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Abstract

We exhibit an unusually strong tradeoff result in propositional
proof complexity that significantly deviates from the established pat-
tern of almost all results of this kind. Namely, restrictions on one
resource (width in our case) imply an increase in another resource
(tree-like size) that is exponential not only with respect to the com-
plexity of the original problem, but also to the whole class of all prob-
lems of the same bit size. More specifically, we show that for any
parameter k = k(n) there are unsatisfiable k-CNFs that possess refu-
tations of width O(k), but such that any tree-like refutation of width
n1−ϵ/k must necessarily have double exponential size exp(nΩ(k)). This
means that there exist contradictions that allow narrow refutations,
but in order to keep the size of such a refutation even within a single
exponent, it must necessarily use a high degree of parallelism.

Our construction and proof methods combine, in a non-trivial way,
two previously known techniques: the hardness escalation method
based on substitution formulas and expansion. This combination re-
sults in a hardness compression approach that strives to preserve hard-
ness of a contradiction while significantly decreasing the number of its
variables.
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1. Introduction

Tradeoff results is quite a popular topic in complexity theory and beyond.
Whenever they apply, this serves as a rigorous demonstration of our inherent
inability to achieve two conflicting goals at once. These results have the
following form that we purposely describe in very generic terms. We are
given a task T and a set of protocols PT that achieve this task; for simplicity,
we confine ourselves to non-uniform models when everything is finite. The set
PT is equipped with two complexity measures µ and ν, usually of a rather
different nature. Then tradeoff results claim that after we restrict PT to
those protocols P for which µ(P ) is small, the minimum complexity with
respect to the second measure, minP∈PT

ν(P ) increases drastically, in many
cases exponentially. Earlier results along these lines primarily focussed on
the pair µ = ”computational space”, ν = ”computational time”, see [Bor93]
for a survey. But, as we already mentioned, at the moment this paradigm is
omnipresent and (µ, ν) can be literally anything. Specifically, there are many
tradeoff results of all kind in proof complexity [Nor13].

In this paper we demonstrate an example of a tradeoff whose behavior is
drastically different from most known cases. After a preliminary version of
this paper was disseminated, I was urged by several colleagues to articulate
the difference more clearly, and we will now spend some time on it. The
reader primarily interested in our technical contribution may safely skip this
part and jump to page 4.

It would be instructive to resort to a simple and necessarily schematic
picture. On Figure 1, µmin is simply minP∈PT

µ(P ), that is the complexity
of our task T with respect to µ alone. µmax is the “saturation level” in
the resource µ, that is its maximal amount any “reasonable” protocol can
possibly consume. The right end µmax of the interval of interest is actually
not very important for making our point, whenever it is not clear from the
context the reader can assume instead µmax = ∞.

Tradeoff results of any kind are trying to pinpoint the behavior of the
function

f(µ)
def
= min {ν(P ) | P ∈ PT ∧ µ(P ) ≤ µ}

in the interval µ ∈ [µmin, µmax]; more specifically, prove that it is (sharply)
decreasing. Ordinary tradeoffs normally consist of two parts: a lower bound
on f , shown in red, along with an upper bound stating, as the very minimum,
that at the right end µmax this lower bound is close to tight. These two facts
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Figure 1: Ordinary and ultimate tradeoffs

together imply that the actual curve f(µ) does have a slope. We would like
to note that we drew the red curve as a nice convex function mostly as a
sign of respect to earlier results that almost always had the form of a lower
bound on µ(P )ν(P ). In the plethora of examples found since that, it can be
anything non-increasing: we will see below one example (5) that is a lower
bound on µ(P ) log ν(P ); it can be a step function when the lower bound part
simply breaks down for some µ ∈ [µmin, µmax] etc. But, repeating our point,
two ingredients are paramount to any tradeoff result: a lower bound on f(µ)
at µ = µmin (and, preferably, as much to the right of it as possible), as well
as an upper bound at µ = µmax (extended as much as possible to the left).

So far we have discussed one particular task, T . But since the complexity
theory is about algorithmic problems, T is never in isolation, it is always a
member of a large but finite1 family of tasks Tn, where the subscript n stands
for the ”size” of T . As it turns out, in virtually all cases of interest there
exists a ”natural” upper bound νcr(n) on the ν-complexity minP∈PT∗ ν(P )
of any task T ∗ ∈ Tn, usually provided by a trivial (aka ”straightforward”,
”brute-force” etc.) protocol. For example, when ν = ”circuit size” in cir-
cuit complexity or ν = ”proof length” in proof complexity, νcr(n) = 2n. In

1Recall that we are considering non-uniform models.
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communication complexity, νcr(n) = n, n the bit size of the input. Etc. In
some cases, like circuit complexity, this upper bound is known to be tight
for the worst or even typical task T ∗ ∈ Tn (so-called Shannon effect), and in
other cases, like strong propositional proof systems, this is wide open. But,
implicitly or explicitly, νcr(n) is always there and determines the range in
which interesting developments occur.

