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Abstract

We show a new connection between the information complexity of one-way communication
problems under product distributions and a relaxed notion of list-decodable codes. As a conse-
quence, we obtain a characterization of the information complexity of one-way problems under
product distributions for any error rate based on covering numbers. This generalizes the char-
acterization via VC dimension for constant error rates given by Kremer, Nisan, and Ron (CCC,
1999). It also provides an exponential improvement in the error rate, yielding tight bounds
for a number of problems. In addition, our framework gives a new technique for analyzing the
complexity of composition (e.g., XOR and OR) of one-way communication problems, connecting
the difficulty of these problems to the noise sensitivity of the composing function. Using this
connection, we strengthen the lower bounds obtained by Molinaro, Woodruff and Yaroslavtsev
(SODA, 2013) for several problems in the distributed and streaming models, obtaining optimal
lower bounds for finding the approximate closest pair of a set of points and the approximate
largest entry in a matrix product. Finally, to illustrate the utility and simplicity of our frame-
work, we show how it unifies proofs of existing 1-way lower bounds for sparse set disjointness, the
indexing problem, the greater than function under product distributions, and the gap-Hamming
problem under the uniform distribution.

1 Introduction

We consider the two-party one-way communication complexity model where Alice and Bob want
to jointly compute a function f : X × Y → {0, 1}. More precisely, Alice holds an input x ∈ X ,
Bob holds an input y ∈ Y, and they have access to common random bits; Alice sends a (random)
message to Bob, who then tries to output the value f(x, y). The cost of a protocol is the maximum
(over the inputs and the randomness) number of bits sent by Alice. The goal is to find a randomized
protocol of minimum cost that for all inputs computes f(x, y) with probability at least 1− α; this
minimum cost is denoted by R(f)→α .

The one-way communication model has been studied in a number of works, including Yao [25],
Papadimitriou and Sipser [20], Ablayev [1], Newman and Szegedy [17], and Kremer et al. [10]. It is
particularly relevant to the data stream model in which an algorithm sees a stream of elements one
at a time, and tries to compute a relation of these elements using as little space (in bits) as possible
[16]. One way of lower-bounding the space complexity of data stream algorithms is to set up a
one-way communication protocol in which Alice’s message consists of the state of the streaming
algorithm run on a stream created by Alice. Bob then continues the execution of the streaming
algorithm on a stream he creates, and if from the output the players can solve a communication

1

 

ISSN 1433-8092 

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 31 (2015)



problem f , then the space complexity of the streaming algorithm must be at least the one-way
communication complexity of f .

We will consider a distributional version of one-way communication complexity, in which Alice
and Bob have inputs (x, y) ∼ µ × ν, where µ × ν is a product distribution on domains X and
Y. That is, Alice’s input is drawn from µ, while Bob’s input is drawn from ν, and the inputs

are independent. We define R(f)
→,[]
α to be the maximum, over product distributions µ × ν, of

D(f)→µ×ν,α, where D(f)→µ×ν,α is the minimum cost over deterministic protocols which compute f
with error probability at most α when the input is drawn from µ × ν. Kremer, Nisan, and Ron

[10] show that for constant α and Boolean functions f , R(f)
→,[]
α = Θ(V C), where V C is the VC-

dimension of the class {fx : Y → {0, 1} | x ∈ X} obtained by seeing the rows of the communication
matrix of f as functions. Equivalently, V C is the dimension of the largest hypercube which is a
submatrix of the communication matrix.

Unfortunately, a characterization for constant α does not suffice for streaming applications. This
was the focus of work by Jayram and Woodruff [9], who showed that for a number of streaming
problems, such as estimating the empirical entropy and Euclidean norm (and more generally the `p-
norm for p ≤ 2), the problem requires an extra multiplicative log(1/δ) in the space complexity if the
algorithm succeeds with probability at least 1− δ. This was shown using one-way communication
under a product distribution, and so obtaining the extra log(1/δ) factor had to be shown by ways
other than resorting to the VC-dimension, since we do not have a general characterization of
problems showing how their communication cost scales with the error probability.

Besides single-shot problems, the gap in our understanding of the dependence on the error
probability also manifests itself for solving a composition of many copies of a problem simultaneously
with constant probability. The authors [14] previously showed that for several streaming problems,
the communication cost of solving n copies of a problem simultaneously with probability 2/3 scales
as n times the cost of solving each copy with probability 1 − 1/n. This composition theorem
critically uses that a protocol must obtain a correct output for each of the n instances, and it
is unknown if such a statement holds for other composition functions, such as the OR or XOR
functions. This has led to log n factor gaps in the upper and lower bounds for streaming problems
such as

• ClosestPair: Alice has n points p1, . . . , pn in Rd, Bob has n points q1, . . . , qn in Rd, and they
would like to find a pair pi, qj for which ‖pi − qj‖2 ≤ (1 + ε) mini′,j′ ‖pi′ − qj′‖2, and

• MatrixProduct: Alice has an n× d matrix A with rows of unit norm, Bob has a d× n matrix
B with columns of unit norm. They want to approximate maxi,j |AB|i,j up to an additive ε.

Our Contributions: We introduce the notion of an (α, β)-code and use it to capture the distance
between rows of a communication matrix of a function f : X × Y → {0, 1}. Informally speaking,
this notion says that under Alice’s distribution µ, with probability at most β, two independently
sampled rows have relative Hamming distance at most α when weighted with respect to Bob’s input
distribution ν. This notion thus captures the (pairwise) correlation of rows of a communication
matrix, with respect to distributions µ and ν. We show that the one-way information cost of
protocols under distribution µ× ν with error probability α is Ω(log 1/β). This result is based on a
Fano’s inequality for list-decoding that may be of independent interest. This gives a surprisingly
generic way of characterizing lower bounds in terms of the error probability.
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Characterization Theorem: We use our characterization in terms of codes to obtain a charac-
terization of 1-way communication complexity in terms of packing numbers. Here, given a pseudo-
metric space (X , d), the α-packing number is the largest set of points in X with pairwise distance at

least α. We show that maxν Ω(log p8α,ν) ≤ R(f)
→,[]
α ≤ maxν O(log pα,ν), where pα,ν is the packing

number of the pseudo-metric space ({f(x)}x∈X , ‖ · ‖ν), where {f(x)}x∈X is the family of functions
corresponding to rows of the communication matrix, and ‖·‖ν is the weighted relative Hamming dis-
tance according to ν. This gives a strengthening of the result of Kremer, Nisan, and Ron [10] since it
gives a tight characterization in terms of the error probability α (up to the distinction of α in the up-
per bound and 8α in the lower bound). We need to resort to packing numbers, since as observed by
Jayram and Woodruff [9], there is no characterization possible in terms of the VC-dimension (as used
by [10]). However, by relating packing numbers to VC-dimension, we considerably strengthen the

result of [10] which states that (1−H(α))V C ≤ R(f)
→,[]
α ≤ O(V C 1

α log 1
α), where V C denotes the

VC-dimension of f . We obtain the stronger result that (1−H(α))V C ≤ R(f)
→,[]
α ≤ O(V C log( 1

α)).

As an example, we use this to show that R
→,[]
α (GT ) = Θ(log 1

α) where GT is the greater-than
function. This is an exponential improvement over the result based on VC-dimension.

Composition Theorem: Next we introduce the notion of noise sensitivity, which captures how
a communication problem f whose rows form an (α, β)-code behaves under composition. There is a
line of work on understanding how primitive problems behave under composition [12, 18, 3, 11, 22];
our work adds to this by characterizing the composition in terms of codes. The noise sensitivity of
a composing function g on k inputs with respect to an input distribution µk intuitively captures
how likely two independent samples of inputs to g from µk are likely to result in differing outputs
of g. We show that if f is an (α, β)-code with respect to µ× ν, then g ◦ f is an (α′, β′)-code with
respect to µk × νk for certain α′ and β′ related to the noise sensitivity of g, as well as to α and β.

