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Abstract

In this work we study the quantitative relation between VC-dimension and two

other basic parameters related to learning and teaching. We present relatively

efficient constructions of sample compression schemes and teaching sets for classes

of low VC-dimension. Let C be a finite boolean concept class of VC-dimension d.

Set k = O(d2d log log |C|).
We construct sample compression schemes of size k for C, with additional in-

formation of k log(k) bits. Roughly speaking, given any list of C-labelled examples

of arbitrary length, we can retain only k labeled examples in a way that allows to

recover the labels of all others examples in the list.

We also prove that there always exists a concept c in C with a teaching set (i.e.

a list of c-labelled examples uniquely identifying c) of size k. Equivalently, we prove

that the recursive teaching dimension of C is at most k.

The question of constructing sample compression schemes for classes of small

VC-dimension was suggested by Littlestone and Warmuth (1986), and the problem

of constructing teaching sets for classes of small VC-dimension was suggested by

Kuhlmann (1999). Previous constructions for general concept classes yielded size

O(log |C|) for both questions, even when the VC-dimension is constant.
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1 Introduction

The study of mathematical foundations of learning and teaching has been very fruitful, re-

vealing fundamental connections to various other areas of mathematics, such as geometry,

topology, and combinatorics. Many key ideas and notions emerged from this study: Vap-

nik and Chervonenkis’s VC-dimension [41], Valiant’s seminal definition of PAC learning

[40], Littlestone and Warmuth’s sample compression schemes [30], Goldman and Kearns’s

teaching dimension [18], recursive teaching dimension (RT-dimension, for short)[43, 11, 36]

and more.

While it is known that some of these measures are tightly linked, the exact relationship

between them is still not well understood. In particular, it is a long standing question

whether the VC-dimension can be used to give a universal bound on the size of sample

compression schemes or on the RT-dimension.

In this work, we make progress on these two questions. First, we prove that the

RT-dimension of a boolean concept class C having VC-dimension d is upper bounded by1

O(d2d log log |C|). Secondly, we give a sample compression scheme of sizeO(d2d log log |C|)
that uses additional information.

1.1 VC-dimension

VC-dimension and size. A concept class over the universe X is a set C ⊆ {0, 1}X .

When X is finite, we denote |X| by n(C). The VC-dimension of C, denoted VC(C), is

the maximum size of a shattered subset of X, where a set Y ⊆ X is shattered if for every

Z ⊆ Y there is c ∈ C so that c(x) = 1 for all x ∈ Z and c(x) = 0 for all x ∈ Y − Z.

The most basic result concerning VC-dimension is the Sauer-Shelah-Perles Lemma,

that upper bounds |C| in terms of n(C) and VC(C). It has been independently proved

several times, e.g. in [38].

Theorem 1.1 (Sauer-Shelah-Perles). Let C be a boolean concept class with VC-dimension

d. Then,

|C| ≤
d∑

k=0

(
n(C)

k

)
.

In particular, if d ≥ 2 then |C| ≤ n(C)d

VC-dimension and PAC learning. The VC-dimension is one of the most basic com-

plexity measures for concept classes. It is perhaps mostly known in the context of the

PAC learning model. PAC learning was introduced in Valiant’s seminal work [40] as a the-

oretical model for learning from random examples drawn from an unknown distribution

1In this text O(f) means at most αf + β for α, β > 0 constants.
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(see the book [26] for more details). A foundational connection between VC-dimension

and PAC learning was discovered by Blumer, Ehrenfeucht, Haussler and Warmuth [7],

who showed that PAC learning sample complexity is equivalent to VC-dimension. The

proof of this theorem uses Theorem 1.1 and an argument commonly known as double

sampling (see Section A in the appendix for a short and self contained description of this

well known argument).

Theorem 1.2 (Blumer et al.). Let X be a set and C ⊆ {0, 1}X be a concept class

of VC-dimension d. Let µ be a distribution over X. Let ε, δ > 0 and m an integer

satisfying 2(2m+ 1)d(1− ε/4)m < δ. Let c ∈ C and Y = (x1, . . . , xm) be a multiset of m

independent samples from µ. Then, the probability that there is c′ ∈ C so that c|Y = c′|Y
but µ({x : c(x) 6= c′(x)}) > ε is at most δ.

VC-dimension and the metric structure. Another fundamental result in this area

is Haussler’s [22] description of the metric structure of concept classes with low VC-

dimension (see also the work of Dudley [13]). Roughly, it says that a concept class C of

VC-dimension d, when thought of as an L1 metric space, behaves like a d dimensional

space in the sense that the size of an ε-separated set in C is at most (1/ε)d. More formally,

every probability distribution µ on X induces the (pseudo) metric

distµ(c, c′) = µ({x : c(x) 6= c′(x)})

on C. A set S ⊆ C is called ε-separated with respect to µ if for every two concepts c 6= c′

in S we have distµ(c, c′) > ε. A set A = Aµ(C, ε) ⊆ C is called an ε-approximating set2 for

C with respect to µ if it is a maximal ε-separated set with respect to µ. The maximality

of A implies that for every c ∈ C there is some rounding r = r(c, µ, C, ε) in A so that r is

a good approximation to c, that is, distµ(c, r) ≤ ε. We call r a rounding of c in A.

An approximating set can be thought of as a metric approximation of the possibly

complicated concept class C, and for many practical purposes it is a good enough substi-

tute for C. Haussler proved that there are always small approximating sets.

Theorem 1.3 (Haussler). Let C ⊆ {0, 1}X be a concept class with VC-dimension d. Let

µ be a distribution on X. Let ε ∈ (0, 1]. If S is ε-separated with respect to µ then

|S| ≤ e(d+ 1)

(
2e

ε

)d
≤
(

4e2

ε

)d
.

