Electronic Colloquium on Computational Complexity, Report No. 27 (2015)

The Cryptographic Hardness of Random Local Functions

(SURVEY)

Benny Applebaum*

Abstract

Constant parallel-time cryptography allows to perform complex cryptographic tasks at an
ultimate level of parallelism, namely, by local functions that each of their output bits depend
on a constant number of input bits. A natural way to obtain local cryptographic constructions
is to use random local functions in which each output bit is computed by applying some fixed
d-ary predicate P to a randomly chosen d-size subset of the input bits.

In this work, we will study the cryptographic hardness of random local functions. In par-
ticular, we will survey known attacks and hardness results, discuss different flavors of hardness
(one-wayness, pseudorandomness, collision resistance, public-key encryption), and mention ap-
plications to other problems in cryptography and computational complexity. We also present
some open questions with the hope to develop a systematic study of the cryptographic hardness
of local functions.

*School of Electrical Engineering, Tel-Aviv University, bennyap@post.tau.ac.il. Supported by Alon Fellowship,
ISF grant 1155/11, Israel Ministry of Science and Technology (grant 3-9094), GIF grant 1152/2011, the Check Point
Institute for Information Security, and by the European Union’s Horizon 2020 Programme (ERC-StG-2014-2020)
under grant agreement no. 639813 ERC-CLC.

ISSN 1433-8092

Contents
1 Introduction
2 Preliminaries

3 Inversion

3.1 Failure of “Myopic” Algorithms L o
3.2 Linearization L e e
3.3 Self Correction e
3.4 Graph-Related Leakage
3.5 Hardness Amplification
3.6 Inversion: Discussion L

4 Pseudorandomness

4.1 Pseudorandomness from One-waynesso
4.1.1 Using Weak Unpredictability
4.1.2 Constructions of local PRGs with large stretch
4.1.3 Proof sketch of Theorem 4.3

4.2 Linear Distinguishers
4.2.1 Warm-up: Noisy-XORo
4.2.2 Other Predicates
4.2.3 The Power of Local Low-Bias Generators

4.3 Distinguishing vs. Approximation/Refutation

4.4 Pseudorandommness: SUMMATY o o v vttt b e e e

5 Target Collision Resistance

5.1 Hashing via Random Local Functions?
5.2 Finding far-collisions L
5.3 Applications

6 Public-Key Cryptography
6.1 Noisy-XOR predicate
6.2 General predicate L

1 Introduction

Constant parallel-time cryptography allows to perform complex cryptographic tasks at an ultimate
level of parallelism, namely, by local functions that each of their output bits depends on a constant
number of input bits. (Local functions also known as NC° functions.) The feasibility of locally-
computable cryptography was established by Applebaum, Ishai and Kushilevitz [12] in 2004: It
was shown that many cryptographic tasks admit a local implementation. Concretely, for the case
of one-way functions the following theorem was proven.

Theorem 1.1 (local OWF). Assuming the existence of one-way functions computable in NC*,
there exist locally computable functions that are one-way."

The existence of NC! computable one-way functions is considered to be a solid assumption,
since it can be based on a variety of standard cryptographic assumptions (e.g., the intractability of
factoring, discrete logarithms, and lattice problems). Hence, Theorem 1.1 essentially shows that lo-
cal one-way functions are very likely to exist. This theorem is proven by encoding NC! computable
cryptographic functions into specially crafted local functions whose input-output dependency graph
has a very specific form. A much stronger conjecture was suggested by Goldreich [40] in 2000:

Conjecture 1.2 (Random Local Functions are OWF). For d > 3, let f : {0,1}" — {0,1}™ be
a random d-local function that each of its output bits is computed by applying some fized d-ary
predicate P to a random set of d distinct inputs. Then, for a properly chosen predicate P and a
properly chosen output length m = m(n), the function f is likely to be one-way.

The hardness of random local functions is a basic and intriguing question. Compared to the
encoding-based theorems of [12], Conjecture 1.2 seems much bolder, but it also has the advantage
of being simpler and it may potentially lead to constructions with better efficiency and security
trade-offs. As we will also see, this conjecture has several other interesting implications.

Organization. In this survey we explore the cryptographic hardness of random local functions.
We will mainly focus on hardness in terms of one-wayness (Section 3) and pseudorandomness
(Section 4), but also consider other cryptographic tasks such as hashing (Section 5), and public-key
encryption (Section 6). We will review known attacks and hardness results, mention applications to
other problems in cryptography and computational complexity, and present some open questions.
We hope that this survey will encourage further study of the cryptographic hardness of random
local functions.

2 Preliminaries

General. We let [n] denote the set {1,...,n}. For a string z € {0,1}" and i € [n], we let ;
denote the i-th bit of . For an ordered set S = (i1, ...,iq), we let 25 € {0,1}¢ denote the ordered
restriction of x, i.e., the string x;, ...z;,. For a distribution or random variable X (resp., set), we
write 2 & X to denote the operation of sampling a random z according to X (resp., uniformly
from X'). Through this survey the term efficient refers to probabilistic polynomial-time algorithms.

'Recall that NC! is the class of functions computable by Boolean circuits of polynomial size, logarithmic depth,
and bounded fan-in. We mention that the theorem extends to the case of polynomial size branching programs which
essentially correspond to log-space computation.