Streaming Applications: As the main application of our composition theorem, we consider the
primitive problem f in which Alice holds a string x ∈ [k]m, Bob has an ` ∈ [k] and an index j ∈ [m],
and Bob would like to know if xj = `. We show that f is an (α, β)-code for sufficiently good α and
β, and we lower bound the noise sensitivity of the OR function. These results imply that solving
the OR of k copies of f , denoted ORk ◦ f , with constant probability has one-way communication
complexity Ω(km log k). For our streaming applications, we further consider an augmented version
of this problem, in which Alice has t independent instances of ORk ◦ f , and Bob would like to solve
one of these t instances i chosen uniformly at random. Bob is also given Alice’s input for the first
i−1 instances. For this we show an Ω(tkm log k) one-way communication lower bound for constant
probability protocols. These results greatly strengthen the results in [14], which could only show
this if ORk ◦ f were replaced with ALLCOPIES k ◦ f , the latter requiring a correct output to all
k instances of f rather than just an OR of the k instances. Note that the output of ORk ◦ f is
only a single bit, whereas the output of ALLCOPIES k ◦ f consists of k bits, making the latter a
significantly easier problem. Our result directly improves the streaming application lower bounds
in [14], leading to the first tight one-way lower bounds for ClosestPair and MatrixProduct. The
details are in Section 6.

Unified Lower Bounds: To illustrate the power of the framework developed, we recover in a
unified way several 1-way lower bounds from the literature, including sparse set disjointness [6, 4, 21]
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and indexing [9] under product distributions, and the gap-Hamming problem under the uniform
distribution [24].

2 Preliminaries

Information Theory. We use the following notions from information theory (see [5] for more
details). Given random variables X,Y and Z on a common probability space, we use H(X) to
denote the binary entropy of X and H(X | Y ) its conditional entropy given Y . The mutual
information between X and Y is then defined as I(X;Y ) = H(X)−H(X | Y ), and the conditional
mutual information given Z is I(X;Y | Z) = H(X | Z) − H(X | (Y,Z)). We will need the data
processing inequality : for any arbitrary functions g, h, I(X;Y ) ≥ I(g(X);h(Y )).

Distributional and Information Complexity. Consider a function f : X ×Y → {0, 1} and a
distribution µ over X × Y. The one-way distributional complexity of f with respect to µ, denoted
D(f)→µ,α, is the smallest communication cost of a one-way deterministic protocol that outputs f(x, y)
on all but an α fraction of inputs weighted according to µ. The one-way distributional complexity of
f , denoted D(f)→α , is the supremum of D(f)→µ,α over all distributions µ. The classic Yao’s Minimax
Theorem [25] shows that randomized and distributional complexity are the same: R(f)→α = D(f)→α .

Motivated by this observation, define the product distribution complexity R(f)
→,[]
α as the supremum

of D(f)→µ×ν,α over all distributions µ for X and ν for Y.
Now we define information complexity. Again we are given a distribution µ over X ×Y. Given a

randomized one-way protocol for computing f , with A(x, r) denoting the message sent by Alice on
input x and private randomness r, the information cost of this protocol is defined as I(A(X,R);X |
Y ), where the pair (X,Y ) is sampled from µ (and R is Alice’s randomness, which is independent
from X,Y ). The information complexity with respect to µ, denoted IC(f)→µ,α, is the smallest
information cost of a randomized one-way protocol computing f(X,Y ) with probability at least
1 − α (with respect to (X,Y ) ∼ µ and the private randomness of Alce and Bob). Finally the
information complexity IC(f)→α is the supremum of IC(f)→µ,α over all distributions µ. Similarly, the

information complexity over product distributions IC(f)
→,[]
α is the supremum of IC(f)→µ×ν,α over all

distributions µ on X and ν on Y. Notice that under a product distribution (X,Y ) ∼ µ × ν the
information cost of a protocol becomes I(A(X,R);X).

We have the following known relationship between information and distributional complexity

(which follows from the entropy span bound and non-negativity of entropy): R(f)
→,[]
α ≥ IC(f)

→,[]
α .

Notation. Given a function f : X × Y → {0, 1} and x ∈ X , we use f(x) : Y → {0, 1} to denote
the function f(x)(y) = f(x, y). We say that f(x) is a row of f (i.e., when f is seen as a matrix
with rows indexed by X and columns indexed by Y). Given a distribution ν over a set Y, we define
the semi-norm ‖.‖ν as ‖v‖ν = EY∼ν [v(Y )] for all v ∈ RY . We also use ‖v‖0 to denote the number
of non-zero entries of v. Finally, given a pseudo-metric space (X , d) and x ∈ X , we use B(x, α) to
denote the set of points in X at distance at most α from x.
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3 Information Complexity and Relaxed Codes

Definition 3.1. Consider a pseudo-metric space (X , d). A subset C is an (α, β)-code w.r.t. a
distribution µ supported on C if for C,C ′ chosen independently from µ

Pr
C,C′

(d(C,C ′) ≤ α) ≤ β.

The following is the main result of this section which gives a lower bound on the information
complexity of communication problems based on (α, β)-codes.

Theorem 3.2. Consider a communication problem f : S × L → {0, 1}. Consider distributions µ
(over S) and ν (over L) and suppose that the rows {f(s)}s∈S form an (α, β)-code with respect to
µ and the distance ‖.‖ν . Then

IC(f)→(µ×ν),α
8
≥ 1

4
log

1

4β
− 1.

The intuition is that if the rows of the communication problem are quite distinct from each
other, a low error protocol allows Bob to recover the identity of the row that Alice’s input is
indexing, leading to a high information cost.

To make this intuition formal, we start by developing a list-decoding variant of Fano’s inequality
where a predictor outputs a prediction set, which might be of independent interest; the proof is
deferred to Appendix B.

Lemma 3.3. Consider a finite set X and an arbitrary set R, and let µ and λ be distributions
over X and R respectively. Also consider a (predictor) function g : X × R → 2X such that for
some β ∈ (0, 1) we have PrX∼µ,R∼λ(X ∈ g(X,R) and µ(g(X,R)) ≤ β) ≥ p. Then I(X; g(X,R)) ≥
p log 1

β − 1.

The next theorem connects this list-decoding version of Fano’s inequality with (α, β)-codes; the
mapping M next can be thought as an approximate decoder.

Theorem 3.4. Consider a finite pseudo-metric space (X , d). Let C ⊆ X be an (α, β)-code with
respect to a distribution µ over C. Consider an arbitrary space R with distribution λ. Consider the
random variables C ∼ µ, R ∼ λ and a mapping M : C × R → X satisfying PrC,R(d(M(C,R), C) ≥
α
2 ) ≤ 1

4 . Then

I(C;M(C,R)) ≥ 1

4
log

1

4β
− 1.

Proof. We employ Lemma 3.3 to the space C × R. Construct the predictor g : C × R → 2C given
by g(c, r) = B

(
M(c, r), α2

)
; notice that g(c, r) only depends on M(c, r). We claim that

Pr
C∼µ,R∼λ

(C ∈ g(C,R) and µ(g(C,R)) ≤ 4β) ≥ 1

2
. (1)

Let E denote the event {C ∈ g(C,R) and µ(g(C,R)) ≤ 4β}, and change the second term to define
the event E ′ = {d(M(C,R), C) ≤ α

2 and µ(B(C,α)) ≤ 4β} (notice that C ∈ g(C,R) is equivalent
to d(M(C,R), C) ≤ α

2 ). We claim that E ′ implies E : if E ′ holds then using its first part and
the triangle inequality we get B(M(C,R), α2 ) ⊆ B(C,α), so its second part gives µ(g(C,R)) =
µ(B(M(C,R), α2 ) ≤ µ(B(C,R)) ≤ 4β, proving the claim. So to prove inequality (1) it suffices to
show Pr(E ′) ≥ 1

2 .
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Directly from the guarantees of M we have Pr(d(M(C,R), C) ≤ α
2 ) ≥ 3

4 . For µ(B(C,α) ≤ 4β,
notice that for a random variable C ′ ∼ µ independent of C we have PrC′(d(c, C ′) ≤ α) = µ(B(c, α))
for all c ∈ C, and since C is an (α, β)-code, β ≥ PrC,C′(d(C,C ′) ≤ α) = EC [µ(B(C,α))] . Then from
Markov’s inequality we get that PrC(µ(B(C,α)) ≥ 4β) ≤ 1

4 . Taking a union bound, E ′ holds with
probability at least 1

2 , thus proving inequality (1).
Then we can apply Lemma B.1 with p = 1

2 and 4β to get that I(C; g(C,R)) ≥ 1
2 log 1

4β − 1.
Since M(C,R) determines g(C,R), the data processing inequality implies that I(C;M(C,R)) ≥
I(C; g(C,R)), thus completing the proof.

