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Abstract

We exhibit an unusually strong trade-off between resolution proof
width and tree-like proof size. Namely, we show that for any param-
eter k = k(n) there are unsatisfiable k-CNFs that possess refutations
of width O(k), but such that any tree-like refutation of width n1−ε/k
must necessarily have double exponential size exp(nΩ(k)). Conceptu-
ally, this means that there exist contradictions that allow narrow refu-
tations, but in order to keep the size of such a refutation even within
a single exponent, it must necessarily use a high degree of parallelism.
Viewed differently, every tree-like narrow refutation is exponentially
worse not only than wide refutations of the same contradiction, but
of any other contradiction with the same number of variables. This
seems to significantly deviate from the established pattern of most, if
not all, trade-off results in complexity theory.

Our construction and proof methods combine, in a non-trivial way,
two previously known techniques: the hardness escalation method
based on substitution formulas and expansion. This combination re-
sults in a hardness compression approach that strives to preserve hard-
ness of a contradiction while significantly decreasing the number of its
variables.
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1. Introduction

Propositional proof complexity is an area of study that has seen a rapid
development over several last decades, in part due to being well-connected
to a number of other disciplines. One of these connections that has seen
a particularly steady growth in very recent years is the interplay between
propositional proof complexity and practical SAT solving. This interplay is
based on the somewhat philosophical observation that the execution log of a
solver’s run on an unsatisfiable SAT instance can be viewed as a mathemat-
ical proof of its unsatisfiability in a certain proof system. Equally important
is the accompanying empirical observation that proof systems arising in this
way tend to be very natural, and, moreover, precisely of the kind that have
been theoretically studied in propositional proof complexity since its incep-
tion in the seminal paper by Cook and Reckhoff [CR79]. As a matter of
fact, the SAT solvers that seem to completely dominate the landscape at
the moment, like those based on conflict-driven clause learning, lead to just
one resolution proof system dating back to the papers by Blake [Bla37] and
[Rob65]. This somewhat explains the fact that resolution is by far the most
studied system in proof complexity, and much of this study has concen-
trated on simple complexity measures for resolution proofs like size, width
and space, and on relations existing between them. All these measures have
natural counterparts in the world of practical SAT solving.

Our paper continues this line of research, and we exclusively deal with
the resolution proof system. The first measure of interest to us is width. This
measure is extremely natural and robust, and in fact it is not very specific
to resolution. As is well-known, width w proofs can more instructively be
viewed as semantic proofs operating with arbitrary Boolean expressions and
equally arbitrary (sound) inference rules with the sole restriction that every
line depends on at most w variables.

Ben-Sasson and Wigderson [BW01] showed that short proofs can be trans-
formed into proofs of small width, while Atserias and Dalmau [AD08] did this
for proofs that have small clause space. Thus, despite its deluding simplicity,
the class of contradictions possessing small-width refutations is rich.

In this paper we are interested in (yet another) confirmation of this thesis
“from the opposite side”: there exist contradictions that do have small-width
refutations, but the latter are highly complex and non-efficient, and any
attempts to simplify them must necessarily lead to a dramatic blow-up in
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width. Before reviewing previous work in this direction and stating our own
contribution, it will be convenient to fix some basic notation (we will remind
exact definitions in Section 2). For a CNF contradiction τn in n variables, let
w(τn ` 0) [S(τn ` 0)] be the minimum possible width [size, respectively] of
any resolution refutation of τn. ST (τn ` 0) is the minimum size with respect
to tree-like refutations, and w(τn) is the maximum width of a clause in τn
itself.

In this notation, the main results from [BW01] can be stated as follows:

w(τn ` 0) ≤ O(logST (τn ` 0))

w(τn ` 0) ≤ O(n · logS(τn ` 0))1/2 + w(τn).