Negligible, noticeable, and high probability. We use the standard cryptographic convention
by which a function ¢ : N — [0, 1] is negligible (resp., noticeable) if for all sufficiently large n’s,
g(n) < n for every constant ¢ > 0 (resp., e(n) > n° for some constant ¢ > 0). A sequence of events
E,, happens with high probability (whp) if lim,,_,~ Pr[E,] = 1.

Hypergraphs. An (n,m,d)-hypergraph is a hypergraph over n vertices [n] with m hyperedges
S1,...,Sm each of cardinality d. We assume that each hyperedge S = (i1,...,iq) is ordered,
and that all the d members of an hyperedge are distinct. We let G, ,,, 4 denote the distribution
over such hypergraphs in which a hypergraph is chosen by picking each hyperedge uniformly and
independently at random among all the possible n-(n—1)----- (n—d+1) ordered hyperedges. The
reader may envision the hypergraph as a bipartite graph with vertices on the left and hyperedges
on the right.

Random Local Function. For a d-ary predicate P, and positive integers n and m, we let Fp,,
denote the collection of d-local functions such that each member fg p : {0,1}™ — {0, 1} is specified
by an (n,m,d)-hypergraph G, and the i-th output of fg p is computed by applying the predicate
P to the d inputs that are listed in the i-th hyperedge. We sample a function fg p from Fp,, . by
choosing a random hypergraph G from G, ,, 4.

3 Inversion

The most basic form of cryptographic hardness is one-wayness. In this section we study how hard
it is to invert a random local function.

The inversion problem. The inversion problem for Fp,, ., is defined as follows:

e Input: arandom hypergraph G ¥id Gn,m,a and an m-bit string y = fg p(x) where & {0,1}™.
e Output: a preimage 2’ of y under fg p (ie., fa.pr(z') =y).

We say that the collection Fp,, ,y, is € hard to invert if every efficient adversary A cannot solve the
problem with probability larger than €. By default, we let € be some negligible function.
It will be beneficial to view the inversion problem as a random constraint satisfaction problem

(CSP) over n variables x = (z1,...,x,) with d-ary constraints of the form:
Y1 = P(xsl)a
: (1)
Yn = P(.%'Sm),

where S1,...,95, are the hyperedges of G. In other words, we would like to find a satisfying
assignment for a random CSP problem with a random planted solution. As we will see, this view
of the inversion problem will allow us to adopt algorithmic ideas and hardness results from the
rich literature of random constraint satisfaction problems (e.g., Random 3-SAT, see [37, 28, 1] for
surveys).

The output length. In this section, we will focus on the regime where the output length m is at
least as large as the input length n. It can be shown that, beyond some threshold my = n + Q(n),
if Fpnm is one-way then so is Fp,, s for mg < m’ < m. We will therefore measure the quality of
an inversion algorithm in terms of the value m for which it inverts Fp,, p,.

3.1 Failure of “Myopic” Algorithms

One natural strategy to invert Fp,, », is by using some form of divide-and-conquer approach. The
(naive) hope is that the local structure of the constraints enables a decomposition into small sub-
problems whose solutions can be later combined to form a global solution. In general, this approach
fails. Due to the expansion of the constraint hypergraph, any small subset of the constraints gives
very little information on the global solution [40]. This meta-argument was formalized in several
ways to rule out different forms of local or myopic algorithms [40, 5, 29]. To illustrate this idea let
us consider the following ¢-myopic algorithm which in each step reads ¢ constraints (i.e., ¢ bits of
y) and based on them (and all the previous observations) assigns a value to some input variable z;.
See Figure 1.

e Input: an (n,m,d)-hypergraph G, a string y € {0, 1}™.
e Parameter: Integer ¢ > 0.

Initialize an empty assignment 2’ = +", and an empty set R = () of revealed outputs.
(At this point, all the bits of y are “covered”.)

While there exists an unassigned input variable do:

— Choose a set A of t output coordinates A C [m] and add them to R.
(From now on, the bits y4 are “uncovered”).

— Based on (G, R, yr), choose an unassigned input variable ¢ and assign .

If there is no consistent assignment abort with “Failure”.

(The choice may be based on any computationally unbounded strategy.)

Output: 2.

Figure 1: The basic t-myopic algorithm.

Analysis. We rely on the following key property. Let us say that a function f is (r, ¢, h)-robust if
even after reading an arbitrary set of r outputs, the posterior distribution on every set of ¢ inputs
has at least h bits of min-entropy.2 Formally, for every r-subset of outputs R C [m], ¢-subset of
inputs L C [n] and string w € {0, 1},

Prlz} =w] < 27"

where 2 is chosen by first choosing x & {0,1}™, letting y = f(x), and then choosing 2’ at random
such that f(z')r = yr.

2This notion of robustness is implicit in [5] and was made explicit in [9].

Lemma 3.1 (implicit in [5]). Fiz some integer t and assume that there exist integers ¢, h and k
such that fg p is (€ -t, 0, h)-robust and each string y has at most 2k preimages under fa.p. Then,
the t-myopic algorithm succeeds with probability smaller than 2~ (k)

Proof. After ¢ steps the algorithm fixes £ input variables based on at most £-t output bits of y. The
min-entropy of the partial assignment is i while the number of preimages of y is at most 2¥, hence
the probability of hitting a partial assignment that can be extended to a preimage is 28", O

It turns out that Fp,, ,, is likely to be robust. Specifically, the following lemma was proved
in [29] (extending the techniques of [5]).

