
Inherent Logic and Complexity

Stanislav Žák⋆

Institute of Computer Science, Academy of Sciences of the Czech Republic,
P.O. Box 5, 182 07 Prague 8, Czech Republic, stan@cs.cas.cz

Abstract. The old intuitive question ”what does the machine think” at
different stages of its computation is examined. Our paper is based on
the formal definitions and results which are collected in the branching
program theory around the intuitive question ”what does the program
know about the contents of the input bits” [1],[2],[3],[4],[5].

We further develop these results above and we present a formal counter-
part of the intuitive notion ”what does the program think ” at different
stages of its computation on the processed input word. The definition is
constructed as the logical consequences of the definition of the knowledge
about the contents of input bits above.

Our formal definition is in a good relation to the world of intuitive ideas.
We prove the theorem saying that the programs which are allowed to
compute (think) in a more sophisticated way can compute more effec-
tively. We also demonstrate an example that for some programs a small
enrichment of their inherent logical possibilities implies a dramatic com-
plexity drop. So, our definition lives up to the expectations inspired by
intuition.

The present paper opens a large field of possible investigations of rela-
tions between logic on one hand and complexity on the other hand.

Key words: branching programs, complexity, logic

⋆ S.Ž.’s research was partially supported by the projects GA ČR P202/10/1333 and
RVO: 67985807.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 29 (2015)

1 Introduction

In the last century many computational models (e.g Turing machines, circuits,
neural networks etc.) were introduced. Whenever a new computational device
was defined the following intuitive question was insistently present: What does
the computational device mean (know) about the processed input at different
stages of its computation? Briefly, how does the device think? This intuitive
question is a very simple one and primarily it is a very burning one for our
imagination. To formalize this simple intuitive question (and the corresponding
answer, of course) seems to be a very difficult problem on one hand but on the
other hand it is a very fascinating challenge.
This question has become even more acute in the early 1980s when branching
programs as a counterpart of memory limited Turing machines were introduced.
Due to the simplicity of their definition the solution of the question ”what does
the branching program think at different places along different computations?”
seemed to be reachable. Within our non-mathematical world of imagination the
tests of variables (input bits) along the computation in a branching program are
considered as the sources of atomic information. This is an indisputable axiom.
We can intuitively work with the idea that along each computation some atomic
information is acquired (by tests of variables), transformed to a (partially) global
information and stage by stage forgotten, and finally the resulting global knowl-
edge YES/NO remains at the end of the computation.
Since the general question to define a formal counterpart of the intuitive notion
”what does the program think” was too difficult a more simple question to find a
formal counterpart of the intuitive notion ”what does the program think (know)
about the contents of the input bits at different stages of the computation” was
investigated [1], [2]. We have defined a mathematical construct - so-called win-
dow - which corresponds to intuitive knowledge about the input bits. If n is
the length of inputs words then the window is a word of length n over three
letter alphabet 0,1,+ where ”+” stands for ”at this moment unknown”. Along
the computation to each node and to each edge a corresponding window (de-
pending on the computation in question) is assigned. The windows are variable
along the computation. The key point of the definition of window is based on
the intuitive turn that ”the bit which will be tested in the future (i. e. below
a node or below an edge) is actually (now) unknown (at this node or at this
edge).” Consequently, at one node the different computations may have different
knowledge about the input bits since in the future below this node they may test
different bits. So, in our approach the idea that any node represents the same
information for each computation reaching it is false. This is the key difference
with the well-known approaches where information or knowledge is simply rep-
resented by a node alone (in a graph of computations).
The definition of window has allowed us to formulate a lower bound method
applicable to the general branching programs [2]. Moreover, we have been able
to define a class of restricted branching programs much larger than the class of
read-once programs, e.g. using these programs it is possible to compute many
”witness” functions superpolynomially hard for different classes of restricted pro-