We also note the trivial (brute-search) bound in the opposite direction:

S(τn ` 0) ≤ nO(w(τn`0)). (1)

As it turned out, little else can be said in general about relations between
these basic measures. Namely, Ben-Sasson, Impagliazzo and Wigderson
[BIW04] gave an example of contradictions τn with

w(τn ` 0) ≤ O(1), ST (τn ` 0) ≥ exp (Ω(n/ log n)) ; (2)

the same paper also proved a matching upper bound (for arbitrary refutations
in n variables). In more recent development, Atserias, Lauria and Nordström
[ALN14] have shown that S(τn ` 0) can be as large as nΩ(w(τn`0)), that is in
certain situations the trivial brute-search proof is essentially optimal. Ben-
Sasson [Ben09] established a trade-off between width and tree-like resolution
size. Namely, he constructed contradictions τn that have tree-like refutations
of either constant width or polynomial size but such that

w(Π) · log |Π| ≥ Ω(n/ log n) (3)

for any tree-like refutation Π of τn, w(Π) and |Π| being its width and size
respectively.

Our main result, Theorem 2.4 can be viewed as a far-reaching generaliza-
tion of the previous contributions (2), (3). For any parameter k = k(n) we
construct a sequence of k-CNF contradictions τn such that w(τn ` 0) ≤ O(k)
while

|Π| ≥ exp
(
nΩ(k)

)
(4)
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for any tree-like refutation Π of width ≤ n1−ε/k. Thus, when k, say, is a
sufficiently large constant our bound becomes super-exponential in n, and for
(say) k = n1/3 it becomes double exponential. This bound is much larger than
ST (τ ∗n ` 0) for any contradiction τ ∗n in n variables, and for that reason we did
not attempt to prove an exponential lower bound on ST (τn ` 0), although
we suspect it should not be very hard.

We propose the name “ultimate trade-offs” for this kind of results, al-
though we are not immediately aware of any other example existing in the
literature, be it in computational, proof or any other complexity.

On less general level, our result is complementary to that of Atserias et
al. [ALN14]. Namely, they proved that the obvious brute-search refutation
of size nO(w) (cf. (1)) in general can not be shortened. What we prove is
that if we additionally want to keep the width reasonably small, and keep
the tree-like size sane (at most single exponential), we need a high degree of
parallelism.

Our construction and the proof combine two very popular techniques in
proof complexity: hardness escalation and expansion. The former method
converts every contradiction τn into another contradiction τ̂n so that rel-
atively mild hardness properties of τn transfer to lower bounds for τ̂n in
stronger proof systems. So far this technique has been used in two main fla-
vors: substitution formulas (see e.g. the survey [Nor13, Section 2.4]) and more
recent lifting formulas introduced by Beame, Huynh and Pitassi [BHP10].
One common feature of both approaches is that the price one has to pay for
improving hardness is a moderate increase in the number of variables.

In our work we change the gears on both these counts and are interested
in hardness preservation1 and variable compression, that is in (exponentially)
decreasing the number of variables. These two conflicting goals are balanced
using linear substitutions whose support sets need not necessarily be disjoint
as long as they form a good (boundary) expander. While by now expanders
is one of the most common techniques in proof complexity, we are not aware
of its previous applications in a similar context.

1As a matter of fact, our construction also gives the same hardness amplification as
ordinary substitution formulas with disjoint sets of variables. This observation, however,
plays no role in our conclusions.
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2. Preliminaries

In this section we give necessary definitions, state some useful facts and
formulate, in Section 2.1, our main results.

A literal is either a Boolean variable x or its negation x̄; we will sometimes

use the uniform notation xε
def
=

x if ε = 1

x̄ if ε = 0.
. A clause C is either a a

disjunction of literals or 1. The latter is a convenient technicality (e.g. with
this convention the set of all clauses makes a lattice in which ∨ is the join
operator etc.); 1 should be thought of as a placeholder for all trivial clauses.
C is a sub-clause of D, also denoted by C ≤ D if either D = 1 or C,D 6= 1
and every literal appearing in C also appears in D. The empty clause C
will be denoted by 0. The set of variables occurring in a clause C (either

positively or negatively) will be denoted by V ars(C) (V ars(1)
def
= ∅). The

width of a clause is defined as w(C)
def
= |V ars(C)|.

A CNF τ is a conjunction of clauses, often identified with the set of clauses
it is comprised of. A CNF is a k-CNF if all clauses in it have width at most k.
Unsatisfiable CNFs are traditionally called contradictions. For CNFs τ, τ ′,
τ � τ ′ is the semantical implication meaning that every truth assignment
satisfying τ also satisfies τ ′. Thus, τ is a contradiction if and only if τ � 0.
Also, for clauses C and D, C ≤ D if and only if C � D. The subscript n in
τn always stands for the number of variables in the CNF τn.

