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Abstract. Color refinement is a classical technique used to show that two given graphs G and H
are non-isomorphic; it is very efficient, although it does not succeed on all graphs. We call a graph
G amenable to color refinement if the color-refinement procedure succeeds in distinguishing G from
any non-isomorphic graph H. Babai, Erdős, and Selkow (1982) have shown that random graphs are
amenable with high probability. Our main results are the following:
– We determine the exact range of applicability of color refinement by showing that the class of

amenable graphs is recognizable in time O((n + m) logn), where n and m denote the number of
vertices and the number of edges in the input graph.

– Furthermore, we prove that amenable graphs are compact in the sense of Tinhofer (1991). That is,
their polytopes of fractional automorphisms are integral. The concept of compactness was intro-
duced in order to identify the class of graphs G for which isomorphism G ∼= H can be decided by
computing an extreme point of the polytope of fractional isomorphisms from G to H and checking
if this point is integral. Our result implies that the applicability range for this linear programming
approach to isomorphism testing is at least as large as for the combinatorial approach based on
color refinement.

1 Introduction

The well-known color refinement (also known as naive vertex classification) procedure for
Graph Isomorphism works as follows: it begins with a uniform coloring of the vertices of two
graphs G and H and refines the vertex coloring step by step. In a refinement step, if two
vertices have identical colors but differently colored neighborhoods (with the multiplicities
of colors counted), then these vertices get new different colors. The procedure terminates
when no further refinement of the vertex color classes is possible. Upon termination, if the
multisets of vertex colors in G and H are different, we can correctly conclude that they
are not isomorphic. However, color refinement sometimes fails to distinguish non-isomorphic
graphs. The simplest example is given by any two non-isomorphic regular graphs of the same
degree with the same number of vertices.

For which pairs of graphs G and H does the color refinement procedure succeed in solving
Graph Isomorphism? Mainly this question has motivated the study of color refinement from
different perspectives.

Immerman and Lander [13], in their highly influential paper, established a close connec-
tion between color refinement and 2-variable first-order logic with counting quantifiers. They
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show that color refinement distinguishes G and H if and only these graphs are distinguishable
by a sentence in this logic.

A well-known approach to tackling intractable optimization problems is to consider an
appropriate linear programming relaxation. A similar approach to isomorphism testing, based
on the notion of fractional isomorphisms (see Section 3), turns out to be equivalent to color
refinement. Building on Tinhofer’s work [21], it is shown by Ramana, Scheinerman and
Ullman [18] (see also Godsil [10]) that two graphs are indistinguishable by color refinement
if and only if they are fractionally isomorphic.

We say that color refinement applies to a graph G if it succeeds in distinguishing G from
any non-isomorphic H. A graph to which color refinement applies is called amenable. There
are interesting classes of amenable graphs:

1. An obvious class of graphs to which color refinement is applicable is the class of unigraphs.
Unigraphs are graphs that are determined up to isomorphism by their degree sequences;
see, e.g., [4, 25].

2. Trees are amenable (Edmonds [5, 26]).

3. It is easy to see that all graphs for which the color refinement procedure terminates with
all singleton color classes (i.e. the color classes form the discrete partition) are amenable.
We call this graph class Discrete. Babai, Erdös, and Selkow [2] have shown that a random
graph Gn,1/2 is in Discrete with high probability.

Our results

What is the class of graphs to which color refinement applies? The logical and linear pro-
gramming based characterizations of color refinement do not provide any efficient criterion
answering this question.

We aim at determining the exact range of applicability of color refinement. We find an
efficient characterization of the entire class of amenable graphs, which allows for a quasilinear-
time test whether or not color refinement applies to a given graph.

Corollary 12. The class of amenable graphs is recognizable in time O((n+m) log n), where
n and m denote the number of vertices and edges of the input graph.

This result is shown in Section 2, where we unravel the structure of amenable graphs. We
note that a weak a priori upper bound for the complexity of recognizing amenable graphs is
coNPGI[1], where the superscript means the one-query access to an oracle solving the graph
isomorphism problem. To the best of our knowledge, no better upper bound was known
before.

Combined with the Immerman-Lander result [13] mentioned above, it follows that the
class of graphs definable by first-order sentences with 2 variables and counting quantifiers
is recognizable in polynomial time. This result naturally generalizes to structures over any
binary relational vocabulary (see Corollary 13).
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Compact graphs The following linear programming approach to isomorphism testing was
suggested by Tinhofer in [23]. A graph is called compact if the polytope of all its fractional
automorphisms is integral. That is, all extreme points of this polytope have integer coordi-
nates. If G is compact then it has the following remarkable property: If G ∼= H, then the
polytope of all fractional isomorphisms from G to H is also integral while if G 6∼= H, then
this polytope has no integer extreme point (in particular, it can be empty). It follows that
for compact graphs G, the relation G ∼= H can be checked in polynomial time by using a
polynomial-time linear programming algorithm to compute some extreme point of the poly-
tope and testing if it is integral. Our second main result in the paper shows that the class
of compact graphs contains all amenable graphs.

Theorem 17. All amenable graphs are compact.

This result implies that Tinhofer’s approach to Graph Isomorphism has at least as large
an applicability range as color refinement. It remains an intriguing open problem to find
an efficient characterization for the class of compact graphs (or to show that its decision
problem is hard).

Finally, we consider the class of graphs for which color refinement succeeds in solving
the Graph Automorphism problem: namely, the problem of checking if an input graph G
has a nontrivial automorphism. Specifically, we call a graph G refinable if the color partition
produced by color refinement coincides with the orbit partition of the automorphism group
of G. The fact that all trees are refinable was observed independently by several authors; see
a survey in [24]. Our results imply that all amenable graphs are refinable. In Section 5 we
discuss structural and algorithmic graph properties that were introduced by Tinhofer [23]
and Godsil [10]. We note that these properties, along with compactness, define a hierarchy
of graph classes between the amenable and the refinable graphs.

Related work. Color refinement turns out to be a useful tool not only in isomorphism testing
but also in a number of other areas; see [11, 15, 20] and references there. The concept of
compactness is generalized to weak compactness in [8, 9]. The linear programming approach
of [21, 18] to isomorphism testing is extended in [1, 12], where it is shown that this extension
corresponds to the k-dimensional Weisfeiler-Lehman algorithm (which is just color refinement
if k = 1).

Notation. The vertex set of a graph G is denoted by V (G). The vertices adjacent to a vertex
u ∈ V (G) form its neighborhood N(u). A set of vertices X ⊆ V (G) induces a subgraph of G,
that is denoted by G[X]. For two disjoint sets X and Y , G[X, Y ] is the bipartite graph with
vertex classes X and Y formed by all edges of G connecting a vertex in X with a vertex in
Y . The vertex-disjoint union of graphs G and H will be denoted by G+H. Furthermore, we
write mG for the disjoint union of m copies of G. The complement of a graph G is denoted
by G. The bipartite complement of a bipartite graph G with vertex classes X and Y is the
bipartite graph G′ with the same vertex classes such that {x, y} with x ∈ X and y ∈ Y is
an edge in G′ iff it is not an edge in G. We use the standard notation Kn for the complete
graph on n vertices, Ks,t for the complete bipartite graph whose vertex classes have s and t
vertices, and Cn for the cycle on n vertices.
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2 Amenable graphs

2.1 Basic definitions and facts

Given a graph G, the color refinement algorithm (to be abbreviated as CR) iteratively
computes a sequence of colorings Ci of V (G). The initial coloring C0 is uniform. Then,

Ci+1(u) =
{{
Ci(a) : a ∈ N(u)

}}
, (1)

where {{. . .}} denotes a multiset. Note that C1(u) = C1(v) iff the two vertices have the same
degree.

A simple inductive argument shows that Ci+1(u) = Ci+1(v) implies Ci(u) = Ci(v).
Therefore, the partition P i+1 of V (G) into the color classes of Ci+1 is a refinement of the
partition P i corresponding to Ci. It follows that, eventually, Ps+1 = Ps for some s; hence,
P i = Ps for all i ≥ s. The partition Ps is the stable partition of G.

A partition P of V (G) is called equitable if:

(i) For any X ∈ P the graph G[X] induced by X is regular, that is, all vertices in G[X]
have equal degrees.

(ii) For any X, Y ∈ P the bipartite graph G[X, Y ] induced by X and Y is biregular, that
is, all vertices in each vertex class have equal degrees: The vertices in X have equally
many neighbors in Y and vice versa.

Given an equitable partition P of a graph G, we call its elements cells.
A trivial example of an equitable partition is the partition of V (G) into singletons, which

we call discrete. There is a unique equitable partition PG that is the coarsest in the sense
that any other equitable partition P of G is a subpartition of PG. It is easy to see that the
stable partition of G is equitable, and an inductive argument shows that it is actually the
coarsest [6, Lemma 1].

A straightforward inductive argument shows that the colorings Ci are preserved under
isomorphisms.

Lemma 1. If φ is an isomorphism from G to H, then Ci(u) = Ci(φ(u)) for any vertex u
of G.

Lemma 1 readily implies that, if graphs G and H are isomorphic, then{{
Ci(u) : u ∈ V (G)

}}
=
{{
Ci(v) : v ∈ V (H)

}}
(2)

for all i ≥ 0. When used for isomorphism testing, the CR algorithm accepts two graphs G
and H as isomorphic exactly when the above condition is met on input G + H. Note that
this condition is actually finitary: If Equality (2) is false for some i, it must be false for some
i < 2n, where n denotes the number of vertices in each of the graphs. This follows from
the observation that the partition P2n−1 induced by the coloring C2n−1 must be a stable
partition of the disjoint union of G and H. In fact, Equality (2) holds true for all i iff it is
true for i = n; see [17]. Thus, it is enough that CR verifies (2) for i = n.
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Note that computing the vertex colors literally according to (1) would lead to an expo-
nential growth of the lengths of color names. This can be avoided by renaming the colors
after each refinement step. Then CR never needs more than n color names (appearance of
more than n colors is an indication that the graphs are non-isomorphic).

Definition 2. We call a graph G amenable if CR works correctly on the input G,H for
every H, that is, Equality (2) is false for i = n whenever H 6∼= G. The class of all amenable
graphs is denoted Amenable.

2.2 Local structure of amenable graphs

Consider the stable (i.e., the coarsest equitable) partition PG of an amenable graph G. For
different cells X, Y ∈ P , we will analyze the possible regular graphs G[X] and biregular
graphs G[X, Y ] that can occur. The following lemma gives a list of all possible regular and
biregular graphs that can occur in the stable (i.e., the coarsest equitable) partition of an
amenable graph.

Lemma 3. Let PG be the stable partition of an amenable graph G.

(A) If X ∈ PG, then G[X] is an empty graph, a complete graph, a matching graph mK2,
the complement of a matching graph, or the 5-cycle;

(B) If X, Y ∈ PG, then G[X, Y ] is an empty graph, a complete bipartite graph, the disjoint
union of stars sK1,t where X and Y are the set of s central vertices and the set of st
leaves, or the bipartite complement of the last graph.

The proof of Lemma 3 is based on the following facts.

