
The Cryptographic Hardness of Random Local Functions

(Survey)

Benny Applebaum∗

Abstract

Constant parallel-time cryptography allows to perform complex cryptographic tasks at an
ultimate level of parallelism, namely, by local functions that each of their output bits depend
on a constant number of input bits. A natural way to obtain local cryptographic constructions
is to use random local functions in which each output bit is computed by applying some fixed
d-ary predicate P to a randomly chosen d-size subset of the input bits.

In this work, we will study the cryptographic hardness of random local functions. In par-
ticular, we will survey known attacks and hardness results, discuss different flavors of hardness
(one-wayness, pseudorandomness, collision resistance, public-key encryption), and mention ap-
plications to other problems in cryptography and computational complexity. We also present
some open questions with the hope to develop a systematic study of the cryptographic hardness
of local functions.

∗School of Electrical Engineering, Tel-Aviv University, bennyap@post.tau.ac.il. Supported by Alon Fellowship,
ISF grant 1155/11, Israel Ministry of Science and Technology (grant 3-9094), GIF grant 1152/2011, the Check Point
Institute for Information Security, and by the European Union’s Horizon 2020 Programme (ERC-StG-2014-2020)
under grant agreement no. 639813 ERC-CLC.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 27 (2015)

Contents

1 Introduction 1

2 Preliminaries 1

3 Inversion 2

3.1 Failure of “Myopic” Algorithms . 3
3.2 Linearization . 5
3.3 Self Correction . 7
3.4 Graph-Related Leakage . 8
3.5 Hardness Amplification . 9
3.6 Inversion: Discussion . 9

4 Pseudorandomness 10

4.1 Pseudorandomness from One-wayness . 11
4.1.1 Using Weak Unpredictability . 11
4.1.2 Constructions of local PRGs with large stretch 12
4.1.3 Proof sketch of Theorem 4.3 . 13

4.2 Linear Distinguishers . 14
4.2.1 Warm-up: Noisy-XOR . 14
4.2.2 Other Predicates . 16
4.2.3 The Power of Local Low-Bias Generators . 17

4.3 Distinguishing vs. Approximation/Refutation . 19
4.4 Pseudorandomness: Summary . 21

5 Target Collision Resistance 22

5.1 Hashing via Random Local Functions? . 22
5.2 Finding far-collisions . 23
5.3 Applications . 25

6 Public-Key Cryptography 26

6.1 Noisy-XOR predicate . 27
6.2 General predicate . 28

2

1 Introduction

Constant parallel-time cryptography allows to perform complex cryptographic tasks at an ultimate
level of parallelism, namely, by local functions that each of their output bits depends on a constant
number of input bits. (Local functions also known as NC0 functions.) The feasibility of locally-
computable cryptography was established by Applebaum, Ishai and Kushilevitz [12] in 2004: It
was shown that many cryptographic tasks admit a local implementation. Concretely, for the case
of one-way functions the following theorem was proven.

Theorem 1.1 (local OWF). Assuming the existence of one-way functions computable in NC1,
there exist locally computable functions that are one-way.1

The existence of NC1 computable one-way functions is considered to be a solid assumption,
since it can be based on a variety of standard cryptographic assumptions (e.g., the intractability of
factoring, discrete logarithms, and lattice problems). Hence, Theorem 1.1 essentially shows that lo-
cal one-way functions are very likely to exist. This theorem is proven by encoding NC1 computable
cryptographic functions into specially crafted local functions whose input-output dependency graph
has a very specific form. A much stronger conjecture was suggested by Goldreich [40] in 2000:

Conjecture 1.2 (Random Local Functions are OWF). For d ≥ 3, let f : {0, 1}n → {0, 1}m be
a random d-local function that each of its output bits is computed by applying some fixed d-ary
predicate P to a random set of d distinct inputs. Then, for a properly chosen predicate P and a
properly chosen output length m = m(n), the function f is likely to be one-way.

The hardness of random local functions is a basic and intriguing question. Compared to the
encoding-based theorems of [12], Conjecture 1.2 seems much bolder, but it also has the advantage
of being simpler and it may potentially lead to constructions with better efficiency and security
trade-offs. As we will also see, this conjecture has several other interesting implications.

Organization. In this survey we explore the cryptographic hardness of random local functions.
We will mainly focus on hardness in terms of one-wayness (Section 3) and pseudorandomness
(Section 4), but also consider other cryptographic tasks such as hashing (Section 5), and public-key
encryption (Section 6). We will review known attacks and hardness results, mention applications to
other problems in cryptography and computational complexity, and present some open questions.
We hope that this survey will encourage further study of the cryptographic hardness of random
local functions.

2 Preliminaries

General. We let [n] denote the set {1, . . . , n}. For a string x ∈ {0, 1}n and i ∈ [n], we let xi
denote the i-th bit of x. For an ordered set S = (i1, . . . , id), we let xS ∈ {0, 1}d denote the ordered
restriction of x, i.e., the string xi1 . . . xid . For a distribution or random variable X (resp., set), we

write x
R← X to denote the operation of sampling a random x according to X (resp., uniformly

from X). Through this survey the term efficient refers to probabilistic polynomial-time algorithms.

1Recall that NC
1 is the class of functions computable by Boolean circuits of polynomial size, logarithmic depth,

and bounded fan-in. We mention that the theorem extends to the case of polynomial size branching programs which
essentially correspond to log-space computation.

1

Negligible, noticeable, and high probability. We use the standard cryptographic convention
by which a function ε : N → [0, 1] is negligible (resp., noticeable) if for all sufficiently large n’s,
ε(n) < nc for every constant c > 0 (resp., ε(n) > nc for some constant c > 0). A sequence of events
En happens with high probability (whp) if limn→∞Pr[En] = 1.

Hypergraphs. An (n,m, d)-hypergraph is a hypergraph over n vertices [n] with m hyperedges
S1, . . . , Sm each of cardinality d. We assume that each hyperedge S = (i1, . . . , id) is ordered,
and that all the d members of an hyperedge are distinct. We let Gn,m,d denote the distribution
over such hypergraphs in which a hypergraph is chosen by picking each hyperedge uniformly and
independently at random among all the possible n · (n−1) · · · · · (n−d+1) ordered hyperedges. The
reader may envision the hypergraph as a bipartite graph with vertices on the left and hyperedges
on the right.

Random Local Function. For a d-ary predicate P , and positive integers n and m, we let FP,n,m

denote the collection of d-local functions such that each member fG,P : {0, 1}n → {0, 1}m is specified
by an (n,m, d)-hypergraph G, and the i-th output of fG,P is computed by applying the predicate
P to the d inputs that are listed in the i-th hyperedge. We sample a function fG,P from FP,n,m by
choosing a random hypergraph G from Gn,m,d.

3 Inversion

The most basic form of cryptographic hardness is one-wayness. In this section we study how hard
it is to invert a random local function.

The inversion problem. The inversion problem for FP,n,m is defined as follows:

• Input: a random hypergraphG
R← Gn,m,d and anm-bit string y = fG,P (x) where x

R← {0, 1}n.

• Output: a preimage x′ of y under fG,P (i.e., fG,P (x
′) = y).

We say that the collection FP,n,m is ε hard to invert if every efficient adversary A cannot solve the
problem with probability larger than ε. By default, we let ε be some negligible function.

It will be beneficial to view the inversion problem as a random constraint satisfaction problem
(CSP) over n variables x = (x1, . . . , xn) with d-ary constraints of the form:















y1 = P (xS1),

...

yn = P (xSm),

(1)

where S1, . . . , Sm are the hyperedges of G. In other words, we would like to find a satisfying
assignment for a random CSP problem with a random planted solution. As we will see, this view
of the inversion problem will allow us to adopt algorithmic ideas and hardness results from the
rich literature of random constraint satisfaction problems (e.g., Random 3-SAT, see [37, 28, 1] for
surveys).

2

The output length. In this section, we will focus on the regime where the output length m is at
least as large as the input length n. It can be shown that, beyond some threshold m0 = n+Ω(n),
if FP,n,m is one-way then so is FP,n,m′ for m0 < m′ < m. We will therefore measure the quality of
an inversion algorithm in terms of the value m for which it inverts FP,n,m.

3.1 Failure of “Myopic” Algorithms

One natural strategy to invert FP,n,m is by using some form of divide-and-conquer approach. The
(naive) hope is that the local structure of the constraints enables a decomposition into small sub-
problems whose solutions can be later combined to form a global solution. In general, this approach
fails. Due to the expansion of the constraint hypergraph, any small subset of the constraints gives
very little information on the global solution [40]. This meta-argument was formalized in several
ways to rule out different forms of local or myopic algorithms [40, 5, 29]. To illustrate this idea let
us consider the following t-myopic algorithm which in each step reads t constraints (i.e., t bits of
y) and based on them (and all the previous observations) assigns a value to some input variable xi.
See Figure 1.

• Input: an (n,m, d)-hypergraph G, a string y ∈ {0, 1}m.

• Parameter: Integer t > 0.

• Initialize an empty assignment x′ = ⋆n, and an empty set R = ∅ of revealed outputs.
(At this point, all the bits of y are “covered”.)

• While there exists an unassigned input variable do:

– Choose a set A of t output coordinates A ⊂ [m] and add them to R.
(From now on, the bits yA are “uncovered”).

– Based on (G,R, yR), choose an unassigned input variable i and assign x′i.
If there is no consistent assignment abort with “Failure”.
(The choice may be based on any computationally unbounded strategy.)

• Output: x′.

Figure 1: The basic t-myopic algorithm.

Analysis. We rely on the following key property. Let us say that a function f is (r, ℓ, h)-robust if
even after reading an arbitrary set of r outputs, the posterior distribution on every set of ℓ inputs
has at least h bits of min-entropy.2 Formally, for every r-subset of outputs R ⊆ [m], ℓ-subset of
inputs L ⊆ [n] and string w ∈ {0, 1}ℓ,

Pr[x′L = w] ≤ 2−h

where x′ is chosen by first choosing x
R← {0, 1}n, letting y = f(x), and then choosing x′ at random

such that f(x′)R = yR.

2This notion of robustness is implicit in [5] and was made explicit in [9].

3

Lemma 3.1 (implicit in [5]). Fix some integer t and assume that there exist integers ℓ, h and k
such that fG,P is (ℓ · t, ℓ, h)-robust and each string y has at most 2k preimages under fG,P . Then,
the t-myopic algorithm succeeds with probability smaller than 2−(h−k).

Proof. After ℓ steps the algorithm fixes ℓ input variables based on at most ℓ ·t output bits of y. The
min-entropy of the partial assignment is h while the number of preimages of y is at most 2k, hence
the probability of hitting a partial assignment that can be extended to a preimage is 2k−h.

It turns out that FP,n,m is likely to be robust. Specifically, the following lemma was proved
in [29] (extending the techniques of [5]).

Lemma 3.2 ([29]). For most d-ary predicates P , and some r = O(n/d), ℓ = 2−o(d)n, h = 2−o(d)n,

a function f
R← FP,n,n is likely to be (r, ℓ, h) robust and likely to have an expected number of 22

−o(d)n

preimages .3

It is essentially shown that fG,P is robust whenever the hypergraph G enjoys some expansion
properties and the predicate P is “sensitive” enough (e.g., for some parameter c < d, even after
fixing at most c of P ’s inputs, P remains unfixed). Combining the above lemmas, we derive the
following corollary.

Theorem 3.3 ([29]). For most d-ary predicates P and some t = 2o(d)/d, the expected success
probability of the basic t-myopic algorithm in inverting FP,n,n is exp(−Ω(n)).

A similar theorem holds for larger output lengths (e.g., every m = O(n)). When the output
length is polynomial (e.g., m = n1.1), the results of [9] imply a subexponential bound exp(−nε) on
the success probability of FP,n,m, alas for a more restricted family of predicates. (See Section 4.2.)

Stronger algorithms. One can use similar techniques to rule out stronger variants of myopic
algorithms [5, 29, 48]. For example, assume that whenever the t-myopic algorithm “gets stuck” with
an unsatisfiable system (i.e., the partial assignment x′ contradicts some constraints fG,P (x)i = yi
for i ∈ R), the algorithm is allowed to “regret” and change its last “free” decision. Namely, the
algorithm backtracks to the last variable j that could be assigned to both 0 and 1, and flips the
assignment from x′j to 1 − x′j. After sufficiently many steps, this backtracking myopic algorithm
(which falls under the framework of DPLL-type algorithms) will surely find a preimage. However, it
can be shown [5, 29] that the expected running time will be exponential in n for FP,n,O(n) and most d-
ary predicates. The high level argument goes as follows. (1) By Lemmas 3.1 and 3.2, after ℓ = Θ(n)
steps the algorithm is likely to fix the first ℓ variables L mistakenly to a value that cannot be
extended to a satisfying assignment. This means that the residual problem (fG,P (x) = y, xL = x′L)
is unsatisfiable. (2) As argued next, it takes exponential time for the backtracking myopic algorithm
to recover from its mistake, and backtrack to the ℓ-th iteration. This is proved by showing that (a)
the trace of the algorithm’s execution provides a tree-like resolution proof for the unsatisfiability
of the residual problem; and (b) with high probability, any such proof must be of exponential size
(cf. [18]).

