
Proofs of Proximity for Context-Free Languages and Read-Once
Branching Programs∗

Oded Goldreich
Weizmann Institute of Science

oded.goldreich@weizmann.ac.il

Tom Gur
Weizmann Institute of Science

tom.gur@weizmann.ac.il

Ron D. Rothblum
Weizmann Institute of Science

ron.rothblum@weizmann.ac.il

February 16, 2015

Abstract

Proofs of proximity are probabilistic proof systems in which the verifier only queries a sub-
linear number of input bits, and soundness only means that, with high probability, the input
is close to an accepting input. In their minimal form, called Merlin-Arthur proofs of proximity
(MAP), the verifier receives, in addition to query access to the input, also free access to an
explicitly given short (sub-linear) proof. A more general notion is that of an interactive proof of
proximity (IPP), in which the verifier is allowed to interact with an all-powerful, yet untrusted,
prover. MAPs and IPPs may be thought of as the NP and IP analogues of property testing,
respectively.

In this work we construct proofs of proximity for two natural classes of properties: (1)
context-free languages, and (2) languages accepted by small read-once branching programs.
Our main results are:

1. MAPs for these two classes, in which, for inputs of length n, both the verifier’s query
complexity and the length of the MAP proof are Õ(

√
n).

2. IPPs for the same two classes with constant query complexity, poly-logarithmic commu-
nication complexity, and logarithmically many rounds of interaction.

∗This research was partially supported by the Israel Science Foundation (grant No. 671/13).

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 24 (2015)

Contents

1 Introduction 1
1.1 Our Results . 1
1.2 Proof Overview . 3

1.2.1 Partitioning ROBPs . 5
1.2.2 Partitioning Context-Free Languages into Two Parts 6
1.2.3 Partitioning Context-Free Languages into Multiple Parts 8
1.2.4 Digest and Relation to Concatenation Problems 9

1.3 Organization . 9

2 Preliminaries 9
2.1 Property Testing, MAPs and IPPs . 10

2.1.1 IPP . 10
2.1.2 Proximity Oblivious IPP . 11

2.2 Read-Once Branching Programs (ROBPs) . 12
2.3 Context-Free Languages . 12

3 MAPs and IPPs for Read-Once Branching Programs 13
3.1 IPPs for ROBPs . 14
3.2 MAPs for ROBPs . 19
3.3 MAPs and IPPs for Affine Spaces . 19

4 MAPs and IPPs for Context-Free Languages 20
4.1 Partitioning Partial Derivation Languages . 21
4.2 IPP for Partial Derivation Languages . 28
4.3 Improved MAPs for Specific Context-Free Languages 31

A Parallel Repetition of IPPs 36

B Computing ROBPs in Low-Depth 37

C Proof of Lemma 4.8 37

D Efficient Verification for Special Context-Free Languages 40

1 Introduction

The field of property testing, initiated by Rubinfeld and Sudan [RS96] and Goldreich, Goldwasser
and Ron [GGR98], studies a computational model that consists of probabilistic algorithms, called
testers, that need to decide whether a given object has a certain global property or is far (say,
in Hamming distance) from all objects that have the property, based only on a local view of the
object.

A line of work [EKR04, BSGH+06, DR06, RVW13, GR15, FGL14, KR14] has considered the
question of designing proof systems within the property testing model. The minimal type of such
a proof system, which was recently studied by Gur and Rothblum [GR15], augments the property
testing framework by replacing the tester with a verifier that receives, in addition to oracle access to
the input, also free access to an explicitly given short (i.e., sub-linear length) proof. The guarantee
is that for inputs that have the property there exists a proof that makes the verifier accept with high
probability, whereas, for inputs that are far from the property, the verifier will reject every alleged
proof with high probability. These proof systems can be thought of as the NP (or more accurately
MA) analogue of property testing, and are called Merlin-Arthur proofs of proximity (MAP).1

A more general notion was considered by Rothblum, Vadhan and Wigderson [RVW13] (prior
to [GR15]). Their proof system, which can be thought of as the IP analogue of property testing,
consists of an all powerful (but untrusted) prover who interacts with a verifier that only has oracle
access to the input x. The prover tries to convince the verifier that x has a particular property Π.
Here, the guarantee is that for inputs in Π, there exists a prover strategy that will make the verifier
accept with high probability, whereas for inputs that are far from Π, the verifier will reject with
high probability no matter what prover strategy is employed. The latter proof systems are known
as interactive proofs of proximity (IPPs).2

The focus of this paper is identifying natural classes of properties that are known to be hard
to test, but become easy to verify using the power of a proof (MAP) or interaction with a prover
(IPP).

1.1 Our Results

One well-known class of properties that is hard to test is the class of context-free languages.
Alon et al. [AKNS00] showed that there exists a context-free language that requires Ω (

√
n) queries

to test (where here and throughout this work, n denotes the size of the input) and a context-free
language that requires Ω(n) queries to test with one-sided error. Furthermore, there are no known
(non-trivial) testers for general context-free languages.

Another interesting class is the class of languages that are accepted by small read-once branching
programs (ROBPs). Newman [New02] showed that the set of strings accepted by any small width
ROBP can be efficiently tested.3 More specifically, Newman showed that width w ROBPs can be
tested using (2w/ε)O(w) queries, where ε is the proximity parameter. Bollig [Bol05] showed that
Newman’s result cannot be extended to polynomial-sized ROBPs, by exhibiting an O(n2)-sized

1A related notion is that of a probabilistically checkable proof of proximity (PCPP) [BSGH+06, DR06]. PCPPs
differ from MAPs in that the verifier is only given query (i.e., oracle) access to the proof, whereas in MAPs, the
verifier has free (explicit) access to the proof. Hence, PCPPs are a PCP analogue of property testing.

2Indeed, MAPs can be thought of as a restricted case of IPPs, in which the interaction is limited to a single
message sent from the prover to the verifier.

3The result in [New02] is stated only for oblivious ROBPs but in [Bol05, Section 1.3] it is stated that Newman’s
result holds also for general non-oblivious ROBPs.

1

ROBP that requires Ω(
√
n) queries to test. No (non-trivial) testers for general ROBPs are known

for width Ω(
√

logn).
In this work we consider the question of constructing efficient MAPs and IPPs for these two

classes.4 Here, by “efficient”, we mean that both the query complexity (i.e., the number of queries
performed by the verifier to the input) and the proof complexity (i.e., the length of theMAP proof)
or communication complexity (i.e., the amount of communication with the IPP prover) are small
and, in particular, sub-linear5.

Our first pair of results are efficient MAPs for context-free languages and for ROBPs. These
MAPs offer a multiplicative trade-off between the query and proof complexities. Here and through-
out this work, n ∈ N specifies the length of the main input and ε ∈ (0, 1) denotes the proximity
parameter.

Theorem 1.1. For every context-free language L and every k = k(n) such that 2 ≤ k ≤ n, there
exists an MAP for L that uses a proof of length O(k · logn) and has query complexity O

(
n
k · ε

−1).
Furthermore, the MAP has one-sided error.

Theorem 1.2. If a language L is recognized by a size s = s(n) ROBP, then for every k = k(n)
such that 2 ≤ k ≤ n, there exists an MAP for L that uses a proof of length O(k · log s) and has
query complexity O

(
n
k · ε

−1). Furthermore, the MAP has one-sided error.

Hence, by setting k =
√
n, every context-free language and every language accepted by an

ROBP of size at most 2polylog(n), has an MAP in which both the proof and query complexity are
Õ (
√
n) (w.r.t. constant proximity parameter).

Next, we ask whether the query and proof complexity in Theorems 1.1 and 1.2 can be signif-
icantly reduced by allowing more extensive interaction between the verifier and the prover (i.e.,
arbitrary interactive communication rather than just a fixed non-interactive proof). Very relevant
to this question is a recent result of [RVW13] by which, loosely speaking, every language in NC
(which contains all context-free languages [Ruz81] and languages accepted by small ROBPs6) has
an IPP with Õ(

√
n) query and communication complexities. While the [RVW13] result is more

general, for context-free languages and ROBPs it achieves roughly the same query and communica-
tion complexities as the MAPs in Theorems 1.1 and 1.2, but uses much more interaction (i.e., at
least logarithmically many rounds of interaction compared to just a single message in ourMAPs).

Using cryptographic assumptions7, Kalai and Rothblum [KR14] recently showed that there
exists a language in NC1 for which every IPP requires that either the query or communication
complexity be Ω(

√
n). Hence, we cannot hope to improve the [RVW13] result in general. Still,

for the special case of context-free languages and ROBPs, we show that we can actually extend
theMAP protocols in Theorems 1.1 and 1.2 into highly efficient IPPs with only poly-logarithmic
complexity (using a sub-logarithmic number of rounds). More generally, our IPPs offer a trade-off
between the number of rounds of interaction and the query and communication complexities.

4To see that these two classes do not contain each other, observe that the language {0i1j2i3j : i, j ≥ 1}, which
is not a context-free language [HMU06, Example 7.20], has a poly(n)-width ROBP (which simply counts the number
of repeated occurrences of 0, 1, 2 and 3). On the other hand, Kriegal and Waack [KW88] showed that every ROBP
for the Dyck2 language, which is a context-free language, has size 2Ω(n).

5As pointed out in [GR15], if we do not restrict the length of the proof, then every property Π can be verified
trivially using only a constant amount of queries, by considering an MAP proof that contains a full description of
the input.

6See Appendix B for a discussion on why languages accepted by ROBPs can be computed in small depth.
7A sufficient assumption for [KR14] is the existence of (length-doubling) PRGs that can be computed in NC1 and

whose output cannot be distinguished from random by circuits of size 2o(n).

2

Theorem 1.3. For every context-free language L, every k = k(n) ≥ 2 and r = r(n) ≥ 1 such that
kr ≤ n, there exists an r-round IPP for L with communication complexity O

(
(rk logn) · ε−1) and

query complexity O
(
n
kr · ε

−1). Furthermore, the IPP is public-coin and has one-sided error.

Theorem 1.4. If a language L is recognized by a size s = s(n) ROBP, then for every k = k(n) ≥ 2
and r = r(n) ≥ 1 such that kr ≤ n, there exists an r-round IPP for L with communication
complexity O

(
(rk log s) · ε−1) and query complexity O

(
n
kr · ε

−1). Furthermore, the IPP is public-
coin and has one-sided error.

(Interestingly, and in contrast to Theorems 1.1 and 1.2, here the communication complexity also
depends on the proximity parameter ε.) In particular, by setting k = logn and r = logn

log logn ,
we obtain IPPs for context-free languages and size 2polylog(n) ROBPs, with a sub-logarithmic
number of rounds, constant query complexity, and poly-logarithmic communication complexity
(w.r.t. constant proximity parameter).

A Remark on Computational Complexity. Following the property testing literature, we view
the query complexity and the proof complexity (resp., communication complexity) as the primary
resources of an MAP (resp., IPP). Still, the running time of the verifier and of the prover are
also important resources. The proofs/provers in ourMAPs and IPPs are indeed efficient; that is,
polynomial in the main input x (and in the case of ROBPs also in the size of the ROBP).

As for our verifiers, those in Theorems 1.1 and 1.3 run in polynomial time (i.e., poly(|x|) time)
rather than in sub-linear time as one might hope. However, by increasing the round complexity in
Theorem 1.3 by a poly-logarithmic factor, we can obtain an IPP with sub-linear time verification.
Constructing an MAP for context-free languages with sub-linear time verification remains an
interesting open question. The verifiers in Theorems 1.2 and 1.4 run in sub-linear time if they
are given a suitable (natural) representation of the ROBP.8 See the technical sections (specifically
Remark 3.2 and Remark 4.6) for further details.

Improved Results for Specific Languages. The paradigm used for the general results in
Theorems 1.1-1.4 can be extended to yield better results for specific languages. A notable class of
languages for which we obtain such an improvement is the class of languages of balanced paren-
theses expressions (a.k.a the Dyck languages), which are context-free languages, for which Par-
nas et al. [PRR01] showed a lower bound of Ω̃(n1/11) for ordinary testers. Using special properties
of the Dyck languages, we can improve on the general result in Theorem 1.1 in this special case
and obtain a somewhat more efficient MAP for the Dyck languages. See details in Section 4.3.

1.2 Proof Overview

The proofs of Theorems 1.1 and 1.2 (i.e., theMAP results) will follow (roughly) as special cases of
the proofs of Theorems 1.3 and 1.4 (i.e., the IPP results), respectively. Hence, in this overview we
focus on the proofs of Theorems 1.3 and 1.4, while explaining how to derive Theorems 1.1 and 1.2
as special cases.

8Indeed, the running time of the verifier crucially relies on the specific representation of the ROBP. We remark
that there are other natural representations of ROBPs than the one we use, and for some of these representations
obtaining sub-linear running time may not be feasible.

3

The proofs of Theorems 1.3 and 1.4 share a common theme: For L that is either a context-free
language or is accepted by a ROBP, we show that every input x ∈ L can be broken-down into k
sub-problems (related to L) such that the following holds:

1. On the one hand, if x ∈ L, then there exists (1) a partition of [n] into sets S1, . . . , Sk (each
of size roughly n/k); and (2) languages L1, . . . ,Lk such that both (1) and (2) have a concise
representation, and, for every i ∈ [k], the projection of x on Si, denoted x[Si], is in the
language Li. Furthermore, if L is a context-free language (resp., accepted by an ROBP),
then the languages L1, . . . ,Lk are all “variants” of context-free languages9 (resp., accepted
by ROBPs).

2. On the other hand, if x is “far” from L, then for every concise representation of a partition
S1, . . . , Sk of [n] and languages L1, . . . ,Lk (of the type used in 1), for an average i ∈ [k], it
holds that x[Si] is proportionally “far” from Li.

By design, the partition S1, . . . , Sk as well as the corresponding languages L1, . . . ,Lk depend
on the entire input x, and so the verifier (who only has query access to x) cannot generate them
by itself. Instead, the concise representation of S1, . . . , Sk and L1, . . . ,Lk will be specified by the
prover (as a single message in the case of an IPP, or as the entire proof string in the case of an
MAP).

Given the latter, we construct an MAP as follows. The MAP verifier selects at random a
small subset I ⊆ [k] and, for every i ∈ I, reads all of x[Si] (which is of length roughly n/k) and
checks that x[Si] ∈ Li. Indeed, by the two foregoing conditions, if x ∈ L, then x[Si] ∈ Li for every
i ∈ [k], whereas if x is “far” from L, then, by an averaging argument, for many i ∈ [k], it holds
that x[Si] is proportionally “far” from Li (and in particular x[Si] 6∈ Li), and the verifier will reject.

A natural approach for extending the foregoing MAP to an IPP is to have the verifier send
the set I (where I is chosen at random as in theMAP) to the prover, and then recursively run |I|
IPP protocols to check that x[Si] is close to Li, for every i ∈ I. In each recursive call the input
shrinks by (roughly) a factor of k. After the recursion reaches depth r, where r is a predetermined
bound on the number of rounds, the verifier can simply read its entire current input (of length
O(n/kr)) and decide whether to accept or reject.

The foregoing approach indeed works, but because there is more than one recursive call in each
round, the complexity of the resulting IPP depends exponentially on the number of rounds r.
Instead, we use a more economical approach, which avoids the exponential dependence on r, based
on the notion of a proximity oblivious tester [GR11]. Recall that a proximity oblivious tester for a
property Π is a tester that does not receive the proximity parameter ε as input and is only required
to reject inputs that are ε-far from Π with probability proportional to ε (rather than probability
2/3). To present a more economical recursion, the IPP that we design is similarly “proximity
oblivious”. The idea is to have the verifier select at random only a single index i ∈ [k], send i to
the prover, and then have the two parties recursively run an IPP protocol for verifying that x[Si]
is close to Li. Indeed, if x ∈ L then x[Si] ∈ Li, whereas if x is ε-far from L, then, since i was
chosen at random, on the average x[Si] is ε-far from Li, and therefore, by inductive reasoning, the

9If L is a context-free language, then the languages L1, . . . ,Lk will be variants of context-free languages, which
we call “partial derivation languages”. However, if L is accepted by an ROBP, then the languages L1, . . . ,Lk are also
accepted by (different) ROBPs.

