Π be the random variable corresponding
to the transcript of π. The total information Alice reveals to Bob in the first case is then
I(Π;A|B), and the (expected) total information Alice reveals to Bob in the second case is
then I(ΠK;A|B).

Divide Π into two parts; Πpre, which contains the transcript of π up to and including the
transmission of σ, and Πfin, which contains the remainder of the transcript after the index
K is revealed. Note that, by Lemma 2.13,

I(ΠpreK;A|B)− I(Πpre;A|B) = qσ

((
n∑
i=1

wiC
(
σ(i), p

))
− C(σ, p)

)
SinceK and Πfin are conditionally independent givenA, B and Πpre, i.e. I(K; Πfin|ΠpreAB) =

0, by Lemma 2.5, it follows that
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I(ΠK;A|B)− I(Π;A|B) = I(K;A|ΠB)

= I(K;A|ΠpreBΠfin)

≤ I(K;A|ΠpreB)

= I(ΠpreK;A|B)− I(Πpre;A|B)

= qσ

((
n∑
i=1

wiC
(
σ(i), p

))
− C(σ, p)

)

Since E [ICµ(πi)]− ICµ(π) = I(ΠK;A|B)− I(Π;A|B), the result follows.

Finally, we use the continuity properties of the cost function C to effectively bound the
quantities in Lemma 3.15.

Lemma 3.16. Let f : RN → R be a function that is smooth on a convex compact subset R
of RN . Let x be a point in R. Let x1, . . . , xk ∈ R and w1, . . . , wk ∈ [0, 1] satisfy

∑
iwixi = x,∑

iwi = 1, and ||x− xi|| ≤ ε for all i (here ‖ · ‖ is the standard euclidean norm). Then∣∣∣∣∣f(x)−
k∑
i=1

wif(xi)

∣∣∣∣∣ ≤ Uε2

where

U = max
z∈R

∣∣λmax(D2f(z))
∣∣

where λmax(M) is the largest eigenvalue (by absolute value) of M , and D2f(a) is the Hessian
of f at a.

Proof. For each i, let vi = xi − x. By the Taylor expansion of f (with the mean-value form
of the remainder), we know that for any x in R,

f(x+ v) = f(x) + vtDf(x) + vtD2f(y)v

for some y on the line segment connecting x and x + v. Since
∑
wi = 1 and

∑
wivi = 0, it

follows that

k∑
i=1

wif(xi) = f(x) +
k∑
i=1

wiv
t
iD

2f(yi)vi

for some yi on the line segment connecting x and xi. Since |vtMv| ≤ |λmax(M)| · ||v||2,
|vtiD2f(y)vi| ≤ Uε2 for all i. It follows that∣∣∣∣∣

k∑
i=1

wiv
t
iD

2f(yi)vi

∣∣∣∣∣ ≤
k∑
i=1

wi|vtiD2f(yi)vi| ≤ Uε2

and therefore that
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∣∣∣∣∣f(x)−
k∑
i=1

wif(xi)

∣∣∣∣∣ ≤ Uε2

It is straightforward to verify that the cost function C(p) is smooth over the region Rγ

given by p(i, j) ≥ γ and thus satisfies the condition of Lemma 3.16. Moreover, we can
compute explicit upper bounds for the constant Uγ for this function. We compute one such
bound below.

Lemma 3.17. Let Rγ be the subset of R|A×B| = RN defined by p(a, b) ∈ [γ, 1] for all a ∈ A
and b ∈ B (in particular, we do not have the constraint that

∑
a,b p(a, b) = 1). Then if

Uγ = max
z∈Rγ

∣∣λmax(D2C(p))
∣∣

we have that Uγ ≤ (2/ ln 2)γ−1.