Lemma 4 (Johnson [14]). A regular graph of degree d with n vertices is a unigraph if and
only if d ∈ {0, 1, n− 2, n− 1} or d = 2 and n = 5.4

Lemma 5 (Koren [16]). A bipartite graph is determined up to isomorphism by the condi-
tions that every of the m vertices in one part has degree c and every of the n vertices in the
other part has degree d if and only if c ∈ {0, 1, n− 1, n} or d ∈ {0, 1,m− 1,m}.

Lemma 4 and 5 show that, if G contains a subgraph G[X] or G[X, Y ] that is induced
by some X, Y ∈ PG but not listed in Lemma 3, then this subgraph can be replaced by
a non-isomorphic regular or biregular graph with the same parameters. In order to prove
Lemma 3, it now suffices to show that the resulting graph H is indistinguishable from G
by color refinement. The graphs G and H in the following lemma have the same vertex set.
Given a vertex u, we distinguish its neighborhoods NG(u) and NH(u) and its colors Ci

G(u)
and Ci

H(u) in the two graphs.

Lemma 6. Suppose that X and Y are cells of the stable partition of a graph G.

4 The last case, in which the graph is the 5-cycle, is missing from the statement of this result in [14, Theorem 2.12].
The proof in [14] tacitly considers only graphs with at least 6 vertices.
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(i) Let H be obtained from G by changing the edges between the vertices in X so that
G[X] is replaced with a regular graph of the same degree. Then Ci

G(u) = Ci
H(u) for any

u ∈ V (G) and any i.
(ii) Let H be obtained from G by changing the edges between X and Y so that G[X, Y ] is

replaced with a biregular graph having the same vertex degrees. Then Ci
G(u) = Ci

H(u)
for any u ∈ V (G) and any i.

Proof. We proceed by induction on i. In the base case of i = 0 the claim is trivially true.
Assume that Ci

G(a) = Ci
H(a) for all a ∈ V (G). Consider an arbitrary vertex u and prove

that
Ci+1
G (u) = Ci+1

H (u). (3)

From now on we treat parts (i) and (ii) separately.

(i) Suppose first that u /∈ X. Since the transformation of G into H does not affect the
edges emanating from u, we have NG(u) = NH(u). Looking at the definition (1), we
immediately derive (3) from the induction assumption.
The case of u ∈ X is a bit more complicated. Now we have only equality NG(u) \X =
NH(u) \X, which implies{{

Ci
G(a) : a ∈ NG(u) \X

}}
=
{{
Ci
H(a) : a ∈ NH(u) \X

}}
. (4)

The equality NG(u) ∩X = NH(u) ∩X is not necessarily true. However, u has equally
many neighbors from X in G and in H. Furthermore, for any two vertices a and a′ in
X we have Ci

G(a) = Ci
G(a′) because X is a cell of G, and Ci

H(a) = Ci
G(a) = Ci

G(a′) =
Ci
H(a′) by the induction assumption. That is, all vertices in X have the same Ci-color

both in G and in H. It follows that{{
Ci
G(a) : a ∈ NG(u) ∩X

}}
=
{{
Ci
H(a) : a ∈ NH(u) ∩X

}}
. (5)

Combining (4) and (5), we conclude that (3) holds in any case.
(ii) If u /∈ X ∪ Y , we have NG(u) = NH(u) and Equality (3) readily follows from the

induction assumption.
Suppose that u ∈ Y . In this case we still have (4) and, exactly as in part (i), we also
derive (5). Equality (3) follows.
The case of u ∈ X is symmetric. ut

Proof of Lemma 3.

(A) If G[X] is a graph not from the list, by Lemma 4, it is not a unigraph. We, therefore,
can modify G locally on X by replacing G[X] with a non-isomorphic regular graph
with the same parameters. Part (i) of Lemma 6 implies that the resulting graph H
satisfies Equality (2) for any i, that is, CR does not distinguishes between G and H.
The graphs G and H are non-isomorphic because, by part (i) of Lemma 6 and by
Lemma 1, an isomorphism from G to H would induce an isomorphism from G[X] to
H[X]. This shows that G is not amenable.

(B) This part follows, similarly to Condition A, from Lemma 5 and part (ii) of 6. ut
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2.3 Global structure of amenable graphs

Recall that PG is the stable partition of the vertex set of a graph G, and that elements of
PG are called cells. We define the auxiliary cell graph C(G) of an amenable graph G to be
the complete graph on the vertex set PG with the following labeling of vertices and edges.
A vertex X ∈ PG is labeled either complete, empty, matching, co-matching, or pentagonal
depending on the type of G[X], and an edge {X, Y } is labeled either complete, empty,
constellation, or co-constellation, depending on the type of G[X, Y ]; see Conditions A and B
in Lemma 3.

Each vertex and edge has exactly one label. This requires removing ambiguities in several
cases. First, every singleton cell X = {u} is labeled as empty (rather than complete). Note
that the complete graph K2 is as well a matching graph. This is resolved by labeling each
two-element cell X = {u, v} as complete or empty (rather than matching or co-matching)
depending on whether or not u and v are adjacent in G. Thus, a matching or co-matching X
always consists of at least 4 vertices. Furthermore, the edges {X, Y } of the cell graph such
that G[X, Y ] ∼= K1,t are labeled as complete (rather than constellation). If G[X, Y ] is the
bipartite complement of K1,t, then {X, Y } is labeled as empty (rather than co-constellation).
Another source of ambiguity is that 2K1,t is isomorphic to its bipartite complement. The
edges {X, Y } corresponding to G[X, Y ] ∼= 2K1,t are labeled as constellation (rather than
co-constellation).

A vertex of the cell graph is called homogeneous if it is labeled as complete or empty and
heterogeneous in any of the other three cases. An edge of the cell graph is called isotropic
if it is labeled as complete or empty and anisotropic if it is labeled as constellation or co-
constellation.

A path X1X2 . . . Xl in C(G) where every edge {Xi, Xi+1} is anisotropic will be referred
to as an anisotropic path. If also {Xl, X1} is an anisotropic edge, we speak of an anisotropic
cycle. In the case that |X1| = |X2| = . . . = |Xl|, such a path (or cycle) will be called
uniform. Note that if an edge {Xi, Xi+1} of a uniform path/cycle is constellation (resp.
co-constellation), then G[Xi, Xi+1] is a matching (resp. co-matching) graph.

Lemma 7. If G is amenable, then

(C) the cell graph C(G) contains no uniform anisotropic path connecting two heterogeneous
vertices;

(D) the cell graph C(G) contains no uniform anisotropic cycle;
(E) the cell graph C(G) contains neither an anisotropic path XY1 . . . YlZ such that |X| <

|Y1| = . . . = |Yl| > |Z| nor an anistropic cycle XY1 . . . YlX such that |X| < |Y1| =
. . . = |Yl|;

(F) the cell graph C(G) contains no anisotropic path XY1 . . . Yl such that |X| < |Y1| =
. . . = |Yl| and the vertex Yl is heterogeneous.

Proof.

(C) Suppose that P is a uniform anisotropic path in C(G) connecting heterogeneous vertices
X and Y . Let k = |X| = |Y |. Complementing G[A,B] for each co-constellation edge
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{A,B} of P , in G we obtain k vertex-disjoint paths connecting X and Y . These paths
determine a one-to-one correspondence between X and Y . Given v ∈ X, denote its
mate in Y by v∗. Call P conducting if this correspondence is an isomorphism between
G[X] and G[Y ], that is, two vertices u and v in X are adjacent exactly when their
mates u∗ and v∗ are adjacent. In the case that one of X and Y is matching and the
other is co-matching, we call P conducting also if the correspondence is an isomorphism
between G[X] and the complement of G[Y ].

Note that an isomorphism φ from G to another graph H preserves the mate relation,
which is definable on pairs in φ(X) × φ(Y ) in the same vein. In other terms, φ(v∗) =
φ(v)∗ for any v ∈ X. It follows that, for any u, v ∈ X, φ(u) and φ(v) are adjacent exactly
when φ(u)∗ and φ(v)∗ are adjacent, which means that φ preserves also the conducting
property. More precisely, φ induces an isomorphism φ′ from C(G) to C(H), which takes
conducting paths in C(G) to conducting paths in C(H) and non-conducting ones to
non-conducting ones.

If P is conducting, we can replace the subgraph G[Y ] with an isomorphic but different
subgraph so that P becomes non-conducting in the cell graph C(H) of the resulting
graph H. Vice versa, if P is non-conducting, we can make such a replacement converting
P to a conducting path.

By part (i) of Lemma 6, CR does not distinguish between G and H. As another
consequence of part (i) of Lemma 6, C(G) = C(H). Further, part (i) of Lemma 6 and
Lemma 1 imply that if there is an isomorphism φ fromG toH, the induced isomorphism
φ′ from C(G) to C(H) is the identity map on PG, the vertex set of C(G). Therefore,
φ′ takes P onto itself, which contradicts preservation of the conducting property. We
conclude that G 6∼= H and, hence, G is not amenable.

(D) Suppose that C(G) contains a uniform anisotropic cycle Q of length m. All vertices
of Q have the same cardinality as cells; denote it by k. Complementing G[A,B] for
each co-constellation edge {A,B} of Q, in G we obtain the vertex-disjoint union of
cycles whose lengths are multiples of m. As two extreme cases, we can have k cycles
of length m each or we can have a single cycle of length km. Denote the isomorphism
type of this union of cycles by τ(Q). Note that this type is isomorphism invariant:
For an isomorphism φ from G to another graph H, τ(φ′(Q)) = τ(Q) for the induced
isomorphism φ′ from C(G) to C(H).

Let X and Y be two consecutive vertices in Q. We can replace the subgraph G[X, Y ]
with an isomorphic but different bipartite graph so that, in the resulting graph H,
τ(Q) becomes either kCm or Ckm, whatever we wish. We do replacement that changes
τ(Q).

Similarly as for Condition C, we use part (ii) of Lemma 6 to argue that CR does not
distinguish between G and H. Furthermore, G 6∼= H because the types τ(Q) in G and
H are different. Therefore, G is not amenable.