Lemma 3.2 ([29]). For most d-ary predicates P, and some r = O(n/d), £ = 2=%Dpn, h = 27°dp,

a function f & Fpnn is likely to be (1,4, h) robust and likely to have an expected number of 927 n

preimages .>

It is essentially shown that fg p is robust whenever the hypergraph G enjoys some expansion
properties and the predicate P is “sensitive” enough (e.g., for some parameter ¢ < d, even after
fixing at most ¢ of P’s inputs, P remains unfixed). Combining the above lemmas, we derive the
following corollary.

Theorem 3.3 ([29]). For most d-ary predicates P and some t = 2°9 /d, the expected success
probability of the basic t-myopic algorithm in inverting Fpy, n is exp(—Q2(n)).

A similar theorem holds for larger output lengths (e.g., every m = O(n)). When the output
length is polynomial (e.g., m = n'!), the results of [9] imply a subexponential bound exp(—n¢) on
the success probability of Fp,, n, alas for a more restricted family of predicates. (See Section 4.2.)

Stronger algorithms. One can use similar techniques to rule out stronger variants of myopic
algorithms [5, 29, 47]. For example, assume that whenever the t-myopic algorithm “gets stuck” with
an unsatisfiable system (i.e., the partial assignment 2’ contradicts some constraints fo p(z); = v
for i € R), the algorithm is allowed to “regret” and change its last “free” decision. Namely, the
algorithm backtracks to the last variable j that could be assigned to both 0 and 1, and flips the
assignment from ac; to 1 — x; After sufficiently many steps, this backtracking myopic algorithm
(which falls under the framework of DPLL-type algorithms) will surely find a preimage. However, it
can be shown [5, 29] that the expected running time will be exponential in n for F, Pin,0(n) and most d-
ary predicates. The high level argument goes as follows. (1) By Lemmas 3.1 and 3.2, after £ = ©(n)
steps the algorithm is likely to fix the first £ variables L mistakenly to a value that cannot be
extended to a satisfying assignment. This means that the residual problem (fq p(z) =y, zr =)
is unsatisfiable. (2) As argued next, it takes exponential time for the backtracking myopic algorithm
to recover from its mistake, and backtrack to the ¢-th iteration. This is proved by showing that (a)
the trace of the algorithm’s execution provides a tree-like resolution proof for the unsatisfiability
of the residual problem; and (b) with high probability, any such proof must be of exponential size
(cf. [18]).

3 A special case of this lemma (for 3-XOR predicate) was originally proved by [5].

3.2 Linearization

Algebraic linearization. In light of the failure of local inversion algorithms, let us try to apply
a more global approach. First, observe that if the predicate is XOR then one can efficiently invert
the function by solving a system of linear equations over the binary field F5. More generally, assume
that the predicate P can be written as a degree ¢ polynomial over Fy. Then we can view the m
constraints {y; = P(xg,)} as a linear system over n® new variables z;, ;. = x; -...- x; . If the
number of constraints is sufficiently large, that is, m = Q(n°logn), then (whp) there exists a unique
solution z to the system, which can be found efficiently. At this point, we are left with the simple
task of finding a vector x which satisfies a (satisfiable) system of AND constraints of the form
Ty - Ti. = Ziy,..i.- Such a system can be efficiently solved by assigning 1 to each input variable
z; that partlclpates in a constraint whose RHS is 1, and 0 to all other variables. It follows, that
for m = Q(nd°e(") log n), the collection Fp,, , is invertible.

Theorem 3.4. If P is degree ¢ over Fa, then the collection Fp, onciogn) 15 €fficiently invertible.

Since any d-ary predicate P can be written as a degree d-polynomial, we conclude that Fp,,
is always invertible for m = Q(n?logn). (A better bound will be proven later.)

Fourier linearization. A different form of linearization arises when the predicate P(w) is (even
slightly) correlated with the parity of ¢ of its inputs (¢-XOR). We say that P is c-correlated if ¢ > 0
is the minimal positive integer for which

sz (mod 2)] # %,
wl {0 1}d i€l

for some c-subset T' C [d]. Fix such a predicate P, and assume, wlog, that the correlation is positive,

i.e., the LHS is larger than % + £. (Otherwise, replace P by its complement.) Since the predicate

is d-local, we may further assume that ¢ > 27% = Q(1). To simplify the following discussion, let us

further assume that the predicate is balanced. (The case of an unbalanced predicate can be treated

by a variant of the following attack.)

We can now view each of the m original constraints as a noisy linear equation

)+ Z zj (mod 2), (2)

JeSs!

where the c-tuple S! is the T-projection of the original d-tuple S;, and each of the e;’s is a Bernoulli
random variables with expectation of % —¢e. In fact, even if zg, is treated as a fixed value, the
expectation of the random variable e;, induced by the choice of zg,\ s 1s % —e. (This follows from
the minimality of ¢ and the fact that P is balanced.)

Say that the hypergraph G contains t hyperedges S1,...,S; whose T-projection correspond to
the same c-tuple S, but all their other entries are disjoint, i.e., the sets S7 \ S’,..., S\ S are
pairwise disjoint. Then, we can derive ¢ noisy copies of the term Zje g where the noise terms
e1,...,e are statistically independent Bernoulli random variables with expectation of % —¢. In
this case, we can take a majority vote over these noisy terms and recover »_ jes T with probability
1—272E" After collecting m = Q(nclogn) random hyperedges, we expect to see t = (logn)
copies of each equation S/, and so we can (with constant probability) simultaneously “purify” the
noise in all these equations, and recover x by solving a linear system.