2In metric spaces such a set is called an ε-net, however in learning theory and combinatorial geometry
the term ε-net has a different meaning, so we use ε-approximating instead.
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A proof of a weaker statement. For m ≥ 2 log(|S|)/ε let x1, . . . , xm be independent sam-

ples from µ. For every c 6= c′ in S,

Pr
µm

(∀i ∈ [m] c(xi) = c′(xi)) < (1− ε)m ≤ e−mε ≤ 1/|S|2.

The union bound implies that there is a choice of Y ⊆ X of size |Y | ≤ m so that

|S|Y | = |S|. Theorem 1.1 implies |S| ≤ (|Y |+ 1)d. Thus, |S| < (30d log(2d/ε)/ε)d.

1.2 Teaching

Imagine a teacher that helps a student to learn a concept c by picking insightful examples.

The concept c is known only to the teacher, but c belongs to a class of concepts C known

to both the teacher and the student. The teacher carefully chooses a set of examples

that is tailored for c, and then provides these examples to the student. Now, the student

should be able to recover c from these examples.

A central issue that is addressed in the design of mathematical teaching models is “col-

lusions.” Roughly speaking, a collusion occurs when the teacher and the student agree

in advance on some unnatural encoding of information about c using the bit description

of the chosen examples, instead of using attributes that separate c from other concepts.

Many mathematical models for teaching were suggested: Shinohara and Miyano [39],

Jackson and Tomkins [25], Goldman, Rivest and Schapire [20], Goldman and Kearns [18],

Goldman and Mathias [19] Angluin and Krikis [2], Balbach [5], and Kobayashi and Shi-

nohara [27]. We now discuss some of these models in more detail.

Teaching sets. The first mathematical models for teaching [18, 39, 3] handle collusions

in a fairly restrictive way, by requiring that the teacher provides a set of examples Y that

uniquely identifies c. Formally, this is captured by the notion of a teaching set, which was

independently introduced by Goldman and Kearns [18], Shinohara and Miyano [39] and

Anthony et al. [3]. A set Y ⊆ X is a teaching set for c in C if for all c′ 6= c in C, we have

c′|Y 6= c|Y . The teaching complexity in these models is captured by the hardest concept

to teach, i.e., maxc∈C min{|Y | : Y is a teaching set for c in C}.
Teaching sets also appear in other areas of learning theory: Hanneke [21] used it in

his study of the label complexity in active learning, and the authors of [42] used variants

of it to design efficient algorithms for learning distributions using imperfect data.

Defining the teaching complexity using the hardest concept is often too restrictive.

Consider for example the concept class consisting of all singletons and the empty set over

a domain X of size n. Its teaching complexity in these models is n, since the only teaching

set for the empty set is X. This is a fairly simple concept class that has the maximum

possible complexity.
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Recursive teaching dimension. Goldman and Mathias [19] and Angluin and Krikis [2]

therefore suggested less restrictive teaching models, and more efficient teaching schemes

were indeed discovered in these models. One approach, studied by Zilles et al. [43], Doliwa

et al. [11], and Samei et al. [36], uses a natural hierarchy on the concept class C which is

defined as follows. The first layer in the hierarchy consists of all concepts whose teaching

set has minimal size. Then, these concepts are removed and the second layer consists

of all concepts whose teaching set with respect to the remaining concepts has minimal

size. Then, these concepts are removed and so on, until all concepts are removed. The

maximum size of a set that is chosen in this process is called the recursive teaching (RT)

dimension.

For example, the concept class consisting of singletons and the empty set, which was

considered earlier, has recursive teaching dimension 1: The first layer in the hierarchy

consists of all singletons, which have teaching sets of size 1. Once all singletons are

removed, we are left with a concept class of size 1, the concept class {∅}, and in it the

empty set has a teaching set of size 0.

A similar notion to RT-dimension was independently suggested in [42] under the ter-

minology partial IDs. There the focus was on getting a simultaneous upper bound on the

size of the sets, as well as the number of layers in the recursion, and it was shown that for

any concept class C both can be made at most log |C|. Motivation for this study comes

from the population recovery learning problem defined in [14].

Previous results. Doliwa et al. [11] and Zilles et al. [43] asked whether small VC-

dimension implies small recursive teaching dimension. An equivalent question was asked

10 years earlier by Kuhlmann [28]. Since the VC-dimension does not increase when

concepts are removed from the class, this question is equivalent to asking whether every

class with small VC-dimension has some concept in it with a small teaching set. Given the

semantics of the recursive teaching dimension and the VC-dimension, an interpretation

of this question is whether exact teaching is not much harder than approximate learning

(i.e., PAC learning).

For infinite classes the answer to this question is negative. There is an infinite concept

class with VC-dimension 1 so that every concept in it does not have a finite teaching set.

An example for such a class is C ⊆ {0, 1}Q defined as C = {cq : q ∈ Q} where cq is the

indicator function of all rational numbers that are smaller than q. The VC-dimension of

C is 1, but every teaching set for some cq ∈ C must contain a sequence of rationals that

converges to q.

For finite classes this question is open. However, in some special cases it is known

that the answer is affirmative. In [28] it is shown that if C has VC-dimension 1, then its
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recursive teaching dimension is also 1. It is known that if C is a maximum3 class then

its recursive teaching dimension is equal to its VC-dimension [11, 35]. Other families of

concept classes for which the recursive teaching dimension is at most the VC-dimension

are discussed in [11]. In the other direction, [28] provided examples of concept classes

with VC-dimension d and recursive teaching dimension at least 3
2
d.

The only bound on the recursive teaching dimension for general classes was observed

by both [11, 42]. It states that the recursive teaching dimension of C is at most log |C|.
This bound follows from a simple halving argument which shows that for all C there exists

some c ∈ C with a teaching set of size log |C|.