grams within polynomial size. By using our lower bound method we have proven
a superpolynomial lower bound on a Boolean function for this very large class of
programs [3], [5]. Further, some other lower bounds are proven [4]. This demon-
strates the strength of the developed method (and the usefulness of our intuitive
questions, of course).
In the present research we further follow our original intuition and we make
the second step in defining thinking of the program. In Section 4 we expand
our previous formal definition ”what does the machine know about the input
bits” to the formal definition what ”does the machine really mean” at different
stages of its computation. The new definition is simply a logic scaffolding over
windows. (The fact that the knowledge is not given by the node alone remains
valid.) In Section 5 we prove the key theorem which confirms the intuitive idea
that the programs which are allowed to think more sophistically (i.e. with more
logical possibilities) can compute more effectively (i. e. with less need of sources).
Moreover, in Section 6 we demonstrate an example where a small enlarging in
inherent logic possibilities of the programs in question implies a dramatic drop
in complexity.
The theorem opens a large field of questions about the connections between the
logic on one hand and the complexity on the other hand. We hope that we are at
the starting points of many possible research efforts. Some such possible starting
points are indicated in Section 7.

2 Technical Preliminaries

By a branching program (b.p.) P (over binary inputs of length n) we mean a
finite, oriented, acyclic graph with one source (in-degree = 0) where all nodes
have out-degree = 2 (so-called branching or inner nodes) or out-degree = 0 (so-
called sinks). The branching nodes are labeled by variables xi, i = 1, ..., n, one
out-going edge is labeled by 0 and the other by 1, the sinks are labeled by 0 or
by 1. If a node v is labeled by xi we say that xi is tested at v. For an input
a = a1...an ∈ {0, 1}n by the computation on a (comp(a)) we mean the sequence
of nodes (and edges) starting at the source of P and ending in a sink. In the
sequence, for each i, 1 ≤ i ≤ n, at any node with label xi the next node is
pointed by the edge with label ai. By the length of a computation we mean the
number of its inner nodes.
For a node v ∈ comp(a) we say that a reaches v. If a and b reach v and im-
mediately below v they reach different nodes we say that comp(a) and comp(b)
diverge at v (or shortly a and b diverge at v). Similarly for more than two in-
puts. If comp(a) has a common part with a path p in P we say that a follows
p (in this part). P computes function fP which on each a ∈ {0, 1}n outputs the
label of the sink reached by a. We say that P computes in time t(n) if its each
computation is of the length at most t(n).
A special case of b.p. with in-degree = 1 in each node (with exception of the
source) is called decision tree. Another well-known class of restricted b.p.s are

so-called read-once branching programs in which along each computation each
variable is tested once at most. Read-once b.p.s compute in time n, of course.
By a distribution we mean any mapping D of a subset of {0, 1}n to (the set
of nodes of) P with the property that for each a D(a) is a node of comp(a)
(D(a) ∈ comp(a)). The class of the distribution at node v is the set of all as
mapped to v. (Similarly, we can work with distribution to edges.)
Let v be a node of P . By the tree Tv unfolded in v according to P we mean the
decision tree the branches of which are given by the paths in P starting at v
and ending at sinks. Let A be a set of some (not necessarily all) inputs reaching
v. By the tree Tv,A unfolded in v according to P with respect to A we mean
the decision tree which results from tree Tv after application of the following
operations:

a) From Tv we omit all branches which are not followed by any input from
A.

b) Each edge pointing to a node with out-degree = 1 (after a)) is repointed
to its successor.
By the size of P we mean the number of its nodes. By the complexity of a
Boolean function f we mean the size of the minimal b.p.s computing f . It is a
well-known fact that superpolynomial lower bound on the size of b.p.s implies
superlogarithmic lower bound for space complexity of Turing machines [6].

3 Windows

We introduce the key notion of windows. We start with some extensive com-
ments.

