$\mathrm{AC}^{0} \circ \mathrm{MOD}_{2}$ lower bounds for the Boolean Inner Product

Mahdi Cheraghchi * Elena Grigorescu ${ }^{\dagger}$ Brendan Juba ${ }^{\ddagger}$ Karl Wimmer § Ning Xie ${ }^{\boldsymbol{q}}$

Abstract

$\mathrm{AC}^{0} \circ \mathrm{MOD}_{2}$ circuits are AC^{0} circuits augmented with a layer of parity gates just above the input layer. We study $\mathrm{AC}^{0} \circ \mathrm{MOD}_{2}$ circuit lower bounds for computing the Boolean Inner Product functions. Recent works by Servedio and Viola (ECCC TR12-144) and Akavia et al. (ITCS 2014) have highlighted this problem as a frontier problem in circuit complexity that arose both as a first step towards solving natural special cases of the matrix rigidity problem and as a candidate for constructing pseudorandom generators of minimal complexity. We give the first superlinear lower bound for the Boolean Inner Product function against $\mathrm{AC}^{0} \circ \mathrm{MOD}_{2}$ of depth four or greater. Specifically, we prove a superlinear lower bound for circuits of arbitrary constant depth, and an $\tilde{\Omega}\left(n^{2}\right)$ lower bound for the special case of depth- $4 \mathrm{AC}^{0} \circ \mathrm{MOD}_{2}$. Our proof of the depth- 4 lower bound employs a new "moment-matching" inequality for bounded, nonnegative integer-valued random variables that may be of independent interest: we prove an optimal bound on the maximum difference between two discrete distributions' values at 0 , given that their first d moments match.

[^0]
1 Introduction

We study lower bounds for computing the inner product function by AC^{0} circuits with parity gates on the level just above the input gates $\left(\mathrm{AC}^{0} \circ \mathrm{MOD}_{2}\right)$. As we will review, this problem has emerged as a common, particularly simple special case of several major open problems in Computational Complexity, about which we know surprisingly little. We therefore view progress on this special case as a benchmark for new techniques in circuit complexity for these larger questions.

A core program in Computational Complexity is to understand the power of restricted circuit families. One facet of such understanding is to identify functions that these circuits cannot compute. In practice, it turns out that once we can prove such lower bounds, then we become surprisingly facile with the class, gaining the ability to learn the functions computed by such circuits [LMN93] (and this is necessary in some form [KF09, KKO13, Vol14]), the ability to generate inputs that are pseudorandom for the class [Nis91, NW94] (again necessary in some form [ISW06, SU05, Uma03]), and more. As a consequence, "understanding" the class is often identified with proving such lower bounds. It is therefore interesting when this intuition fails to hold.

Shaltiel and Viola [SV10] noticed such a gap: although we can prove that, e.g., the MOD_{3} function has constant hardness for $\mathrm{AC}^{0}[2]$ circuits [Raz87,Smo87] (where $\mathrm{AC}^{0}[2]$ is AC^{0} equipped with parity gates), we still do not have pseudorandom generators for $\mathrm{AC}^{0}[2]$. The trouble is that known constructions of pseudorandom generators require strongly hard on average functions [NW94], and proofs of hardness amplification require the class in question to compute the majority function, which $\mathrm{AC}^{0}[2]$ cannot even approximate [Raz87]. Shaltiel and Viola therefore highlight the problem of establishing such strong average case hardness against $\mathrm{AC}^{0}[2]$ circuits as a challenge in circuit complexity. Servedio and Viola [SV12] pointed out that such strong hardness is not even known for $\mathrm{AC}^{0} \circ \mathrm{MOD}_{2}$, and suggest the problem as a natural special case. In particular, they conjecture that, for this special case, the Inner Product function (IP), defined below, is an example of such a function (although it is trivially computable by $\mathrm{AC}^{0}[2]$).
Definition 1.1. $\operatorname{IP}(x, y):\{0,1\}^{2 n} \rightarrow\{0,1\}$ is the function $\sum_{i=1}^{n} x_{i} y_{i}(\bmod 2)$.
Thus, showing that IP cannot be computed by small $\mathrm{AC}^{0} \circ \mathrm{MOD}_{2}$ circuits is a natural step towards a better understanding of $\mathrm{AC}^{0}[2]$.

On the other hand, a better understanding of the class $\mathrm{AC}^{0} \circ \mathrm{MOD}_{2}$ turns out to be of interest to practical cryptography as well. Along similar lines, Akavia et al. [$\mathrm{ABG}^{+} 14$], in the course of proposing a candidate weak pseudorandom function of minimal complexity (computable in $\mathrm{AC}^{0} \circ \mathrm{MOD}_{2}$ in this case), made a strong conjecture; namely that every $\mathrm{AC}^{0} \circ \mathrm{MOD}_{2}$ circuit has a quasipolynomially heavy Fourier coefficient. Since IP only has small Fourier coefficients, this conjecture also entails the same consequence considered by Servedio and Viola, and simply showing that IP cannot be computed by small $\mathrm{AC}^{0} \circ \mathrm{MOD}_{2}$ circuits is again a special case of this problem.

Finally, Servedio and Viola [SV12] note that a special case of Valiant's matrix rigidity problem [Val77] is to exhibit a function that has low correlation with all sparse polynomials. $\mathrm{AC}^{0} \circ \mathrm{MOD}_{2}$
circuits are in turn well-approximated by such sparse polynomials, so giving explicit functions that are not correlated with any $\mathrm{AC}^{0} \circ \mathrm{MOD}_{2}$ functions is again a natural special case; and IP is again the natural candidate for such a function.

Proving lower bounds for $\mathrm{AC}^{0} \circ \mathrm{MOD}_{2}$ circuits computing IP is challenging since the usual techniques from the literature do not immediately apply. Specifically, although Razborov's technique [Raz87] establishes strong lower bounds against $\mathrm{AC}^{0}[2]$, we note that IP does have small $\mathrm{AC}^{0}[2]$ circuits. There is thus no hope in using Razborov's technique directly to prove lower bounds for IP. And of course, techniques based on random restrictions are helpless against the input layer parity gates.

Servedio and Viola noted that it follows from Jackson's work [Jac97, Fact 8] that depth-3 $\mathrm{AC}^{0} \circ \mathrm{MOD}_{2}$ circuits (i.e., a DNF of parities) cannot approximate IP. Also, Jukna [Juk06] has shown that such circuits computing IP must have exponential size (a bound recently optimized by Cohen and Shinkar [CS14]). And yet, as Servedio and Viola noted, nothing is known about depth-4 circuits, let alone $\mathrm{AC}^{0} \circ \mathrm{MOD}_{2}$ circuits of arbitrary depth.

Our results. In this work, we give the first nontrivial (superlinear) lower bound for IP against (arbitrary depth) $\mathrm{AC}^{0} \circ \mathrm{MOD}_{2}$. In fact, our result is slightly stronger and applies to the broader class of bent functions (i.e., functions whose Fourier coefficients are all equal in magnitude, IP being a special case).

Theorem 1.2. If C is an $\mathrm{AC}^{0} \circ \mathrm{MOD}_{2}$ circuit of depth k and size S that computes the IP function on n variables, then $S=\Omega\left(n^{1+4^{-k}}\right)$.

The proof of this theorem follows by an adaptation of the results of Chaudhuri and Radhakrishnan [CR96] who showed a similar bound for AC^{0} circuits.

Our main theorem is an $\tilde{\Omega}\left(n^{2}\right) \mathrm{AC}^{0} \circ \mathrm{MOD}_{2}$ lower bound for IP:
Theorem 1.3. Any depth-4 $\mathrm{AC}^{0} \circ \mathrm{MOD}_{2}$ circuit computing the IP function on n variables must have size $s=\Omega\left(n^{2} / \log ^{6} n\right)$.

An intuitive interpretation of the above results is the following. IP is a means to "generate" all possible parities on n bits. $\mathrm{AC}^{0} \circ \mathrm{MOD}_{2}$ circuits are merely AC^{0} circuits that are given access to an arbitrary but fixed set of parity functions, bounded in number by the size of the circuit. Our results address the question of how much these few parities can aid the computation of most remaining parities.

Our technique: a moment-matching bound. At the heart of this second lower bound is a lemma that may be of independent interest:

Lemma 1.4 (Moment-matching bound). Let X and Y be random variables taking values in $\{0,1,2, \ldots, s\}$. Suppose that the first d moments of X and Y are equal. Then, as long as $\operatorname{Pr}(X=0)$
is bounded away from 1, we have

$$
\operatorname{Pr}(Y=0) \leq \operatorname{Pr}(X=0)+e^{-\Omega(d / \sqrt{s})} .
$$

Several other "moment-matching" bounds appear in the literature, and here we briefly discuss the relationship of our work to these bounds. First, the classical "truncated moments" problem concerns the conditions for the existence of a probability distribution on a given set with a given sequence of moments [And70, CF91]. But, as noted by Rashkodnikova et al. [RRSS09], the solutions generated by these techniques do not necessarily lie on integers, and so the conditions refer to a different class of random variables. Klivans and Meka [KM13] likewise considered bounds on the difference in probability of general events that may be induced by distributions with d matching moments. Their bounds apply to much more general properties (than simply the event $X=0$) and much more general distributions; as such, in spite of some similarities in the techniques employed in their work ${ }^{1}$, they do not obtain bounds in a useful form for our purposes. Rashkodnikova et al. [RRSS09] in turn consider nonnegative, bounded, and integer-valued random variables as we do, but they consider a different property; namely, given that the first d moments are proportional (not necessarily identical), they maximize their ratio.