Our contribution. Our first main result is the following general bound, which expo-

nentially improves over the log |C| bound when the VC-dimension is small (the proof is

given in Section 3).

Theorem 1.4 (RT-dimension). Let C be a concept class of VC-dimension d. Then there

exists c ∈ C with a teaching set of size at most

d2d+3(log(4e2) + log log |C|).

It follows that the recursive teaching dimension of concept classes of VC-dimension d

is at most d2d+3(log(4e2) + log log |C|) as well.

1.3 Sample compression schemes

A fundamental and well known statement in learning theory says that if the VC-dimension

of a concept class C is small, then any consistent4 algorithm successfully PAC learns

concepts from C after seeing just a few labelled examples [41, 8]. In practice, however, a

major challenge one has to face when designing a learning algorithm is the construction

of an hypothesis that is consistent with the examples seen. Many learning algorithms

share the property that the output hypothesis is constructed using a small subset of the

examples. For example, in support vector machines, only the set of support vectors is

needed to construct the separating hyperplane [10]. Sample compression schemes provide

a formal meaning for this algorithmic property.

Before giving the formal definition of compression schemes, let us consider a simple

illustrative example. Assume we are interested in learning the concept class of intervals

on the real line. We get a collection of 100 samples of the form (x, cI(x)) where x ∈ R
and cI(x) ∈ {0, 1} indicates5 if x is in the interval I ⊂ R. Can we remember just a few of

3That is, C satisfies Sauer-Shelah-Perles Lemma with equality.
4An algorithm that outputs an hypothesis in C that is consistent with the input examples.
5That is cI(x) = 1 iff x ∈ I.
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the samples in a way that allows to recover all the 100 samples? In this case, the answer

is affirmative and in fact it is easy to do so. Just remember two locations, those of the

left most 1 and of the right most 1 (if there are no 1s, just remember one of the 0s). From

this data, we can reconstruct the value of cI on all the other 100 samples.

The formal definition. Littlestone and Warmuth [30] formally defined sample com-

pression schemes as follows. Let C ⊆ {0, 1}X with |X| = n. Let

LC(k1, k2) = {(Y, y) : Y ⊆ X, k1 ≤ |Y | ≤ k2, y ∈ C|Y },

the set of labelled samples from C, of sizes between k1 and k2. A k-sample compression

scheme for C with information Q, for a finite set Q, consists of two maps κ, ρ for which

the following hold:

(κ) The compression map

κ : LC(1, n)→ LC(0, k)×Q

takes (Y, y) to ((Z, z), q) with Z ⊆ Y and y|Z = z.

(ρ) The reconstruction map

ρ : LC(0, k)×Q→ {0, 1}X

is so that for all (Y, y) in LC(1, n),

ρ(κ(Y, y))|Y = y.

Intuitively, the compression map takes a long list of samples (Y, y) and encodes it as

a short sub-list of samples (Z, z) together with some small amount of side information

q ∈ Q, which helps in the reconstruction phase. The reconstruction takes a short list

of samples (Z, z) and decodes it using the side information q, without any knowledge of

(Y, y), to an hypothesis in a way that essentially inverts the compression. Specifically, the

following property must always hold: if the compression of (Y, c|Y ) is the same as that of

(Y ′, c′|Y ′) then c|Y ∩Y ′ = c′|Y ∩Y ′ .
A different perspective of the side information is as a list decoding in which the small

set of labelled examples (Z, z) is mapped to the set of hypothesis {ρ((Z, z), q) : q ∈ Q},
one of which is correct.

We note that it is not necessarily the case that the reconstructed hypothesis belongs

to the original class C. All it has to satisfy is that for any (Y, y) ∈ LC(1, n) such that

h = ρ(κ(Y, y)) we have that h|Y = y. Thus, h has to be consistent only on the sampled

coordinates that were compressed and not elsewhere.
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Let us consider a simple example of a sample compression scheme, to help digest the

definition. Let C be a concept class and let r be the rank over, say, R of the matrix whose

rows correspond to the concepts in C. We claim that there is an r-sample compression

scheme for C with no side information. Indeed, for any Y ⊆ X, let ZY be a set of at most

r columns that span the columns of the matrix C|Y . Given a sample (Y, y) compress it

to κ(Y, y) = (ZY , z) for z = y|ZY
. The reconstruction maps ρ takes (Z, z) to any concept

h ∈ C so that h|Z = z. This sample compression scheme works since if (Z, z) = κ(Y, y)

then every two different rows in C|Y must disagree on Z.

Connections to learning. Sample compression schemes are known to yield practical

learning algorithms (see e.g. [32]), and allow learning for multi labelled concept classes [37].

They can also be interpreted as a formal manifestation of Occam’s razor. Occam’s

razor is a philosophical principle attributed to William of Ockham from the late middle

ages. It says that in the quest for an explanation or an hypothesis, one should prefer

the simplest one which is consistent with the data. There are many works on the role

of Occam’s razor in learning theory, a partial list includes [30, 8, 15, 33, 24, 16, 12].

In the context of sample compression schemes, simplicity is captured by the size of the

compression scheme. Interestingly, this manifestation of Occam’s razor is provably useful

[30]: Sample compression schemes imply PAC learnability.

Theorem 1.5 (Littlestone-Warmuth). Let C ⊆ {0, 1}X , and c ∈ C. Let µ be a distribu-

tion on X, and x1, . . . , xm be m independent samples from µ. Let Y = (x1, . . . , xm) and

y = c|Y . Let κ, ρ be a k-sample compression scheme for C with additional information Q.

Let h = ρ(κ(Y, y)). Then,

Pr
µm

(distµ(h, c) > ε) < |Q|
k∑
j=0

(
m

j

)
(1− ε)m−j.