Optimization. In fact, we can do better and reduce the output length required for this attack to
m = Q(n? +n-logn) or even to m = Qg(n? +n). This is done in three steps. In the first step,
we use the first m; = Q(n%?) outputs to obtain a system (2) of m; noisy c-LIN equations, and
convert this system into a random system of t = (n) noisy 2-LIN equations. Each 2-LIN equation
is generated by XOR-ing together a pair of ¢-LIN equations which share exactly ¢ — 1 variables.
By standard calculation (“birthday paradox”), a collection of m; = Q(Vtn=1) = Q(n%/?) original
equations is expected to contain ¢ such pairs.

In the second step, we apply one of the known algorithms (e.g., the SDP of [39] or [27]) to obtain
a solution 2’ that satisfies a large fraction of the 2-LIN constraints. Since the constraint graph of
the 2-LIN instance is random, it can be shown that the assignment 2’ is likely to be correlated with
the original (planted) solution z. That is, the relative Hamming distance between z’ and x is at
most 1 — ¢ for some constant £ > 0 (see [8]).

In the final step, we use 2’ and additional ms = Q(nlogn) noisy c-linear equations to recover
a solution z”. The i-th bit of 2" is recovered as follows: (a) Collect Q(logn) equations in which
the i-th variable z; participates; (b) Compute 2(logn) “votes” for the value of z by substituting
all the other variables with their value under the approximate solution z’; and (c) Set z} to be
the majority among all the votes. It can be shown that (whp) this voting procedure recovers the
i-th bit of the planted solution. Overall, the algorithm works when the output length m is larger
from mq + mo = Q(nc/ 2 + nlogn) outputs. In fact, one can reduce the complexity of the last
amplification step to ma = Q4(n) outputs (see Section 3.3), which leads to the following theorem.

Theorem 3.5. If P : {0,1}¢ — {0,1} is c-correlated, then the collection FpnQune/24n) 1 €ffi-
ciently invertible.

Interestingly, algebraic linearization (Theorem 3.4) and Fourier linearization (Theorem 3.5)
complement each other. Siegenthaler [59] proved that any (non-linear) d-ary predicate P of algebraic
degree c; over [Fy, must be ca-correlated for co < d—c;. Hence, when m is roughly nd/3 it is possible
to invert Fp,, n, either via Theorem 3.4 or via Theorem 3.5. A more careful calculation yields the
following corollary.

Corollary 3.6. For any d-ary predicate P and m = Q(n%LQd/?’J logn), the collection Fpy m is
efficiently invertible.

Proof. First, observe that if d = 2 the inversion problem can be reduced to a 2-CNF problem, and
can therefore be solved efficiently for any value of m. Inversion is also trivial when P is linear
(i.e., XOR or its complement). Hence, we may assume that P is non-linear and that d > 2. We
distinguish between two cases. If the algebraic degree ¢; of P is smaller or equal to |d/3], then
Theorem 3.4 allows to invert Fp,, ,, once m = Q(n logn), let alone when m = Q(nétm/?’J logn).
On the other hand, if ¢; > |d/3] then, by Siegenthaler’s theorem, P must be ca-correlated for some
co < d—[d/3]. Since ¢y is an integer, it must hold that ¢ < [2d/3], and so, by Theorem 3.5, Fp . m
can be inverted when m = Qd(n%pd/‘rﬂ +n). For d > 2, the latter simplifies to Qd(n%pd/:ﬂ). O

Corollary 3.6 provides the best known attack against a general predicate.

Question 3.7. Is it possible to efficiently invert the collection Fpy, ., for every predicate P and

1
some m = nz231=¢ for some e > 0%

A more concrete challenge is to solve the above question for the predicate
MSle,dQ(wl, e Wiy s 21 - - 7Zd2) = (w1 b---PB wdl) b (Zl VANEIEIAN ZdQ), (3)

where d; = 2dy. Originally introduced by Mossel, Shpilka and Trevisan [53], this predicate has
algebraic degree of do and it is uncorrelated with parities of arity smaller than d;.

3.3 Self Correction

Suppose that we are given, as an advice, a string 2’ which is correlated with a true preimage z. Is
it possible to efficiently invert fg p? It turns out that the answer is positive as long as the advice
is good enough and the output length m is sufficiently large.

Formally, let us define the problem of inversion with e-leakage as follows. The input consists
of a triple (G,y,z’) where G A Gnom.d, Y = fa p(x) where e {0,1}", and 2’ is a random string
that is (3 — ¢)-close to z in (relative) Hamming distance. As before, the goal is to recover some
preimage of y. It is important to note that the advice string 2’ is chosen solely based on z, and
it is statistically independent from the hypergraph G. The following theorem was proven in [23,
Theorem 1.3].

Theorem 3.8 (Self-Correction). For every d-ary predicate P, every € > 0, and every m > n -
(k/e)??, where k is some universal constant, it is possible to efficiently invert Fpnm with e-leakage.

Thinking of € as a constant, it follows that when m = 4(n), one can efficiently invert Fp,, »,
with e-leakage.