For a given b.p. and for a given input a of length n we want to catch the
remembered information concerning the contents of the bits of a along comp(a)
at its each node and at its each edge. We proceed in such a way that we assign
a word w of length n over the ternary alphabet {0, 1,+} to each node and to
each edge of comp(a). Each such w will have the following property: for each
i, 1 ≤ i ≤ n, wi = ai or wi = +. The sign ”+” will be called ”a cross”, and
on the intuitive level of reasoning it will stand for ”unknown” or ”forgotten”.
The assigned word w will be called the window on a at the respective node or
at the respective edge of comp(a). By its length we shall mean the number of
its non-crossed bits. On the intuitive level of our reasoning these non-crossed
bits will represent the remembered information. Small warning: the window at
a node or at an edge will also depend on other inputs which also reach this node
or this edge.

Before creating the formal definition of windows we have two simple ideas
at our disposal. Firstly, on the intuitive level, a test in b.p. means remembering
(the content of) one bit. Hence, our next formal definition of windows should
respect the rule ”one test, (exactly) one cross is removed”. Secondly, on the in-
tuitive level it is difficult to say what is ”remembered” but it is easy to say the

complementary thing what is ”forgotten” or ”unknown”. Intuitively, we see that
the bit which will be tested in the future (below the node or below the edge in
question) is an unknown or forgotten one now (at this node or at this edge), and
it should be a crossed one, now. Our intuition is mirrored in the next formal
definition of windows.

Definition 1. Let P be a branching program, v be its node. Let A be a set of
some (not necessarily all) inputs reaching v. From v we develop a tree Tv,A

according to P with respect to A.
For each a ∈ A we define the window w(a, v, A) on a at v with respect to A

in such a way that w(a, v, A)i = + if and only if in Tv,A there is a test on bit
i along the branch followed by a or there is another input b ∈ A following the
same branch as a does until the sink such that a and b differ on i. On the other
-non-crossed- bits w(a, v,A) equals a.

The length of a window is the number of its non-crossed bits.
The window w(a, v, A) is said to be a natural one iff A is the set of all inputs

reaching v.

Comments.

i) If (in the definition) we replace ”node v” by ”edge e” we obtain the window
assigned to the edge e.

ii) For each a in a given set A comparing the window on a at v with respect
to A and the window on a at an out-going edge e leaving v with respect to the
subset of A corresponding to e we see that the rule ”one test, (exactly) one cross
is removed” mentioned above is satisfied.

iii) It is clear that the simple thing holds: ”The larger A, the larger number
of branches in the tree, the larger number of crosses, the shorter windows”.

iv) For read-once branching programs the window is always given by the
node. The idea to consider the programs in which the windows at one node may
differ in a moderate way was the starting point for papers [2],[3], [5].

Another confirmation of our intuition is given by a small theorem in [1] saying
that for each (general) branching program computing symmetric words it holds
that during the computation on such a word each pair of symmetric positions
must be non-crossed at least in one natural window (=at the same moment). In
other words, branching programs computing symmetric words must compute in
a human-like way.

For the theory of windows the following theorem [2], [3] is very important.

Theorem 1. Let P be a branching program and A be a set of inputs of length n
distributed in nodes v1, ...vr of P . Let A1, ... Ar be the classes of this distribution.
Then, log2 (size of P) ≥ log2 r ≥ log2 |A|−n+avelw where avelw is the average

length of windows on inputs from A each at corresponding vi with respect to Ai,
i = 1, ... r.

Theorem 1 confirms our intuition that remembering a lot of information
about many inputs requires a large memory, i. e. a large branching program. We
see that our construct -windows- is closely related to our intuition. Moreover,
Theorem 1 gives a general method for proving large lower bounds. For proving
a lower bound for a Boolean function it suffices to prove that on any b.p. this
function requires large windows on many inputs. We shall see an application of
Theorem 1 in the proof of Theorem 4 in Section 6.

For the proof of theorem we use the following lemma.