1.1 Overview of the depth-4 lower bound

Our argument consists of two main steps: (1) We show that any depth-4 $\mathrm{AC}^{0} \circ \mathrm{MOD}_{2}$ circuit (without loss of generality, with an AND top gate) of size $s \leq n^{2}$ computing the Inner Product function must have a one-sided approximation by a DNF of parities in which the terms are all small: It is correct when it outputs 0 , and the circuit outputs zero on at least a $1 / n^{2}$ fraction of inputs. (2) We then show that such one-sided approximators for the Inner Product function can only output 0 with small probability, which can be made smaller than $1 / n^{2}$ for some $s=O\left(n^{2} /\right.$ poly $\left.\log n\right)$.

The first part is relatively straightforward. We let a candidate circuit for the inner product function of size $s \leq n^{2}$ be given. We first obtain a one-sided approximation to our circuit by invoking the Discriminator Lemma of Hajnal et al. $\left[\mathrm{HMP}^{+} 93\right]$ to obtain a depth-3 circuit (eliminating the top AND layer) that is correct whenever it reports 0 , and reports 0 on a large $\left(\geq 1 / n^{2}\right)$ fraction of the inputs. We then reduce the fan-in of the second (from bottom) layer of AND gates by trimming the AND gates with large fan-in at a slight cost in the approximation error (asymptotically smaller than $1 / n^{2}$).

Towards the second part of our argument, we consider the degree of an arbitrary parity in the $\{ \pm 1\}$-representation in terms of the original variables as well as the bottom layer parities. That is, the degree of a parity χ is now defined as the minimum number of variables and/or bottom layer parities that need to be added together (over \mathbb{F}_{2}) to obtain χ : e.g., a single parity gate (new

[^1]variable) has degree 1, and a parity of k new variables (parity gates or old variables) has degree $\leq k$. Given the size of the circuit s, we obtain that w.h.p. over the setting of the input y variables, the inner product function $\operatorname{IP}(x, y)$ is a parity in the x variables that remains of high degree (at least $\Omega(n / \log s))$ over these new variables.

We show that, for a $1-o(1)$ fraction of fixings of the y variables, the probability that our circuit outputs 0 when $\operatorname{IP}(x, y)=0$ is small as follows. We apply the above-mentioned momentmatching bound (Lemma 2.8) to the random variable $N(x)$ (over a random x) that counts the number of the AND gates in the depth-3 approximator obtained by the Discriminator Lemma that output 1. We can then show that the first $m=\tilde{\Omega}(n)$ moments of $(N(x) \mid \operatorname{IP}(x, y)=0)$ and $(N(x) \mid \operatorname{IP}(x, y)=1)$ are identical and $\operatorname{Pr}_{x}(N(x)=0 \mid \operatorname{IP}(x, y)=1)=0$ since $N(x)=0$ precisely when the OR gate at the output of the depth- 3 one-sided approximator outputs 0 , in which case the circuit is correct. Using this information in a linear-programming based proof, we show that $\operatorname{Pr}_{x}(N(x)=0 \mid \operatorname{IP}(x, y)=0) \lesssim e^{-\tilde{\Omega}(m / \sqrt{s})}$. For our m, if $s \leq n^{2} /$ poly $\log n$, the upper bound becomes smaller than $1 / n^{2}$, completing the second part and finishing the proof.

To see that the low-degree moments match, we note that $N(x)$ is represented by a low-degree polynomial: In the $\{0,1\}$-representation, it is simply the summation of monomials of degree $O(\log n)$ corresponding to the second-level AND gates (recall that the degree remains the same in the $\{ \pm 1\}$ representation). In the $\{ \pm 1\}$-representation, however, it is then clear that the parity in x that we obtain from our setting of the y variables in $\operatorname{IP}(x, y)$ is (w.h.p. over y) uncorrelated with $N(x)$. In other words, $\mathbf{E}_{x}(N(x) \mid \operatorname{IP}(x, y)=0)=\mathbf{E}_{x}(N(x) \mid \operatorname{IP}(x, y)=1)$. This argument can be seen to hold for larger moments as well.

We prove the moment-matching bound by writing a linear program for the probability distribution satisfying the given moment constraints over $\{0, \ldots, s\}$ that maximizes the probability of obtaining 0 . We bound the value of this LP by giving an explicit dual-feasible solution; It turns out that the dual can be rewritten as maximizing the lower bound on the values a bounded degree polynomial attains at the integer points in $[0, s]$, given that it takes value 0 at the origin and is also upper bounded by 1 at these integer points. This is quite similar to the conditions for approximators for the OR function sought by Nisan and Szegedy [NS94], and our solution follows theirs, using Chebyshev polynomials to construct the desired (essentially optimal, cf. Paturi [Pat92]) polynomial.

1.2 Preliminaries

All logarithms in this paper are to the base 2 . Let $n \geq 1$ be a natural number. We use $[n]$ to denote the set $\{1, \ldots, n\}$. We use \mathbb{F}_{2} for the field with 2 elements $\{0,1\}$, where addition and multiplication are performed modulo 2 . We view elements in \mathbb{F}_{2}^{n} as n-bit binary strings - that is elements of $\{0,1\}^{n}$ - alternatively. If x and y are two n-bit strings, then $x+y$ (or $x-y$) denotes bitwise addition (i.e. XOR) of x and y. We view \mathbb{F}_{2}^{n} as a vector space equipped with an inner product $\langle x, y\rangle$, which we
take to be the standard dot product: $\langle x, y\rangle=\sum_{i=1}^{n} x_{i} y_{i}$, where all operations are performed in \mathbb{F}_{2}.
Often times, it is convenient to switch the range of Boolean functions between $\{0,1\}$ and $\{-1,1\}$. We use $f^{ \pm}$to denote the $\{-1,1\}$-valued Boolean function corresponding to f. They are related by $f^{ \pm}=(-1)^{f}=1-2 f$ and $f=\left(1-f^{ \pm}\right) / 2$.

For every $\alpha \in \mathbb{F}_{2}^{n}$, one can define a linear function (or parity function) mapping \mathbb{F}_{2}^{n} to $\{0,1\}$ as $\ell_{\alpha}(x)=\langle\alpha, x\rangle$. Let $\chi_{\alpha}=(-1)^{\ell_{\alpha}}$, which are commonly known as characters.

Characters play a central role in Fourier analysis of Boolean functions, which we briefly review in the sequel.

Fourier analysis of Boolean functions. For functions $f, g: \mathbb{F}_{2}^{n} \rightarrow \mathbb{C}$ the inner product is defined as $\langle f, g\rangle:=\mathbf{E}_{x \in \mathbb{F}_{2}^{n}}(f(x) g(x))$. For $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{F}_{2}^{n}$, the corresponding character function χ_{α} is defined as $\chi_{\alpha}\left(x_{1}, \ldots, x_{n}\right)=\prod_{i: \alpha_{i}=1}(-1)^{x_{i}}$. For $\alpha, \beta \in \mathbb{F}_{2}^{n}$, the inner product between χ_{α} and χ_{β} is 1 if $\alpha=\beta$, and 0 otherwise. Therefore the characters form an orthonormal basis for complex-valued functions over \mathbb{F}_{2}^{n}, and we can expand any f defined on \mathbb{F}_{2}^{n} using $\left\{\chi_{\alpha}\right\}_{\alpha \in \mathbb{F}_{2}^{n}}$ as a basis.

Definition 1.5 (Fourier Transform). Let $f: \mathbb{F}_{2}^{n} \rightarrow \mathbb{C}$. The Fourier transform $\widehat{f}: \mathbb{F}_{2}^{n} \rightarrow \mathbb{C}$ of f is defined to be $\widehat{f}(\alpha)=\mathbf{E}_{x}\left(f(x) \chi_{\alpha}(x)\right)$. The quantity $\widehat{f}(\alpha)$ is called the Fourier coefficient of f at α.

The Fourier inversion formula is given by $f(x)=\sum_{\alpha \in \mathbb{F}_{2}^{n}} \widehat{f}(\alpha) \chi_{\alpha}(x)$, and the Parseval's identity is $\sum_{\alpha \in \mathbb{F}_{2}^{n}} \widehat{f}(\alpha)^{2}=\mathbf{E}_{x}\left(f(x)^{2}\right)$.

A Boolean function $f: \mathbb{F}_{2}^{n} \rightarrow\{0,1\}$ is called a bent function if all the Fourier coefficients of $f^{ \pm}:=(-1)^{f}$ have the same absolute value. That is, $\left|\widehat{f^{ \pm}}(\alpha)\right|=2^{-n / 2}$ for every $\alpha \in \mathbb{F}_{2}^{n}$. It is well known that the Inner Product function IP is a bent function.

Discriminator Lemma for linear threshold circuits. A linear threshold gate $T_{k}^{\mathbf{a}}\left(x_{1}, \ldots, x_{t}\right)$ of fan-in t outputs 1 if and only if $\sum_{i=1}^{t} a_{i} x_{i} \geq k$, where $\mathbf{a}=\left(a_{1}, \ldots, a_{t}\right)$ is vector of weights. The Discriminator Lemma of Hajnal et al. is a powerful tool for proving lower bounds of threshold circuits.

