
Three-Source Extractors for Polylogarithmic Min-Entropy

Xin Li

Department of Computer Science

Johns Hopkins University

Baltimore, MD 21218, U.S.A.

lixints@cs.jhu.edu

March 8, 2015

Abstract

We continue the study of constructing explicit extractors for independent general weak ran-
dom sources. The ultimate goal is to give a construction that matches what is given by the
probabilistic method — an extractor for two independent n-bit weak random sources with min-
entropy as small as log n + O(1). Previously, the best known result in the two-source case is
an extractor by Bourgain [Bou05], which works for min-entropy 0.49n; and the best known
result in the general case is an earlier work of the author [Li13a], which gives an extractor for a
constant number of independent sources with min-entropy polylog(n). However, the constant in
the construction of [Li13a] depends on the hidden constant in the best known seeded extractor,
and can be large; moreover the error in that construction is only 1/poly(n).

In this paper, we make two important improvements over the result in [Li13a]. First, we
construct an explicit extractor for three independent sources on n bits with min-entropy k ≥
polylog(n). In fact, our extractor works for one independent source with poly-logarithmic min-
entropy and another independent block source with two blocks each having poly-logarithmic
min-entropy. Thus, our result is nearly optimal, and the next step would be to break the 0.49n
barrier in two-source extractors. Second, we improve the error of the extractor from 1/poly(n)

to 2−kΩ(1)

, which is almost optimal and crucial for cryptographic applications. Some of the
techniques developed here may be of independent interests.

 

ISSN 1433-8092 

Electronic Colloquium on Computational Complexity, Report No. 34 (2015)



1 Introduction

Randomness extractors are fundamental objects in studying the role of randomness in computa-
tion. Motivated by the wide applications of randomness in computation (ranging from algorithms,
distributed computing to cryptography and interactive proofs), the standard requirements that the
randomness used should be uniform, and the fact that real world random sources are almost always
biased and defective, randomness extractors are functions that transform imperfect random sources
into nearly uniform random bits. In addition, these objects are especially useful in cryptographic
applications, since there even originally uniform random secrets can be compromised as a result of
side channel attacks. To formally define randomness extractors, we model imperfect randomness
as an arbitrary probability distribution with a certain amount of entropy; and we use the standard
min-entropy to measure the randomness in such an imperfect random source.

Definition 1.1. The min-entropy of a random variable X is

H∞(X) = min
x∈supp(X)

log2(1/Pr[X = x]).

For X ∈ {0, 1}n, we call X an (n,H∞(X))-source, and we say X has entropy rate H∞(X)/n.

Ideally, one would hope to construct a deterministic extractor that works for any imperfect
random source with a certain amount of min-entropy. However, it is easy to show that this is an
impossible task. Thus the study of randomness extractors has taken two different approaches.

The first is to give the extractor an additional independent uniform random string (i.e., make
the extractor probabilistic). These extractors are called seeded extractors and were introduced by
Nisan and Zuckerman [NZ96]. The formal definition is given below.

Definition 1.2. (Seeded Extractor) A function Ext : {0, 1}n×{0, 1}d → {0, 1}m is a (k, ε)-extractor
if for every source X with min-entropy k and independent Y which is uniform on {0, 1}d,

|Ext(X,Y )− Um| ≤ ǫ.

It is a strong (k, ε)-extractor if in addition we have

|(Ext(X,Y ), Y )− (Um, Y )| ≤ ǫ,

where | · | denotes the statistical distance.

One can show that with a very small amount of additional random bits (called seed, and
typically of length say d = O(logn)), it is possible to construct extractors for all weak random
sources. Moreover, even without the auxiliary uniform random bits, these extractors can be used
in many applications (such as simulating randomized algorithms using weak random sources) just
by trying all possible values of the seed. Seeded extractors have also been found to be related to
many other areas in computer science, and today we have nearly optimal constructions of such
extractors (e.g., [LRVW03, GUV09, DW08, DKSS09]).

However, seeded extractors are not enough for many other important applications, most notably
the ones in distributed computing and cryptography, where the trick of trying all possible values
of the seed does not work. Instead, in these applications we need extractors without the uniform
random seed. These extractors are called seedless extractors. Given that it is impossible to build

1



extractors that use just a single weak random source, one natural alternative is to try to build
extractors that use multiple independent weak random sources. Indeed, it seems reasonable to
assume that we can find more than one independent weak sources in nature, such as stock market,
thermal noise, computer mouse movements and so on. Such extractors are called independent
source extractors. A formal definition is given below.

Definition 1.3 (Independent Source Extractor). A function IExt : ({0, 1}n)t → {0, 1}m is an
extractor for independent (n, k) sources that uses t sources and outputs m bits with error ǫ, if for
any t independent (n, k) sources X1, X2, · · · , Xt, we have

|IExt(X1, X2, · · · , Xt)− Um| ≤ ǫ,

where | · | denotes the statistical distance.

Constructing independent source extractors is a major problem in the area of pseudorandomness,
and has been studied for a long time. Indeed these extractors have been used in distributed
computing and cryptography (e.g., the network extractor protocols in [KLRZ08, KLR09]). Here,
one natural goal is to construct extractors that use as few number of sources as possible. For
example, in [CG88], Chor and Goldreich showed that the well known Lindsey’s lemma gives an
extractor for two independent (n, k) sources with k > n/2. One can also use the probabilistic
method to show that there exists a deterministic extractor for just two independent sources with
logarithmic min-entropy, which is optimal since extractors for one weak source do not exist. In fact,
the probabilistic method shows that with high probability a random function is such a two-source
extractor. Thus, explicit constructions of independent source extractors is also closely related to
the general problem of derandomization.

Independent source extractors also have close connections to Ramsey graphs. For example, given
any boolean function with two n-bit inputs, one can construct a bipartite graph withN = 2n vertices
on each side, such that two vertices are connected if and only if the output is 1. If the function is
a two-source extractor for (n, k) sources, then the resulted bipartite graph has no bipartite clique
or independent set of size K = 2k (i.e., a Ramsey graph). With some extra efforts, this bipartite
Ramsey graph can also be converted to a regular Ramsey graph. More generally, extractors that
use a few (say a constant) number of sources give Ramsey hypergraphs.

Finally, independent source extractors are also quite useful in constructing seedless extractors
for other structured sources, because in many cases other structured sources can be reduced to
independent sources. Two such examples are the constructions of extractors for affine sources in
[Li11b] and extractors for small space sources in [KRVZ06].

However, despite considerable efforts spent on independent source extractors, the known con-
structions of two-source extractors are far from optimal. To date the best known two-source ex-
tractor due to Bourgain [Bou05], only works for entropy k ≥ (1/2 − δ)n for some small universal
constant δ > 0. Quantitatively, this is just a slight improvement over the result by Chor and Gol-
dreich [CG88]. Given the difficulty of constructing better two-source extractors, researchers have
turned to the alternative approach of constructing extractors that use a few more weak random
sources, and ideally ones that only use a constant number of sources.