Lemma 1. [5] Let us have r binary trees. Let l be the average length of their
branches and S be the sum of (the numbers of) their leaves. Then, l ≥ log2 S −
log2 r.

Proof. Let us take the classes A1, ..., Ar distributed to the nodes v1, ..., vr. For
each i, 1 ≤ i ≤ r, in vi let us develop the tree Tvi,Ai according to P . In its each
sink with at least two inputs reaching it we add an appropriate decision tree such
that each sink of the resulting tree T ′

i is reached by exactly one input from Ai.
We obtain r binary trees and we apply lemma above. Let l, S be as in lemma. We
have log2(size of P) ≥ log2 r ≥ log2 S− l ≥ log2 |A|− l ≥ log2 |A|−n+avelw.
2

We see that windows and trees are complementary in some sense. At each
node long windows are the same as short branches in the respective tree and
vice versa.

4 Deductive systems for branching programs

By a deductive system (briefly system) S we mean any quadruple {O,Pr, Form,D}
where O is a set of objects, O always includes special objects o1, ..., on which
correspond to the input bits. Pr is a set of k-ary predicates on O, k = 0, 1, Pr
always includes unary predicates 0, 1 applicable to the objects oi for i = 1, ..., n
(formula 0(oi) corresponds to the situation when the i-th bit is non-crossed and
has value 0, similarly for 1(oi)). In the sequel we shall see how objects ois and
predicates 0, 1 are used for intake of atomic information concerning input bits
to the system of logical reasoning. Further, Pr always includes zero-predicates
F (”false”),T (”true”). Form is a finite set of admissible formulas over O and
Pr. D is a set of deductive rules over formulas. Each deductive rule r ∈ D is a
partial mapping from Formkr to Form.

Let P be a branching program and a be an input, a ∈ {0, 1}n. To each node v
of comp(a) we shall assign a sequence V (a, v) of formulas from Form. Similarly
to each edge e of comp(a) we shall assign a sequence V (a, e). In any case in

V (a, v) or in V (a, e) the actual natural windows will be described by predicates
0, 1 on objects o1, ..., on.

The process of assigning the sequences V (a, v) and V (a, e) to each node
and to each edge of comp(a) starts in the source of the program in question,
V (a, source) =df ∅.

Let us have a node v testing a bit i with two outgoing edges e0, e1 (labeled
by 0, 1, resp.). Let a be an input such that v ∈ comp(a). Let V (a, v) be given.
Let moreover e0 ∈ comp(a). Then, we define V (a, e0) as the set of all formulas
derivable from formulas in V (a, v) ∪ {0(oi)} by rules from D.

Let us have an edge e ending in a node v, e ∈ comp(a). We define V (a, v) as
follows:

V (a, v) will be a subsequence of V (a, e).
Let Ba,v be the set of inputs b which reach v via an edge eb and which follow

a from v to the same sink (following the same path).
Each w ∈ V (a, e) such that w ∈ V (b, eb) for each b ∈ Ba,v remains in V (a, v).

Further in V (a, v) are all formulas 0(oi), 1(oi) for i = 1, ..., n which define the
window on a at v. V (a, v) is completed by adding all formulas derivable from
the previous formulas of both types (by rules from D).

We see that each system assigns the sets of formulas depending on compu-
tation to each node and to each edge in any branching program. The problem
is that the system can derive predicates F, T at the end of computations which
do not correspond to the labels 1, 0 of the reached sinks.

Definition 2. Let P be a program and S be a deductive system. We say that S
is P -sound iff

for each sink of P with label 0 (1, resp.) S never derives T (F , resp.) for the
computation on any input.

Definition 3. Let f be a Boolean function and S be a system. We say that S
is f -sound iff S is P -sound for each P computing f .

Theorem 2. Let f be a Boolean function and let DT be a full decision tree
computing f . Let S be a DT -sound system. Then S is an f -sound system.