Proof idea. The algorithm is based on a three-phase approach originally suggested in the context of
planted colorability [6] and planted SAT [38]. Ignoring some technical details (and oversimplifying)
the algorithm proceeds as follows: First, we pass over all input variables (in parallel) and flip the
value of z/ if it appears in “too many” constraints that are violated by /. After repeating this
basic amplification step O(logn) times, we will have (whp) an assignment z” that agrees with the
planted assignment on all but a small fraction of “untypical” inputs.

In the second phase, we will identify (based on the properties of the hypergraph) a large set of
inputs for which our assignment is likely to be correct, and unassign all other input variables. As
a result we will obtain a partial assignment with no error.

Finally, we complete the partial assignment to a satisfying assignment via brute-force. The
analysis shows that whp the last step can be done efficiently as the partial assignment breaks the
original problem to small (logarithmic-size) independent sub-problems. Ol

Applications. Theorem 3.8 shows that, for sufficiently large output length (i.e., m = Qg4(n)),
the task of inverting Fp,, ,, reduces to the task of finding an approximate preimage. We can think
of this as a hardness result: If inversion is hard, then even approzimate inversion is hard. In some
cases, however, approximate inversion can be done efficiently and the theorem leads to inversion
algorithms. For example, when the predicate P is c-correlated, the linearization technique outlined
in Section 3.2 allow us to approximately invert F Pn,Q(ne/2) UP tO a distance of, say 0.51. Combined

with self-correction, this leads to full inversion for output lengths of Qd(nc/ 2 4+ n), as claimed
in Theorem 3.5. In particular, in the special case of 2-correlated predicate one can use spectral

techniques and find an approximate preimage even when the output length is linear m = Q4(n).
(See [23].) Hence, for such predicates, Fp,, n—q,m) is efficiently invertible.

For general predicates, Theorem 3.8 yields the following natural attack: (1) Generate a list
of candidates which contains a (% — ¢)-approximate preimage, and (2) Apply the algorithm of
Theorem 3.8 to each of these candidates. To implement the first step, assign random values to the
first (1—2¢)n input variables, and enumerate over all possible assignments to the last 2en variables.
With probability %, the random part of the assignment will agree with the planted assignment z
on at least half of its coordinates, and so the list will contain an assignment 2’ which agrees with z
on 3(1—2¢)n+2en = (3 +)n of the coordinates. The complexity of the algorithm is 2%". When
the output length is super-linear, i.e., m = n'*¢ for constant ¢ > 0, we can apply Theorem 3.8
with inverse-polynomial ¢ = n~% for some constant § = d(c,d) > 0, and derive a subexponential

inversion algorithm of complexity 20(n' ™),

3.4 Graph-Related Leakage

Theorem 3.8 says that inversion becomes easy if large enough fraction of the bits of the preimage x
are leaked. As already noted, the theorem assumes that the leakage is independent of the hypergraph

G & Gnm.d- Namely, the set of indices on which 2/ and = agree is chosen uniformly at random
independently of the hypergraph G. In contrast, it can be shown that inversion remains (somewhat)
hard when the set of agreement {i: 2} = x;} depends on G. Specifically, suppose that we reveal
the substring xp where T is the union of a random subset of the hyperedges of G. (Equivalently,
each hyperedge of GG is selected independently at random with probability %, and all the inputs
which participate in the selected hyperedges are leaked.) In [10] it is shown that, for random local
functions, inversion with “random-exposure” is not (much) easier than standard inversion with no
leakage.? The basic idea is to argue that with noticeable probability one can embed a “small”
standard inversion problem in an inversion problem with random exposure.

To get some intuition, assume that the exposure is applied to a random function with m = 2¢n
outputs, n inputs and (expected) locality d. Further, assume that exactly m/2 hyperedges were
exposed and so there are cn unexposed hyperedges. In this case, an input bit is not exposed (i.e.,
does not participate in an exposed hyperedge) with probability roughly (1 —d/n) ~ e~°?. Hence,
the expected number of unexposed inputs is n/ = n/eCd, and so the hypergraph G contains a
unexposed subgraph G’ with n’ inputs and m’ = ce®n’ outputs. It turns out that a random local
function f : {0,1}" — {0,1}" can be embedded in this subgraph. (See [10].)

For ¢ = Ind/d, it follows that if a random local function which expands n’ inputs to m’ = (Ind)n’
outputs is hard to invert, then a random local function which shrinks n inputs to (2Ind/d)n outputs
is hard to invert with “random-exposure”. The existence of functions which remain one-way in the
presence of random-exposure was used in [10] to construct one-way functions with optimal output
locality of 3.

4For technical reasons, the result applies to a variant of F. Pn,m in which each output is computed by a different
predicate P; : {0,1}% — {0,1}. Each predicate is chosen by first choosing an arity d; from the binomial distribution
B(n,d/n), and then choosing P; uniformly at random from all predicates of arity d;. It should be noted a random
predicate yields an easy-to-invert collection when the output length m = cn is sufficiently large, i.e., ¢ = poly(d).
Still, when the output length m is close to n, no efficient attacks are known.

3.5 Hardness Amplification

Is it possible to find a small e-fraction of inputs X C {0, 1}" for which Fp,, ,, is efficiently invertible?