As it turns out, in the vast majority of known tradeoff results, the red
curve is below the critical horizontal line ν = νcr(n). That is, µ-restricted
protocols for T are compared with unrestricted protocols P for the task T
itself; they can be managed to be at most as ν-bad as trivial protocols for all
tasks T ∗ ∈ Tn.

In this paper we exhibit a tradeoff result that operates entirely above the
line ν = νcr(n). In other words, the lower bound in a vicinity of µmin (that
in our result actually extends almost all the way up to µmax) is so strong
that it exponentially beats the generic upper bound νcr(n) holding for all
tasks T ∗ of comparable size n. The second ingredient in ordinary tradeoff
results, which is the upper bound on ν at µ = µmax need not be proven
separately: it automatically follows from the membership T ∈ Tn. It is due
to this latter property that we propose to call tradeoffs of this kind ultimate.
This phenomenon seems to be extremely rare (we will review below those few
exceptions we have been able to find after an earlier version of this paper was
disseminated), and we think it deserves at least a certain amount of attention
and contemplation.

Our concrete result belongs to the area of propositional proof complexity
that has seen a rapid development since its inception in the seminal paper
by Cook and Reckhoff [CR79]. This success is in part due to being well-
connected to a number of other disciplines, and one of these connections that
has seen a particularly steady growth in very recent years is the interplay
between propositional proof complexity and practical SAT solving. As a
matter of fact, SAT solvers that seem to completely dominate the landscape
at the moment, like those based on conflict-driven clause learning, lead to just
one resolution proof system dating back to the papers by Blake [Bla37] and
[Rob65]. This somewhat explains the fact that resolution is by far the most
studied system in proof complexity, and much of this study has concentrated
on simple complexity measures for resolution proofs like size, width and
space, and on relations existing between them.

Our paper also exclusively deals with the resolution proof system. The
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first measure of interest to us is width. This measure is extremely natural
and robust, and in fact it is not very specific to resolution. As is well-known,
width w proofs can more instructively be viewed as semantic proofs operating
with arbitrary Boolean expressions and equally arbitrary (sound) inference
rules with the sole restriction that every line depends on at most w variables.

Ben-Sasson andWigderson [BW01] showed that short proofs can be trans-
formed into proofs of small width (see (1) and (2) below), while Atserias
and Dalmau [AD08] did this for proofs that have small clause space. Thus,
despite its deluding simplicity, the class of contradictions possessing small-
width refutations is rich.

In this paper we give (yet another) confirmation of this thesis “from the
opposite side”: there exist contradictions that do have small-width refuta-
tions, but the latter are highly complex and non-efficient, and any attempts
to simplify them must necessarily lead to a dramatic blow-up in width. Be-
fore reviewing some relevant work in this direction and stating our own con-
tribution, it will be convenient to fix some basic notation (we will remind
exact definitions in Section 2). For a CNF contradiction τn in n variables, let
w(τn ⊢ 0) [S(τn ⊢ 0)] be the minimum possible width [size, respectively] of
any resolution refutation of τn. ST (τn ⊢ 0) is the minimum size with respect
to tree-like refutations, and w(τn) is the maximum width of a clause in τn
itself.

In this notation, the main results from [BW01] can be stated as follows:

w(τn ⊢ 0) ≤ O(logST (τn ⊢ 0)); (1)

w(τn ⊢ 0) ≤ O(n · log S(τn ⊢ 0))1/2 + w(τn). (2)

Bonet and Galesi [BG99] proved that (2) is (almost) tight by exhibiting
contradictions τn such that w(τn) ≤ O(1), S(τn ⊢ 0) ≤ nO(1) while w(τn ⊢
0) ≥ Ω(n1/2). As for (1), it is tight for obvious reasons: the Complete Tree
contradiction CTn consisting of all 2n possible clauses in n variables satisfies
w(CTn) = w(CTn ⊢ 0) = n and ST (CTn ⊢ 0) = 2n.

In the opposite direction, resolution size can be trivially bounded by width
as follows:

S(τn ⊢ 0) ≤ nO(w(τn⊢0)); (3)

the right-hand side here simply bounds the overall number of all possible
clauses of width ≤ w.