Lemma 1.6 (Discriminator lemma, Lemma 3.3 in $\left.\left[\operatorname{HMP}^{+} 93\right]\right)$. Let $C=T_{k}^{\mathbf{a}}\left(C_{1}, \ldots, C_{m}\right)$ be a circuit on n inputs with a threshold gate at the top level, and write $a=\sum_{i=1}^{m}\left|a_{i}\right|$. Let $A, B \subseteq\{0,1\}^{n}$ be any two disjoint sets of inputs such that the circuit C accepts A and rejects B. Then there exists a subcircuit $C_{i}, i \in[m]$, such that

$$
\left|\operatorname{Pr}_{A}\left(C_{i}(x)=1\right)-\operatorname{Pr}_{B}\left(C_{i}(x)=1\right)\right| \geq 1 / a,
$$

where $\operatorname{Pr}_{A}\left(C_{i}(x)\right)$ (resp., $\left.\operatorname{Pr}_{B}\left(C_{i}(x)\right)\right)$ denotes the uniform probability over the set A (resp., B).

2 Lower bound for depth-4 circuit

In this section we will show an $\tilde{\Omega}\left(n^{2}\right)$ lower bound for any depth- $4 \mathrm{AC}^{0} \circ \mathrm{MOD}_{2}$ circuit that computes $\operatorname{IP}(x, y)$. Note that all circuits here are allowed to have negations below the XOR gates; these negations are not counted in the depth of the circuit.

2.1 Depth-3 discriminator

Let C be any depth- $4 \mathrm{AC}^{0} \circ \mathrm{MOD}_{2}$ circuit that computes $\operatorname{IP}(x, y)$. First, without loss of generality, we may assume the top layer gate of C is an AND gate; the case that top layer gate is an OR gate follows a similar argument ${ }^{2}$. Second, suppose $C=\operatorname{AND}\left(C_{1}, \ldots, C_{m}\right)$, where each subcircuit C_{i} is a parity-DNF circuit; then because $C(x, y)=\operatorname{IP}(x, y)$ for every input, each subcircuit C_{i} must compute IP with one-sided error only. Specifically, for every input (x, y) with $\operatorname{IP}(x, y)=1$ and every $i, C_{i}(x, y)=1$.

We invoke a consequence of the Discriminator Lemma of Hajnal et al. [HMP $\left.{ }^{+} 93\right]$.
Claim 2.1 (Consequence of Lemma 1.6). There is a subcircuit $C_{i}, i \in[m]$, such that

$$
\operatorname{Pr}_{(x, y): \operatorname{IP}(x, y)=1}\left(C_{i}(x, y)=1\right)=1,
$$

and

$$
\operatorname{Pr}_{(x, y): \operatorname{IP}(x, y)=0}\left(C_{i}(x, y)=1\right) \leq 1-1 / m .
$$

We call such a depth- $3 \mathrm{AC}^{0} \circ \mathrm{MOD}_{2}$ circuit C_{i} a one-sided $1 / m$-discriminator for IP. Our main lemma is an upper bound on the discriminator parameter $1 / m$ of such discriminators in terms of its size.

Lemma 2.2 (Main). Suppose that a depth-3 $\mathrm{AC}^{0} \circ \mathrm{MOD}_{2}$ circuit of size s is a one-sided ϵ discriminator for IP. Then ϵ satisfies

$$
\epsilon \leq 4 \exp \left(-\sqrt{\frac{n^{2}}{128 s \log ^{2} n \log ^{2} s}}\right)+\frac{4 s}{n^{4}}+2^{-n / 2}
$$

The proof of Lemma 2.2 is discussed in Section 2.3. Assuming Lemma 2.2, the proof of Theorem 1.3 is straightforward. If $m \geq n^{2}$, then we are done already. Suppose otherwise, so $\epsilon \geq 1 / n^{2}$. Then by Lemma 2.2, the size of discriminator subcircuit C_{i} is of size at least $s=\Omega\left(\frac{n^{2}}{\log ^{6} n}\right)=\tilde{\Omega}\left(n^{2}\right)$.

[^2]
2.2 Random y-restrictions

Let C^{\prime} be a size- s depth- $3 \mathrm{AC}^{0} \circ \mathrm{MOD}_{2}$ circuit which is a one-sided ϵ-discriminator for IP. So $\operatorname{Pr}_{(x, y): \operatorname{IP}(x, y)=0}\left(C^{\prime}(x, y)=0\right) \geq \epsilon$, and $C^{\prime}=\operatorname{OR}\left(f_{1}, f_{2}, \ldots, f_{s^{\prime}}\right)$, where each f_{i} is an AND of parities and $s^{\prime}<s$. Without loss of generality, we can assume that none of these AND gates are constant (i.e., always 0 or 1).

Reducing the fan-in of AND gates. Define the codimension of f_{i} (each of which is an AND of parities) to be the codimension of the subspace corresponding to the coset of inputs on which f_{i} evaluates to 1 .

For example, if $f_{1}=\operatorname{AND}\left(x_{1}+x_{2}, x_{1}+x_{3}, \neg\left(x_{2}+x_{3}\right)\right)$, then $x_{1}+x_{2}$ and $x_{1}+x_{3}$ both evaluating to 1 necessarily implies that $\neg\left(x_{2}+x_{3}\right)$ evaluates to 1 . Hence, the set of inputs for which $f_{1}(x)=1$ is the affine subspace specified by $\left\{x_{1}+x_{2}=1 \wedge x_{2}+x_{3}=1\right\}$; consequently, the codimension of f_{1} is 2 .

The codimension of f_{i} measures the "effective" fan-in of the AND gate in C^{\prime}. It is straightforward that without loss of generality one can assume the co-dimension of each AND gate to be equal to its fan-in. Namely, we observe the following.

Claim 2.3. For any AND gate in C^{\prime}, there is an equivalent AND of a subset of its inputs with fan-in equal to its codimension.

Proof. Consider the input wires of the AND gate in any order. We say that the $i^{\text {th }}$ input is redundant if, given that the first $i-1$ input wires are 1 , then in the subspace the $i^{\text {th }}$ input wire must also be 1. Notice that eliminating the redundant wires yields an equivalent function. To see that the fan-in of this new gate is equal to the codimension of the original AND gate, consider the dimension of the coset of inputs that make the first i inputs 1 . Observe that each with nonredundant input, the dimension decreases by one; so, the codimension of the original gate equals the number of non-redundant inputs, which is precisely the fan-in of this new AND gate.

From now on, we assume that all redundant parity inputs have already been removed and each AND gate in C^{\prime} has its fan-in equal to its codimension. Our next step is trim those AND gates of C^{\prime} whose fan-in is large.

Call an AND gate in C^{\prime} "bad" if its fan-in is larger than $4 \log n$. We reduce C^{\prime} to a circuit $C^{\prime \prime}$ by trimming all "bad" AND gates to an arbitrary set of $4 \log n$ inputs in their fan-in. Note that each trimmed AND gate may cause an error, only from 0 to 1 , and only when all its (non-trimmed) inputs evaluate to 1 (an event that happens with probability at most $2^{-4 \log n}$, since the inputs of each gate are uniform and independent). Define

$$
\tau=\operatorname{Pr}_{x, y}\left(C^{\prime}(x, y) \neq C^{\prime \prime}(x, y)\right)
$$

By the union bound, $\tau \leq s 2^{-4 \log n}=s / n^{4}$. Further, if $C^{\prime}(x, y) \neq C^{\prime \prime}(x, y)$ then we must have $C^{\prime}(x, y)=0$ and $C^{\prime \prime}(x, y)=1$. In other words, if $\epsilon^{\prime}:=\operatorname{Pr}_{(x, y): \operatorname{IP}(x, y)=0}\left(C^{\prime \prime}(x, y)=0\right)$, then $\epsilon^{\prime} \geq \epsilon-\tau$, and moreover, if C^{\prime} approximates IP with a one-sided error (i.e., $C^{\prime}=1$ whenever IP $=1$), then so does $C^{\prime \prime}$.

Definition 2.4. For a function $F(x, y)$ (resp., a circuit $C(x, y)$) that maps $\{0,1\}^{n} \times\{0,1\}^{n}$ to $\{0,1\}$, a y-restriction $\rho \in\{0,1\}^{n}$ is an assignment of all the y variables in the input according to ρ. Denote the resulting function F (resp., circuit C) after applying restriction ρ by $\left.F\right|_{\rho}$ (resp., $\left.C\right|_{\rho}$).

A simple fact exploited in the proof is that, for any y-restriction $\rho,\left.\mathrm{IP}\right|_{\rho}$ is a parity over the x variables, which we denote by ℓ_{ρ}. Note that $\ell_{\rho}(x)=\sum_{i: \rho_{i}=1} x_{i} \bmod 2$. We next argue that for any fixed depth- $3 \mathrm{AC}^{0} \circ \mathrm{MOD}_{2}$ circuit $C^{\prime \prime}$, the parity function ℓ_{ρ} resulting from a random y-restriction ρ is of "high degree" with respect to the parity inputs of $C^{\prime \prime}$, and thus "hard" for the circuit.