3A special case of this lemma (for 3-XOR predicate) was originally proved by [5].

4

3.2 Linearization

Algebraic linearization. In light of the failure of local inversion algorithms, let us try to apply
a more global approach. First, observe that if the predicate is XOR then one can efficiently invert
the function by solving a system of linear equations over the binary field F2. More generally, assume
that the predicate P can be written as a degree c polynomial over F2. Then we can view the m
constraints {yi = P (xSi)} as a linear system over nc new variables zi1,...,ic = xi1 · . . . · xic . If the
number of constraints is sufficiently large, that is, m = Ω(nc log n), then (whp) there exists a unique
solution z to the system, which can be found efficiently. At this point, we are left with the simple
task of finding a vector x which satisfies a (satisfiable) system of AND constraints of the form
xi1 · . . . · xic = zi1,...,ic . Such a system can be efficiently solved by assigning 1 to each input variable
xi that participates in a constraint whose RHS is 1, and 0 to all other variables. It follows, that
for m = Ω(ndeg(P) log n), the collection FP,n,m is invertible.

Theorem 3.4. If P has degree c over F2, then the collection FP,n,Ω(nc logn) is efficiently invertible.

Since any d-ary predicate P can be written as a degree d-polynomial, we conclude that FP,n,m

is always invertible for m = Ω(nd log n). (A better bound will be proven later.)

Fourier linearization. A different form of linearization arises when the predicate P (w) is (even
slightly) correlated with the parity of c of its inputs (c-XOR). We say that P is c-correlated if c > 0
is the minimal positive integer for which

Pr
w

R
←{0,1}d

[P (w) =
∑

i∈T

wi (mod 2)] 6= 1

2
,

for some c-subset T ⊆ [d]. Fix such a predicate P , and assume, wlog, that the correlation is positive,
i.e., the LHS is larger than 1

2 + ε. (Otherwise, replace P by its complement.) Since the predicate
is d-local, we may further assume that ε ≥ 2−d = Ω(1). To simplify the following discussion, let us
further assume that the predicate is balanced. (The case of an unbalanced predicate can be treated
by a variant of the following attack.)

We can now view each of the m original constraints as a noisy linear equation

yi = ei(x) +
∑

j∈S′
i

xj (mod 2), (2)

where the c-tuple S′i is the T -projection of the original d-tuple Si, and each of the ei’s is a Bernoulli
random variables with expectation of 1

2 − ε. In fact, even if xSi is treated as a fixed value, the
expectation of the random variable ei, induced by the choice of xSi\S′

i
, is 1

2 − ε. (This follows from
the minimality of c and the fact that P is balanced.)

Say that the hypergraph G contains t hyperedges S1, . . . , St whose T -projection correspond to
the same c-tuple S′, but all their other entries are disjoint, i.e., the sets S1 \ S′, . . . , St \ S′ are
pairwise disjoint. Then, we can derive t noisy copies of the term

∑

j∈S xj where the noise terms

e1, . . . , et are statistically independent Bernoulli random variables with expectation of 1
2 − ε. In

this case, we can take a majority vote over these noisy terms and recover
∑

j∈S xj with probability

1 − 2−Ω(ε2t). After collecting m = Ω(nc log n) random hyperedges, we expect to see t = Ω(log n)
copies of each equation S′i, and so we can (with constant probability) simultaneously “purify” the
noise in all these equations, and recover x by solving a linear system.

5

Optimization. In fact, we can do better and reduce the output length required for this attack to
m = Ω(nc/2 + n · log n) or even to m = Ωd(n

c/2 + n). This is done in three steps. In the first step,
we use the first m1 = Ω(nc/2) outputs to obtain a system (2) of m1 noisy c-LIN equations, and
convert this system into a random system of t = Ω(n) noisy 2-LIN equations. Each 2-LIN equation
is generated by XOR-ing together a pair of c-LIN equations which share exactly c − 1 variables.
By standard calculation (“birthday paradox”), a collection of m1 = Ω(

√
tnc−1) = Ω(nc/2) original

equations is expected to contain t such pairs.
In the second step, we apply one of the known algorithms (e.g., the SDP of [39] or [27]) to obtain

a solution x′ that satisfies a large fraction of the 2-LIN constraints. Since the constraint graph of
the 2-LIN instance is random, it can be shown that the assignment x′ is likely to be correlated with
the original (planted) solution x. That is, the relative Hamming distance between x′ and x is at
most 1

2 − ε for some constant ε > 0 (see [8]).
In the final step, we use x′ and additional m2 = Ω(n log n) noisy c-linear equations to recover

a solution x′′. The i-th bit of x′′ is recovered as follows: (a) Collect Ω(log n) equations in which
the i-th variable xi participates; (b) Compute Ω(log n) “votes” for the value of x′′i by substituting
all the other variables with their value under the approximate solution x′; and (c) Set x′′i to be
the majority among all the votes. It can be shown that (whp) this voting procedure recovers the
i-th bit of the planted solution. Overall, the algorithm works when the output length m is larger
from m1 + m2 = Ω(nc/2 + n log n) outputs. In fact, one can reduce the complexity of the last
amplification step to m2 = Ωd(n) outputs (see Section 3.3), which leads to the following theorem.

Theorem 3.5. If P : {0, 1}d → {0, 1} is c-correlated, then the collection FP,n,Ωd(nc/2+n) is effi-
ciently invertible.

Interestingly, algebraic linearization (Theorem 3.4) and Fourier linearization (Theorem 3.5)
complement each other. Siegenthaler [60] proved that any (non-linear) d-ary predicate P of algebraic
degree c1 over F2, must be c2-correlated for c2 ≤ d−c1. Hence, whenm is roughly nd/3, it is possible
to invert FP,n,m either via Theorem 3.4 or via Theorem 3.5. A more careful calculation yields the
following corollary.

Corollary 3.6. For any d-ary predicate P and m = Ω(n
1
2
⌊2d/3⌋ log n), the collection FP,n,m is

efficiently invertible.

Proof. First, observe that if d = 2 the inversion problem can be reduced to a 2-CNF problem, and
can therefore be solved efficiently for any value of m. Inversion is also trivial when P is linear
(i.e., XOR or its complement). Hence, we may assume that P is non-linear and that d > 2. We
distinguish between two cases. If the algebraic degree c1 of P is smaller or equal to ⌊d/3⌋, then
Theorem 3.4 allows to invert FP,n,m once m = Ω(nc1 log n), let alone when m = Ω(n

1
2
⌊2d/3⌋ log n).

On the other hand, if c1 > ⌊d/3⌋ then, by Siegenthaler’s theorem, P must be c2-correlated for some
c2 < d−⌊d/3⌋. Since c2 is an integer, it must hold that c2 ≤ ⌊2d/3⌋, and so, by Theorem 3.5, FP,n,m

can be inverted when m = Ωd(n
1
2
⌊2d/3⌋ + n). For d > 2, the latter simplifies to Ωd(n

1
2
⌊2d/3⌋).

Corollary 3.6 provides the best known attack against a general predicate.

Question 3.7. Is it possible to efficiently invert the collection FP,n,m for every predicate P and

some m = n
1
2
⌊2d/3⌋−ε for some ε > 0?

6

A more concrete challenge is to solve the above question for the predicate

MSTd1,d2(w1, . . . , wd1 , z1, . . . , zd2) = (w1 ⊕ · · · ⊕ wd1)⊕ (z1 ∧ · · · ∧ zd2), (3)

where d1 = 2d2. Originally introduced by Mossel, Shpilka and Trevisan [54], this predicate has
algebraic degree of d2 and it is uncorrelated with parities of arity smaller than d1.

3.3 Self Correction

Suppose that we are given, as an advice, a string x′ which is correlated with a true preimage x. Is
it possible to efficiently invert fG,P ? It turns out that the answer is positive as long as the advice
is good enough and the output length m is sufficiently large.

Formally, let us define the problem of inversion with ε-leakage as follows. The input consists

of a triple (G, y, x′) where G
R← Gn,m,d, y = fG,P (x) where x

R← {0, 1}n, and x′ is a random string
that is (12 − ε)-close to x in (relative) Hamming distance. As before, the goal is to recover some
preimage of y. It is important to note that the advice string x′ is chosen solely based on x, and
it is statistically independent from the hypergraph G. The following theorem was proven in [23,
Theorem 1.3].

Theorem 3.8 (Self-Correction). For every d-ary predicate P , every ε > 0, and every m > n ·
(k/ε)2d, where k is some universal constant, it is possible to efficiently invert FP,n,m with ε-leakage.

Thinking of ε as a constant, it follows that when m = Ωd(n), one can efficiently invert FP,n,m

with ε-leakage.

Proof idea. The algorithm is based on a three-phase approach originally suggested in the context of
planted colorability [6] and planted SAT [38]. Ignoring some technical details (and oversimplifying)
the algorithm proceeds as follows: First, we pass over all input variables (in parallel) and flip the
value of x′i if it appears in “too many” constraints that are violated by x′. After repeating this
basic amplification step O(log n) times, we will have (whp) an assignment x′′ that agrees with the
planted assignment on all but a small fraction of “untypical” inputs.

In the second phase, we will identify (based on the properties of the hypergraph) a large set of
inputs for which our assignment is likely to be correct, and unassign all other input variables. As
a result we will obtain a partial assignment with no error.

Finally, we complete the partial assignment to a satisfying assignment via brute-force. The
analysis shows that whp the last step can be done efficiently as the partial assignment breaks the
original problem to small (logarithmic-size) independent sub-problems.

Applications. Theorem 3.8 shows that, for sufficiently large output length (i.e., m = Ωd(n)),
the task of inverting FP,n,m reduces to the task of finding an approximate preimage. We can think
of this as a hardness result: If inversion is hard, then even approximate inversion is hard. In some
cases, however, approximate inversion can be done efficiently and the theorem leads to inversion
algorithms. For example, when the predicate P is c-correlated, the linearization technique outlined
in Section 3.2 allow us to approximately invert FP,n,Ω(nc/2) up to a distance of, say 0.51. Combined

with self-correction, this leads to full inversion for output lengths of Ωd(n
c/2 + n), as claimed

in Theorem 3.5. In particular, in the special case of 2-correlated predicate one can use spectral

7

techniques and find an approximate preimage even when the output length is linear m = Ωd(n).
(See [23].) Hence, for such predicates, FP,n,m=Ωd(n) is efficiently invertible.

For general predicates, Theorem 3.8 yields the following natural attack: (1) Generate a list
of candidates which contains a (12 − ε)-approximate preimage, and (2) Apply the algorithm of
Theorem 3.8 to each of these candidates. To implement the first step, assign random values to the
first (1−2ε)n input variables, and enumerate over all possible assignments to the last 2εn variables.
With probability 1

2 , the random part of the assignment will agree with the planted assignment x
on at least half of its coordinates, and so the list will contain an assignment x′ which agrees with x
on 1

2 (1− 2ε)n+2εn = (12 + ε)n of the coordinates. The complexity of the algorithm is 22εn. When
the output length is super-linear, i.e., m = n1+c for constant c > 0, we can apply Theorem 3.8
with inverse-polynomial ε = n−δ for some constant δ = δ(c, d) > 0, and derive a subexponential

inversion algorithm of complexity 2O(n1−δ).

3.4 Graph-Related Leakage

Theorem 3.8 says that inversion becomes easy if large enough fraction of the bits of the preimage x
are leaked. As already noted, the theorem assumes that the leakage is independent of the hypergraph

G
R← Gn,m,d. Namely, the set of indices on which x′ and x agree is chosen uniformly at random

independently of the hypergraph G. In contrast, it can be shown that inversion remains (somewhat)
hard when the set of agreement {i : x′i = xi} depends on G. Specifically, suppose that we reveal
the substring xT where T is the union of a random subset of the hyperedges of G. (Equivalently,
each hyperedge of G is selected independently at random with probability 1

2 , and all the inputs
which participate in the selected hyperedges are leaked.) In [10] it is shown that, for random local
functions, inversion with “random-exposure” is not (much) easier than standard inversion with no
leakage.4 The basic idea is to argue that with noticeable probability one can embed a “small”
standard inversion problem in an inversion problem with random exposure.