This approach has been quite fruitful, starting from the work of Barak, Impagliazzo and Wigder-
son [BIW04], who applied techniques from additive combinatorics to show how to extract from a
constant number (poly(1/δ)) of independent (n, δn) sources, for any constant δ > 0. Following
this work, by using more involved techniques, Barak et al. [BKS+05] constructed extractors for

2



three independent (n, δn) sources for any constant δ > 0. This was later improved by Raz [Raz05]
to given an extractor that works for three independent sources where only one is required to be
an (n, δn) source while the other two can have entropy as small as k ≥ polylog(n). In the same
paper Raz also gave an extractor for two independent sources where one is required to have entropy
k ≥ (1/2 + δ)n for any constant δ > 0, and the other can have entropy as small as k ≥ polylog(n).
Most of these work use advanced techniques in additive combinatorics, such as sum-product theo-
rems and incidence theorems. However, these results only achieve a constant number of sources if
at least one source has min-entropy δn for any constant δ > 0.

By using clever ideas related to somewhere random sources, Rao [Rao06] and subsequently
Barak et al. [BRSW06] constructed extractors for general (n, k) sources that use O(logn/ log k)
independent sources. In particular, these results give extractors that only use a constant number
of sources even if the min-entropy is nδ for any constant δ > 0. They are thus a big improvement
over previous results. Based on these techniques, in [Li11a] the author gave an extractor for three
independent (n, k) sources with k ≥ n1/2+δ for any constant δ > 0. However, in the worst case where
k = polylog(n), the number of sources required is still super-constant (i.e., O(log n/ log log n)).

In a recent breakthrough [Li13b, Li13a], the author further exploited the properties of some-
where random sources and established a connection between extraction from such sources and the
problem of leader election in distributed computing. Based on this connection, the author man-
aged to construct the first explicit extractor that uses only a constant number of sources even if
the entropy is as small as polylog(n) [Li13a]. More specifically, for any constant η > 0, the result
gives an explicit extractor for min-entropy k ≥ log2+η n that uses O( 1η ) + O(1) independent (n, k)
sources. This is the first explicit independent source extractor that comes close to optimal.

However, the result in [Li13a] still suffers from two drawbacks. First, the O(1) term can be
pretty large. This is because the construction first uses a seeded extractor to convert several inde-
pendent (n, k) sources into somewhere random sources (by using every possible value of the seed
to extract from the source and then taking the concatenation), and then takes the XOR of these
somewhere random sources to reduce the error. To ensure efficiently computability we need the
seed length of the seeded extractor to be O(logn); while to ensure the number of sources needed
is a constant, we need the error of the seeded extractor to be at most 1/poly(n). Thus, we need
an optimal (up to constant factors) seeded extractor in the case where the error ǫ = 1/poly(n).
For example, the extractor in [LRVW03] does not suffice because it is only optimal when the error
ǫ = exp(− log n/ log(c) n), which is larger than any 1/poly(n).

Suppose we have a seeded extractor with seed length d = logn+ C log(1/ǫ) for some constant
C > 1, then the above XOR step needs at least C + 1 independent weak sources. One can show
that the constant C here must be at least 2, thus even if we have truly optimal seeded extractors,
this step requires at least 3 sources. After that we need at least one extra source to convert
the somewhere random source into another somewhere random source with the “almost h-wise
independent property” as in [Li13a], and we need at least two other sources to extract nearly
uniform random bits. Therefore, even with truly optimal seeded extractors the construction in
[Li13a] requires at least 6 independent sources.

Unfortunately, currently we do not have truly optimal seeded extractors, but rather extractors
that are optimal up to constant factors. The two known constructions of such extractors are
[GUV09] and [DW08] (and the related [DKSS09]), both of which first apply a condenser to transform
the weak source into a new source with entropy rate α for some constant α > 0, and then apply
an optimal seeded extractor for such sources. However, the seeded extractors for such sources may

3



already have a big constant C in the seed length. For example, the extractor by Zuckerman [Zuc97]
for such sources can be estimated to have C ≥ 30, while a different construction in [GUV09] has
even larger constant, potentially reaching C ≥ 100. Other constructions such as the block source
extractor used in [DW08] have similar behavior. Therefore, by using these seeded extractors, the
O(1) term in the result of [Li13a] can be pretty large (e.g., ≥ 30).

Another drawback of the result in [Li13a] is that the construction only achieves error 1/poly(n).
This kind of error is not enough for many cryptographic applications, where we typically need to
have a negligible error (i.e., n−ω(1)).

1.1 Our results

In this paper, we further improve the results in [Li13a]. We construct an explicit extractor for three
independent sources on n bits with min-entropy k ≥ polylog(n). In fact, our extractor works for one
independent source with poly-logarithmic min-entropy and another independent block source with
two blocks each having poly-logarithmic min-entropy. We also improve the error of the extractor
from 1/poly(n) to 2−k

Ω(1)
. Specifically, we have the following theorem.

Theorem 1.4. For all n, k ∈ N with k ≥ log12 n, there is an efficiently computable function

IExt : {0, 1}n × {0, 1}2n → {0, 1}m such that if X is an (n, k)-source and Y = (Y1, Y2) is an

independent (k, k) block source where each block has n bits, then

|(IExt(X,Y ), Y )− (Um, Y )| ≤ ǫ

and

|(IExt(X,Y ), X)− (Um, X)| ≤ ǫ,

where m = 0.9k and ǫ = 2−k
Ω(1)

. 1

As a corollary this immediately gives the following theorem.

Theorem 1.5. For all n, k ∈ N with k ≥ log12 n, there is an efficiently computable three-source

extractor IExt : ({0, 1}n)3 → {0, 1}m such that if X,Y, Z are three independent (n, k)-sources, then

|IExt(X,Y, Z)− Um| ≤ ǫ,

where m = 0.9k and ǫ = 2−k
Ω(1)

.

If the min-entropy k is very close to log2 n, then we also have improved results over [Li13b]. In
particular, we have the following theorem.

Theorem 1.6. For every constant η > 0 and all n, k ∈ N with k ≥ log2+η n, there is an efficiently

computable extractor BExt : ({0, 1}n)t × ({0, 1}n)t → {0, 1}m with t = ⌈ 7η ⌉ + 1, such that if X =
(X1, X2, · · ·Xt), Y = (Y1, Y2, · · ·Yt) are two independent (k, k, · · · , k)- block sources where each block

has n bits, then

|(BExt(X,Y ), Y )− (Um, Y )| ≤ ǫ

1We can show that this error is strictly n−ω(1).

4



and

|(BExt(X,Y ), X)− (Um, X)| ≤ ǫ,

where m = 0.9k and ǫ = 2−k
Ω(1)

.

As a corollary, we immediately obtain the following theorem.

Theorem 1.7. For every constant η > 0 and all n, k ∈ N with k ≥ log2+η n, there is an efficiently

computable extractor IExt : ({0, 1}n)t → {0, 1}m with t = ⌈14η ⌉ + 2 such that if X1, · · · , Xt are t
independent (n, k)-sources, then

|IExt(X1, · · · , Xt)− Um| ≤ ǫ,

where m = 0.9k and ǫ = 2−k
Ω(1)

.

For example, the above theorem gives an extractor for min-entropy k = log3 n that uses 16
sources, and an extractor for min-entropy k = log4 n that uses 9 sources.

Remark 1.8. In all theorems, the constant 0.9 can be replaced by any constant less than 1.

Table 1 summarizes our results compared to previous constructions of independent source ex-
tractors.

Construction Number of Sources Min-Entropy Output Error

[CG88] 2 k ≥ (1/2 + δ)n, any constant δ Θ(n) 2−Ω(n)

[BIW04] poly(1/δ) δn, any constant δ Θ(n) 2−Ω(n)

[BKS+05] 3 δn, any constant δ Θ(1) O(1)

[Raz05] 3
One source: δn, any constant δ. Other
sources may have k ≥ polylog(n).