Fix an arbitrary depth- $3 \mathrm{AC}^{0} \circ \mathrm{MOD}_{2}$ circuit $C^{\prime \prime}$, of which the fan-in of each AND gates is at most $4 \log n$. Let the parity inputs for $C^{\prime \prime}$ be $\ell_{\left(a_{1}, S_{1}^{x}, S_{1}^{y}\right)}, \ldots, \ell_{\left(a_{s^{\prime}}, S_{s^{\prime}}^{x}, S_{s^{\prime}}^{y}\right)}$, where $a_{i} \in\{0,1\}$, $S_{i}^{x}, S_{i}^{y} \subseteq[n], \ell_{S_{i}^{x}, S_{i}^{y}}(x, y)=a_{i}+\sum_{j \in S_{i}^{x}} x_{j}+\sum_{j \in S_{i}^{y}} y_{j}$, and $s^{\prime}<s$.

Observe that after applying a y-restriction ρ to $C^{\prime \prime}$, the inputs to $\left.C^{\prime \prime}\right|_{\rho}$ become the x-part of the original parities or their negations, namely $\left.\ell_{\left(a_{i}, S_{i}^{x}, S_{i}^{y}\right)}\right|_{\rho}=a_{i}^{\prime}+\sum_{j \in S_{i}^{x}} x_{j}$ and $a_{i}^{\prime}=a_{i}$ or $a_{i}^{\prime}=1-a_{i}$. Since there is a natural one-to-one correspondence between subsets of $[n]$ and vectors in \mathbb{F}_{2}^{n}, we may use a set of vectors $S \subseteq \mathbb{F}_{2}^{n}$ to identify the set of parities (or their negations), namely $\left\{S_{i}^{x}\right\}_{i \in\left[s^{\prime}\right]}$, that are fed into $\left.C^{\prime \prime}\right|_{\rho}$. A key point is that the subset S depends only on the circuit $C^{\prime \prime}$, and is essentially independent of the choice of y-restriction ρ. Note also that $|S| \leq s^{\prime}<s$. In the following, we will slightly abuse notation and use a parity and the subset of $[n]$ corresponding to that parity interchangeably.

Moment matching of random variables. Following standard additive combinatorial notation, for a subset $S \subseteq \mathbb{F}_{2}^{n}$ and a positive integer k, let $k S=\left\{x_{1}+\cdots+x_{k}: x_{1}, \ldots, x_{k} \in S\right\}$. Clearly we have $|S \cup 2 S \cup \cdots \cup k S| \leq(|S|+1)^{k}$.

Definition 2.5. For any $S \subseteq \mathbb{F}_{2}^{n}$ and $z \in \mathbb{F}_{2}^{n}$, the S-degree of z the smallest integer d such that $z \in d S$. Further, the S-degree of a parity function $\langle\alpha, x\rangle$ for $\alpha \in \mathbb{F}_{2}^{n}$ is the S-degree of α.

Our next claim shows that for any fixed size-s depth $-3 \mathrm{AC}^{0} \circ \mathrm{MOD}_{2}$ circuit $C^{\prime \prime}$, after applying a random y-restriction, then almost surely, the resulting parity function ℓ_{ρ} is of high degree with respect to the parity inputs of $\left.C^{\prime \prime}\right|_{\rho}$.

Claim 2.6. Let $S \subseteq \mathbb{F}_{2}^{n}$ be the set of input parities (or their negations) of $\left.C^{\prime \prime}\right|_{\rho}$. Then with probability at least $1-2^{-n / 2}$ over the choice of ρ, ℓ_{ρ} has S-degree larger than $n /(2 \log s)$.

Proof. Set $k=n /(2 \log s)$. We have $|S \cup 2 S \cup \cdots \cup k S| \leq(|S|+1)^{k} \leq s^{k}=s^{n /(2 \log s)}=2^{n / 2}$, so the probability that the S-degree of ℓ_{ρ} being at most k is no more than $2^{n / 2} / 2^{n}=2^{-n / 2}$.

We will call a y-restriction ρ good (for circuit $\left.C^{\prime \prime}\right)$ if the S-degree of ℓ_{ρ} is larger than $n /(2 \log s)$ and bad otherwise. Therefore a random ρ is bad with probability at most $2^{-n / 2}$. Let $N_{\rho}:\{0,1\}^{n} \rightarrow$ \mathbb{N} be the function that counts the number of AND gates of $\left.C^{\prime \prime}\right|_{\rho}$ that are 1.

Lemma 2.7. Let $S \subseteq \mathbb{F}_{2}^{n}$ be the set of input parities (or their negations) of $\left.C^{\prime \prime}\right|_{\rho}$. Suppose ℓ_{ρ} has S-degree larger than k and each AND gate in $\left.C^{\prime \prime}\right|_{\rho}$ has fan-in at most w, then N_{ρ}^{i} is uncorrelated with ℓ_{ρ} for $i=1,2, \ldots, k / w$. In other words, $\mathbf{E}_{x}\left(N_{\rho}^{i}(x) \mid \ell_{\rho}(x)=0\right)=\mathbf{E}_{x}\left(N_{\rho}^{i}(x) \mid \ell_{\rho}(x)=\right.$ 1) \quad for $i=1,2, \ldots, k / w$.

Proof. For convenience, we switch to the $\{-1,1\}$ representation of Boolean values for parities, i.e. $\chi(x)=(-1)^{\ell(x)}$. Let $\chi_{1}, \ldots, \chi_{s^{\prime}}$ be the input parities of $\left.C^{\prime \prime}\right|_{\rho}$, and let $f_{1}^{\prime}, f_{2}^{\prime}, \ldots, f_{t^{\prime}}^{\prime}$ (each still taking value in $\{0,1\}$) be the functions computed by the AND gates in $\left.C^{\prime \prime}\right|_{\rho}$. Then $N_{\rho}(x)=$ $f_{1}^{\prime}(x)+f_{2}^{\prime}(x)+\cdots+f_{t^{\prime}}^{\prime}(x)$. Note that since each $f_{j}^{\prime}(x)$ is the AND of at most w parities from $\left\{\chi_{1}, \ldots, \chi_{s^{\prime}}\right\}, f_{j}^{\prime}(x)$ can be expressed as a polynomial of degree at most w with $\chi_{1}, \ldots, \chi_{s^{\prime}}$ as variables (indeed, if $f_{1}^{\prime}(x)=\operatorname{AND}\left(\chi_{1}(x), \ldots, \chi_{w}(x)\right)$, then $\left.f_{1}^{\prime}=\left(\frac{1-\chi_{1}}{2}\right) \cdots\left(\frac{1-\chi_{w}}{2}\right)\right)$. Consequently, N_{ρ}^{i} is a polynomial of degree at most $i \cdot w$ in $\chi_{1}, \ldots, \chi_{s^{\prime}}$. Now because ℓ_{ρ} is of S-degree larger than $k \geq i \cdot w$ for $i=1,2, \ldots, k / w$, we have that ℓ_{ρ} is not in the support of the polynomial representation of N_{ρ}^{i}. Finally, by the orthogonality of parities, letting $\chi_{\rho}(x):=(-1)^{\ell_{\rho}(x)}$, we have

$$
0=\left\langle N_{\rho}^{i}, \ell_{\rho}\right\rangle=\mathbf{E}_{x}\left(N_{\rho}^{i}(x) \cdot \ell_{\rho}(x)\right)=\frac{1}{2}\left(\mathbf{E}_{x}\left(N_{\rho}^{i}(x) \mid \chi_{\rho}(x)=0\right)-\mathbf{E}_{x}\left(N_{\rho}^{i}(x) \mid \chi_{\rho}(x)=1\right)\right) .
$$

Since each of the AND gates in $C^{\prime \prime}$ has fan-in at most $4 \log n$ and the S-degree of ℓ_{ρ} is larger than $n /(2 \log s)$ for every good ρ, Lemma 2.7 implies that N_{ρ}^{i} is uncorrelated with ℓ_{ρ} for i up to $d:=n /(8 \log n \log s)$ for every good y-restriction.

2.3 Linear programming and feasible solutions based on Chebyshev polynomials (Proof of Lemma 2.2)

Let X_{ρ} (resp., Y_{ρ}) be the (conditional) random variable of $N_{\rho}(x) \mid\left(\ell_{\rho}(x)=1\right)$ (resp., $N_{\rho}(x) \mid$ $\left(\ell_{\rho}(x)=0\right)$). Our key observation is that, by Lemma 2.7, these two random variables both take values in $\left\{0,1, \ldots, s^{\prime}\right\}$ and their moments match up to $n / 8 \log n \log s$. So intuitively, if s^{\prime} is not too large, these two random variables should have close to identical distributions; in particular, we should have $\operatorname{Pr}\left(X_{\rho}=0\right) \approx \operatorname{Pr}\left(Y_{\rho}=0\right)$. Since C^{\prime} (and thus, $C^{\prime \prime}$) computes IP with only one-sided error, we have that for every y-restriction $\rho, \operatorname{Pr}\left(\left.C^{\prime \prime}\right|_{\rho}(x)=1 \mid \ell_{\rho}(x)=1\right)=1$ and consequently $\operatorname{Pr}\left(X_{\rho}=0\right)=0$. Combining this with the consequence of moment-matching condition between X_{ρ} and Y_{ρ} implies that $\operatorname{Pr}\left(Y_{\rho}=0\right) \approx 0$ for every good ρ.