Proof. Recall (equation 2.3) that C(p) = Ea∼p[D(p(b|a)||µ(b|a))] + Eb∼p[D(p(a|b)||µ(a|b))].
Write

CA(p) = Ea∼p[D(p(b|a)||µ(b|a))]

CB(p) = Eb∼p[D(p(a|b)||µ(a|b))]

Note that we can write

CA(p) = Ea∼p[D(p(b|a)||µ(b|a))]

=
∑
a

p(a)D(p(b|a)||µ(b|a))

=
∑
a,b

p(a)p(b|a) log
p(b|a)

µ(b|a)

=
∑
a,b

p(a, b) (log p(a, b)− log p(a)− log µ(a, b) + log µ(a))

=

(∑
a,b

p(a, b) log p(a, b)

)
−

(∑
a

p(a) log p(a)

)

−

(∑
a,b

p(a, b) log µ(a, b)

)
+

(∑
a

p(a) log µ(a)

)

Let Da,b stand for ∂
∂p(a,b)

. Then, it follows that (over p ∈ Rγ):
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Da,bCA = log p(a, b)− log p(a)− log µ(a, b) + log µ(a)

D2
a,bCA =

1

ln 2

(
1

p(a, b)
− 1

p(a)

)
|D2

a,bCA| ≤ (ln 2)−1γ−1

Da,b′Da,bCA = − 1

p(a) ln 2

|Da,b′Da,bCA| ≤ (ln 2)−1γ−1

Da′,bDa,bCA = 0

Da′,b′Da,bCA = 0

with similar equations for CB. It follows that the maximum entry (by absolute value) of
D2C(p) for p in the region Rγ is bounded above by (2/ ln 2)γ−1. Since the largest eigenvalue
of a matrix is bounded above by the largest entry in the matrix, this implies the desired
bound on Uγ.

We can now proceed to prove Theorem 3.13.

Proof of Theorem 3.13. Let Uγ = (2/ ln 2)γ−1, and set M =
√

81UγN

ε
. Let S be the set of

signals where each σi is of the form 1
2

+ δ
M
ki, for some integer ki between −γ−1M and γ−1M .

Let σ be a non-revealer signal sent at node x of protocol π, and let p := µx be the belief
conditioned on the protocol reaching the node x. Then, since σ is balanced and has power
at least δ, it shifts belief p to (p− v, p+ v), for some v ∈ RN with ||v|| ≥ δ.

Since our signal σ has size at most γ−1δ, it is contained within a ‘hypercube’ in the
space of signals whose vertices belong to S. It follows that we can write σ as the convex

combination
∑2N

k=1wkσ
(k) of 2N signals σ(k) in S such that |σi− σ(k)

i | ≤ δ
M

for all i and k (in
fact, it can be written as the convex combination of N of these signals, but this does not

improve our resulting bound). It follows from Lemma 3.14 that if σ(k) shifts p to
(
p
(k)
0 , p

(k)
1

)
,

then ||p0 − p(k)0 || ≤ 9δ
M

and ||p1 − p(k)1 || ≤ 9δ
M

.
For ease of notation, let

E(σ) =

 2N∑
k=1

wkC
(
σ(k), p

)− C(σ, p)

Then, by Lemma 3.16, we have that
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E(σ) = P0

 2N∑
k=1

wkC
(
p
(k)
0

)− C(p0)


+ P1

 2N∑
k=1

wkC
(
p
(k)
1

)− C(p1)


≤ 81Uγδ

2

M2
(P0 + P1)

=
81Uγδ

2

M2

(Since σ is balanced, it is in fact the case that P0 = P1 = 1
2
, but we only need that P0+P1 = 1

above). Now, let V (p) = ||p||22, and let V (σ, p) = 1
2
(V (p− v) + V (p+ v))− V (p). Note that

V (σ, p) =
1

2
(||p− v||2 + ||p+ v||2)− ||p||2

= ||v||2

≥ δ2

It follows that

E(σ)

V (σ, p)
≤ 81Uγ

M2
(3.12)

By Lemma 3.15, there exists some k such that replacing σ with σ(k) increases the infor-
mation cost by at most qσE(σ). Repeatedly performing this procedure, we can replace all
of the signals in π with signals in S while increasing the information cost by at most