Proof. Let P be a program computing f and let a be an input. The sequence
of derived formulas at the end of comp(a) in P is a part of the set of formulas
derived at the end of comp(a) in DT . Hence, it does not contain wrong F or
wrong T . 2

5 Compatible systems and complexity

In the next definition we introduce the notion of deductive systems compatible
with a branching program, which is a basic notion for our paper. Within the

imaginative part of our reasoning (our intuition) we consider compatible systems
as entities which give us to understand the way how the program does compute
(think), how its inherent logic works.

Definition 4. Let P be a branching program and let S be a P -sound system.
We say that P and S are (mutually) compatible if in V (a, s) for each sink s of
P and for each input a reaching s predicate T (F , resp.) is derived iff the label
of s is 1 (0, resp.).

Lemma 2. Let f be a Boolean function. Then, there is a branching program P
computing f and there is a system S such that S is compatible with P .

Proof. Let P be a decision tree for f . Let S be a system with predicates 0, 1, F, T .
We see that for each input word there is a unique corresponding branch of P . At
the end of this branch, a sequence w of formulas is collected which correspond
to the window on the input word. Since P is a decision tree this window is of
length n, all bits are non-crossed. Therefore, it suffices to include appropriate
deductive rules w/T or w/F to D. 2

Definition 5. Let S1 = (O1, P r1, Form1, D1) and S2 = (O2, P r2, Form2, D2)
be systems. If O1 ⊆ O2, Pr1 ⊆ Pr2, Form1 ⊆ Form2 and D1 ⊆ D2 then we
say that S1 is a part of S2, S1 ⊑ S2.

Lemma 3. Let P be a program and let S1, S2 be systems which are P -sound. If
S1 is compatible with P and S1 ⊑ S2 then also S2 is compatible with P .

Proof. Each proof in S1 is also in S2 including the proofs of F and T at sinks.
2

Definition 6. Let f be a Boolean function and S be a system. Then, by S-
complexity of f we mean the size of the smallest branching program P computing
f and compatible with S if such P exists (otherwise formally S-complexity equals
∞).

Theorem 3. Let f be a Boolean function and S1, S2 be systems. Let S2 be P -
sound for each P computing f compatible with S1. If S1 ⊑ S2 then S2-complexity
of f is not larger than S1-complexity of f .

Proof. It suffices to prove that each program P compatible with S1 is compatible
also with S2. This follows from the lemma above. So, the minimum for S2-
complexity is taken over the same or larger set of programs than in case of
S1-complexity. 2

The theorem confirms our intuitive idea that the branching programs which
may compute in a more complicated way (i. e. using our terminology which are
compatible with a richer deductive system) can compute more effectively, i. e.
within a smaller complexity bound. This indicates that our choice of definitions
is sound and that our small theory is the desired counterpart of our intuitive
ideas. In the next section we demonstrate this fact convincingly. In our example,
a small increase in the richness of deductive systems produces a dramatic drop
in the need of the computation source (memory).

6 An example: Less logic, more complexity

Let f be the parity function on n input bits. We shall construct a chain S1 ⊒
S2 ⊒ ⊒ Sn of systems such that for i < n Si+1-complexity of f is larger than
the Si−1-complexity of f for all i < n. In other words, less logic, more complexity
and viceversa.

We define Si =df {Oi, P ri, Formi, Di} where Oi contains the obligatory ob-
jects {oi|i = 1, ..., n} and all subsets of cardinality at least i of the set of input
bits, Oi ⊃ {A|A ⊆ {1, ..., n}, |A| ≥ i}.

Pri contains the obligatory predicates {0, 1, F, T} and the predicates oddi, eveni

applicable to sets of input bits of cardinality at least i.

Formi contains F, T and all formulas of type p(o) where p ∈ Pri, o ∈ Oi and
p is applicable on o.