(E) Suppose that C(G) contains an anisotropic path XY1 . . . YlZ such that |X| < |Y1| =
. . . = |Yl| > |Z| (for the case of a cycle, where Z = X, the argument is virtually the
same). Like in the proof of Condition C, the uniform anisotropic path Y1 . . . Yl deter-
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mines a one-to-one correspondence between the sets Y1 and Yl. We make identification
Y1 = Yl = Y according to this correspondence.
Let G[X, Y ] = sK1,t and G[Z, Y ] = aK1,b, where s, a, t, b ≥ 2 (if any of these subgraphs
is a co-constellation, we consider its complement). Thus, |X| = s, |Z| = a, and |Y | =
st = ab. For each x ∈ X, let Yx denote the set of vertices in Y adjacent to x. The set
Yz is defined similarly for each z ∈ Z. Note that

|Yx| = t, |Yz| = b, Yx ∩ Yx′ = ∅, and Yz ∩ Yz′ = ∅ (6)

for any x 6= x′ in X and z 6= z′ in Z (the disjointness conditions can be replaced with
the covering conditions

⋃
x∈X Yx =

⋃
z∈Z Yz = Y ). We regard YG = {Yx }x∈X ∪{Yz }z∈Z

as a hypergraph on the vertex set Y .
For an isomorphism φ from G to another graph H, let YH be determined similarly by
the path φ(X)φ(Y1) . . . φ(Yl)φ(Z) (note that YH does not depend on φ by Lemma 1).
Then obviously YH ∼= YG.
Now, let H = {Yx }x∈X ∪ {Yz }z∈Z be an arbitrary hypergraph on the vertex set Y
satisfying the conditions (6). Given H, we can replace the subgraph G[X, Y1] with an
isomorphic but different bipartite graph so that YH ∼= H for the resulting graph H.
When we take H 6∼= YG, this will ensure that H 6∼= G. Similarly to Conditions C and D,
part (ii) of Lemma 6 along with Lemma 1 implies that CR does not distinguish between
G and H. Therefore, G cannot be amenable.
It remains to show that an appropriate choice of a hypergraph H is always avail-
able, that is, there are at least two non-isomorphic hypergraphs H1 and H2 on the
vertex set Y with hyperedges denoted by Yx, x ∈ X, and Yz, z ∈ Z, satisfying the
conditions (6) (if t = b, multiple hyperedges Yx = Yz are allowed). Without loss of
generality, suppose that t ≤ b. In order to construct such H1 and H2, identify Y
with the segment of integers {1, 2, . . . , st}. Set {Yx } to be the partition of Y into s
blocks of consecutive integers of length t in both H1 and H2. In H1, we set {Yz }
to be the partition of Y into a blocks of consecutive integers of length b. In H2, we
set {Yz }z∈Z = {{j, j + a, j + 2a, . . . , j + (b− 1)a}}aj=1. The two hypergraphs are non-
isomorphic because in H1 we have Yx ⊂ Yz for some x and z, while no hyperedge
includes another in H2.

(F) Suppose that C(G) contains an anisotropic path XY1 . . . Yl where |X| < |Y1| = . . . =
|Yl| and Yl is heterogeneous. The uniform anisotropic path Y1 . . . Yl determines a one-
to-one correspondence between Y1 and Yl, and we make identification Y1 = Yl = Y
accordingly to it. Consider an auxiliary graph AG on the vertex set X ∪ Y where
AG[X] is empty, AG[Y ] = G[Yl], and AG[X, Y ] = G[X, Y1].
For an isomorphism φ from G to another graph H, let AH be determined similarly by
the path φ(X)φ(Y1) . . . φ(Yl). Then obviously AH ∼= AG.
Like in the proof of Condition C, we can replaceG[Yl] (hence AG[Y ]) with an isomorphic
but different graph so that AH 6∼= AG for the resulting graph H. This will imply that G
and H are non-isomorphic while indistinguishable by CR and, therefore, that G is not
amenable. All what we have to show is that at least two different isomorphism types
of AH can be obtained by such a replacement.
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Let G[X, Y1] = sK1,t (in the case of a co-constellation, we consider the complement).
Since s, t ≥ 2 and |Y1| = st, the cell Yl cannot be pentagonal. Considering the comple-
ment if needed, we can assume without loss of generality that Yl is matching. Consider
a hypergraph H = H1∪H2 where H1 = {Yx }x∈X has hyperedges Yx = N(x)∩Y1 as in
the proof of Condition E, while H2 consists now of 2-element hyperedges corresponding
to the edges of G[Yl]. Similarly to Condition E, we can change the isomorphism type
of H by modifying the subgraph G[X, Y1]. This results in different isomorphism types
of AH . ut

It turns out that Conditions A–F are not only necessary for amenability but also suffi-
cient.

Theorem 8. A graph G is amenable if and only if it satisfies Conditions A–F.

The necessity part of the theorem is given by Lemmas 3 and 7. The proof of the sufficiency
consists of Lemmas 9 and 10 below, that reveal a tree-like structure of amenable graphs. By
an anisotropic component of the cell graph C(G) we mean a maximal connected subgraph
of C(G) whose edges are all anisotropic. Note that if a vertex of C(G) has no incident
anisotropic edges, it forms a single-vertex anisotropic component.

Lemma 9. Suppose that a graph G satisfies Conditions A–F. Then for any anisotropic
component A of C(G), the following is true.

(i) A is a tree with the following monotonicity property. Let R be a vertex of A of the
minimum cardinality (as a cell). Let AR be the rooted directed tree obtained from A by
rooting it at R. Then |X| ≤ |Y | for any directed edge (X, Y ) of AR.

(ii) A contains at most one heterogeneous vertex. If R is such a vertex, it has minimum
cardinality among the vertices of A.

Proof.

(i) A cannot contain any uniform cycle by Condition D and any other cycle by Condition E.
The monotonicity property follows from Condition E.

(ii) Assume that A contains more than one heterogeneous vertex. Consider two such vertices
S and T . Let S = Z1, Z2, . . . , Zl = T be the path from S to T in A. The monotonicity
property stated in part (i) implies that there is j (possibly j = 1, l) such that |Z1| ≥
. . . ≥ |Zj| ≤ . . . ≤ |Zl|. Since the path cannot be uniform by Condition C, at least one
of the inequalities is strict. However, this contradicts Condition F.
Suppose that S is a heterogeneous vertex inA. Consider now a path S = Z1, Z2, . . . , Zl =
R in A where R is a vertex with the smallest cardinality. By the monotonicity property
and Condition F, this path must be uniform, proving that |S| = |R|. ut

Lemma 10. Suppose that a graph G satisfies Conditions A and B, which allows us to
consider the cell graph C(G). Assume that every anisotropic component A of C(G)

(G) is a tree and
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(H) has at most one heterogeneous vertex.

Then G is amenable.

Proof. Given a graph H indistinguishable from G by CR, we have to show that G and H
are isomorphic.

Since G and H satisfy the condition (2) for any i, any coloring Ci stable on the disjoint
union of G and H determines a one-to-one correspondence f between the cells of the stable
partitions of G and H. As follows directly from (2), |X| = |f(X)| for every cell X of G. The
map f is an isomorphism from C(G) to C(H) and, moreover, for any cells X and Y of G

(a) G[X] ∼= H[f(X)] and
(b) G[X, Y ] ∼= H[f(X), f(Y )].

To show (a), consider a coloring C = Ci stable on the disjoint union of G and H. Since C is
stable on both G and H and X and f(X) are cells of the corresponding partitions, both G[X]
and H[f(X)] are regular. By Condition A, G[X] is a unigraph. Since G and H have equal
number of vertices, their non-isomorphism would mean that they have different degrees. This
is impossible because then X ∪ f(X), a cell of C, would split in the next refinement step.
The relation (b) follows from Condition B by a similar argument.

We now construct an isomorphism φ from G to H. By Lemma 1, we should have φ(X) =
f(X) for each cell X. Therefore, we have to define the map φ : X → f(X) on each X.

By assumption, an anisotropic component A of the cell graph C(G) contains at most
one heterogeneous vertex. Denote it by RA if it exists. Otherwise fix RA to be an arbitrary
vertex in A.

For each A, define φ on R = RA to be an arbitrary isomorphism from G[R] to H[f(R)],
which exists according to (a). After this, propagate φ to any other cell in A as follows. By
assumption, A is a tree. Let AR be the directed rooted tree obtained from A by rooting it at
R. Suppose that φ is already defined on X and (X, Y ) is an edge in A. Then φ is extended
to Y so that this is an isomorphism from G[X, Y ] to H[f(X), f(Y )].

It remains to argue that the map φ obtained in this way is indeed an isomorphism from
G to H. It suffices to show that φ is an isomorphism between G[X] and H[f(X)] for each
cell X of G and between G[X, Y ] and H[f(X), f(Y )] for each pair of cells X and Y .

If X is homogeneous, f(X) is homogeneous of the same type, complete or empty, accord-
ing to (a). In this case, any φ is an isomorphism from G[X] to H[f(X)]. If X is heterogeneous,
the assumption of the lemma says that it belongs to a unique anisotropic component A (and
X = RA). Then φ is an isomorphism from G[X] to H[f(X)] by construction.

If {X, Y } is an isotropic edge of C(G), then (b) implies that {f(X), f(Y )} is an isotropic
edge of C(H) of the same type, complete or empty. In this case, φ is an isomorphism from
G[X, Y ] to H[f(X), f(Y )], no matter how it is defined. If {X, Y } is anisotropic, it belongs
to some anisotropic component A, and φ is an isomorphism from G[X, Y ] to H[f(X), f(Y )]
by construction. ut

Lemmas 9 and 10 immediately imply the sufficiency part of Theorem 8. The proof of this
theorem is therewith complete.
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2.4 Examples and applications

Lemma 10 is a convenient tool for verifying amenability. For example, amenability of discrete
graphs is a well-known fact. Note that Conditions A and B as well as Conditions G and H
in Lemma 10 are fulfilled for discrete graphs by trivial reasons.

Checking these four conditions, we can also reprove the amenability of trees. Moreover,
we can extend this result to the class of forests.

Corollary 11. All forests are amenable.

Proof. A regular acyclic graph is either an empty or a matching graph. This implies Con-
dition A. Condition B follows from the observation that biregular acyclic graphs are either
empty or forests of stars.

Let C∗(G) be the version of the cell graph C(G) where all empty edges are removed. Note
that, if C∗(G) contains a cycle, G must contain a cycle as well. Therefore, if G is acyclic,
then C∗(G) is acyclic too, and any anisotropic component of C(G) must be a tree (which is
Condition G).

To prove Condition H, suppose that an anisotropic component of C(G) contains a path
X0, X1, . . . , Xl connecting two heterogeneous vertices X0 and Xl. Consider the subgraph
G[X0] ∪G[X0, X1] ∪ . . . ∪G[Xl−1, Xl] ∪G[Xl]. Since this graph has no vertex of degree 0 or
1, it must contain a cycle, a contradiction. ut

Our characterization of amenable graphs leads to an efficient test for amenability of a
given graph, that has the same time complexity as CR. It is known (Cardon and Crochemore
[6]; see also [3]) that the stable partition of a given graph G can be computed in time
O((n+m) log n). It is supposed that G is presented by its adjacency list.

Corollary 12. The class of amenable graphs is recognizable in time O((n+m) log n), where
n and m denote the number of vertices and edges of the input graph.

Proof. Using known algorithms, we first compute the stable partition PG of the input graph
G. Sorting the adjacency list of each vertex according to PG, we compute a list of entries
dX,Y of the degree refinement matrix (dX,Y ), X, Y ∈ PG, where dX,Y is equal to the number
of neighbors in Y of any vertex in X. Along with the numbers |X| and |Y |, dX,Y allows us to
determine whether or not each subgraph G[X, Y ] is one of the graphs listed in Condition B
of Lemma 3. Similarly, |X| and dX,X allows us to determine whether or not each subgraph
G[X] is one of the graphs listed in Condition A of this lemma. If Conditions A and B are
fulfilled, therewith we also obtain the cell graph C(G).