Proof of Theorem 3.2: Consider random variables (S,L) ∼ µ×ν and a randomized one-way protocol
for f(S,L) with error probability (with respect to S,L and private randomness) at most α

8 . Let
A(s, rA) be the message that Alice sends on this protocol over input s and her private randomness
rA, and let B(m, `, rB) be the output of Bob when he has input `, private randomness rB and
receives message m from Alice. We want to show I(S;A(S,RA)) ≥ 1

4 log 1
4β − 1.

For that, define M(f(s), rA, rB) : L → {0, 1} by setting M(f(s), rA, rB)(`) = B(A(s, rA), `, rB)
for all s ∈ S and ` ∈ L. Given the guarantees of the protocol, we have

ES∼µ,RA,RB [‖M(f(S), RA, RB)− f(S)‖ν ]

= Pr
S∼µ,L∼ν,RA,RB

(M(f(S), RA, RB)(L) 6= f(S,L)) ≤ α

8
.

By Markov’s inequality, PrS∼µ,RA,RB

(
‖M(f(S), RA, RB)− f(S)‖ν ≥ α

2

)
≤ 1

4 .

Then we can employ Theorem 3.4 with C set to {f(s)}s∈S to obtain that I(f(S);M(f(S), RA, RB)) ≥
1
4 log 1

4β−1. But the random variable S determines the row f(S) and (A(S,RA), RB) determines the

vector M(f(S), RA, RB), so by the data processing inequality we get I(S;A(S,RA), RB) ≥ 1
4 log 1

4β−
1. Finally, since RB is independent from S and RA, we have I(S;A(S,RA), RB) = I(S;A(S,RA)).
This concludes the proof of the theorem.

We show how we can use relaxed codes to recover the lower bounds for k-sparse set disjointness
of Dasgupta et al. [6] in Appendix D, and for the indexing problem of Jayram and Woodruff [9] in
Appendix E.

4 Characterization via Packing Numbers

We now show how the lower bounds from the previous section lead to our main characterization
theorem of the one-way information complexity under product distributions in terms of packing
numbers. Given a pseudo-metric space (X , d), its α-packing number is the size of the largest set
of points in X with pairwise distances at least α; we denote this by P(X , d, α). The base of the
characterization is a new connection between relaxed codes and packing numbers.

Lemma 4.1. Consider a pseudo-metric space (C, d) and an α ∈ (0, 1]. Then C is an
(
α, 1
P(C,d,α)

)
-

code with respect to some distribution µ over C.

Proof. Let C′ ⊆ C be a set of size P(C, d, α) such that distinct points in C′ have distance at least
α. Let µ be the uniform distribution on C′. Then PrC,C′∼µ(d(C,C ′) ≤ α) = PrC,C′∼µ(C = C ′) =

1
|C′| = 1

P(C,d,α) , and hence C is an
(
α, 1
P(C,d,α)

)
-code with respect to µ.
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Theorem 4.2. Consider a communication problem f : S × L → {0, 1} and let ν be a distribution
over L. Let pα,ν denote the α-packing number of the pseudo-metric space ({f(s)}s∈S , ‖.‖ν). Then
for every α ∈ (0, 1],

max
µ

IC(f)→(µ×ν),α
8
≥ 1

4
log

pα,ν
4
− 1 (2)

max
µ

D(f)→(µ×ν),α ≤ log pα,ν + 1, (3)

where the maxµ range over all distributions over S. In particular, letting p∗α denote the maximum
pα,ν over all ν, we have for α ∈ (0, 1

8 ]

Ω(log p∗8α) ≤ R(f)→,[]α ≤ log p∗α + 1. (4)

Proof. Inequality (2) follows directly from Theorem 3.2 and Lemma 4.1.
For inequality (3), let S ′ ⊆ S be a set of size pα,ν such that ‖f(s)− f(s′)‖ν ≥ α for all distinct

s, s′ ∈ S ′. The maximality of S ′ implies that the balls {B(f(s), α)}s∈S′ cover all of {f(s)}s∈S .
Then Alice and Bob, on inputs s and ` respectively, can do the following: Alice uses dlog pα,νe bits
to send Bob the index of a point ψ(s) in S ′ such that ‖f(s) − f(ψ(s))‖ν ≤ α; Bob then outputs
f(ψ(s), `). For any distribution µ, the distributional error of this protocol with respect to µ× ν is
at most α: for any s ∈ S, PrL∼ν(f(ψ(s), L) 6= f(s, L)) = ‖f(ψ(s)) − f(s)‖ν ≤ α. This concludes
the proof of inequality (3).

Inequality (4) follows directly by taking a maximum over ν on inequalities (2) and (3) and using

the bound R(f)
→,[]
α ≥ IC(f)

→,[]
α .

Notice that this characterization implies that Theorem 3.2 is tight up to constants (and up to
constants in the error rate) given the right distributions µ and ν.

4.1 Relationship with VC Dimension

We recall the characterization of distributional complexity for constant error rate α in terms of
VC-Dimension given by [10] and [2]. The VC-dimension of a subset C ⊆ {0, 1}n is the largest set
of indices I ⊆ [n] such that the projection onto I given by {(xi)i∈I : x ∈ C} equals the whole of
{0, 1}|I|.

Theorem 4.3 ([10, 2]). Consider a communication problem f : S × L → {0, 1} and α ∈ (0, 1
4 ].

Then, if V C denotes the VC-dimension of the rows {f(s)}s∈S ,

(1−H(α))V C ≤ R(f)→,[]α ≤ O
(
V C · 1

α
log

1

α

)
. (5)

Notice that, for constant error α, this characterizes the distributional complexity up to constant
factors. Known bounds on the relationship between VC-dimension and packing numbers allow us
to directly recover this characterization from Theorem 4.2. First, we need the dual of packing
numbers: Given a pseudo-metric space (X , d), its α-covering number is the smallest number of
balls B(x, α) of radius α needed to cover X ; we denote this by N (X , d, α). It is well-known that
packing and covering numbers are closely related: for all α > 0,

N (X , d, α) ≤ P(X , d, α) ≤ N (X , d, α/2). (6)

We have the following relationships between VC-dimension and packing/covering numbers (for
completeness we provide a proof of the first one in the appendix).
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Lemma 4.4. Let C be a subset of {0, 1}n and let V C denote its VC-dimension. Then for every
α ∈ (0, 1

2 ],
max
ν

logN (C, ‖.‖ν , α) ≥ (1−H(α))V C,

where the maximum is taken over all distributions on [n] and H(α) = α log 1
α + (1 − α) log 1

1−α
denotes the binary entropy.

Lemma 4.5 ([7, 8]). Let C be a subset of {0, 1}n and let V C be its VC-dimension. Then for every
distribution ν over [n] and α ∈ (0, 1], we have

logP(C, ‖.‖ν , α) ≤ V C · log

(
5

α
log

10

α

)
.

Using these two lemmas and inequality (6), we get that for α ∈ (0, 1
4 ]

(1−H(α)) · V C ≤ max
ν

logP(C, ‖.‖ν , α) ≤ V C · log

(
5

α
log

10

α

)
.

Using these bounds on Theorem 4.2 recovers the VC-dimension characterization from Theorem 4.3;
in fact, it gives the improved dependence O(log 1

ε ) on ε.

Corollary 4.6. Consider a communication problem f : S × L → {0, 1} and α ∈ (0, 1
16 ]. Then,

letting V C denote the VC-dimension of the rows {f(s)}s∈S ,

(1−H(8α)) · Ω(V C) ≤ R(f)→,[]α ≤ O
(
V C · log

1

α

)
. (7)

In Appendix F we consider the greater-than function to show the difference between the char-
acterizations in terms of VC-dimension and packing numbers.