Proof sketch. There are
∑k

j=0

(
m
j

)
subsets T of [m] of size at most k. There are |Q|

choices for q ∈ Q. Each choice of T, q yields a function hT,q = ρ((T, yT ), q) that is

measurable with respect to xT = (xt : t ∈ T ). The function h is one of the functions in

{hT,q : |T | ≤ k, q ∈ Q}. For each hT,q, the coordinates in [m] − T are independent, and

so if distµ(hT,q, c) > ε then the probability that all these m− |T | samples agree with c is

less than (1− ε)m−|T |. The union bound completes the proof.

Since the sample complexity of PAC learning is essentially the VC-dimension, a lower

bound on the size of sample compression schemes in terms of VC-dimension should hold.

Indeed, [16] proved that there are concept classes of VC-dimension d for which any sample

compression scheme has size at least d.
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This is part of the motivation for the following basic question that was asked by

Littlestone and Warmuth [30] nearly 30 years ago and is still open: Does a concept class

of VC-dimension d have a sample compression scheme of size depending only on d (and

not on the universe size)?

In fact, unlike the VC-dimension, the definition of sample compression schemes as

well as the fact that they imply PAC learnability naturally generalizes to multi-labelled

concept classes [37]. Thus, Littlestone and Warmuth’s question above can be seen as the

boolean instance of a much broader question: Is it true that the size of an optimal sample

compression scheme for a given concept class is the sample complexity of PAC learning

of this class?

Previous constructions. Floyd [15] and Floyd and Warmuth [16] constructed sample

compression schemes of size log |C|. The construction in [16] uses a transformation that

converts certain online learning algorithms to compression schemes. Helmbold and War-

muth [24] and Freund [17] showed how to compress a sample of size m to a sample of size

O(log(m)) using some side information for classes of constant VC-dimension (the implicit

constant in the O(·) depends on the VC-dimension).

In a long line of works, several interesting compression schemes for special cases were

constructed. A partial list includes Helmbold et al. [23], Floyd and Warmuth [16], Ben-

David and Litman [6], Chernikov and Simon [9], Kuzmin and Warmuth [29], Rubinstein

et al. [34], Rubinstein and Rubinstein [35], Livni and Simon [31] and more. These works

provided connections between compression schemes and geometry, topology and model

theory.

Our contribution. Here we make the first quantitive progress on this question, since

the work of Floyd [15]. The following theorem shows that low VC-dimension implies the

existence of relatively efficient compression schemes. The constructive proof is provided

in Section 4.

Theorem 1.6 (Sample compression scheme). If C has VC-dimension d then it has a

k-sample compression scheme with additional information Q where k = O(d2d log log |C|)
and log |Q| ≤ O(k log(k)).

1.4 Discussion and open problems

This work provides relatively efficient constructions of teaching sets and sample compres-

sion schemes.

The main questions, however, remain open. Is there always a concept with a teaching

set of size depending only on the VC-dimension? (The interesting case is finite con-
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cept classes, as mentioned above.) Are there always sample compression schemes of size

depending only on the VC-dimension?

The simplest case that is still open is VC-dimension 2. One can refine this case even

further. VC-dimension 2 means that on any three coordinates x, y, z ∈ X, the projection

C|{x,y,z} has at most 7 patterns. A more restricted family of classes is (3, 6) concept

classes, for which on any three coordinates there are at most 6 patterns. We can show

that the recursive teaching dimension of (3, 6) classes is at most 3.

Lemma 1.7. Let C be a finite (3, 6) concept class. Then there exists some c ∈ C with a

teaching set of size at most 3.

Proof. Assume that C ⊆ {0, 1}X with X = [n]. If C has VC-dimension 1 then there exists

c ∈ C with a teaching set of size 1 (see [28, 1]). Therefore, assume that the VC-dimension

of C is 2. Every shattered pair {x, x′} ⊆ X partitions C to 4 nonempty sets:

Cx,x′

b,b′ = {c ∈ C : c(x) = b, c(x′) = b′},

for b, b′ ∈ {0, 1}. Pick a shattered pair {x∗, x′∗} and b∗, b
′
∗ for which the size of C

x∗,x′∗
b∗,b′∗

is

minimal. Without loss of generality assume that {x∗, x′∗} = {1, 2} and that b∗ = b′∗ = 0.

To simplify notation, we denote C1,2
b,b′ simply by Cb,b′ .

We prove below that C0,0 has VC-dimension 1. This completes the proof since then

there is some c ∈ C0,0 and some x ∈ [n] \ {1, 2} such that {x} is a teaching set for c in

C0,0. Therefore, {1, 2, x} is a teaching set for c in C.

First, a crucial observation is that since C is a (3, 6) class, no pair {x, x′} ⊆ [n]\{1, 2} is

shattered by both C0,0 and C\C0,0. Indeed, if C\C0,0 shatters {x, x′} then either C1,0∪C1,1

or C0,1 ∪ C1,1 has at least 3 patterns on {x, x′}. If in addition C0,0 shatters {x, x′} then

C has at least 7 patterns on {1, x, x′} or {2, x, x′}, contradicting the assumption that C

is a (3, 6) class.

Now, assume towards contradiction that C0,0 shatters {x, x′}. Thus, {x, x′} is not

shattered by C \ C0,0 which means that there is some pattern p ∈ {0, 1}{x,x′} so that

p 6∈ (C \ C0,0)|{x,x′}. This implies that Cx,x′

p(x),p(x′) is a proper subset of C0,0, contradicting

the minimality of C0,0.

2 The dual class

We shall repeatedly use the dual concept class to C and its properties. The dual concept

class C∗ ⊆ {0, 1}C of C is defined by C∗ = {cx : x ∈ X}, where cx : C → {0, 1} is the

map so that cx(c) = 1 iff c(x) = 1. If we think of C as a binary matrix whose rows are

the concepts in C, then C∗ corresponds to the distinct rows of the transposed matrix (so

it may be that |C∗| < |n(C)|).
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We use the following well known property (see [4]).