4

verifier will reject with probability ε. To obtain constant soundness we can just repeat10 the entire
proximity oblivious protocol O(1/ε) times in parallel.

This concludes the high-level description of ourMAPs and IPPs. Of course, the way in which
the partition is generated is quite different in the case of context-free languages and in the case of
ROBP, and different technical problems arise in each case. In the following subsections we discuss
the specific details. In Section 1.2.1 we give an overview of how to partition read-once branching
programs. Partitioning context-free languages is more involved, and so, in Section 1.2.2, as a warm-
up, we first consider partitioning into two parts (i.e., k = 2). Then, in Section 1.2.3 we show how
to extend the technique to multiple parts (i.e., general k ≥ 2).

1.2.1 Partitioning ROBPs

Recall that a branching program on n variables is a directed acyclic graph with a unique source
vertex with in-degree 0 and (possibly) multiple sink vertices with out-degree 0. Each sink vertex
is labeled with either 0 (i.e., reject) or 1 (i.e., accept). Each non-sink vertex is labeled by an index
i ∈ [n] and has exactly 2 outgoing edges, which are labeled by 0 and 1. The output of the branching
program B on input x ∈ {0, 1}n, denoted B(x), is computed in a natural way by starting at the
source vertex and taking a walk such that at a vertex labeled by i ∈ [n], we traverse the outgoing
edge labeled by xi. Once a sink is reached, we output its label. The branching program is read-once
(ROBP for short) if along every path from source to sink, every index (i ∈ [n]) appears at most
once. The size of a branching program B, denoted |B|, is the number of vertices in it.

For any fixed ROBP B, we construct an IPP (and an MAP, which is a special case of the
IPP) for the language accepted by B, denoted LB

def= {x ∈ {0, 1}n : B(x) = 1}. In this overview,
we make a simplifying assumption that B is both layered and ordered (a.k.a., an ordered binary
decision diagram or OBDD). That is, we assume that the vertices of B are partitioned into n + 1
layers such that, for every i ∈ [n], edges only go from layer i to layer i + 1; and vertices in layer i
are labeled by the index i (i.e., the ROBP reads its input “in order”).

The key idea, which enables the IPP verifier to generate the aforementioned partition S1, . . . , Sk
(together with the corresponding languages), is to have the prover specify k evenly-spaced vertices
along the accepting path corresponding to the input x ∈ LB. More specifically, observe that x
induces a path ϕ0 ϕ1 · · · ϕn from the start vertex ϕ0 to some accepting sink ϕn. The prover
sends to the verifier a subsequence of this walk, specifically the subsequence ϕn/k, . . . , ϕi·n/k, . . . , ϕn.

Given the subsequence, we can reduce the problem of verifying that there exists a path of length
n from ϕ0 to ϕn to verifying that there exists a path of length n/k between each pair of consecutive
vertices in the sequence ϕ0, ϕn/k, . . . , ϕi·n/k, . . . , ϕn. In other words, for every i ∈ [k] we consider
the ROBP Bi that consists only of layers (i − 1) · n/k up to i · n/k of B, with the starting state
ϕ(i−1)·n/k and the (only) accepting state ϕi·n/k. Verifying that x ∈ LB can be reduced to verifying
that x[Si] ∈ LBi , for every i ∈ [k], where Si ⊆ [n] is the set of coordinates of x that are read by Bi
and LBi

def= {z ∈ {0, 1}n/k : Bi(z) = 1}. Moreover, since S1, . . . , Sk is a partition of [n], if x is ε-far
from LB, then x[Si] is ε-far from LBi , for an average i ∈ [k]. Hence, we can follow the high-level
outline that was suggested in Section 1.2; that is, the IPP verifier selects i ∈ [k] at random, sends
i to the prover, and then the two parties recursively run an IPP protocol to verify that x[Si] is
close to the LBi .

10As expected, parallel repetition reduces the soundness error of IPPs at an exponential rate. See Appendix A
for details.

5

The foregoing intuition almost works but there is a subtle problem: What if the message sent
by a cheating prover is such that LBi∗ is empty, for some i∗ ∈ [k]. This corresponds to a situation
in which the branching program B contains no path from ϕ(i∗−1)·n/k to ϕi∗·n/k. In such case, with
high probability (i.e., if the verifier chooses i such that i 6= i∗) the verifier, as described so far, will
not notice this fact and may accept inputs that are far from LB.

We overcome this difficulty by observing that when the verifier interacts with the honest prover,
it holds that x[Si] ∈ LBi for every i ∈ [k], and therefore LBi 6= ∅. Hence, we can have the verifier
explicitly check that LBi 6= ∅ for every i ∈ [k] (i.e., that there exists some input that leads from
ϕ(i−1)·n/k to ϕi·n/k in B). This check requires direct and full access to the branching program B
(which is fixed) but does not require any queries to the input x, and so we can perform it for every11

i ∈ [k].
Given this additional check, we can show that the foregoing IPP works. To do so, we argue

by induction on the number of rounds that if the input x is ε-far from L then the verifier rejects
with probability at least ε. Indeed, if x is ε-far from LB, then in the first round we have that:

Pr
[
Verifier for LB rejects x

]
= E

i

[
Pr
[
Verifier for LBi rejects x[Si]

]]
≥ E

i

[
εi
]

≥ ε,

where εi denotes the relative distance of x[Si] from LBi , for every i ∈ [k], and the first inequality
follows from the induction hypothesis.

We remark that when dealing with general ROBPs, rather than OBDDs, there are several ad-
ditional technical difficulties. In particular, since B is not layered, we have to modify our definition
of Bi (which previously consisted of layers (i − 1) · n/k to i · n/k of B). A natural approach is
to define Bi to consist of all paths (in B) of length n/k starting at ϕ(i−1)·n/k.12 The difficulty is
that Bi may depend on many, possibly even all, of the bits of x (since different paths may look
at different bits), rather than just n/k bits (as was the case for OBDDs). Hence, the input does
not necessarily shrink in the recursive step. Nevertheless, we resolve this issue by showing that the
effective length of the input, which is the number of bits that need to be read in order to determine
whether the ROBP accepts, does shrink, and this suffices to make progress in the recursion. For
further details, see Section 3.

1.2.2 Partitioning Context-Free Languages into Two Parts

Recall that a context-free grammar is a tuple G = (V,Σ, R,Astart), where V = {A1, A2, . . . } denotes
a (finite) set of variables, Σ = {σ1, σ2, . . . } denotes a (finite) set of terminal symbols (i.e., the
alphabet), R is a set of production rules (e.g., rules of the form A7 → σ5A3A9σ8A2) and Astart ∈ V
denotes a special “start” variable. We say that a string α ∈ (Σ∪V)∗ is derived from a variable Aj ,
denoted by Aj

∗⇒ α, if α can be obtained from Aj by iteratively applying production rules in R.
Each such derivation can be described by a derivation tree, which is a rooted, directed, ordered, and
labeled tree (with edges oriented away from the root), where the root is labeled by Aj , the leaves

11However, this check does increase the running time of the verifier (which we view as a secondary resource) to
poly(|B|). This computation can be minimized by using a pre-processing step in which we compute a |B| × |B|-sized
table whose (v, u)th entry says whether the vertices v and u are connected in B.

12The actual definition of Bi that we use is different. See Section 3 (in particular Footnote 18).

6

are labeled by the sybmols of α (in order), and the children of each vertex in the tree correspond
to an application of a production rule in G. The language L ⊆ Σ∗ generated by G consists of all
strings that can be derived from Astart using the production rules in R.

Let L be a context-free language and let G = (V,Σ, R,Astart) be the context-free grammar that
generates L. In this section we show how to partition x ∈ L into two parts. Next, in Section 1.2.3,
we show how to extend this technique to multiple parts.

For x ∈ L (i.e., Astart
∗⇒ x), there exists a derivation tree T corresponding to the derivation

Astart
∗⇒ x. For simplicity, let us assume that T is a binary tree. The root of T is labeled by Astart

and the leaves are labeled, in order, by x1, . . . , xn, where n def= |x|. Recall that the Lewis-Stearns-
Harmanis Lemma [LSH65] states that every binary tree on n leaves has a subtree13 with a number
of leaves between n/3 and 2n/3. Applying this lemma to T , we can find such a subtree T ′ of T .
Observe that T ′ induces a partition of [n] into two parts S1, S2 ⊆ [n], where S1 (which is actually
an interval) contains all the leaves of T that belong to T ′ and S2

def= [n]\S1 contains all other leaves.
The IPP prover finds T ′ and sends S1 and A1 to the verifier, where A1 is the label of the root of
T ′. Since S1 is an interval, the latter requires only O(logn) communication.

Given (S1, A1), the verifier can construct the partition and the corresponding languages, where
the partition is simply (S1, S2) and the languages are

L1
def=
{
w ∈ Σ|S1| : A1

∗⇒ w
}

and
L2

def=
{
w ∈ Σ|S2| : A2

∗⇒ w[1, . . . , s− 1] ◦A1 ◦ w[s, . . . , |S2|]
}
,

where A2
def= Astart and s ∈ [n] is the starting position of the interval S1 in [n].

Note that L2 is not quite a context-free language (although L1 is). Rather, L2 consists of
strings that correspond to partial derivations (i.e., derivation processes that end before all symbols
are terminals) starting from Astart that produce strings that have the variable A1 in their sth

coordinate. We refer to such languages, which we view as generalization of context-free languages,
as partial derivation languages, and for the recursion to go through, we actually design the original
protocol to handle not only context-free languages but also partial derivation languages.

Observe that if x ∈ L, then clearly x[S1] ∈ L1 and x[S2] ∈ L2. On the other hand, suppose that
x[S1] is ε1-close to a string z1 ∈ L1 and x[S2] is ε2-close to a string z2 ∈ L2. If we choose i ∈ {1, 2}
at random, such that Pr[i = 1] = |S1|/n and Pr[i = 2] = |S2|/n, then x is Ei[εi]-close to the string
z = z2[1, . . . , s− 1] ◦ z1 ◦ z2[s, |S2|]. Since A1

∗⇒ z1 and Astart
∗⇒ z2[1, . . . , s− 1] ◦A1 ◦ z2[s, . . . , |S2|]

(because z1 ∈ L1 and z2 ∈ L2), we deduce that Astart
∗⇒ z, and therefore z ∈ L. Hence, x is

Ei[εi]-close to L.
Given the above, we can design an IPP for L similarly to the IPP for ROBP that was described

in Section 1.2.1. Specifically, given (S1, A1), the verifier chooses at random i ∈ {1, 2} according to
the distribution above, sends i to the prover, and both parties run the protocol recursively, with
respect to the language Li and the input x[Si].

13Here and throughout this work, by a subtree, we mean a node of the tree together with all of its descendants,
see also Section 2.3.

7

1.2.3 Partitioning Context-Free Languages into Multiple Parts

The first step in partitioning context-free languages into multiple parts is a generalization of the
Lewis-Stearns-Hartmanis lemma that shows that, for every desired parameter t ∈ [n], every (con-
stant degree) tree T with n leaves has a subtree with roughly t leaves. The precise statement of
the lemma and its proof are given in Lemma 2.5 below.

Using Lemma 2.5, we can partition an input x ∈ L into k parts of (roughly) the same size
in the following way. As before, we construct a derivation tree T corresponding to the derivation
Astart

∗⇒ x. However, this time we use Lemma 2.5 to find a subtree T1 with roughly n/k leaves.
The coordinates of the leaves of T1 constitute the first part of the partition (denoted by S1). To
find the second subtree, we remove the entire subtree T1 from T , except for its root. We obtain
a new tree T ′ with (roughly) n − n

k leaves, where one of the leaves of T ′ is labeled by a variable
rather than a terminal. By applying Lemma 2.5 again on the new tree T ′, we can find a subtree T2
of T ′ with roughly n/k leaves. The second part (denoted by S2) of our partition will consist of the
coordinates of all the leaves of T2 that are labeled by terminals (i.e., are also leaves of the original
tree T). We stress that S2 may not be an interval (but rather two intervals separated by S1).

We proceed similarly, where in each iteration we remove the subtree that was found in the
previous iteration (except for its root) and find a new subtree Ti of T with roughly n/k leaves.
The subtrees T1, T2, . . . , Tk induce a partition of [n] where the ith part, denoted Si (of size roughly
n/k), consists of all leaves of Ti that are labeled by terminals (i.e., are leaves of the original tree
T) but do not belong to S1 ∪ · · · ∪ Si−1.

While the representation of a general partition of [n] into k parts requires n · log2(k) bits, we
show that the partition S1, . . . , S` actually has a concise representation. Indeed, each subtree Ti
induces an interval Ii ⊆ [n], which contains all of its leaves (but potentially also coordinates of
other parts in the partition). Given I1, . . . , I`, the partition S1, . . . , S` is uniquely determined (by
setting Si = Ii\(I1 ∪ · · · ∪ Ii−1)). We remark that each pair of intervals can be either disjoint or
nested (i.e., either Ii ∩ Ij = ∅ or Ii (Ij).

In light of the foregoing discussion, the prover can send to the verifier the intervals I1, . . . , Ik
and the variables A1, . . . , A` of the roots of the subtrees T1, . . . , Tk (respectively). Note that the
root of the last subtree Tk is in fact the root of the original derivation tree T (and thus Ak = Astart)
and that its corresponding interval Ik is [n].

Let Ii1 , . . . , Iik be the ordered (from left to right) maximal intervals of Ik = [n]. That is, the
(disjoint) intervals that are contained in Ik but are not contained in any of the other intervals.
Observe that if the intervals were generated as prescribed, then Astart yields a string x′ (composed
of terminals and variables) that results from x by replacing the substring x[Iij] with the variable
Aij , for every j ∈ [k]. Denote the language that contains all such strings by Lk. Similarly, for any
interval Iij ∈ {Ii1 , . . . , Iik}, observe that Aij yields the string that results from x[Iij] by replacing
coordinates in the maximal intervals that Iij contains with the corresponding variables. Denote
the language of all such strings by Lij . We show that by applying this idea iteratively we obtain
languages L1, . . . ,Lk such that (1) if x ∈ L, then x[Si] ∈ Li for every i ∈ [k]; and (2) if x is
ε-far from L, then x[Si] is ε-far from Li, for an average i ∈ [k], where the average is weighted
proportionally to the sizes of S1, . . . , Sk.

Given the partition above, verifying that x ∈ L is reduced to testing that the sub-input x[Si]
is close to Li, for i ∈ [k] distributed as above. Hence, as before, the verifier chooses i at random,
sends i to the prover and the two parties recursively run an IPP for verifying that x[Si] is ε-close
to Li.

8

We emphasize that, as was the case for k = 2, the languages L1, . . . ,Lk are not necessarily
context-free languages but are rather “partial derivation languages”. Indeed, for the recursion to go
through, we design the IPP to work for such languages (rather than just context-free languages).

1.2.4 Digest and Relation to Concatenation Problems

The proofs of Theorems 1.1-1.4 are based on a natural paradigm for designing proofs of proximity.
This paradigm consists of two steps: (1) partition the problem into smaller related sub-problems,
and (2) verifying a small random sample of the sub-problems. This basic approach was taken by
[RVW13] in their construction of an IPP for the Hamming weight problem (i.e., approximating
whether a given string has Hamming weight n/2). The partitioning in this case is into several inter-
vals of equal length and the IPP prover specifies the Hamming weight of each substring. A more
general instantiation of this paradigm was used in [GR15] to construct MAPs for parameterized
concatenation problems. Loosely speaking, a language L is a parameterized concatenation problem
if L = Lα1 × · · · × Lαk , for some integer k, where each language Lαi is a language parameterized
by αi; thus, the partitioning is done by providing the parameters α1, . . . , αk.