The resolution proof system operates with clauses and it consists of the
only resolution rule

C ∨ x D ∨ x̄
C ∨D

. (5)

A tree-like2 resolution proof Π is a binary rooted tree in which all nodes
all labelled by clauses, and such that the clause assigned to every internal
node can be deduced from clauses sitting at its two children via a single
application of the resolution rule. A tree-like resolution proof of a clause C
from a CNF τ is a tree-like resolution proof Π in which all leaves are labelled
by clauses from τ , and the root is labelled by a clause C̃ such that C̃ ≤ C
(the latter technicality is necessary since we did not include the weakening
rule). A refutation of a contradiction is a proof of 0 from it. The depth D(Π)
of a proof Π is the height (the number of edges in the longest path) of its

2DAG-like proofs are not considered in this paper.
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underlying tree, and its size |Π| is the number of leaves. The width w(Π) is
the maximum width of a clause appearing in Π.

For a CNF τ and a clause C, we let D(τ ` C), ST (τ ` C) and w(τ ` C)
denote the minimum possible value ofD(Π), |Π| and w(Π), respectively, taken
over all tree-like resolution proofs of C from τ .

The following result will be one of the starting points for our construction.

Proposition 2.1 ([BIW04]) There exists an increasing sequence {τn} of 4-
CNF refutations such that w(τn ` 0) ≤ 6, but ST (τn ` 0) ≥ exp(Ω(n/ log n)).

Let A be a m×n 0-1 matrix. For i ∈ [m],3 let Ji(A)
def
= {j ∈ [n] | aij = 1}.

For a clause E in the variables {y1, . . . , ym}, by E[A] we will denote the
CNF obtained from E by the F2-linear substitution yi →

⊕
j∈Ji(A) xj (i ∈

[m]) followed by expanding the resulted Boolean function as a CNF in the
straightforward way. The following easy observation will be important in
what follows: for every clause C in E[A],

V ars(C) =
⋃

yi∈V ars(E)

{xj | j ∈ Ji(A)} (6)

(we do claim equality here). For a CNF τ = E1 ∧ E2 ∧ . . . ∧ E`, we let

τ [A]
def
= E1[A] ∧ . . . ∧ E`[A]. If τ is a contradiction then evidently τ [A] is a

contradiction, too. The converse need not be true in general, of course.
For I ⊆ [m], the boundary of this set of rows is defined as

∂A(I)
def
= {j ∈ [n] | |{i ∈ I | j ∈ Ji(A)}| = 1} ,

i.e., it is the set of columns that have precisely one 1 at their intersections
with I. A is an (r, s, c)-boundary expander4 if |Ji(A)| ≤ s for any i ∈ [m]
and |∂A(I)| ≥ c|I| for every set of rows I ⊆ [m] with |I| ≤ r. An (r, n, c)-
boundary expander (i.e., a m× n matrix satisfying only the second of these
conditions) will be simply called an (r, c)-expander.

3[m] def= {1, . . . ,m}.
4In [ABRW04] such matrices were simply called expanders. But since beginning with

(apparently) [AAT11] the research in proof complexity also made good use of ordinary
vertex expanders and, as a consequence, tended to differentiate between boundary and
ordinary expansion, we also adopt this terminological change. What we, however, keep in
this paper is the matrix notation as we find it more instructive for many reasons.
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For a set of columns J ⊆ [n], we let

Ker(J)
def
= {i ∈ [m] | Ji(A) ⊆ J }

be the set of rows completely contained in J . Let A \ J be the sub-matrix of
A obtained by removing all columns in J and all rows in Ker(J).

We need two properties of boundary expanders whose analogues were
used, in one or another form, in almost all their applications in proof com-
plexity. The first one, proven by a simple probabilistic argument, says that
good expanders exist.

Lemma 2.2 Let n→∞ and m, s, c be arbitrary integer parameters possibly
depending on n such that c ≤ 3

4
s and

r ≤ o(n/s) ·m−
2
s−c . (7)

Then for sufficiently large n there exist m× n (r, s, c)-boundary expanders.

The second property says that in every good expander, the class of small
sets of rows whose removal leads to a relatively good expander is in a sense
everywhere dense.