∑
σ∈π

qσE(σ) ≤ 81Uγ
M2

∑
σ∈π

qσV (σ, p)

= ε
∑
σ∈π

qσV (σ, p)

where the inequality follows by equation 3.12. Since (by the same logic as that in Lemma
2.13) ∑

σ∈π

qσV (σ, p) =
∑

leaf nodes v

qv||pv||2 ≤ 1

it follows that our new protocol has information cost at most ICµ(π) + ε. In addition, since
there are only |A|+ |B| distinct revealer signals, the total number of distinct signals in our
new protocol is at most |S|+ (|A|+ |B|) = (2γ−1M)N + (|A|+ |B|) = Q, as desired.
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3.5 Using a bounded number of alternations

Finally, we show that we can convert a protocol for f that uses a bounded number of distinct
signals (yet arbitrarily many of them) into a protocol for f that, while leaking at most ε
extra information, uses a bounded number of alternations (steps in the protocol where Alice
stops talking and Bob starts talking, or vice versa).

We achieve this by ‘bundling’ signals of the same type together; that is, at a point in the
protocol where Alice would send Bob a certain signal, she may instead send him a bundle
of t signals. Then, the next t− 1 times Alice would send Bob this signal, Bob instead refers
to the next unused signal in the bundle. If there are unused signals in a bundle, this may
increase the information cost of the protocol; however, by choosing the size of the bundle
cleverly, we can bound the size of this increase.

Definition 3.18. Let π be a communication protocol and let v1, v2, . . . , vk be one possible
computation path for π. An alternation in this computation path is an index i where the
signals at vi and vi+1 are sent by different players. The number of alternations in π is the
maximum number of alternations over all computation paths of π.

Theorem 3.19. Let π be a communication protocol with information cost C that only uses Q
distinct signals. Then, for any ε > 0, there exists a communication protocol π′ that computes
the same function as π with information cost at most C + 2ε but that uses at most

W =

(
2Q logN

ε
+Q

)
logN

ε

alternations.

Proof. Label our Q different signals σ(1) through σ(Q). We will reduce the number of alter-
nations in π by bundling signals of the same type in large groups. That is, if Alice (at a
specific point in the protocol) would send Bob signal σ(i), she instead sends Bob t copies of
signal i (for an appropriately chosen t). Then, the next t−1 times in the protocol that Alice
would send Bob signal σ(i), Bob instead refers to one of the unused t copies Alice originally
sent. Once these t copies are depleted and protocol calls for a (t + 1)st copy, the process
repeats and Alice sends a new bundle to Bob (possibly with a different value for t).

We choose t as follows. Without loss of generality, assume Alice is sending a bundle of sig-
nals σ to Bob. Let Πpre be the transcript of the protocol thus far. Let X t = (X1, X2, . . . , Xt)
be a random variable corresponding to t independently generated outputs of σ. We consider
three cases:

• Case 1: It is the case that

I(A;X1|ΠpreB) ≥ ε

Q

In this case we set t = 1 (note that this is equivalent to simply following the original
protocol).
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• Case 2: There exists a positive t0 such that

ε

2Q
≤ I(A;X t0|ΠpreB) ≤ ε

Q

In this case, we set t = t0.

• Case 3: For all positive t,

I(A;X t|ΠpreB) ≤ ε

2Q

In this case, we set t to be the maximum number of times signal σ is ever sent in
protocol π.

The remainder of this proof is divided into three parts. In the first part, we argue that
the three cases above are comprehensive. In the second part, we argue that the information
cost of this new protocol is at most C + ε. Finally, in the third part we argue that this
bundling process decreases the total number of alternations to at most W .