In [24, Theorem 6.1}, it is shown that, for a random local function f EF P.n,m With sufficiently large
output length m = Qg(n), the existence of an easy set of inputs for f of density ¢ > 9—nM implies
that f is invertible on 1 — ¢ fraction of the inputs in subexponential-time of exp(O(y/n)).” Hence,
one-wayness with respect to sub-exponential time has an all-or-nothing flavor: Either almost all
inputs are hard to invert, or almost all inputs are easy to invert.

The proof is based on the following idea. Given a weak inversion algorithm A that inverts
fa,p over a set of inputs X, we construct an inversion algorithm B that inverts fg p over the set
X' that contains all the inputs which are k-close to X in (absolute) Hamming distance, where
k = 4/2In(1/e)n and X has density at least €. The key observation is that if 2’ is k-close to x € X,
then the image ' = fg p(2’) is likely to be O(k) close to the image y = fq p(z), since each input in
fa,p is expected to influence a constant number of outputs. Ignoring some technical details, we can
now invert fo p at 3 as follows: (1) search for y by flipping all possible sets of O(k) coordinates;
(2) apply A to invert y and obtain x, and then (3) search for 2’ by flipping all possible sets of k
coordinates. In other words, we first “walk” on the range space of fg p until we get to an easy
instance y which can be inverted to z, and then, we recover x’ by “walking” back from z, this time
on the domain space. A standard probabilistic argument shows that, by taking k = 1/2In(1/¢)n,
at least 1 —¢ fraction of the inputs 2’ will be k-close to some instance in the easy set (whose density
is €).

3.6 Inversion: Discussion

We end this section with an attempt to draw the borderline (in terms of locality and output length)
between easiness and hardness. Let Tp(n,m) denote the complexity of inverting Fp,, ,, with
noticeable probability, and let T'(d,n,m) = maxp.;g1y4_,0013 TP(n,m). We saw that T'(d,n,n°)
is (at most) sub-exponential for any ¢ > 1, and polynomial for ¢ > d/3 (or more accurately for
¢ > £[2d/3])). In light of this, we put forward the following conjecture.

Conjecture 3.9. For every constant ¢ > 1, there exists a constant d and a d-ary predicate P, for
which the collection Fpy, ne is hard to invert, i.e., T'(d,n,n) is super-polynomial.

It should be mentioned that for linear output lengths m = O(n), the complexity of the best
known attacks is 2" Hence, one may (strongly) conjecture that for some predicate P, the
collection Fp,, m—0(n) is exponentially-hard to invert. Moreover, for m = n, this conjecture may
even hold for most d-ary predicates and every d > 5. (In contrast, for every 2-ary predicate P and
every m, the collection Fp,, n, is easy to invert.)

We believe that exploring Conjecture 3.9 is an important research direction. It will be also
interesting to study a concrete version of the conjecture with an explicit dependency of the locality
d in the output length m = n° All we currently know is that one-wayness requires d > 3¢ due to
Corollary 3.6. We ask: Does it suffice to take d = Q(c) or maybe a larger locality of d > poly(c) or
even d > exp(c) is needed? Some recent results suggest that the bounds obtained in Corollary 3.6
may be tight, at least for a rich family of algorithms [56, 36].

5This result holds whp over the choice of the hypergraph, and even if the “easy inputs” are invertible in time

exp(O(v/n)).

It will be also useful to study concrete suggestions for the predicate P. Ideally, one may hope to
identify the “hardest” d-ary predicate P* and prove a completeness result of the form: “if Fp,
is hard for some d-ary predicate P then so is Fp«, ,”. While we do have some understanding of
potential “easy” and “hard” predicates (see also next section), the existence of complete predicates
is currently wide open. We note that the natural choice of using a random predicate as the hardest
d-ary predicates fails when the output length is sufficiently large (m > poly(d)n) as with high
probability such a predicate will be correlated with one of its inputs.

Bibliographic Note. Linearization attacks were originally considered in [30, 53] in the context
of locally-computable pseudorandom generators with an arbitrary dependencies hypergraph (as
opposed to random). Theorems 3.4 and 3.5 and Corollary 3.6 (which have not appeared before)
are mainly based on the ideas of [53, 23, 8], and may be considered a folklore.

4 Pseudorandomness

We move on to study the pseudorandomness of Fp,, .. Let us recall the notion of collection of
pseudorandom generators. In the following, we let F denote a collection of efficiently computable
functions, in particular, each function f: {0,1}" — {0,1}™ in F has a succinct representation (f)
of size poly(n) (e.g., as a polynomial-size circuit).

Definition 4.1. A collection of length-increasing functions F = {f :{0,1}" — {0,1}™} is e-
pseudorandom generator (e-PRG) if for every efficient algorithm A the distinguishing advantage

Pr [A(f), f(z)) = 1] - Pr [A({f)v) =1] (4)

FEF & 013 FEFy&q01ym
is at most e(n).

We emphasize that since we are dealing with collection of functions, the adversary’s input
consists the description of a random function (in our case a hypergraph chosen from G, ,, 4) and
an m-bit challenge string. When the collection consists of a single function, we derive the standard
notion of e-pseudorandom generator. (See [41, Section 2.4.2] for an analogous treatment for the
case of OWF collections.) Thus, in the case of Fp,, ., the distinguisher is given a random (n,m, d)-
hypergraph G and a string y € {0,1}" and its goal is to distinguish between the case where y is
chosen at random and the case where y is a random image of fg p.