5 Composition of Communication Problems and Noise Sensitivity

In this section we are interested in compositions of communication problems. More precisely, given a
communication problem f : X ×Y → {0, 1} and a composition function g : {0, 1}k → {0, 1}, we use
g�f to denote the composition g(f(x1, y1), . . . , f(xk, yk)) (so it is a function mapping (X ×Y)k →
{0, 1}). We will used relaxed codes to understand how the composed communication problem
g � f amplifies the hardness of the base problem f . We will see that the hardness amplification is
governed by a generalization of the noise sensitivity [19] of g.

Definition 5.1 ((t, γ)-correlation). Given γ ∈ [0, 1], we say that two random variables Z,Z ′ are
γ-correlated if Pr(Z = Z ′) ≤ γ. Given t ∈ [k], we say that two random vectors (Z1, . . . , Zk) and
(Z ′1, . . . , Z

′
k) are (t, γ)-correlated if there is a subset I ⊆ [k] of size t such that for all i ∈ I, Zi and

Z ′i are γ-correlated.

Definition 5.2 ((t, γ)-Noise sensitivity). Consider a function g : {0, 1}k → {0, 1} and fix t ∈ [k]
and γ ∈ [0, 1]. Let D be a family of distributions over {0, 1}k such that there are (t, γ)-correlated
random vectors Z,Z ′ with distributions in D. Then the (t, γ)-noise sensitivity of g with respect to
D is given by

NStγ,D(g) , min
Z,Z′

Pr(g(Z) 6= g(Z ′)),

where the minimum is taken over all (t, γ)-correlated random vectors Z,Z ′ with distributions in D.
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Now we try to give some intuition why noise sensitivity captures how a composition function
amplifies the relaxed code of a base function. Consider a communication problem f : X×Y → {0, 1},
with a “hard” distribution µ × ν, and a composition function g : {0, 1}k → {0, 1}. To understand
the information complexity of g � f under (µ × ν)k, we want to check if it forms an (α, β)-code,
which informally means that for “typical” x,x′ ∈ X k, PrY ∼νk(g � f(x,Y ) 6= g � f(x′,Y )) ≥ α.
Expanding the left-hand side shows that it is related to the (t, γ)-sensitivity of g, where the noise
level γ is given by PrY∼ν(f(x, Y ) = f(x′, Y )), again for “typical” x, x′ ∈ X ; this noise level is
in turn related to how good a relaxed code the rows {f(x)}x∈X are with respect to µ and ‖.‖ν .
Formally:

Theorem 5.3. Consider a communication problem f : X×Y → {0, 1}. Let µ and ν be distributions
over X and Y, respectively, such that {f(x)}x∈X forms an (α, β)-code with respect to µ and the
distance ‖.‖ν . Let D be the set of distributions of the random vectors (f(x1, Y1), . . . , f(xk, Yk))
with x1, . . . , xk ∈ X , where Y1, . . . , Yk are independently sampled from ν. Consider a function
g : {0, 1}k → {0, 1}. Then for w ∈ (0, 1− β], the rows {g � f(x)}x∈Xk form an (αw, βw)-code with
respect to µk and the distance ‖.‖νk , where

αw < NS
k(1−β−w)
1−α,D (g)

βw =

(
ew

(1 + w/β)β+w

)k
≤
(
eβ

w

)wk
.

Proof. It suffices to show that for a 1−βw fraction of the independent random vectors X,X ′ ∼ µk,
we have PrY ∼νk (g � f(X,Y ) 6= g � f(X ′,Y )) ≥ NS

k(1−β−w)
1−α,D (g).

Let Ω ⊆ X 2 be the set of pairs (x, x′) such that ‖f(x)− f(x′)‖ν > α, namely PrY∼ν
(
f(x, Y ) 6=

f(x′, Y )
)
> α. For two vectors x,x′ in X k, let #(x,x′) denote the number of coordinates i such

that (xi, x
′
i) belongs to Ω.

Fix any two x,x′ in X k. For Y = (Y1, . . . , Yk) sampled from νk, define Zi = f(xi, Yi) and
Z ′i = f(x′i, Yi). Then by definition of Ω, x and x′, we have that the vectors Z = (Z1, . . . , Zk) and
Z ′ = (Z ′1, . . . , Z

′
k) are (#(x,x′), 1 − α)-correlated with distributions in D. Then by the definition

of (t, γ)-noise stability,

Pr
Y

(
g � f(x,Y ) 6= g � f(x′,Y )

)
= Pr

Z

(
g(Z) 6= g(Z ′)

)
≥ NS

#(x,x′)
1−α,D (g).

To show that Pr
(
#(X,X ′) ≥ k(1−β−w)

)
is at least 1−βw, we observe the following. Since f

forms an (α, β)-code, we know that Pr
(
(X,X ′) ∈ Ω

)
> 1−β, and thus E[#(X,X ′)] ≥ k(1−β). By

a multiplicative Chernoff bound (Appendix A), we have that the event k−#(X,X ′) > (1+w/β)kβ
happens with probability at most ( ew

(1+w/β)β+w
)k = βw, and hence with probability at least 1− βw

we have #(X,X ′) ≥ k(1− β − w).
To conclude the proof, we show that βw ≤ (eβ/w)wk. First, by reducing the denominator we

have βw ≤
(

e
1+w/β

)wk
. But this quantity is at most

(
eβ
w

)wk
, which can be shown using concavity

of the map β 7→ e
1+w/β , and the fact that its derivative at 0 is e

w . This concludes the proof.

Together with the lower bound of Theorem 3.2 based on relaxed codes, this amplification theo-
rem gives a powerful tool for constructing lower bounds; this is used next for streaming applications.
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6 Streaming Applications

We have the following tight bounds for streaming.

6.0.1 Approximate Closest Pair

This problem is described as follows: Alice has n vectors v1,v2, . . . ,vn ∈ [±M ]d, Bob has n vectors
u1,u2, . . . ,un ∈ [±M ]d and a threshold value θ, and his goal is to distinguish (with prob. 1 − δ)
the cases:

1. For all i ∈ [n] it holds that ‖ui − vi‖pp ≥ (1 + ε)θ.

2. There exists i such that ‖ui − vi‖pp ≤ (1− ε)θ.

Let `p(n, d,M, ε, θ) denote this problem.

Theorem 6.1. Assume n is at least a sufficiently large constant and ε is at most a sufficiently small
constant. Assume there is a constant γ > 0 such that d1−γ ≥ 1

ε2
log n

δ . Then R→δ (`p(n, d,M, ε, θ)) ≥
Ω
(
n
ε2

log n
δ (log d+ logM))

)
for p ∈ {1, 2}.

6.0.2 Approximating Largest Entry in Matrix Product by Sketching.

Given a matrix A, let Ai denote its i-th row and use Aj to denote its j-th column.

Theorem 6.2. Assume n is a sufficiently large constant and ε is at most a sufficiently small
constant. Assume there is a constant γ > 0 such that n1−γ ≥ 1

ε2
log n

δ . Let S be an n × d matrix
that has an estimation procedure fθ satisfying: for every pair of matrices A,B ∈ [±M ]n×n, with
probability at least 1− δ

1. fθ(AS,B) = 1 if (AB)i,j ≥ (1 + ε)θ for some i, j ∈ [n].

2. fθ(AS,B) = 1 if (AB)i,j ≤ θ for all i, j ∈ [n].

Then the number of bits to specify AS is at least Ω(n 1
ε2

log n
δ (log n+ logM)).
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Appendix

A Probabilistic Inequalities

Theorem A.1 (Theorem 4.1 of [15]). Let X1, X2, . . . , Xn be independent random variables over
{0, 1} and let µ = E[

∑
iXi]. Then for any δ > 0,

Pr

(∑
i

Xi > (1 + δ)µ

)
<

(
eδ

(1 + δ)1+δ

)µ
≤
(

e

1 + δ

)(1+δ)µ

.

Theorem A.2 (Proposition 7.3.2 of [13]). Let X1, X2, . . . , Xn be independent random variables
uniformly distributed in {0, 1} and let X =

∑n
i=1Xi. Then for any integer t ∈ [0, n8 ],

Pr
(
X ≥

⌊n
2

⌋
+ t
)
≥ 1

15
e−16t2/n.