Fix a good y-restriction ρ. The following key lemma provides the desired upper bound on $\operatorname{Pr}\left(Y_{\rho}=0\right)=\operatorname{Pr}_{x}\left(\left.C^{\prime \prime}\right|_{\rho}(x)=0 \mid \ell_{\rho}(x)=0\right)$. The lemma allows an additional parameter ξ_{ρ} which in our application is set to zero (since we have $\operatorname{Pr}_{x}\left(\left.C^{\prime \prime}\right|_{\rho}(x)=0 \mid \ell_{\rho}(x)=1\right)=0$). However, since

Max s.t.	y_{0} (primal LP) $\begin{aligned} & \sum_{i=0}^{s^{\prime}} i^{j} x_{i}-\sum_{i=0}^{s^{\prime}} i^{j} y_{i}=0, \quad j=1, \ldots, d \\ & \sum_{i=0}^{s^{\prime}} x_{i}=1 \\ & \sum_{i=0}^{s^{\prime}} y_{i}=1 \\ & x_{0}=\xi_{\rho} \\ & x_{i}, y_{i} \geq 0, \quad i=0, \ldots, s^{\prime} \end{aligned}$
Min s.t.	$1-\left(1-\xi_{\rho}\right) z$ (dual LP) p is a polynomial of degree at most d $\begin{aligned} & p(0)=0 \\ & z \leq p(i) \leq 1 \quad i=1, \ldots, s^{\prime} \end{aligned}$

Figure 1: Primal LP for finding maximum $\operatorname{Pr}(Y=0)(t o p)$, and the final form of the corresponding dual LP (bottom).
the lemma applies to general random variables with matching moments and may be of independent interest, it is stated in the more general form.

Lemma 2.8. Let X_{ρ} and Y_{ρ} be random variables supported on $\left\{0,1, \ldots, s^{\prime}\right\}$ such that (i) $\mathbf{E}\left(X_{\rho}^{i}\right)=$ $\mathbf{E}\left(Y_{\rho}^{i}\right)$ for $i=1, \ldots, d$; and (ii) $\operatorname{Pr}\left(X_{\rho}=0\right)=\xi_{\rho}$. Then $\operatorname{Pr}\left(Y_{\rho}=0\right) \leq \xi_{\rho}+4\left(1-\xi_{\rho}\right) e^{-d / \sqrt{2 s^{\prime}}}$.

Proof. We set up a linear program to maximize $\operatorname{Pr}\left(Y_{\rho}=0\right)$ over the choices of random variables X_{ρ} and Y_{ρ}. The variables in the LP are x_{i} and y_{i} where $x_{i}=\operatorname{Pr}\left(X_{\rho}=i\right)$ and $y_{i}=\operatorname{Pr}\left(Y_{\rho}=i\right)$. Aside from nonnegativity and an upper bound constraint for x_{0}, we have $d+2$ equality constraints; 2 of them to force X_{ρ} and Y_{ρ} to have probability distributions, and the other d for the moment matching condition. The linear program and the corresponding dual are listed in Fig. 1.

In order to upper bound the value of the primal program (i.e., $\operatorname{Pr}\left(Y_{\rho}=0\right)$) and prove Lemma 2.8, it suffices to find a feasible solution to the corresponding dual program. We show that by choosing the polynomial p in the dual to be a Chebyshev polynomial (appropriately shifted and scaled), an essentially optimal bound on the primal value can be found. Full details are deferred to Section 2.4.

The rest of the proof is based on the following intuition. Considering the overwhelming fraction $1-2^{-n / 2}$ of good ρ^{\prime} 's and averaging on ρ, using Lemma 2.8 above we get that $\operatorname{Pr}_{x, y}\left(C^{\prime \prime}(x, y)=\right.$ $0 \mid \operatorname{IP}(x, y)=0) \approx 0$. On the other hand, since C^{\prime} is an ϵ-discriminator for IP, then $C^{\prime \prime}$ is an ϵ^{\prime} discriminator for IP for some $\epsilon^{\prime} \geq \epsilon-\tau$ (where we recall $\tau=\operatorname{Pr}_{x, y}\left(C^{\prime}(x, y) \neq C^{\prime \prime}(x, y)\right)$). Therefore
ϵ^{\prime} must be small when the circuit size s of C^{\prime} is small, and thus we obtain the desired upper bound on ϵ.

More precisely, recall that X_{ρ} (resp., Y_{ρ}) is the (conditional) random variable of $N_{\rho}(x) \mid\left(\ell_{\rho}(x)=\right.$ 1) (resp., $N_{\rho}(x) \mid\left(\ell_{\rho}(x)=0\right)$), where $N_{\rho}(x)$ counts the number of AND gates in $\left.C^{\prime \prime}\right|_{\rho}$ that evaluate to 1 . Since $\left.C^{\prime \prime}\right|_{\rho}$ provides a one-sided approximation of the function ℓ_{ρ}, we have that

$$
\xi_{\rho}:=\operatorname{Pr}_{x}\left(N_{\rho}(x)=0 \mid \ell_{\rho}(x)=1\right)=0 .
$$

Taking $d=\frac{n}{8 \log n \log s}$ and $s^{\prime}<s$ into Proposition 2.8, we have that for any good y-restriction ρ,

$$
\begin{align*}
\operatorname{Pr}_{x}\left(\left.C^{\prime \prime}\right|_{\rho}(x)=0 \mid \ell_{\rho}(x)=0\right) & =\operatorname{Pr}\left(Y_{\rho}=0\right) \\
& \leq \xi_{\rho}+4\left(1-\xi_{\rho}\right) \exp (-d / 2 \sqrt{s}) \\
& =4 \exp (-d / 2 \sqrt{s}) . \tag{1}
\end{align*}
$$

Taking into account bad ρ 's, which happens with probability at most $2^{-n / 2}$ (according to Claim 2.6), the discriminator parameter ϵ^{\prime} for $C^{\prime \prime}(x, y)$ can now be upper bounded as

$$
\begin{aligned}
\epsilon^{\prime} & =\operatorname{Pr}_{x, \rho}\left(C^{\prime \prime}|\rho(x)=0| \ell_{\rho}(x)=0\right) \\
& =\mathbf{E}_{\rho}\left(\operatorname{Pr}\left(\left.C_{x}^{\prime \prime}\right|_{\rho}(x)=0 \mid \ell_{\rho}(x)=0\right)\right)=\mathbf{E}_{\rho}\left(Y_{\rho}\right) \\
& =\mathbf{E}_{\text {good }} \rho\left(Y_{\rho}\right) \operatorname{Pr}(\rho \text { is good })+\mathbf{E}_{\text {bad }} \rho\left(Y_{\rho}\right) \operatorname{Pr}(\rho \text { is bad }) \\
& \leq 4 \exp (-d / 2 \sqrt{s})+2^{-n / 2} .
\end{aligned}
$$

Finally, since $\epsilon^{\prime} \geq \epsilon-\tau$, where we recall that $\tau=\operatorname{Pr}_{x, y}\left(C^{\prime}(x, y) \neq C^{\prime \prime}(x, y)\right) \leq s / n^{4}$, the proof of Lemma 2.2 is complete.

2.4 Proof details of Lemma 2.8

Denote by P_{ρ} the value of the primal LP in Fig. 1. The dual linear program is

$$
\begin{array}{lll}
\operatorname{minimize} & z_{d+1}+z_{d+2}+\xi_{\rho} z_{d+3} & \\
\text { such that } & z_{d+1}+z_{d+3} \geq 0 & \\
& z_{d+2} \geq 1 & \\
& \left(\sum_{j=1}^{d} i^{j} z_{j}\right)+z_{d+1} \geq 0 & i=1, \ldots, s^{\prime} \\
& \left(\sum_{j=1}^{d}-i^{j} z_{j}\right)+z_{d+2} \geq 0 & i=1, \ldots, s^{\prime}
\end{array}
$$

We can interpret the dual as a problem involving polynomials. The feasible solutions correspond to coefficients of degree- d polynomials $p(x)=\sum_{j=1}^{d} z_{j} x^{j}$ with $p(0)=0$. By duality, the objective value of the dual is nonnegative for any feasible solution. Thus, by scaling, we can assume $z_{d+2}=1$. Further, since z_{d+3} only appears in the first constraint in this minimization problem, we can always take $z_{d+3}=-z_{d+1}$.

Rearranging the last two constraints of this problem yields that the values $\left\{p(1), p(2), \ldots, p\left(s^{\prime}\right)\right\}$ must all lie in the interval $\left[-z_{d+1}, z_{d+2}\right]$. Setting $z=-z_{d+1}$, the dual problem can be rephrased as the final Dual LP showed in Fig. 1.

Denote by D_{ρ} the value of this dual LP. By the Strong Duality Theorem, $P_{\rho}=D_{\rho}$, and therefore if $V(p)$ is the value of any feasible solution corresponding to a polynomial p to the dual LP, we have

$$
\operatorname{Pr}\left(Y_{\rho}=0\right) \leq P_{\rho}=D_{\rho} \leq V(p)
$$

The above modified problem about polynomials is strikingly similar to the problem of approximating OR functions by low-degree polynomials, for which Nisan and Szegedy gave an optimal solution based on Chebyshev polynomials [NS94]. Recall that Chebyshev polynomial (of the first kind) $T_{k}(x)$ is a degree k polynomial defined by $T_{k}(x)=\cos (k \arccos (x))$, or more explicitly

$$
T_{k}(x)=\frac{1}{2}\left[\left(x+\sqrt{x^{2}-1}\right)^{k}+\left(x-\sqrt{x^{2}-1}\right)^{k}\right] .
$$

It is well-known that $-1 \leq T_{k}(x) \leq 1$ for all $x \in[-1,1]$ and $T_{k}(x)>1$ when $x>1$. For a detailed treatment of Chebyshev polynomials see e.g. [Riv90].