Claim 2.1 (Assouad). If the VC-dimension of C is d then the VC-dimension of C∗ is at

most 2d+1.

Proof sketch. If the VC-dimension of C∗ is 2d+1 then in the matrix representing C there

are 2d+1 rows that are shattered, and in these rows there are d + 1 columns that are

shattered.

We also define the dual approximating set (recall the definition of Aµ(C, ε) from Sec-

tion 1.1). Denote by A∗(C, ε) the set AU(C∗, ε), where U is the uniform distribution on

C∗.

3 Teaching sets

In this section we prove Theorem 1.4. The high level idea is to use Theorem 1.3 and

Claim 2.1 to identify two distinct x, x′ in X so that the set of c ∈ C so that c(x) 6= c(x′)

is much smaller than |C|, add x, x′ to the teaching set, and continue inductively.

Proof of Theorem 1.4. For classes with VC-dimension 1 there is c ∈ C with a teaching

set of size 1, see e.g. [11]. We may therefore assume that d ≥ 2.

We show that if |C| > (4e2)d·2
d+2

, then there exist x 6= x′ in X such that

0 < |{c ∈ C : c(x) = 0 and c(x′) = 1}| ≤ |C|1−
1

d2d+2 . (1)

From this the theorem follows, since if we iteratively add such x, x′ to the teaching set,

then after at most d2d+2 log log |C| iterations the size of the concept class is reduced

to less than (4e2)d·2
d+2

. At this point we can identify a unique concept by adding at

most log((4e2)d·2
d+2

) additional indices to the teaching set, using the halving argument of

[11, 42]. This gives a teaching set of size at most 2d2d+2 log log |C| + d2d+2 log(4e2) for

some c ∈ C, as required.

In order to prove (1), it is enough to show that there exist cx 6= cx′ in C∗ such that the

normalized hamming distance between cx, cx′ is at most ε := |C|−
1

d2d+2 . Assume towards

contradiction that the distance between every two concepts in C∗ is more than ε, and

assume without loss of generality that n(C) = |C∗| (that is, all the columns in C are

distinct). By Claim 2.1, the VC-dimension of C∗ is at most 2d+1. Theorem 1.3 thus

implies that

n(C) = |C∗| ≤
(

4e2

ε

)2d+1

<

(
1

ε

)2d+2

. (2)
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Where the last inequality follows from the definition of ε and the assumption on the size

of C. Therefore, we arrive at the following contradiction:

|C| ≤ (n(C))d (by Theorem 1.1, since V C(C) ≥ 2)

<

(
1

ε

)d·2d+2

(by Equation 2 above)

= |C|. (by definition of ε)

4 Sample compression schemes

In this section we prove Theorem 1.6. The theorem statement and the definition of sample

compression schemes appear in Section 1.3.

While the details are somewhat involved, due to the complexity of the definitions, the

high level idea may be (somewhat simplistically) summarized as follows.

For an appropriate choice of ε, we pick an ε-approximating set A∗ of the dual class C∗.

It is helpful to think ofA∗ as a subset of the domainX. Now, eitherA∗ faithfully represents

the sample (Y, y) or it does not (we do not formally define “faithfully represents” here).

We identify the following win-win situation: In both cases, we can reduce the compression

task to that in a much smaller set of concepts of size at most ε|C| ≈ |C|1−2−d
, similarly

to as for teaching sets in Section 3. This yields the same double-logarithmic behavior.

In the case that A∗ faithfully represents (Y, y), Case 2 below, we recursively compress

in the small class C|A∗ . In the unfaithful case, Case 1 below, we recursively compress

in a (small) set of concepts for which disagreement occurs on some point of Y , just as

in Section 3. In both cases, we have to extend the recursive solution, and the cost is

adding one sample point to the compressed sample (and some small amount of additional

information by which we encode whether Case 1 or 2 occurred).

The compression we describe is inductively defined, and has the following additional

structure. Let ((Z, z), q) be in the image of κ. The information q is of the form q = (f, T ),

where T ≥ 0 is an integer so that |Z| ≤ T + O(d · 2d), and f : {0, 1, . . . , T} → Z is a

partial one-to-one function6. This implies that |Q| ≤ 2O(T log(|Z|)).

The rest of this section is organized as follows. In Section 4.1 we define the compression

map κ. In Section 4.2 we give the reconstruction map ρ. The proof of correctness is given

in Section 4.3 and the upper bound on the size of the compression is calculcated in

Section 4.4.

6That is, it is defined over a subset of {0, 1, . . . , T} and it is injective on its domain.

12



4.1 Compression map: defining κ

Let C be a concept class. The compression map is defined by induction on n = n(C).

For simplicity of notation, let d = V C(C) + 2.

In what follows we shall routinely use A∗(C, ε). There are several ε-approximating sets

and so we would like to fix one of them, say, the one obtained by greedily adding columns

to A∗(C, ε) starting from the first7 column (recall that we can think of C as a matrix

whose rows correspond to concepts in C and whose columns are concepts in the dual class

C∗). To keep notation simple, we shall use A∗(C, ε) to denote both the approximating

set in C∗ and the subset of X composed of columns that give rise to A∗(C, ε). This is a

slight abuse of notation but the relevant meaning will always be clear from the context.

Induction base. The base of the induction applies to all concept classes C so that |C| ≤
(4e2)d·2

d+1. In this case, we use the compression scheme of Floyd and Warmuth [15, 16]

which has size log(|C|) = O(d · 2d), using Theorem 1.1. This compression scheme has no

additional information. Therefore, to maintain the structure of our compression scheme

we append to it redundant additional information by setting T = 0 and f to be empty.