In this work we significantly extend the foregoing framework in several aspects: The partition is
not restricted to contiguous intervals, but is rather more involved and depends more dramatically
on the structure of the specific language and, moreover, also on the specific input. Furthermore,
whereas for concatenation problems the parameterization of each problem is “light” (typically
having a logarithmic description length), in our settings the parameterization can be quite extensive,
as in massively parameterized problems (see survey by Newman [New10]).

1.3 Organization

In Section 2 we provide the necessarily preliminaries regarding proofs of proximity, context-free
languages, and branching programs. In Section 3 we construct MAPs and IPPs for languages
accepted by ROBPs (with additional discussion on testing affine subspaces in Section 3.3). In
Section 4 we constructMAPs and IPPs for context-free languages (with additional discussion on
the Dyck languages in Section 4.3). Sections 3 and 4 can be read independently of each other. We
note that the implementation of the outline provided in Section 1.2 is far more involved in the case
of context-free languages.

2 Preliminaries

We begin with some standard notations:

• We denote the concatenation of two strings x ∈ Σn and y ∈ Σm (over a common alphabet Σ)
by x ◦ y ∈ Σn+m.

• We denote the absolute distance between two (equal length) strings x ∈ Σn and y ∈ Σn by
∆ (x, y) def= |{xi 6= yi : i ∈ [n]}|, and their relative distance by ∆ (x, y) def= ∆(x,y)

n . If ∆ (x, y) ≤
ε, we say that x is ε-close to y, and otherwise we say that x is ε-far from y. Similarly, we
denote the absolute distance of x from a non-empty set S ⊆ Σn by ∆ (x, S) def= miny∈S ∆ (x, y)
and the relative distance of x from S by ∆ (x, S) def= miny∈S ∆ (x, y). If ∆ (x, S) ≤ ε, we say
that x is ε-close to S, and otherwise we say that x is ε-far from S.

9

• We denote the projection of a string x ∈ Σn to a subset of coordinates S ⊆ [n] by x[S]. For
every i, j ∈ [n], we denote by x[i, j] the projection of x to the interval [i, j] (if i > j then the
interval is empty).

• We denote by Ax(y) the output of algorithm A, given direct access to input y and query
(i.e., oracle) access to the string x. Given two interactive machines A and B, we denote by
(Ax, B(y))(z) the output of A when interacting with B, where A (resp., B) is given oracle
access to x (resp., direct access to y) and both parties have direct access to z.

Integrality. Throughout this work, for simplicity of notation, we use the convention that all
(relevant) integer parameters that are stated as real numbers are implicitly rounded to the closest
integer.

2.1 Property Testing, MAPs and IPPs

In this section we define testers, MAPs and IPPs. Actually, testers and MAPs will be defined
as restrictions of IPPs.

2.1.1 IPP

We define a language, over an alphabet Σ, as an ensemble L def= ∪n∈NLn, where Ln ⊆ Σn for every
n ∈ N. The definition of an IPP is a natural extension of the standard definition of IP (interactive
proof) where the main distinction is that the verifier only has oracle access to the input. Also, since
our focus is on the query and communication complexities, we do not restrict the computational
complexity of the verifier (see discussion at the end of Section 1).

Definition 2.1 (Interactive Proof of Proximity (IPP) [EKR04, RVW13]). An interactive proof
of proximity (IPP) for the language L = ∪n∈NLn is an interactive protocol with two parties: a
(computationally unbounded) prover P, which has free access to input x, and a verifier V, which
is a probabilistic computationally unbounded algorithm which has oracle access to x. The parties
send messages to each other, and at the end of the communication, the following two conditions
are satisfied:

1. Completeness: For every n ∈ N, proximity parameter ε > 0 and x ∈ Ln it holds that

Pr [(Vx,P(x))(n, ε) = 1] ≥ 2/3.

where the probability is over the coin tosses of V.

2. Soundness: For every n ∈ N, ε > 0, and x ∈ {0, 1}n that is ε-far from Ln and for every
computationally unbounded (cheating) prover P∗ it holds that

Pr [(Vx,P∗)(n, ε) = 0] ≥ 2/3.

where the probability is over the coin tosses of V.

If the completeness condition holds with probability 1, then we say that the IPP has a one-sided
error and otherwise the IPP is said to have a two-sided error. If all of the verifier’s messages are
uniformly distributed and independent random strings then the IPP is said to be public-coin.

10

An IPP for L = ∪n∈NLn is said to have query complexity q : N×R+ → N if, for every14 n ∈ N,
ε > 0 and x ∈ Ln, the verifier V makes at most q(n, ε) queries to x when interacting with P. The
IPP is said to have communication complexity c : N×R+ → N if, for every n ∈ N, ε > 0 and x ∈ Ln,
the communication between V and P consists of at most c(|x|, ε) bits. A round of communication
consists of a single message sent from the verifier to the prover followed by a single message sent
from the prover to the verifier. The IPP is said to have r rounds (sometimes called an r-round
IPP), for r : N × R+ → N if, for every n ∈ N, ε > 0 and x ∈ Ln, if the number of rounds in the
interaction between V and P on input x is at most r(|x|, ε).

The standard definition of a property tester may be derived from Definition 2.1 by restricting
the communication complexity to 0. The definition of an MAP can be derived by restricting the
communication to be only from the prover to the verifier (see [GR15] for further details onMAPs).

Non-uniform IPPs. While Definition 2.1 refers to a uniform definition of IPP, throughout
this work it will be convenient for us to use a non-uniform definition. That is, we fix an integer
n ∈ N, which we think of as a variable parameter, and restrict Definition 2.1 to inputs of length
n. Hence, unless stated otherwise, by an IPP we actually mean the non-uniform variant. Despite
the fact that the integer n is fixed, we view it as a generic parameter and allow ourselves to write
asymptotic expressions such as O(n). We also note that while our results are proved in terms of
non-uniform IPP, they can be extended to the uniform setting in a straightforward manner.

2.1.2 Proximity Oblivious IPP

Extending the notion of proximity oblivious testers [GR11], we define a proximity oblivious IPP,
as a variant of an IPP in which neither party receives the proximity parameter as input and for
every ε > 0, the verifier is required to reject inputs that are ε-far from the language with some
probability ρ(ε).

Definition 2.2 (Proximity Oblivious IPP). Let ρ : (0, 1] → (0, 1] be a monotone function. A
proximity oblivious IPP with detection probability ρ, for the language L = ∪n∈NLn is similar to
Definition 2.1, except that the neither the verifier nor the prover15 receive the proximity parameter
as input, and the completeness and soundness conditions are modified as follows:

1. Completeness: For every n ∈ N, and x ∈ Ln it holds that16

Pr [(Vx,P(x))(n) = 1] = 1.

2. Soundness: For every n ∈ N, every x ∈ Σn, and for every computationally unbounded
(cheating) prover P∗ it holds that

Pr [(Vx,P∗)(n) = 0] ≥ ρ
(
∆(x,Ln)

)
14We measure the resources used in the protocol only when the verifier interacts with the honest prover. However,

in the general case, the verifier can simply halt once one of its resources exceeds the corresponding bound (since it
knows that it must be interacting with a cheating prover).

15Since we do not bound the computational resources of the prover, it can simply deduce the proximity parameter
from the input.

16Note that we require the verifier to accept inputs x ∈ L with probability 1. A more general definition could allow
this probability to be some smaller constant or even a function of ε (see [GS12]). For simplicity (and since it suffices
for our purposes), in this work we only consider proximity oblivious IPPs with perfect completeness.

11

In both condiditons the probability is over the coin tosses of V.

Note that any proximity oblivious IPP with detection probability ρ(·), can be transformed into
a standard IPP (as in Definition 2.1) by repeating the proximity oblivious IPP O(1/ρ(ε)) times
in parallel (see Appendix A for details on parallel repetition for IPPs).

2.2 Read-Once Branching Programs (ROBPs)

In this section we provide the necessary background on ROBPs (needed only for Section 3). An
ROBP is defined as follows

Definition 2.3 (ROBP). A branching program on n variables is a directed acyclic graph that has a
unique source vertex with in-degree 0 and (possibly) multiple sink vertices with out-degree 0. Each
sink vertex is labeled either with 0 (i.e., reject) or 1 (i.e., accept). Each non-sink vertex is labeled
by an index i ∈ [n] and has exactly 2 outgoing edges, which are labeled by 0 and 1.

The output of the branching program B on input x ∈ {0, 1}n, denoted B(x), is the label of the
sink vertex reached by taking a walk, starting at the source vertex such that at every vertex labeled
by i ∈ [n], the step taken is on the edge labeled by xi.

The branching program is said to be read-once (or ROBP for short) if along every path from
source to sink, every index i ∈ [n] appears at most once. The size of a branching program B,
denoted |B|, is the number of vertices in its graph.

Let ϕ and ψ be vertices in the branching program B on n variables and let x ∈ {0, 1}n. Loosely

speaking, we write ϕ x,k
ψ if the walk of length k corresponding to x that starts at ϕ ends at

ψ. Note that only k coordinates of x are read (adaptively) in this walk and that ϕ itself only
determines the first variable read. Formally, we write ϕ x,1

ψ if the edge (ϕ,ψ) appears in B and

is labeled by xi, where i is the label of ϕ, and we (inductively) write ϕ x,k
ψ if there exists a vertex

ζ in B such that ϕ x,1
ζ and ζ

x,k−1
ψ.

2.3 Context-Free Languages

In this section we provide the necessary background on context-free languages (needed only for
Section 4). To define context-free languages, we first define context-free grammars (see [HMU06]
for more details).

Definition 2.4 (Context-free grammar). A context-free grammar is a tuple G = (V,Σ, R,Astart)
such that V is a (finite) set of symbols, referred to as variables; Σ is a (finite) set of symbols,
referred to as terminals; R ⊆ V × (V ∪ Σ)∗ is a (finite) relation, where each (A,α) ∈ R is referred
to as a production rule and is denoted by A→ α; Astart ∈ V is a variable that is referred to as the
start variable.

Let G = (V,Σ, R,Astart) be a context-free grammar, and let α, β ∈ (V ∪ Σ)∗ be strings of
terminals and variables. We say that α directly yields β, denoted by α ⇒ β, if there exists a
production rule A → γ in R such that β is obtained from α by replacing exactly one occurrence
of the variable A in α with the string γ ∈ (V ∪ Σ)∗. We say that α yields β, denoted α

∗⇒ β
if there exists a finite sequence of strings α0, . . . , αk ∈ (V ∪ Σ)∗ such that α0 = α, αk = β, and
α0 ⇒ . . . ⇒ αk. The language Ln ⊆ Σn is a context-free language if there exists a grammar

12

G = (V,Σ, R,Astart) such that Ln = {x ∈ Σn : Astart
∗⇒ x}, where the derivation is with respect to

the rules in R.

Derivation Tree. Let G = (V,Σ, R,Astart) be a context-free grammar. For A ∈ V and x ∈ Σ∗, a
derivation tree, corresponding to the derivation A

∗⇒ x, is a rooted, directed, ordered, and labeled
tree T (with edges oriented away from the root) that satisfies the following properties:

• Each internal vertex is labeled by some variable, and the root is labeled by the variable A.

• Each leaf is labeled by a terminal symbol, where the ith leaf is labeled by the ith symbol of x.

• For every internal vertex v, if v is labeled by the variable A′ ∈ V and for every i ∈ [k] (where k
is the number of children of v) the ith child of v is labeled by αi ∈ V ∪Σ, then the production
rule A′ → α0 ◦ · · · ◦ αk must belong to R.

For every derivation A
∗⇒ x there exists a corresponding derivation tree.

Trees and the Lewis-Stearns-Hartmanis Lemma. In this work we only consider trees that
are rooted, directed, and ordered (e.g., derivation trees as above). Thus, throughout this work,
whenever we say tree we mean a rooted, directed, and ordered tree (with edges oriented away from
the root). Note that the fact that the tree is ordered induces an ordering of its leaves. We define
the arity of a tree to be the maximal number of children of any vertex in the tree. We follow the
data-structure literature and define a subtree of a tree T as a tree consisting of a node in T and all
of its descendants in T .17

For a tree T , we denote by L(T) the number of leaves of T . We will use the following straight-
forward generalization of the Lewis-Stearns-Hartmanis Lemma [LSH65]:

Lemma 2.5. Let T be a tree with arity d and let t ∈ [L(T)]. Then, there exists a subtree T ′ of T
with L(T ′) ∈ [t/d, t] leaves.

The Lewis-Stearns-Hartmanis lemma corresponds to the special case of Lemma 2.5 in which
d = 2 (i.e., a binary tree) and t = 2n/3.

Proof of Lemma 2.5. We prove by induction on the size of the tree (not on the number of leaves),
noting that the base case holds trivially. Suppose that the lemma holds for all trees of size less
than n. Let T be a tree of size n and let t ∈ [L(T)].

If t = L(T), then we are done (since L(T) ∈ [t/d, t] and so T itself has the desired property).
Otherwise, if t < L(T), then T has a subtree T ′ (rooted at one of its children) such that L(T ′) ≥ t/d
(since otherwise T has a total of less than d · t/d = t < L(T) leaves). If L(T ′) ≤ t, then we are also
done (since L(T ′) ∈ [t/d, t] and so T ′ satisfies the desired property). Otherwise, t ∈ [L(T ′)] and the
lemma follows by applying the induction hypothesis on T ′.

3 MAPs and IPPs for Read-Once Branching Programs

In this section we prove Theorem 1.4 (and Theorem 1.2 will follow as a special case of the proof)
by constructing an IPP for every language that is accepted by an ROBP.

17This definition differs from the graph-theoretic definition that defines a subtree as any connected subgraph of a
tree. For example, the root of a tree is a subtree in the graph theoretic sense but not according to our definition
(unless the tree has exactly one vertex).

13

3.1 IPPs for ROBPs

Before presenting the IPP formally, we provide a short overview of the protocol (for a more
detailed overview, see Section 1.2.1). Let B be an ROBP on n variables. We construct an r-round
public-coin IPP for the language that is accepted by B. The IPP runs recursively, where each
round of communication is as follows. Given an input x that is accepted by B within n′ ≤ n steps,
the prover finds the accepting path ϕ0 ϕ1 · · · ϕn′ and sends to the verifier the subsequence
ϕn′/k, . . . , ϕi·n′/k, . . . , ϕn′ that contains every (n′/k)th vertex along this path. The verifier checks
that every two consecutive vertices in the prover’s message are connected (this can be done without
making queries to the input x), then selects uniformly at random i ∈ [k], sends i to the prover, and
defines a new ROBP Bi that has the same graph as B, but its source vertex is ϕ(i−1)·n′/k and its
unique accepting sink is ϕi·n′/k.18 Subsequently, both parties (recursively) invoke the IPP protocol
on input x and the ROBP Bi.

A crucial point is that although the input x does not not shrink in each recursive call, the
effective length of the input, n′, which is the alleged number of bits of x that need to be read in
order to get from the source to the accepting sink, does shrink (by a factor of k). Hence, after r such
rounds, the verifier can read all bits of x that are required to verify the current statement (which
refers to a path of length n/kr). Interestingly, and in contrast to the simpler case of OBDDs, in
this last step the verifier reads the n/kr bits of the input adaptively, based on the steps taken by
the ROBP.

In the IPP that we construct, we assume for simplicity that the verifier is given an integer
n′ ≤ n, and the claim (which the verifier is trying to validate) is that B(x) = 1 after reading
exactly n′ bits of the input x. Furthermore, we assume that the ROBP B is such that there exists
some accepting path (i.e., from the source to some accepting sink) of length n′. We can reduce
the general case to this restricted setting by having the prover send n′ as part of its first message
and having the verifier explicitly check that there is some accepting path of length n′ (this check
requires no queries to the main input x).