The stretch. Pseudorandomness becomes non-trivial when the output length m is larger than n.
In fact, we will be interested in the regime where the stretch m—n is linear in n, or even polynomially
larger than n. The existence of such high-stretch pseudorandom generators with low locality has
turned to be an important open question with several applications [30, 53, 4, 13, 46, 8, 7, 45]. For
example, as shown in [46], such PRGs allow to improve the sequential complezity of cryptography: A
linear-stretch PRG with constant locality would lead to implementations of several basic primitives
(e.g., public-key encryption, commitment schemes) with constant computational overhead, and a
polynomial-stretch PRG with constant locality would lead to secure computation protocols with
constant computational overhead — a fascinating possibility which is not known to hold under any
other cryptographic assumption. Currently, all known candidates for large-stretch PRGs with low

10

locality are essentially based on random local functions. In contrast, the PRGs derived by [12] have
sub-linear stretch (i.e., m = n + n!~¢ for some fixed £ > 0).

The distinguishing advantage. The standard cryptographic convention requires negligible dis-
tinguishing advantage of n=“(1). Unfortunately, the collection F Pn,m fails to achieve this regardless
of the choice of the predicate P or the output length m. Indeed, observe that if the graph G has two
identical hyperedges then fg p(z) can be distinguished from a truly random string with constant
advantage (of one half). Since a 1/poly(n)-fraction of (n,m,d)-hypergraphs have two identical
hyperedges, the collection Fp,,,, can be distinguished with a noticeable advantage of 1/poly(n).
Keeping this limitation in mind, we will strive for 1/poly(n)-pseudorandomness, or, better yet,
try to prove statements of the form: For all but 1/poly(n) fraction of the hypergraphs (e.g., all
hypergraphs which satisfy some expansion properties) the function fg p is (n*”(l))-pseudorandom.
(We will see examples for both versions in the following sections.)

Pseudorandomness vs. One-wayness. From an algorithmic point of view, the task of dis-
tinguishing seems much easier than the task of inversion, and therefore pseudorandomness seems
more fragile than one-wayness. This is especially true in the setting of low locality, since in this
case even the task of avoiding simple regularities in the output is quite challenging. Indeed, there
are some predicates and hypergraphs for which distinguishing (with constant advantage) is easy,
but inversion seems hard. This is the case, for example, when the predicate is not perfectly bal-
anced (i.e., Pr,[P(w) = 1] # %) or the dependencies hypergraph contains two identical hyperedges.
Nevertheless, as we will see (in Sections 4.1 and 4.2), there are good reasons to believe that, for a
proper choice of P, the collection Fp,, ,, is pseudorandom.

4.1 Pseudorandomness from One-wayness
The work of [7] relates the pseudorandomness of random local functions to the difficulty of inverting
them.

4.1.1 Using Weak Unpredictability

As a starting point, it is shown that one-wayness implies some form of (weak) unpredictability as
defined below.

Definition 4.2 (Unpredictability). The collection Fp,, m is o unpredictable generator (UG) if for
every efficient adversary A and every index i € [m] we have that

PrIA(f, f(2)pa 1) = f(@)i] < a(n), where f & Fppm, o & (0,1}

In the following, we say that a predicate P is sensitive if at least one its coordinates ¢ has full
influence, i.e., flipping the value of the i-th variable always changes the output of P. Equivalently,
P(w) can be written as w; ® Q(w1, ..., Wi—1,Wit1,-..,wq) for some (d — 1)-ary predicate Q.

The following theorem is proven in [7] (see Theorems. 4.1 and 5.1 for a stronger and more
detailed statements).

Theorem 4.3 (one-wayness = unpredictability). Let P be a d-ary predicate and assume the
collection Fpy m 18 one-way.

11

1. If m = Qq(n), then Fpym is also (1 —¢e)-UG for some positive constant € = ¢(P) > 0.

2. If P is sensitive then for every polynomial q the collection Fp, mq(n)2 18 (% +¢/q(n))-UG,
for some constant ¢ = c¢(d) > 0.

See Section 4.1.3 for a proof sketch. The two parts of the theorem complement each other.
Part (1) applies to any predicate but yields only (1 — ¢) unpredictability for a constant e, while
Part (2) applies only to sensitive predicates but yields stronger parameters, e.g., (%+5)-unpredictability
for inverse polynomial €. Such a difference is somewhat expected since unbalanced predicates (for
which Part (1) applies) can be predicated with success probability that is bounded away from %

Theorem 4.3 has several interesting applications. First, it can be used to show that, for some
predicates, the one-wayness of F with output length m, implies pseudorandomness for a related

(shorter) output length m/.

Theorem 4.4 (one-way = PRG). For every constants a > 1,b > 0 and d, and every sensitive
b

d-ary predicate P, if Fp,, p3a+2n s one-way then Fpyppa is e-pseudorandom for e =n=".

Observe that the distinguishing advantage ¢ is inverse polynomial and not negligible as per the
standard cryptographic definitions. As already mentioned this is inherent for the collection Fp,, .
It is plausible to assume that when the hypergraph G is a good expander, £ can be taken to be
negligible.