Induction step. Let C be so that |C| > (4e2)d·2
d+1. Let 0 < ε < 1 be so that

ε|C| =
(

1

ε

)d·2d
. (3)

This choice balances the recursive size. By Claim 2.1, the VC-dimension of C∗ is at most

2d−1 (recall that d = V C(C) + 2). Theorem 1.3 thus implies that

|A∗(C, ε)| ≤
(

4e2

ε

)2d−1

<

(
1

ε

)2d

< n(C). (4)

(Where the second last inequality follows from the definition of ε and the assumption on

the size of C and the last inequality follows from the definition of ε and Theorem 1.1).

Let (Y, y) ∈ LC(1, n). Every x ∈ X has a rounding8 r(x) in A∗(C, ε). We distinguish

between two cases:

Case 1: There exist x ∈ Y and c ∈ C such that c|Y = y and c(r(x)) 6= c(x).

7We shall assume w.l.o.g. that there is some well known order on X.
8The choice of r(x) also depends on C, ε, but to simplify the notation we do not explicitly mention it.

In the introduction we denoted r(x) by rx. The reason for the change in notation is, again, its simplicity.
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This is the unfaithful case in which we compress as in Section 3. Let

C ′ = {c′|X−{x,r(x)} : c′ ∈ C, c′(x) = c(x), c′(r(x)) = c(r(x))},
Y ′ = Y − {x, r(x)},
y′ = y|Y ′ .

Apply recursively κ on C ′ and the sample (Y ′, y′) ∈ LC′(1, n(C ′)). Let ((Z ′, z′), (f ′, T ′))

be the result of this compression. Output ((Z, z), (f, T )) defined as9

Z = Z ′ ∪ {x},
z|Z′ = z′, z(x) = y(x),

T = T ′ + 1,

f |{0,...,T−1} = f ′|{0,...,T−1},
f(T ) = x (f is defined on T , marking that Case 1 occurred)

Case 2: For all x ∈ Y and c ∈ C such that c|Y = y, we have c(x) = c(r(x)).

This is the faithful case, in which we compress by restricting C to A∗. Consider

r(Y ) = {r(y) : y ∈ Y } ⊆ A∗(C, ε). For each x′ ∈ r(Y ), pick10 s(x′) ∈ Y to be

an element such that r(s(x′)) = x′. Let

C ′ = C|A∗(C,ε),
Y ′ = r(Y ),

y′(x′) = y(s(x′)) ∀x′ ∈ Y ′.

By (4), we know |A∗(C, ε)| < n(C). Therefore, we can recursively apply κ on

C ′ and (Y ′, y′) ∈ LC′(1, n(C ′)) and get ((Z ′, z′), (f ′, T ′)). Output ((Z, z), (f, T ))

defined as

Z = {s(x′) : x′ ∈ Z ′},
z(x) = z′(r(x)) ∀x ∈ Z, (r(x) ∈ Z ′)
T = T ′ + 1,

f = f ′. (f is not defined on T , marking that Case 2 occurred)

The following lemma summarizes two key properties of the compression scheme. The

9Remember that f is a partial function.
10The function s can be thought of as the inverse of r. Since r is not necessarily invertible we use a

different notation than r−1.
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correctness of this lemma follows directly from the definitions of Cases 1 and 2 above.

Lemma 4.1. Let (Y, y) ∈ LC(1, n(C)) and ((Z, z), (T, f)) be the compression of (Y, y)

described above, where T ≥ 1. The following properties hold:

1. f is defined on T and f(T ) = x iff x ∈ Y and there exists c ∈ C such that c|Y = y

and c(r(x)) 6= c(x).

2. f is not defined on T iff for all x ∈ Y and c ∈ C such that c|Y = y, it holds that

c(x) = c(r(x)).

4.2 Reconstruction map: defining ρ

The reconstruction map is similarly defined by induction on n(C). Let C be a concept

class and let ((Z, z), (f, T )) be in the image11 of κ with respect to C. Let ε = ε(C) be as

in (3).

Induction base. The induction base here applies to the same classes like the induction

base of the compression map. This is the only case where T = 0, and we apply the

reconstruction map of Floyd and Warmuth [15, 16]

Induction step. Distinguish between two cases:

Case 1: f is defined on T .

Let x = f(T ). Denote

X ′ = X − {x, r(x)},
C ′ = {c′|X′ : c′ ∈ C, c′(x) = z(x), c′(r(x)) = 1− z(x)},
Z ′ = Z − {x, r(x)},
z′ = z|Z′ ,
T ′ = T − 1,

f ′ = f |{0,...,T ′}.

Apply recursively ρ on C ′, ((Z ′, z′), (f ′, T ′)). Let h′ ∈ {0, 1}X′ be the result.

Output h where

h|X′ = h′,

h(x) = z(x),

h(r(x)) = 1− z(x).

11For ((Z, z), (f, T )) not in the image of κ we set ρ((Z, z), (f, T )) to be some arbitrary concept.
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Case 2: f is not defined on T .

Consider r(Z) = {r(x) : x ∈ Z} ⊆ A∗(C, ε). For each x′ ∈ r(Z), pick s(x′) ∈ Z
to be an element such that r(s(x′)) = x′. Let

X ′ = A∗(C, ε),

C ′ = C|X′ ,
Z ′ = r(Z),

z′(x′) = z(s(x′)) ∀x′ ∈ Z ′,
T ′ = T − 1,

f ′ = f |{0,...,T ′}.

Apply recursively ρ on C ′, ((Z ′, z′), (f ′, T ′)) and let h′ ∈ {0, 1}X′ be the result.

Output h satisfying

h(x) = h′(r(x)) ∀x ∈ X.

4.3 Correctness

The following lemma yields the correctness of the compression scheme.