To get some intuition, assume that the exposure is applied to a random function with m = 2cn
outputs, n inputs and (expected) locality d. Further, assume that exactly m/2 hyperedges were
exposed and so there are cn unexposed hyperedges. In this case, an input bit is not exposed (i.e.,
does not participate in an exposed hyperedge) with probability roughly (1−d/n)cn ≈ e−cd. Hence,
the expected number of unexposed inputs is n′ = n/ecd, and so the hypergraph G contains a
unexposed subgraph G′ with n′ inputs and m′ = cecdn′ outputs. It turns out that a random local
function f : {0, 1}n′ → {0, 1}m′

can be embedded in this subgraph. (See [10].)
Letting d = ed

′
d′ and c = 1/ed

′
for some d′ > 0, it follows that if a random local function which

maps n′ inputs to m′ = n′ outputs is hard to invert, then a random local function which shrinks
n inputs to (2/ed

′
)n outputs is hard to invert with “random-exposure”. The existence of functions

which remain one-way in the presence of random-exposure was used in [10] to construct one-way
functions with optimal output locality of 3.

4For technical reasons, the result applies to a variant of FP,n,m in which each output is computed by a different

predicate Pi : {0, 1}di → {0, 1}. Each predicate is chosen by first choosing an arity di from the binomial distribution
B(n, d/n), and then choosing Pi uniformly at random from all predicates of arity di. It should be noted a random
predicate yields an easy-to-invert collection when the output length m = cn is sufficiently large, i.e., c = poly(d).
Still, when the output length m is close to n, no efficient attacks are known.

8

3.5 Hardness Amplification

Is it possible to find a small ε-fraction of inputsX ⊆ {0, 1}n for which FP,n,m is efficiently invertible?

In [24, Theorem 6.1], it is shown that, for a random local function f
R← FP,n,m with sufficiently large

output length m = Ωd(n), the existence of an easy set of inputs for f of density ε > 2−n
O(1)

implies
that f is invertible on 1− ε fraction of the inputs in subexponential-time of exp(Õ(

√
n)).5 Hence,

one-wayness with respect to sub-exponential time has an all-or-nothing flavor: Either almost all
inputs are hard to invert, or almost all inputs are easy to invert.

The proof is based on the following idea. Given a weak inversion algorithm A that inverts
fG,P over a set of inputs X, we construct an inversion algorithm B that inverts fG,P over the set
X ′ that contains all the inputs which are k-close to X in (absolute) Hamming distance, where
k =

√

2 ln(1/ε)n and X has density at least ε. The key observation is that if x′ is k-close to x ∈ X,
then the image y′ = fG,P (x

′) is likely to be O(k) close to the image y = fG,P (x), since each input in
fG,P is expected to influence a constant number of outputs. Ignoring some technical details, we can
now invert fG,P at y′ as follows: (1) search for y by flipping all possible sets of O(k) coordinates;
(2) apply A to invert y and obtain x, and then (3) search for x′ by flipping all possible sets of k
coordinates. In other words, we first “walk” on the range space of fG,P until we get to an easy
instance y which can be inverted to x, and then, we recover x′ by “walking” back from x, this time
on the domain space. A standard probabilistic argument shows that, by taking k =

√

2 ln(1/ε)n,
at least 1−ε fraction of the inputs x′ will be k-close to some instance in the easy set (whose density
is ε).

3.6 Inversion: Discussion

We end this section with an attempt to draw the borderline (in terms of locality and output length)
between easiness and hardness. Let TP (n,m) denote the complexity of inverting FP,n,m with
noticeable probability, and let T (d, n,m) = maxP :{0,1}d→{0,1} TP (n,m). We saw that T (d, n, nc)
is (at most) sub-exponential for any c > 1, and polynomial for c > d/3 (or more accurately for
c > 1

2⌊2d/3⌋)). In light of this, we put forward the following conjecture.

Conjecture 3.9. For every constant c > 1, there exists a constant d and a d-ary predicate P , for
which the collection FP,n,nc is hard to invert, i.e., T (d, n, nc) is super-polynomial.

It should be mentioned that for linear output lengths m = O(n), the complexity of the best
known attacks is 2Ω(n). Hence, one may (strongly) conjecture that for some predicate P , the
collection FP,n,m=O(n) is exponentially-hard to invert. Moreover, for m = n, this conjecture may
even hold for most d-ary predicates and every d ≥ 5. (In contrast, for every 2-ary predicate P and
every m, the collection FP,n,m is easy to invert.)

We believe that exploring Conjecture 3.9 is an important research direction. It will be also
interesting to study a concrete version of the conjecture with an explicit dependency of the locality
d in the output length m = nc. All we currently know is that one-wayness requires d > 3c due to
Corollary 3.6. We ask: Does it suffice to take d = Ω(c) or maybe a larger locality of d > poly(c) or
even d > exp(c) is needed? Some recent results suggest that the bounds obtained in Corollary 3.6
may be tight, at least for a rich family of algorithms [57, 36].

5This result holds whp over the choice of the hypergraph, and even if the “easy inputs” are invertible in time
exp(Õ(

√
n)).

9

It will be also useful to study concrete suggestions for the predicate P . Ideally, one may hope to
identify the “hardest” d-ary predicate P ⋆ and prove a completeness result of the form: “if FP,n,m

is hard for some d-ary predicate P then so is FP ⋆,n,m′”. While we do have some understanding of
potential “easy” and “hard” predicates (see also next section), the existence of complete predicates
is currently wide open. We note that the natural choice of using a random predicate as the hardest
d-ary predicates fails when the output length is sufficiently large (m > poly(d)n) as with high
probability such a predicate will be correlated with one of its inputs.

Bibliographic Note. Linearization attacks were originally considered in [30, 54] in the context
of locally-computable pseudorandom generators with an arbitrary dependencies hypergraph (as
opposed to random). Theorems 3.4 and 3.5 and Corollary 3.6 (which have not appeared before)
are mainly based on the ideas of [54, 23, 8], and may be considered a folklore.

4 Pseudorandomness

We move on to study the pseudorandomness of FP,n,m. Let us recall the notion of collection of
pseudorandom generators. In the following, we let F denote a collection of efficiently computable
functions, in particular, each function f : {0, 1}n → {0, 1}m in F has a succinct representation 〈f〉
of size poly(n) (e.g., as a polynomial-size circuit).

Definition 4.1. A collection of length-increasing functions F = {f : {0, 1}n → {0, 1}m} is ε-
pseudorandom generator (ε-PRG) if for every efficient algorithm A the distinguishing advantage

∣

∣

∣

∣

∣

Pr
f

R
←F ,x

R
←{0,1}n

[A(〈f〉, f(x)) = 1]− Pr
f

R
←F ,y

R
←{0,1}m

[A(〈f〉, y) = 1]

∣

∣

∣

∣

∣

(4)

is at most ε(n).

We emphasize that since we are dealing with collection of functions, the adversary’s input
consists the description of a random function (in our case a hypergraph chosen from Gn,m,d) and
an m-bit challenge string. When the collection consists of a single function, we derive the standard
notion of ε-pseudorandom generator. (See [41, Section 2.4.2] for an analogous treatment for the
case of OWF collections.) Thus, in the case of FP,n,m the distinguisher is given a random (n,m, d)-
hypergraph G and a string y ∈ {0, 1}m and its goal is to distinguish between the case where y is
chosen at random and the case where y is a random image of fG,P .

The stretch. Pseudorandomness becomes non-trivial when the output length m is larger than n.
In fact, we will be interested in the regime where the stretch m−n is linear in n, or even polynomially
larger than n. The existence of such high-stretch pseudorandom generators with low locality has
turned to be an important open question with several applications [30, 54, 4, 13, 47, 8, 7, 46]. For
example, as shown in [47], such PRGs allow to improve the sequential complexity of cryptography: A
linear-stretch PRG with constant locality would lead to implementations of several basic primitives
(e.g., public-key encryption, commitment schemes) with constant computational overhead, and a
polynomial-stretch PRG with constant locality would lead to secure computation protocols with
constant computational overhead – a fascinating possibility which is not known to hold under any
other cryptographic assumption. Currently, all known candidates for large-stretch PRGs with low

10

locality are essentially based on random local functions. In contrast, the PRGs derived by [12] have
sub-linear stretch (i.e., m = n+ n1−ε for some fixed ε > 0).

The distinguishing advantage. The standard cryptographic convention requires negligible dis-
tinguishing advantage of n−ω(1). Unfortunately, the collection FP,n,m fails to achieve this regardless
of the choice of the predicate P or the output length m. Indeed, observe that if the graph G has two
identical hyperedges then fG,P (x) can be distinguished from a truly random string with constant
advantage (of one half). Since a 1/poly(n)-fraction of (n,m, d)-hypergraphs have two identical
hyperedges, the collection FP,n,m can be distinguished with a noticeable advantage of 1/poly(n).
Keeping this limitation in mind, we will strive for 1/poly(n)-pseudorandomness, or, better yet,
try to prove statements of the form: For all but 1/poly(n) fraction of the hypergraphs (e.g., all
hypergraphs which satisfy some expansion properties) the function fG,P is (n−ω(1))-pseudorandom.
(We will see examples for both versions in the following sections.)

Pseudorandomness vs. One-wayness. From an algorithmic point of view, the task of dis-
tinguishing seems much easier than the task of inversion, and therefore pseudorandomness seems
more fragile than one-wayness. This is especially true in the setting of low locality, since in this
case even the task of avoiding simple regularities in the output is quite challenging. Indeed, there
are some predicates and hypergraphs for which distinguishing (with constant advantage) is easy,
but inversion seems hard. This is the case, for example, when the predicate is not perfectly bal-
anced (i.e., Prw[P (w) = 1] 6= 1

2) or the dependencies hypergraph contains two identical hyperedges.
Nevertheless, as we will see (in Sections 4.1 and 4.2), there are good reasons to believe that, for a
proper choice of P , the collection FP,n,m is pseudorandom.

4.1 Pseudorandomness from One-wayness

The work of [7] relates the pseudorandomness of random local functions to the difficulty of inverting
them.

4.1.1 Using Weak Unpredictability

As a starting point, it is shown that one-wayness implies some form of (weak) unpredictability as
defined below.

Definition 4.2 (Unpredictability). The collection FP,n,m is α unpredictable generator (UG) if for
every efficient adversary A and every index i ∈ [m] we have that

Pr[A(f, f(x)[1,i−1]) = f(x)i] < α(n), where f
R← FP,n,m, x

R← {0, 1}n.

In the following, we say that a predicate P is sensitive if at least one its coordinates i has full
influence, i.e., flipping the value of the i-th variable always changes the output of P . Equivalently,
P (w) can be written as wi ⊕Q(w1, . . . , wi−1, wi+1, . . . , wd) for some (d− 1)-ary predicate Q.

The following theorem is proven in [7] (see Theorems. 4.1 and 5.1 for a stronger and more
detailed statements).

Theorem 4.3 (one-wayness ⇒ unpredictability). Let P be a d-ary predicate and assume the
collection FP,n,m is one-way.

11

1. If m = Ωd(n), then FP,n,m is also (1− ε)-UG for some positive constant ε = ε(P) > 0.

2. If P is sensitive then for every polynomial q the collection FP,n,m/q(n)2 is (12 + c/q(n))-UG,
for some constant c = c(d) > 0.

See Section 4.1.3 for a proof sketch. The two parts of the theorem complement each other.
Part (1) applies to any predicate but yields only (1 − ε) unpredictability for a constant ε, while
Part (2) applies only to sensitive predicates but yields stronger parameters, e.g., (12+ε)-unpredictability
for inverse polynomial ε. Such a difference is somewhat expected since unbalanced predicates (for
which Part (1) applies) can be predicated with success probability that is bounded away from 1

2 .
Theorem 4.3 has several interesting applications. First, it can be used to show that, for some

predicates, the one-wayness of F with output length m, implies pseudorandomness for a related
(shorter) output length m′.

Theorem 4.4 (one-way ⇒ PRG). For every constants a > 1, b > 0 and d, and every sensitive
d-ary predicate P , if FP,n,n3a+2b is one-way then FP,n,na is ε-pseudorandom for ε = n−b.

Observe that the distinguishing advantage ε is inverse polynomial and not negligible as per the
standard cryptographic definitions. As already mentioned this is inherent for the collection FP,n,m.
It is plausible to assume that when the hypergraph G is a good expander, ε can be taken to be
negligible.

4.1.2 Constructions of local PRGs with large stretch

We can further use the above theorems to construct locally computable PRGs with large stretch.
For the regime of linear stretch, it is shown in [7] how to construct locally computable PRG with
linear stretch and negligible distinguishing advantage based on a locally computable (1 − ε)-UG
with constant unpredictability (i.e., ε > 0) and sufficiently large linear stretch.6 Combined with
the first part of Theorem 4.3, we derive the following theorem ([7, Theorem 1.2]).

Theorem 4.5 (Local PRG with Linear Stretch). For every d-ary predicate P and m = Ωd(n),
if the collection FP,n,m is one-way, then there exists a collection of locally computable ε-PRGs with
linear stretch and negligible distinguishing advantage ε = n−ω(1).

Note that a d-local PRG with linear stretch m = (1 + c)n bits can be composed with itself
a constant number of times to yield a PRG with an arbitrary linear stretch c′ at the expense of
increasing the locality to a larger constant d′.