B List-Decoding Fano’s Inequality

We start with the following more general but weaker list-decoding Fano’s inequality.

Lemma B.1. Consider finite sets X ,Y and a (predictor) function g : X → 2Y . Let (X,Y ) be
a random variable over X × Y with arbitrary distribution. If for some k ≤ |X | we have Pr(Y ∈
g(X) and |g(X)| ≤ k) ≥ p, then H(Y | g(X)) ≤ p log k + (1− p) log |Y|+ 1.

Proof. Let E be the event {Y ∈ g(X) and |g(X)| ≤ k}. Consider a set U ⊆ Y such that Pr(g(X) =
U, E) > 0; this implies that U has size at most k and that the random variable Y conditioned on
{g(X) = U, E} is supported over U , and hence H(Y | g(X) = U, E) ≤ log k.

Then letting 1E denote the indicator random variable of E , we have

H(Y | g(X),1E)

=
∑
U⊆X

(
H(Y | g(X) = U, E) Pr(g(X) = U, E) +H(Y | g(X) = U, Ē) Pr(g(X) = U, Ē)

)
≤ Pr(E) log k + (1− Pr(E)) log |Y| ≤ p log k + (1− p) log |Y|.

The result then follows by employing the chain rule and non-negativity of entropy: H(Y | g(X)) ≤
H(Y,1E | g(X)) ≤ H(Y | g(X),1E) +H(1E | g(X)) ≤ H(Y | g(X),1E) + 1.

Proof of Lemma 3.3: Since Fano’s inequality is tighter under the uniform distribution, we modify
the space (X , µ) into a space (X̃ , µ̃) where µ̃ is a uniform distribution, and then apply the above
lemma to the latter.

More precisely, assume that µ(x) is rational for all x ∈ X (otherwise one can approximate µ
by a rational probability distribution within total variation distance ε > 0 and then take the limit
as ε → 0 and the following proof will go through unchanged). We have µ(x) = p(x)

q for all x ∈ X
with p(x) and q integers (notice the common q). Then construct (X̃, µ̃) as follows: for each x ∈ X ,
add to X̃ p(x) distinct copies x1, x2, . . . , xp(x) of x, and set µ̃(xi) = 1

q . It is convenient to have the
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map φ : X̃ → X that maps each element in X̃ to its source in X defined by φ(xi) = x. Notice that
for every subset E ⊆ X , µ̃(φ−1(E)) = µ(E) and hence φ(X̃) ∼ µ for X̃ ∼ µ̃. In addition, define

the predictor g̃ : X̃ × R → 2X̃ by extending g in the natural way: g̃(x̃, r) = φ−1(g(φ(x̃), r)) for all
x̃ ∈ X̃ .

Now we want to apply Lemma B.1 to X̃ ×R, µ̃, and g̃. For that, we claim that

Pr
X̃∼µ̃
R∼λ

(
X̃ ∈ g̃(X̃, R) and |g̃(X̃, R)| ≤ β|X̃ |

)
≥ p. (8)

To see this, using the above observation about our construction we have that the event {X̃ ∈
g̃(X̃, R) and µ̃(g̃(X̃), R) ≤ β} is the same as the event {φ(X̃) ∈ g(φ(X̃), R) and µ(g(φ(X̃), R)) ≤
β}. Since φ(X̃) ∼ µ, we have

Pr
X̃∼µ̃
R∼λ

(
X̃ ∈ g̃(X̃, R) and µ̃(g̃(X̃), R) ≤ β

)
= Pr

X∼µ
R∼λ

(
X ∈ g(X,R) and µ(g(X,R)) ≤ β

)
≥ p,

where the last inequality follows by the assumption on g. To recover (8) from this inequality
simply notice that, since µ̃ is the uniform distribution over X̃ , µ̃(g̃(X̃, R)) ≤ β is equivalent to
|g̃(X̃, R)| ≤ β|X̃ |.

Then from Lemma B.1 we get that H(X̃ | g̃(X̃, R)) ≤ p log β|X̃ |+ (1−p) log |X̃ |+ 1 = log |X̃ |−
p log 1

β+1. SinceH(X̃) = log |X̃ |, we get that I(X̃; g̃(X̃, R)) = H(X̃)−H(X̃ | g̃(X̃, R)) ≥ p log 1
β−1.

To conclude the proof, we claim that I(X; g(X,R)) ≥ I(X̃; g̃(X̃, R)). For that, define the random
variable (X, I) as follows: X is distributed according to µ, and I is uniform in {1, . . . , p(X)}. So
(X, I) can be thought of as a random element in X̃ ; more precisely, the function ψ : X × N → X̃
which maps ψ(x, i) into the i-th copy of x in X̃ satisfies ψ(X, I) ∼ µ̃. Then

I(X̃; g̃(X̃, R)) = I
(
ψ(X, I);φ−1g(φ(ψ(X, I)), R)

)
= I

(
ψ(X, I);φ−1(g(X,R))

)
≤ I(X, I; g(X,R)),

where the last inequality follows from the data processing inequality. But by the chain rule
for mutual information and by the independence of I and g(X,R) conditioned on X, we get
I(X, I; g(X,R)) = I(X; g(X,R)) + I(I; g(X,R) | X) = I(X; g(X,R)). This concludes the proof
of the lemma.

C Proof of Lemma 4.4

Let I ⊆ [n] be a subset of size VC such that the projection {(xi)i∈I : x ∈ C} equals {0, 1}V C .
Let ν be the uniform distribution over I. Then (after we identify points with distance 0) the
space (C, ‖.‖ν) is isometric to ({0, 1}V C , ‖.‖uni), where ‖x‖uni = 1

V C

∑
i∈[V C] xi is the normalized

Hamming distance; thus, their α-covering numbers are the same. One then just needs to lower
bound the α-covering number of ({0, 1}V C , ‖.‖uni) by 2(1−H(α))V C ; this bounds follows from the
fact that every ball in this space with radius α has at most 2V C·H(α) points and the whole space
has 2V C points, hence at least 2(1−H(α))V C balls are needed to cover the whole space.
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D Example: Sparse Set Disjointness

In this problem, the inputs for Alice and Bob are k-subsets of [n] and we have the disjointness

function DISJ :
([n]
k

)
×
([n]
k

)
→ {0, 1} given by DISJ(x, y) = 1 iff x and y are disjoint sets.

Dasgupta et al. exhibited the tight lower bound D→cst(DISJ) = Ω(k log k), for k ≤
√
n and a small

enough constant cst (they also provide a matching upper bound).
To recover this bound, we start with the same construction used by Dasgupta et al. (see Section

3.2 of [6] for their existence). Let X and Y be subsets of
([n]
k

)
with the following properties: 1)

given two different x 6= x′ ∈ X , the rows DISJ(x) and DISJ(x′) are distinct; 2) |X | ≥ 2a·k log k

for a constant a independent of k; 3) |Y| ≤ b · k log k for a constant b independent of k. It will
be convenient to define DISJ ′ as the restriction of DISJ to the inputs X × Y; it suffices to show
D→cst(DISJ

′) = Ω(k log k) for some constant cst.
For that, consider the uniform distribution µ×ν over X×Y, so we have the distance ‖DISJ ′(x)−

DISJ ′(x′)‖ν = ‖DISJ ′(x) − DISJ ′(x′)‖0/|Y|. Now consider a row DISJ ′(x); since the rows of
DISJ ′ belong to {0, 1}|Y|, standard bounds give that there are at most 2|Y|·H(cst) rows DISJ ′(x′)
with ‖DISJ ′(x)−DISJ ′(x′)‖ν ≤ cst, where H(α) = α log 1

α+(1−α) log 1
1−α denotes the binary en-

tropy. Thus, for every x ∈ X we have PrX′∼µ(‖DISJ ′(x)−DISJ ′(X ′)‖ν ≤ cst) ≤ 2|Y|·H(cst)/|X | ≤
2(b·H(cst)−a)k log k; this implies PrX,X′∼µ(‖DISJ ′(X)−DISJ ′(X ′)‖ν ≤ cst) ≤ 2(b·H(cst)−a)k log k.