Atserias, Lauria and Nordström [ALN14] have recently shown that this
bound is also tight: for an arbitrary w = w(n) ≤ n1/2−Ω(1) there exist con-
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tradictions τn with w(τn ⊢ 0) ≤ w while S(τn ⊢ 0) ≥ nΩ(w). An earlier result
by Ben-Sasson, Impagliazzo and Wigderson [BIW04] can be viewed as an
ultimate demonstration that no simulation like (3) is possible for tree-like
resolution. Namely, they gave an example of contradictions τn such that

w(τn ⊢ 0) ≤ O(1), ST (τn ⊢ 0) ≥ exp (Ω(n/ log n)) . (4)

Having briefly discussed simulation and separation results, let us review
what has been known before in terms of tradeoffs. Ben-Sasson [Ben09] es-
tablished a tradeoff between width and tree-like resolution size. Namely, he
constructed contradictions τn that have tree-like refutations of either constant
width or polynomial size but such that

w(Π) · log |Π| ≥ Ω(n/ log n) (5)

for any tree-like refutation Π of τn (w(Π) and |Π| being its width and size
respectively). As for the general case, strong tradeoffs are precluded by (3)
and the observation that the naive resolution refutation it represents still has
the minimum possible width w(τn ⊢ 0). Hence, in sharp contrast with (5),
every contradiction τn has a DAG-like refutation Π such that

w(Π) · log |Π| ≤ O(log n · w(τn ⊢ 0)2).

Even with this severe restriction interesting results along these lines have
been reported in [Nor09, Tha14]. They are, however, best viewed in the dual
coordinate system µ = ”size”, ν = ”width” (in terms of Fugure 1).

Our main result, Theorem 2.4 is a far-reaching generalization of the pre-
vious contributions (4), (5). For any parameter k = k(n) we construct a
sequence of k-CNF contradictions τn such that w(τn ⊢ 0) ≤ O(k) while

|Π| ≥ exp
(
nΩ(k)

)
(6)

for any tree-like refutation Π of width ≤ n1−ϵ/k. Thus, when k, say, is a
sufficiently large constant our bound becomes super-exponential in n, and
for (say) k = n1/3 it becomes double exponential. As such, it perfectly fits
the paradigm we described in the beginning: in terms of Figure 1, we have
µ = ”width”, ν = ”tree-like size”, µmin = O(k), µmax = n and νcr(n) = 2n.
On less general level, our result is complementary to that of Atserias et al.
[ALN14]. Namely, they proved that the obvious brute-search refutation of
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size nO(w) (cf. (3)) in general can not be shortened. What we prove is that if
we additionally want to keep the width reasonably small, and keep the size
sane (at most single exponential), we need a high degree of parallelism.

Let us now review a few previous examples that are relevant to this frame-
work.

Resolution proofs, µ = ”width”, ν = ”logical depth”. Then µmax = n
and νcr = 2n. Let us choose µmin arbitrarily. The proof method of
a result by Berkholz [Ber12, Theorem 5] gives an ultimate trade-off
similar to ours: every refutation of the minimum width k must have
depth at least nk. This lower bound, however, breaks down already for
refutations of width (k + 1).

Resolution proofs (and beyond), µ = ”proof length”, ν = ”clause space”.

We have µmax = 2n, νcr(n) = n. For any µmin ∈
[
nC logn, 2n

ϵ
]
, the re-

sult by Beame, Beck and Impagliazzo [BBI12] gives contradictions τn
that have refutations of length µmin but such that every refutation of

length ≤ µmin

ϵ log logn
log log logn must have clause space µ

Ω(1)
min . Beck, Nordström

and Tang [BNT13, Theorem 4] generalized this result to the polyno-
mial calculus with resolution and also pushed down the lower bound
on µmin to nC .

It is worth noting, however, that in the dual regime µ = ”clause space”,
ν = ”proof length” that is, perhaps, more natural, ultimate tradeoffs
are hindered by the observation that every clause space S refutation
must necessarily be of length exp(O(Sn)).

Information Complexity. Here µ = ”information complexity”,
ν = ”communication complexity”. This example is different from the
previous ones in several important respects. Firstly, the bit size of
the problem is deemed to be totally irrelevant, and, in fact, can be
thought of as the information complexity itself. Second, the generic
upper bound νcr was proved by Braverman [Bra12]: CC(T ) ≤ 2IC(T ),
and it is anything but trivial. Third, and most important, this is an
interesting conjecture rather than a result. Namely, separation between
information and communication complexities was recently established
by Ganor, Kol and Raz in [GKR14]. They conjecture (personal com-
munication) that the same example T provides an ultimate tradeoff
between the two complexities, that is every protocol for T of nearly
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optimal information complexity must be of length that is double expo-
nential in IC(T ).

Our construction and the proof combine two very popular techniques in
proof complexity: hardness escalation and expansion. The former method
converts every contradiction τn into another contradiction τ̂n so that rel-
atively mild hardness properties of τn transfer to lower bounds for τ̂n in
stronger proof systems. So far this technique has been used in two main
flavors: substitution formulas (see e.g. [Nor13, Section 2.4]) and lifting for-
mulas introduced in [BHP10]. One common feature of both approaches is
that the price one has to pay for improving hardness is a moderate increase
in the number of variables.