Lemma 2.3 Let A be an m × n (r, 2)-boundary expander. Then for every

J ⊆ [n] with |J | ≤ r/4 there exists Ĵ ⊇ J such that
∣∣∣Ker

(
Ĵ
)∣∣∣ ≤ 2|J | and

A \ Ĵ is an (r/2, 3/2)-boundary expander.

We, however, have not been able to recover these statements from the
literature in a referrable form, and for this reason their simple proofs are
included in the Appendix.

2.1. Main results

In this brief section we formulate our main results.

Theorem 2.4 Let k = k(n) ≥ 4 be any parameter, and let ε > 0 be an
arbitrary constant. Then there exists a sequence of k-CNF contradictions
{τn} in n variables such that w(τn ` 0) ≤ O(k) but for any tree-like refutation
Π with w(Π) ≤ n1−ε/k we have the bound

|Π| ≥ exp
(
nΩ(k)

)
.
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As we noted in Introduction, our main technique is hardness preservation,
and since the corresponding statement might be of independent interest, we
formulate it here as a separate result.

Theorem 2.5 Let τm be an atbitrary contradiction in the variables y1, . . . , ym,
and let A be an m×n (r, 2)-boundary expander for some r. Then every tree-
like refutation Π of τm[A] with w(Π) ≤ r/4 must satisfy

|Π| ≥ 22D(τm`0)/r.

As stated, this is also a hardness escalation result (from depth to tree-like
size), but that part alone was known before [Urq11, Theorem 5.4], and one
does not need expanders for that.

3. Proofs

In this section we prove Theorems 2.4 and 2.5, and we begin with the lat-
ter. We present our proof as a plain inductive argument since, in our view,
it is often more instructive than various top-down approaches (cf. the re-
cent remarkable simplification [FLM+14] of the Atserias-Dalmau bound that
resulted from adopting this point of view).

Fix an m×n (r, 2)-boundary expander A, where r is an arbitrary param-
eter. Let us say that a set of columns J is closed if A \ J is an (r/2, 3/2)-
boundary expander (cf. Lemma 2.3). Fix now an arbitrary CNF τm (that
need not necessarily be a contradiction) in the variables y1, . . . , ym. We are
going to prove the following.

Claim 3.1 Assume that C is a clause in the variables x1, . . . , xn that pos-
sesses a tree-like proof Π from τ [A] with w(Π) ≤ r/4. Let J ⊆ [n] be an
arbitrary closed set with J ⊇ {xj | j ∈ V ars(C)}, and let E be any clause in
y-variables with

V ars(E) = {yi | i ∈ Ker(J)}
such that

E[A] ∨ C 6≡ 1, (8)

that is there exists an assignment of x-variables simultaneously falsifying
E[A] and C. Then

D(τ ` E) ≤ r

2
· log2 |Π|.
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Proof of Claim 3.1. Let C,Π, J and E satisfy the assumptions of our
claim. The argument proceeds by induction on Π.

Base |Π| = 1, i.e. C contains a sub-clause C̃ that appears in Ẽ[A]
for some Ẽ ∈ τ .
Applying (6) to the clause Ẽ, we see that J ⊇ V ars(C) ⊇ V ars(C̃) implies{
i ∈ [m]

∣∣∣ yi ∈ V ars(Ẽ)
}
⊆ Ker(J), that is V ars(Ẽ) ⊆ V ars(E). Also, E

and Ẽ must be consistent since

(E ∨ Ẽ)[A] = E[A] ∨ Ẽ[A] � E[A] ∨ C̃ � E[A] ∨ C,

and hence their inconsistency would have implied that (E ∨ Ẽ)[A] ≡ E[A] ∨
C ≡ 1 in contradiction with (8). Hence Ẽ ≤ E and thus D(τ ` E) = 0.

Inductive step |Π| > 1.
Assume that the last application of the resolution rule has the form

C0 ∨ xj C1 ∨ x̄j
C0 ∨ C1

.

Fix arbitrarily an assignment α to {xj | j ∈ J } falsifying both E[A] and
C0∨C1 that exists by our assumption. Further analysis depends on whether
j ∈ J or not.