Θ(1) O(1)

[Raz05] 2
One source: (1/2 + δ)n, any constant δ.
Other source may have k ≥ polylog(n)

Θ(k) 2−Ω(k)

[Bou05] 2
(1/2− α0)n for some small universal
constant α0 > 0

Θ(n) 2−Ω(n)

[Rao06] 3
One source: δn, any constant δ. Other
sources may have k ≥ polylog(n).

Θ(k) 2−k
Ω(1)

[Rao06] O(logn/ log k) k ≥ polylog(n) Θ(k) k−Ω(1)

[BRSW06] O(logn/ log k) k ≥ polylog(n) Θ(k) 2−k
Ω(1)

[Li11a] 3 k = n1/2+δ, any constant δ Θ(k) k−Ω(1)

[Li13b] O(log( lognlog k )) +O(1) k ≥ polylog(n) Θ(k) k−Ω(1)

[Li13a]
O( 1η ) +O(1),

O(1) can be large
k ≥ log2+η n Θ(k)

n−Ω(1)+

2−k
Ω(1)

This work 3 k ≥ log12 n Θ(k) 2−k
Ω(1)

This work ⌈14η ⌉+ 2 k ≥ log2+η n Θ(k) 2−k
Ω(1)

Table 1: Summary of Results on Extractors for Independent Sources.

5



2 Overview of The Constructions and Techniques

Here we give a brief overview of our constructions and the techniques. To give a clear description
of the ideas, we shall be informal and imprecise sometimes.

The high level idea of our constructions still follows the framework of [Li13b, Li13a]. Thus, we
first briefly review the construction in [Li13a].

2.1 A brief review of the construction in [Li13a]

The constant-source extractor in [Li13a] works by first obtaining a somewhere random source (SR-
source for short), which is a random N × m matrix such that at least one row of the matrix is
uniform. In addition, the SR-source has the stronger property that say 2

3 of the rows are uniform,
and moreover they are (almost) h-wise independent with h = kα for some constant 0 < α < 1. Once
we have this SR-source, we can use the lightest bin protocol from [Fei99] to reduce the number of
rows in the SR-source; while after each execution of the lightest bin protocol, we use the random
strings in the output of the protocol as seeds to extract from another fresh weak source, using a
strong seeded extractor. This way we can ensure that the resulted new random variable (not the
strings from the original SR-source) is another SR-source that preserves the h-wise independent
property (as long as the output length of the seeded extractor is small, say at most k/(2h)). On
the other hand the number of rows in this new SR-source has decreased a lot, roughly from N to

N4/
√
h.

We can thus repeat this process until the number of rows in the SR-source becomes small
enough, say k1/3; and then we can take at most two other independent (n, k) sources and use an
extractor from [BRSW06] to extract nearly uniform random bits. Since initially the number of
rows in the SR-source is poly(n), k ≥ polylog(n) and h = kα, a simple calculation shows that the
number of iterations needed is a constant. In addition, the initial SR-source can also be obtained
from a constant number of independent (n, k) sources. Thus the total number of sources needed is
a constant. However, as mentioned before, the step of obtaining the initial SR-source may require
a large constant number of sources.

2.2 The new construction

We now describe our new construction of the three source extractor. Again, we will first obtain
an SR-source such that say 2

3 of the rows are uniform, and moreover they are (almost) h-wise
independent with h = kα for some constant 0 < α < 1. However, we will use just two independent
(n, k) sources to achieve this. This is our major improvement over the construction in [Li13a].
To explain the ideas, we will first show how to use three independent (n, k) sources to obtain the
SR-source.

2.2.1 Use three sources to obtain the h-wise independent SR-source

In [Li13a], the initial SR-source with the h-wise independent property is obtained in two steps.
First, one uses a constant number of independent (n, k) sources to obtain a random variable that
is statistically close to an SR-source such that say 2

3 of the rows are uniform (but without the
h-wise independent property). Then one can use a single extra independent (n, k) source to obtain
a new SR-source with the h-wise independent property. It is the first step that uses a large
number of independent sources. The reason is that if we take a seeded extractor with seed length

6



d = log n + C log(1/ǫ) for some ǫ = 1/poly(n) and convert a weak source into a somewhere (close
to) random source by trying all possible values of the seed and then concatenating the outputs,
then the number of rows is N = 2d > (1/ǫ)C . In addition, the best one can say about the close to
uniform rows is that each one is ǫ-close to uniform (or even worse). Thus if we want the source to
be statistically close to an SR-source such that 2

3N rows are simultaneously uniform, by the union
bound we would need the error of the close to uniform rows to be smaller than ǫC . Thus, it takes
the XOR of at least C + 1 independent sources applied with the seeded extractor to reduce the
error to this small.

Here we take a completely different approach. Since eventually we need the error of the close
to uniform rows in the source (obtained by applying a seeded extractor to an (n, k) source X and
trying all possible values of the seed) to be small, we might as well just start with a seeded extractor
with larger seed length, say ℓ = kβ ≫ log n, where 0 < β < 1 is another constant. Now if we use
an optimal strong seeded extractor Ext2 such as that in [GUV09], we can indeed show that the

error of the close to uniform rows is ǫ = 2−Ω(kβ), which is small enough. Moreover, by a standard
averaging argument we can show that at least 0.9 fraction of the rows are ǫ-close to uniform.

However, by naively doing this, we have increased the number of rows in the somewhere (close

to) uniform source (which we will call X̄) to 2ℓ = 2k
β
, which is super polynomial and also much

larger than 1/ǫ, so it seems that we have gained nothing. Fortunately, so far we have just used
one weak source. Thus we can take another weak source and use it to sample a subset of poly(n)
rows from X̄, and hopefully with high probability conditioned on the second source, the sampled
subset of rows still contains a large fraction of close to uniform rows. If this is true then we
are done, since now we only have poly(n) rows and the error of each close to uniform row is

ǫ = 2−Ω(ℓ) = 2−Ω(kβ) ≪ 1/poly(n); so we can show that this new source is poly(n)2−Ω(kβ) = 2−k
Ω(1)

-
close to an SR-source such that say 2

3 of the rows are uniform.
Given this idea, it is straightforward to implement it. To sample from a set of elements using

a weak random source, it suffices to take a seeded extractor, which is equivalent to a sampler as
shown in [Zuc97]. More specifically, take a seeded (k′ = k/2, ǫ′) extractor Ext1 with seed length
d = O(logn+ log(1/ǫ′)) and output length ℓ = kβ < 0.4k such as that in [GUV09], we can view it
as a bipartite graph with 2n vertices on the left, 2ℓ vertices on the right, and left degree 2d. Thus
each vertex on the left selects a subset of right vertices with size 2d. Now if we associate the right
vertices with the 2ℓ rows in X̄, we can use another independent (n, k) source Y to sample a vertex
on the left, which gives us a subset of the rows in X̄ with size 2d.

We say a row in X̄ is “good” if it is ǫ-close to uniform. Thus at least 0.9 fraction of the rows are
good. A standard property of the (k′, ǫ′) seeded extractor implies that the number of left vertices
whose induced subset of rows in X̄ contains less than 0.9 − ǫ′ fraction of good rows, is at most
2k

′
. Since Y is an (n, k) source, the probability of selecting a subset of rows which contains at

least 0.9 − ǫ′ fraction of good rows is at least 1 − 2k
′
2−k = 1 − 2−k/2. Thus it suffices to take

ǫ′ = 1/4 and we know that with probability at least 1− 2−k/2 over Y , the selected subset of rows
of X̄ has at least 0.9 − 1/4 > 2/3 fraction of good rows. Moreover, since ǫ′ = 1/4 we have that
d = O(logn+ log(1/ǫ′)) = O(logn), therefore the size of the selected subset is 2d = poly(n).