Using breadth-first search, we find all anisotropic components of C(G) and, simulate-
neously, for each of them we check Conditions G and H of Lemma 10. As follows from
Theorem 8 along with Lemmas 9 and 10, any graph satisfying Conditions A and B is
amenable if and only if it satisfies also Conditions G and H. ut

We conclude this section by considering logical aspects of our result. A counting quantifier
∃m opens a sentence saying that there are at least m elements satisfying some property.
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Immerman and Lander [13] discovered an intimate connection between color refinement and
2-variable first-order logic with counting quantifiers. This connection implies that amenability
of a graph is equivalent to its definability in this logic. Thus, Corollary 12 asserts that the
class of graphs definable by a first-order sentence with counting quantifiers and occurrences of
just 2 variables is recognizable in polynomial time. Standard reductions lead to the following
extension of this fact.

Corollary 13. Let σ be a vocabulary consisting of binary relation symbols. Then the class
of structures over σ definable in 2-variable first-order logic with counting quantifiers is rec-
ognizable in polynomial time.

Finally, note that CR admits a natural extension to structures over any binary vocabulary
σ (which is most obvious for vertex-colored graphs), and the Immerman-Lander result is
preserved under this extension. Thus, Corollary 13 implies that there is an efficient way to
check whether or not the generalized CR applies to a given input structure.

3 Amenable graphs are compact

For a permutation π of the set {1, . . . , n}, the corresponding permutation matrix Pπ = (pij)
is defined by pij = 1 if π(i) = j and pij = 0 otherwise. An n × n real matrix X = (xij) is
doubly stochastic if

n∑
i=1

xij = 1 for every j,
n∑
j=1

xij = 1 for every i, and xij ≥ 0 for all i, j.

Doubly stochastic matrices are closed under products and convex combinations. The set
of all n×n doubly stochastic matrices defined by the above linear inequalities is the Birkhoff
polytope Bn ⊂ Rn2

. By Birkhoff’s Theorem, the n! permutation matrices form precisely the
set of all extreme points of Bn. Equivalently, every doubly stochastic matrix is a convex
combination of permutation matrices.

Fractional isomorphisms. Consider graphs with vertex set {1, . . . , n}. Let Iso(G,H) denote
the set of all permutation matrices Pπ such that π is an isomorphism from G to H and let
Aut(G) = Iso(G,G). If A and B are the adjacency matrices of graphs G and H respectively,
then G and H are isomorphic iff there is a permutation matrix X such that

AX = XB. (7)

In fact, (7) is true for a permutation matrix X exactly when X ∈ Iso(G,H).
G and H are called fractionally isomorphic if (7) is satisfied by a doubly stochastic

matrix X. Such an X is a fractional isomorphism from G to H. It is easy to verify that
being fractionally isomorphic is an equivalence relation on graphs.

Analyzing the connection between fractional isomorphism and the color refinement proce-
dure, Ramana, Scheinerman, and Ullman [18] show the following result that can be considered
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an analog of Lemma 1 for fractional isomorphisms. For a partition V1, . . . , Vm of {1, . . . , n}
let X1, . . . , Xm be matrices, where the rows and columns of Xi are indexed by elements of
Vi. Then we denote the block-diagonal matrix with blocks X1, . . . , Xm by X1 ⊕ · · · ⊕Xm.

Lemma 14 (Ramana et al. [18]). Let G be a graph on vertex set {1, . . . , n} and assume
that the elements V1, . . . , Vm of the coarsest equitable partition PG of G are intervals of
consecutive integers. Let X be a fractional automorphism of G, i.e., a doubly stochastic matrix
commuting with the adjacency matrix of G. Then X has the form X = X1 ⊕ · · · ⊕Xm, that
is, X is a block diagonal matrix where the blocks X1, . . . , Xm correspond to V1, V2, . . . , Vm.

Note that the assumption of the lemma can be ensured for any graph by appropri-
ately renaming its vertices. For the reader’s convenience we include a self-contained proof of
Lemma 14 in Appendix A.

Compact graphs. Denote the polytope of all fractional isomorphisms from G to H by
S(G,H) ⊂ Rn2

. The set of isomorphisms Iso(G,H) is contained in Ext(S(G,H)) (where
Ext(X) denotes the set of all extreme points of a set X). Indeed, Iso(G,H) is the set of
integral extreme points of S(G,H). The set S(G) = S(G,G) is the polytope of fractional
automorphisms of G.

A graph G is called compact [21] if S(G) has no other extreme points than Aut(G), i.e.,
Ext(S(G)) = Aut(G). Compactness of G can equivalently be defined by any of the following
two conditions:

– The polytope S(G) is integral;
– Every fractional automorphism of G is a convex combination of standard automorphisms

of G, i.e., S(G) = 〈Aut(G)〉, where 〈X〉 denotes the convex hull of a set X.

Example 15. Complete graphs are compact as a consequence of Birkhoff’s theorem. Trees
and cycles are compact [21]. Matching graphs mK2 are compact. This is a particular instance
of a much more general result by Tinhofer [23]: If G is compact, then mG is compact for
any m. Tinhofer [23] also observes that compact graphs are closed under complement.

For a negative example, note that the graph C3 +C4 is not compact. This follows from a
general result in [23]: All regular compact graphs must be vertex-transitive (and C3 + C4 is
not).

The concept of a compact graph is motivated by a linear programming approach to Graph
Isomorphism that is based on the following fact.

Proposition 16 (Tinhofer [23]). Let G be a compact graph. Then for any graph H, either
all or none of the extreme points of the polytope S(G,H) are integral.

As mentioned in the introduction, the above proposition yields a linear-programming
based polynomial-time algorithm to test if a compact graph G is isomorphic to any other
graph H.

However, no polynomial time algorithm is known to check if a graph is compact. The only
known complexity upper bound, noted in [23], is coNP, because testing if every vertex of a
given polytope is integral is in coNP. Nevertheless, the following result shows that Tinhofer’s
approach works for all amenable graphs.

14



Theorem 17. All amenable graphs are compact.

We defer the proof to the next section. Theorem 17 unifies and extends several earlier
results providing examples of compact graphs. In particular, it gives another proof of the
fact that almost all graphs are compact, which also follows from a result of Godsil [10,
Corollary 1.6]. Indeed, while Babai, Erdös, and Selkow [2] proved that almost all graphs
are discrete (and, moreover, the discrete partition is reachable in 2 refinement rounds), we
already mentioned in Section 2.4 that all discrete graphs are amenable.

Furthermore, Theorem 17 reproves Tinhofer’s result that trees are compact.5 Using Corol-
lary 11, we can extend this result to forests. This extension is not straightforward as com-
pact graphs are not closed under disjoint union; see Example 15. In [22], Tinhofer proves
compactness for the class of strong tree-cographs, which includes forests only with pairwise
non-isomorphic connected components.

Compactness of unigraphs, which also follows from Theorem 17, seems to be earlier never
observed. Summarizing, we note the following result.

Corollary 18. Discrete graphs, forests, and unigraphs are compact.

4 Proof of Theorem 17

Before we proceed to the proof, it will be helpful to recall useful facts about convex opti-
mization and doubly stochastic matrices.

Convex sets and extreme points. For x, y ∈ Rn, a convex combination of x and y is any
vector of the form αx + (1 − α)y where 0 ≤ α ≤ 1. More generally,

∑k
i=1 αixi is a convex

combination of k points x1, . . . , xk ∈ Rn if
∑k

i=1 αi = 1 and αi ≥ 0 for all i. A set S ⊆ Rn

is convex if, for every two points x, y ∈ S, S contains also any convex combination of these
points, that is, the segment with endpoints x and y. The convex hull of a set S ⊆ Rn, denoted
by 〈S〉, is the inclusion-minimal convex set containing S. Equivalently, 〈S〉 is the set of all
convex combinations of any finite number of points in S. A point z ∈ S is called an extreme
point of S if it cannot be represented as a convex combination of other points of S, that is,
z = αx + (1− α)y with 0 ≤ α ≤ 1 implies z = x = y. We will denote the set of all extreme
points of S by Ext(S). The Minkowski theorem says that, if a convex set S is bounded and
closed, then S = 〈Ext(S)〉.

Polytopes. Speaking of polytopes, we always mean convex polytopes. Such a polytope P
can be defined as the intersection of a set of half-spaces of Rn or, algebraically, P =
{x ∈ Rn : Ax ≤ b} where A is a real m×n matrix, x and b are supposed to be n-dimensional
column vectors, and the inequality is understood row-wise. A matrix or a vector is integral
if all its entries are integers. Given integral A and b, deciding if P is non-empty is exactly
the linear programming problem, that can be solved in polynomial time, for example, by
the famous ellipsoid method. A point x ∈ P is called a basic feasible solution to the system

5 The proof of Theorem 17 uses only compactness of complete graphs, matching graphs, and the 5-cycle.
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Ax ≤ b if rankAx = n, where the matrix Ax is obtained from A by removing those rows
where the inequality is strict. It is known that Ext(P ) consists exactly of basic feasible solu-
tions to the underlying system of inequalities. This implies that Ext(P ) is a finite set. If A
and b are integral, this also implies that the bit length of any extreme point is bounded by a
polynomial in the bit length of A and b. Though the set Ext(P ) can be exponentially large in
n, computing a single point in Ext(P ) reduces in polynomial time to the linear programming
problem.

A polytope is called integral if all its extreme points are integral.

Doubly stochastic matrices and the Birkhoff polytope. Let π be a permutation of the set
{1, . . . , n}. The corresponding permutation matrix Pπ = (pij) is defined by pij = 1 if π(i) = j
and pij = 0 otherwise. An n × n real matrix X = (xij) is doubly stochastic if

∑n
i=1 xij =

1 for every j,
∑n

j=1 xij = 1 for every i, and xij ≥ 0 for all i, j. The product and any
convex combination of doubly stochastic matrices are themselves doubly stochastic matrices.
Considered as a subset of Rn2

, the set of all n × n doubly stochastic matrices is known as
the Birkhoff polytope Bn. Note that every permutation matrix is an extreme point of Bn.
The Birkhoff theorem says that Bn has no other extreme points. Equivalently, every doubly
stochastic matrix is a convex combination of permutation matrices.

We now proceed to the proof of the theorem. Given an amenable graphG and its fractional
automorphism X, we have to express X as a convex combination of permutation matrices
in Aut(G). Our proof strategy consists in exploiting the structure of amenable graphs as
described by Theorem 8 and Lemma 9. The last lemma refers to anisotropic components of
the cell graph C(G). Given an anisotropic component A of C(G), we define the anisotropic
component GA of G as the subgraph of G induced by the union of all cells belonging to
A. Our overall idea is to prove the claim separately for each anisotropic component GA,
applying an inductive argument on the number of cells in A. A key role will be played by
the facts that, according to Lemma 9, A is a tree with at most one heterogeneous vertex.

This scenario cannot be implemented directly by a simple reason: In order to run induc-
tion, we need that a subgraph of an amenable graph induced by a number of cells is also
amenable, which is not always the case. In order to remove this complication, we introduce
a definition generalizing amenable graphs for the purpose of applying induction.