Recall that, as noted in Section 1.2, to facilitate the recursion we use the notion of a proximity
oblivious IPP (see Section 2.1.2). When handling general ROBPs (rather than OBDDs), we
follow this approach in spirit but, due to technical reasons, the construction will not exactly fit
Definition 2.2. More specifically, since in each step of the recursion only the effective length of
the input shrinks (but the actual length of the input stays the same), throughout the proof it will
be more convenient for us to use absolute distances, denoted by ∆ (see Section 2) rather than
with distances that are relative to n. Hence, the detection probability ρ of the verifier will be
a function of the absolute distance (rather than of the relative distance) of the input from the
language. That is, we will construct an absolute proximity oblivious IPP with detection probability{
ρn : {0, . . . , n} → (0, 1]

}
n∈N, which is the same as Definition 2.2 except that we modify the

soundness condition as follows:

• Soundness: For every n ∈ N, x ∈ Σn, and for every computationally unbounded (cheating)
prover P∗ it holds that

Pr [(Vx,P∗)(n) = 0] ≥ ρn
(
∆ (x,Ln)

)
(3.1)

18 One could alternatively define Bi to consist only of vertices at distance at most n′/k from ϕ(i−1)·n′/k. We
refrain from taking this approach due to technical reasons. Note that also when using this alternate definition, when
considering general ROBPs (rather than OBDDs), Bi could potentially look at all of the n bits of the input (see
discussion at the end of Section 1.2.1).

14

Again, we can transform an absolute proximity oblivious IPP with detection probability
{
ρn :

{0, . . . , n} → (0, 1]
}
n∈N into a standard IPP (as in Definition 2.1) by repeating the base protocol

O(1/ρn(ε · n)) times in parallel.
The absolute proximity oblivious IPP for ROBPs, denoted ROBP-IPP, is presented in Fig. 1

(recall that the notation ϕ
x,m

ψ, which is used in Fig. 1 means that, given input x, the ROBP
walks from ϕ to ψ in m steps, see Section 2.2 for details).

It can be easily verified that the round complexity is r, the communication complexity is
O(rk · log(|B|)) and the query complexity is O(n/kr). We proceed to show that completeness
and soundness hold.

Completeness. Let B be a ROBP on n variables, let r ≥ 0, n′ ∈ [n], and let x ∈ {0, 1}n such
that B(x) = 1 after reading exactly n′ bits of the input. (Perfect) completeness follows by induction
on r as follows.

For r = 0, the verifier just reads the appropriate n′ bits of the input and accepts with prob-
ability 1. For r ≥ 1, let (ϕ0, ϕ1, . . . , ϕn′) be the accepting path corresponding to x. The checks
that the verifier performs in the current round pass, since ϕn′ is indeed an accepting sink and

ϕ(i−1)·n′/kr
x,n′/kr

ϕi·n′/kr , for every i ∈ [pr]. Furthermore, since for every choice of i ∈ [k] (made

by the verifier) it holds that ϕ(i−1)·n′/k
x,n′/k

ϕi·n′/k, the two parties recursively run the r − 1
round protocol on a branching program Bi such that Bi(x) = 1 after reading exactly n′/k bits of
x. Hence, by the inductive hypothesis the verifier accepts with probability 1.

Soundness. Soundness follows directly from the following lemma, which is proved by induction
on the number of rounds r. We suggest to the reader to first consider the case that n′ = n in both
the lemma statement and its proof. Nevertheless, we stress that in lower levels of the recursion,
the parameter n′ becomes much smaller than n.

Lemma 3.1. Let n ∈ N, n′ ∈ [n] and r ≥ 0. For every ROBP B of size s on n variables that has an
accepting path of length n′, every x that is in absolute distance ε ·n′ from {z ∈ {0, 1}n : B(z) = 1},
and for every cheating prover strategy P∗ it holds that:

Pr[(Vx,P∗)(n, n′, B, r) = 0] ≥ ε,

where V is the r-round verifier of ROBP-IPP (of Fig. 1).

Proof. We prove Lemma 3.1 by induction on the number of rounds r ≥ 0. In the base case,
corresponding to r = 0, the verifier simply ignores the prover and reads the appropriate n′ bits of
x. Hence, if B(x) 6= 1, then the verifier rejects with probability 1.19

In the inductive step, for r ≥ 1, let x ∈ {0, 1}n that is at absolute distance ε · n′ from
{z ∈ {0, 1}n : B(z) = 1} and let P ∗ be a (deterministic) cheating prover strategy for the
protocol ROBP-IPP of Fig. 1 (with r rounds). Let (ϕn′/k, ϕ2n′/k, . . . , ϕn′) be the first message
sent by P ∗ to V and let ϕ0 be the source. Since the verifier explicitly checks these conditions,
it must be the case that ϕn′ is an accepting sink, and that for every i ∈ [k], there exists some

19In the trivial case that ε = 0 (i.e., B(x) = 1), the verifier also satisfies the requirement, since it rejects with
probability at least 0 = ε. It may also be worth mentioning that it always holds that ε ≤ 1, since B has an accepting
path of length n′.

15

The Protocol ROBP-IPPB
n,n′,r:

Common Input: Integers n, n′ ∈ N, a ROBP B on n variables such that there exists some accepting
path of length n′ in B, and a parameter r ∈ N.

Prover’s Input: Direct access to x ∈ {0, 1}n such that B(x) = 1 in exactly n′ steps.

Verifier’s Input: Oracle access to the same x.

1. If r = 0, the verifier V checks whether B(x) = 1 after exactly n′ steps by (adaptively) reading the
appropriate n′ bits of x. If B(x) = 1, then V accepts, otherwise it rejects, and in either case both
parties terminate the protocol.

2. The Prover P:

(a) Let ϕ = (ϕ0, . . . , ϕn′) ∈ [|B|]n′ be the sequence of vertices in the accepting path (of length
n′ ≤ n) in B that corresponds to the evaluation of B on input x.

(b) Send (ϕn′/k, ϕ2n′/k, . . . , ϕn′) to V.a

3. The Verifier V:

(a) Check that ϕn′ is an accepting sink of B.
(b) Let ϕ0 be the source of B.
(c) For every i ∈ [k], check that there exists some input x(i) ∈ {0, 1}n such that

ϕ(i−1)·n′/k

x(i),n′/k
ϕi·n′/k.b

(d) Select uniformly at random an index i in [k], and send i to P.

4. Denote by Bi the ROBP that has the same graph as B, except that its source is ϕ(i−1)·n′/k, and its
unique accepting vertex is ϕi·n′/k.

5. Both parties (recursively) invoke ROBP-IPPBi

n,n′′,r−1, where n′′ = n′/k, on input x.

aThe accepting sink ϕn′ is also sent since (in the first step of the recursion) there could be multiple accepting
sinks.

bThis check is performed without making any queries to the main input x. Although our focus is not on
computational complexity, we note that this can be done in poly(s) time.

Figure 1: IPP for ROBPs

16

x(i) ∈ {0, 1}n such that ϕ(i−1)·n′/k
x(i),n′/k

ϕi·n′/k. Furthermore, for every i ∈ [k], we assume
without loss of generality that x(i) is the string z that minimizes the distance of x to the set{
z ∈ {0, 1}n : ϕ(i−1)·n′/k

z,n′/k
ϕi·n′/k

}
.

Recall that ∆ denotes absolute distance (see Section 2) and let εi
def= ∆(x,x(i))

n′/k . The following
claim, which crucially uses the fact that B is read-once, shows that the average of the εi’s (which
will later be shown to lower bound the rejection probability of V) is at least ε.

Claim 3.1.1. Ei[εi] ≥ ε.

Proof. For every i ∈ [k], let Ji ⊆ [n] be the set of n′/k variables that are read when going from
ϕ(i−1)·n′/k to ϕi·n′/k on input x(i). We first prove that the sets Ji’s are disjoint. Assume otherwise;
that is, that there exists j ∈ Ji1 ∩ Ji2 for some i1, i2 ∈ [k]. For every i ∈ [k], denote the path from
ϕ(i−1)·n′/k to ϕi·n′/k (in B) on input x(i) by Pi. Consider the concatenated path P1 ◦ · · · ◦ Pk. This
is a path in B in which the label j appears twice (both in Pi1 and in Pi2) in contradiction to our
assumption that B is a read-once branching program.

Define x′ ∈ {0, 1}n as follows. For every j ∈ [n], if j ∈ Ji for some i ∈ [k] (which must be unique
as just shown), then x′[j] def= x(i)[j], and otherwise (i.e., if j /∈ J1 ∪ · · · ∪ Jp) we set x′[j] def= x[j].
Note that

ϕ0
x′,n′/k

ϕn′/k
x′,n′/k

. . .
x′,n′/k

ϕn′

and therefore B(x′) = 1. The claim follows by noting that

ε · n′ ≤ ∆
(
x, x′

)
=
∑
i∈[k]

∆
(
x[Ji], x′[Ji]

)
=
∑
i∈[k]

∆
(
x[Ji], x(i)[Ji]

)
≤
∑
i∈[k]

∆
(
x, x(i)

)
=
∑
i∈[k]

εi · n′/k,

where the first inequality follows from the fact that x is in absolute distance ε · n′ from {z ∈
{0, 1}n : B(z) = 1} combined with the fact that B(x′) = 1, and the first and second equality
follow from the definition of x′ (the first equality also uses the fact that the Ji’s are disjoint). The
claim follows.

For every i ∈ [k], let Bi be the ROBP that has the same graph as B, but its source is ϕ(i−1)·n′/k,
and its unique accepting vertex is ϕi·n′/k. Let P ∗i be the residual r − 1 round strategy of P ∗ after
receiving the message i from V in the first round, and let Vi be the residual strategy of V after
fixing its first message to i. Note that Vi is exactly the strategy of the verifier in ROBP-IPPBin,n′,r−1.

Claim 3.1.2. For every i ∈ [k], it holds that

Pr[(Vxi , P ∗i)(n, n′′, Bi, r − 1) = 0] ≥ εi,

where n′′ = n′/k.

Proof. Let i ∈ [k]. Recall that x(i) was chosen as z ∈ {0, 1}n that minimizes the distance of x to
the set Si

def=
{
z ∈ {0, 1}n : Bi(z) = 1 using exactly n′/k steps

}
. Hence,

∆ (x, Si) = ∆
(
x, x(i)

)
= εi · n′/k.

17

Hence, (Vxi , P ∗i)(n, n′′, Bi, r − 1) corresponds to an invocation of the r − 1 round version of the
protocol on an input x that is in absolute distance εi · n′/k from Si. Therefore, by the inductive
hypothesis, the verifier Vi rejects with probability at least εi.

Using Claim 3.1.1 and Claim 3.1.2 we obtain that

Pr[(Vx, P ∗)(n, n′, B, r) = 0] = E
i∈[k]

[
Pr[(Vxi , P ∗i)(n, n′/k,Bi, r − 1) = 0]

]
≥ E

i∈[k]
[εi] ≥ ε, (3.2)

and the lemma follows.

This concludes the proof of Theorem 1.4.

Remark 3.2 (Computational Complexity). The running time of the IPP prover in Fig. 1 is
polynomial in its input (i.e., poly(|B|, n, k, r, 1/ε)). As for the IPP verifier, if the representation
of the ROBP B allows one to check if two vertices in the graph of B are connected in polylog(|B|)
time, then the verifier runs in time poly(logn, k, r, log(|B|), 1/ε). If such a representation is not
available, then it can be generated in a relatively expensive (i.e., poly(|B|) time) pre-processing step,
which does not depend on the input x and can be re-used for multiple inputs.

Alternatively, for some other natural representations, the verifier can employ the prover to
efficiently check if two vertices in B are connected. Consider for example a natural representation
in which there exists a polynomial (i.e., poly(log(|B|))) size circuit C that on input a vertex v (in
the graph of B) and a bit σ ∈ {0, 1} outputs the neighbor u of v that σ leads to (i.e., the edge (v, u)
is labeled by σ). Suppose further that C is O(log(|B|)-space uniform (i.e., can be generated by an
O(log(|B|))-space Turing machine). In such case we can use the prover to check connectivity, as
described next, and so we obtain sub-linear verification.

In order to verify connectivity efficiently, we first observe that there exists an (O(log(|B|))-
space uniform) circuit, of polylog(|B|)-depth and poly(|B|)-size, that on input two vertices v and
u outputs 1 if and only if they are connected (possibly via a long path).20 Now we can apply
the efficient interactive proof-system for low-depth computation21 of Goldwasser et al. [GKR08,
Theorem 1] to obtain an interactive proof-system that verifies that two given vertices are connected,
where the verifier runs in time polylog(|B|) and the prover runs in time poly(|B|).22 We note
that employing this proof-system inside our IPP increases the round complexity of the IPP by a
polylog(|B|) factor.

Remark 3.3 (IPPs for Ordered Binary Decision Diagrams). Recall that an ordered binary decision
diagram (OBDD) is an ROBP that is both layered and ordered (see Section 1.2.1). We observe that
the communication complexity in Theorem 1.4 can be slightly improved for OBDDs of width w and
size s = O(nw) from O

(
(pr log s) · ε−1) to O

(
(pr logw) · ε−1), by noting that the ith vertex specified

20The circuit first uses C to generate the entire adjacency matrix ofB and then checks whether v and u are connected
by repeated squaring of the adjacency matrix. Note that all actions can be implemented in polylog(|B|)-depth and
poly(|B|)-size.

21Goldwasser et al. show that any language that is accepted by a (O(log(S(n)))-space uniform) circuit of depth
D(n) and size S(n), has an interactive proof-system, where the verifier runs in time (n + D(n)) · polylog(S(n)) and
the prover runs in time poly(S(n)).

22We stress that the interactive proof-system for verifying connectivity is a standard interactive proof-system and
not a “proof of proximity” (i.e., not an IPP). Indeed, this is crucial for our application since we use the interactive
proof-system for connectivity as a subroutine within our IPP, and the IPP verifier should reject if at any point it
encounters a pair of vertices that are disconnected (even if the pair is “close” to being connected).

18

by the prover (say, in the first round) must be in layer i ·n/p and therefore it can be specified using
only log2w bits.

3.2 MAPs for ROBPs

We observe that Theorem 1.2 follows almost directly from the proof of Theorem 1.4, when restricted
to the case r = 1. Indeed, the only two gaps (which are easily resolved) are:

1. Interaction: Theorem 1.4 (restricted to r = 1) guarantees a 1-round IPP for languages
recoginzed by ROBPs. In general, a 1-round IPP is not necessarily an MAP, since it may
include a message sent from the verifier to the prover. Nevertheless, the order of the messages
in our protocol is such that first the prover sends a message to the verifier and then the verifier
responds. The last message can clearly be avoided and so we obtain an MAP.

2. Dependence on the Proximity Parameter in the Proof Length: Recall that there is a linear
dependence on 1/ε in the communication complexity in Theorem 1.4, due to the O(1/ε)
parallel repetitions that were used. However, forMAPs, parallel repetition can be performed
without increasing the proof length, since the proof is a deterministic function of the input.
Hence, we can save the additional O(1/ε) factor that is used for general IPPs.

3.3 MAPs and IPPs for Affine Spaces

In this section, as an example, we show how Theorems 1.2 and 1.4 can yieldMAPs and IPPs for
any affine space.

Before proceeding to the proof, we remark that Rothblum et al. [RVW13] identified a specific
affine space, called PVAL, as being “complete” for the construction of IPPs for the class NC.23

They constructed an IPP for PVAL and thereby obtain IPPs for all of NC. Interestingly, PVAL
is an affine space and so the results of this section yield an alternative IPP for it. Unfortunately
though, the parameters obtained by our IPP are inferior24 to those of [RVW13] and do not yield
an alternative IPP for NC.

Definition 3.4. Let F be a finite field, n ∈ N and t ∈ [n]. An affine subspace of the vector space
Fn, denoted AffineSpaceA,b, is parametrized by a matrix A ∈ Ft×n and a vector b ∈ Ft and consists
of all strings x ∈ Fn such that Ax = b.