Case 1, j ∈ J.
This case is easy. Assume w.l.o.g. that α(xj) = 0. Note that V ars(C0∨xj) ⊆
J and α(C0 ∨ xj) = 0. Thus we can apply the inductive assumption to the
clause C0 ∨ xj, the corresponding sub-proof Π0 of Π and to the same J and
E. We conclude that D(τ ` E) ≤ r · log2 |Π0| ≤ r · log2 |Π|.
Case 2, j 6∈ J.
One of the two sub-trees Π0,Π1 (say, Π0) determined by the children of the
root has size ≤ |Π|/2, and we assume w.l.o.g. that it corresponds to the
child labeled by C0 ∨ xj. Since w(C0 ∨ xj) ≤ r/4 by our assumption, we can

apply Lemma 2.3 to the set J ′
def
= {j′ | xj′ ∈ V ars(C0 ∨ xj)}. This will give

us a closed Ĵ ⊇ {j′ | xj′ ∈ V ars(C0 ∨ xj)} with
∣∣∣Ker

(
Ĵ
)∣∣∣ ≤ r/2, and our

first goal is to prove that every clause Ê with V ars
(
Ê
)

=
{
yi
∣∣∣ i ∈ Ker

(
Ĵ
)}

and consistent with E satisfies the assumptions of Claim 3.1 with C := C0 ∨
xj, J := Ĵ and E := Ê. For that we only have to extend our original

assignment α to the variables
{
xj
∣∣∣ j ∈ J ∪ Ĵ } in such a way that it will falsify
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both Ê[A] and C0∨xj. Since C0 ≤ C0∨C1 ≤ C is already falsified by α, the

latter task can be achieved simply by setting additionally α(xj)
def
= 0 (recall

that j 6∈ J). Also, every literal yεi of a variable yi ∈ V ars(E)∩V ars
(
Ê
)

maps

to yεi [A] =
⊕
j∈Ji(A)⊕ε̄ and, since Ji(A) ⊆ J , it has been already decided by

α. As E and Ê are consistent by our assumption (and α falsifies E), α(yi[A])
is actually ε̄. It only remains to show that α′ can be extended in such a way
that it sets all yi[A] for i ∈ Ker

(
Ĵ
)
\ Ker(J) to fixed values predetermined

to falsify the formula Ê[A].
Let A′ be the matrix obtained from A \ J by additionally removing the

column j from it. Since A \ J is an (r/2, 3/2)-boundary expander, A′ is an

(r/2, 1/2)-boundary expander. Also, Ker
(
Ĵ
)
\Ker(J) is a set of rows of car-

dinality≤ r/2, therefore ∂A′(I) 6= ∅ for every non-empty subset I ⊆ Ker
(
Ĵ
)
\

Ker(J). This allows us to order, by reverse induction, the rows in Ker
(
Ĵ
)
\

Ker(J) in such a way Ker
(
Ĵ
)
\Ker(J) = {i1, . . . , i`} that for every ν ∈ [`] the

set of rows Jiν (A
′) \ ⋃ν−1

µ=1 Jiµ(A′) is not empty; fix arbitrarily jν ∈ Jiν (A′) \⋃ν−1
µ=1 Jiµ(A′). Now, we first extend α′ to {xj | j ∈ (J ∪ J ′) \ {j1, j2, . . . , j`}}

arbitrarily (say, by zeros) and then consecutively extend it to xj1 , . . . , xj` so
that the linear forms

⊕
j∈J1(A) xj, . . . ,

⊕
j∈J`(A) xj are set to the right values.

In conclusion, Ê satisfies assumptions of Claim 3.1 with C := C0 ∨
xj. Since this clause has a proof from τ [A] of width ≤ r/4 and size ≤
|Π|/2, D(τ ` E) ≤ r

2
(log2 |Π| − 1). This conclusion holds for an arbi-

trary clause Ê in the variables
{
yi
∣∣∣ i ∈ Ker

(
Ĵ
)}

consistent with E. Now
we resolve all these clauses in the brute-force way along all the variables{
yi
∣∣∣ i ∈ Ker

(
Ĵ
)
\Ker(J)

}
. Since the depth of this original proof is at most

r/2, we get a proof of E in depth r
2

log2 |Π|.
This completes the analysis in case 2 of the inductive step. Claim 3.1 is

proved.