Definition 19. Let G be a vertex-colored graph with the partition V (G) = V1 ∪ · · · ∪Vm of
its vertex set into color classes. We say that G is pseudo-amenable if there is an amenable
graph G′ such that

1. V (G) ⊂ V (G′) and V1, . . . , Vm are cells of G′;

2. G is an induced subgraph of G′ obtained by deleting the remaining cells of G′.

The next definition is needed in order to extend the notion of compactness to pseudo-
amenable graphs. From now on, without loss of generality we suppose that the vertices
1, . . . , n of a vertex-colored graph G are named so that every color class is an interval of
consecutive integers.
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Definition 20. For a vertex-colored graph G, color-preserving automorphisms are automor-
phisms that map each color class to itself. A color-preserving fractional automorphism of G
is a fractional automorphism

X = X1 ⊕ · · · ⊕Xm

such that the blocks X1, . . . , Xm of the block-diagonal doubly stochastic matrix X correspond
to the color classes V1, . . . , Vm of G. More precisely, the rows and columns of Xi are indexed
by the vertices in the set Vi, for each i.

Claim 21. Every pseudo-amenable graph G is compact in the sense that every color-preserving
fractional automorphism of G is a convex combination of color-preserving automorphisms of
G.

This claim implies the theorem because we can consider every amenable graph G as
pseudo-amenable with the coarsest equitable partition PG defining the color classes. By
Lemma 14, all fractional automorphisms of G (which includes all automorphisms of G; see
also Lemma 1) will be color-preserving.

In the sequel we prove the claim, essentially by induction on the number of color classes.
For a pseudo-amenable graph G we define its cell graph C(G) on the set of color classes
exactly as C(G) is defined on the coarsest equitable partitions of amenable graphs. Now, it
makes sense to talk of anisotropic components of C(G) and, hence, of anisotropic components
of the pseudo-amenable graph G.

We first consider the case whenG consists of a single anisotropic component. By Lemma 9,
the corresponding cell graph C(G) has at most one heterogeneous vertex and the anisotropic
edges form a spanning tree of C(G). Without loss of generality, we can number the cells
V1, . . . , Vm of G so that V1 is the unique heterogeneous cell if such exists; otherwise V1 is
chosen among the cells of minimum cardinality. Moreover, we can suppose that, for each
i ≤ m, the cells V1, . . . , Vi induce a connected subgraph in the tree of anisotropic edges
of C(G).

We will prove this case by induction on the number m of cells. In the base case of m = 1,
our graph G = G[V1] is one of the graphs listed in Condition A of Lemma 3. All of them are
known to be compact; see Example 15.1–4. As induction hypothesis, assume that the graph
H = G[V1 ∪ · · · ∪ Vm−1] is compact. For the induction step, we have to show compactness of
G = G[V1 ∪ · · · ∪ Vm].

Denote D = Vm. Since G has no more than one heterogeneous cell, G[D] is complete or
empty. It will be instructive to think of D as a “leaf” cell having a unique anisotripic link
to the remaning part H of G. Let C ∈ {V1, . . . , Vm−1} be the unique cell such that {C,D}
is an anisotropic edge of C(G). To be specific, suppose that G[C,D] = sK1,t. If G[C,D] is
a co-constallation, we can consider the complement of G and use the facts that the class
of amenable graphs is closed under complementation and that complementation does not
change color-preserving fractional isomorphisms of the graph (cf. Example 15.4). By the
monotonicity property in part (i) of Lemma 9, |C| = s and |D| = st. Let C = {c1, c2, . . . , cs}
and, for each i, N(ci) ⊂ D be the neighborhood of ci in G[C,D]. Thus, D =

⋃s
i=1N(ci).
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Let X be a color-preserving fractional automorphism of G. It is convenient to break it
up into three blocks:

X = X ′ ⊕ Y ⊕ Z,

where Y and Z correspond to C and D respectively, and X ′ is the rest. By induction
hypothesis we have the convex combination

X ′ ⊕ Y =
∑

P ′⊕P∈Aut(H)

αP ′,P P
′ ⊕ P, (8)

where P ′ ⊕ P are permutation matrices corresponding to automorphisms of the graph H,
such that the permutation matrix block P denotes automorphism’s action on color class C
and P ′ the action on the remaining color classes of H.

We need to show that X is a convex combination of automorphisms of G. Let A denote
the adjacency matrix of G and AC,D denote the s× st submatrix corresponding to the block
row-indexed by C and column-indexed by D. Likewise, AD,C denotes the st × s submatrix
with rows indexed by D and columns by C. Since X is a fractional automorphism of G, we
have

XA = AX. (9)

Recall that Y and Z are blocks of X corresponding to color classes C and D. Looking at
the corner fragments of the matrices in the left and the right hand sides of (9), we get(

Y 0
0 Z

)(
AC,C AC,D
AD,C AD,D

)
=

(
AC,C AC,D
AD,C AD,D

)(
Y 0
0 Z

)
,

which implies

Y AC,D = AC,D Z, (10)

AD,C Y = Z AD,C . (11)

Consider Z as an st× st matrix whose rows and columns are indexed by the elements of
sets N(c1), N(c2), . . . , N(cr) in that order. We can thus think of Z as an s× s block matrix
of t× t matrix blocks Z(k,`), 1 ≤ k, ` ≤ s. The next claim is a consequence of Equations (10)
and (11).

Claim 22. Each block Z(k,`) in Z is of the form

Z(k,`) = yk,`W
(k,`), (12)

where yk,` is the (k, `)th entry of Y , and W (k,`) is a doubly stochastic matrix.

Proof. We first note from Equation (10) that the (k, j)th entry of the s× st matrix Y AC,D =
AC,DZ can be computed in two different ways. In the left hand side matrix, it is yk,` for each
j ∈ N(c`). On the other hand, the right hand side matrix implies that the same (k, j)th entry
is also the sum of the jth column of the N(ck)×N(c`) block Z(k,`) of the matrix Z.

18



We conclude, for 1 ≤ k, ` ≤ s, that each column in Z(k,`) adds up to yk,`. By a similar
argument, applied to Equation (11) this time, it follows, for each 1 ≤ k, ` ≤ s, that each row
of any block Z(k,`) of Z adds up to yk,`.

We conclude that, if yk,` 6= 0, then the matrix W (k,`) = 1
yk,`

Z(k,`) is doubly stochastic. If

yk,` = 0, then (12) is true for any choice of W (k,`). ut

For every P = (pk`) appearing in an automorphism P ′ ⊕ P of H (see Equation (8)), we
define the st× st doubly stochastic matrix WP by its t× t blocks indexed by 1 ≤ k, ` ≤ s as
follows:

W
(k,`)
P =

{
W (k,`) if pk` = 1,

0 if pk` = 0.
(13)

Equations (8) and (12) imply that

X = X ′ ⊕ Y ⊕ Z =
∑

P ′⊕P∈Aut(H)

αP ′,P P
′ ⊕ P ⊕WP . (14)

In order to see this, on the left hand side consider the (k, `)th block Z(k,`) of Z. On the right
hand side, note that the corresponding block in each P ′ ⊕ P ⊕ WP is the matrix W (k,`).
Clearly, the overall coefficient for this block equals the sum of αP ′,P over all P ′ and P such
that pk,` = 1, which is precisely yk,` by Equation (8).

Since each W (k,`) is a doubly stochastic matrix, by Birkhoff’s theorem we can write it
as a convex combination of t × t permutation matrices Qj,k,`, whose rows are indexed by
elements of N(ck) and columns by elements of N(c`):

W (k,`) =
t!∑
j=1

βj,k,`Qj,k,`.

Substituting the above expression in Equation (13), that defines the doubly stochastic
matrix WP , we express WP as a convex combination of permutation matrices:

WP =
∑
Q

δQ,P Q

where Q runs over all st× st permutation matrices indexed by the vertices in color class D.
Notice here that δQ,P is nonzero only for those permutation matrices Q that have structure
similar to that described in Equation (13): The block Q(k,`) is a null matrix if pk` = 0 and it is
some t× t permutation matrix if pk` = 1. For each such Q, the (s+st)× (s+st) permutation
matrix P ⊕Q is an automorphism of the subgraph G[C,D] = sK1,t (because Q maps N(ci)
to N(cj) whenever P maps ci to cj). Since P ∈ Aut(G[C]) and D is a homogeneous set in
G, we conclude that, moreover, P ⊕Q is an automorphism of the subgraph G[C ∪D].

Now, if we plug the above expression for each WP in Equation (14), we will finally obtain
the desired convex combination

X =
∑
P ′,P,Q

γP ′,P,Q P
′ ⊕ P ⊕Q.
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It remains to argue that every P ′ ⊕ P ⊕Q occurring in this sum is an automorphism of G.
Recall that a pair P ′, P can appear here only if P ′ ⊕ P ∈ Aut(H). Moreover, if such a pair
is extended to a matrix P ′⊕P ⊕Q, then P ⊕Q ∈ Aut(G[C ∪D]). Since G[B,D] is isotropic
for every color class B 6= D of G, we conclude that P ′ ⊕ P ⊕ Q ∈ Aut(G). This completes
the induction step and finishes the case when G has one anisotropic component.

Next, we consider the case when C(G) has several anisotropic components T1, . . . , Tk, k ≥
2. Let G1, . . . , Gk, where Gi = G[

⋃
U∈V (Ti)

U ], be the corresponding anisotropic components
of G. By the proof of the previous case we already know that Gi is compact for each i.

Claim 23. The automorphism group Aut(G) of G is the product of the automorphism groups
Aut(Gi), 1 ≤ i ≤ k.

Proof. Recall that any automorphism of G must map each color class of G, which is a cell of
the underlying amenable graph G′, onto itself. Thus, any automorphism π of G is of the form
(π1, . . . , πk), where πi is an automorphism of the subgraph Gi. Now, for any two subgraphs
Gi and Gj, we examine the edges between V (Gi) and V (Gj). For any color classes U ⊆ V (Gi)
and U ′ ⊆ V (Gj), the edge {U,U ′} is isotropic because it is not contained in any anisotropic
component of C(G). Therefore, the bipartite graph G[U,U ′] is either complete or empty. It
follows that for any automorphisms πi of Gi, 1 ≤ i ≤ k, the permutation π = (π1, . . . , πk) is
a color-preserving automorphism of the graph G. ut

As follows from Lemma 14, any fractional automorphism X of G is of the form

X = X1 ⊕ · · · ⊕Xk,

where Xi is a fractional automorphism of Gi for each i. As each Gi is compact we can write
each Xi as a convex combination

Xi =
∑

π∈Aut(Gi)

αi,π Pπ.

This implies

I ⊕ · · · ⊕ I ⊕Xi ⊕ I ⊕ · · · ⊕ I =
∑

π∈Aut(Gi)

αi,π I ⊕ · · · ⊕ I ⊕ Pπ ⊕ I ⊕ · · · ⊕ I, (15)

where block diagonal matrices in the above expression have Xi and Pπ respectively in the
ith block (indexed by elements of V (Gi)) and identity matrices as the remaining blocks.