Cases are comprehensive We first argue that the three above cases indeed encompass all
possibilities. In particular, the function I(A;X t|ΠpreB) is non-decreasing in t, so it suffices
to show that there does not exist a t for which

I(A;X t|ΠpreB) <
ε

2Q
,
ε

Q
< I(A;X t+1|ΠpreB)

To show this, we claim that I(A;X t+1|ΠpreB) − I(A;X t|ΠpreB) is (weakly) decreasing
in t. This follows from the following chain of inequalities:

I(A;X t+1|ΠpreB)− I(A;X t|ΠpreB) = I(A;Xt+1|ΠpreBX
t) (3.13)

≤ I(A;Xt+1|ΠpreBX
t−1) (3.14)

= I(A;Xt|ΠpreBX
t−1) (3.15)

= I(A;X t|ΠpreB)− I(A;X t−1|ΠpreB) (3.16)

Here, inequality 3.14 follows from noting that I(Xt+1;Xt|ΠpreABX
t−1) = 0 (indeed, Xt+1

and Xt are conditionally independent given A and Πpre) and applying Lemma 2.5.
Now, note that if I(A;X1|ΠpreB) is greater than ε

2Q
, we are in either case 1 or case 2.

Therefore, assume that I(A;X1|ΠpreB) ≤ ε
2Q

. Since I(A;X1|ΠpreB) − I(A;X0|ΠpreB) =

I(A;X1|ΠpreB), we have that I(A;X t+1|ΠpreB)− I(A;X t|ΠpreB) ≤ ε
2Q

. It follows that it is

impossible for I(A;X t|ΠpreB) to be less than ε
2Q

while I(A;X t+1|ΠpreB) is larger than ε
Q

.
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Information leakage is small Let Π be a random variable corresponding to the transcript
of our old protocol, and let Π′ be a random variable corresponding to the transcript of our
new protocol. Note that the only difference between Π′ and Π is that Π′ contains some
excess signals in the form of unfinished bundles.

For each i, let Ri be the random variable corresponding to the excess signals of type σ(i)

(in particular, Ri is of the form (Xu+1, . . . , Xt) if u out of the t signals in this bundle were
used). For 1 ≤ t ≤ Q, let Rt = (R1, R2, . . . , Rt). We can then write Π′ = ΠRQ, from which
it follows

I(A; Π′|B) = I(A; ΠRQ|B)

= I(A; Π|B) +

Q∑
i=1

I(A;Ri|ΠBRi−1)

≤ I(A; Π|B) +

Q∑
i=1

I(A;Ri|ΠB)

The last inequality follows from observing that I(Ri;R
i−1|ΠAB) = 0 and applying

Lemma 2.5.
We would now like to show that, for each i, I(A;Ri|ΠB) ≤ ε

Q
. To do this, we will define

Yi to be the random variable given by

Yi = (Z2, . . . , Zu, Xu+1, Xu+2, . . . , Xt)

Here, Xu+1 through Xt are the elements of Ri (the unused signals in bundle i), and Z2

through Zu are independently sampled Bernoulli random variables with probability σ(i)(A)
(that is, individually, they are distributed identically to each individual Xi yet independent
from Π and X t given A). The motivation behind this construction is to pad Ri with addi-
tional elements (identically distributed to, yet independent from the Xi) as to avoid revealing
information about the number |Ri| of unused signals in the bundle (which itself is a random
variable that might reveal information about A or B).

Define the random variable U to equal t−|Ri|. To begin, note that since the first signal in
a bundle is always used, we can always recover Ri given Yi and U (in particular, Ri is a suffix
of Yi of length t−U), so I(A;Ri|ΠB) ≤ I(A;UYi|ΠB) = I(A;Yi|ΠB)+I(A;U |ΠBYi). Since
U is recoverable given Π, I(A;U |ΠBYi) = 0, and therefore I(A;Ri|ΠB) ≤ I(A;Yi|ΠB).