Setting cst a small enough constant we can make b·H(cst) ≤ a/2 so that PrX,X′∼µ(‖DISJ ′(X)−
DISJ ′(X ′)‖ν ≤ cst) ≤ 2−(a/2)k log k, and thus the rows of DISJ ′ form a (cst, 2−(a/2)k log k)-code.
Theorem 3.2 then gives the desired lower bound D(DISJ ′)→cst/8 ≥ IC(DISJ ′)→(µ×ν),cst/8 ≥ Ω(k log k).

E Example: Indexing

We consider the indexing problem indk,m, whose instance is given as follows: Alice has numbers
s1, . . . , sm ∈ [k] and Bob has numbers `1, . . . `m and an index j ∈ [m]; the function indk,m :
[k]m × ([k]m × [m]) → {0, 1} takes value 1 iff the input satisfies sj = `j ; the goal is to compute
indk,m over Alice’s and Bob’s inputs. To simplify the notation, we use s = (s1, . . . , sm) and
` = (`1, . . . , `m).

We recover the tight lower bound on the indexing problem obtained in [9] using relaxed codes.

Theorem E.1. Consider the indexing problem indk,m and let µ be the uniform distribution over Al-
ice’s inputs and let ν be the uniform distribution over Bob’s inputs. Then the rows {indk,m(s)}s∈[k]m

of the communication matrix form a
(

1
k , (

k
2e)
−m/2)-code with respect to µ and ‖.‖ν . In particular,

IC(indk,m)
→,[]
1
k

≥ Ω(m log k).

Proof. To simplify the notation, we use ind instead of indk,m. To prove that the rows {ind(s)}s∈[k]m

form a
(

1
k , (

k
e )−m/2

)
-code, start by taking any inputs s, s′ ∈ [k]m with at least m/2 differing indices

si 6= s′i. We claim the lower bound ‖ind(s)− ind(s′)‖ν ≥ 1
k on the distance between these rows. To

see that, let ∆ ⊆ [m] be the set of indices i where si 6= s′i. Then

‖ind(s)− ind(s′)‖ν = Pr
(L,J)∼ν

(
ind(s, (L, J)) 6= ind(s′, (L, J))

)
≥ EJ

[
Pr(ind(s, (L, J)) 6= ind(s′, (L, J)) | J ∈ ∆)

]
Pr(J ∈ ∆). (9)
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But for every j ∈ ∆, it is easy to check that

Pr(ind(s, (L, j)) 6= ind(s′, (L, j)) =
2

k
.

Taking the average over all j ∈ ∆ and using the fact that Pr(J ∈ ∆) = 1/2, equation (9) then gives
that ‖ind(s)− ind(s′)‖ν ≥ 1

k .
Now consider independent S,S′ uniformly distributed in [k]m. We claim that

Pr
(

[# indices i such that Si 6= S′i] ≤
m

2

)
≤
(

2e

k

)m/2
.

Due to the product structure in [k]m, notice that the number of indices i such that Si is equal to
S′i is a binomially distributed random variable with m trials and success probability 1

k ; the claim

then follows from applying the multiplicative Chernoff bound from Appendix A using 1 + δ = k
2 .

Putting these claims together gives that {ind(s)}s∈[k]m forms a
(

1
k , (

k
2e)
−m/2)-code. The lower

bound on IC(ind)
→,[]
1
k

then follows from Theorem 3.2, thus concluding the proof.

F Example: Greater-than Function

The greater-than function GT : [n] × [n] → {0, 1} is given by GT (x, y) = 1 iff x > y. It is easy
to see that the VC-dimension of the rows of GT is equal to 1, so Theorem 4.3 gives the bounds

Ω(1) ≤ R
→,[]
α (GT ) ≤ O( 1

α log 1
α). On the other hand, the characterization based on packing numbers

gives the right bound R
→,[]
α (GT ) = Θ(log 1

α) for α ∈ [ 1
n ,

1
3 ].

To see this, consider a distribution ν over [n]. Notice that the rows GT (x) and GT (x′) (for
x < x′) have distance ‖GT (x) − GT (x′)‖ν = ν((x, x′]). Then the α-packing number pα,ν of the
rows of GT is at most O( 1

α): given rows GT (x1), . . . , GT (xk) (with x1 < . . . < xk) with pairwise

distances at least α, we have ν((xi, xi+1]) ≥ α for all i and
∑k−1

i=1 ν((xi, xi+1]) ≤ 1, thus giving
k ≤ 1

α + 1. Moreover, for ν being the uniform distribution we have α-packing number pα,ν = Ω( 1
α)

(for α ≥ 1
n): just notice that the rows GT (1), GT (dnαe + 1), GT (2dnαe + 1), . . . have pairwise

distances at least α. Theorem 4.2 then gives the desired bound R
→,[]
α (GT ) = Θ(log 1

α).

G Example: Gap-Hamming Problem

We now show how the noise sensitivity approach recovers in a natural way the result from [23] that
the Gap Hamming Problem is hard even with respect to the uniform distribution.

In this problem we have the (partial) function GH ′ : {0, 1}n × {0, 1}n → {0, 1} given by

GH ′(x, y) =

{
1, if ‖x− y‖0 ≥ n

2 +
√
n

0, if ‖x− y‖0 ≤ n
2 −
√
n

Known lower bounds show that for a small constant error cst, D(GH ′)→cst = Ω(n).
Consider the extension GH of the partial function GH ′ given by GH(x, y) = 1 if ‖x− y‖0 > n

2
and GH(x, y) = 0 if ‖x − y‖0 ≤ n

2 . Let µ̄ be the uniform distribution over {0, 1}n. It is easy to

see that a lower bound D(GH)
→,[]
µ̄2, 1

10

= Ω(n) under the uniform distributon implies the above lower
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bound D(GH ′)→cst = Ω(n), since an input (X,Y ) sampled uniformly from {0, 1}n×{0, 1}n has only
constant probability of having n

2 −
√
n < ‖X − Y ‖0 ≤ n

2 +
√
n (see Section 4.4 of [23] for more

details).
Indeed, Woodruff showed this lower bound on GH under the uniform distribution, which we

now recover via noise sensitivity. For that, notice that GH can be expressed as the composition
MAJ � NEQ of the not-equal function NEQ : {0, 1} × {0, 1} → {0, 1} given by NEQ(x, y) = 1
iff x 6= y, and the majority function MAJ : {0, 1}n → {0, 1} given by MAJ(z1, . . . , zn) = 1 iff∑n

i=1 zi >
n
2 .

To lower bound GH, first notice that the rows of the function NEQ form a (1
3 ,

1
2)-code with

respect to the uniform distribution. Then employing Theorems 5.3 (with w = 1/6) and 3.2 we get

IC(MAJ ◦ NEQ)→µ̄2,αw/8 ≥ Ω(n), where αw = NS
n/3
2
3
,µ̄

(MAJ). The following lemma then gives the

desired lower bound; the proof is similar to the lower bound for the regular noise sensitivity of the
majority function (see [19]).

Lemma G.1. For n ≥ 2252 we have NS
n/3
2
3
,µ̄

(MAJ) ≥ e−150.

Proof. Let (Z1, . . . , Zn) and (Z ′1, . . . , Z
′
n) be two (n3 ,

2
3)-correlated vectors, each distributed uni-

formly in {0, 1}n; it suffices to show that Pr(MAJ(Z1, . . . , Zn) = 0 ∧MAJ(Z ′1, . . . , Z
′
n) = 1) =

Pr(
∑n

i=1 Zi ≤
n
2 ∧

∑n
i=1 Z

′
i >

n
2 ) is at least 1

1000 .
Let I be an (n/3)-subset of [n] such that for all i ∈ I, Zi and Z ′i are 2

3 -correlated. We first
control the indices outside I: let Eout be the event that both sums

∑
i/∈I Zi and

∑
i/∈I Z

′
i lie in

[n3 −
√
n, n3 +

√
n]. Using Chebychev’s inequality and a union bound gives that Eout holds with

probability at least 1− 1
3 .