We now decompose the fractional automorphism X as a matrix product of fractional
automorphisms of G

X = X1 ⊕ · · · ⊕Xk

= (X1 ⊕ I ⊕ · · · ⊕ I) · (I ⊕X2 ⊕ · · · ⊕ I) · · · · · (I ⊕ · · · ⊕ I ⊕Xk).

Substituting for I⊕· · ·⊕I⊕Xi⊕I⊕· · ·⊕I from Equation (15) in the above expression and
writing the product of sums as a sum of products, we see that X is a convex combination of
permutation matrices of the form Pπ1 ⊕ · · · ⊕ Pπk where πi ∈ Aut(Gi) for each i. By Claim
23, all the terms Pπ1⊕· · ·⊕Pπk correspond to automorphisms of G. Therefore, G is compact.

The proof of Claim 21 and, hence, of Theorem 17 is complete.
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5 A color-refinement based hierarchy of graphs

Let u ∈ V (G) and v ∈ V (H) be vertices of two graphs G and H. By individualization of u
and v we mean assigning the same new color to u and v, which makes them distinguished
from the remaining vertices of G and H. Tinhofer [23] proved that, if G is compact, then
the following polynomial-time algorithm correctly decides if G and H are isomorphic.

1. Run Color Refinement on G and H until the coloring of V (G) ∪ V (H) stabilizes.
2. If the multisets of colors in G and H are different, then output “non-isomorphic” and

stop. Otherwise,
(a) if all color classes are singletons in G and H, then if the mapping u 7→ v (where

u ∈ V (G) and v ∈ V (H) have the same color) is an isomorphism, output “isomorphic”
and stop. Else output “non-isomorphic” and stop.

(b) pick any color class with at least two vertices in both G and H, select an arbitrary
u ∈ V (G) and v ∈ V (H) in this color class and individualize them. Goto Step 1.

If G and H are any two non-isomorphic graphs then Tinhofer’s algorithm will always
output “non-isomorphic”. However, it can fail for isomorphic input graphs, in general. We
call G a Tinhofer graph if the algorithm works correctly on G and every H for all choices
of vertices to be individualized. If G is a Tinhofer graph, then the algorithm can be used to
even find a canonical labeling of G. In particular, this applies to all compact graphs, and
Theorem 17 gives us also the following fact.

Corollary 24. The class of amenable graphs admits a polynomial-time canonical labeling
algorithm.

Let A ⊆ Aut(G) be a subgroup of automorphisms of a graph G. Then the partition of
V (G) into A-orbits is called an orbit partition. Any orbit partition of G is equitable, but
the converse is not true, in general. However, Godsil [10, Corollary 1.3] has shown that the
converse holds for compact graphs. We call the set of all graphs with this property Godsil
graphs, i.e., these are graphs for which the two notions of an equitable and an orbit partition
coincide. The aforementioned result by Tinhofer can be easily strengthened as follows.

Lemma 25. Any Godsil graph is a Tinhofer graph.

Proof. Assume that G is a Godsil graph. It suffices to show that Tinhofer’s algorithm is
correct whenever G and H are isomorphic. Let φ be an isomorphism from G to H. We will
prove that, after the i-th refinement step made by the algorithm, there exists an isomorphism
φi from G to H that preserves colors of the vertices. If this is true for each i, the algorithm
terminates only if the discrete partition (i.e., the finest partition into singletons) is reached.
Suppose that this happens in the k-th step. Then φk ensures that the algorithm decides
isomorphism.

We prove the claim by induction on i. At the beginning, φi = φ. Assume that an iso-
morphism φi exists and the partition is still not discrete. Suppose that now the algorithm
individualizes u ∈ V (G) and v ∈ V (H). If v = φi(u), then φi+1 = φi. Otherwise, consider
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the vertices u and φ−1i (v), which are in the same monochromatic class of G. Note that the
partition of G produced in each refinement step is equitable. Since G is Godsil, there is an
automorphism α preserving the partition such that α(u) = φ−1i (v). We can, therefore, take
φi+1 = φi ◦ α. ut

The orbit partition of G with respect to Aut(G) is always a refinement of the coarsest
equitable partition of G. We call G refinable if the coarsest equitable partition is the orbit
partition of Aut(G). It is easy to show the following.

Lemma 26. Any Tinhofer graph is refinable.

Proof. Suppose that G is not refinable. Then G has vertices u and v that are in the same
lex-least element of the coarsest equitable partition but in different orbits. The latter means
that individualization of u and v in isomorphic copies G′ and G′′ of G gives non-isomorphic
results. Therefore, if Tinhofer’s algorithm is run on G′ and G′′ and individualizes u and v,
it eventually decides non-isomorphism. ut

Summarizing Theorem 17, Lemmas 25 and 26, and [10, Corollary 1.3], we obtain the
chain of inclusions:

Discrete ⊂ Amenable ⊂ Compact ⊂ Godsil ⊂ Tinhofer ⊆ Refinable (16)

All but the last inclusion are provably strict. The details can be found in Appendix B.
It remains open to establish a separation between Tinhofer and Refinable. Note that,

while Amenable is the class of graphs for which the color-refinement procedure suffices to
solve Graph Isomorphism, Refinable consists of graphs for which color refinement correctly
solves Graph Automorphism (checking if there is a nontrivial automorphism).

Finally, we mention that the hierarchy (16) collapses to Discrete if we restrict ourselves
to only rigid (i.e. asymmetric) graphs.
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2014, Québec City, Québec, Canada., pages 1904–1910. AAAI Press, 2014.

16. M. Koren. Pairs of sequences with a unique realization by bipartite graphs. Journal of Combinatorial Theory,
Series B, 21(3):224 – 234, 1976.

17. A. Krebs and O. Verbitsky. Universal covers, color refinement, and two-variable logic with counting quantifiers:
Lower bounds for the depth. E-print, arxiv.org/abs/1407.3175, 2014.

18. M. V. Ramana, E. R. Scheinerman, and D. Ullman. Fractional isomorphism of graphs. Discrete Mathematics,
132(1-3):247–265, 1994.

19. E. R. Scheinerman and D. H. Ullman. Fractional graph theory. A rational approach to the theory of graphs.
Wiley: John Wiley & Sons, 1997.

20. N. Shervashidze, P. Schweitzer, E. J. van Leeuwen, K. Mehlhorn, and K. M. Borgwardt. Weisfeiler-Lehman graph
kernels. Journal of Machine Learning Research, 12:2539–2561, 2011.

21. G. Tinhofer. Graph isomorphism and theorems of birkhoff type. Computing, 36:285–300, 1986.
22. G. Tinhofer. Strong tree-cographs are birkhoff graphs. Discrete Applied Mathematics, 22(3):275–288, 1989.
23. G. Tinhofer. A note on compact graphs. Discrete Applied Mathematics, 30(2-3):253–264, 1991.
24. G. Tinhofer and M. Klin. Algebraic combinatorics in mathematical chemistry. Methods and algorithms III.

Graph invariants and stabilization methods, 1999.
25. R. Tyshkevich. Decomposition of graphical sequences and unigraphs. Discrete Mathematics, 220(1-3):201–238,

2000.
26. G. Valiente. Algorithms on Trees and Graphs. Springer, 2002.
27. H. Whitney. Congruent graphs and connectivity of graphs. Amer. J. Math. 54:150-168, 1932.
28. M. Ziv-Av. Results of computer algebra calculations for triangle free strongly regular graphs. E-print:

www.math.bgu.ac.il/ zivav/math/eqpart.pdf, 2013.

23



A Proof of Lemma 14

Various proofs of this fact are available in [10, 11, 18]. Our exposition is close to [19].
Let X = (xij) be any fractional automorphism of G. We define a directed graph DX with

vertex set V (G) = {1, . . . , n} and edge set

E = { (i, j) : Xij 6= 0} .

Let V = S1∪S2∪· · ·∪St be the partition of V into the strongly connected components Si
of the digraph DX . We first show that there can be no directed edges between the strongly
connected components. We can assume, without loss of generality, that the components are
topologically sorted: if (u, v) is a directed edge in DX with u ∈ Si and v ∈ Sj then i ≤ j.
Hence, for S = Si ∪ Si+1 ∪ . . . St there are no directed edges (u, v) with u ∈ S and v 6∈ S.
It implies that for each i ∈ S the row sum

∑
j∈S Xij = 1. Hence all the row sums of the

submatrix indexed by S on both rows and columns are 1. Since X is doubly stochastic this
forces each column sum of this submatrix is also 1. More precisely,

∑
i∈S Xij = 1 for j ∈ S.

Hence there are no edges between S and S for each such S. Consequently, there are no edges
between the strongly connected components Si of DX .

Therefore, relabeling V (G) so that S1, S2, . . . , St become intervals of consecutive integers,
we can bring X to a block diagonal form

X = X1 ⊕X2 ⊕ · · · ⊕Xt (17)

where each Xi is a doubly stochastic matrix. Note that the underlying directed graph DXi

induced by Si is strongly connected, which means that each matrix Xi is irreducible.
Now, we claim that the strongly connected components Si form an equitable partition

of the graph G. Since X is a fractional automorphism we have AX = XA where A is the
adjacency matrix of the relabeled graph G. Then for any pair of components Si and Sj we
have AijXj = XiAij, where Aij denotes the (i, j)th block indexed by Si on the rows and Sj
on columns. Let u denote the all 1’s vector of dimension |Sj|. Multiplying by u to the right
of both sides we obtain

Aiju = AijXju = XiAiju,

since Xju = u. Hence Aiju is an eigenvector of Xj for eigenvalue 1. However, the matrix
Xj is is nonnegative and irreducible, hence by the Perron-Frobenius theorem the maximum
eigenvalue (which is 1 for a stochastic matrix) has a 1 dimensional eigenspace. Since u is an
eigenvector, it follows that Aiju is its scalar multiple. This means that Aiju = diju, where dij
is the degree of every vertex in Si in the bipartite graph G[Si, Sj] if i 6= j and in the subgraph
G[Si] if i = j. We conclude that each G[Si, Sj] is biregular and each G[Si] is regular.

Thus, the Si’s do yield an equitable partition. Since this partition is a refinement of the
coarsest equitable partition PG, (17) is a block diagonal form of X also with respect to PG.

B Separations in the Color-Refinement Hierarchy

We recall the chain of inclusions mentioned in Section 5.
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Discrete ⊂ Amenable ⊂ Compact ⊂ Godsil ⊂ Tinhofer ⊆ Refinable.

The strict inclusions are proved by the following separating examples. The classes Discrete
and Amenable are separated, for example, by Kn for n ≥ 2. The other separations are not so
simple.

– The classes Amenable and Compact are separated, for example, by Cn for n ≥ 6. These
graphs are not amenable because they are indistinguishable from a pair of disjoint cycles
on same number of vertices. On the other hand, cycles are known to be compact graphs
[21, Theorem 2].

– The classes Compact and Godsil are separated by the well-known Petersen graph. Evdoki-
mov, Karpinski, and Ponomarenko [8, Corollary 5.4] prove that the Petersen graph is not
compact. They explicitly give a fractional automorphism of the Petersen graph which
cannot be written as a convex combination of the automorphisms. It remains to show
that the Petersen graph belongs to the class Godsil. The proof is given in Subsection B.1
below.