Note that the above sampling process is equivalent to computing Ext2(X,Ext1(Y, ri)) for all
possible values ri of the d bit seed of Ext1. Thus (although we are sampling from a set of super-
polynomial size) this can be done in polynomial time. Hence, we have used two independent (n, k)
sources to obtain a new source W such that with high probability, W is statistically close to an
SR-source which has 2

3 fraction of uniform rows. We can now take another independent source Z

7



and use the method in [Li13a] to get an SR-source with the h-wise independent property.
Furthermore, notice that by doing this we have reduced the error from 1/poly(n) in [Li13a]

to 2−k
Ω(1)

. Essentially, with one source we can only obtain an SR-source with poly(n) rows such
that some rows are 1/poly(n)-close to uniform; but with two independent sources we can obtain

an SR-source with poly(n) rows such that some rows are 2−k
Ω(1)

(or even 2−Ω(k))-close to uniform.
In fact, this method is quite general and can be applied to any construction that involves reducing
the error in an SR-source. For example, it can also be used to reduce the error of the extractor in
[Rao06] from 1/poly(n) to 2−k

Ω(1)
. On the other hand, the method used in [BRSW06] to reduce the

error of the extractor in [Rao06] cannot be directly applied to the construction in [Li13a], since the
construction in [Li13a] has a special structure (XORing several independent copies of SR-sources).

2.2.2 Use two sources to obtain the h-wise independent SR-source

We now describe how we can remove one source, and use just two independent (n, k) sources to
obtain the h-wise independent SR-source. First, We also briefly review the method to generate the
h-wise independent SR-source in [Li13a]. Given an SR-source Y and an independent source X, we
will use each row of Y to do several rounds of alternating extraction (cf. [DW09, Li12, Li15]) from
X. More specifically, we divide the binary expression of the index of the row of Y into blocks of
size log h, and for each block we run an alternating extraction from X and pick an output indexed
by that block. This output is then used to start the next round of alternating extraction. The final
output will be the output of the alternating extraction in the last round, indexed by the last block
of the binary expression of the index of that row (more details can be found in [Li13a]). The new
SR-source Z will then be the concatenation of the outputs for all rows.

In each alternating extraction the seed length of the seeded extractor is chosen to be ℓ = kβ ,
and one can show the following. For any subset of rows in Y with size h, if all these rows are
uniform (but they may depend on each other arbitrarily), then with probability 1− 2−Ω(ℓ) over the
fixing of Y , the joint distribution of the corresponding rows in Z is 2−Ω(ℓ)-close to uniform (i.e., Z
has the almost h-wise independent property).

Now, going back to our new construction. We have already used two independent sources Y
and X to obtain an SR-source W with N = poly(n) rows, such that with probability 1 − 2−k/2

over the fixing of Y , there exists a large subset T ⊆ [N ] such that each row of W with index in
T is 2−Ω(ℓ)-close to uniform. Moreover we will have Ext2 output ℓ bits so that each row in W has
length ℓ. We will now take another optimal seeded extractor, and then use each row of W as the
seed to extract from Y and output k/2 bits. Let the concatenation of these outputs be Ȳ . We will
now think of Ȳ as an SR-source, and X as an independent source, and use the same method in
[Li13a] described above to obtain the new SR-source Z from Ȳ and X.

We will show that with high probability over the fixing of Y , the new SR-source Z has the
desired h-wise independent property. Note that with probability 1 − 2−k/2 over the fixing of Y ,
there exists a large subset T ⊆ [N ] such that each row of W with index in T is 2−Ω(ℓ)-close to
uniform. If for every y ∈ Supp(Y ) that makes this happen, we can show that conditioned on Y = y,
the new source Z also has the desired h-wise independent property in the subset T of rows then
we are done. However, this may not be the case. Thus, we want to subtract from 1 − 2−k/2 the
probability mass of the “bad” y’s which result in a Z that does not have the h-wise independent
property in the subset T of rows. Towards this goal, we define a bad y ∈ Supp(Y ) to be a string
that satisfies the following two properties:

8



a) Conditioned on the fixing of Y = y, there exists a large subset T ⊆ [N ] such that
each row of W with index in T is 2−Ω(ℓ)-close to uniform,

and
b) Conditioned on the fixing of Y = y, there exists a subset S ⊆ T with |S| = h such that
the joint distribution of the rows of Z with index in S is ǫ1 far from uniform, where ǫ1
is an error parameter to be chosen later.

Note that S ⊆ T , since y satisfies condition a), we must have that conditioned on the fixing of
Y = y, each row of W with index in S is 2−Ω(ℓ)-close to uniform. Therefore, for each S ⊆ [N ] with
|S| = h we now define an event BadS to be the set of y’s in Supp(Y ) that satisfies the following
two properties:

c) Conditioned on the fixing of Y = y, each row of W with index in S is 2−Ω(ℓ)-close to
uniform,

and
d) Conditioned on the fixing of Y = y, the joint distribution of the rows of Z with index
in S is ǫ1 far from uniform.

Thus every bad y must belong to some BadS . Therefore to bound the probability mass of the
bad y’s we only need to bound Pr[BadS ] for every S and then take a union bound. Now the crucial
observation is that for any fixed subset S, property c) is determined by the h random variables
Ri = Ext1(Y, ri) with i ∈ S. Let R be the concatenation of {Ri, i ∈ S} (which is a deterministic
function of Y ), and define the event AS to be the set of r’s in Supp(R) that makes property c)
satisfied, then we have Pr[BadS ] =

∑

r∈AS
Pr[R = r] Pr[BadS |R = r].

Now another crucial observation is that the size of R is small. Indeed, it is bounded by hℓ =
kα+β . If we choose α, β to be such that α + β < 1, then the size of R is o(k) and we can argue
that with probability 1−2−ℓ over the fixing of R = r, we have that Y still has min-entropy at least
k− o(k)− ℓ = k− o(k) > 0.9k. Moreover condition on the fixing of R = r we have that {Wi, i ∈ S}
is a deterministic function of X, and is thus independent of Y .

We now bound Pr[BadS |R = r] in two cases. First, if H∞(Y |R = r) < 0.9k, we will just use
Pr[BadS |R = r] ≤ 1. By the above argument this happens with probability at most 2−ℓ. We now
consider the case where H∞(Y |R = r) ≥ 0.9k. In this case, we know that for all i ∈ S, Wi is
2−Ω(ℓ)-close to uniform. Thus the joint distribution of {Wi, i ∈ S} is h2−Ω(ℓ) = 2−Ω(ℓ)-close (since
h = kα and ℓ = kβ) to a source with h truly uniform rows. Ignoring the error for the moment, we
can now say that for all i ∈ S, |(Ȳi,Wi) − (Uℓ,Wi)| ≤ 2−Ω(ℓ). Thus for all i ∈ S, with probability
1− 2−Ω(ℓ) over the fixing of Wi, we have that Ȳi is 2

−Ω(ℓ)-close to uniform. This implies that with
probability 1−h2−Ω(ℓ) = 1−2−Ω(ℓ) over the fixing of {Wi, i ∈ S}, we have that the joint distribution
of {Ȳi, i ∈ S} is h2−Ω(ℓ) = 2−Ω(ℓ)-close to a source with h truly uniform rows. Moreover, notice
that the size of {Wi, i ∈ S} is also bounded by hℓ = kα+β . Thus again we can argue that with
probability 1 − 2−ℓ over the fixing of {Wi, i ∈ S}, we have that X still has min-entropy at least
k − o(k) − ℓ > 0.9k. Altogether, this implies that with probability 1 − 2−Ω(ℓ) − 2−ℓ = 1 − 2−Ω(ℓ)

over the fixing of {Wi, i ∈ S}, we have that the joint distribution of {Ȳi, i ∈ S} is 2−Ω(ℓ)-close to a
source with h truly uniform rows, and X still has min-entropy at least 0.9k. In addition, after this
further fixing of {Wi, i ∈ S}, we have that {Ȳi, i ∈ S} is a deterministic function of Y , and is thus
independent of X.