4.1.2 Constructions of local PRGs with large stretch

We can further use the above theorems to construct locally computable PRGs with large stretch.
For the regime of linear stretch, it is shown in [7] how to construct locally computable PRG with
linear stretch and negligible distinguishing advantage based on a locally computable (1 — ¢)-UG
with constant unpredictability (i.e., ¢ > 0) and sufficiently large linear stretch.® Combined with
the first part of Theorem 4.3, we derive the following theorem ([7, Theorem 1.2]).

Theorem 4.5 (Local PRG with Linear Stretch). For every d-ary predicate P and m = Q4(n),
if the collection Fpy m is one-way, then there exists a collection of locally computable e-PRG's with
linear stretch and negligible distinguishing advantage € = n=<(),

Note that a d-local PRG with linear stretch m = (1 + ¢)n bits can be composed with itself
a constant number of times to yield a PRG with an arbitrary linear stretch ¢’ at the expense of
increasing the locality to a larger constant d’.

In the regime of polynomial stretch, we do not know how to simultaneously achieve constant
locality and negligible distinguishing advantage. Still, we can prove an “almost” tight result based
on Theorem 4.4 and standard amplification techniques (see [7, Thm 1.3]).

Theorem 4.6 (Almost Local PRG with Polynomial Stretch). Assume that Fp,, ,1+s is one-
way for some sensitive d-ary predicate P and some constant § > 0. Then, for every constant ¢ > 0
the following hold:

50Observe that in this regime Yao’s transformation from unpredictability to pseudorandomness cannot be used
since the unpredictability is at a constant level whereas Yao’s transformation requires unpredictability of at least
% + 0(1/n)). Instead, the transformation employs locally computable randomness extractors, which are based on
locally-computable low-bias generators. The latter will be discussed in Section 4.2.

12

[

o There exists a PRG collection with distinguishing advantage n™¢, polynomial stretch n®, and

constant locality d = d(c).

o There exists a PRG collection with negligible distinguishing advantage n=*M, polynomial

stretch n®, and any (arbitrarily slowly growing) super-constant locality d = w(1), e.g., log* n.

The existence of a locally computable PRG with polynomial stretch and negligible distinguishing
advantage remains an interesting open question.

Question 4.7. Does a PRG with constant locality, polynomial stretch, and negligible distinguishing
advantage exist?

It is known [11] that such a PRG essentially requires an explicit construction of constant-degree
bipartite expander graphs which are highly-unbalanced — a problem which is currently open. For
the case of PRG collections, it actually suffices to describe an efficiently samplable distribution over
highly-unbalanced constant-degree graphs which puts all but a negligible fraction of its mass on
good expanders. To the best of our knowledge, this problem is also open. One way to avoid this
barrier, is to focus on a non-uniform construction.

4.1.3 Proof sketch of Theorem 4.3

Conceptually, we reduce unpredictability to one-wayness via the following approach: Suppose that
we have an efficient predictor A for the function f(z) sampled from f ¥id FpPnm- Then we can
collect information about z, and eventually invert the function fg p(x), by invoking the adversary
multiple times with respect to many different hypergraphs Gy, ..., G¢, which are all close variants
of the original hypergraph G. We sketch the details for the first part of the theorem.

The basic procedure. Let us assume for now that the first input of P has full influence. In
addition, let us assume for simplicity that A always attempts to predict the last-bit. Namely, the
predictor A is given a random (n, m, d)-hypergraph G and the (m — 1)-bit long prefix of the string
y = fa,p(z), and it predicts with probability % + ¢ the last output y,,, = P(xg), which corresponds
to the (last) hyperedge S = (i1,...,iq). Given such a pair (G, y), let us replace the first entry i; of
S (hereafter referred to as “pivot”) with a random index ¢ € [n], and then invoke A on the modified
pair. If the predictor succeeds and outputs P(xg), then, by comparing this value to y,,, we get to
learn whether the input bits x, and x;, are equal. Since the predictor may err, we can treat this
piece of information as a noisy 2-LIN equation of the form xy @ z;;, = b where b € {0,1}.

Collecting many 2-LIN equations. In order to recover x, we would like to collect many such
equations. To this end, we iterate the basic procedure n times where the hypergraph G, the m-bit
string y, and the hyperedge S are all fized, and in each iteration a different index j € [n] is being
planted in S. As a result we obtain a system of noisy linear equations of the form

Y1 = x1 + Ty,

Yn = Tn +.’L'i1,

13

where 7 is the pivot. By guessing the value of x;, we derive a solution 2’ € {0,1}", which agrees
(whp) with = on % + & of the coordinates for some constant & > 0. At this point we employ
self-correction (Theorem 3.8) and recover x.

Handling general predicate. We would like to use the “basic procedure” for an arbitrary
predicate that is not necessarily sensitive. For concreteness, think of the majority predicate. In
this case, when recovering a 2-LIN equation, we are facing two sources of noise: one due to the
error of the prediction algorithm, and the other due to the possibility that the current assignment
xg is “stable” (i.e., flipping its first location does not change the value of the predicate, e.g., in the
case of majority, any assignment with less than |d/2| ones.) To bypass this problem we strengthen
our hypothesis and require a predictor whose success probability is larger than the probability of
getting a stable assignment. With some care, the previous argument can be extended to this case,
and one can prove (1 — ¢)-unpredictability for some positive constant ¢ = e(P).”

Finally, we mention that the second part of the theorem requires additional noise-reduction
steps, since it is based on a weaker (5 + 1/poly(n))-predictor. See [7]