In the regime of polynomial stretch, we do not know how to simultaneously achieve constant
locality and negligible distinguishing advantage. Still, we can prove an “almost” tight result based
on Theorem 4.4 and standard amplification techniques (see [7, Thm 1.3]).

Theorem 4.6 (Almost Local PRG with Polynomial Stretch). Assume that FP,n,n1+δ is one-
way for some sensitive d-ary predicate P and some constant δ > 0. Then, for every constant c > 0
the following hold:

6Observe that in this regime Yao’s transformation from unpredictability to pseudorandomness cannot be used
since the unpredictability is at a constant level whereas Yao’s transformation requires unpredictability of at least
1
2
+ o(1/n)). Instead, the transformation employs locally computable randomness extractors, which are based on

locally-computable low-bias generators. The latter will be discussed in Section 4.2.

12

• There exists a PRG collection with distinguishing advantage n−c, polynomial stretch nc, and
constant locality d = d(c).

• There exists a PRG collection with negligible distinguishing advantage n−ω(1), polynomial
stretch nc, and any (arbitrarily slowly growing) super-constant locality d = ω(1), e.g., log⋆ n.

The existence of a locally computable PRG with polynomial stretch and negligible distinguishing
advantage remains an interesting open question.

Question 4.7. Does a PRG with constant locality, polynomial stretch, and negligible distinguishing
advantage exist?

It is known [11] that such a PRG essentially requires an explicit construction of constant-degree
bipartite expander graphs which are highly-unbalanced – a problem which is currently open. For
the case of PRG collections, it actually suffices to describe an efficiently samplable distribution over
highly-unbalanced constant-degree graphs which puts all but a negligible fraction of its mass on
good expanders. To the best of our knowledge, this problem is also open. One way to avoid this
barrier, is to focus on a non-uniform construction.

4.1.3 Proof sketch of Theorem 4.3

Conceptually, we reduce unpredictability to one-wayness via the following approach: Suppose that

we have an efficient predictor A for the function f(x) sampled from f
R← FP,n,m. Then we can

collect information about x, and eventually invert the function fG,P (x), by invoking the adversary
multiple times with respect to many different hypergraphs G1, . . . , Gt, which are all close variants
of the original hypergraph G. We sketch the details for the first part of the theorem.

The basic procedure. Let us assume for now that the first input of P has full influence. In
addition, let us assume for simplicity that A always attempts to predict the last-bit. Namely, the
predictor A is given a random (n,m, d)-hypergraph G and the (m− 1)-bit long prefix of the string
y = fG,P (x), and it predicts with probability 1

2 + δ the last output ym = P (xS), which corresponds
to the (last) hyperedge S = (i1, . . . , id). Given such a pair (G, y), let us replace the first entry i1 of
S (hereafter referred to as “pivot”) with a random index ℓ ∈ [n], and then invoke A on the modified
pair. If the predictor succeeds and outputs P (xS′), then, by comparing this value to ym, we get to
learn whether the input bits xℓ and xi1 are equal. Since the predictor may err, we can treat this
piece of information as a noisy 2-LIN equation of the form xℓ ⊕ xi1 = b where b ∈ {0, 1}.

Collecting many 2-LIN equations. In order to recover x, we would like to collect many such
equations. To this end, we iterate the basic procedure n times where the hypergraph G, the m-bit
string y, and the hyperedge S are all fixed, and in each iteration a different index j ∈ [n] is being
planted in S. As a result we obtain a system of noisy linear equations of the form















y1 = x1 + xi1 ,

...

yn = xn + xi1 ,

13

where i1 is the pivot. By guessing the value of xi1 we derive a solution x′ ∈ {0, 1}n, which agrees
(whp) with x on 1

2 + δ′ of the coordinates for some constant δ′ > 0. At this point we employ
self-correction (Theorem 3.8) and recover x.

Handling general predicate. We would like to use the “basic procedure” for an arbitrary
predicate that is not necessarily sensitive. For concreteness, think of the majority predicate. In
this case, when recovering a 2-LIN equation, we are facing two sources of noise: one due to the
error of the prediction algorithm, and the other due to the possibility that the current assignment
xS is “stable” (i.e., flipping its first location does not change the value of the predicate, e.g., in the
case of majority, any assignment with less than ⌊d/2⌋ ones.) To bypass this problem we strengthen
our hypothesis and require a predictor whose success probability is larger than the probability of
getting a stable assignment. With some care, the previous argument can be extended to this case,
and one can prove (1− ε)-unpredictability for some positive constant ε = ε(P).7

Finally, we mention that the second part of the theorem requires additional noise-reduction
steps, since it is based on a weaker (12 + 1/poly(n))-predictor. See [7] for details.

4.2 Linear Distinguishers

Let us shift gears and examine the security of FP,n,m against linear distinguishers. Pseudoran-
domness against linear distinguishers means that there is no subset of output bits whose XOR has
noticeable bias [55]. A bit more formally, for a function f : {0, 1}n → {0, 1}m, we let

bias(f) = max
L

{∣

∣

∣

∣

∣

Pr
x

R
←{0,1}n

[L(f(x)) = 1]− Pr
y
R
←{0,1}m

[L(y) = 1]

∣

∣

∣

∣

∣

}

, (5)

where the maximum is taken over all non-constant linear functions L : Fm
2 → F2. A small-bias

generator is a function f for which bias(f) is small (preferably negligible) as a function of n. Having
a small bias is a definite necessary condition for achieving pseudorandomness as in Definition 4.1.
Small-bias generators are also motivated by their own right, and they are used as building blocks
in constructions that give stronger forms of pseudorandomness. This includes constructions of
local cryptographic pseudorandom generators [13, 7], as well as pseudorandom generators that fool
low-degree polynomials [25, 52, 62], small-space computations [45], and read-once formulas [22].

We are interested in understanding which d-local functions fG,P : {0, 1}n → {0, 1}m, described
by a hypergraph G and a predicate P , have low-bias. This question was initiated by Cryan and
Miltersen [30] and was further studied in a sequence of works [54, 8, 9]. To get some intuition, let
us begin with few concrete examples.

4.2.1 Warm-up: Noisy-XOR

Consider the noisy-XOR predicate P that computes the parity of d inputs and XORs the result
with a fresh noise bit e that is taken to be 1 with some constant probability δ < 1

2 . This randomized
predicate has internal randomness, which is chosen in each invocation independently of the input.

7It is shown in [7] that the actual bound on ε depends on a special measure of “matching” sensitivity µ(P) defined
as follows: Look at the subgraph of the d-dimensional hypercube whose nodes are the sensitive assignments of P (i.e.,
the boundary and its neighbors), let M be a largest matching in the graph, and let µ(P) = |M |/2d. For example, for
majority with an odd arity d, it can be shown that all the assignments of Hamming weight ⌈d/2⌉ and ⌊d/2⌋ are in
the matching and so the matching sensitivity is exactly 2 ·

(

d
⌊d/2⌋

)

/2d = Θ(1/
√
d).

14

No noise. Let us begin with the simple case where there is no noise (i.e., δ = 0). Since m > n,
there must be a (non-empty) set of linearly-dependent outputs, and so the corresponding linear
test always outputs zero. We conclude that fG,P has a high bias (at least 1

2). Let us therefore
assume from now on that the noise rate δ is some positive constant smaller than 1

2 .

d = 1. Another simple case arises when the arity d is 1 (and δ ∈ (0, 12)). In this case, there must
be two outputs yi and yj which depend on the same input xℓ, and so the corresponding linear test
yi ⊕ yj is 1 with probability 2δ · (1 − δ) < 1

2 . Since the noise rate is a constant, the function fG,P

has a high bias, which is bounded away from 0.

d = 2. We move on to the case of arity d = 2. In this case, we can view the dependencies
hypergraph G as a simple graph over the input variables in which each edge (i, j) corresponds
to an output yi,j = xi + xj + ei,j and ei,j is a Bernoulli random variable with expectation δ.
Let T = (i1, i2, . . . , it−1, i1) be a shortest cycle in G, and let t denote its length. Consider the
corresponding linear test

yi1,i2 + yi2,i3 + · · ·+ yit−1,i1 = (xi1 + xi2 + ei1,i2) + (xi2 + xi3 + ei2,i3) + . . .+ (xit−1 + xi1 + eit−1,i1).

Since the input variables cancel out, the outcome is simply the parity of t noise terms, and so
the bias is exp(−Ω(t)). When there are m = n + Ω(n) edges, a random graph G will have, with
constant probability, a cycle of constant length, and so the expected bias of fG,P (over the choice
of G) is constant.

d ≥ 3. Next, consider the case of d ≥ 3. We argue that, in the typical case where G is a good
expander, the bias of fG,P is negligible. In particular, we say that a set T of hyperedges in G has a
uniquely covered node if there exists a node that participates in a single hyperedge S ∈ T . We will
show that if any set T of at most k hyperedges in G has a uniquely covered node, then the bias of
fG,P is exp(−Ω(k)). We will later discuss typical values of the parameter k (which is sometimes
referred to as the unique expansion parameter).

Fix some set of outputs T ⊆ [m]. The outcome of the corresponding linear test
∑

i∈T yi (which

is a random variable induced by the choice of x
R← {0, 1}n and the outcome of the noise) can be

written as
∑

i∈T

yi =
∑

i∈T



ei +
∑

j∈Si

xj



 , (6)

where the ei’s are independent Bernoulli variables with mean δ, and the Si’s are the hyperedges of
G. Following [54], we distinguish between light linear tests, which depend on less than k outputs,
and heavy tests, which depend on more than k outputs. (Recall that k is the unique expansion
parameter.)

If the test is light, T has a uniquely covered input node j and so we can write (6) as xj+z where
z is statistically independent of xj. Since xj is a random bit, the outcome of the test is perfectly
balanced. On the other hand, if T is heavy, we can write (6) as

∑

i∈T ei + z where z is statistically
independent of the noise terms (the ei’s). Since the ei’s are independent Bernoulli variables, the
bias of the sum drops exponentially with t ≥ k.

Overall, the bias of fG,P is exp(−Ω(k)). For every d ≥ 3 and m = O(n), a random (n,m, d)-
hypergraph is likely to achieve k-unique expansion for some k ≥ Ω(n), and so, in this regime, fG,P

15

is likely to have exponentially small bias. Similarly, it can be shown that in the polynomial regime
m = poly(n), the bias of fG,P is likely to sub-exponential (i.e., exp(−nδ) for some constant δ > 0
which depends on m and d).

4.2.2 Other Predicates

Interestingly, the noisy-linear predicate reveals an all-or-nothing behavior. The bias of fG,P is either
large for almost all hypergraphs (for d ≤ 2 or δ = 0), or negligible for almost all hypergraphs (for
d ≥ 3). It turns out that, for some range of parameters, all predicates can be classified along these
lines while revealing a similar all-or-nothing behavior. Formally, we call a predicate P degenerate
if is either unbalanced, 1-correlated, 2-correlated, or affine over F2. (Recall that a predicate is
c-correlated if it is correlated with the parity of c of its inputs.) The following theorem is proven
by extending the ideas presented in Section 4.2.1.

Theorem 4.8 (a dichotomy [9]). Let m = n1+ε where ε ∈ (0, 1/4) is an arbitrary constant.

1. If P is degenerate, then, whp, the bias of f
R← FP,n,m is noticeable.

2. If P is non-degenerate, then, whp, the bias of f
R← FP,n,m is negligible.

The theorem validates the intuition that, for sufficiently large output length, all hypergraphs
are essentially the same, and hardness (or easyness) solely depend on the choice of predicate. The
existence of a similar dichotomy for larger output lengths remains an interesting open question. It
is known that the above notion of non-degeneracy does not imply negligible bias for output lengths
larger than m = n3/2. We also mention that there are explicit constructions of ε-biased generators
with constant locality, linear output length m = n+Ω(n), and negligible bias ε = n−ω(1). (See [13,
Section 5.4].)

Proof idea. The first part is proved similarly to the case of noisy linear predicate of arity d = 1
or d = 2. For the second part, we follow the same strategy used for the noisy-XOR predicate
and d ≥ 3. That is, we distinguish between light tests and heavy tests. Note that non-degenerate
predicates satisfy two forms of “non-linearity”: First, it is required that P is uncorrelated with any
linear function that involves less than 3 variables (called 2-resiliency); and second the algebraic
degree of P as a polynomial over F2 should be at least 2 (called degree 2). It turns out that
2-resiliency allows to fool light tests and degree 2 allows to fool heavy tests.

Light Tests. In the previous section we essentially showed that if the predicate is the parity
predicate ⊕ and the hypergraph is a good expander, the output of fG,⊕(x) perfectly fools all light
linear tests. In terms of expectation, this can be written as

E
x
[L(fG,⊕(x)) = 0],

where we think of {0, 1} as {±1}, and let L : {±1}m → {±1} be a light linear test. The key insight
is that the case of a general predicate P can be reduced to the case of linear predicates.