9



We can now use the same argument in [Li13a] (treat {Ȳi, i ∈ S} as the SR-source and X as an
independent weak source) to argue that with probability 1 − 2−Ω(ℓ) over the fixing of {Ȳi, i ∈ S}
(and thus also the fixing of Y , since {Ȳi, i ∈ S} is now a deterministic function of Y ), we have that
the joint distribution of {Zi, i ∈ S} is 2−Ω(ℓ)-close to uniform. Now adding back all the errors, the
above statement is still true (except for a slight change of constants in Ω(·)). Thus, if we set ǫ1 to
be some 2−Ω(ℓ) appropriately, then we have that in this case Pr[BadS |R = r] ≤ 2−Ω(ℓ). Therefore,
by combining the two cases, we get that Pr[BadS ] ≤ 2−ℓ + Pr[AS ]2

−Ω(ℓ) ≤ 2−Ω(ℓ).
Now by the union bound we know the probability mass of the bad y’s is at most

(

N
h

)

2−Ω(ℓ) ≤
Nh2−Ω(ℓ) = 2O(h logn)−Ω(ℓ). If we choose α, β such that kβ−α ≥ C log n for some large enough
constant C > 1, then we get that this probability mass is again 2−Ω(ℓ). Also, by choosing the
constant C appropriately, this will also ensure that the error of the h-wise independent rows (which
is 2−Ω(ℓ)) is less than N−6h. This will be enough for the lightest bin protocol to work, as shown in
[Li13a]. All these requirements, as well as other requirements in obtaining the h-wise independent
SR-source, can be satisfied as long as k = log2+η n for any constant η > 0 (see Algorithm 5.13).

Now we are done. Subtracting the probability mass of the bad y’s from 1− 2−k/2, we get that
with probability 1 − 2−Ω(ℓ) over the fixing of Y , the source Z has the desired h-wise independent
property.

2.2.3 Achieving a three-source extractor

Now that we have used two independent sources to obtain an SR-source with the h-wise independent
property, we can use the rest of the construction in [Li13a] to get an extractor. However, the direct
use of the construction in [Li13a] requires at least two more sources. This is because the lightest
bin protocol requires at least one round, and at the end of that round we need to use a fresh source
to get another SR-source. We then need to take another source in order to finish extraction. This
will give us a four-source extractor.

In order to save one source, we observe that if the entropy k is a large enough polynomial in
log n, then h = kα will also be large enough so that in just one iteration of the lightest bin protocol,
the number of rows in the SR-source will decrease from N = poly(n) to say N ′ ≤ k1/3. We let
the concatenation of these rows of Z be Z ′. Note that Z ′ is a deterministic function of Z. By
cutting the length of each row of Z (if necessary) to say

√
k, we see that the size of Z ′ is bounded

by N ′
√
k ≤ k5/6. At the end of the lightest bin protocol we will take a fresh weak source Y2 (this

is the third source) and use each row of Z ′ to extract a string of length say 0.9k from Y2 (by using
an optimal seeded extractor). We let the concatenation of these outputs be Y ′. The analysis in
[Li13a] implies that with high probability over the fixing of Z, the new source Y ′ is also (close to)
an SR-source (here it is not necessary to have the h-wise independent property).

Note that Y ′ is a deterministic function of Y2 and Z ′, and Z ′ is deterministic function of Z.
Moreover conditioned on the fixing of Y , we have that Z is a deterministic function of X. Thus
it is also true that with high probability over the fixing of Z ′, the new source Y ′ is close to an
SR-source. Since the size of Z ′ is o(k), we can argue that with high probability over the fixing of
Z ′, the min-entropy of X is k − o(k) > 0.9k. Moreover conditioned on the fixing of (Y, Z ′), we
have that X and Y ′ are independent. Note that Y ′ is an SR-source with k1/3 rows but each row
has length 0.9k ≫ k1/3, thus by using an extractor from [BRSW06] we can extract random bits

from X and Y ′ which are 2−k
Ω(1)

-close to uniform. This gives our three-source extractor with error
2−k

Ω(1)
. It turns out that it is enough to choose k ≥ log12 n and α = 1/6, β = 1/3 in this case. Also

notice here that Y and Y2 need not be independent, but rather it suffices to have (Y, Y2) be a block

10



source (since the analysis first conditions on the fixing of Y ). Thus our construction actually gives
an extractor for one (n, k) source and another independent (k, k)-block source (see Algorithm 5.9).

2.2.4 Improving the results of [Li13a] for smaller min-entropy

Our three-source extractor requires k ≥ log12 n. However, if k = log2+η n for some small constant
η > 0, then we can also get improved results by replacing the step of obtaining the h-wise inde-
pendent SR-source in [Li13a] with our new construction, which uses only two independent sources.

This way we get a constant-source extractor with error 2−k
Ω(1)

.
Moreover, once we have this SR-source, running the lightest bin protocol actually does not

need fully independent sources. For example, if X = (X1, · · · , Xt) and Y = (Y1, · · · , Yt) are two
independent block sources where each block has min-entropy k conditioned on all previous blocks,
then we can first obtain the SR-source Z from (X1, Y1). Now we know that with high probability
conditioned on the fixing of Y1, the source Z has the desired property; moreover it is a deterministic
function of X. Thus we can run the lightest bin protocol once and take a new block from Y to
obtain a new SR-source Z2, which is a deterministic function of Y conditioned on Z; we can then
run the lightest bin protocol again and take a new block from X to obtain a new SR-source Z3,
which is a deterministic function of X conditioned on Z2, and so on. This gives us an extractor for
two independent block sources with each having a constant number of blocks (see Algorithm 5.13).

Organization. The rest of the paper is organized as follows. We give some preliminaries in
Section 3. In Section 4 we define alternating extraction, an important ingredient in our construction.
We present our main construction of extractors in Section 5. Finally we conclude with some open
problems in Section 6.

3 Preliminaries

We often use capital letters for random variables and corresponding small letters for their instanti-
ations. Let |S| denote the cardinality of the set S. For ℓ a positive integer, Uℓ denotes the uniform
distribution on {0, 1}ℓ. When used as a component in a vector, each Uℓ is assumed independent of
the other components. All logarithms are to the base 2.

3.1 Probability distributions

Definition 3.1 (statistical distance). LetW and Z be two distributions on a set S. Their statistical
distance (variation distance) is

∆(W,Z)
def
= max

T⊆S
(|W (T )− Z(T )|) = 1

2

∑

s∈S
|W (s)− Z(s)|.