Theorem 2.5 is now immediate. If τ is a contradiction and Π is a refuta-
tion of τ [A] with w(Π) ≤ r/4, we simply apply Claim 3.1 with C := 0, J := ∅
and E := 0.

For Theorem 2.4, we are simply going to apply Theorem 2.5 to τ [A],
where τ is the contradiction from Proposition 2.1 and A is the (random)
matrix guaranteed by Lemma 2.2.

Proof of Theorem 2.4.
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First of all we can assume that k ≥ 12 since otherwise already the contradic-
tions from Proposition 2.1 will do. Set w := n1−ε/k, r := 4w, s := bk/4c ≥ 3,
c := 2 and choose the parameter m as the smallest value for which (7) is sat-
isfied. Clearly, m ≥ (n/kw)Ω(k) ≥ nΩ(k). If it turns out that m ≤ n2 then, as
before, we simply take the 4-CNF contradiction τn provided by Proposition
2.1. Otherwise we take the formula τm provided by that proposition and
compose it with an m× n (r, s, 2)-expander A guaranteed by Lemma 2.2.

Recall that D(τm ` 0) ≥ Ω(m/ logm). Hence Theorem 2.5 implies that
every tree-like refutation Π of the k-CNF contradiction τm[A] with w(Π) ≤ w
must have size at least

|Π| ≥ exp

(
Ω

(
m

r logm

))
≥ exp

(
Ω

(
m

n logm

))
since m≥n2

≥ exp(mΩ(1)) ≥ exp(nΩ(k)).

It only remains to remark that the width 6 refutation of τm stipulated
by Proposition 2.1 can be converted into a width O(k) refutation of τm[A]
simply by applying the operator E 7→ E[A] to its lines.

4. Conclusion

This paper has exhibited a somewhat peculiar phenomenon. When we try
to optimize in one resource (width in our case), the price we have to pay
in another resource (size) increases exponentially with respect to straightfor-
ward unrestricted tree-like refutations for all contradictions of the same size,
not only of the one we started with. This is very different from traditional
trade-off results.

Although in the paragraph above we used the words like ”proofs” and
”contradictions”, there is nothing in this paradigm that would be specific
to proof complexity. Thus, the first question we would like to ask is this:
do ultimate trade-offs exist elsewhere, or our example is singular? It looks
like one natural place to look for ultimate trade-offs (given the abundance of
traditional ones) is propositional space complexity.

Our result is a bit incomplete since the lower bound is double exponen-
tial only in the number of variables, not in the size of the contradiction.
Does it necessarily have to be the case? Attempting a rigorous formulation
(there are many other options to pinpoint this question), do there exist O(1)-
contradictions τn for which any refutation of optimal, or, even better, nearly
optimal, width requires tree-like size exp(nω(1))?
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A. Appendix

Here we give self-contained proofs of Lemmas 2.2 and 2.3.

Lemma 2.2. Let n→∞ and m, s, c be arbitrary integer parameters possibly
depending on n such that c ≤ 3

4
s and

r ≤ o(n/s) ·m−
2
s−c .

Then for sufficiently large n there exist m× n (r, s, c)-boundary expanders.

Proof. This lemma and its proof is identical to [ABRW04, Theorem 5.1],
except that we relax some restrictions on the parameters. We construct a
random m × n matrix A by picking independently in each row s random
entries with repetitions (the latter feature is not crucial, but it does make

calculations neater). That is, we let Ji(A)
def
= {ji1, . . . , jis}, where {jiν} (i ∈

[m], ν ∈ [s]) is a collection of ms independent random [n]-valued variables.
Recall that a matrixA is an (ordinary) (r, s, c)-expander if, again, |Ji(A)| ≤

s for all i ∈ [m], and for every I ⊆ [m] with |I| ≤ r we have |⋃i∈I Ji(A)| ≥
c·|I|. Thus, the only difference from boundary expanders consists in replacing
∂A(I) with

⋃
i∈I Ji(A).

Claim A.1 Every
(
r, s, s+c

2

)
-expander is an (r, s, c)-boundary expander.
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Proof of Claim A.1. Since every column j ∈ ⋃i∈I Ji(A) \ ∂A(I) belongs
to at least two sets Ji(A) (i ∈ I), we have the bound∣∣∣∣∣⋃

i∈I
Ji(A)

∣∣∣∣∣ ≤ |∂A(I)|+ 1

2

(∑
i∈I
|Ji(A)| − ∂A(I)

)
≤ 1

2
(s|I|+ |∂A(I)|).