To control the indices in I, consider the random set S = {i ∈ I : Zi 6= Z ′i}. Given a subset

s ⊆ I, let Es be the event that
∑

i∈I\s Zi ∈
|I−s|

2 ±
√
n and

∑
i∈s(1− Zi) ≥

|s|
2 + 3

√
n. Notice that

whenever the events Eout and ES hold we have:∑
i∈[n]

Zi =
∑
i/∈I

Zi +
∑
i∈I\S

Zi +
∑
i∈S

Zi ≤
n

3
+
|I − S|

2
+
|S|
2
−
√
n =

n

2
−
√
n, and

∑
i∈[n]

Z ′i =
∑
i/∈I

Z ′i +
∑
i∈I\S

Zi +
∑
i∈S

(1− Zi) ≥
n

2
+
√
n.

So it suffices to show that Pr(Eout ∧ ES) ≥ 1
1000 .

For that, let s ⊆ I be a subset of size at least n
9 −
√
n; we lower bound the probability

Pr(Es | S = s). First, using the fact that Zi and Z ′i are (uniform) 0/1 random variables, we can
determine the joint probability of (Zi, Z

′
i); more precisely, Pr(Zi = Z ′i = 0) = Pr(Zi = Z ′i = 1) =

Pr(Zi = Z ′i)/2, and Pr(Zi = 0 ∧ Z ′i = 1) = Pr(Zi = 1 ∧ Z ′i = 0) = Pr(Zi 6= Z ′i)/2. These allow us
to see that Zi is independent of the event Zi 6= Z ′i: we compute Pr(Zi = 0 | Zi 6= Z ′i) = Pr(Zi =
0 ∧ Z ′i = 1)/Pr(Zi 6= Z ′i) = 1

2 = Pr(Zi = 0), and similarly Pr(Zi = 1 | Zi 6= Z ′i) = Pr(Zi = 1).
Employing this independence over all i ∈ I, we see that (Zi)i∈I is independent from the event
S = s, and hence Pr(Es | S = s) = Pr(Es). To bound the latter, from Chebychev’s inequality we

have Pr
(∑

i∈I\s Zi ∈
|I−s|

2 ±
√
n
)
≥ 1− 1

12 . Also, using the fact that the Zi’s are independent and
uniform over {0, 1}, standard anti-concentration bounds (see Theorem A.2 in the Appendix) give

Pr
(∑

i∈s(1 − Zi) ≥
|s|
2 + 3

√
n
)
≥ e−147 (this also uses the fact 3

√
n ≤ |s|/8, which follows from
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our assumptions on n and |s|). Finally, using independence of (Zi)i∈I\s and (Zi)i∈s, we have that
Pr(Es | S = s) = Pr(Es) ≥ e−148.

Now we can proceed with lower bounding Pr(Eout∧ES). By independence of (Zi)i/∈I and (Zi)i∈I
we have Pr(Eout ∧ ES) = Pr(Eout) · Pr(ES). Also

Pr(ES) = ES [Pr(Es | S = s)] ≥ ES
[
Pr(Es | S = s)

∣∣∣|S| ≥ n

9
−
√
n
]

Pr
(
|S| ≥ n

9
−
√
n
)

≥ e−148 ·
(

1− 1

12

)
≥ e−149,

where for the second inequality we use the bound from the previous paragraph on the first term and
Chebychev’s inequality on the second term. Since Pr(Eout) ≥ 2

3 , it follows that Pr(Eout∧ES) ≥ e−150.
This concludes the proof.

H Proofs for Streaming Applications

H.1 (t, γ)-Noise Sensitivity of OR

Let ORk : {0, 1}k → {0, 1} denote the k-ary OR function, that is ORk(z1, . . . , zk) = 0 iff zi = 0 for
all i. We also lower bound the (t, γ)-noise sensitivity of ORk, but for that we need to restrict the
distributions allowed.

Lemma H.1. Let λ be the distribution over {0, 1} that puts mass 1/k on 1. Then for α ∈ [0, 2
k ],

NSt1−α,{λk}(OR
k) ≥

(
1− 1

k

)k [
1−

(
1− α

2

)t]
.

Proof. To simplify the notation we drop the superscript on ORk. Consider two (t, 1−α)-correlated
random vectors Z and Z ′ over {0, 1}k with distribution λk. (Indeed, for α ≤ 2

k there are 1 − α
correlated random variables Z, Z ′ with distributions equal to λ, for instance by defining Z ′ as
follows: when Z = 1, set Z ′ = 0; when Z = 0, with probability 1

k−1 set Z ′ = 1, and otherwise set
Z ′ = 0.) Let I ⊆ [k] be a set of size t such that Pr(Zi 6= Z ′i) ≥ α for all i ∈ I. Conditioning on
Z = 0 we have

Pr
(
OR(Z) 6= OR(Z ′) | Z = 0

)
= Pr

(
k∨
i=1

Z ′i | Z = 0

)
= 1−

k∏
i=1

Pr(Z ′i = Zi | Zi = 0)

≥ 1−
∏
i∈I

Pr(Zi = Z ′i = 0)

Pr(Zi = 0)
, (10)

where the second equation uses the k-fold product structure of the vectors Z and Z ′.
To estimate the right-hand side, notice that

Pr(Zi = Z ′i = 0) = 1− 1

2

[
Pr(Zi = 1) + Pr(Z ′i = 1) + Pr(Zi 6= Z ′i)

]
.

So for i ∈ I this implies Pr(Zi = Z ′i = 0) ≤ 1 − 1
k −

α
2 . Replacing this bound on (11) and using

Pr(Zi = 0) = 1− 1
k we get

Pr(OR(Z) 6= OR(Z ′) | Z = 0) ≥ 1−

(
1− α

2(1− 1
k )

)t
≥ 1−

(
1− α

2

)t
.
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Since Pr(OR(Z) 6= OR(Z ′)) ≥ Pr(OR(Z) 6= OR(Z ′) | Z = 0) Pr(Z = 0) and Pr(Z = 0) =
(
1− 1

k

)k
,

the result follows.

H.2 Augmented Indexing of OR of Indexing

We consider the problem IOIt,nk,m which consists of taking an augmented indexing over ORn� indk,m.
To simplify the notation, let X = ([k]m)n and Y = ([k]m× [m])n denote the set of Alice’s and Bob’s
inputs in the problem ORn � indk,m. The function IOIt,nk,m is defined as follows: Alice has as input
s1, . . . , st ∈ X , and Bob has as input an index i ∈ [t], part of Alice’s input s1, . . . , si−1, and also an
` ∈ Y; then IOIt,nk,m((s1, . . . st), (i, s1, . . . , si−1, `)) = ORn � indk,m(si, `).

Lemma H.2. For n ≥ 8e, m ≥ 2 and 0 < δ ≤ 1,

IC(IOIt,nn/δ,m)
→,[]
δ

400

≥ Ω(tnm log(n/δ)).

Proof. Let k = n/δ. First we get IC(ORn� indk,m)
→,[]
δ

400

≥ Ω(nm log k) by putting together our lower

bound for indexing from Theorem E.1, the connection between codes and (t, γ)-noise sensitivity
from Theorem 5.3, and our lower bound on the latter for ORn from Lemma I.1.

To see this, let µ be the uniform distribution over [k]m and ν the uniform distribution over
[k]m × [m]; from Theorem E.1 we have that the rows {indk,m(u)}u∈[k]m form a ( 1

k , (
k
2e)
−m/2)-code

with respect to µ and ‖.‖ν ; let β =
(
k
2e

)−m/2
. Moreover, let λ be the distribution of indk,m(u, V )

for u ∈ [k]m and V ∼ ν, and notice that this distribution is indeed independent of u. Since our
assumption on k and m implies 1

2 ≤ 1 − β, we can use Theorem 5.3 with w = 1
2 to get that

the rows {ORn � indk,m(u)}u∈([k]m)n form a (α1/2, β1/2)-code w.r.t. µn and ‖.‖νn , with α1/2 =

NS
n( 1

2
−β)

1− 1
k
,{λn}(OR

n) and β1/2 = (2eβ)n/2. Now notice that λ puts mass 1
k on the value 1; Lemma I.1

then gives

α1/2 ≥ NS
n
4

1− 1
k
,{λn}(OR

n) ≥
(

1− 1

n

)n [
1−

(
1− 1

2k

)n/4]

≥
(

1− 1

n

)n [
1− e−

δ
8

]
≥
(

1− 1

n

)n [
1−

(
1− δ

16

)]
≥ δ

50
,

where the first inequality uses the fact 1
2 − β ≥

1
4 (from our assumption on n and m), the third

uses the bound 1 − p ≤ e−p, which holds for all p, the fourth uses e−p ≤ 1 − p/2 that holds for
0 ≤ p ≤ 1, and the last uses n ≥ 4e. Then using Theorem 3.2 and our bound on α1/2 and β1/2, we

get IC(ORn � indk,m)
→,[]
δ

400

≥ Ω (nm log k), and the claim follows.