In our work we change the gears on both these counts and are interested
in hardness preservation2 and variable compression, that is in (exponentially)
decreasing the number of variables. These two conflicting goals are balanced
using linear substitutions whose support sets need not necessarily be disjoint
as long as they form a good expander. While by now expanders is one of
the most common techniques in proof complexity, we are not aware of their
previous applications in a similar context.

2. Preliminaries

In this section we give necessary definitions, state some useful facts and
formulate, in Section 2.1, our main results.

A literal is either a Boolean variable x or its negation x̄; we will some-

times use the uniform notation xϵ def
=

x if ϵ = 1

x̄ if ϵ = 0.
. A clause C is either a

disjunction of literals in which no variable appears along with its negation,
or 1. The latter is a convenient technicality (e.g. with this convention the
set of all clauses makes a lattice in which ∨ is the join operator etc.); 1
should be thought of as a placeholder for all trivially true clauses. C is a
sub-clause of D, also denoted by C ≤ D if either D = 1 or C,D ̸= 1 and
every literal appearing in C also appears in D. Two clauses C and D are
consistent if C ∨ D ̸= 1, that is both C and D are non-trivial and do not

2As a matter of fact, our construction also gives the same hardness amplification as
ordinary substitution formulas with disjoint sets of variables. This observation, however,
plays no role in our conclusions.
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contain conflicting literals. The empty clause C will be denoted by 0. The
set of variables occurring in a clause C (either positively or negatively) will

be denoted by V ars(C) (V ars(1)
def
= ∅). The width of a clause is defined as

w(C)
def
= |V ars(C)|.

A CNF τ is a conjunction of clauses, often identified with the set of clauses
it is comprised of. A CNF is a k-CNF if all clauses in it have width at most k.
Unsatisfiable CNFs are traditionally called contradictions. For CNFs τ, τ ′,
τ � τ ′ is the semantical implication meaning that every truth assignment
satisfying τ also satisfies τ ′. Thus, τ is a contradiction if and only if τ � 0.
Also, for clauses C and D, C ≤ D if and only if C � D. The subscript n in
τn always stands for the number of variables in the CNF τn.

The resolution proof system operates with clauses and it consists of the
only resolution rule

C ∨ x D ∨ x̄

C ∨D
. (7)

A tree-like3 resolution proof Π is a binary rooted tree in which all nodes
all labelled by clauses, and such that the clause assigned to every internal
node can be deduced from clauses sitting at its two children via a single
application of the resolution rule. A tree-like resolution proof of a clause C
from a CNF τ is a tree-like resolution proof Π in which all leaves are labelled
by clauses from τ , and the root is labelled by a clause C̃ such that C̃ ≤ C
(the latter technicality is necessary since we did not include the weakening
rule). A refutation of a contradiction is a proof of 0 from it. The depth D(Π)
of a proof Π is the height (the number of edges in the longest path) of its
underlying tree, and its size |Π| is the number of leaves. The width w(Π) is
the maximum width of a clause appearing in Π.

For a CNF τ and a clause C, we let D(τ ⊢ C), ST (τ ⊢ C) and w(τ ⊢ C)
denote the minimum possible value ofD(Π), |Π| and w(Π), respectively, taken
over all tree-like resolution proofs Π of C from τ (if τ ̸� C, we let all three
measures be equal to ∞).

The following result will be one of the starting points for our construction.

Proposition 2.1 ([BIW04]) There exists an increasing sequence {τn} of 4-
CNF contradictions such that w(τn ⊢ 0) ≤ 6, but ST (τn ⊢ 0) ≥ exp(Ω(n/ log n)).

3DAG-like proofs are not considered in this paper.
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Let A be a m×n 0-1 matrix. For i ∈ [m],4 let Ji(A)
def
= {j ∈ [n] | aij = 1}.

For a clause E in the variables {y1, . . . , ym}, by E[A] we will denote the
CNF obtained from E by the F2-linear substitution yi →

⊕
j∈Ji(A) xj (i ∈

[m]) followed by expanding the resulted Boolean function as a CNF in the
straightforward way. The following easy observation will be important in
what follows: for every clause C in E[A],

V ars(C) =
∪

yi∈V ars(E)

{xj | j ∈ Ji(A)} (8)

(we do claim equality here). For a CNF τ = E1 ∧ E2 ∧ . . . ∧ Eℓ, we let

τ [A]
def
= E1[A] ∧ . . . ∧ Eℓ[A]. If τ is a contradiction then evidently τ [A] is a

contradiction, too. The converse need not be true in general, of course.
For I ⊆ [m], the boundary of this set of rows is defined as

∂A(I)
def
= {j ∈ [n] | |{i ∈ I | j ∈ Ji(A)}| = 1} ,

i.e., it is the set of columns that have precisely one 1 at their intersections
with I. A is an (r, s, c)-boundary expander5 if |Ji(A)| ≤ s for any i ∈ [m]
and |∂A(I)| ≥ c|I| for every set of rows I ⊆ [m] with |I| ≤ r. An (r, n, c)-
boundary expander (i.e., a m× n matrix satisfying only the second of these
conditions) will be simply called an (r, c)-boundary expander.