Next, let Πpre be the prefix of Π up to the point where the last bundle for σ(i) was
created, and let Πfin be the remainder of the transcript (so Π = ΠpreΠfin). We claim that
I(A;Yi|ΠB) ≤ I(A;Yi|ΠpreB). Again, this follows from observing that I(Yi; Πfin|ΠpreAB) =
0 and applying Lemma 2.5. In particular, conditioned on Πpre, A, and B, Πfin is simply
some (randomized) function of X1 through Xu, and hence independent from Yi.

Finally, if this bundle is a Case 1 bundle, then t = 1 and Yi is empty, so I(A;Yi|ΠpreB) =
0. Otherwise, note that conditioned on B and Πpre, Yi is distributed identically to X [2,t] =
(X2, X3, . . . , Xt) (in particular, again they are both just t−1 independent copies of a Bernoulli
random variable with probability σ(i)(A)). Since X t is a superset of X [2,t], it follows that
I(A;Yi|ΠpreB) = I(A;X [2,t]|ΠpreB) ≤ I(A;X t|ΠpreB) which is at most ε

Q
.

24



If QA of the Q distinct types of signal are sent by Alice, it follows from this argument
that I(A; Π′|B) ≤ I(A; Π|B) + QA

Q
ε. Since a similar argument establishes that I(B; Π′|A) ≤

I(B; Π|A) + Q−QA
Q

ε, it immediately follows that ICµ(π′) ≤ ICµ(π) + ε.

Number of alternations is small Since alternations only occur between bundles, to show
that the number of alternations is at most W , it suffices to show that the number of bundles
sent in an execution of π′ is at most W . To do this, we will modify protocol π′ by aborting
after the W th bundle is sent and forcing Alice and Bob to exchange their inputs at this
point. We will show that the probability the protocol π′ uses at least W bundles is at most
ε

logN
; since the information cost of any protocol is bounded above by logN , this results in

an increase of at most
(

ε
logN

)
logN = ε in the information cost of our protocol. Combining

this with the previous section of the proof, this results in a protocol with information cost
at most ICµ(π) + 2ε.

Let Mi be the ith bundle sent in the protocol, and let M i = (M1,M2, . . . ,Mi) be the list
of the first i bundles sent in the protocol. Note that

∑
i

(
I(A;Mi+1|M iB) + I(B;Mi+1|M iA)

)
(3.17)

=
∑
i

(
I(A;M i+1|B)− I(A;M i|B) + I(B;M i+1|A)− I(B;M i|A)

)
(3.18)

= I(A; Π′|B) + I(B; Π′|A) (3.19)

= ICµ(π′) (3.20)

≤ logN (3.21)

Let pi be the probability that at least i bundles are sent under π, and let pi,3 be the
probability that the ith bundle sent is a Case 3 bundle. Then, since each non-Case 3 bundle
contributes at least ε

2Q
to the information cost of the protocol,

I(A;Mi+1|M iB) + I(B;Mi+1|M iA) ≥ (pi − pi,3)
ε

2Q
(3.22)

Summing equation 3.22 over all i (and combining with inequality 3.21), we have that

logN ≥ I(A; Π′|B) + I(B; Π′|A)

≥
∑
i

(
I(A;Mi+1|M iB) + I(B;Mi+1|M iA)

)
≥ ε

2Q

(∑
i

pi −
∑
i

pi,3

)
Note that

∑
i pi,3 is the expected number of Case 3 bundles sent. Since we send at most

one Case 3 bundle of each type, this sum is at most Q. It follows that∑
i

pi ≤
2Q logN

ε
+Q
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Finally, since the pi are non-increasing, the probability we send at least W bundles is at
most

pW ≤
1

W

∑
i

pi ≤
ε

logN

as desired.

3.6 Computing Information Complexity

Combining the results of Theorems 3.1, 3.4, 3.8, 3.13, and 3.19, we obtain the following
result.

Theorem 3.20. Let π be a communication protocol with information cost C that successfully
computes function f over inputs drawn from distribution µ over A×B. Then there exists a
protocol π′ with information cost at most C + ε that also successfully computes f over inputs
drawn from µ, but that uses at most w(f, ε) alternations where

w(f, ε) = (Nε−1)O(N) (3.23)

where N = |A × B|.