On the other hand, |⋃i∈I Ji(A)| ≥ s+c
2
|I| since A is an

(
r, s, s+c

2

)
-expander.

The required inequality |∂A(I)| ≥ c · |I| follows.

Thus, it remains to prove that A is an (r, s, c′)-expander a.s., where c′
def
=

c+s
2

. Let p` be the probability that any given ` rows of the matrix A violate
the expansion property. Then

P[A is not a (r, s, c′)-expander] ≤
r∑
`=1

p` ·m`.

On the other hand,

p` = P[|{jiν | i ∈ I, ν ∈ [s]}| ≤ c′`] ≤
(
n

c′`

)
·
(
c′`

n

)s`

≤ O(1)c
′` ·
(
c′`

n

)(s−c′)`

≤ {O((sl)/n)}(s−c′)` ,

where for the last inequality we used that c′ ≤ 7
8
c ≤ 7

8
s and hence c′ ≤

O(s− c). Thus,

P[A is not a (r, s, c′)-expander] ≤
r∑
`=1

{O((sl)/n)}(s−c′)`m` ≤
r∑
`=1

(
{O((sr)/n)}(s−c′)`m

)`
,

and since m(sr/n)s−c
′

= m(sr/n)(s−c)/2 ≤ o(1) by our assumption, Lemma
2.2 follows.

Lemma 2.3. Let A be an m × n (r, 2)-boundary expander. Then for every

J ⊆ [n] with |J | ≤ r/4 there exists Ĵ ⊇ J sich that
∣∣∣Ker

(
Ĵ
)∣∣∣ ≤ 2|J | and

A \ Ĵ is an (r/2, 3/2)-boundary expander.

Proof. We define a strictly increasing sequence of sets of columns J0 ⊃
J1 ⊃ . . . ⊃ Jt ⊃ . . . as follows. Let J0

def
= J . For t > 0, we first let St be an

arbitrary set of rows violating the (r/2, 3/2)-boundary expansion condition
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in A \ Jt−1 if such a set exists; otherwise, the construction terminates. Then
we let

Jt
def
= Jt−1 ∪

⋃
i∈St

Ji(A).

Note that since the chain J0 ⊃ J1 ⊃ . . . ⊃ Jt . . . is strictly increasing, the
process does terminate at some point; let JT be the final set in this chain.
We claim that Ĵ := JT has the required properties, and the only thing that
has to be checked is that |Ker(JT )| ≤ 2|J |. For that we prove by induction
on t = 0, . . . , T that |Ker(Jt)| ≤ 2|J |.

Base case |Ker(J)| ≤ 2|J | immediately follows from the fact that A is an
(r, 2)-boundary expander and |J | ≤ r/4.

Inductive step. Assume that |Ker(Jt−1)| ≤ 2|J | for some 1 ≤ t ≤ T , and
let us prove that |Ker(Jt)| ≤ 2|J |.

Since |St| ≤ r/2, |Ker(Jt−1)| ≤ 2|J | ≤ r/2 and Ker(Jt−1) ∪ St ⊆ Ker(Jt),
we can choose a set of rows I such that Ker(Jt−1) ∪ St ⊆ I ⊆ Ker(Jt) and

|I| = min(r, |Ker(Jt)|). (9)

Applying to I the expansion condition, we get

|∂A(I)| ≥ 2|I|.

On the other hand, I ⊆ Ker(Jt) implies that

∂A(I) ⊆ J ∪
t⋃

s=1

∂A\Js−1(Ss).

Since Ss’s violate the (r/2, 3/2)-boundary expansion conditions in respective
matrices, we conclude that

|∂A(I)| ≤ |J |+ 3

2

t∑
s=1

|Ss| ≤ |J |+
3

2
|I|,

where for the latter inequality we used the fact I ⊇ S1

.
∪ S2

.
∪ . . .

.
∪ St.

Comparing these two inequalities, we find that |I| ≤ 2|J | ≤ r/2. Now (9)
implies that in fact |I| = |Ker(Jt+1)| that completes the inductive step in the
proof of Lemma 2.3.
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