For a set of columns J ⊆ [n], we let

Ker(J)
def
= {i ∈ [m] | Ji(A) ⊆ J }

be the set of rows completely contained in J . Let A \ J be the sub-matrix of
A obtained by removing all columns in J and all rows in Ker(J).

We need two properties of boundary expanders whose analogues were
used, in one or another form, in almost all their applications in proof com-
plexity. The first one, proven by a simple probabilistic argument, says that
good expanders exist in the range m ≫ n (note that it becomes sub-optimal
in the frequently used setting s, c = O(1), m = O(n)).

4[m]
def
= {1, . . . ,m}.

5In [ABRW04] such matrices were simply called expanders. But since that the research
in proof complexity also made good use of ordinary vertex expanders (see e.g. [BG03,
AAT11]) and, as a consequence, tended to differentiate between boundary and ordinary
expansion. Hence we also adopt this terminological change. What we, however, keep in
this paper is the matrix notation as we find it more instructive for many reasons.
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Lemma 2.2 Let n → ∞ and m, s, c be arbitrary integer parameters possibly
depending on n such that c ≤ 3

4
s and

r ≤ o(n/s) ·m− 2
s−c . (9)

Then for sufficiently large n there exist m× n (r, s, c)-boundary expanders.

The second property says that in every good expander, the class of small
sets of rows whose removal leads to a relatively good expander is in a sense
everywhere dense.

Lemma 2.3 Let A be an m × n (r, 2)-boundary expander. Then for every

J ⊆ [n] with |J | ≤ r/4 there exists Ĵ ⊇ J such that
∣∣∣Ker

(
Ĵ
)∣∣∣ ≤ 2|J | and

A \ Ĵ is an (r/2, 3/2)-boundary expander.

We, however, have not been able to recover these statements from the
literature in a referrable form, and for this reason their simple proofs are
included in the Appendix.

2.1. Main results

In this brief section we formulate our main results.

Theorem 2.4 Let k = k(n) ≥ 4 be any parameter, and let ϵ > 0 be an
arbitrary constant. Then there exists a sequence of k-CNF contradictions
{τn} in n variables such that w(τn ⊢ 0) ≤ O(k) but for any tree-like refutation
Π with w(Π) ≤ n1−ϵ/k we have the bound

|Π| ≥ exp
(
nΩ(k)

)
.

As we noted in Introduction, our main technique is hardness preservation,
and since the corresponding statement might be of independent interest, we
formulate it here as a separate result.

Theorem 2.5 Let τm be an arbitrary contradiction in the variables y1, . . . , ym,
and let A be an m×n (r, 2)-boundary expander for some r. Then every tree-
like refutation Π of τm[A] with w(Π) ≤ r/4 must satisfy

|Π| ≥ 22D(τm⊢0)/r.

As stated, this is also a hardness escalation result (from depth to tree-like
size), but that part alone was known before [Urq11, Theorem 5.4], and one
does not need expanders for that.
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3. Proofs

In this section we prove Theorems 2.4 and 2.5, and we begin with the lat-
ter. We present our proof as a plain inductive argument since, in our view,
it is often more instructive than various top-down approaches (cf. the re-
cent simplification of the Atserias-Dalmau bound obtained by Flimus et al.
[FLM+14] and independently by Razborov (unpublished)).

Fix an m×n (r, 2)-boundary expander A, where r is an arbitrary param-
eter. Let us say that a set of columns J is closed if A \ J is an (r/2, 3/2)-
boundary expander (cf. Lemma 2.3). Fix now an arbitrary CNF τm (that
need not necessarily be a contradiction) in the variables y1, . . . , ym. We are
going to prove the following.

Claim 3.1 Assume that C is a clause in the variables x1, . . . , xn that pos-
sesses a tree-like proof Π from τ [A] with w(Π) ≤ r/4. Let J ⊆ [n] be an
arbitrary closed set with J ⊇ {j | xj ∈ V ars(C)}, and let E be any clause in
y-variables with

V ars(E) = {yi | i ∈ Ker(J)}

such that
E[A] ∨ C ̸≡ 1, (10)

that is there exists an assignment of x-variables simultaneously falsifying
E[A] and C. Then

D(τ ⊢ E) ≤ r

2
· log2 |Π|.