Di contains the deduction rules as follows:

Rule I).
For any oj1 , ..., oji for any choice of predicates ajk = 0 or ajk = 1 for k =

1, ..., i there is a rule aj1(oj1), ... , aji(oji) / Par({j1, ..., ji}) where Par = oddi or
Par = eveni according to the parity of the number of 1s in the chain aj1 , ..., aji .

Rule II).
ParL(A), par(oj)/ParR(A∪{oj}) where A is a set of input bits, 0 < j < n+1

and j /∈ A, ParL is oddi or eveni, par is 0 or 1 and ParR is oddi or eveni de-
pending on ParL, par in the obvious way which is given by the properties of the
parity function.

Rule III).
Moreover, in Di there are two special rules
oddi({1, ..., n})/T and eveni({1, ..., n})/F .

Theorem 4. For i ∈ {1, ..., n}, Si-complexity of the parity function is at least
2i−1.

Proof. Let P be any branching program computing parity function which is
compatible with Si. We want to prove that size(P) is at least 2i−1, this will
be sufficient. From the compatibility P and Si follows that at the sink of its
computation each input has activated predicates F or T . Hence, during its com-
putation each input has activated predicates oddi or eveni on the set {1, ..., n}
(cf. Rule III).
The unique way in which an input may have activated a parity predicate on a
set of input bits of cardinality n is such that it has activated this predicate on

the set of cardinality n− 1 and used Rule II. Repeatedly till the cardinality i.
For each input let us take into account the edge of its computation where the
predicates oddi or eveni are activated on a set of input bits of size i for the first
time (cf. Rule I). Left-hand side of this rule is activated only in the case when
the predicates 0, 1 are defined on i input bits. This is the moment where the
input has the natural window of length i.
Now we distribute each input a to the edge of its computation where a has the
natural window of length i for the first time. The length of windows according
to this distribution is of course of length at least i. According to Theorem 1
the number of classes of the distribution and hence of edges in P is at least 2i.
Hence, according to the fact that out-degree of nodes in P is at most 2 we have
size(P) that is at least 2i−1. (Here we see how Theorem 1 works in practice.) 2

Lemma 4. For i, i = 1, ..., n, there is a program P which computes the parity
function and which is compatible with system Si such that size(P) ≤ 2i+2.(n−
i+ 1).

Proof. P starts as a decision tree of depth i on the first i bits. On the remaining
n− i levels P is of width 2. The nodes are arranged in two columns, one column
represents the value ”even” and the other represents the value ”odd”. The zero-
edge outgoing any node always preserves the column while the one-edge always
changes the column.

We see that P indeed computes the parity function and that its size is below
the desired bound. It remains to prove that P is compatible with Si. On the
level of leaves of the initial tree of depth i in question we have for the first time
derived the formula Par(A) where A is the set of cardinality i and Par is oddi
or eveni. Below in two column chain the cardinality of A is increasing step by
step, by one in each step (cf. Rule II).

(In each step at the level l of our two columns four edges start which end in
two nodes on the next level l+1 of columns. Each edge has assigned a formula of
type Par(A) which is assigned also in the starting node, and a formula Par′(A′)
where the cardinality of A′ is equal to the cardinality of A plus 1. Small analysis
says that in the target nodes only formulas of type Par′(A′) are assigned. This
is an example of forgetting relatively global information during the computation
- cf. the creation of V (a, v) in Section 4.)

On the level of sinks the cardinality of A is n, and, therefore, correct F, T
are derived here - cf. Rule III. So, P is compatible with Si. 2

We see that for i > log n the upper bound 2i−1 + 2.(n − i + 2) for Si−1-
complexity is less than the lower bound 2i for Si+1-complexity. Indeed, adding
to Si+1 the possibility to express parity value for the sets of input bits of cardi-
nality i and i − 1 considerably decreases complexity (in comparison with Si+1-
complexity).