We say W is ε-close to Z, denoted W ≈ε Z, if ∆(W,Z) ≤ ε. For a distribution D on a set S
and a function h : S → T , let h(D) denote the distribution on T induced by choosing x according
to D and outputting h(x).

11



3.2 Somewhere Random Sources and Extractors

Definition 3.2 (Somewhere Random sources). A source X = (X1, · · · , Xt) is (t × r) somewhere-

random (SR-source for short) if each Xi takes values in {0, 1}r and there is an i such that Xi is
uniformly distributed.

Definition 3.3. (Block Sources) A distribution X = X1 ◦X2 ◦ · · · , ◦Xt is called a (k1, k2, · · · , kt)
block source if for all i = 1, · · · , t, we have that for all x1 ∈ Supp(X1), · · · , xi−1 ∈ Supp(Xi−1),
H∞(Xi|X1 = x1, · · · , Xi−1 = xi−1) ≥ ki, i.e., each block has high min-entropy even conditioned on
any fixing of the previous blocks. If k1 = k2 = · · · = kt = k, we say that X is a k block source.

3.3 Prerequisites from previous work

For a strong seeded extractor with optimal parameters, we use the following extractor constructed
in [GUV09].

Theorem 3.4 ([GUV09]). For every constant α > 0, and all positive integers n, k and any ǫ > 0,
there is an explicit construction of a strong (k, ǫ)-extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m with

d = O(logn+ log(1/ǫ)) and m ≥ (1− α)k.

Theorem 3.5 ([BRSW06]). For every n, k(n) with k > log2 n, and any constants 0 < η < 1,
0 < γ < 1/2 such that k1−2γ ≥ log1.1 n, there exist constants 0 < α, β < 1 and a polynomial time

computable function BasicExt : {0, 1}n×{0, 1}kγ+1 → {0, 1}m s.t. if X is an (n, k) source and Y is

a (kγ × k) (k − kβ)-SR-source,

|(Y,BasicExt(X,Y ))− (Y, Um)| < ǫ

and

|(X,BasicExt(X,Y ))− (X,Um)| < ǫ

where Um is independent of X,Y , m = (1− η)k and ǫ = 2−k
α
.

Remark 3.6. The original version of [BRSW06] requires k > log10 n. But this is only because
the output length is m = k − kΩ(1), and to achieve such output length, currently the best known
seeded extractor requires seed length d = O(log3(n/ǫ)). If we only need to achieve output length
m = (1 − η)k, then we can use a seeded extractor with seed length d = O(log(n/ǫ)), such as
[GUV09]. Then it suffices to have k > log2 n for some properly chosen α, β.

The following standard lemma about conditional min-entropy is implicit in [NZ96] and explicit
in [MW97].

Lemma 3.7 ([MW97]). Let X and Y be random variables and let Y denote the range of Y . Then

for all ǫ > 0, one has

Pr
Y

[

H∞(X|Y = y) ≥ H∞(X)− log |Y| − log

(

1

ǫ

)]

≥ 1− ǫ.

We also need the following lemma.

Lemma 3.8 ([Li15]). Let (X,Y ) be a joint distribution such that X has range X and Y has

range Y. Assume that there is another random variable X ′ with the same range as X such that

|X −X ′| = ǫ. Then there exists a joint distribution (X ′, Y ) such that |(X,Y )− (X ′, Y )| = ǫ.

12



4 Alternating Extraction

As in [Li13a], an important ingredient in the construction of our extractors is the following alter-
nating extraction protocol.

Quentin: Q,S1 Wendy: X

S1

S1−−−−−−−−−−−−−→
R1←−−−−−−−−−−−−− R1 = Extw(X,S1)

S2 = Extq(Q,R1)
S2−−−−−−−−−−−−−→
R2←−−−−−−−−−−−−− R2 = Extw(X,S2)

· · ·
St = Extq(Q,Rt−1)

St−−−−−−−−−−−−−→
Rt = Extw(X,St)

Figure 1: Alternating Extraction.

Alternating Extraction. Assume that we have two parties, Quentin and Wendy. Quentin
has a source Q, Wendy has a source X. Also assume that Quentin has a uniform random seed S1

(which may be correlated with Q). Suppose that (Q,S1) is kept secret from Wendy and X is kept
secret from Quentin. Let Extq, Extw be strong seeded extractors with optimal parameters, such as
that in Theorem 3.4. Let ℓ be an integer parameter for the protocol. For some integer parameter
t > 0, the alternating extraction protocol is an interactive process between Quentin and Wendy
that runs in t steps.

In the first step, Quentin sends S1 to Wendy, Wendy computes R1 = Extw(X,S1). She sends
R1 to Quentin and Quentin computes S2 = Extq(Q,R1). In this step R1, S2 each outputs ℓ bits.
In each subsequent step i, Quentin sends Si to Wendy, Wendy computes Ri = Extw(X,Si). She
replies Ri to Quentin and Quentin computes Si+1 = Extq(Q,Ri). In step i, Ri, Si+1 each outputs
ℓ bits. Therefore, this process produces the following sequence:

S1, R1 = Extw(X,S1), S2 = Extq(Q,R1), · · · , St = Extq(Q,Rt−1), Rt = Extw(X,St).

Look-Ahead Extractor. Now we can define our look-ahead extractor. Let Y = (Q,S1) be a
seed, the look-ahead extractor is defined as

laExt(X,Y ) = laExt(X, (Q,S1))
def
= R1, · · · , Rt.

The following lemma is proved in [Li13a].

Lemma 4.1. Let Y = (Q,S1) where Q is an (nq, kq) source and S1 is the uniform distribution over

ℓ bits. Let Y2 = (Q2, S21), · · · , Yh = (Qh, Sh1) be another h − 1 random variables with the same

range of Y that are arbitrarily correlated to Y . Assume that X is an (n, k) source independent of

(Y, Y2, · · · , Yh), such that k > htℓ+10ℓ+2 log(1/ǫ) and kq > htℓ+10ℓ+2 log(1/ǫ). Assume that Extq
and Extw are strong seeded extractors that use ℓ bits to extract from (nq, 10ℓ) sources and (n, 10ℓ)

13



sources respectively, with error ǫ and ℓ = O(log(max{nq, n}) + log(1/ǫ)). Let (R1, · · · , Rt) =
laExt(X,Y ) and (Ri1, · · · , Rit) = laExt(X,Yi) for i = 2, · · · , h. Then for any 0 ≤ j ≤ t − 1, we
have

(Y, Y2, · · · , Yh, {Ri1, · · · , Rij , i = 2, · · · , h}, Rj+1) ≈ǫ1 (Y, Y2, · · · , Yh, {Ri1, · · · , Rij , i = 2, · · · , h}, Uℓ),

where ǫ1 = O(tǫ).

5 The Extractor

In this section we give our main construction. We will take two parameters 0 < α < β < 1 and let
h ≈ kα and ℓ = kβ . The first step is to obtain an SR-source such that a large fraction of the rows
are roughly h-wise independent. We have the following claim and lemma.

Claim 5.1. Let Ext : {0, 1}n × {0, 1}d → {0, 1}m be a (k, ǫ) seeded extractor. For any T ⊆ {0, 1}m
and ρ = |T |/2m, let BadT = {x ∈ {0, 1}n : Prr←Ud

[Ext(x, r) ∈ T ] > ρ+ ǫ}. Then

|BadT | ≤ 2k.