Proof of Claim 3.1. Let C,Π, J and E satisfy the assumptions of our
claim. The argument proceeds by induction on |Π|.

Base |Π| = 1, i.e. C contains a sub-clause C̃ that appears in Ẽ[A]
for some Ẽ ∈ τ .
Applying (8) to the clause Ẽ, we see that J ⊇ V ars(C) ⊇ V ars(C̃) implies{
i ∈ [m]

∣∣∣ yi ∈ V ars(Ẽ)
}
⊆ Ker(J), that is V ars(Ẽ) ⊆ V ars(E). Also, E

and Ẽ must be consistent since

(E ∨ Ẽ)[A] = E[A] ∨ Ẽ[A] � E[A] ∨ C̃ � E[A] ∨ C,

and hence their inconsistency would have implied that (E ∨ Ẽ)[A] ≡ E[A] ∨
C ≡ 1 in contradiction with (10). Hence Ẽ ≤ E and thus D(τ ⊢ E) = 0.
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Inductive step |Π| > 1.
Assume that the last application of the resolution rule has the form

C0 ∨ xj C1 ∨ x̄j

C0 ∨ C1

.

Fix arbitrarily an assignment α to {xk | k ∈ J } falsifying both E[A] and
C0∨C1 that exists by our assumption. Further analysis depends on whether
j ∈ J or not.

Case 1, j ∈ J.
This case is easy. Assume w.l.o.g. that α(xj) = 0. Note that V ars(C0∨xj) ⊆
J and α(C0 ∨ xj) = 0. Thus we can apply the inductive assumption to the
clause C0 ∨ xj, the corresponding sub-proof Π0 of Π and to the same J and
E. We conclude that D(τ ⊢ E) ≤ r · log2 |Π0| ≤ r · log2 |Π|.
Case 2, j ̸∈ J.
One of the two sub-trees Π0,Π1 (say, Π0) determined by the children of the
root has size ≤ |Π|/2, and we assume w.l.o.g. that it corresponds to the child
labeled by C0 ∨xj. Since w(C0 ∨xj) ≤ r/4 by our assumption, we can apply

Lemma 2.3 to the set J ′ def
= {j′ | xj′ ∈ V ars(C0 ∨ xj)}. This will give us a

closed Ĵ ⊇ {j′ | xj′ ∈ V ars(C0 ∨ xj)} with
∣∣∣Ker

(
Ĵ
)∣∣∣ ≤ r/2, and our goal is to

prove that every clause Ê with V ars
(
Ê
)
=
{
yi
∣∣∣ i ∈ Ker

(
Ĵ
)}

and consistent

with E satisfies the assumptions of Claim 3.1 with C := C0 ∨xj, J := Ĵ and
E := Ê (the rest will be easy). For that we only have to extend our original

assignment α to the variables
{
xj

∣∣∣ j ∈ J ∪ Ĵ
}

in such a way that it will

falsify both Ê[A] and C0 ∨ xj.
Since C0 ≤ C0 ∨ C1 ≤ C is already falsified by α, the latter task can

be achieved simply by setting additionally α(xj)
def
= 0 (recall that j ̸∈ J).

Also, every literal yϵi of a variable yi ∈ V ars(E)∩V ars
(
Ê
)
maps to yϵi [A] =⊕

j∈Ji(A) xj ⊕ ϵ̄ and, since Ji(A) ⊆ J , it has been already decided by α. As

E and Ê are consistent by our assumption (and α falsifies E), α(yi[A]) is
actually ϵ̄. It only remains to show that α′ can be extended in such a way
that it sets all yi[A] for i ∈ Ker

(
Ĵ
)
\ Ker(J) to fixed values predetermined

to falsify the formula Ê[A].
Let A′ be the matrix obtained from A \ J by additionally removing the

column j from it. Since A \ J is an (r/2, 3/2)-boundary expander, A′ is an

(r/2, 1/2)-boundary expander. Also, Ker
(
Ĵ
)
\Ker(J) is a set of rows of car-
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dinality≤ r/2, therefore ∂A′(I) ̸= ∅ for every non-empty subset I ⊆ Ker
(
Ĵ
)
\

Ker(J). This allows us to order, by reverse induction, the rows in Ker
(
Ĵ
)
\

Ker(J) in such a way Ker
(
Ĵ
)
\Ker(J) = {i1, . . . , iℓ} that for every ν ∈ [ℓ] the

set of columns Jiν (A
′)\∪ν−1

µ=1 Jiµ(A
′) is not empty; fix arbitrarily jν ∈ Jiν (A

′)\∪ν−1
µ=1 Jiµ(A

′). Now, we first extend α′ to {xj | j ∈ (J ∪ J ′) \ {j1, j2, . . . , jℓ}}
arbitrarily (say, by zeros) and then consecutively extend it to xj1 , . . . , xjℓ so
that the linear forms

⊕
j∈J1(A) xj, . . . ,

⊕
j∈Jℓ(A) xj are set to the right values.