Our construction of an IPP for every affine space follows directly from Theorem 1.4 by showing
that membership in an affine subspaces can be recognized by a small-width OBDD.

Proposition 3.5. Let F be a finite field, n ∈ N and t ∈ [n]. For every A ∈ Ft×n and b ∈ Ft, there
exists a width |F|O(t) OBDD that accepts AffineSpaceA,b.

23The language PVAL is parameterized by a sequence of points in a finite vector space and a sequence of values,
and consists of all strings x whose low degree extension LDE(x) is equal to the given sequence of values at the
corresponding sequence of points

24More specifically, for a PVAL instance parameterized by t points, the communication complexity in our protocol
is O(t · 1/ε · polylog(n)), whereas in [RVW13] it is O(t · (1/ε)o(1) · polylog(n)). Our result is insufficient since in the
context of the proof of IPPs for NC, t =

√
n and ε = 1/

√
n.

19

Proof. We describe a deterministic streaming algorithm for deciding membership in AffineSpaceA,b.
The algorithm gets access to a stream of n fields elements, reads the input element-by-element (in
order) and stores a total of t field elements at any given time. Transforming the latter into an
OBDD, as required, is straightforward.25

Denote the columns of A by a1, . . . , an ∈ Ft. The algorithm maintains a vector c ∈ Ft which
is initialized to 0. The streaming algorithm reads the input x ∈ Fn element-by-element and after
reading the ith element, the algorithm sets c← c+ xiai (where the addition is over F). In the end,
it holds that

c =
n∑
i=1

xiai = Ax

and therefore it suffices for the algorithm to accept if c = b and reject otherwise.

By applying Theorem 1.4, we obtain the following corollary.

Corollary 3.6. Let F be a finite field, n ∈ N and t ∈ [n]. For every A ∈ Ft×n, b ∈ Ft and for every
k = k(n) ≥ 2 and r = r(n) ≥ 1 such that kr ≤ n, there exists an r-round IPP for AffineSpaceA,b
with communication complexity O

(
(rk · t log |F|) · ε−1) and query complexity O

(
n
kr · ε

−1). Further-
more, the IPP is public-coin and has one-sided error.

4 MAPs and IPPs for Context-Free Languages

In this section we prove Theorem 1.3 by constructing an IPP for any context-free language. As
noted in the introduction, the proof of Theorem 1.1 will follow as a special case of this IPP.

The proof of Theorem 1.3 extensively uses the notions of a partial derivation and a partial
derivation language. Recall that a partial derivation of a grammar G is a derivation, according
to the production rules of G, in which not all variables are expanded. Our notion of a partial
derivation language is more complex. In particular, it does not refer to the language that consist
of all possible partial derivations of the grammar (i.e., {x ∈ (Σ ∪ V)∗ : Astart

∗⇒ x}). Rather,
we define a partial derivation language as a language that consists of the subsequence of terminal
symbols that correspond to partial derivations that start at some fixed variable. Furthermore, we
consider only partial derivations in which the subsequence of variables in the partial derivation
occur in specific locations. More concretely, a partial derivation language is parameterized by (1)
a start variable A0; (2) the number of terminals m; (3) a sequence of ` locations i1, . . . , i`; and (4)
a corresponding sequence of variables A1, . . . , A`. The language consists of strings z of length m
such that the string z′ = z[1, i1 − 1] ◦ A1 ◦ z[i1, i2 − 1] ◦ · · · ◦ A` ◦ z[i`,m] can be derived from A0.
More formally,

Definition 4.1 (Partial Derivation Language). A partial derivation language of the grammar G =
(V,Σ, R,Astart) is a language L ⊆ Σm, parameterized by indices 1 ≤ i1 ≤ . . . ≤ i` ≤ m and variables
A0, . . . , A` ∈ V such that

L def=
{
z ∈ Σm : A0

∗⇒ z[1, i1 − 1] ◦A1 ◦ z[i1, i2 − 1] ◦ · · · ◦A` ◦ z[i`,m]
}
.

25Loosely speaking, each layer of the OBDD will consist of the 2O(t log |F|) possible configurations of the streaming
algorithm (which include both its current state and possibly some of the bits of the element that is currently being
read).

20

The concise description of a partial derivation language L ⊆ Σm, parameterized by i = (i1, . . . , i`)
and A = (A0, . . . , A`), is denoted by 〈L〉 def=

(
m, i,A

)
.

We stress that z ∈ L, where L is a partial derivation language and 〈L〉 =
(
m, (i1, . . . , i`), (A0, . . . , A`)

)
,

means that z is a string of terminal symbols such that A0
∗⇒ z′, where z′ is an interleaving of z

and A1, . . . , A`, in which Aj appears in coordinate ij + j − 1. Indeed, there is a natural 1-1 cor-
respondence between the indices ij ∈ [m] that are the locations in z in which the variables should
be inserted, and the indices i′j ∈ [m+ `], where i′j

def= ij + j − 1, that are the locations in the string
z′ = z[1, i1 − 1] ◦A1 ◦ z[i1, i2 − 1] ◦ · · · ◦A` ◦ z[i`,m] in which the fixed variables appear.

Our construction of an IPP is recursive, and to facilitate the recursion, as discussed in Sec-
tion 1.2.2, it will be useful for us to construct an IPP for partial derivation languages rather than
just context-free languages. Additionally, as discussed in Section 1.2, the IPP will be proximity
oblivious26 (see Section 2.1.2). That is, we prove the following (more general) lemma:

Lemma 4.2. Let G be a context-free grammar, let L be a partial derivation language corresponding
to G, parameterized by 〈L〉 =

(
n, (i1, . . . , i`), (A0, . . . , A`)

)
. For every integers k ≥ 2 and r ≥ 1

such that kr ≤ n, there exists an r-round proximity oblivious IPP for L with detection probability
ρ(ε) = ε, communication complexity O(rk log(n+ `)) and query complexity O

(
n+`
kr
)
. Furthermore,

the proximity oblivious IPP is public-coin.

Theorem 1.3 follows directly from Lemma 4.2 by observing that (1) every context-free language is a
partial derivation language, without any fixed variables (i.e., ` = 0), and (2) we can transform any
proximity oblivious IPP into a standard IPP (by repeating the former O(1/ε) times in parallel).

Lemma 4.2 is proved in Sections 4.1 and 4.2. Specifically, in Section 4.1, which contains the
more involved (and interesting) part of the proof, we show a scheme for partitioning partial deriva-
tion languages into several smaller partial derivation languages. Then, in Section 4.2 we use this
partition to construct an IPP for partial derivation languages (which is a fairly straightforward
implementation of the outline presented in Sections 1.2.2 and 1.2.3), as well as describe the steps
required to derive anMAP (thereby proving Theorem 1.1). Finally, in Section 4.3 we show how to
improve the efficiency of the foregoingMAP for the Dyck languages (i.e., the languages of balanced
parentheses expressions).

4.1 Partitioning Partial Derivation Languages

Let L ⊆ Σn be a partial derivation language27 of a context-free grammar G = (V,Σ, R,Astart),
parameterized by 〈L〉 =

(
n, (i1, . . . , i`), (A0, . . . , A`)

)
, and let d = O(1) be the length of the longest

production rule in R (so that every x ∈ L has a derivation tree with arity at most d).
In this section we describe a technique for partitioning L into several partial derivation languages

L1, . . . ,Lk (of shorter strings), while preserving distances. That is, inputs x that belongs to L will
be partitioned into k parts such that for every j ∈ [k], the jth part of x belongs to Lj , whereas,
for inputs x that are far from L, the jth part of x will be far from Lj , for an average j. Later, in
Section 4.2, we use this partition to construct an IPP for L. (See Sections 1.2.2 and 1.2.3 for a
high-level overview.)

26In contrast to the case of ROBPS (see Section 3), here we can directly use Definition 2.2 without any modifications.
27We suggest to the reader to consider the case that L is a context-free language (i.e., no variables are fixed) at first

reading, since it is somewhat simpler. However, we stress that we have to handle general partial derivation languages
for the recursion to go through.

21

The partition, which will be constructed jointly by the IPP prover and verifier, has two different
representations. The first representation, which we call the interval representation, is a concise
representation that is generated by the prover and sent to the verifier. The advantage of this
representation is has a simple syntactic structure. The second representation, which is the actual
partition, will be derived by the verifier from the interval representation. The main advantage of
the latter representation is that it facilitates the verification of the semantic relation of the partition
to the main input x.

We begin by describing the procedure that is used to generate the interval representation of the
partition. The procedure, called Generate-Intervals(x, t), is given as input x ∈ L (recall that L
is parameterized by 〈L〉 =

(
n, (i1, . . . , i`), (A0, . . . , A`)

)
) and a parameter t ∈ [n′], where n′ def= n+ `

and t specifies the desired size of each part in the partition. We assume for simplicity that t ≥ 2d,
and the case that t < 2d = O(1) will be handled separately (and trivially) in Section 4.2. First,
the procedure constructs28 a derivation tree T corresponding to the derivation A0

∗⇒ x′, where
x′

def= x[1, i1 − 1] ◦ A1 ◦ x[i1, i2 − 1] ◦ · · · ◦ A` ◦ x[i`, n] (A0
∗⇒ x′ follows from the fact that x ∈ L).

Next, using Lemma 2.5, the procedure finds k = O(n′/t) rooted subtrees29 T1, . . . , Tk of T such
that (1) every vertex of T belongs to at least one of the subtrees, and (2) for each i < j either
Ti and Tj are disjoint or Ti is a subtree of Tj . The procedure outputs I = (I1, . . . , Ik) ∈ ([n′]2)k
and B = (B1, . . . , Bk) ∈ V k where Bj is the label of the root of Tj and Ij ⊆ [n′] is the minimal
interval that contains all the leaves of Tj , for every j ∈ [k]. Each pair of intervals is either disjoint
or contained in one other. The Generate-Intervals procedure is detailed in Fig. 2.

To see that Generate-Intervals halts with k ≤ n′

t/d−1 ≤ 2d · n′t intervals, observe that in each
iteration the number of leaves of the tree T ′ (defined in Step 3a) decreases additively by at least
t/d− 1 and that we assumed that t ≥ 2d.

As noted above, the output (I,B) of Generate-Intervals is in the first representation of the
partition, which we called the interval representation. Next, we show a transformation T (which
will be applied by the IPP verifier) that transforms the interval representation of the partition
into an actual partition of the main input x.

Actually, instead of partitioning the input x into parts S1, . . . , Sk ⊆ [n], it will be more con-
venient to view the partition as a partition of the terminal coordinates of x′ = x[1, i1 − 1] ◦ A1 ◦
x[i1, i2 − 1] ◦ · · · ◦ A` ◦ x[i`, n].30 That is, instead of a partition of [n], we will find a partition of
[n′]\{i′1, . . . , i′`}, where i′j

def= ij + j − 1, for every j ∈ [`] (indeed, the non-terminal coordinates of x′
are precisely {i′1, . . . , i′`}).

Our aim is to design a transformation T that maps (I,B) into a partition S1, . . . , Sk of
[n′]\{i′1, . . . , i′`}, where the parts have roughly the same length, together with (concise descriptions
of) partial derivation languages L1, . . . ,Lk that satisfy the following conditions:

• Completeness: If x ∈ L and (I,B) is the output of Generate-Intervals(x, t), then x′[Sj] ∈
Lj , for every j ∈ [k].

• Soundness: If x is ε-far from L, then for every (I,B) ∈ ([n′]2)k × V k it holds that x′[Sj] is
ε-far from Lj , for an average j ∈ [k] (where the average is weighted based on the lengths of

28Although our focus is not on computational complexity, we remark that such a derivation tree can be constructed
in time poly(n′), see [HMU06] for details.

29Recall that we define a subtree of a tree T as a tree consisting of a node in T together with all of its descendants,
see Section 2.3.

30Of course, the distinction disappears in the simpler case that L is a context-free language (i.e., ` = 0).

22

Generate-Intervals(x, t)

Input: x ∈ L (where L is a partial derivation language parameterized by
(
n, (i1, . . . , i`), (A0, . . . , A`)

)
)

and t ∈ [2d, n′], where n′ = n+ `.

1. Construct a derivation tree T of arity d, with n′ leaves, corresponding to the derivation A0
∗⇒

x[1, i1 − 1] ◦A1 ◦ x[i1, i2 − 1] ◦ · · · ◦A` ◦ x[i`, n] (according to the grammar G).

2. Set j = 1.

3. Repeat: (prior to the jth iteration, we have already constructed subtrees T1, . . . , Tj−1 of T).

(a) Construct a tree T ′ from T by removing all the vertices of Tj′ except for the root of Tj′ , for
every j′ ∈ [j − 1]. Note that there is a natural correspondence between the vertices of T ′ and
the vertices of T from which they were copied.

(b) If the number of leaves of T ′ is less than t, then exit the loop.
(c) Applying Lemma 2.5 to T ′, with size parameter t, find a subtree of T ′ with t′ leaves such that

t′ ∈ [t/d, t]. Denote the root of this subtree by v′. Let v be the vertex in T that corresponds
to v′, and define Ti as the subtree of T rooted at v.

(d) Increment j by 1.

4. Set k = j and Tk = T .

5. For every j ∈ [k], let Bj be the label of (i.e., the variable associated with) the root of Tj , and let
Ij ⊆ [n′] be the minimal interval that contains all the leaves of Tj in T .

6. Output (I,B), where I = (I1, . . . , Ik) and B = (B1, . . . , Bk).

Figure 2: The Generate-Intervals Procedure for the Partial Derivation Language L.

23

the parts).

We begin with a high-level overview of the transformation T in the special and slightly simpler
case that L is a context-free language (i.e., ` = 0). In this case, given input (I,B), where I =
(I1, . . . , Ik) and B = (B1, . . . , Bk), the transformation first constructs a partition of [n] into k
parts S1, . . . , Sk by setting Sj = Ij\(I1 ∪ · · · ∪ Ij−1), for every j ∈ [k]. The transformation outputs
S1, . . . , Sk as well as (concise) descriptions of k partial derivation languages L1, . . . ,Lk such that for
every j ∈ [k], the language Lj is a partial derivation language corresponding to a partial derivation
starting from Bj into strings that have variables Bji at fixed coordinates corresponding to the
relative position of all subintervals Iji of Ij . The transformation also checks that the languages
L1, . . . ,Lk are non-empty so that the distance of x′[Sj] from the corresponding language Lj is well
defined (this check is indeed necessary — see discussion in Section 1.2).

The case that L is a partial derivation language (rather than a context-free language) is quite
similar, where a fairly minor complication that arises is that we need to remove the non-terminal
coordinates from the partition, and so we set Sj = Ij\(I1 ∪ · · · ∪ Ij−1 ∪ {i′1, . . . , i′`}). For technical
reasons, it is more convenient for us to view each one of the non-terminal coordinates i′1, . . . , i′`
as an additional artificial singleton interval. The transformation T is detailed in Fig. 3, and the
completeness and soundness requirements (which were stated loosely above) are stated formally in
the following two lemmas (Lemmas 4.3 and 4.4).

Lemma 4.3 (Completeness of T). For every x ∈ L (where L is a partial derivation language
parameterized by

(
n, (i1, . . . , i`), (A0, . . . , A`)

)
) and parameter t ∈ [2d, n′], if (I,B) ∈ ([n′]2)k × V k

is the output of Generate-Intervals(x, t), then the transformation T (I,B) does not reject, but
rather outputs

(
(S1, 〈L1〉) . . . , (Sk, 〈Lk〉)

)
such that for every j ∈ [k]:

1. Lj ⊆ Σ|Sj | is a partial derivation language on strings of length nj = |Sj | with `j fixed variables
such that nj + `j ≤ t; and,

2. x′[Sj] ∈ Lj, where x′ = x[1, i1 − 1] ◦A1 ◦ x[i1, i2 − 1] ◦ · · · ◦A` ◦ x[i`, n].