We now construct a dual feasible polynomial p based on Chebyshev polynomials. Define

$$
q(x)=1-\frac{T_{d}\left(\frac{s^{\prime}-x}{s^{\prime}-1}\right)}{T_{d}\left(\frac{s^{\prime}}{s^{\prime}-1}\right)}
$$

and let

$$
p(x)=\frac{q(x)}{\max _{i \in\left\{1, \ldots, s^{\prime}\right\}} q(i)}
$$

Clearly $p(x)$ is a degree d polynomial, $p(0)=0$ and $p(i) \leq 1$ for $i=1, \ldots, s^{\prime}$, hence a feasible solution to the dual LP.

Claim 2.9. The value of $p(x)$ with respect to the dual $L P$ satisfies that $D(p) \leq \xi_{\rho}+\frac{2\left(1-\xi_{\rho}\right)}{T_{d}\left(1+\frac{1}{s^{\prime}}\right)}$.
Proof. Since $-1 \leq T_{d}(w) \leq 1$ for all $-1 \leq w \leq 1$, then for $i=1, \ldots, s^{\prime}$,

$$
\begin{aligned}
p(i) & =\frac{q(x)}{\max _{i \in\left\{1, \ldots, s^{\prime}\right\}} q(i)} \\
& =\frac{T_{d}\left(1+\frac{1}{s^{\prime}-1}\right)-T_{d}\left(\frac{s^{\prime}-i}{s^{\prime}-1}\right)}{T_{d}\left(1+\frac{1}{s^{\prime}-1}\right)-\min _{j \in\left[s^{\prime}\right]} T_{d}\left(\frac{s^{\prime}-j}{s^{\prime}-1}\right)} \\
& \geq \frac{T_{d}\left(1+\frac{1}{s^{\prime}-1}\right)-1}{T_{d}\left(1+\frac{1}{s^{\prime}-1}\right)+1}=\frac{1-1 / T_{d}\left(1+\frac{1}{s^{\prime}-1}\right)}{1+1 / T_{d}\left(1+\frac{1}{s^{\prime}-1}\right)} \\
& \geq 1-\frac{2}{T_{d}\left(1+\frac{1}{s^{\prime}-1}\right)} \geq 1-\frac{2}{T_{d}\left(1+\frac{1}{s^{\prime}}\right)}
\end{aligned}
$$

Therefore the value z in the objective function of dual LP is at least $z \geq 1-\frac{2}{T_{d}\left(1+\frac{1}{s^{\prime}}\right)}$ and the claim follows.

We will need the following two inequalities bounding $T_{k}(x)$'s growth when $x \geq 1$.
Claim 2.10. For any nonnegative integer k, we have ${ }^{3}$

1. $T_{k}(1+\mu) \geq \frac{1}{2} e^{\left(\sqrt{2 \mu+\mu^{2}}\right) k / 2}$ for all real number $0 \leq \mu \leq 1$.
2. $T_{k}(1+\mu) \leq e^{2\left(\sqrt{2 \mu+\mu^{2}}\right) k}$ for all $\mu \geq 0$.

Proof. For the first part, using that $1+x \geq e^{x / 2}$ for $0 \leq x \leq 2$, we obtain

$$
\begin{aligned}
T_{k}(1+\mu) & \geq \frac{1}{2}\left(1+\mu+\sqrt{2 \mu+\mu^{2}}\right)^{k} \\
& \geq \frac{1}{2}\left(1+\sqrt{2 \mu+\mu^{2}}\right)^{k} \\
& \geq \frac{1}{2} e^{\left(\sqrt{2 \mu+\mu^{2}}\right) k / 2}
\end{aligned}
$$

for all $0 \leq \mu \leq 1$.
For the second part, by the standard inequality $(1+t / n)^{n} \leq e^{t}$ for all nonnegative t and n,

$$
\begin{aligned}
T_{k}(1+\mu) & \leq\left(1+\mu+\sqrt{2 \mu+\mu^{2}}\right)^{k} \\
& \leq\left(1+2 \sqrt{2 \mu+\mu^{2}}\right)^{k} \leq e^{2\left(\sqrt{2 \mu+\mu^{2}}\right) k}
\end{aligned}
$$

Finally, by setting $\mu=1 / s^{\prime}$ in the first inequality of Claim 2.10 , we have $T_{d}\left(1+1 / s^{\prime}\right) \geq$ $\frac{1}{2} e^{\left(\sqrt{2 / s^{\prime}+1 / s^{\prime 2}}\right) d / 2} \geq \frac{1}{2} e^{\sqrt{d^{2} / 2 s^{\prime}}}$. Combining this with Claim 2.9, we get

$$
\operatorname{Pr}\left(Y_{\rho}=0\right) \leq \xi_{\rho}+4\left(1-\xi_{\rho}\right) e^{-d / \sqrt{2 s^{\prime}}}
$$

which completes the proof of Lemma 2.8.

2.5 Limitations of our approach

We remark that the $\tilde{\Omega}\left(n^{2}\right)$ lower bound is optimal (up to a polylogarithmic factor) for our current approach. This follows from a theorem of Paturi [Pat92], which states that if $p(x)$ is a degree d polynomial such that $0 \leq p(i) \leq 1$ for $i=0,1, \ldots, s$ and $|p(1)-p(0)| \geq c$ for some constant c, then $d=\Omega(\sqrt{s})$, or equivalently $s=O\left(d^{2}\right)$. Since in our setting $d=\Theta(n / \log n \log s)$, the best lower bound one can show in the current framework is $\tilde{O}\left(n^{2}\right)$.

[^3]
3 Superlinear lower bound for general circuits

In this section we prove the following superlinear lower bound for $\mathrm{AC}^{0} \circ \mathrm{MOD}_{2}$ circuits of arbitrary depth. Throughout this section we find it more convenient to use $\left(x_{1}, \ldots, x_{n}\right)$ as the entire input to IP rather than the two-input notation $\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right)$ used previously. We remark that the results of this section hold for a more general class of functions than IP, namely bent functions ${ }^{4}$.

Theorem 3.1. If C is an $\mathrm{AC}^{0} \circ \mathrm{MOD}_{2}$ circuit of depth k and size S that computes $\operatorname{IP}:\{0,1\}^{n} \rightarrow$ $\{0,1\}$, then $S=\Omega\left(n^{1+4^{-k}}\right)$.

Deterministic restrictions. The high level idea of the proof is to adapt the technique of "deterministic restrictions" [CR96] to $\mathrm{AC}^{0} \circ \mathrm{MOD}_{2}$ circuits. In contrast to random restrictions which simplify circuits probabilistically, deterministic restrictions aim to show that, if the circuit size is small, then one can find a (small) set of input variables deterministically based on the structure of the circuit, such that fixing them forces the circuit to output a constant. This implies that small circuits fail to compute functions that cannot be made constant without setting a large number of input variables. The only twist when applying this framework to $\mathrm{AC}^{0} \circ \mathrm{MOD}_{2}$ circuits is, instead of fixing independent input variables, one now fixes linear functions which in general are no longer independent.

Linear restrictions. Let $f: \mathbb{F}_{2}^{n} \rightarrow\{0,1\}$ be a Boolean function. Define two sub-functions f_{0} (resp., f_{1}) mapping \mathbb{F}_{2}^{n-1} to $\{0,1\}$ as $f_{0}(y):=f(0, y)$ (resp., $f_{1}(y):=f(1, y)$), where (z, y) denotes string concatenation of z and y. The function f_{0} (resp., f_{1}) is the result of the restriction $x_{1}=0$ (resp., $x_{1}=1$). In other words, truth table of f_{0} and f_{1} are each restriction of truth table of f to an affine subspace of co-dimension 1 . Such restrictions can be naturally generalized with respect to arbitrary affine constraints (rather than $x_{i}=0$ or $x_{i}=1$).

Let S be an affine subspace defined by a set of linearly independent affine constraints $\ell_{\alpha_{1}}(x)=$ $b_{1}, \ldots, \ell_{\alpha_{t}}(x)=b_{t}$, where $\alpha_{1}, \ldots, \alpha_{t} \in \mathbb{F}_{2}^{n}$ and $b_{1}, \ldots, b_{t} \in\{0,1\}$. Then, the sub-function resulting from these affine restrictions, $\left.f\right|_{S}(x)$ is a partial function defined by $\left.f\right|_{S}(x):=f(x)$ for all $x \in S$. Usually it is convenient to map the domain of such sub-functions to the Boolean hypercube. To this end, one can define an invertible linear transformation $L: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{n}$ such that $L\left(\alpha_{i}\right)=e_{i}$ for $i \in[t]$ (where e_{i} is the i th standard basis vector), and let $(L f)(x):=f(L(x))$ be the function f under the basis change defined by L. Under this change of basis, we see that an ordinary restriction of variable of the function $L f$ (i.e., $x_{1}=b_{1}, \ldots, x_{t}=b_{t}$) corresponds to the restriction of the original f to S. That is, the truth table of $L f$ under the restriction $x_{1}=b_{1}, \ldots, x_{t}=b_{t}$ (that we denote by $(L f)_{b_{1}, \ldots, b_{t}}$) would be the same as the truth table of f on S. Therefore, we can conveniently study sub-functions resulting from linear restrictions by first applying a linear transformation to the input

[^4]space x_{1}, \ldots, x_{n} and then applying restriction in the ordinary sense (i.e., setting individual input bits) to the resulting function.