More precisely, let ξ denote the outcome of the test L(fG,P (x)). Then, by looking at the
Fourier expansion of the predicate P , we can write ξ as a convex combination over the reals of
many summands of the form ξi = L(fGi,⊕(x)) where the hypergraphs Gi are subgraphs of G. (The
exact structure of Gi is determined by the Fourier representation of P .) When x is uniformly chosen,

16

the random variable ξ is a weighted sum (over the reals) of many dependent random variables ξi’s.
It is shown that if G has sufficiently high vertex expansion (every not too large set of hyperedges
covers many vertices) then the expectation of each summand ξi is zero, and so, by the linearity of
expectation, the expectation of ξ is also zero.

When the predicate is 2-resilient the size of each hyperedge of Gi is at least 3, and therefore
if every 3-uniform subgraph of G is a good expander then fG,P (perfectly) passes all light linear
tests. Most hypergraphs G satisfy this property. We emphasize that the argument crucially relies
on the perfect bias of XOR predicates, as there are exponentially many summands.

Heavy Tests. Consider a heavy test that involves t ≥ k outputs. Switching back to zero-
one notation, assume that the test outputs the value ξ = P (xS1) + . . . + P (xSt) (mod 2) where

x
R← {0, 1}n. Our goal is to show that ξ is close to a fair coin. For this it suffices to show that, for

a sufficiently large ℓ, the sum ξ can be rewritten as the sum (over F2) of ℓ random variables

ξ = ξ1 + . . . + ξℓ (mod 2), (7)

where each random variable ξi is an independent non-constant coin, i.e., Pr[ξi = 1] ∈ [2−d, 1−2−d].
In this case, the statistical distance between ξ and a fair coin is exponentially small (in ℓ), and we
are done as long as ℓ is large enough.

In order to partition ξ, let us look at the hyperedges S1, . . . , St that are involved in the test.
As a first attempt, let us collect ℓ distinct “independent” hyperedges that do not share a single
common variable. Renaming the independent hyperedges by T1, . . . , Tℓ and letting Sℓ+1, . . . , St

denote all other hyperedges, we can write ξ as

(P (xT1) + . . .+ P (xTℓ
)) +

(

P (xSℓ+1
) + . . .+ P (xSt)

)

(mod 2),

where the first ℓ random variables are indeed statistically independent. However, the last t − ℓ
hyperedges violate statistical-independence as they may be correlated with more than one of the
first ℓ hyperdges. This is the case, for example, if Sj has a non-empty intersection with both Ti and
Tr. This problem is fixed by collecting ℓ “strongly-independent” hyperedges T1, . . . , Tℓ for which
every Sj intersects at most a single Ti. (Such a big set is likely to exist since t is sufficiently large.)
In this case, for any fixing of the variables outside the Ti’s, the random variable ξ can be partitioned
into ℓ independent random variables of the form ξi = P (xTi) +

∑

j P (xSj), where the sum ranges
over the Sj’s which intersects Ti. This property still suffices to achieve our goal, as long as the ξi’s
are non-constant.

To prove the latter, we rely on the fact that P has algebraic degree 2. Specifically, let us assume
that Sj and Ti have no more than a single common input node. (This condition can be typically
met at the expense of throwing a small number of the Ti’s.) In this case, the random variable
ξi = P (xTi) +

∑

j P (xSj) cannot be constant, as the first summand is a degree 2 polynomial in xTi

and each of the last summands contain at most a single variable from Ti. Hence, ξi is a non-trivial
polynomial whose degree is lower-bounded by 2. This completes the argument.

4.2.3 The Power of Local Low-Bias Generators

Generally speaking, security against linear distinguishers provides no guarantee against more gen-
eral attackers. Furthermore, it is easy to construct generators which defeat linear distinguishers but
completely break down by, say, degree-2 distinguishers. However, the case of local functions with
large stretch may be qualitatively different. Specifically, we are not aware of any local function fG,P

17

with linear stretch that fools linear distinguishers but can be distinguished by some polynomial-
time adversary.8 One may conjecture that if FP,n,m fools linear adversaries for m = n + Ω(n)
and for most hypergraphs, then it also fools polynomial-time adversaries. In other words, local
functions are too simple to “separate” between these two different notions.

Question 4.9. Is there a predicate P and output length m = n + Ω(n) for which FP,n,m is o(1)-
biased (as per Eq. (5)) but is not o(1)-pseudorandom (as per Def. 4.1)? In stronger form: Is there
a predicate P and an (n,m, d) graph G where m = n + Ω(n), for which fG,P is o(1)-biased but is
not o(1)-pseudorandom?

While a positive answer only requires a “counter-example”, an unconditional negative answer
seems to be out of reach. (Indeed, by Theorem 4.8, there are predicates for which FP,n,n+Ω(n) has low
bias, and so, a negative answer requires proving that FP,n,m is o(1)-pseudorandom.) Nevertheless,
one can gather evidence towards a negative answer by showing that if FP,n,m has low-bias, then it
fools wider classes of limited distinguishers. In fact, such a result was already proven for several
interesting classes of adversaries. In the following, we say that a function f : {0, 1}n → {0, 1}m
ε-fools a class of adversaries A = {A : {0, 1}m → {0, 1}} if for every A ∈ A,

∣

∣

∣

∣

∣

Pr
x

R
←{0,1}n

[A(f(x)) = 1]− Pr
y
R
←{0,1}m

[A(y) = 1]

∣

∣

∣

∣

∣

≤ ε.

If ε = 0, we say that f perfectly fools A. Observe that ε-pseudorandomness coincides with ε-fooling
the class of all efficient algorithms (cf. Def. 4.1).

Proposition 4.10. Let f : {0, 1}n → {0, 1}m be a d-local function of bias 2−kd. Then, f

1. perfectly fools the class of k-wise adversaries Ag,K : y 7→ g(yK), that is all functions that
project y to an arbitrary k-subset K ⊂ [m] and apply an arbitrary function g : {0, 1}k → {0, 1}
to the result.

2. exp(n−α)-fools the class of functions computed by AC0 circuits of constant depth r and sub-
exponential size exp(nβ), provided that (α+ β)r = O(log klogn).

3. 1/poly(k)-fools degree-2 threshold functions Ap : y 7→ sgn(p(y)) where p is a degree-2 polyno-
mial over the reals and y is viewed as a vector in {±1}n.

Perfect security against k-wise adversaries (also known as k-wise independence) is an important
and well-studied notion of pseudorandomness. Constant depth circuits of unbounded fan-in (AC0)
capture a large class of natural computation and is essentially the maximal circuit class against
which we currently have (unconditional) pseudorandom generators. Finally, although degree-2
threshold functions (over the reals) may seem somewhat artificial, they actually cover some natural
counting tests such as computing the Hamming weight of the given string (or its variance) and
accepting if it exceeds some threshold.

Proof. (1) Assume towards a contradiction that there exists a k-wise adversary Ag,K : y 7→ g(yK)
with positive distinguishing advantage. Then, there exists a linear function L : Fk

2 → F2 that
distinguishes between f(Un)K and Uk, where Un denotes the uniform distribution over n-bit strings.

8Such functions exist when the stretch is sub-linear, i.e,. m = n+ o(n).

18

Namely, |Pr[L(f(Un)K) = 1] − Pr[L(Uk) = 1]| 6= 0. Since the function is d-local, the distribution
f(Un)K is sampled by less than kd random bits, and so the distinguishing advantage of L is larger
than 2−kd ≥ ε. It follows that f is not ε-biased in contradiction to the hypothesis.

The other two parts follow immediately from Part (1) by plugging in known results about k-
wise independent distributions. Specifically, Part (2) follows from Braverman’s theorem [26], and
Part (3) follows from the works of Diakonikolas et al. [31, 32].

Additionally, in [9, Lemma 5.2] it is shown that, for random local functions, low-bias implies
robustness (as in Section 3.1). It will be interesting to extend these implications to other classes of
adversaries. A natural starting point would be to show that FP,n,m fools low-degree polynomials
over F2. (Such a result was already proven in [8] for the special case of the noisy-XOR predicate.)

Question 4.11. For which predicates P and output lengths m, the collection FP,n,m o(1)-fools
degree-2 polynomials over F2?

Note that the existence of locally computable generators which fool polynomials of constant
degree d = O(1) already follows from Viola’s theorem [62] (i.e., by XOR-ing d independent locally-
computable ε-bias generators). Here, we conjecture that a random local function is likely to fool
low-degree polynomials.

4.3 Distinguishing vs. Approximation/Refutation

We move on to discuss the security of FP,n,m against distinguishers which are based on CSP
approximation and refutation algorithms. Let us begin with some standard terminology. For a
d-ary predicate P , let CSP(P) denote the collection of all CSP instances in which each constraint
is of the form P (xS) = 1 where S is a d-tuple of distinct variables.9 The value of a CSP instance
Φ is the maximum fraction of satisfiable constraints taken over all possible assignments. There
are two well studied probability distributions over CSP(P) instances: In the planted distribution

Pn,m(P) an instance is generated by first picking at random a truth assignment x
R← {0, 1}n, and

then choosing m random d-ary tuples S1, . . . , Sm for which P (xSi) = 1; whereas in the uniform
distribution Un,m(P) an instance is generated by choosing each of the d-ary tuples S1, . . . , Sm

uniformly at random.
It turns out that, if FP,n,m is pseudorandom, the planted and uniform distributions are in-

distinguishable. (Through this section we write pseudorandom and indistinguishable to denote
o(1)-pseudorandom and o(1)-indistinguishable.)

Proposition 4.12. If FP,n,m is pseudorandom, then Pn,m/3(P) and Un,m/3(P) are indistinguish-
able.

Proof sketch. By the hypothesis, it is hard to distinguish between a random pair

(G, y) where G
R← Gn,m,d, y

R← {0, 1}m (i)

and a pseudorandom pair

(G, fG,P (x)) where G
R← Gn,m,d, x

R← {0, 1}n. (ii)

9Typically, one also allows negated variables (literals). The results of this section apply to this variant as well,
provided that the collection FP,n,m is modified accordingly. Namely, P is applied to (randomly chosen) d-tuples of
literals.

19

As in Section 3 (Eq. 1), we may view the pair (G, y) as a constraint satisfaction problem ΦG,y,P

over n variables x = (x1, . . . , xn) and m constraints of the form P (xSi) = yi where Si is the
i-th hyperedge of G. By keeping the first m′ = m/3 constraints for which yi = 1 we obtain a
CSP(P) instance with m′ constraints. (Such a number of 1-constraints exists, whp, as otherwise
one can easily distinguish a random instance from a pseudorandom instance.) When the input is
pseudorandom the resulting instance is distributed according to the planted distribution, whereas a
random input is mapped to the uniform distribution. Therefore, a distinguisher between Pn,m′(P)
and Un,m′(P) contradicts the indistinguishability of (i) and (ii).10

In the superlinear regime m = ω(n), the distribution Un,m(P) is concentrated over instances

whose value equals to the density of the predicate ρ(P)
def
= |P−1(1)|/2d. These are essentially

the most unsatisfiable instances since any CSP(P) instance achieves this value, e.g., by a random
assignment. So breaking the pseudorandomness of FP,n,m boils down to distinguishing, in the
average-case, between satisfiable CSP instances and highly unsatisfiable instances. (Compare this
to one-wayness where inversion translates to finding a satisfying assignment.)

The CSP literature typically considers two (weaker) related algorithmic tasks: Approximation
and Refutation.

Approximation An α-approximation algorithm takes a CSP instance Φ ∈ CSP(P) and outputs
a (possibly randomized) assignment x which satisfies (in expectation) at least α · val(Φ)
fraction of the constraints, where val(Φ) is the maximal fraction of the constraints that can
be satisfied. So an approximation algorithm provides a lower-bound on the value of Φ. A
predicate P is approximation resistant [44] if all efficient algorithms fail to achieve (in the
worst-case) an approximation ratio better than the trivial ratio ρ(P) achieved by the naive
random assignment algorithm.

Refutation A refutation algorithm A for CSP(P) computes an upper-bound on the value of an
instance Φ ∈ CSP(P), i.e., A(Φ) ≥ val(Φ) for every Φ ∈ CSP(P). When A outputs a non-
trivial value (smaller than 1), it certificates that Φ is unsatisfiable.

So approximation/refutation algorithms can be viewed as one-sided distinguishers between satisfi-
able instances and highly-unsatisfiable instances. In light of Proposition 4.12, a necessary condition
for the pseudorandomness of FP,n,ω(n) is that both approximation and refutation are intractable in
the average case.

Corollary 4.13. Assume that FP,n,m is o(1)-pseudorandom for m = ω(n). Then, for every efficient
refutation algorithm A and m′ = m/3 we have

Pr
Φ

R
←Un,m′ (P)

[A(Φ) < 1] < o(1). (8)

Also, for every efficient approximation algorithm B we have

Pr
Φ

R
←Pn,m′ (P)

[B(Φ) > ρ(P)] < o(1), (9)

where we abuse notation and let B(Φ) denote the fraction of constraints that are satisfied by B.
10A tighter analysis allows to reduce the overhead m/m′ from 3 to 2.