Proof. Let x ∈ L and let (I,B) be the output of Generate-Intervals(x, t), where I = (I1, . . . , Ik)
and B = (B1, . . . , Bk). Since Ik = [n′] and Bk = A0, the transformation T (I,B) does not reject,
but rather outputs

(
(S1, 〈L1〉), . . . , (Sk, 〈Lk〉)

)
. Let I ′1, . . . , I ′`+k be as defined in T (see Fig. 3).

The fact that, for every j ∈ [k], it holds that Lj ⊆ Σ|Sj | is a partial derivation language on
strings of length nj with `j fixed variables such that nj + `j ≤ t follows from the fact that the
quantity nj + `j corresponds to the number of leaves of the subtree that was constructed in Item 3c
in the Generate-Intervals procedure (recall that this subtree had at most t leaves).

To complete the proof of Lemma 4.3, we need to show that x′[Sj] ∈ Lj , where x′ def= x[1, i1−1]◦
A1◦x[i1, i2−1]◦· · ·◦A`◦x[i`, n], for every j ∈ [k]. Let j ∈ [k], and let `j , i′j,1, . . . , i′j,`j , B

′
j,1, . . . , B

′
j,`j

be as in Fig. 3. Let w = x′[Sj], and observe that by construction,

Bj
∗⇒ w[1, i′j,1 − 1] ◦B′j,1 ◦ w[i′j,1, i′j,2 − 1] ◦ · · · ◦B′j,`j ◦ w[i′j,`j , |Si|].

Hence, w ∈ Lj and completeness follows.

Lemma 4.4 (Soundness of T). For every ε ∈ [0, 1], every x ∈ Σn that is ε-far from L (parameter-
ized by 〈L〉 =

(
n, (i1, . . . , i`), (A0, . . . , A`)

)
) and every (I,B) ∈ ([n′]2)k × V k, it holds that T (I,B)

either rejects or outputs a sequence
(
(S1, 〈L1〉), . . . , (Sk, 〈Lk〉)

)
such that:

24

The Transformation T
(
I,B

)
Input: I = (I1, . . . , Ik) ∈ ([n′]2)k and B = (B1, . . . , Bk) ∈ V k (recall that n′ = n + ` and that 〈L〉 =(
n, (i1, . . . , i`), (A0, . . . , A`)

)
).

1. Check that (I,B) is well formed: for every j < i either Ij (Ii or Ij ∩ Ii = ∅, and Ik = [n′] and
Bk = A0 (recall that A0 ∈ V is a variable such that all partial derivations in L start from A0). If
any test fails, then rejecta and halt.

2. For j ∈ [`], let I ′j = {ij}.

3. For j ∈ [k], let I ′`+j = Ij .

4. For every j ∈ [k]:

(a) Let I ′j,1, . . . , I
′
j,`j

be the ordered sequence (from left to right) of all maximal (strict) sub-intervals
of Ij = I ′`+j from the set of intervals {I ′1, . . . , I ′`+k}. That is, all intervals (in order) from the set
of intervals {I ′1, . . . , I ′`+k} that are strictly contained in Ij but are not contained in any other
interval that is strictly contained in I ′j .b

(b) Let Sj = Ij\(I ′j,1 ∪ · · · ∪ I ′j,`j
).c

(c) For every s ∈ [`j], let ij,s ∈ [|Ij |] be the relative starting position of the sub-interval I ′j,s

inside Ij , let i′j,s = ij,s −
∑

s′<s |I ′j,s′ |, and let B′j,s be the label of the root of the subtree that
corresponds to the interval I ′j,s. Define the following partial derivation language of G:

Lj
def=
{
w ∈ Σ|Sj | : Bj

∗⇒ w[1, i′j,1 − 1] ◦B′j,1 ◦ w[i′j,1, i
′
j,2 − 1] ◦ · · · ◦B′j,`j

◦ w[i′j,`j
, |S′j |]

}
(see also Fig. 6). That is, 〈Lj〉 =

(
|Sj |, (i′j,1, . . . , i

′
j,`j

), (B′j,1, . . . , B
′
j,`j

)
)
.

(d) If Lj = ∅, then reject and halt.d

5. Output
(
(S1, 〈L1〉), . . . , (Sk, 〈Lk〉)

)
.

aIn case the reader is bothered by the fact that the transformation may “reject”, we can easily avoid rejecting by
outputting instead some canonical representation of a “partition” that will always be rejected by the IPP verifier.

bIn other words, an interval I ′ ∈ {I ′1, . . . , I ′`+k} is contained in the sequence if and only if I ′ (Ij and I ′∩I ′′ 6= I ′,
for every I ′′ ∈ {I ′1, . . . , I ′`+k}\{I ′} such that I ′′ (Ij .

cEquivalently, Sj = Ij \ (I ′1 ∪ · · · ∪ I ′`+j−1). We use the slightly more complicated definition to facilitate the
proof.

dThis check, which only requires access to 〈Lj〉 and the grammar G, can be done in poly(n′) time.

Figure 3: The Transformation T .

25

Figure 4: The partial derivation tree that describes the partial derivation Bj
∗⇒ w[1, i′j,1−1]◦B′j,1 ◦

w[i′j,1, i′j,2 − 1] ◦ · · · ◦B′j,`j ◦ w[i′j,`j , |S
′
j |].

1. The sets S1, . . . , Sk ⊆ [n′]\{i′1, . . . , i′`} form a partition of [n′]\{i′1, . . . , i′`}.

2. It holds that
E
j∼D

[
∆
(
x′[Sj],Lj

)]
≥ ε,

where x′ = x[1, i1 − 1] ◦ A1 ◦ x[i1, i2 − 1] ◦ · · · ◦ A` ◦ x[i`, n] and D is a distribution over [k]
such that Prj∼D[j = j′] = |Sj′ |/n for every j′ ∈ [k].

Proof. Let x ∈ Σn and let I = (I1, . . . , Ik) ∈ ([n′]2)k be a sequence of intervals and B =
(B1, . . . , Bk) ∈ V k a sequence of variables such that the transformation T

(
I,B

)
does not reject

and outputs
(
(S1, 〈L1〉), . . . , (Sk, 〈Lk〉)

)
. Let I ′1, . . . , I ′`+kbe as defined in T (see Fig. 3).

To see that S1, . . . , Sk form a partition of [n′]\{i′1, . . . , i′`}, observe that for each j ∈ [k], it holds
that Sj = Ij\(I ′j,1 ∪ · · · ∪ I ′j,`j), where I ′j,1, . . . , I ′j,`j are the ordered sequence (from left to right) of
all maximal sub-intervals of I ′j out of I ′1, . . . , I ′`+k (i.e., all intervals that are contained in Ij but are
not contained in any other interval that is strictly contained in Ij). Thus, the Sj ’s are disjoint.
Furthermore, since I ′`+k = [n′], for every index i ∈ [n′] there exists j ∈ [` + k] such that i ∈ I ′j .
Hence, either i ∈ {i′1, . . . , i′`} (in case j ∈ [`]) or i ∈ Sj′ for some j′ ∈ [k], and so S1, . . . , Sk form a
partition of [n′]\{i′1, . . . , i′`}.

For every j ∈ [k], let εj = ∆ (x′[Sj],Lj). Let D be the distribution as in the lemma’s statement
(i.e., Prj∼D[j = j′] = |Sj′ |/n, for every j′ ∈ [k]). Suppose that Ej∼D[εj] < ε, for some ε ∈ [0, 1],
where x′ = x[1, i1 − 1] ◦A1 ◦ x[i1, i2 − 1] ◦ · · · ◦A` ◦ x[i`, n]. We will show that x is ε-close to L.

For every j ∈ [k], since the transformation explicitly checks31 (in Step 4d) that Lj 6= ∅, there
31Indeed, this was the reason that we added this additional check, and without it soundness would not hold. See

further discussion in Section 1.2.

26

exists a string zj ∈ Σ|Sj | such that zj ∈ Lj and ∆ (x′[Sj], zj) = εj (i.e., zj ∈ Lj minimizes the
distance of x′[Sj] to Lj).

Using z1, . . . , zk, we construct a string z ∈ L that is ε-close to x as follows. Let z ∈ Σn such
that the string z′ = z[1, i1 − 1] ◦ A1 ◦ z[i1, i2 − 1] ◦ · · · ◦ A` ◦ z[i`, n] satisfies z′[Sj] = zj , for every
j ∈ [k]. (The fact that such a string z exists follows from the fact that S1, . . . , Sk are a partition of
n′\{i′1, . . . , i′`}.)

Observe that ∆ (x, z) = ∆ (x′, z′) ≤ Ej∼D
[
∆ (x′[Sj], z′[Sj])

]
= Ej∼D[εj] < ε and so x is ε-

close to z. By applying the following claim, with respect to j = k, and using the fact that the
transformation explicitly checks that Ik = [n′] and Bk = A0, we obtain that A0

∗⇒ z′, and therefore
z ∈ L. Hence x is ε-close to a string z ∈ L, and soundness follows.

Claim 4.4.1. For every j ∈ [k], it holds that Bj
∗⇒ z′[Ij].

Proof. We prove the claim by induction on j. Let j ∈ [k], and suppose that the claim holds for
every j′ < j. Let y = z′[Sj]. Note that y ∈ Lj . We show that Bj

∗⇒ z′[Ij].
Recall that I ′1, . . . , I ′`+k were fixed above as in Fig. 3. That is, for j ∈ [`], it holds that I ′j = {ij},

and for j ∈ [`+ 1, `+ k] it holds that I ′j = Ij−`.
Let I ′j,1, . . . , I ′j,`j be the ordered maximal sub-intervals (in the set {I ′1, . . . , I ′`+k}) of Ij . By the

construction of T it holds that

Lj =
{
w ∈ Σ|Sj | : Bj

∗⇒ w[1, i′j,1 − 1] ◦B′j,1 ◦ w[i′j,1, i′j,2 − 1] ◦ · · · ◦B′j,`j ◦ w[i′j,`j , |Sj |]
}
,

where ij,s is the relative starting position of the interval I ′j,1 inside Ij , i′j,s
def= ij,s −

∑
s′<s |I ′j,s′ | and

B′j,s is the label of the subtree that corresponds to the interval I ′j,s, for every s ∈ [`j]. Therefore,
since y ∈ Lj , it holds that

Bj
∗⇒ y[1, i′j,1 − 1] ◦B′j,1 ◦ y[i′j,1, i′j,2 − 1] ◦ · · · ◦B′j,`j ◦ y[i′j,`j , |Si|]. (4.1)

On the other hand, for every i ∈ [`j], it holds that

B′j,s
∗⇒ z′[I ′j,s], (4.2)

where Eq. (4.2) follows from the inductive hypothesis and from the fact that B′j,s = Aj,s and
z′[I ′j,s] = z′j,s = Aj,s. for s ∈ [`j].

By combining Eq. (4.1), Eq. (4.2), and the definition of i′j,s we obtain that

Bj
∗⇒ y[1, i′j,1] ◦ z′[I ′j,1] ◦ y[i′j,1, i′j,2 − 1] ◦ . . . z′[I ′j,`j] ◦ y[i′j,`j , |Si|].

The claim follows by observing that

z′[Ij] = y[1, i′j,1] ◦ z′[I ′j,1] ◦ y[i′j,1, i′j,2 − 1] ◦ . . . z′[I ′j,`j] ◦ y[i′j,`j , |Si|],

and therefore Bj
∗⇒ z′[Ij].

This completes the proof of Lemma 4.4

27

4.2 IPP for Partial Derivation Languages

Using Lemmas 4.3 and 4.4, we complete the proof of Lemma 4.2 (which is a relatively straightfor-
ward implementation of the ideas outlined in Section 1.2).

Proof of Lemma 4.2. Let G = (V,Σ, R,Astart) be a context-free grammar. We construct a prox-
imity oblivious IPP for every partial derivation language L ⊆ Σn of the grammar G.

The proximity oblivious IPP has two parameters: r which is the round complexity, and k
which roughly corresponds to the amount of communication in each round. The IPP runs re-
cursively, where each round of communication proceeds as follows. The (honest) prover uses the
Generate-Intervals procedure on its input x and parameter t = n′/k (where n′ = n+`), to obtain(
I,B) and sends

(
I,B) to the verifier. The verifier applies the transformation T (I,B) to derive

the partition S1, . . . , Sk and the corresponding partial derivation languages L1, . . . ,Lk. Then, the
verifier selects at random j ∈ [k] and sends j to the prover (where j is distributed according to D
as above). The two parties then recurse on input x′[Sj], where x′ def= x[1, i1 − 1] ◦ A1 ◦ x[i1, i2 −
1] ◦ · · · ◦ A` ◦ x[i`, n], with respect to the partial derivation language Lj . The recursion stops once
either:

1. n′ ≤ O(k) (i.e., the input is very short), in which case the prover can send x∗ = x to the
verifier.32 Then, the verifier checks that x∗ ∈ L and that x∗ is consistent with x at a randomly
selected coordinate; or,

2. r rounds have passed, in which case the verifier reads its entire input x (which has shortened
by a multiplicative factor of roughly k in each step of the recursion) and verifies that x ∈ L.

The IPP for L, denoted CFL-IPP, is detailed in Fig. 5.
Without loss of generality, we can measure the complexity of the protocol only when the verifier

interacts with the honest prover (see discussion in Section 2.1). It can be easily verified that the
round complexity is at most r rounds. By Lemma 4.3, the protocol recurses on a partial derivation
language Lj on strings of length nj with `j fixed variables such that nj + `j ≤ n′/k. Hence, after
at most r rounds, the current input length has length at most n′/kr, where n′ = n + `, and so
the query complexity of the IPP is O(n′/kr). Since in each round the communication is at most
O(k logn′), the communication complexity of the IPP is O(rk logn′).

Completeness. Let L be a partial derivation language, with 〈L〉 def=
(
n, i, A

)
, and let x ∈ L. We

show that perfect completeness hold by induction on r. For r = 0 or n′ = O(p), perfect completeness
follows from the fact that V just checks that x ∈ L. For r > 1 (with n′/k ≥ 2d), by Lemma 4.3,
the verifier produces

(
(S1, 〈L1〉), . . . , (Sk, 〈Lk〉)

)
such that Lj is a partial derivation language and

x′[Sj] ∈ Lj , for every j ∈ [k] (in particular, Lj 6= ∅). Hence, by the inductive hypothesis, the
verifier in the r − 1 round protocol for Lj will accept on input x′[Sj] with probability 1.

Soundness. Soundness follows from the following lemma, which is proved by induction on the
number of rounds r.

32This check is to ensure that the parameter t = n′/k is larger than 2d.

28

The Protocol CFL-IPPLk,r

Parameters: L ⊆ Σn is a partial derivation language, with 〈L〉 =
(
n, (i1, . . . , i`), (A0, . . . , A`)

)
, the

parameters k, r ∈ N correspond (roughly) to the amount of communication in each round and to the
number of rounds, respectively. Let n′ = n+ `.

Prover’s Input: Direct access to x ∈ L, with n
def= |x|.

Verifier’s Input: Oracle access to x, and direct access to 〈L〉.

1. If r = 0, then the verifier V checks whether x ∈ L by explicitly reading all of x. If x ∈ L, then V
accepts, otherwise it rejects, and in either case both parties terminate the protocol.

2. If n′ = O(k), the prover sends x∗ = x to V. The verifier V accepts if x∗ ∈ L and x∗ agrees with x
at a randomly chosen coordinate. Otherwise V rejects, and in either case both parties terminate the
protocol.

3. The Prover P:

(a) Invoke Generate-Intervals(x, n′/k) to obtain
(
I,B

)
.

(b) Send
(
I,B

)
to V.

4. The Verifier V:

(a) Invoke T
(
I,B

)
. If the transformation rejects, then immediately reject and halt. Otherwise,

denote the output of the transformation by
(
(S1, 〈L1〉), . . . , (Sk, 〈Lk〉)

)
.a

(b) Select j ∼ D, where D is the distribution in the statement of Lemma 4.4 (i.e., Prj∼D[j = j′] =
|Sj′ |/n, for every j′ ∈ [k]).