In conclusion, Ê satisfies assumptions of Claim 3.1 with C := C0 ∨ xj.
Since C0 ∨ xj has a proof from τ [A] of width ≤ r/4 and size ≤ |Π|/2,
D(τ ⊢ E) ≤ r

2
(log2 |Π| − 1). This conclusion holds for an arbitrary clause Ê

in the variables
{
yi
∣∣∣ i ∈ Ker

(
Ĵ
)}

consistent with E. Now we resolve all these

clauses in the brute-force way along all the variables
{
yi
∣∣∣ i ∈ Ker

(
Ĵ
)
\Ker(J)

}
.

Since the depth of this original proof is at most r/2, we get a proof of E in
depth r

2
log2 |Π|.

This completes the analysis in case 2 of the inductive step. Claim 3.1 is
proved.

Theorem 2.5 is now immediate. If τ is a contradiction and Π is a refuta-
tion of τ [A] with w(Π) ≤ r/4, we simply apply Claim 3.1 with C := 0, J := ∅
and E := 0.

For Theorem 2.4, we are going to apply Theorem 2.5 to τ [A], where
τ is the contradiction from Proposition 2.1 and A is the (random) matrix
guaranteed by Lemma 2.2.

Proof of Theorem 2.4.
First of all we can assume that k ≥ 12 since otherwise already the contradic-
tions from Proposition 2.1 will do. Set w := n1−ϵ/k, r := 4w, s := ⌊k/4⌋ ≥ 3,
c := 2 and choose the parameter m as the smallest value for which (9) is sat-
isfied. Clearly, m ≥ (n/kw)Ω(k) ≥ nΩ(k). If it turns out that m ≤ n2 then, as
before, we simply take the 4-CNF contradiction τn provided by Proposition
2.1. Otherwise we take the formula τm provided by that proposition and
compose it with an m× n (r, s, 2)-expander A guaranteed by Lemma 2.2.

Recall that D(τm ⊢ 0) ≥ Ω(m/ logm). Hence Theorem 2.5 implies that
every tree-like refutation Π of the k-CNF contradiction τm[A] with w(Π) ≤ w
must have size at least

|Π| ≥ exp

(
Ω

(
m

r logm

))
≥ exp

(
Ω

(
m

n logm

))
since m≥n2

≥ exp(mΩ(1)) ≥ exp(nΩ(k)).
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It only remains to remark that the width 6 refutation of τm stipulated
by Proposition 2.1 can be converted into a width O(k) refutation of τm[A]
simply by applying the operator E 7→ E[A] to its lines.

4. Open problems

Our first (vaguely defined) open question is clear from the context: identify
or prove more ultimate tradeoffs. At this point it is already clear that this
peculiar phenomenon is rare, but is it extremely rare? It looks like one natural
place to look for ultimate tradeoffs (given the abundance of traditional ones)
is propositional space complexity.

Our result is a bit incomplete since the lower bound is double exponen-
tial only in the number of variables, not in the size of the contradiction.
We remark that by contrast, in [Ber12] the size of the contradiction stays
polynomial even when the minimum refutation width is unbounded. Is there
any way to combine the small size of contradictions provided by Berkholz’s
method with a larger interval [µmin, µ] in which the lower bound holds, as in
our paper?

Attempting a rigorous formulation (there are many other ways to pinpoint
this question), do there exist contradictions τn that possess constant width
refutations, but such that any such refutation must necessarily have tree-like
size exp(n2)?
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A. Appendix

Here we give self-contained proofs of Lemmas 2.2 and 2.3.

Lemma 2.2. Let n → ∞ and m, s, c be arbitrary integer parameters possibly
depending on n such that c ≤ 3

4
s and

r ≤ o(n/s) ·m− 2
s−c .

Then for sufficiently large n there exist m× n (r, s, c)-boundary expanders.

Proof. This lemma and its proof is identical to [ABRW04, Theorem 5.1],
except that we relax some restrictions on the parameters. We construct a
random m × n matrix A by picking independently in each row s random
entries with repetitions (the latter feature is not crucial, but it does make

calculations neater). That is, we let Ji(A)
def
= {ji1, . . . , jis}, where {jiν} (i ∈

[m], ν ∈ [s]) is a collection of ms independent random [n]-valued variables.
Recall that a matrixA is an (ordinary) (r, s, c)-expander if, again, |Ji(A)| ≤

s for all i ∈ [m], and for every I ⊆ [m] with |I| ≤ r we have |∪i∈I Ji(A)| ≥
c·|I|. Thus, the only difference from boundary expanders consists in replacing
∂A(I) with

∪
i∈I Ji(A).