– The classes Godsil and Tinhofer are separated by the Johnson graphs J(n, 2) for n ≥ 7.
The Johnson graph J(n, k) has the k-element subsets of [n] = {1, . . . , n} as vertices;
any two of them are adjacent if their intersection consists of k − 1 elements. Note that
J(n, 1) = Kn. Furthermore, the graph J(n, 2) is the line graph of Kn: it has all 2-element
subsets of [n] as vertices; any two of them are adjacent if the intersection of the 2-subsets
is non-empty. It is noticed in [7] that J(n, 2) is not Godsil for n ≥ 7. For establishing the
separation, we show that J(n, 2) is indeed Tinhofer. The proof is given in Subsection B.2
below.

B.1 The Petersen Graph is Godsil

It is well-known that the Petersen graph, denoted by P , is isomorphic to the Kneser graph
K(5, 2). Formally, it means the following. Fix a set Ω = {a, b, c, d, e}. Then, the set of all
2-subsets of Ω, i.e. {ab, ac, ad, ae, bc, bd, be, cd, ce, de}, is the vertex set of P . Two vertices are
connected by an edge iff the corresponding 2-subsets are disjoint. An important fact about
the Petersen graph is that its automorphism group is isomorphic to the symmetric group
acting on the set Ω, denoted by SΩ (which is S5). In fact, any automorphism of the Petersen
graph can be realized by extending the action of a permutation π ∈ SΩ to the graph P and
vice-versa [27].

First, we state some useful facts about the Petersen graph.

Lemma 27. The following statements are true about the Petersen graph.

(i) There are no cycles of length 3,4 and 7.
(ii) There are no independent sets of size greater than 4.

(iii) Any two adjacent vertices have no common neighbors and any two non-adjacent vertices
have a unique common neighbor.
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We will need some definitions regarding equitable partitions in graphs. Given a partition
Σ = {S1, . . . , Sk}, we call the sets S1, S2, . . . , Sk as cells of Σ. If the size of a cell is k, we
call it a k-cell of Σ. Two cells S and S ′ are said to be compatible if the induced bipartite
graph P [S, S ′] is biregular (it can be empty). Otherwise, we call them to be incompatible.
Recall that in an equitable partition, any cell S induces a regular graph P [S]. Moreover, any
two cells S, S ′ are compatible. In that case, the number of edges in the graph P [S, S ′] is a
common multiple of |S| and |S ′|.

Now we are ready to prove the following theorem.

Theorem 28. The Petersen graph is Godsil.

Proof. For proof of the theorem, we will enumerate all equitable partitions of P . For each such
partition, we describe a subgroup of Aut(P ), the orbits of which are the cells in this partition.
We will use the Kneser graph definition to describe such subgroups of automorphisms by
subgroups of SΩ.

In is known [28] that, up to automorphisms, P has 10 equitable partitions. In [28], they
are obtained with the aid of computer computation. We here perform a case analysis that
allows us to find 10 equitable partitions of P , to prove that this list is complete, and to see
that each of the partitions is an orbit partition.

The trivial partition of the entire vertex set is clearly an orbit partition, since the Pe-
tersen graph is vertex-transitive. For easy enumeration, we classify the non-trivial equitable
partitions of P by size of the smallest cell in the partition. Given an equitable partition Σ,
let δ be the minimum cardinality of a cell in Σ. Clearly, δ ≤ 5. Lemma 29 handles the case
δ ∈ {3, 4, 5}. Lemma 31 handles the case δ = 2. Lemma 33 handles the case δ = 1. ut

We first handle the case δ ∈ {3, 4, 5}.

Lemma 29. Let Σ be an equitable partition of P such that δ ∈ {3, 4, 5}. Then, Σ is an
orbit partition of P .

We will require the following claim.

Claim 30. The following holds for an equitable partition Σ of the Petersen graph.

(i) δ 6= 3.
(ii) If δ = 4, the partition has one 4-cell S and one 6-cell T . Moreover, P [S] is empty and

P [T ] is a 3-matching (a matching of size 3).
(iii) If δ = 5, the partition has two 5-cells S and T . Moreover, P [S] and P [T ] are 5-cycles.

Proof. (i) Suppose δ = 3. Let S be a 3-cell. Then, any equitable partition can be of two
kinds: either {S, T} where |T | = 7, or {S, U, V } where |U | = 3, |V | = 4. The first case
is ruled out since P [T ] can never be regular (P has neither independent sets of size 7
nor cycles of size 7). Suppose the second case is possible. Then P [S] and P [U ] must
be empty (since P has no three cycles). Furthermore, the bipartite graphs P (S, V ] and
P [U, V ] must be both biregular. The graph P [S, V ] (likewise, P [U, V ]) is empty or it has
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12 edges. It is not possible that P [S, V ] has 12 edges because then P [V ] has only 3 edges
and cannot be regular. If both P [S, V ] and P [U, V ] are empty then V is disconnected
from the rest of the graph, which is a contradiction. Therefore, δ = 3 is not possible.

(ii) Suppose δ = 4. Then, any equitable partition must be of the kind {S, T} where |S| = 4
and |T | = 6. Moreover, P [S] must be empty (0-regular) or 2-matching (1-regular) since
it cannot be a 4-cycle (2-regular). In fact, the case of 2-matching can also be ruled out
by counting the number of edges as follows. For S and T to be compatible, there must
be 12 edges in the graph P [S, T ]. Then, there is exactly one edge left in the induced
graph P [T ] which is impossible. Therefore, P [S] must be empty. Also, this implies that
the graph P [S, T ] has 4× 3 = 12 edges. Hence, P [T ] must be a 3-matching.

(iii) Suppose δ = 5. Then, any equitable partition must be of the kind {S, T} where |T | = 5.
Since P does not have independent sets of size 5, P [S] and P [T ] must be 5-cycles. ut

Proof of Lemma 29.

(a) Suppose δ = 4. We know by Claim 30 that any equitable partition is of kind Σ = {S, T}
where |S| = 4 and |T | = 6. Moreover, P [S] is empty and P [T ] is a 3-matching. Let
us characterize all such partitions. By Kneser graph definition, any 4-independent-
set must be of the kind {ab, ac, ad, ae}. Therefore, all such partitions must be of the
kind S = {ab, ac, ad, ae} and T = {bc, bd, be, cd, ce, de}. The partition {ab, ac, ad, ae},
{bc, bd, be, cd, ce, de} can be easily verified to be equitable. Moreover, it is easy to check
that it is the orbit partition for the subgroup S{b,c,d,e}.

(b) Suppose δ = 5. We know by Claim 30 that any equitable partition must be of kind
Σ = {S, T} where |S| = |T | = 5. Moreover, P [S] and P [T ] are 5-cycles. Clearly, such
partitions exist, and any such partition has a matching between sets S and T . It remains
to show that this is indeed an orbit partition for some subgroup of Aut(P ). Denote the
5-cycle in S by 1-2-3-4-5. Let 1′ be the matching partner of 1 in T and so on. Now, 1′

and 2′ cannot be adjacent, else there is a 4-cycle in P . The unique common neighbor
of 1′ and 2′ must be 4′, otherwise it is easy to verify that we will have a 4-cycle in
P . The partners 3′ and 5′ can also be uniquely determined in T . The permutation
π = (12345)(1′2′3′4′5′) can be verified to be an automorphism of P and the orbits of
the subgroup generated by π are precisely {S, T}. ut

Next, we handle the case δ = 2.

Lemma 31. Let Σ be an equitable partition of P such that δ = 2. Then, Σ is an orbit
partition of P .

We first require the following claim. Let N(S) denote the neighbourhood of a set S ⊂ V (P ).
I.e., N(S) = {v /∈ S : v ∈ N(u) for some u ∈ S}.

Claim 32. Let S be a cell of cardinality δ = 2 in the partition Σ. Then, N(S) is a cell of Σ.

Proof. Let S = {u, v}. We first claim that uv must be an edge. This holds because any two
non-adjacent vertices have a unique common neighbor x. The cell containing x can only be
a singleton set, which contradicts δ = 2. Since uv is an edge, there are no common neighbors
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of u and v. Therefore, |N(S)| = 4. Moreover, N(S) is an independent set since any edge
among vertices in N(S) can be used to construct a 3 or 4 cycle passing through the edge uv
(see Figure B.1). This is not possible by Lemma 27.

Next, we show that N(S) is a cell. Let R = V (P )\(S ∪ N(S)) be the set of remaining
vertices as shown in Figure 1. Clearly, |R| = 4. Observe a cell cannot contain vertices from
both N(S) and R, since it would be incompatible with S. Since N(S) is independent set,
there cannot be a 2-cell inside N(S). Clearly, there cannot be 1-cells and hence 3-cells inside
N(S). Therefore, N(S) must be a cell. ut

ab

cd

ae

be

ce

de

ac bd

ad bc

S

N(S) R

Fig. 1. Case δ = 2.

Proof of Lemma 31. We will classify the equitable partitions by the partition induced
on the set R, since S and N(S) are already seen to be cells. By accounting for edges of
S and N(S), it is easy to verify that R has exactly two edges, and hence P [R] must be a
2-matching. Since δ = 2, R does not contain any 1-cells and hence, any 3-cells. This leaves
us with only two cases.

Case 1: R is a cell. We characterize all such partitions by naming a typical case. W.l.o.g,
let S = {ab, cd} since S is an edge. Then, N(S) must be {ae, be, ce, de} and R must be
{ac, ad, bc, bd}. The partition {ab, cd}, {ae, be, ce, de}, {ac, ad, bc, bd} can be easily verified
to be equitable. Moreover, it is easy to check that it is the orbit partition for the subgroup
of all permutations in SΩ which preserve the Ω-partition {ab}, {cd}, {e}. This is also the
subgroup generated by the automorphisms (ab), (cd), (ac)(bd).

Case 2: The induced partition on R is of the form {A,B} where |A| = |B| = 2. Each
2-cell has to be an edge. Therefore, the sets A and B must be {ac, bd} and {bc, ad}. The
partition {ab, cd}, {ae, be, ce, de}, {ac, bd}, {ad, bc} can be easily verified to be equitable.
Moreover, it is easy to check that it is the orbit partition for the subgroup of all permu-
tations in SΩ which preserve the Ω-partition {ab}, {cd}, {e} and additionally, stabilize
the sets {ac, bd} and {ad, bc}. This is also the subgroup generated by the automorphisms
(ac)(bd), (ad)(bc), (ab)(cd). ut
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Fig. 2. Case δ = 1.

Finally, we handle the case δ = 1.

Lemma 33. Let Σ be an equitable partition of P such that δ = 1. Then, Σ is an orbit
partition of P .

Proof. Let S be a singleton set in such an equitable partition. Similar to a previous argument,
a cell cannot have vertices from both N(S) and V \N(S). Therefore, any equitable partition
refines the partition S,N(S), R (see Figure B.1). Observe that N(S) must be independent
set (otherwise there is a 3-cycle). Moreover, if S = {ab} in Kneser definition, N(S) must be
{ce, de, cd} and therefore, R = {ae, be, ac, bc, ad, bd} forms a 6-cycle, as shown in the figure.
We proceed by further classifying equitable partitions on the basis of the partition induced
by them inside N(S). Since |N(S)| = 3, we have three possible cases. Either N(S) is a cell,
or it contains three singleton cells, or it contains one singleton and one 2-cell.