We use a folklore result that IP can not be made constant by imposing less than $n / 2$ linear constraints on the inputs; i.e., IP is not constant on a linear subspace of dimension more than $n / 2$. A formal statement of the general form of this claim for bent functions and its proof appears in the Appendix (Lemma A.1).

Lemma 3.2. Let $\ell_{\alpha_{1}}=b_{1}, \ldots, \ell_{\alpha_{k}}=b_{k}$ be a set of $k<n / 2$ linearly independent restrictions. If $\left.I P\right|_{S}$ is the subfunction resulting from these linear restrictions, then $\left.I P\right|_{S}$ is not a constant function.

The main ingredient of the proof of Theorem 3.1 is the following lemma, which is the exact analogue of a result of Chaudhuri and Radhakrishnan [CR96] for AC^{0} circuits.

Lemma 3.3. Let $C(x)$ be an $\mathrm{AC}^{0} \circ \mathrm{MOD}_{2}$ circuit of depth k and size S, with variable inputs x_{1}, \ldots, x_{n} and bottom parity gates $p_{1}(x), \ldots, p_{r}(x)$. Then there exists a set of tinearly independent linear restrictions, $t<5 S^{1-4^{-k}}$, such that imposing them on x_{1}, \ldots, x_{n} makes $C(x)$ constant (on the restricted space).

Proof. We adapt the argument of [CR96]. At an intuitive level, the idea is the following. The algorithm of [CR96] constructs a partial assignment to the inputs of an $A C^{0}$ circuits so that the output is fixed and the number of fixed variables is small. In particular, it fixes the values of gates at each level (by fixing the bottom variables and propagating the values up the circuit), starting at level 0 (the input level), and proceeding successively up to the output gate at level k. The specific way of fixing these gates ensures that after level i is fixed, all gates at levels $j \leq i$ have both small fan-in and small fan-out (fan-ins and fan-outs are defined with respect to the current partial restriction and gates that are not fixed yet). At the end of such fixing, a so-called "regular" circuit is obtained. Then it is straightforward to show that one can fix an additional small number of variables of such regular circuit to make it output a constant. Our argument proceeds in an almost identical way. However, we fix parities in addition to input variables, and once a new parity gate is fixed, we need to fix the free parity gates which linearly depend on the fixed parity gates. This can only possibly reduce the number of parity gates needed to be fixed in the process, thus the original proof works in the setting of $A C^{0} \circ \mathrm{MOD}_{2}$ circuits as well.

More precisely, following the algorithm of [CR96], we fix the gates in the circuit from bottom up. Let $d=S^{2 \cdot 4^{-k}}$, and $M=S^{4^{-k}}$. Define a sequence of degrees $d_{0}=0, d_{1}=d \geq 2$, and $d_{i+1}=d_{i}^{4}$, for $i \in[k]$. Let $\delta(g)$ be the number of input variables or parities that "influence" a free ${ }^{5}$ gate g; that is, the minimum set of variables or parity gates whose fixing suffices to set the value of g to either 0 or 1 . As the proof proceeds and fixes various input variables or parity gates, the value of $\delta(g)$ may reduce for each gate (for gates that are already fixed, $\delta(g)$ is defined to be zero).

[^5]To fix a gate g at level i, we perform either a $\operatorname{FixIndegree}(g, i)$ or a $\operatorname{FixOutdegree}(g, i)$ operation. If the indegree of gate g at level i is larger than d_{i} then FixIndegree (g, i) fixes the gate as follows: If g is an AND gate it fixes one of the free gates feeding into it to 0 . If g is an OR gate we fix a free gate feeding into it to 1 . Note that at most $\delta(g)$ input variables or parities are fixed this way.

If the outdegree of gate g at level i is larger than $M \cdot \delta(g)$, then $\operatorname{FixOUtdegree}(g, i)$ fixes the gate as follows: If at least half the gates that g feeds into are OR gates it fixes the gate to 1 , otherwise it fixes the gate to 0 . This fixes a number of gates lower bounded by $M / 2$ times the number of bottom gates set.

Note that in order to fix gates at higher levels we need to fix the free gates at the bottom level, and propagate them upwards. To ensure consistency, we maintain a set of bottom parities P (we view input variables x_{1}, \ldots, x_{n} as parities as well) that have been already set (for example, if a bottom gate $x_{1}+x_{3}$ needs to be set to 0 , we update the set $P \leftarrow P \cup\left\{x_{1}+x_{3}=0\right\}$.) Once a new parity is added to the set P, we accordingly fix the values of bottom parities that are linear combinations of the parities in P. We then propagate the new gate values up the circuit, and then continue fixing gates in this consistent manner, using FixIndegree and FixOutdegree of gates at increasing levels. Note that we only add to P linear constraints that are linearly independent, and thus consistency is always maintained.

We fix gates by sequentially fixing gates from the bottom level (i.e., the parity gates) to the output level (i.e., the output gate). First, the outdegrees of all gates at level i are fixed, then indegrees of all gates at level $i+1$, and then outdegrees of all gates at level $i+1$, and so forth until the output gate is reached.

We may now show that this procedure fixes only $5 S^{1-4^{-k}}$ bottom parity inputs, by repeating the computation from [CR96]. Let σ be the partial assignment to the variables (and parities) after completing the gate fixing steps and reaching the output gate (essentially this assignment is saved in the set of linear restrictions P).

Note that the partial circuit obtained in the end has every gate g at level i of indegree at most d_{i}, and outdegree of each gate is at most $M \delta(g)$. Also note that the total number of bottom gates fixed in calls to $\operatorname{Fix} \operatorname{Outdegree}(g, i)$, for all i, is at most $2 S / M$; since the number of gates fixed is at least $M / 2$ times the number of bottom inputs fixed, which in turn is at most S.

Now we show that the number of bottom gates set during calls to FixIndegree (g, i), for all i, is at most $2 S M / d$. Note that since we first fix indegrees at level $i-1$ before fixing indegrees at level i, the number of variables and parities set while fixing a gate at level i is at most $d_{1} d_{2} \cdots d_{i-1}$. Similarly, since we fix outdegrees at level $i-1$ before fixing outdegrees at level i, the outdegree of any gate at level $j<i$ is at most $M\left(d_{1} \cdots d_{i-1}\right)$. So the total number of gates at level i of degree larger than d_{i} is at most $S M\left(d_{1} \cdots d_{i-1}\right) / d_{i}$. Summing over all levels, the number of bottom gates set during calls to FixIndegree is at most $S M \sum_{i=1}^{k}\left(d_{1} \cdots d_{i-1}\right)^{2} / d_{i}$. It can be verified that $\left(d_{1} \cdots d_{i-1}\right)^{2} / d_{i} \leq 1 /\left(2^{i-1} d\right)$, which is at most $S M \sum_{i=1}^{k}\left(d_{1} \cdots d_{i-1}\right)^{2} / d_{i} \leq 2 S M / d$.

To fix the output gate, we might need to fix at most an additional $d_{1} \cdots d_{k-1}<S^{1 / 2}<S^{1-4^{-k}}$ bottom gates or parities (since in the end, the indegree of each gate at level i is at most d_{i}). Thus, overall it is enough to fix a total of $2 S / M+2 S M / d+S^{1-4^{-k}}=5 S^{1-4^{-k}}$ bottom gates in order to fix the final output of the circuit, and those are the inputs or parities collected in the set P.

Using Lemma 3.3, we can easily prove the main theorem of this section as follows.
Proof of Theorem 3.1. Suppose C has size $S<\frac{1}{5} n^{1+4^{-k}}$ (hence, it has at most that many parity gates) and computes the IP function. By Lemma 3.3, there exists a set of linearly independent linear restrictions of size at most $5 S^{1-4^{-k}}<\left(n^{1+4^{-k}}\right)^{1-4^{-k}}=n^{1-16^{-k}}<n / 2$ (for large enough n), under which C becomes a constant function. But by the Lemma A.1, we must impose at least $n / 2$ linear restrictions to make IP a constant; a contradiction.

Since Lemma 3.3 holds for the more general class of bent functions, in fact the above argument shows the following extension of Theorem 3.1 as well.

Theorem 3.4 (extension of Theorem 3.1 to bent functions). If C is an $\mathrm{AC}^{0} \circ \mathrm{MOD}_{2}$ circuit of depth k and size S that computes a bent function $f:\{0,1\}^{n} \rightarrow\{0,1\}$, then $S=\Omega\left(n^{1+4^{-k}}\right)$.