20

Proof. By definition, val(Pn,m′(P)) = 1 and so a refutation algorithm A which does not satisfy (8)
can be used to distinguish Pn,m′(P) from Un,m′(P), contradicting Proposition 4.12. Similarly, since
val(Un,m′(P)) = ρ(P) (with all but negligible probability), an approximation algorithm B which
does not satisfy (9) allows us to distinguish between Pn,m′(P) and Un,m′(P).

So in order to argue that FP,n,ω(n) is pseudorandom, one should first show that P is approxima-
tion resistant (on random satisfiable instances) as well as hard-to-refute (on random unsatisfiable
instances).11 As we will see next, such hardness results are believed to hold for non-degenerate
predicates as defined in Section 4.2.2. In fact, such (worst-case) hardness results apply to a larger
class of predicates called pairwise independent.

A predicate P is pairwise independent if there is a distribution µ over the set of accepting

assignments P−1(1) ⊆ {0, 1}d such that (w1, . . . , wd)
R← µ is pairwise independent, i.e., for every

i 6= j the pair (wi, wj) is uniform over {0, 1}2. It is not hard to verify that non-degenerate predicates
satisfy this condition with respect to the uniform distribution over satisfying assignment. In [15]
it is shown that, under Khot’s unique-game conjecture [50], pairwise independent predicates are
approximation resistant. Pairwise independent predicates seem also hard-to-refute. Specifically, a
notable class of refutation algorithms work by relaxing Φ to a linear program (LP) or semi-definite
program (SDP), and use the value of the program as a lower-bound to the value of Φ. It is known
that relatively powerful families of LP/SDP-based refutation algorithms fail to refute Un,m=ω(n)(P)
when P is pairwise independent [19, 61, 16]. In fact, it is conjectured in [17] (following Feige [34])
that no efficient algorithm can beat these SDP-based algorithms over the uniform distribution, and
so pairwise predicates are “hard-to-refute” over the uniform distribution.

Pseudorandomness as a working hypothesis . Reversing the viewpoint, we may consider
the pseudorandomness of FP,n,m as a working hypothesis which directly implies the intractability of
approximation and refutation in the average case. The latter assumption was used by Feige [34] to
derive inapproximability results for combinatorial problems. Since pseudorandomness seems strictly
stronger, one may hope to further improve these implications. Indeed, it is shown in [7] that, assum-
ing that FP,n,m is pseudorandom, the densest-subgraph problem in d-uniform hypergraphs cannot
be approximated to within a polynomial factor of nε, improving the constant inapproximability
result from [34, 51]. It seems likely that the pseudorandomness of FP,n,m can lead to further
implications.

4.4 Pseudorandomness: Summary

Large output lengths. Theorem 4.4 suggests that pseudorandomness (with inverse polynomial
distinguishing advantage) can be achieved with essentially the same parameters as one-wayness.
Specifically, assuming that Conjecture 3.9 holds with respect to sensitive predicates, for every poly-
nomial m(n) = nc and inverse polynomial ε(n), there exists a predicate P of constant arity d for
which FP,n,m is ε-pseudorandom. As we saw (in Theorems 3.4 and 3.5), such a predicate P must
have an algebraic degree of c and must satisfy ⌊2c⌋-resiliency.12 For small values of c < 5/4, this
condition seems to be sufficient as hinted by hardness results for linear distinguishers (Theorem 4.8)
and approximation/refutation based distinguishers (Section 4.3). Even under Conjecture 3.9, un-
derstanding which predicates achieve pseudorandomness for larger output lengths is an interesting

11A similar result holds for the complement of P , as F1−P,n,m=ω(n) is also pseudorandom.
12Recall a-resiliency means that P is not correlated with parity of arity smaller or equal to a

21

open question. Recent results suggest that 2c-resiliency defeats powerful families of adversaries
including SDP-based refutation algorithms [57] and “statistical query” algorithms [36]. However,
it is currently unknown what properties are needed to guarantee low-bias for FP,n,m=nc when c is
a large constant.13

Bibliographic note. Many of the results in this section were first proven for the special case of
the noisy-XOR predicate. Feige conjectured that random 3-XOR formulas are hard to refute (and
proved equivalence to the irrefutability of other 3-ary predicates). Following Feige, Alekhnovich [4]
suggested to assume that the collection FP,n,Θ(n), instantiated with noisy 3-XOR, is pseudorandom,
and observed that this implies Feige’s hypothesis.14 The extension of this observation to the case
of general predicates (Proposition 4.12) is new to this survey.

Alekhnovich’s construction does not lead directly to a local PRG (due to the use of noise),
however it was derandomized in [13] yielding the first construction of local PRG with linear stretch.
The pseudorandomness of the collection FP,n,m with noisy-XOR was reduced by [8] to the one-
wayness of the same collection (with some loss in the parameters) establishing a special case of
Theorem 4.4.

The first construction of local low-bias generator was given in [54]. Specifically, it was shown
that the predicate MST3,2 combined with a specific hypergraph G, achieves low-bias.15 In [8] this
result was extended to random local functions, by obtaining a sufficient condition over the predicate
P that guarantees low bias for most functions in FP,n,n1+ε for some small constant ε > 0. Later, a
full classification of good predicates (Theorem 4.8) was established in [9].

5 Target Collision Resistance

We saw that it is possible to locally stretch a short seed into a long pseudorandom string. Is it
also possible to locally hash a long string into a shorter one? Specifically, a collection of universal
one-way hash functions [56] H = {h : {0, 1}n → {0, 1}m} shrinks a long n-bit string into a shorter

string of length m < n such that, given a random function h
R← H and a preselected target string

x, it is hard to find a sibling y 6= x that collide with x under h. We focus on the regime of linear
shrinkage where the function shrinks an n-bit input into (1 − ε)n-bit output for some constant
ε > 0.

5.1 Hashing via Random Local Functions?

As a starting point, we ask whether the collection FP,n,(1−ε)n itself can be used, even heuristically,
as a UOWHF. Unfortunately, the answer turns to be negative. Since every output is connected to

a random d-tuple of inputs, a function f
R← FP,n,(1−ε)n is likely to have some input i of degree 0,

13The results of [54] show that there exists a predicate P of arity d = O(c2) and a concrete (m = nc, n, d)-
hypergraph G, for which fG,P has negligible bias. (The resulting construction is not uniform as it relies on bipartite
expander graphs with no explicit construction .)

14More precisely, Alekhnovich’s conjecture asserts that, for a random f
R← F⊕,n,m=Θ(n), the sequence f(x) + e is

indistinguishable from the sequence f(x) + e+ ei where x
R← {0, 1}n, e is a random vector of weight pm, and ei is a

random vector of weight 1. This assumption is (trivially) equivalent to the unpredictability of f(x) which, by Yao’s
theorem, implies that f(x)+ e is pseudorandom. The latter assumption was shown to imply pseudorandomness with
respect to iid noise in [13, Appendix A].

15An explicit version of this construction was given by [13] for the linear output regime m = n+Θ(n).

22

with no influence at all. Hence, we can find a collision with a target string x simply by flipping the
values of xi.

To remedy the problem, let us try to modify the distribution of the input-output dependency
hypergraph and consider only regular (uniform) hypergraphs in which each input affects exactly c
outputs and each output depends on d inputs. Unfortunately it turns out that, in this modified
ensemble, collision are still easy to find, even with respect to a random target string x. To see this,
it is instructive to consider the case where P is the majority predicate. With high probability, there
will be an input variable xi such that all of its neighboring inputs (i.e., the inputs that share an
output with xi) are assigned zero. In this case, we can flip the insensitive input xi without affecting
the output of the function, and this way obtain a trivial collision. In fact, since each variable has
at most cd = O(1) neighbors and since x is chosen at random, every variable xi has a constant
probability of being insensitive, and one is likely to find an Ω(n) insensitive inputs. Furthermore,
by collecting an independent set I of insensitive inputs (that do not share any common output)
one can simultaneously flip any subset of the inputs in I without changing the output. Hence,
there exist a ball of radius Ω(n) around x such that for every x′ in this ball f(x′) = f(x). Finally,
observe that a similar attack can be applied to FP,n,m for every predicate P except for XOR or its
negation. Unfortunately, in the latter case collisions can be found via Gaussian elimination.

5.2 Finding far-collisions

Despite the above failure, let us keep asking: Can FP,n,m achieve some, possibly weak, form of
collision resistance? Note that the previous attack yields collisions that are “not too far” from the
target string x. That is, the relative Hamming distance is smaller than β for some constant β,
which depends on the predicate P . It is therefore natural to consider the following notion of β
target collision resistance.

Definition 5.1 ([14]). A collection of length-decreasing functions H is δ-secure β-target collision
resistance (TCR) if for every efficient adversary A

Pr
x

R
←{0,1}n,h

R
←H

[A(〈h〉, x) = y s.t. h(x) = h(y) and ∆(x, y) > β] < δ,

where ∆(x, y) denotes the relative Hamming distance between x and y, i.e., the fraction of coordi-
nates where x and y differ.

The study of the geometry of the solutions of random constraint satisfaction problems [2] sug-
gests, at least heuristically, that FP,n,m may be secure with respect to β-far collisions. Thinking
of each output as inducing a local constraint on the inputs, it can be essentially showed that, for
under-constraint problems where m = (1 − ε)n, the space of solutions (siblings of x) is shattered
into far-apart clusters of Hamming-close solutions. It is believed that efficient algorithms cannot
move from one cluster to another as such a transition requires to pass through strings x′ that violate
many constraints (i.e., f(x′) is far, in Hamming distance, from f(x)). Therefore, it seems plausible
to conjecture that the collection FP,n,m is secure with respect to β-far collisions.

It turns out that this conjecture can be proven assuming the pseudorandomness of FP,n,m′

(where m′ > n > m).

Theorem 5.2 (Corollary 4.2 [14]). There exists a predicate P , constants ε, β ∈ (0, 12) and c > 1
such that the following holds. For every δ > 0, if FP,n,cn is (δ/5)-pseudorandom then FP,n,(1−ε)n is
δ-secure β-TCR.

23

The theorem holds even if δ decreases with n (as long as it is inverse polynomial), although we
will employ it only with small constant values. We further mention that the theorem is constructive,
and can be applied to every predicate that satisfies some explicit sensitivity criteria. In particular,
it is shown that the MST predicate MSTd1,d2(x, y) = (y1⊕ . . .⊕ yd1)⊕ (x1 ∧ . . .∧ xd2), satisfies the
theorem for every d2 ≥ 2 and every sufficiently large odd constant d1.

Proof idea. Let m = (1 − ε)n. Let P be a balanced predicate, which, in addition, enjoys the
following sensitivity properties:16

∀x, x′ ∈ {0, 1}n,∆(x, x′) > β ⇒ E

f
R
←FP,n,m

[∆(f(x), f(x′))] > γ for some constants β, γ > 0

∀x, x′ ∈ {0, 1}n,∆(x, x′) =
1

2
⇒ E

f
R
←FP,n,m

[∆(f(x), f(x′))] =
1

2
.

An example of such a predicate is parity ⊕d with an odd arity d. A relaxation of the above
properties (e.g., by considering only x of Hamming weight 1

2) allows us to use MSTd1,d2 for every
d2 ≥ 2 and every odd constant d1. (Larger d1 pushes β towards zero and increases γ towards 1

2 .)

Assume that we have an algorithm A that, given a random function h
R← FP,n,m and a random

target w, finds a β-far sibling with probability δ. Let us first try to use A to invert the collection

FP,n,m′ with output length of m′ ≈ 2m. Given a random function fG
R← FP,n,m′ specified by a

random input-output dependencies hypergraph G, and an image y = fG(x) of a random point

x
R← {0, 1}n, we will recover the preimage x as follows.
First, we choose a target w uniformly at random and partition the hypergraph G into two

hypergraphs: G= which contains only the output hyperedges for which fG(w) agrees with y, and
G6= which contains the remaining hyperedges. Hence,

fG=(x) = fG=(w) and fG 6=
(x) = fG 6=

(w),

where z denotes the bit-wise complement of the string z. Since P is balanced, each subgraph
contains roughly m′ hyperedges. Next, we ask A for a β-far sibling w′ of w under the function fG= .
As we will see next w′ is likely to be correlated with the preimage x, in the sense that for some
constant α > 0, either w′ or its complement w′ agree with x on (12+α)-fraction of their coordinates.
Therefore, by employing the self-correction theorem (Theorem 3.8), we can use w′ to fully recover
x with the aid of O(n) additional outputs.