(c) Send j to P.

5. Both parties (recursively) invoke CFL-IPPLj

r−1,k on input x′[Sj].

aThe reader may note that, in contrast to Fig. 1, the verifier does not check that Lj 6= ∅, for every j ∈ [k]. This
check is actually performed within the transformation T (see Step 4d in Fig. 3).

Figure 5: IPP for Context-Free Languages

29

Lemma 4.5. Let L be a partial derivation language, and let k ≥ 1 and r ≥ 0. For every ε ∈ [0, 1]
and every x that is ε-far from L, and for every cheating prover strategy P ∗ it holds that:

Pr
[(
V, P ∗

)
(x) = 0

]
≥ ε,

where V is the verifier in CFL-IPPLr,p (see Fig. 5).

Proof. We first consider the trivial case that n′ = O(k). In this case, if x∗ is ε-close to x, then
x∗ 6∈ L (since x is ε-far from L) and the verifier rejects with probability 1 ≥ ε. Otherwise, x∗ is
ε-far from L and the verifier rejects with probability at least ε when checking the consistency of x∗
and x.

We proceed to the more interesting case, in which n′/k > 2d, and prove by induction on r. For
r = 0, the verifier ignores the prover and reads all of x. Hence, if B(x) 6= 1, then the verifier rejects
with probability 1.33

For r ≥ 1, let ε ∈ [0, 1], let x ∈ Σn be ε-far from L, and let P ∗ be a deterministic cheating
prover strategy for the protocol CFL-IPPLr,k of Fig. 5 (with r rounds). Let (I,B) be the first
message sent by P ∗ to V. Assume that the invocation of the transformation T

(
I,B

)
does not

reject (otherwise the verifier rejects with probability 1, and we are done), and denote its output by(
(S1, 〈L1〉), . . . , (Sk, 〈Lk〉)

)
.

For every j ∈ [k], let εj = ∆ (x′[Sj],Lj) denote the relative distance of x′[Sj] from Lj , and let
D be the distribution as in CFL-IPPLr,k. By Lemma 4.4, it holds that

E
j∼D

[εj] ≥ ε. (4.3)

For every j ∈ [k], let P ∗j be the residual r−1 round strategy of P ∗ after receiving the message j
from V in the first round, and let Vj be the residual strategy of V after fixing its first message to j.
Observe that, by construction, Vj is simply the strategy of the verifier in the protocol CFL-IPPLjk,r−1.
Hence, by the inductive hypothesis, for every j ∈ [k] it holds that

Pr
[(
Vj ,P∗j

)
(x′[Sj]) = 0

]
≥ εj . (4.4)

Using Eqs. (4.3) and (4.4) we obtain that:

Pr[
(
V, P ∗

)
(x) = 0] = E

j∼D

[
Pr[
(
Vj ,P∗j

)
(x′[Sj]) = 0]

]
≥ E

j∼D
[εj] ≥ ε, (4.5)

and the lemma follows.

This concludes the proof of Lemma 4.2 and Theorem 1.3.

Remark 4.6 (Computational Complexity). The IPP prover in Fig. 5 can be implemented in
time poly(n, k, r). As for the IPP verifier, Step 4d in Fig. 3 can be implemented in time poly(n),
and so we obtain a total running-time of poly(n, k, r), which is super-linear. We remark that for
context-free languages whose partial derivation languages are themselves context-free languages, we
can actually do better and obtain running time poly(logn, k, r) (an example for such a context-free

33In the trivial case that ε = 0 (i.e., B(x) = 1), the verifier also satisfies the requirement, since it rejects with
probability at least 0 = ε.

30

language is the language of balanced parentheses expressions, see Section 4.3). See Appendix D for
details.

Alternatively, by increasing the round complexity of our IPP, we can also obtain sub-linear time
verification. The technique is similar to that described in Remark 3.2. More specifically, we can
implement Step 4d in Fig. 3 (i.e., checking that a given partial derivation language is non-empty
(which is the main bottleneck in our IPP)) via an interactive proof-system. To do so, we first
construct a (logspace) uniform low-depth circuit that, given the description of a partial derivation
language, outputs 1 if and only if the language is non-empty. An efficient interactive proof-system
follows from the efficient interactive proof-system for low-depth computation of Goldwasser et al.
[GKR08, Theorem 1]. Details follow.

Fix the grammar G = (V,Σ, R,Astart) and consider a description (m, i,A) of a partial derivation
language, where i = (i1, . . . , i`) and A = (A0, . . . , A`). Given (m, i,A), the circuit first constructs
a string z ∈ (V ∪ {∗})m+`, where ′∗′ is some character that does not belong to V ∪ Σ and z

def=
∗i1−1 ◦ A1 ◦ ∗i2−i1 ◦ · · · ◦ A` ◦ ∗m−i`+1. The circuit then checks whether z can be derived from
A0, according to an auxiliary (unary) grammar G′, which is identical to G except that all the
terminals are replaced by the unique terminal ′∗′. By a result of Ruzzo [Ruz81], membership in
context-free languages can be computed by a (logspace uniform) NC2 circuit, and so we obtain a
(O(log(m) + log(|`|))-space uniform) circuit that checks if the partial derivation language is non-
empty, in depth polylog(m+ `) and size poly(m, `).

Given the above circuit, we can use [GKR08, Theorem 1] to obtain an interactive proof-system
in which the verifier runs in ` · poly(log(`), log(m)) time and the prover runs in time poly(m, `).
We note that using this proof-system inside our IPP increases the round complexity of our IPP
by a poly-logarithmic factor.

Remark 4.7 (MAPs for Context-Free Languages). Theorem 1.2 follows directly from the proof
of Lemma 4.2, while noting that the two issues the arise in the case of MAPs for ROBPs (see
Section 3.2) apply also here and can be resolved similarly.

4.3 Improved MAPs for Specific Context-Free Languages

In this section we show that the efficiency of the MAPs for general context-free languages (i.e.,
Theorem 1.1) can be improved for context-free languages whose corresponding partial derivation
languages have efficient testers (which do not use a proof). Most notably, we obtain such an
improvement for the Dyck languages (i.e., languages of balanced parentheses expressions).

Recall that in the proof of Theorem 1.1, given the MAP proof, the MAP verifier (implicitly)
constructs a partition S1, . . . , Sk of [n] and partial derivation languages L1, . . . ,Lk. Then, the
verifier chooses an index j ∈ [k] at random and checks whether x[Sj] ∈ Lj by explicitly reading all
of x[Sj]. However, by Lemma 4.4, the MAP verifier does not really have to check that x[Sj] ∈ Lj
exactly, but rather it suffices to check that x[Sj] is close to Lj . Since no non-trivial tester is known
for general context-free languages (let alone for their corresponding partial derivation languages),
we could not use this fact to our advantage in the general case. However, for some specific languages,
such as the Dyck languages, more efficient testers are known and we can utilize them to improve
the efficiency of our MAPs.

A technical difficulty that we encounter when taking this approach is that when testing whether
x[Sj] is close to Lj it is not a priori clear which value of the proximity parameter the verifier should
use (recall that Lemma 4.4 only guarantees that x[Sj] is ε-far for an average j ∈ [k] but not

31

necessarily for every j ∈ [k]). Of course, if Lj has a proximity-oblivious tester, then the issue is
mute and we can just run the tester directly. In the more general case, we can simply apply an
averaging argument. The naive averaging argument shows that for an ε/2 fraction of j ∈ [k], it
holds that x[Sj] is ε/2 far from Lj . However, by applying a more refined averaging argument, due
to Levin [Lev85] (see [Gol13, Appendix A.2]), we obtain an additional improvement.

Lemma 4.8. Let G be a context-free grammar and α ≥ 0 and β ≥ 1 be constants. Suppose
that every partial derivation language of G (as in Definition 4.1) has a property tester with query
complexity O

(
mα · δ−β

)
for inputs of length m and proximity parameter δ > 0. Then, for every

k ≥ 1 the language L has anMAP with proof complexity O(k logn) and query complexity O
(
(n/k)α·

ε−β · log2(1/ε)
)
. Furthermore, if α = 0, then the query complexity is at most O

(
(n/k)1−1/β · ε−1 ·

log3(1/ε)
)
.

The MAP in Lemma 4.8 has one-sided error if and only if the testers for the partial derivation
languages have one-sided errors. However, even if the resulting MAP has two-sided error, a one-
sided error MAP (with only a poly-logarithmic overhead) can be obtained by applying a generic
transformation from two-sided error MAPs into one-sided error MAPs (see of [GR15, Theorem
4.3]).

Note that the alternative bound for α = 0 improves over the general case only for sub-constant
values of the proximity parameter (i.e., ε < (n/k)−1/β · polylog(n)). The bound is obtained by
observing that, for very small values of the proximity parameter, it is advantageous to read the
entire input rather than apply the tester. We defer the proof of Lemma 4.8, which is relatively
straightforward, to Appendix C.

Using Lemma 4.8 we now show how to construct an improved MAP for the Dyck languages.
Loosely speaking, the κth-order Dyck language consists of all of strings that form a balanced paren-
thesis expression with κ distinct types of parentheses. The Dyck languages can be defined via a
context-free grammar as follows.

Definition 4.9. Let κ ∈ N be a constant. The κth-order Dyck language, denoted Dyckκ, is the
language generated by the context-free grammar GDyckκ = (V,Σκ, R,Astart), where V = {A}, Astart =
A, Σκ = {‘[1’, ‘]1’, ‘[2’, ‘]2’, . . . , ‘[κ’, ‘]κ’}, and the production rules R consist of: (1) A ⇒ [iA]i for
every i ∈ [κ], (2) A⇒ AA, (3) A⇒ λ, where λ denotes the empty string.

Alon et al. [AKNS00] showed a tester (with two-sided error) for the first order Dyck lan-
guage (i.e., Dyck1) with query complexity Õ(1/ε2). As for higher order Dyck languages, Par-
nas et al. [PRR01] showed that any Dyck language (of any fixed order) can be tested (with two-sided
error) by making O(n2/3 · ε−3) queries.34 Furthermore, by the following proposition, the foregoing
results can be extended to the case of partial derivation languages of the Dyck languages (with
respect to the foregoing grammars).

Proposition 4.10. Let m,κ ∈ N. If L ⊆ (Σκ)m is a partial derivation language of the grammar
GDyckκ, then L is equal to Dyckκ ∩ (Σκ)m.

Proof. Let L ⊆ (Σκ)m be a partial derivation language ofGDyckκ such that 〈L〉 =
(
m, (i1, . . . , iκ), (A, . . . , A)

)
(here we used the fact that the grammar GDyckκ uses only a single variable – A).

34For perspective, recall that Parnas et al. [PRR01] also showed that, for κ ≥ 2, any tester (which does not use a
proof) for Dyckκ must make at least Ω̃(n1/11) queries.

32

On one hand, if x ∈ L, then A
∗⇒ x[1, i1 − 1] ◦ A ◦ x[i1, i2 − 1] ◦ · · · ◦ A ◦ x[i`,m]. Using the

production rule A⇒ λ we have that A ∗⇒ x[1, i1 − 1] ◦ x[i1, i2 − 1] ◦ · · · ◦ x[i`,m] = x and therefore
x ∈ Dyckκ ∩ (Σκ)m.

On the other hand, if x ∈ Dyckκ ∩ (Σκ)m, then A ∗⇒ x. The following claim shows that, for the
Dyck grammars, we can generate a partial derivation in which A is inserted in any desired sequence
of positions. Therefore, A ∗⇒ x[1, i1 − 1] ◦ A ◦ x[i1, i2 − 1] ◦ · · · ◦ A ◦ x[i`,m], which implies that
x ∈ L.

Claim 4.10.1. Let α ∈ (Σκ ∪ {A})m
′, for some m′ ∈ N, and let i ∈ [m′]. If A ∗⇒ α, then

A
∗⇒ α[1, i− 1] ◦A ◦ α[i,m′].

Proof. Since A
∗⇒ α (according to the grammar GDyckκ), there exists a corresponding partial

derivation tree T , in which all internal vertices are labeled by the variable A and each leaf is
labeled by either ’A’, ’[j ’, ’]j ’, for some j ∈ [κ]. We prove the claim by extending T into a partial
derivation tree T ′ that corresponds to the partial derivation A

∗⇒ α[1, i− 1] ◦A ◦ α[i,m′].
Denote the ith leaf of T by v and denote v’s parent by u. The specific way in which T ′ is

constructed from T depends on whether the label of v is ’A’, ’[j ’ or ’]j ’ (for some j ∈ [κ]), and is
detailed in Fig. 6.

This concludes the proof of Proposition 4.10.

Thus, the property testers of [PRR01] for the Dyck languages are also testers for the partial
derivation languages (of the Dyck languages), and we obtain the following result.

Theorem 4.11. Let κ ≥ 2. For every p such that 2 ≤ p ≤ n, there exists an MAP for
Dyckκ that uses a proof of length O(p logn) and has query complexity O

(
(n/p)2/3 · ε−3 · log2(1/ε)

)
.

Furthermore, there exists an MAP with one-sided error for Dyckκ that uses a proof of length
O(p logn+ polylog(n)) and has query complexity (n/p)2/3 · ε−3 · polylog(n).

The furthermore clause is obtained by applying the generic transformation from one-sided error
MAP into two-sided errorMAP (see [GR15, Theorem 4.3]) and using the fact that without loss of
generality we may assume that ε ≥ 1/n (and so log2(1/ε) ≤ polylog(n)). We conclude this section
with some second order remarks.

Improvement for Dyck1 and ε � 1/
√
n. For Dyck1 (i.e., κ = 1), and for small values of the

proximity parameter (i.e., ε < 1√
n·polylog(n)) we can improve Theorem 4.11, by using the tester of

Alon et al. [AKNS00] (which has query complexity Õ(1/ε2)). Using the special case of Lemma 4.8,
we obtain query complexity O

(√
n/p · ε−1 · log3(1/ε)

)
with a proof of length O(p logn).

Extension to IPPs. The idea of applying non-trivial testers can also be used to obtain improved
IPPs, by applying the tester after the last round of interaction (instead of running the trivial tester
that reads the entire (current) input). The savings in this case are less significant since the query
and communication complexities of our IPPs are already fairly small. Hence, we only elaborate
briefly on these IPPs below.

If the partial derivation languages of the grammar have proximity-oblivious testers, then the
latter can simply be employed in the last step of the recursion in Fig. 5. However, if only standard

33

Figure 6: Construction of T ′ from T . The original tree T is on the left, and the new tree T ′ is
on the right. In each case the ith leaf of the tree has a shaded background, both in T and in T ′

(note that in all cases the ith leaf of T is v and the ith leaf of T ′ is labeled by A, the newly inserted
symbol).

testers (which are not proximity oblivious) are available, then we can generalize the strategy in the
proof of Lemma 4.8 by applying an averaging argument in each step of the recursion, while incurring
an Õ(1/ε) multiplicative overhead in each round. Unfortunately, the latter strategy results in an
exponential dependence on the round complexity of the protocol.

Computational Complexity for Dyck Languages. In general, as noted in Remark 4.6, the
running time of the verifier in Fig. 5 is poly(n) (because it verifies that each of the languages
L1, . . . ,Lk is non-empty). However, as shown in Proposition 4.10, for the Dyck languages, the
partial derivation languages L1, . . . ,Lk are themselves Dyck languages. Since the Dyck language
on m-bit strings is non-empty if and only if m is even, the running time of the verifier can be
reduced to poly(logn, k, r) (see also Appendix D).

TheMAP proof in Theorem 4.11 is generated efficiently (i.e., in time poly(n)) for every context-
free language, and in particular for the Dyck language. However, for the furthermore clause of
Theorem 4.11, we apply the transformation of [GR15, Theorem 4.3], which in general does not
preserve computational efficiency of the proof generating procedure. Hence, we do not obtain

34

an MAP for the Dyck languages that simultaneously has both one-sided error and an efficient
procedure of generating the MAP proof.