Definition 3.21. Let the W -alternation information cost of f , ICW,µ(f), equal infπ ICµ(π),
where the infimum is taken over all protocols π that successfully compute f that use at most
W alternations.

Corollary 3.22. We have that

ICµ(f) ≤ ICw(f,ε),µ(f) ≤ ICµ(f) + ε

The following result of Braverman and Rao provides a link between the communication
complexity and information complexity of protocols restricted to at most W alternations.

Lemma 3.23. Let π be a protocol with information cost I that uses at most W alternations.
Then, for every ε > 0, there exists a protocol τ such that

i) with probability at least 1 − ε, at the end of protocol τ , Alice and Bob output a valid
transcript for π (distributed identically to π(A,B)).

ii) the communication cost of τ is at most I +O(
√
WI +W ) + 2W log(W/ε).

Proof. See Corollary 2.2 of [7].

Define ICµ(f, ε) to be equal to infπ ICµ(π), where the infimum is taken over all protocols
π that successfully compute f with probability at least 1 − ε. The following lemma relates
ICµ(f, ε) to ICµ(f).
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Lemma 3.24. For all ε ∈ (0, ρ8) (where as before, ρ = mina,b µ(a, b)),

ICµ(f) ≤ ICµ(f, ε) + 2

(
h

(
1− 2Nε1/4

ρ

)
+ 2(logN + 2)

Nε1/4

ρ

)
Proof. See Lemma 6.3 in [5].

Likewise, define CCµ(f, ε) to be equal to infπ CC(π), where the infimum is taken over
all protocols π that successfully compute f with probability at least 1− ε (when inputs are
drawn from distribution µ). The following theorem relates ICµ(f, ε) to CCµ(f, ε).

Theorem 3.25. Let

Lµ(f, ε) = 2

(
h

(
1− 2Nε1/4

ρ

)
+ 2(logN + 2)

Nε1/4

ρ

)
and

Uµ(f, ε) = ε+O

(√
w(f, ε)(ICµ(f) + ε) + w(f, ε)

)
+ 2w(f, ε) log

(
w(f, ε)

ε

)
We have that

ICµ(f)− Lµ(f, ε) ≤ CCµ(f, ε) ≤ ICµ(f) + Uµ(f, ε)

Proof. To prove the first two inequalities, first note that ICµ(f, ε) ≤ CCµ(f, ε); this follows
from the fact that for any protocol π, ICµ(π) ≤ CC(π). Then, by Lemma 3.24, ICµ(f) ≤
ICµ(f, ε) + Lµ(f, ε), from which the leftmost inequality follows.

To prove the right inequality, set W = w(f, ε) in Lemma 3.23, and apply the fact that
ICw(f,ε),µ(f) ≤ ICµ(f) + ε.

Theorem 3.25 shows that if we can compute the ε-error communication complexity of
f , we can approximate the information complexity of f to within an additive factor of
max(Lµ(f, ε), Uµ(f, ε)). Unfortunately, while we can make Lµ(f, ε) arbitrarily small by de-
creasing ε, Uµ(f, ε) may be large. To remedy this, we apply the following direct sum results.

Lemma 3.26. We have that

ICµ(fn, ε) = nICµ(f, ε)

In particular, for ε = 0,

ICµ(fn) = nICµ(f)

Proof. See Theorem 4.3 in [3].

Lemma 3.27. We have that

ICw(f,ε),µ(fn)

n
≤ ICw(f,ε),µ(f)
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Proof. Let π be the protocol that computes f which requires w(f, ε) rounds and has infor-
mation cost ICw(f,ε),µ(f). By running n copies of π in parallel, we can construct a protocol
for fn which still requires only w(f, ε) rounds and has information cost nICw(f,ε),µ. The
result follows.