Claim A.1 Every
(
r, s, s+c

2

)
-expander is an (r, s, c)-boundary expander.

Proof of Claim A.1. Since every column j ∈ ∪
i∈I Ji(A) \ ∂A(I) belongs

to at least two sets Ji(A) (i ∈ I), we have the bound∣∣∣∣∣∪
i∈I

Ji(A)

∣∣∣∣∣ ≤ |∂A(I)|+
1

2

(∑
i∈I

|Ji(A)| − ∂A(I)

)
≤ 1

2
(s|I|+ |∂A(I)|).

On the other hand, |∪i∈I Ji(A)| ≥ s+c
2
|I| since A is an

(
r, s, s+c

2

)
-expander.

The required inequality |∂A(I)| ≥ c · |I| follows.
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Thus, it remains to prove that A is an (r, s, c′)-expander a.s., where c′
def
=

c+s
2
. Let pℓ be the probability that any given ℓ rows of the matrix A violate

the expansion property. Then

P[A is not a (r, s, c′)-expander] ≤
r∑

ℓ=1

pℓ ·mℓ.

On the other hand,

pℓ = P[|{jiν | i ∈ I, ν ∈ [s]}| ≤ c′ℓ] ≤
(
n

c′ℓ

)
·
(
c′ℓ

n

)sℓ

≤ O(1)c
′ℓ ·
(
c′ℓ

n

)(s−c′)ℓ

≤ {O((sl)/n)}(s−c′)ℓ ,

where for the last inequality we used that c′ ≤ 7
8
c ≤ 7

8
s and hence c′ ≤

O(s− c). Thus,

P[A is not a (r, s, c′)-expander] ≤
r∑

ℓ=1

{O((sl)/n)}(s−c′)ℓ mℓ ≤
r∑

ℓ=1

(
{O((sr)/n)}(s−c′)ℓ m

)ℓ
,

and since m(sr/n)s−c′ = m(sr/n)(s−c)/2 ≤ o(1) by our assumption, Lemma
2.2 follows.

Lemma 2.3. Let A be an m × n (r, 2)-boundary expander. Then for every

J ⊆ [n] with |J | ≤ r/4 there exists Ĵ ⊇ J sich that
∣∣∣Ker

(
Ĵ
)∣∣∣ ≤ 2|J | and

A \ Ĵ is an (r/2, 3/2)-boundary expander.

Proof. We define a strictly increasing sequence of sets of columns J0 ⊂
J1 ⊂ . . . ⊂ Jt ⊂ . . . as follows. Let J0

def
= J . For t > 0, we first let St be an

arbitrary set of rows violating the (r/2, 3/2)-boundary expansion condition
in A \ Jt−1 if such a set exists; otherwise, the construction terminates. Then
we let

Jt
def
= Jt−1 ∪

∪
i∈St

Ji(A).

Note that since the chain J0 ⊂ J1 ⊂ . . . ⊂ Jt . . . is strictly increasing, the
process does terminate at some point; let JT be the final set in this chain.
We claim that Ĵ := JT has the required properties, and the only thing that
has to be checked is that |Ker(JT )| ≤ 2|J |. For that we prove by induction
on t = 0, . . . , T that |Ker(Jt)| ≤ 2|J |.
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Base case |Ker(J)| ≤ 2|J | immediately follows from the fact that A is an
(r, 2)-boundary expander and |J | ≤ r/4.

Inductive step. Assume that |Ker(Jt−1)| ≤ 2|J | for some 1 ≤ t ≤ T , and
let us prove that |Ker(Jt)| ≤ 2|J |.

Since |St| ≤ r/2, |Ker(Jt−1)| ≤ 2|J | ≤ r/2 and Ker(Jt−1) ∪ St ⊆ Ker(Jt),
we can choose a set of rows I such that Ker(Jt−1) ∪ St ⊆ I ⊆ Ker(Jt) and

|I| = min(r, |Ker(Jt)|). (11)

Applying to I the expansion condition, we get

|∂A(I)| ≥ 2|I|.

On the other hand, I ⊆ Ker(Jt) implies that

∂A(I) ⊆ J ∪
t∪

s=1

∂A\Js−1(Ss).

Since Ss’s violate the (r/2, 3/2)-boundary expansion conditions in respective
matrices, we conclude that

|∂A(I)| ≤ |J |+ 3

2

t∑
s=1

|Ss| ≤ |J |+ 3

2
|I|,

where for the latter inequality we used the fact I ⊇ S1

.
∪ S2

.
∪ . . .

.
∪ St.

Comparing these two inequalities, we find that |I| ≤ 2|J | ≤ r/2. Now (11)
implies that in fact |I| = |Ker(Jt)| that completes the inductive step in the
proof of Lemma 2.3.
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