7 Problems

We have started a research which seems to be new. Hence, we have to perform
the initial recognition of our terrain. We are going to do this by formulating a
series of questions which indicate some starting points of possible research di-
rections.

1. At this moment we do not know whether for each branching program P
there is a system S which is compatible with P .
2. Is there a Boolean function f and a system S compatible with all (minimal)
programs computing f?
3. Are there programs P1, P2 computing the same function , and systems S1, S2

such that S1 is compatible with P1 but not with P2 and vice versa for S2?
4. Many questions are arising in connection with the quality of the deductive
system S on one hand and the respective S-complexity on the other hand for
different (types of) functions.
a) How is the S-complexity of a function influenced by the morphology of S? I.e.
if different types of objects, different predicates, different way of constructions
of formulas and different deductive rules are allowed or forbidden in S?
b) Given a function f and a system S compatible with at least one program
computing f . Preserving soundness, we may enlarge S in four directions - we
may enlarge either the set of objects, either the set of predicates, either the set
of admissible formulas, either the set of deductive rules. Along each direction the
S-complexity is monotone non-increasing. The question is when S becomes com-
patible with a minimal program computing f (and, therefore, the S-complexity
of f will be the same as normal complexity).
c) Is it possible to substitute an enlarging of S in one direction (see b)) by an
enlarging in another direction?
5. To find some functions f which have simple non-complicated systems com-
patible with their minimal programs. To classify all such functions.
6. To find a minimal program and the corresponding compatible system for a
concrete Boolean function - e.g. s-t connectivity in oriented graphs. The same
for functions which figure in proofs of lower bounds in the b.p. theory.
7. Let us have some class of systems. Let us take the class of all programs which
are compatible with at least one of the systems in question. In fact, we obtain a
restriction on programs. May such a restriction be in some relation with classical
restrictions, e. g. read-once branching programs etc.?
8. For a given function f to find a system S compatible with each 1-bp comput-
ing f (if S exists). Similarly for other restrictions.

The world of branching programs observed from the point of inherent logic
seems to be more beautiful and wild and posing more challenges than the classical
theory. And more understandable and, therefore, more human.

References

1. Žák, S.: Information in Computation Structures. Acta polytechnica. Vol. 20, no. 4
(1983), pp. 47-54. ISSN 1210-2709

2. Žák, S.: A Subexponential Lower Bound for Branching Programs Restricted with
Regard to Some Semantic Aspects. Electronic Colloquium on Computational Com-
plexity. Report Series 1997. ECCC TR97-50. Trier, 1997, http://www.eccc.uni-
trier.de/report/1997/050

3. Jukna, S., Žák, S.: On Branching Programs with Bounded Uncertainty. Automata,
Languages and Programming. Proceedings. Berlin : Springer, 1998 - (Larsen, K.;
Skyum, S.; Winskel, G.), pp. 259-270 ISBN 3-540-64781-3. - (Lecture Notes in Com-
puter Science. 1443). [ICALP’98 International Colloquium /25./. Aalborg (DK),
13.07.1998-17.07.1998]

4. Jukna, S., Žák, S.: Some Notes on the Information Flow in Read-Once Branching
Programs. SOFSEM’2000: Theory and Practice of Informatics. Berlin : Springer,
2000 - (Hlav, V.; Jeffery, K.; Wiedermann, J.), pp. 356-364 ISBN 3-540-41348-0.
ISSN 0302-9743. - (Lecture Notes in Computer Science. 1963).

5. Jukna, S., Žák, S.: On Uncertainty versus Size in Branching Programs. Theoretical
Computer Science. 290 (2003), pp. 1851-1867.

6. Wegener, I.: Branching Programs and Binary Decisions Diagrams, SIAM Mono-
graphs on Discrete Mathematics and Applications, pp. 408, 2000.

7. Žák, S.: A Lower Bound Method for Branching Programs and Its Application.
Prague : ICS AS CR, 2012. 19 pp., Technical Report, V-1171

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