Lemma 4.2. Let C be a concept class, (Y, y) ∈ LC(1, n), κ(Y, y) = ((Z, z), (f, T )) and

h = ρ(κ(Y, y)). Then,

1. Z ⊆ Y and z|Z = y|Z, and

2. h|Y = y|Y .

Proof. We proceed by induction on n(C). In the base case, |C| ≤ (4e2)d·2
d+1 and the

lemma follows from the correctness of Floyd and Warmuth’s compression scheme (this

is the only case in which T = 0). In the induction step, assume |C| > (4e2)d·2
d+1. We

distinguish between two cases:

Case 1: f is defined on T .

Let x = f(T ). This case corresponds to Case 1 in the definitions of κ and Case 1

in the definition of ρ. By Item 1 of Lemma 4.1, x ∈ Y and there exists c ∈ C
and x ∈ Y such that c|Y = y and c(r(x)) 6= c(x). Let C ′, (Y ′, y′) be the class

defined in Case 1 in the definition of κ. Since n(C ′) < n(C), we know that κ, ρ

on C ′ satisfy the induction hypothesis. Let

((Z ′, z′), (f ′, T ′)) = κ(C ′, (Y ′, y′)),

h′ = ρ(C ′, ((Z ′, z′), (f ′, T ′))),
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be the resulting compression and reconstruction. Since we are in Case 1 in the

definitions of κ and Case 1 in the definition of ρ, ((Z, z), (f, T )) and h have the

following form:

Z = Z ′ ∪ {x},
z|Z′ = z′, z(x) = y(x),

T = T ′ + 1,

f |{0,...,T−1} = f ′|{0,...,T−1},
f(T ) = x,

and

h|X−{x,r(x)} = h′,

h(x) = z(x) = y(x) = c(x),

h(r(x)) = 1− z(x) = 1− y(x) = 1− c(x) = c(r(x)).

Consider item 1 in the conclusion of the lemma. By the definition of Y ′ and x,

Y ′ ∪ {x} ⊆ Y, (by the definition of Y ′)

Z ′ ⊆ Y ′. (by the induction hypothesis)

Therefore, Z = Z ′ ∪ {x} ⊆ Y .

Consider item 2 in the conclusion of the lemma. By construction and induction,

h|Y ∩{x,r(x)} = c|Y ∩{x,r(x)} = y|Y ∩{x,r(x)} and h|Y ′ = h′|Y ′ = y′.

Thus, h|Y = y.

Case 2: f is not defined on T .

This corresponds to Case 2 in the definitions of κ and Case 2 in the definition of ρ.

Let C ′, (Y ′, y′) be the result of Case 2 in the definition of κ. Since n(C ′) < n(C),

we know that κ, ρ on C ′ satisfy the induction hypothesis. Let

((Z ′, z′), (f ′, T ′)) = κ(C ′, (Y ′, y′)),

h′ = ρ(C ′, ((Z ′, z′), (f ′, T ′))),

s : Y ′ → Y,

as defined in Case 2 in the definitions of κ and Case 2 in the definition of ρ. By
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construction, ((Z, z), (f, T )) and h have the following form:

Z = {s(x′) : x′ ∈ Z ′},
z(x) = z′(r(x)) ∀x ∈ Z,
T = T ′ + 1,

f = f ′,

and

h(x) = h′(r(x)) ∀x ∈ X.

Consider item 1 in the conclusion of the lemma. Let x ∈ Z. By the induction

hypothesis, Z ′ ⊆ Y ′. Thus, x = s(x′) for some x′ ∈ Z ′ ⊆ Y ′. Since the range of s is Y , it

follows that x ∈ Y . This shows that Z ⊆ Y .

Consider item 2 in the conclusion of the lemma. For x ∈ Y ,

h(x) = h′(r(x)) (by the definition of h)

= y′(r(x)) (by the induction hypothesis)

= y(s(r(x))) (by the definition of y′ in Case 2 of κ)

= y(x),

where the last equality holds due to item 2 of Lemma 4.1: Indeed, let c ∈ C be so that

c|Y = y. Since f is not defined on T , for all x ∈ Y we have c(x) = c(r(x)). In addition,

for all x ∈ Y it holds that r(s(r(x))) = r(x) and s(r(x)) ∈ Y . Hence, if y(s(r(x))) 6= y(x)

then one of them is different than c(r(x)), contradicting the assumption that we are in

Case 2 of κ.

4.4 The compression size

Consider a concept class C which is not part of the induction base (i.e. |C| > (4e2)d·2
d+1).

Let ε = ε(C) be as in (3). We show the effect of each case in the definition of κ on either

|C| or n(C):

1. Case 1 in the definition of κ: Here the size of C ′ becomes smaller

|C ′| ≤ ε|C|.

Indeed, this holds as in the dual set system C∗, the normalized hamming distance

between cx and cr(x) is at most ε and therefore the number of c ∈ C such that

c(x) 6= c(r(x)) is at most ε|C|.
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2. Case 2 in the definition of κ: here n(C ′) becomes smaller as

n(C ′) = |A∗(C, ε)| ≤
(

1

ε

)2d

.

We now show that in either cases, |C ′| ≤ |C|1−
1

d·2d+1 , which implies that after

O((d · 2d + 1) log log |C|)

iterations, we reach the induction base.

In Case 1:

|C ′| ≤ ε|C| = |C|1−
1

d·2d+1 . (by the definition of ε)

In Case 2:

|C ′| ≤ (n(C ′))d (by Theorem 1.1, since V C(C ′) ≤ d− 2)

≤
(

1

ε

)d·2d
(by Theorem 1.3, since n(C ′) = |A∗(C, ε)|)

= |C|1−
1

d·2d+1 . (by definition of ε)

Remark. Note the similarity between the analysis of the cases above, and the analysis

of the size of a teaching set in Section 3. Case 1 corresponds to the rate of the progress

performed in each iteration of the construction of a teaching set. Case 2 corresponds to

the calculation showing that in each iteration significant progress can be made.