It remains to show that w′ is likely to be correlated with the preimage x. Using the sensitivity
properties of the predicate P , this boils down to proving that fG(w

′) and fG(x) agree on 1
2 + α′

of their coordinates, for some constant α′ > 0. Let us first (optimistically) assume that w′ is
statistically independent of the sub-graph G6= that was not submitted to the adversary. That is,
imagine that this part of the dependencies hypergraph is chosen uniformly at random after w′ is
obtained. Since w is β-far from w′, this pair is expected to disagree on a constant fraction γ of the
remaining coordinates of fG 6=

. Namely,

∆(fG 6=
(w), fG 6=

(w′)) > γ.

16It can be shown that the above properties are actually independent of the output length m, and corresponds to
a generalized notion of noise sensitivity of P . See [14, Section 3].

24

Since fG 6=
(x) = fG 6=

(w) it follows that

∆(fG 6=
(x), fG 6=

(w′)) < 1− γ.

Furthermore, since w′ collides with w under fG= we have that

fG=(x) = fG=(w) = fG=(w
′).

We conclude that x and w agree on a fraction of 1 − 1
2(1 − γ) = 1

2 + γ/2 of the outputs of fG
(γ-fraction of the coordinates of fG 6=

and all the coordinates of fG=).
The above argument is over-optimistic, since it is not clear that w′ is statistically independent

of the subgraph G6=. (Indeed, the adversary A chooses w′ based on (w,G=) which contain some
information on x and, therefore, also on G6=.) Fortunately, we can show that a failure of the above
approach allows to distinguish the string y = fG(x) from a truly random string. Hence, we are in
a win-win situation: we can either invert F by finding a correlated string, or we can distinguish
its output from a random string. So the theorem can be based on the pseudorandomness of
FP,n,n+Ω(n).

5.3 Applications

Theorem 5.2 has several interesting applications. First, it is shown in [14] that it is possible to
convert δ-secure β-target collision resistance, for constant parameters δ, β, into a standard UOWHF
while preserving constant locality and linear shrinkage. (Interestingly the transformation makes use
of two collections of random local linear functions F⊕,n,m, where one collection is length-shrinking
and one collection is length-expanding.) By combining this transformation with Theorems 5.2
and 4.4, we obtain a collection of locally computable UOWHFs H with linear shrinkage based on
the one-wayness of random local functions.

Theorem 5.3 ([14]). There exist a predicate P and a constant c for which the following holds.
If FP,n,cn3 is one-way then there exists a locally computable UOWHF H with linear shrinkage.
In particular, the above holds for P = MSTd1,d2 where d2 is an arbitrary constant, and d1 is a
sufficiently large odd constant.

The theorem can be used to speed-up the sequential-time complexity of several cryptographic
primitives. First, by iterating H a logarithmic number of times we get a linear-time computable
hash function H′ with polynomial shrinkage factor of m = nε for an arbitrary constant ε > 0
(the i-th level of the circuit contains O(n/2i) gates). As observed by [47], such a hash function
can be used to obtain asymptotically-optimal signature schemes via the Hash-and-Sign paradigm.
To sign an n-bit message x, first hash it to the length of the security parameter κ, and then use
some standard signature scheme to sign the hashed value with complexity poly(κ). The overall
computational cost is O(n+ poly(κ)) which is dominated by n for sufficiently long messages (e.g.,
when n is polynomially longer than the security parameter). Overall, the resulting signature scheme
has only additive cryptographic overhead, while the complexity of standard signature schemes grows
multiplicatively with the security parameter, i.e., O(n · poly(κ)).

Collision-Resistance Hashing. So far our discussion was restricted to the case of target collision

resistance where the target string is independent of the function f
R← F . However, one may strive

25

for a stronger form of security where the target can be chosen based on f . Formally, we say that

F is collision resistance if, given f
R← F , it is hard to find a pair of colliding inputs x 6= x′. Under

standard intractability assumptions [12], there are collision-resistance hash functions with constant
output locality and sublinear shrinkage of m = n−nε. We mention that the UOWHF constructions
that results from Theorem 5.2 can be broken when the adversary is allowed to choose the target
string. This leaves open the following question.

Question 5.4. Is it possible to locally compute collision-resistance hash functions with linear shrink-
age? Can such a construction be based on the one-wayness of FP,n,m ?

In fact, for the case of constant input-locality (where each input affects a constant number of
outputs), the existence of collision-resistance hashing is open even for the case of 1-bit shrinkage.
(A positive answer to Question 5.4 would settle this question as well, see [14, Lemma 5.8].)

6 Public-Key Cryptography

So far we considered private-key primitives, a more ambitious task is to try and use random local
functions to implement public-key cryptography. In this case, the motivation is not only efficiency,
but also diversity. Despite its importance, very few candidates for public-key encryptions are
known, and these are based on a handful of computational problems of a very structured algebraic
or geometric nature from the areas of number theory, lattices, and error-correcting codes (e.g.,
[33, 59, 53, 3]). Basing public-key primitives on the hardness of random local functions – an
assumption with a combinatorial flavor – would allow to broaden and diversify the foundations of
public-key cryptography.

One way to achieve this goal is to try and plant a secret “trapdoor” in fG,P
R← FP,n,m that, if

known, allows to break its one-wayness or pseudorandomness. In [8] such a trapdoor is obtained by
planting a non-expanding set in the underlying dependencies hypergraph G. This minor violation
of expansion is (hopefully) hard to detect, but still (when known) allows to break the security of
the resulting function. Let us elaborate on a simplified variant of this idea.

Construction 6.1 (A Template for Public-Key Encryption). Consider the following high-level
scheme (parameterized with integers q < r < n < m and a predicate P):

Key-generation Choose a random (n,m − q, d)-hypergraph G1, choose a small random r-subset
of nodes R ⊆ [n], plant a random (r, q, d)-hypergraph G2 over the nodes in R, and combine
the two graphs into a single (n,m, d)-hypergraph G′ by collecting all hyperedges in a random
order. Publish the combined hypergraph G′ as the public-key and keep the locations Q =
(i1, . . . , iq) ∈ [m]q of the hyperedges of G1 as the private-key (i.e., G2 is simply the restriction
of G′ to the hyperedges in Q).

Encryption The bit “zero” is encrypted by y = fG′,P (x) where x
R← {0, 1}n.

The bit “one” is encrypted by a random m-bit string y
R← {0, 1}m.

Decryption Let f ′ be the restriction of fG′,P to the outputs in Q. Since these outputs depend only
on the inputs in R, the function f ′ is a mapping from r-bit strings to q-bit strings. Assume
that we have an efficient algorithm that checks whether a q-bit string is in the image of f ′.
In this case, we can decrypt a ciphertext y ∈ {0, 1}m (with some error) by checking if the

26

restricted ciphertext yQ is in the image of f ′. If y is in the image of f ′, decryption succeeds
with probability 1, and when y is random, decryption errs with probability at most 2r−q which
is negligible if q = r + ω(log n). (Alternatively, if q = r + 1, then the decryption error can be
reduced by repeated encryptions.)

This general template still leaves two main questions:

• (Decryption) How to efficiently decide if a string is in the image of f ′?

• (Security) How secure is the resulting scheme?

Several different answers are given in [8] depending on the exact choice of the predicate.

6.1 Noisy-XOR predicate

One suggestion is to let P be the noisy d-XOR predicate with noise rate of δ ≪ 1/q. In this case, the
probability that none of the outputs in Q are noisy is at least 1− qδ ≫ 0 and so decryption can be
implemented by Gaussian elimination (treating f ′ as a linear mapping). To prove that the scheme
is secure one has to show that the mapping fG′,P remains pseudorandom even when G′ is selected
according to the key-generation distribution. Observe that G′ can be viewed as a random (n,m, d)-
hypergraph G which was modified by replacing q of its hyperedges with q “planted hyperedges”
which are all incident to a small random r-subset of nodes R ⊆ [n]. It is shown that, for a proper
choice of the parameters, this modification, from G to G′, keeps the mapping fP,G′ pseudorandom.
Indeed, when d = 3, q = O(n0.2) and the output length m is O(n1.4), the distributions of G′ and G
are not too far apart (the statistical distance is bounded away from 1), and, one can show that the
hardness of fP,G′ is “inherited” from the hardness of fP,G. By taking the noise rate δ = 1/cq, for
some sufficiently large constant c, we derive the following theorem.

Theorem 6.2 (Corollary 5.6 in [8]). Assume that FP,n,cn1.4 is one-way, where P is the noisy 3-XOR
predicate with noise rate 1

cn0.2 , and c is some universal constant.17 Then, there exists a public-key
encryption scheme.

Recall that, by Theorem 3.5, the noisy 3-XOR predicate can be successfully attacked for output
length of m = n3/2. For the parameters considered in Theorem 6.2, the best known attack has
sub-exponential complexity of exp(nε) for some constant ε > 0. As a partial evidence for hardness,
we further mention that the related task of refuting (in the sense of Eq. (8)) a random system of
m = O(n1.4) 3-XOR equations with noise rate n−0.2 is at least as hard as refuting random 3-CNF
instance with m clauses [35]. The latter is a longstanding open problem for any m ≤ n3/2−Ω(1).

A variant. It is natural to ask whether Theorem 6.2 can be based on a seemingly more conser-
vative assumption that uses a shorter output length (ideally linear in n) and a larger (constant)
locality d. Indeed, most of the proof generalizes to the case of general d, δ and quasilinear output
length m = Θ(n log n), except that, for this setting of parameters, the distributions of G and G′

are far-apart and we cannot employ the information-theoretic argument used in the proof of The-
orem 6.2. This limitation can be solved at the expense of presenting an additional intractability

17For randomized predicates P , the one-wayness of FP,n,m asserts that, for a random graph G and a random x, it
is hard to recover x from (G, y = fG,P (x)). For our setting of parameters, whp, x is uniquely determined by (G, y).

27

assumption called Decisional Unbalanced Expansion which essentially asserts that it is hard to dis-
tinguish a random (n,m, d)-hypergraph G from a random (n,m, d)-hypergraph G′ with a random
planted shrinking set of q hyperedges. We denote this assumption by DUE(n,m, d, q).

Theorem 6.3 (Corollary 6.5 in [8]). Assume that, for some q = q(n) = o(n), constant d ∈ N and
constant c > 0, (1) the DUE(n, cn, d, q) assumption holds and (2) FP,n,cn logn is one-way, where
P is the noisy d-XOR predicate with noise rate 1/cq. Then, there exists a public-key encryption
scheme.

DUE parameters. The use of DUE induces some constraints on the parameters. Indeed, con-
sider the set of nodes R on which the additional q hyperedges are planted. It turns out that if the
hypergraph induced on R is much denser than the rest of the hypergraph then one can efficiently
distinguish G from G′. For example, if the output-input ratio c = m/n is sufficiently smaller than
the degree d, we can distinguish between the two cases by just looking at the degree distribution.
Indeed, d, the amount added to the degrees in R, is larger than the standard deviation of the
average input degree in G, which is cd. Stronger variants of this attack (e.g., counting the num-
ber of short cycles which are incident to Q) apply to the regime where c is small enough so that
clogd q ≪ n. Still the DUE problem is conjectured to be intractable when d is a small constant,
q = nδ, for some small constant δ ∈ (0, 12) (e.g., 1/10), and c is a constant which is much larger than

d1/δ (say 100d1/δ). Some evidences for the validity of this assumption are given in [8]. Under this
setting of parameters, it is conceivable to believe that the resulting public-key encryption achieves
sub-exponential security.

Remark. In order to optimize the underlying hardness assumption, the proof (both for Theo-
rem 6.2 and for Theorem 6.3) relies on fG,P being ε-unpredictable and not pseudorandom (for, say,
ε = 0.1). Consequently, the resulting public-key encryption scheme is somewhat different than the
one presented here (Construction 6.1). Also, this requires to assume that G and G′ are hard to
distinguish even when some entries of Q are published. It is shown that, for a proper choice of
parameters, the two versions of Decisional Unbalanced Expansion are computationally equivalent.

6.2 General predicate

One may further ask whether it is possible to base the construction on general (non-linear) predicate
P . While the security proof extends to this variant, decryption be comes problematic as we cannot
apply Gaussian elimination. To solve this problem, it is suggested to let q = O(log n). In this
case, the image of f ′ is of polynomial size and decryption can be implemented efficiently regardless
of the structure of P . Security in this case, is based on the pseudorandomness of FP,n,m and the
DUE assumption for (m,n, d) with q = O(log n)-size planted shrinking set. Note that a simple
exhaustive search of the shrinking set requires O(nq) = nlogn time, and so security cannot be
better than quasi-polynomial. For super-linear m = n1+ε, no better attack is known.18

Theorem 6.4 (Corollary 8.5 in [8]). For every q = Θ(log n) and function m = m(n), d = d(n) and
d-local predicate P , if both the DUE(m,n, d, q) assumption holds and FP,n,m is pseudorandom, then
there exists a public-key encryption scheme.

18If m = O(n) then the aforementioned (cycle-counting) attacks can be used to break security.

28

A natural open question is to remove the additional DUE assumption, and base public-key
encryption on the one-wayness or pseudorandomness of FP,n,m for a general predicate P . In essence,
this would show that public-key cryptography follows from “super-fast” private-key cryptography.