References

[AKNS00] Noga Alon, Michael Krivelevich, Ilan Newman, and Mario Szegedy. Regular languages
are testable with a constant number of queries. SIAM J. Comput., 30(6):1842–1862,
2000.

[Bol05] Beate Bollig. Property testing and the branching program size of boolean functions.
In Fundamentals of Computation Theory, 15th International Symposium, FCT 2005,
Lübeck, Germany, August 17-20, 2005, Proceedings, pages 258–269, 2005.

[BSGH+06] Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil P. Vad-
han. Robust PCPs of proximity, shorter PCPs, and applications to coding. SIAM J.
Comput., 36(4):889–974, 2006.

[DR06] Irit Dinur and Omer Reingold. Assignment testers: Towards a combinatorial proof of
the PCP theorem. SIAM J. Comput., 36(4):975–1024, 2006.

[EKR04] Funda Ergün, Ravi Kumar, and Ronitt Rubinfeld. Fast approximate probabilistically
checkable proofs. Inf. Comput., 189(2):135–159, 2004.

[FGL14] Eldar Fischer, Yonatan Goldhirsh, and Oded Lachish. Partial tests, universal tests and
decomposability. In Innovations in Theoretical Computer Science, ITCS’14, Princeton,
NJ, USA, January 12-14, 2014, pages 483–500, 2014.

[GGR98] Oded Goldreich, Shafi Goldwasser, and Dana Ron. Property testing and its connection
to learning and approximation. Journal of the ACM (JACM), 45(4):653–750, 1998.

[GKR08] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. Delegating computation:
interactive proofs for muggles. In STOC, pages 113–122, 2008.

[Gol99] Oded Goldreich. Modern cryptography, probabilistic proofs and pseudorandomness,
volume 17 of Algorithms and Combinatorics. Springer-Verlag, 1999.

[Gol13] Oded Goldreich. On multiple input problems in property testing. Electronic Collo-
quium on Computational Complexity (ECCC), 20:67, 2013.

[GR62] Seymour Ginsburg and H Gordon Rice. Two families of languages related to ALGOL.
Journal of the ACM (JACM), 9(3):350–371, 1962.

[GR11] Oded Goldreich and Dana Ron. On proximity-oblivious testing. SIAM Journal on
Computing, 40(2):534–566, 2011.

[GR15] Tom Gur and Ron D. Rothblum. Non-interactive proofs of proximity. In Proceedings
of the 2015 Conference on Innovations in Theoretical Computer Science, ITCS 2015,
Rehovot, Israel, January 11-13, 2015, pages 133–142. ACM, 2015.

35

[GS12] Oded Goldreich and Igor Shinkar. Two-sided error proximity oblivious testing - (ex-
tended abstract). In APPROX-RANDOM, pages 565–578, 2012.

[HMU06] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to Automata
Theory, Languages, and Computation (3rd Edition). Addison-Wesley Longman Pub-
lishing Co., Inc., Boston, MA, USA, 2006.

[KR14] Yael Tauman Kalai and Ron D. Rothblum. Arguments of proximity. Manuscript, 2014.

[KW88] Klaus Kriegel and Stephan Waack. Lower bounds on the complexity of real-time
branching programs. ITA, 22(4):447–459, 1988.

[Lev85] Leonid A. Levin. One-way functions and pseudorandom generators. In STOC, pages
363–365, 1985.

[LSH65] Philip M. Lewis, Richard Edwin Stearns, and Juris Hartmanis. Memory bounds for
recognition of context-free and context-sensitive languages. In SWCT (FOCS), pages
191–202, 1965.

[New02] Ilan Newman. Testing membership in languages that have small width branching
programs. SIAM Journal on Computing, 31(5):1557–1570, 2002.

[New10] Ilan Newman. Property testing of massively parametrized problems - a survey. In
Property Testing, pages 142–157, 2010.

[PRR01] Michal Parnas, Dana Ron, and Ronitt Rubinfeld. Testing parenthesis languages. In
RANDOM-APPROX, pages 261–272, 2001.

[RS96] Ronitt Rubinfeld and Madhu Sudan. Robust characterizations of polynomials with
applications to program testing. SIAM J. Comput., 25(2):252–271, 1996.

[Ruz81] Walter L. Ruzzo. On uniform circuit complexity. J. Comput. Syst. Sci., 22(3):365–383,
1981.

[RVW13] Guy N. Rothblum, Salil Vadhan, and Avi Wigderson. Interactive proofs of proximity:
Delegating computation in sublinear time. In Proceedings of the 45th annual ACM
Symposium on Theory of Computing (STOC), 2013.

A Parallel Repetition of IPPs

The k-fold parallel repetition of an IPP (V1,P1) is an IPP (Vk,Pk) in which the two parties per-
form k parallel repetitions of (V1,P1), using independent random coins for each invocation. Note
that the query and communication complexities of (Vk,Pk) are k times the query and communi-
cation complexities of (V1,P1), respectively. The verifier Vk accepts if V1 accepts in a majority of
the k invocations. For our applications it suffices to focus on the case that (V1,P1) has a one-sided
error, in which case Vk can just check that V1 accepts in all the k invocations.

It is clear that if (V1,P1) has perfect completeness, then so does (Vk,Pk). The main challenge
is in proving that the soundness error decreases exponentially with k since if P ∗ is the optimal

36

cheating strategy against V, it is not a priori clear that the optimal cheating strategy against Vk is
k independent copies of P∗.

Nevertheless, the following lemma, taken verbatim from [Gol99, Lemma C.1] shows that the
soundness error for any interactive machine Vk does decrease exponentially.

Lemma A.1 ([Gol99, Lemma C.1]). Let V1 be an interactive machine, and Vk be an interactive
machine obtained from V1 by playing k versions of V1 in parallel. Let

p1(x) def= max
P∗
{Pr[(P∗,V1)(x) = 1]} , and

pk(x) def= max
P∗
{Pr[(P∗,Vk)(x) = 1]} .

Then,
pk(x) = (p1(x))k.

We stress that Lemma A.1 holds for any x and is independent of the operation of V1. It holds
as long as Vk executes k independent copies of V1 and accepts if all copies accept. Hence, it holds
also when V1 is an IPP verifier; in that case Vk has query complexity that is k times that of V1.

B Computing ROBPs in Low-Depth

For any branching program B (including branching programs that are not read-once), we show
that the language LB = {x ∈ {0, 1}∗ : B(x) = 1} can be recognized by a poly(|B|, n)-size circuit
of depth O((log(|B|))2) (with fan-in 2). We stress that the branching program B is fixed and the
circuit only gets x as input. For simplicity, we assume without loss of generality that B has a
unique accepting sink (otherwise we can add a new unique accepting sink t and have all former
accepting sinks direct to t).

The idea (which is in essence the folklore proof that (non-deterministic) log-space is contained
in NC2) proceeds as follows. First, based on the input x (and the fixed branching program B),
compute a |B| × |B| matrix Mx whose (u, v)th entry is 1 if the branching program traverses from
the vertex u ∈ B to v ∈ B on input x in a single step. In addition, for every sink t ∈ B we set the
(t, t)th-entry of Mx to 1 (these correspond to self loops). All other entries of Mx are set to 0. Given
input x, the matrix Mx (which is a permutation matrix) can be computed by a constant-depth
circuit of size poly(|B|) (in fact, every entry in Mx is either a fixed constant, or equal to some
variable or its negation).

Observe that for every k ≥ 1, the (u, v)th-th entry of (Mx)k is equal to 1 if and only if the
branching program traverses from u to v, on input x, in k steps (or at most k steps if v is a sink).
Hence, to check whether the source s leads to the (unique) accepting sink t on input x, it suffices
to check whether the (s, t)th-th entry of (Mx)|B| is equal to 1. Using repeated squaring we can
compute (Mx)|B| in O(log2(|B|)) depth and we obtain a circuit as required.

C Proof of Lemma 4.8

We proceed to describe the MAP, which is similar to the MAP of Theorem 1.1 except that we
use the guaranteed property testers for the partial derivation languages. Given x ∈ L, the MAP
proof is the output (I,B) of Generate-Intervals(x, t) (see Fig. 2), where t = n/k and as in the

37

proof of Theorem 1.1 we assume that t ≥ 2d. The MAP verifier, given direct access to (I,B)
and oracle access to x ∈ Σn, first runs T (I,B) to obtain (S1, 〈L1〉), . . . , (S`, 〈L`〉) and rejects if T
rejects. Otherwise, the verifier runs the following procedure for every j ∈

[
dlog2(2/ε)e

]
:

1. Select uniformly at random O
(

log(1/ε)
2jε

)
indices in [`]. Denote the chosen indices by I.

2. For every index i ∈ I, run the property tester for Li on input x[Si] (while simulating its oracle
queries with queries to x), with respect to proximity parameter 2−j and with completeness
and soundness errors poly(ε) (as usual, the latter can be obtained by taking the majority of
O(log(1/ε)) independent tests). If the tester rejects then reject and halt.

If none of the above test fails then the verifier accepts.
We first show that completeness and soundness hold and later show that the query complexity

is as stated.

Completeness. If x ∈ L, by Lemma 4.3, the transformation T produces
(
(S1, 〈L1〉), . . . , (Sk, 〈Lk〉)

)
such that Lj is a partial derivation language and x[Sj] ∈ Lj , for every j ∈ [k]. Since the tester
for each partial derivation language Lj has completeness error poly(ε) and we perform Step 2
O(ε−1 · log2(1/ε)) times in total, the verifier accepts in all tests with probability at least 2/3.
Furthermore, if the testers for the partial derivation languages have a one-sided error, then the
MAP verifier accepts with probability 1 and otherwise we can apply a generic transformation (as
discussed in the beginning of the proof) to obtain a one-sided error.

Soundness. Let x ∈ Σn that is ε-far from L, and let (I,B) be an alleged proof. By Lemma 4.4,
the transformation T either rejects (in which case the verifier rejects and we are done), or produces(
(S1, 〈L1〉), . . . , (Sk, 〈L`〉

)
, where S1, . . . , S` form a partition of [n] and Lj is a partial derivation

language, such that x is ε-far from
{
z ∈ Σn : ∀j ∈ [k], z[Sj] ∈ Lj

}
. The following claim, which is

a refined averaging argument, shows that either there are many indexes i ∈ [k] such x[Si] is mildly
far from Li or there are few indexes i ∈ [`] such that x[Si] is extremely far from Li (or anything in
between).

Lemma C.1 (Precision Sampling). There exists j∗ ∈ [dlog2 2/εe] such that for a 2j∗ε
4·dlog2(2/ε)e fraction

of the indexes i ∈ [`] it holds that x[Si] is 2−j∗-far from Li.

For completeness, we provide the proof of Lemma C.1, which is standard.

Proof. Let d def= dlog2(2/ε)e. Recall that ∆ (z,W) is the minimal relative Hamming distance of z
from the set W . For every k ∈ [d], let

Bk
def=
{
i ∈ [`] : ∆ (x[Si],Li) ∈

(
2−k, 2−(k−1)

]}
,

and let Bd+1 = [`]\(∪i∈[d]Bk). Note that the sets B0, . . . , Bd, Bd+1 form a partition [`]. Also note
that by our setting of d, for every i ∈ Bd+1 it holds that x[Si] is ε/2-close to Li.

38

Suppose towards a contradiction that for every k ∈ [d] it holds that |Bk| < 2kε
4d · `. Using the

fact that for every i ∈ Bk it holds that x[Si] is 2−(k−1)-close to Li, we obtain that

∆ (x,L) ≤ 1
`

∑̀
i=1

∆ (x[Si],Li)

= 1
`

∑
i∈Bd+1

∆ (x[Si],Li) + 1
`

∑
k∈[d]

∑
i∈Bk

∆ (x[Si],Li)

≤ |Bd+1|
`
· ε2 + 1

`

∑
k∈[d]

2−(k−1) · |Bk|

<
ε

2 +
∑
k∈[d]

ε

2d

= ε,

in contradiction to our assumption that x is ε-far from L.

Next, consider the execution of iteration j∗ of the verifier, where j∗ is as guaranteed by
Lemma C.1. Since the verifier selects uniformly at random O

(
log(1/ε)

2j∗ε

)
indices in [k], with proba-

bility at least 9/10 it selects at least one index i ∈ [k] such that x[Si] is 2−j∗-far from Li. In this
case, the tester for Li, with respect to proximity parameter 2−j∗ will reject x[Si] with probability
1− poly(ε). Thus, the verifier rejects x with probability at least (1− poly(ε)) · 9/10 ≥ 2/3.

Query Complexity. Recall that we assumed that every partial derivation language has a tester
with query complexity Q(m, δ) = O(mα · δ−β), for inputs of length m with respect to proximity
parameter δ > 0. By definition, it holds that |Si| ≤ t = n/p, for every i ∈ [`]. Thus, the query
complexity is at most

∑
j∈[dlog2 2/εe]

∑
i∈I

(
log(1/ε) ·Q

(
n/k, 2−j

))
= O

log(1/ε) ·
∑

j∈[dlog2 2/εe]
2jβ · log(1/ε)

2j · ε · (n/k)α


= O

(n/k)α · (log(1/ε))2

ε
·

∑
j∈[dlog2 2/εe]

2(β−1)j


= O

(
(n/k)α · ε−β · log2(1/ε)

)
.

For the particular case in which α = 0, we tighten the analysis for small values of ε by noting
that the query complexity for any language is upper bounded by the size of the object:

∑
j∈[dlog2 2/εe]

∑
i∈I

(
log(1/ε) ·Q

(
n/k, 2−j

))
= O

log(1/ε) ·
∑

j∈[dlog2 2/εe]

log(1/ε)
2j · ε ·min

(
n/k, 2jβ

)
= O

(
(n/k)1−1/β · ε−1 · log3(1/ε)

)
,

where the last equality follows since min
(
n/k, 2jβ

)
≤ (n/k)1−1/β ·

(
2jβ
)1/β

, for every j ≥ 1 (while
using the fact that β ≥ 1). Note that log3(1/ε) ≤ polylog(n) since without loss of generality we
may assume that ε ≥ 1/n.

39

D Efficient Verification for Special Context-Free Languages

As stated in Remark 4.6, in this section we show that for special context-free languages we can
improve the running time of the verifier in Fig. 5 from poly(n, k, r) to poly(logn, k, r). Specifically,
we refer to context-free languages whose partial derivation languages are themselves context-free
languages (e.g., the Dyck language, see Proposition 4.10).

The crucial step in improving the verifier’s running-time is an efficient implementation of Item 4d
in Fig. 3. In the general case, this step can be implemented in time poly(n), but we show that if the
partial derivation languages are context-free languages, then we obtain running time polylog(n).

Lemma D.1. For every context-free language L over an alphabet Σ, there exist an algorithm that
given an integer n ∈ N, runs in time polylog(n) and accepts if and only if L ∩ Σn 6= ∅.

Proof. Let G be a context-free grammar that accepts L, and let G′ be the context-free grammar
that is obtained from G by replacing all the terminal symbols in G by a single terminal symbol,
denoted 0. Note that L ∩ Σn 6= ∅ if and only if G′ accepts 0n.

Observe that the language L′ accepted by G′ is a unary context-free language. Ginsburg and
Rice [GR62] showed that such a language must be regular.

Proposition D.2 ([GR62]). Every unary context-free language is regular.

Hence, there exists a finite-state automaton over the unary alphabet that accepts L′. Such an
automaton can be viewed as a directed graph with a single outgoing edge from each node. Hence,
the graph is a directed path (from the start node) of length a feeding into a directed cycle of length
b, and some of the nodes are accepting. Hence, the accepted lengths have the form j + i · b, where
j ∈ [a+ b− 1] and i ≥ 0.

The lemma follows by observing that an algorithm can easily check in polylog(n) time if the
given input n has the desired form, by checking if n − j is divisible by b, for the specific set of
j ∈ [a+ b− 1] that correspond to accepting nodes of the automaton.

40

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