Thus, the compression map κ performs at most

O((d · 2d + 1) log log |C|)

iterations. In every step of the recursion the sizes of Z and T increase by at most 1. In

the base of the recursion, T is 0 and the size of Z is at most O(d · 2d). Hence, the total

size of the compression satisfies

|Z| ≤ k = O(2dd log log |C|),
log(|Q|) ≤ O(k log(k)).

This completes the proof of Theorem 1.6.

19



References

[1] Noga Alon, Shay Moran, and Amir Yehudayoff. Sign rank, VC dimension and spectral

gaps. Electronic Colloquium on Computational Complexity (ECCC), 21:135, 2014.

10

[2] D. Angluin and M. Krikis. Learning from different teachers. Machine Learning,

51(2):137–163, 2003. 4, 5

[3] M. Anthony, G. Brightwell, D. A. Cohen, and J. Shawe-Taylor. On exact specification

by examples. In COLT, pages 311–318, 1992. 4

[4] P. Assouad. Densite et dimension. Ann. Institut Fourter, 3:232–282, 1983. 11

[5] F. Balbach. Models for algorithmic teaching. PhD thesis, University of Lübeck, 2007.
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A Double sampling

Here we provide our version of the double sampling argument from [7] that upper bounds

the sample complexity of PAC learning for classes of constant VC-dimension. We use the

following simple general lemma.

Lemma A.1. Let (Ω,F , µ) and (Ω′,F ′, µ′) be countable12 probability spaces. Let

F1, F2, F3, . . . ∈ F , F ′1, F ′2, F ′3, . . . ∈ F ′

be so that µ′(F ′i ) ≥ 1/2 for all i. Then

µ× µ′
(⋃

i

Fi × F ′i

)
≥ 1

2
µ

(⋃
i

Fi

)
,

where µ× µ′ is the product measure.

Proof. Let F =
⋃
i Fi. For every ω ∈ F , let F ′(ω) =

⋃
i:ω∈Fi

F ′i . As there exists i such

that ω ∈ Fi it holds that F ′i ⊆ F ′(ω) and hence µ′(F ′(ω)) ≥ 1/2. Thus,

µ× µ′
(⋃

i

Fi × F ′i

)
=
∑
ω∈F

µ({ω}) · µ′(F ′(ω)) ≥
∑
ω∈F

µ({ω})/2 = µ(F )/2.

We now give a proof of Theorem 1.2. To ease the reading we repeat the statement of

the theorem.

Theorem. Let X be a set and C ⊆ {0, 1}X be a concept class of VC-dimension d. Let µ be

a distribution over X. Let ε, δ > 0 and m an integer satisfying 2(2m+ 1)d(1− ε/4)m < δ.

Let c ∈ C and Y = (x1, . . . , xm) be a multiset of m independent samples from µ. Then,

the probability that there is c′ ∈ C so that c|Y = c′|Y but µ({x : c(x) 6= c′(x)}) > ε is at

most δ.

Proof of Theorem 1.2. Let Y ′ = (x′1, . . . , x
′
m) be another m independent samples from µ,

chosen independently of Y . Let

H = {h ∈ C : distµ(h, c) > ε}.

For h ∈ C, define the event

Fh = {Y : c|Y = h|Y },
12A similar statement holds in general.
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and let F =
⋃
h∈H Fh. Our goal is thus to upper bound Pr(F ). For that, we also define

the independent event

F ′h = {Y ′ : distY ′(h, c) > ε/2}.

We first claim that Pr(F ′h) ≥ 1/2 for all h ∈ H. This follows from Chernoff’s bound, but

even Chebyshev’s inequality suffices: For every i ∈ [m], let Vi be the indicator variables

of the event h(x′i) 6= c(x′i) (i.e., Vi = 1 if and only if h(x′i) 6= c(x′i)). The event F ′h is

equivalent to V =
∑

i Vi/m > ε/2. Since h ∈ H, we have p := E[V ] > ε. Since elements

of Y ′ are chosen independently, it follows that Var(V ) = p(1−p)/m. Thus, the probability

of the complement of F ′h satisfies

Pr((F ′h)
c) ≤ Pr(|V − p| ≥ p− ε/2) ≤ p(1− p)

(p− ε/2)2m
<

4

εm
≤ 1/2.

We now give an upper bound on Pr(F ). We note that

Pr(F ) ≤ 2 Pr

(⋃
h∈H

Fh × F ′h

)
. (Lemma A.1)

Let S = Y ∪ Y ′, where the union is as multisets. Conditioned on the value of S, the

multiset Y is a uniform subset of half of the elements of S. Thus,

2 Pr

(⋃
h∈H

Fh × F ′h

)
= 2E

S

[
E
[
1{∃h∈H:h|Y =c|Y , distY ′ (h,c)>ε/2}

∣∣S]]
= 2E

S

[
E
[
1{∃h′∈H|S :h′|Y =c|Y , distY ′ (h′,c)>ε/2}

∣∣S]]
≤ 2E

S

 ∑
h′∈H|S

E
[
1{h′|Y =c|Y , distY ′ (h′,c)>ε/2}

∣∣S]
 .

(by the union bound)

Notice that if distY ′(h
′, c) > ε/2 then distS(h′, c) > ε/4, hence the probability that we

choose Y such that h′|Y = c|Y is at most (1− ε/4)m. Using Theorem 1.1 we get

Pr(F ) ≤ 2E
S

 ∑
h′∈H|S

(1− ε/4)m

 ≤ 2(2m+ 1)d(1− ε/4)m.
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