Case 1: N(S) is a cell. We further classify the equitable partitions in this case on the basis
of the partition induced on the set R. First, we examine the possible cells X in R which
are compatible with N(S). X cannot be of size 1 or 2, otherwise P [N(S), X] has at
most two edges. Also, X cannot be of size 4, 5 since this would imply a 1 or 2 cell in R.
Therefore, either R is a cell, or there are two 3-cells in R.
(a) R is a cell. The partition {ab}, {de, cd, ce}, {ac, ad, ae, bc, bd, be} can be verified to

be an equitable partition. Moreover, it is easy to check that it is the orbit partition
for the subgroup S{c,d,e} × S{a,b}.

(b) The partition induced on R is of form {A,B}, where |A| = |B| = 3. Because
of regularity, the only possible 3-cells in R are the independent sets {ad, ac, ae}
and {bc, bd, be}. The partition {ab}, {de, cd, ce}, {ad, ac, ae}, {bc, bd, be} is clearly
equitable. Moreover, it is easy to check that this partition is the orbit partition for
the subgroup S{c,d,e}.

Case 2: N(S) contains 3 singleton cells. Again, we classify the equitable partitions on the
basis of the partition induced on the set R. We can check that a cell of size more than
two in R will have at least one edge to some singleton in N(S), and will be incompatible
with that singleton. Therefore, cells in R must have size at most 2. Moreover, any 2-cell
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must be of the form {ax, bx} for some x ∈ {d, c, e} since all other 2-cells can be seen to be
incompatible with some singleton cell in N(S). Finally, it can be seen that every possible
1-cell is incompatible with these three 2-cells. Hence, we can have only two possible cases.

(a) R consists of six singleton cells. The partition is trivially equitable. Moreover, it is
easy to check that it is the orbit partition for the subgroup {id}.

(b) R consists of three cells of size 2, namely {ad, bd}, {ac, bc}, {ae, be}. The partition
{ab}, {cd}, {ce}, {de}, {ad, bd}, {ac, bc}, {ae, be} can be easily seen to be equitable.
Moreover, it is easy to check that it is the orbit partition for the subgroup S{a,b}.

Case 3: N(S) contains a 2-cell U = {ce, de} and a 1-cell V = {cd}. Again, we need to
classify the equitable partitions on the basis of the partition induced on the set R. First,
we examine the possible cells X in R which are compatible with U and V . Clearly, X
cannot be a 5-cell since P [X] cannot be regular. It cannot be a 3-cell as well since the two
candidate 3-cells are the independent sets {ad, ac, ae} and {bc, bd, be}. Neither of them can
be compatible with the singleton set V . Also, R cannot be a cell since it is incompatible
with the singleton set V . Moreover, the only possible 4-cell is the neighborhood of the
set U , i.e. {ac, bd, ad, bc}. Any other 4-cell is incompatible with U . Overall, we have no
3,5,6 cells in R. Therefore, we have only the following four remaining subcases.

(a) One 4-cell and two 1-cells. This case is not possible since a 1-cell cannot be compat-
ible with a 4-cell.

(b) One 4-cell and one 2-cell. The cells are {ac, bd, ad, bc} and {ae, be}. The partition
{ab}, {cd}, {ce, de}, {ae, be}, {ac, bd, ad, bc} can be verified to be an equitable par-
tition. Moreover, it is easy to check that it is the orbit partition for the subgroup
S{a,b} × S{c,d}

(c) Three 2-cells. First, ae and bemust be in the same 2-cell, otherwise the cell containing
any of them would be incompatible with V . For the remaining vertices ac, ad, bc, bd,
we can pair them up in three ways: (i) ac, ad and bc, bd, (ii) ac, bc and ad, bd, or
(iii) ac, bd and ad, bc The first case is not possible since {ae, be} and {ac, ad} are
not compatible. The second case is not possible because {ac, bc} and U = {ce, de}
are not compatible. The third case gives an equitable partition {ab}, {cd}, {ce, de},
{ae, be}, {ac, bd}, {ad, bc}. Moreover, it is easy to check that it is the orbit partition
for the subgroup generated by (ab)(cd).

(d) A bunch of 1-cells and 2-cells. Clearly, the vertices ac, ad, bc, bd cannot form a sin-
gleton cell, since such a 1-cell will not be compatible with U . Therefore, {ae} and
{be} are the only possible singleton cells. Neither of them can pair up with one of
ac, ad, bc, bd since that cell would be incompatible with V . Therefore, they are forced
to be singleton cells. It remains to partition ac, ad, bc, bd into two 2-cells. The vertex
ac cannot be paired up with bd or bc since it will be incompatible with be. Therefore,
the only possible case is to have 2-cells {ac, ad} and {bc, bd}. The partition {ab},
{cd}, {ce, de}, {ae}, {be}, {ac, ad}, {bc, bd} can be verified to be equitable. More-
over, it is easy to check that it is the orbit partition for the subgroup S{c,d}. (This
case is identical to Case 2(b)). ut
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B.2 The Johnson Graphs J(n, 2) are Tinhofer

In this section, we show that the Johnson graphs J(n, 2) are Tinhofer. We begin with some
necessary definitions. LetG be a graph and F ⊂ V (G) be the set of fixed vertices ofG. Denote
the automorphism group of G by A. For v ∈ V (G), Av will denote the stabilizer subgroup
of v. Furthermore, AF =

⋂
v∈F Av. Let PF denote the coarsest equitable subpartition of the

partition of V (G) individualizing each vertex in F . G is Tinhofer iff, for every F , the orbit
partition of G with respect to AF (which is a subpartition of PF ) coincides with PF .

One way to prove that the two partitions coincide is to show that each orbit O of AF
is definable in terms of F in two-variable first-order logic. “In terms of F” means that
a defining formula ΦO(x) can use constant symbols (names) for each vertex in F . ΦO(x)
contains occurrences of only two variables, x and y. At least one occurrence of x is free.
ΦO(x) uses two binary relation symbols ∼ and = for adjacency and equality of vertices.
ΦO(x) is true on G for x = v iff v ∈ O.

Once ΦO(x) is found for each O, the equality of the partitions follows by Immerman-
Lander argument [13]. Or directly from the definitions of orbits, as those will imply that any
two orbits are separated by color refinement starting from the individualization of F . The
number of refinement steps sufficient to separate O from any other orbit can be only one
greater than the quantifier depth of ΦO(x).

In order to implement this scenario for G = J(n, 2), it will be convenient to assume
that V (G) =

(
[n]
2

)
(though the formulas ΦO(x) will not involve variables over [n]). Given

α ∈ Sn, by `(α) we denote the corresponding permutation of
(
[n]
2

)
. Obviously, every `(α) is

an automorphism of G. By the Whitney theorem [27], A contains nothing else.
Before designing the definitions ΦO(x), we will need to make two preliminary steps:

– describe AF ,
– describe the orbits of AF (first irrespectively of any logical formalism; expressing these

descriptions in two-variable first-order logic will be the next task).

We now proceed to the proof of the theorem.

Theorem 34. J(n, 2) is a Tinhofer graph for all n.

Proof. Note that J(2, 2) = K1, J(3, 2) = K3, and J(4, 2) is the octahedral graph, whose
complement is K(4, 2) = 3K2. Thus, these three graphs are amenable and, hence, Tinhofer.
We can, therefore, assume that n ≥ 5.

Call a fixed vertex p ∈ F isolated if F contains no vertex adjacent to p. Let F = F1 ∪F2

be the partition of F into non-isolated and isolated vertices. Furthermore, we define the
partition

[n] = W1 ∪W2 ∪W3

as follows: W1 is the union of all non-isolated pairs p (i.e., all p in F1), and W2 is the union
of all isolated pairs p (i.e., all p in F2).

Note now that `(α) ∈ AF iff

– α(w) = w for every w ∈ W1 and
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– α(p) = p for every p ∈ F2.

Given a vertex u = {a, b} of G, let O(u) denote its orbit with respect to AF . There are
six kinds of the orbits. Below we describe all of them along with providing suitable formal
definitions ΦO(u)(x).

Case 1: {a, b} ⊆ W1. Then O(u) = {u}. Formal definition: x = u.
Case 2: {a, b} ⊆ W2. Here we have two cases. If u ∈ F2, then O(u) = {u} again. Otherwise,

F2 contains two pairs p1 = {a, a′} and p2 = {b, b′}. In this case,

O(u) = {{a, b}, {a′, b}, {a, b′}, {a′, b′}},

which is exactly the common neighborhood of p1 and p2. Formal definition: x ∼ p1 ∧x ∼
p2.

Case 3: {a, b} ⊆ W3. Now O(u) =
(
W3

2

)
, which are exactly the non-fixed vertices with no

neighbor in F . Formal definition:
∧
p∈F (x 6= p ∧ x 6∼ p).

Case 4: a ∈ W1, b ∈ W2. In this case, there is p = {b, b′} in F2 and there are q1 = {a, a1}
and q2 = {a, a2} in F1. Then

O(u) = {{a, b}, {a, b′}}.

Formal definition: x ∼ p∧x ∼ q1∧x ∼ q2. Indeed, the condition x ∼ p forces x to contain
either b or b′. This excludes the possibility that x = {a1, a2} and, therefore, x is forced
to contain a by the adjacency to q1 and q2.

Case 5: a ∈ W1, b ∈ W3. Then O(u) = {{a, b′} : b′ ∈ W3}. Formal definition. We know that
there are q1 = {a, a1} and q2 = {a, a2} in F1. First of all, we say that x ∼ q1 ∧ x ∼ q2.
It remains to exclude the possibility that x ⊆ W1 ∪W2 (in particular, this will exclude
x = {a1, a2} and force x to contain a). We do this by adding the following expression∧
p∈F

x 6= p∧
∧

p,q∈F,p6∼q

¬(x ∼ p ∧ x ∼ q)∧
∧

p,q∈F1,p∼q

(x ∼ p ∧ x ∼ q → ∃y (y ∼ x ∧ y ∼ p ∧ y ∼ q)).

The first conjunctive term prevents x to be one of the pairs in F . The second term
excludes the case that x is covered by two disjoint pairs p and q in F . The third term
excludes the case that x is covered by two intersecting pairs p and q in F or, equivalently,
the case where x, p, and q form a triangle. It would be not enough just to forbid x, p,
and q from forming a clique because this could also exclude a permissible case where x,
p, and q form a star (which is captured by the subformula beginning with ∃y). Note, that
we need n ≥ 5 in this place.

Case 6: a ∈ W2, b ∈ W3. In this case, F2 contains a pair p = {a, a′} and

O(u) = {{a, b′} : b′ ∈ W3} ∪ {{a′, b′} : b′ ∈ W3} .

Formal definition: x ∼ p ∧ x 6⊆ W1 ∪W2, the latter being expressed as in the preceding
case.

The proof is complete. ut
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