Then standard direct sum arguments for information complexity, we get IC(IOIt,nk,m)
→,[]
δ

400

≥ t ·

IC(ORn � indk,m)
→,[]
δ

400

= Ω(tnm log k) (see Section B.1 of [14]). This concludes the proof.

H.3 Proof of Theorem 6.1

We use the following reduction from [14]. As in Section I.2 , let X = ([k]m)n and Y = ([k]m× [m])n

denote the set of Alice’s and Bob’s inputs in the problem ORn � indk,m. Let Alice have as input
s1, . . . , st ∈ X , and Bob have as input an index i ∈ [t], part of Alice’s input s1, . . . , si−1, and also
an ` ∈ Y. For s ∈ X and ` ∈ Y we denote their j-th components as sj and `j respectively.
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Theorem H.3 ([14]). Let k = n/δ and m = 1/4ε2. There exist two encodings of (s1, . . . , st) and
(i, s1, . . . , si−1, `) based on shared randomness into n vectors v1,v2, . . . ,vn ∈ [±M ]d and n vectors
u1, u2, . . ., un ∈ [±M ]d respectively such that the first encoding has t = c log d and the second
encoding has t = c logM for some constant c > 0, and both encodings satisfy for every j ∈ [n]:

1. If indk,m(sji , `
j) = 0, then with probability 1−δ/n we have ||uj−vj ||pp ≥ θi(1+ε) for all p > 0.

2. If indk,m(sji , `
j) = 1 then with probability at least 1− δ/n we have ||uj − vj ||pp ≤ θi(1− ε) for

all p > 0,

where θi are functions of i, d, ε, δ and n defined by the encodings.

Using the encodings above the parties can solve IOIc log d,n
n/δ,1/4ε2

and IOIc logM,n
n/δ,1/4ε2

with success proba-

bility 1− δ by constructing vectors u1, . . . ,un and v1, . . . ,vn and outputting 1 if there exists a pair
of such vectors (uj ,vj) such that ||uj − vj ||pp ≤ θi(1 − ε) and 0 otherwise. This gives a reduction
from the augmented OR-indexing problem to the closest pair problem, showing that:

R→δ (`p(n, d,M, ε)) ≥ max
(
R→δ

(
IOIc log d,n

n/δ,1/4ε2

)
, R→δ

(
IOIc logM,n

n/δ,1/4ε2

))
≥ Ω

(
n

1

ε2
log

n

δ
(log d+ logM))

)
,

where the last inequality is by Lemma I.2.

H.4 Proof of Theorem 6.2

We use an encoding from [14], which has the following guarantee.

Theorem H.4 ([14]). Let k = n/δ and m = 1/4ε2. There exist two encodings (s1, . . . , st)
and (i, s1, . . . , si−1, `) based on shared randomness R into n vectors u1, . . . ,un, u1, . . . ,un and
v1, . . . ,vn, where uj(sj1, . . . , s

j
t , R), uj(sj1, . . . , s

j
i−1, R), vj(i, `j , R) ∈ [±M ]d such that the first en-

coding has t = c log d and the second encoding has t = c logM for some constant c > 0 and both
encodings satisfy for all j ∈ [n] and r = O( 1

ε2
log n

δ ):

1. If indk,m(sji , `
j) = 0, then with probability 1− δ/n we have 〈uj − uj ,vj〉 ≤ 10t−ir.

2. If indk,m(sji , `
j) = 1 then with probability at least 1−δ/n we have 〈uj−uj ,vj〉 ≥ (1+ε)10t−ir.

We augment the encodings above with extra coordinates by using vectors cji ∈ {0, 1}b10t−ir for
i ∈ [t], j ∈ [n] and a constant b. For each i ∈ [t] the set of vectors c1

i , . . . , c
n
i is chosen to be a subset

of different codewords of the following code Cw with w = 6 · 10t−ir. Note that such a choice implies
that 〈cji , c

j
i 〉 = 6 · 10t−ir while for j1 6= j2 we have 〈cj1i , c

j2
i 〉 ≤ 3 · 10t−ir.

Fact H.5 (Combinatorial designs). For every sufficiently large w there exists a constant c and a
family Cw of codewords over {0, 1}cw of size s = 2w, such that every codeword in Cw has Hamming
weight w and the distance between every two codewords in Cw is at least w.

Proof. The existence of the code above corresponds to existence of combinatorial (2w, cw,w,w/2)-
designs, which follows by a standard probabilistic argument.
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For two vectors a and b we denote their concatenation as ab. Let cj = cj1c
j
2 . . . c

j
t where cji are

defined as above. Let cj−i = cj1c
j
2 . . . c

j
i−10b10t−ircji+1 . . . c

j
t denote the same concatenation but with

the entries corresponding to cji zeroed out and let cj+i = 0b10t−1r0b10t−2r . . . 0b10t−i+1rcji0
b10t−i−1r . . . 0br

denote the concatenation of cji with matching number of 0’s on both sides.

In the reduction Alice constructs vectors u∗j = ujcj . Bob constructs vectors u∗j = ujcj−i and

v∗j = vjcj+i, where uj ,uj and vj are constructed using one of the two constructions given by the
Theorem I.4.

Proposition H.6. The construction above satisfies that for all j ∈ [n] :

1. With probability at least 1− δ/n it holds that 〈u∗j −u∗j ,v∗j〉 ≤ 7 · 10t−ir if indk,m(sji , `
j) = 0.

2. With probability at least 1−δ/n it holds that 〈u∗j−u∗j ,v∗j〉 ≥ (7+ε)·10t−ir if indk,m(sji , `
j) =

1.

3. 〈u∗j − u∗j ,v∗j
′〉 ≤ 6 · 10t−ir if j 6= j′.

Proof. We have:

〈u∗j − u∗j ,v∗j〉 = 〈uj − uj ,vj〉+ 〈cj − cj−i, c
j
+i〉 = 〈uj − uj ,vj〉+ 〈cj+i, c

j
+i〉

= 〈uj − uj ,vj〉+ 6 · 10t−ir,

and the first two properties follow from Theorem I.4.
For the third property note that:

〈u∗j − u∗j ,v∗j
′
〉 = 〈uj − uj ,vj

′〉+ 〈cj − cj−i, c
j′

+i〉 = 〈uj − uj ,vj
′〉+ 〈cj+i, c

j′

+i〉

≤ 〈uj − uj ,vj
′〉+ 3 · 10t−ir,

The number of non-zero coordinates in the vector uj−uj is at most
∑t

q=i 2r10t−q ≤ 2r·10t−i 10
9 ≤

3r · 10t−i and hence 〈uj − uj ,vj
′〉 ≤ 3r · 10t−i completing the proof.

Consider matrices U,U and V, each with n rows formed by vectors uj ,uj and vj . Note that by
Proposition I.6 and a union bound with probability at least 1− δ the largest entry in (U−U) VT

is at least (7 + ε) · 10t−ir if there exists j ∈ [n] such that indk,m(sji , `
j) = 1, otherwise it is at most

7 ·10t−ir. Thus, by approximating the largest entry up to (1+ ε/10) multiplicative error the parties

can solve IOIc log d,n
k,m and IOIc logM,n

k,m . Assuming the existence of the sketch matrix S and estimation
procedure fθ in the theorem statement this gives a protocol for these probelms with communication
from Alice to Bob at most the bit size of US since Bob can solve them by approximating the largest
entry as fθ((U−U)S,VT ) as fθ(US −US,VT ) with θ = 7 · 10t−ir.
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