Corollary 3.28. We have that

CCµ(fn, ε) ≤ ICµ(fn) + Un,µ(f, ε) (3.24)

where

Un,µ(f, ε) = nε+O

(√
n · w(f, ε)(ICµ(f) + ε) + w(f, ε)

)
+ 2w(f, ε) log

(
w(f, ε)

ε

)
(3.25)

Proof. We follow the proof of the upper bound in Theorem 3.25, but instead of setting
W = w(fn, ε) in Lemma 3.23, we set W = w(f, ε). Then, by Lemma 3.27, ICw(f,ε),µ(fn) ≤
nICw(f,ε),µ(f) ≤ n(ICµ(f) + ε). Applying this fact, we obtain our desired result.

Corollary 3.29. For any n ≥ 1,

ICµ(f)− Lµ(f, ε) ≤ CCµ(fn, ε)

n
≤ ICµ(f) +

Un,µ(f, ε)

n

Proof. To prove the lower bound, recall that ICµ(fn, ε) ≤ CCµ(fn, ε). Dividing by n and

applying the result of Lemma 3.26, we obtain that ICµ(f, ε) ≤ CCµ(fn,ε)

n
. Applying the lower

bound from Theorem 3.25, we have that ICµ(f)− Lµ(f, ε) ≤ ICµ(f, ε), and hence that

ICµ(f)− Lµ(f, ε) ≤ CCµ(fn, ε)

n
(3.26)

To show the upper bound, simply divide both sides of Corollary 3.28 by n and apply
Lemma 3.26.

We can now proceed to prove our main theorem.

Proof of Theorem 1.1. Fix an α > 0; we will show how to approximate the information
complexity of f to within an additive factor of α. First, note that since Lµ(f, ε) is decreasing
in ε, we can choose ε small enough so that both Lµ(f, ε) ≤ α and ε ≤ α

2
. Secondly, note that

Un,µ(f, ε) ≤ nε+
√
nUµ(f, ε) (3.27)

It follows from Corollary 3.29 that

CCµ(fn, ε)

n
≤ ICµ(f) + ε+

Uµ(f, ε)√
n

(3.28)

If we choose n large enough so that Uµ(f,ε)√
n
≥ α

2
, then it follows from Corollary 3.29, that

CCµ(fn, ε)/n approximates ICµ(f) to within an additive factor of α.
Note that n logN is an upper bound on CCµ(fn, ε). We can therefore compute CCµ(fn, ε)

simply by enumerating all protocols of depth at most n logN , checking which protocols
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compute f successfully at least (1 − ε) proportion of the time, and taking the minimal
communication cost of such protocols. This completes the proof that information complexity
is computable.

To obtain explicit asymptotic bounds on n, note that to ensure Lµ(f, ε) ≤ α/2, it suffices
to take ε = Õ (α8N−4ρ4) = Õ (α16N−8) (by the proof of Theorem 3.1, we know that we can

ensure ρ = Ω̃(α2N−1)). For this value of ε, in order to choose n so that Uµ(fn,ε)

n
≤ α/2, it

suffices to take

n = O(w(ε) logw(ε)/α2) = (Nα−1)O(N)

and hence it suffices to enumerate protocols with up to a maximum depth d on the order of
(Nα−1)O(N). The number of such protocols is at most

2N2d = 2exp((Nα−1)O(N))

Since each protocol with depth d can be checked for correctness in time O(Nd) (by
checking all possible N pairs of inputs), this is also a bound on the time complexity of this
algorithm, as desired.

Remark 3.30. The techniques in this section do not immediately extend to the case of ex-
ternal information complexity (in particular, no direct sum statement analogous to Lemma
3.26 is known for external information complexity). Instead, to prove the analogue of Theo-
rem 1.1 for external information complexity, we can proceed from Theorem 3.20 by applying
the results of Ma and Ishtar to approximate arbitrarily closely the W -alternation external
information complexity of f (see section II.B of [14]).
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