References

$\left[\mathrm{ABG}^{+} 14\right]$ A. Akavia, A. Bogdanov, S. Guo, A. Kamath, and A. Rosen, Candidate weak pseudorandom functions in $\mathrm{AC}^{0} \circ \mathrm{MOD}_{2}$, Proc. 5th ACM Conference on Innovations in Theoretical Computer Science, 2014, pp. 251260.
[And70] T. Ando, Truncated moment problems for operators, Acta Sci. Math. (Szeged) 31 (1970), 319-334.
[CF91] R.E. Curto and L.A. Fialow, Recursiveness, positivity, and truncated moment problems, Houston J. Math. 17 (1991), 603-635.
[CR96] S. Chaudhuri and J. Radhakrishnan, Deterministic restrictions in circuit complexity, Proc. 28th Annual ACM Symposium on the Theory of Computing, 1996, pp. 30-36.
[CS14] G. Cohen and I. Shinkar, The complexity of DNF of parities, Technical Report TR14-099, Electronic Colloquium in Computational Complexity, 2014.
[$\left.\mathrm{HMP}^{+} 93\right]$ A. Hajnal, W. Maass, P. Pudlák, M. Szegedy, and G. Turán, Threshold circuits of bounded depth, Journal of Computer and System Sciences 46 (1993), 129-154. Earlier version in FOCS'87.
[ISW06] R. Impagliazzo, R. Shaltiel, and A. Wigderson, Reducing the seed length in the Nisan-Wigderson generator, Combinatorica 26 (2006), no. 6, 647-681. Earlier version in FOCS'01.
[Jac97] J.C. Jackson, An efficient membership-query algorithm for learning DNF with respect to the uniform distribution, Journal of Computer and System Sciences 55 (1997), no. 3, 414-440.
[Juk06] S. Jukna, On graph complexity, Combinatorics, Probability, and Computing 15 (2006), no. 6, 855-876.
[KF09] A. Klivans and L. Fortnow, Efficient learning algorithms yield circuit lower bounds, Journal of Computer and System Sciences 75 (2009), 27-36.
[KKO13] A. Klivans, P. Kothari, and I.C. Oliveira, Constructing hard functions using learning algorithms, Proc. 28th Annual IEEE Conference on Computational Complexity, 2013, pp. 86-97.
[KM13] A. Klivans and R. Meka, Moment-matching polynomials, Technical Report TR13-008, Electronic Colloquium in Computational Complexity, 2013.
[LMN93] N. Linial, Y. Mansour, and N. Nisan, Constant depth circuits, Fourier transform, and learnability, Journal of the ACM 40 (1993), no. 3, 607-620.
[Nis91] N. Nisan, Pseudorandom bits for constant depth circuits, Combinatorica 11 (1991), no. 1, 63-70.
[NS94] N. Nisan and M. Szegedy, On the degree of Boolean functions as real polynomials, Computational Complexity 4 (1994), 301-313. Earlier version in STOC'92.
[NW94] N. Nisan and A. Wigderson, Hardness versus randomness, Journal of Computer and System Sciences 49 (1994), 149-167.
[Pat92] R. Paturi, On the degree of polynomials that approximate symmetric Boolean functions, Proc. 24th Annual ACM Symposium on the Theory of Computing, 1992, pp. 468-474.
[Raz87] A.A. Razborov, Lower bounds on the size of bounded-depth networks over a complete basis with logical addition, Math. Notes Acad. of Sci. USSR 41 (1987), no. 4, 333-338.
[Riv90] T. Rivlin, Chebyshev polynomials: From approximation theory to algebra and number theory, John Wiley \& Sons, Inc., 1990.
[RRSS09] S. Raskhodnikova, D. Ron, A. Shpilka, and A. Smith, Strong lower bounds for approximating distribution support size and the distinct elements problem, SIAM Journal on Computing 39 (2009), no. 3, 813-842. Earlier version in FOCS'07.
[Smo87] R. Smolensky, Algebraic methods in the theory of lower bounds for Boolean circuit complexity, Proc. 19th Annual ACM Symposium on the Theory of Computing, 1987, pp. 77-82.
[SU05] R. Shaltiel and C. Umans, Simple extractors for all min-entropies and a new pseudo-random generator, Journal of the ACM 52 (2005), no. 2, 172-216. Earlier version appeared in FOCS'01.
[SV10] R. Shaltiel and E. Viola, Hardness amplification proofs require majority, SIAM Journal on Computing 39 (2010), no. 7, 3122-3154.
[SV12] R. Servedio and E. Viola, On a special case of rigidity, 2012. Manuscript.
[Uma03] C. Umans, Pseudo-random generators for all hardnesses, Journal of Computer and System Sciences $\mathbf{6 7}$ (2003), no. 2, 419-440. Earlier version appeared in CCC'02.
[Val77] L.G. Valiant, Graph-theoretic arguments in low-level complexity, Proc. 6th International Symposium on Mathematical Foundations of Computer Science, 1977, pp. 162-176.
[Vol14] I. Volkovich, On learning, lower bounds and (un)keeping promises, Icalp 2014, part i, 2014, pp. 1027-1038.

A Proof of Lemma 3.2 for bent functions

In this section, we state and prove the folklore claim that IP cannot be made constant by imposing less than $n / 2$ linear restrictions on its inputs. Actually, we prove this claim for more general bent functions, thus proving a stronger statement. We also observe one could similarly show that if a Boolean function has all its Fourier coefficients bounded in magnitude by $2^{-\Omega(n)}$, then the function is not constant on a subspace of \mathbb{F}_{2}^{n} of co-dimension $o(n)$. Such a condition would also suffice to prove superlinear lower bounds in our framework.

Lemma A.1. Let f be a bent function and let $\ell_{\alpha_{1}}=b_{1}, \ldots, \ell_{\alpha_{t}}=b_{t}$ be a set of $t<n / 2$ linearly independent restrictions. If $\left.f\right|_{S}$ is the subfunction resulting from these linear restrictions, then $\left.f\right|_{S}$ is not a constant function.

Proof. In an intuitive sense, the proof can be described as follows. We write down the polynomial representation of f in the $\{-1,+1\}$ representation as defined by its Fourier transform. We note that a function is constant if and only if the Fourier coefficient corresponding to the empty set is either -1 or +1 . The restrictions can be applied to the polynomial representation and collapse some of the monomials into the constant term. Since the coefficient of each monomial is equal to $2^{-n / 2}$ in absolute value, and noting that the given restrictions collapse at most 2^{t} of the monomials, the function can not accumulate enough mass on the Fourier coefficient for the empty set to reduce to the constant function, as long as $t<n / 2$.

More formally, let L be any invertible linear transformation as defined above satisfying $L\left(\alpha_{1}\right)=$ $e_{1}, \ldots, L\left(\alpha_{t}\right)=e_{t}$. It suffices to show that $g:=(L f)_{b_{1} \cdots b_{t}}$ is not constant, where $g: \mathbb{F}_{2}^{n-t} \rightarrow\{0,1\}$. Since the Fourier spectrum of $L f$ satisfies $\widehat{L f}(\alpha)=\widehat{f}\left(L^{-1} \alpha\right)$ and L is invertible, hence $L f$ is also a bent function (the Fourier coefficients of $L f$ are simply a reordering of the Fourier coefficients of f). We now switch to the $\{-1,1\}$-representation of Boolean functions (letting $\widehat{g^{ \pm}}(x):=(-1)^{g(x)}$ and $\left.\widehat{(L f)^{ \pm}(x)}:=(-1)^{(L f)(x)}\right)$, and recall the well-known fact that for any $\gamma \in \mathbb{F}_{2}^{n-t}$,

$$
\widehat{g^{ \pm}}(\gamma)=\sum_{\beta \in \mathbb{F}_{2}^{t}} \widehat{(L f)^{ \pm}}(\beta, \gamma) \chi_{\beta}\left(b_{1}, \ldots, b_{t}\right) .
$$

Since $L f$ is bent, $\left|\widehat{(L f)^{ \pm}}(\beta, \gamma)\right|=2^{-n / 2}$ for every β and γ; and since $t<n / 2$, it follows that $\left|\widehat{g^{ \pm}}(\gamma)\right|<1$ for all $\gamma \in \mathbb{F}_{2}^{n-t}$. In particular, $\left|\widehat{g^{ \pm}}(0)\right|<1$. But if g is a constant Boolean function, $\widehat{g^{ \pm}}(0)=1$ or -1 . Therefore, g is not constant.

[^0]: *Simons Institute for the Theory of Computing, University of California, Berkeley, CA. Email: cheraghchi@berkeley.edu. Supported by a Qualcomm fellowship.
 ${ }^{\dagger}$ Department of Computer Science, Purdue University, West Lafayette, IN. Email: elena-g@purdue.edu.
 ${ }^{\ddagger}$ Department of Computer Science and Engineering, Washington University, St. Louis, MO. Email: bjuba@wustl.edu. Supported by an AFOSR Young Investigator award.
 ${ }^{\S}$ Department of Mathematics, Duquesne University, Pittsburgh, PA. Email: wimmerk@duq.edu. Supported by NSF award CCF-1117079.
 ${ }^{\top}$ SCIS, Florida International University, Miami, FL. Email: nxie@cs.fiu.edu. Research supported in part by NSF grant 1423034.

[^1]: ${ }^{1}$ Indeed, although like us, Klivans and Meka related this problem to the existence of some polynomials via LP duality, for Klivans and Meka, constructing these (sandwiching) polynomials was the problem, not the solution.

[^2]: ${ }^{2}$ One way to see this is to notice that our proof also shows the same lower bound for the negation of the Inner Product function (since negating only incurs an affine shift that our methods are not sensitive to). Thus it suffices to note that when the top gate is an OR one can just negate the layers and get a circuit in which the top gate is AND that computes the negation of the Inner Product.

[^3]: ${ }^{3}$ The second inequality also appeared in [Pat92].

[^4]: ${ }^{4}$ In fact, our result holds for any function whose Fourier coefficients are all exponentially small in magnitude.

[^5]: ${ }^{5} \mathrm{~A}$ free gate is one whose output is not fixed to a constant.