Proof. Suppose not, then there exists a T ⊆ {0, 1}m and ρ = |T |/2m such that |BadT | > 2k. Now
let X be the uniform distribution over the set BadT , and we have that X is an (n, k) source. Let R
be the uniform distribution over {0, 1}d. Then for any x ∈ Supp(X), we have that Pr[Ext(x,R) ∈
T ] > ρ+ ǫ. However this implies that

|Ext(X,R)− Um| ≥ |Pr[Ext(X,R) ∈ T ]− Pr[Um ∈ T ]|

=

∣

∣

∣

∣

∣

∣

∑

x∈Supp(X)

Pr[X = x] Pr[Ext(x,R) ∈ T ]− ρ

∣

∣

∣

∣

∣

∣

> |ρ+ ǫ− ρ| = ǫ,

which contradicts the fact that Ext is a (k, ǫ) seeded extractor.

Lemma 5.2. Let Ext1 : {0, 1}n × {0, 1}d → {0, 1}m be a (k1, ǫ1) seeded extractor, and Ext2 :
{0, 1}n × {0, 1}m → {0, 1}m2 be a (k2, ǫ2) strong seeded extractor. Let Y be an (n, 2k1) source and

X be an independent (n, k2) source. For i = 0, 1, · · · , 2d − 1, let Zi = Ext2(X,Ext1(Y, ri)), where
ri is the d bit string of i’s binary expression. Then with probability 1 − 2−k1 over the fixing of Y ,

there exists a subset S ⊆ {0, 1, · · · , 2d − 1} such that the following holds:

• |S| ≥ (1−√ǫ2 − ǫ1)2
d.

• ∀i ∈ S, we have |Zi − Um2 | ≤
√
ǫ2.

Proof. Let R be a uniform random string over {0, 1}m. Since Ext2 is a (k2, ǫ2) strong seeded
extractor, we have

Pr
r←R

[|Ext2(X, r)− Um2 | ≥
√
ǫ2] ≤

√
ǫ2.

14



Let BadX = {r ∈ {0, 1}m : |Ext2(X, r)−Um2 | ≥
√
ǫ2}, then |BadX | ≤

√
ǫ22

m. Now let R′ be the
uniform distribution over {0, 1}d and let BadY = {y ∈ {0, 1}n : Pr[Ext1(y,R

′) ∈ BadX ] >
√
ǫ2+ǫ1}.

Then by Claim 5.1 we have that

|BadY | ≤ 2k1 .

Thus if Y is an (n, 2k1) source, then Pry←Y [y ∈ BadY ] ≤ 2k12−2k1 = 2−k1 . When y /∈ BadY ,
we have that Pr[Ext1(y,R

′) ∈ BadX ] ≤ √ǫ2 + ǫ1, which implies that there exists a subset S ⊆
{0, 1, · · · , 2d−1} with |S| ≥ (1−√ǫ2−ǫ1)2

d and ∀i ∈ S, |Zi−Um2 | = |Ext2(X,Ext1(y, ri))−Um2 | ≤√
ǫ2.

Suppose we have an (n, k) source X with k ≥ polylog(n) and an independent SR-source Y =
Y 1 ◦ · · · ◦ Y N with N = poly(n) rows and each row has 0.9k bits, such that a large fraction of
the rows are uniform. The following algorithm from [Li13a] takes X and Y as inputs and outputs
another SR-source Z such that a large fraction of the rows are roughly h-wise independent.

Algorithm 5.3 (SSR(X,Y ) [Li13a]).

Input: X— an (n, k)-source with k ≥ polylog(n). Y = Y 1 ◦ · · · ◦ Y N—an SR-source with
N = poly(n) rows and each row has 0.9k bits, independent of X.
Output: Z — a source that is close to an SR-source.

Sub-Routines and Parameters:
Let 0 < α < β < 1 be the two constants above. Let ℓ = kβ . Pick an integer h such that
kα ≤ h < 2kα and h = 2l for some integer l > 0. Let Extq,Extw be strong extractors with
optimal parameters from Theorem 3.4, set up to extract from ((h2 + 12)ℓ, 10ℓ) sources and
(n, 10ℓ) sources respectively, with seed length ℓ, error ǫ2 = 2−Ω(ℓ) and output length ℓ. These
will be used in laExt. Let Ext be a strong extractor with optimal parameters from Theorem 3.4,
set up to extract from (0.9k, 2(h2 + 12)ℓ) sources, with seed length ℓ, error ǫ2 = 2−Ω(ℓ) and
output length (h2 + 12)ℓ.

1. For every i = 1, · · · , N , use X and Y i to compute Zi as follows.

(a) Compute the binary expression of i− 1, which consists of d = logN = O(logn) bits.
Divide these bits sequentially from left to right into b = ⌈dl ⌉ blocks of size l (the last
block may have less than l bits, then we add 0s at the end to make it l bits). Now
from left to right, for each block j = 1, · · · , b, we obtain an integer Indij ≤ 2l such
that the binary expression of Indij − 1 is the same as the bits in block j.

(b) Let Y i1 be the first (h+ 12)ℓ bits of Y i. Set j = 1. While j < b do the following.

i. Compute (Rij
1 , · · · , R

ij
h ) = laExt(X,Y ij), where Q = Y ij and S1 is the first ℓ bits

of Y ij .

ii. Compute Y i(j+1) = Ext(Y i, Rij
Indij

).

iii. Set j = j + 1.

(c) Finally, compute (Rib
1 , · · · , Rib

h ) = laExt(X,Y ib) and set Zi = Rib
Indib

.

2. Let Z = Z1 ◦ · · · ◦ ZN .

15



We now introduce some notation as in [Li13a]. For any i ∈ [N ] and j ∈ [b], we let Y i(≤j) denote

(Y i1, · · · , Y ij), let R
i(≤j)
Indi(≤j)

denote (Ri1
Indi1

, · · · , Rij
Indij

) and let f j(i) denote the integer whose binary

expression is the concatenation of the binary expression of i − 1 from block 1 to block j. The
following lemma is proved in [Li13a].

Lemma 5.4. Assume that k ≥ 2(bh+ 2)(h2 + 12)ℓ. Fix any v ∈ [N ] such that Y v is uniform. Let

S ⊂ [N ] be any subset with |S| = h and v ∈ S. For any j ∈ [b], define Sj
v = {i ∈ S : f j(i) < f j(v)}.

Then for any j ∈ [b], we have that

(Rvj
Indvj

, {Y i(≤j), i ∈ S}, {Rij
Indij

, i ∈ Sj
v}, {R

i(≤j−1)
Indi(≤j−1)

, i ∈ S})

≈O(jhǫ2)(Uℓ, {Y i(≤j), i ∈ S}, {Rij
Indij

, i ∈ Sj
v}, {R

i(≤j−1)
Indi(≤j−1)

, i ∈ S}).

Moreover, conditioned on the fixing of ({Y i(≤j), i ∈ S}, {Ri(≤j−1)
Indi(≤j−1)

, i ∈ S}), we have that

1. X and Y are still independent.

2. (Rij
Indij

, i ∈ S) are all deterministic functions of X.

Now we can prove the following lemma, which is slightly stronger than a similar lemma in
[Li13a].

Lemma 5.5. Assume that k ≥ 2(bh + 2)(h2 + 12)ℓ, X is an (n, k)-source and Y is an N × 0.9k
SR-source independent of X, with N = poly(n) such that there exists a subset S ⊂ [N ] and for

any i ∈ S, Y i is uniform. Let Z = Z1 ◦ · · · ◦ ZN = SSR(X,Y ). Then for any subset S′ ⊂ S with

|S′| = h, we have that

((Zi, i ∈ S′), Y ) ≈ǫ (Uhℓ, Y ),

where ǫ = O(bh2ǫ2) = 2−Ω(ℓ).