Question 6.5. Is there a public-key encryption scheme based on the one-wayness of FP,n,m for a
general family of predicates (other than noisy XOR)?

For some setting of parameters, the DUE assumption follows from the pseudorandomness of
FP,n,m [7, Theorem 1.6], which in turn reduces to the one-wayness of FP,n,m′ (Theorem 4.4).
Unfortunately, this result applies only to large values of q (roughly q = n1+δ/d and m = n1+δ),
and so it does not match the parameters needed for public-key encryption. One may hope to
settle Question 6.5 affirmatively by either improving the hardness results of [7, Theorem 1.6] or by
relaxing the requirements of the above public-key encryption scheme.

Applications. All three schemes can be used to derive an oblivious transfer protocol [58], which,
in turn, allows to securely compute any multi-party functionality [43]. It is also shown in [8] that
the third encryption scheme (with non-linear predicate) implies that the well known problem of
PAC-learning O(log n)-juntas [20, 21] is computationally intractable. This essentially follows by
noting that our decryption algorithm looks at only q = O(log n) = O(logm) of the bits of the
m-bit ciphertext, and so it computes a q-junta. As observed in [49], the decryption function of any
semantically-secure public-key encryption scheme is hard to learn. Specifically, consider the joint
distribution over labeled-examples (z, b) ∈ {0, 1}m × {0, 1} where the label is a random message

b
R← {0, 1} and the example z is a fresh ciphertext of b. Since an adversary can sample labeled

examples from this distribution given only the knowledge of the public-key, the ability to learn the
decryption function over this distribution allows to break the cryptosystem.19

Acknowledgement

This survey originates from two talks given at Oberwolfach Workshop for Computational Com-
plexity (2012) and at The Tenth Theory of Cryptography Conference (TCC 2013). We thank the
organizers of these events and to Oded Goldreich, the editor of this special issue, for initiating
this survey. We are also deeply grateful to Oded for many valuable suggestions concerning the
presentation of these results. The author is also grateful to Boaz Barak, Andrej Bogdanov, Uri
Feige, Oded Goldreich, Yuval Ishai, Eyal Kushilevitz, Ryan O’Donnell, Alon Rosen, Dan Vilenchik,
and Avi Wigderson for stimulating discussions.

References

[1] D. Achlioptas. Handbook of Satisfiability, chapter Random Satisfiability, pages 243–268. IOS
Press, 2009.

19This argument assumes that the decryption algorithm errs with no more than negligible probability. In contrast,
our basic template suffers from noticeable decryption errors, and standard error-reduction techniques (e.g., repetition)
increase the locality of decryption. To cope with this problem, it is shown in [8] how to eliminate the decryption
errors of Construction 6.1 (for most public-keys) without increasing the locality of the decryption algorithm.

29

[2] D. Achlioptas and F. Ricci-Tersenghi. On the solution-space geometry of random constraint
satisfaction problems. In Proc. 38th STOC, 2006.

[3] M. Ajtai and C. Dwork. A public-key cryptosystem with worst-case/average-case equivalence.
In STOC, pages 284–293, 1997.

[4] M. Alekhnovich. More on average case vs approximation complexity. In FOCS, pages 298–307.
IEEE Computer Society, 2003.

[5] M. Alekhnovich, E. A. Hirsch, and D. Itsykson. Exponential lower bounds for the running
time of DPLL algorithms on satisfiable formulas. J. Autom. Reasoning, 35(1-3):51–72, 2005.

[6] N. Alon and N. Kahale. A spectral technique for coloring random 3-colorable graphs. In SIAM
J. Comput, pages 346–355, 1994.

[7] B. Applebaum. Pseudorandom generators with long stretch and low locality from random
local one-way functions. SIAM J. Comput, 42(5):2008–2037, 2013.

[8] B. Applebaum, B. Barak, and A. Wigderson. Public-key cryptography from different assump-
tions. In Proc. of 42nd STOC, pages 171–180, 2010.

[9] B. Applebaum, A. Bogdanov, and A. Rosen. A dichotomy for local small-bias generators. In
Proc. of 9th TCC, pages 1–18, 2012.

[10] B. Applebaum, Y. Ishai, and E. Kushilevitz. On one-way functions with optimal locality.
Unpublished manuscript available at http://www.eng.tau.ac.il/~bennyap, 2005.

[11] B. Applebaum, Y. Ishai, and E. Kushilevitz. Computationally private randomizing polynomials
and their applications. Journal of Computational Complexity, 15(2):115–162, 2006.

[12] B. Applebaum, Y. Ishai, and E. Kushilevitz. Cryptography in NC0. SIAM J. Comput,
36(4):845–888, 2006. Preliminary version in FOCS 2004.

[13] B. Applebaum, Y. Ishai, and E. Kushilevitz. On pseudorandom generators with linear stretch
in NC0. J. of Computational Complexity, 17(1):38–69, 2008.

[14] B. Applebaum and Y. Moses. Locally computable UOWHF with linear shrinkage. In Proc.
EUROCRYPT ’13, pages 486–502, 2013.

[15] P. Austrin and E. Mossel. Approximation resistant predicates from pairwise independence.
Computational Complexity, 18(2), 2009.

[16] B. Barak, S. O. Chan, and P. Kothari. Sum of Squares Lower Bounds from Pairwise Indepen-
dence. In Proc. of 47th STOC 2015, 2015. available at http://arxiv.org/abs/1501.00734.

[17] B. Barak, G. Kindler, and D. Steurer. On the optimality of relaxations for average-case and
generalized constraint satisfaction problems. In Proc. 4th of ITCS 2012, 2013.

[18] E. Ben-Sasson and A. Wigderson. Short proofs are narrow–resolution made simple. J. ACM,
48, 2001.

30

http://www.eng.tau.ac.il/~bennyap
http://arxiv.org/abs/1501.00734

[19] S. Benabbas, K. Georgiou, A. Magen, and M. Tulsiani. SDP gaps from pairwise independence.
Theory of Computing, 8(12):269–289, 2012.

[20] A. L. Blum. Relevant examples and relevant features: Thoughts from computational learning
theory. AAAI Fall Symposium on Relevance, 1994.

[21] A. L. Blum and P. Langley. Selection of relevant features and examples in machine learning.
Artificial Intelligence, 97(1-2):245–271, 1997.

[22] A. Bogdanov, P. Papakonstantinou, and A. Wan. Pseudorandomness for read-once formulas.
In Proc. 52nd FOCS, 2011.

[23] A. Bogdanov and Y. Qiao. On the security of Goldreich’s one-way function. Computational
Complexity, 21(1):83–127, 2012.

[24] A. Bogdanov and A. Rosen. Input locality and hardness amplification. In Proc. of 8th TCC,
pages 1–18, 2011.

[25] A. Bogdanov and E. Viola. Pseudorandom bits for polynomials. SIAM J. Comput, 39(6):2464–
2486, 2010.

[26] M. Braverman. Poly-logarithmic independence fools AC0 circuits. Computational Complexity,
Annual IEEE Conference on, 0:3–8, 2009.

[27] M. Charikar and A. Wirth. Maximizing quadratic programs: Extending grothendieck’s in-
equality. In Proc. 45th FOCS, pages 54–60, 2004.

[28] A. Coja-Oghlan. Random constraint satisfaction problems. In Proc. 5th DCM, 2009.

[29] J. Cook, O. Etesami, R. Miller, and L. Trevisan. Goldreich’s one-way function candidate and
myopic backtracking algorithms. In Proc. of 6th TCC, pages 521–538, 2009. Full version in
Electronic Colloquium on Computational Complexity (ECCC).

[30] M. Cryan and P. B. Miltersen. On pseudorandom generators in NC0. In Proc. 26th MFCS,
2001.

[31] I. Diakonikolas, P. Gopalan, R. Jaiswal, R. A. Servedio, and E. Viola. Bounded independence
fools halfspaces. SIAM J. Comput, 39(8):3441–3462, 2010.

[32] I. Diakonikolas, D. M. Kane, and J. Nelson. Bounded independence fools degree-2 threshold
functions. In Proc. 51st FOCS, pages 11–20, 2010.

[33] W. Diffie and M. E. Hellman. New directions in cryptography. IEEE Transactions on Infor-
mation Theory, 22(5):644–654, Nov. 1976.

[34] U. Feige. Relations between average case complexity and approximation complexity. In Proc.
of 34th STOC, pages 534–543, 2002.

[35] U. Feige, J. H. Kim, and E. Ofek. Witnesses for non-satisfiability of dense random 3CNF
formulas. In Proc. 38th STOC, pages 497–508, 2006.

31

[36] V. Feldman, W. Perkins, and S. Vempala. On the Complexity of Random Sat-
isfiability Problems with Planted Solutions. ArXiv e-prints, 2013. Available at
http://arxiv.org/abs/1311.4821.

[37] A. Flaxman. Random planted 3-SAT. In M.-Y. Kao, editor, Encyclopedia of Algorithms.
Springer, 2008.

[38] A. Flaxman. A spectral technique for random satisfiable 3CNF formulas. Random Struct.
Algorithms, 32(4):519–534, 2008.

[39] Goemans and Williamson. Improved approximation algorithms for maximum cut and satisfi-
ability problems using semidefinite programming. J. ACM, 42, 1995.

[40] O. Goldreich. Candidate one-way functions based on expander graphs. Electronic Colloquium
on Computational Complexity (ECCC), 7(090), 2000.

[41] O. Goldreich. Foundations of Cryptography: Basic Tools. Cambridge University Press, 2001.

[42] O. Goldreich. Foundations of Cryptography: Basic Applications. Cambridge University Press,
2004.

[43] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game (extended abstract).
In Proc. of 19th STOC, pages 218–229, 1987. See [42, Chapter 7].

[44] J. H̊astad. Every 2-CSP allows nontrivial approximation. Computational Complexity,
17(4):549–566, 2008.

[45] R. Impagliazzo, N. Nisan, and A. Wigderson. Pseudorandomness for network algorithms. In
Proc. 26th STOC, pages 356–364, 1994.

[46] Y. Ishai, E. Kushilevitz, X. Li, R. Ostrovsky, M. Prabhakaran, A. Sahai, and D. Zuckerman.
Robust pseudorandom generators. In ICALP (1), pages 576–588, 2013.

[47] Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai. Cryptography with constant computa-
tional overhead. In Proc. of 40th STOC, pages 433–442, 2008.

[48] D. Itsykson. Lower bound on average-case complexity of inversion of goldreich’s function
by drunken backtracking algorithms. In Computer Science - Theory and Applications, 5th
International Computer Science Symposium in Russia, pages 204–215, 2010.

[49] M. J. Kearns and L. G. Valiant. Cryptographic limitations on learning boolean formulae and
finite automata. J. ACM, 41(1):67–95, 1994.

[50] S. Khot. On the power of unique 2-prover 1-round games. In Proc. 34th STOC, 2002.

[51] S. Khot. Ruling out PTAS for graph min-bisection, densest subgraph and bipartite clique. In
Proc. of 45th FOCS, pages 136–145, 2004.

[52] S. Lovett. Unconditional pseudorandom generators for low degree polynomials. Theory of
Computing, 5(1):69–82, 2009.

32

http://arxiv.org/abs/1311.4821

[53] R. J. McEliece. A public-key cryptosystem based on algebraic coding theory. The Deep Space
Network Progress Report, DSN PR 42-44, January and February 1978,, 1978.

[54] E. Mossel, A. Shpilka, and L. Trevisan. On ǫ-biased generators in NC0. In Proc. 44th FOCS,
pages 136–145, 2003.

[55] J. Naor and M. Naor. Small-bias probability spaces: Efficient constructions and applications.
SIAM J. Comput, 22(4):838–856, 1993. Preliminary version in Proc. 22th STOC, 1990.

[56] M. Naor and M. Yung. Universal one-way hash functions and their cryptographic applications.
In Proc 21st STOC, 1989.

[57] R. O’Donnell and D. Witmer. Goldreich’s prg: Evidence for near-optimal polynomial stretch.
In Proc. 29th of CCC 2014, 2014.

[58] M. Rabin. How to exchange secrets by oblivious transfer. Technical Report TR-81, Harvard
Aiken Computation Laboratory, 1981.

[59] R. L. Rivest, A. Shamir, and L. M. Adleman. A method for obtaining digital signatures and
public-key cryptosystems. Comm. of the ACM, 21(2):120–126, 1978.

[60] T. Siegenthaler. Correlation-immunity of nonlinear combining functions for cryptographic
applications. IEEE Transactions on Information Theory, IT-30(5):776–779, 1984.

[61] M. Tulsiani and P. Worah. LS+ lower bounds from pairwise independence. Electronic Collo-
quium on Computational Complexity (ECCC), 19:105, 2012.

[62] E. Viola. The sum of d small-bias generators fools polynomials of degree d. In IEEE Conference
on Computational Complexity, pages 124–127. IEEE Computer Society, 2008.

33

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