Proof. We order the elements in S′ to be i1 < i2 < · · · < ih. Since S′ ⊂ S, for any j ∈ [h] we have
that Y ij is uniform. We now apply Lemma 5.4 to the set S′ with j = b. Note that f b(i) = i − 1,
thus for any v ∈ S′ we have S′bv = {i ∈ S′ : i < v}. Also note that Zi = Rib

Indib
for any i ∈ [N ].

Thus by Lemma 5.4, for any j ∈ [h] we have that

(Zij , Zi1 , · · · , Zij−1 , {Y i(≤b), i ∈ S′}, {Ri(≤b−1)
Indi(≤b−1)

, i ∈ S′})

≈O(jhǫ2)(Uℓ, Z
i1 , · · · , Zij−1 , {Y i(≤b), i ∈ S′}, {Ri(≤b−1)

Indi(≤b−1)
, i ∈ S′}),

where ǫ2 = 2−Ω(ℓ).
Note that by Lemma 5.4, conditioned on the fixing of {Y i(≤b), i ∈ S′}, {Ri(≤b−1)

Indi(≤b−1)
, i ∈ S′}, we

have that X and Y are still independent, and (Rib
Indib

, i ∈ S′) = (Zi, i ∈ S′) are all deterministic
functions of X. Thus we also have

16



(Zij , Zi1 , · · · , Zij−1 , {Y i(≤b), i ∈ S′}, {Ri(≤b−1)
Indi(≤b−1)

, i ∈ S′}, Y )

≈O(jhǫ2)(Uℓ, Z
i1 , · · · , Zij−1 , {Y i(≤b), i ∈ S′}, {Ri(≤b−1)

Indi(≤b−1)
, i ∈ S′}, Y ),

and therefore (since j ≤ b)

(Zij , Zi1 , · · · , Zij−1 , Y ) ≈O(bhǫ2) (Uℓ, Z
i1 , · · · , Zij−1 , Y ).

Note this holds for every j, thus by a standard hybrid argument we have that

(Zi1 , · · · , Zih , Y ) ≈ǫ (Uhℓ, Y ),

where ǫ = O(bh2ǫ2) = O(bh22−Ω(ℓ)) = 2−Ω(ℓ) since ℓ = kβ , h < 2kα and b < logn = kO(1).

We can now describe the algorithm to create an SR-source such that a large fraction of the rows
are roughly h-wise independent, from just two independent sources X and Y .

Algorithm 5.6 (SR(X,Y )).

Input: X,Y— two independent (n, 2k)-source with k ≥ polylog(n).
Output: Z — a source that is close to an SR-source.

Sub-Routines and Parameters:
Let 0 < α < β < 1 be the two constants defined before. Let ℓ = kβ . Let Ext1,Ext2 be two strong
seeded extractors with optimal parameters from Theorem 3.4, set up to extract from (n, k)
sources. Ext1 has seed length d = O(logn), error ǫ1 = 1/4 and output length ℓ; Ext2 has seed
length ℓ, error ǫ2 = 2−Ω(ℓ) and output length ℓ. Let Ext3 be another strong seeded extractor with
optimal parameters from Theorem 3.4, set up to extract from (n, k) sources, with seed length ℓ,
error ǫ2 and output length 0.9k (we will choose the parameters such that 2k − (h+ 1)ℓ ≥ k).

1. Let N = 2d = poly(n). For every i = 1, · · · , N , let ri be the d bit string which is the
binary expression of i− 1. Compute Wi = Ext2(X,Ext1(Y, ri)) and Y i = Ext3(Y,Wi). Let
Y = Y 1 ◦ · · · ◦ Y N .

2. Compute Z = SSR(X,Y ) using Algorithm 5.3.

We now have the following lemma.

Lemma 5.7. Assume that k ≥ 2(bh + 2)(h2 + 12)ℓ. There exists a constant C > 1 such that if

ℓ ≥ Ch log n, then with probability 1−2−Ω(ℓ) over the fixing of Y , the following property is satisfied:

there exists a subset T ⊆ [N ] such that |T | ≥ 2
3N and ∀S ⊆ T with |S| = h, we have

|(Zi, i ∈ S)− Uhℓ| ≤ 2−Ω(ℓ).

17



Proof. Let W = W1 ◦ · · · ◦WN . We first show that with high probability over the fixing of Y , we
have that W is an SR-source with a large fraction of close to uniform rows. This follows directly
from Lemma 5.2. Specifically, the lemma implies that with probability 1 − 2−k over the fixing of
Y , there exists a subset T ⊆ [N ] with N = 2d = poly(n) such that |T | ≥ (1−√ǫ2 − 1/4)N > 2

3N

since ǫ2 = 2−Ω(ℓ); and ∀i ∈ T , we have |Wi − Uℓ| ≤
√
ǫ2 = 2−Ω(ℓ).

Now consider any y ∈ Supp(Y ) which makes the above happen. We’d like to show that condi-
tioned on this Y = y, in the final output Z, the same set T of the rows will also have the property
of being roughly h-wise independent. However, this may not be the case; and if not, we will call
such a y bad. Now fix any bad y. Then we know that there must be a subset S ⊂ T with |S| = h
such that |(Zi, i ∈ S)−Uhℓ| > ǫ′ for some ǫ′ = 2−Ω(ℓ). At the same time, since S ⊂ T we also know
that ∀i ∈ S, we have |Wi − Uℓ| ≤

√
ǫ2 = 2−Ω(ℓ). Let

BadS = {y ∈ Supp(Y ) : ∀i ∈ S, |Wi − Uℓ| ≤
√
ǫ2 but |(Zi, i ∈ S)− Uhℓ| > ǫ′}

for some ǫ′ = 2−Ω(ℓ). Then we must have y ∈ BadS . Therefore, any bad y must be in
⋃

S BadS .
By the union bound we know

Pr
y←Y

[y is bad] ≤
∑

S

Pr[BadS ].

Thus to bound the probability of a bad y we only need to bound Pr[BadS ].
Now fix any subset S ⊆ [N ] with |S| = h. Let R = {Ext1(Y, ri), i ∈ S}. We now bound

Pr[BadS ] as follows. Define

AS = {r ∈ Supp(R) : ∀i ∈ S, |Wi − Uℓ| ≤
√
ǫ2}.

Then

Pr[BadS ] =
∑

r∈AS

Pr[R = r] Pr[BadS |R = r].

We now estimate Pr[BadS |R = r]. First we know that conditioned on any R = r, we have that
∀i ∈ S, |Wi − Uℓ| ≤

√
ǫ2. Thus by Lemma 3.8 we can get rid of the error one by one for each i ∈ S

and we have that there exists another random variable (W ′i , i ∈ S) such that ∀i ∈ S, W ′i = Uℓ and
|(Wi, i ∈ S) − (W ′i , i ∈ S)| ≤ h

√
ǫ2. From now on we’ll think of (Wi, i ∈ S) as being (W ′i , i ∈ S)

(i.e., every row is truly uniform). This only adds h
√
ǫ2 to the final error. Now, since the size of R

is bounded by hℓ, by Lemma 3.7 we have that

Pr
r←R

[H∞(Y |R = r) ≥ 2k − hℓ− ℓ ≥ k] ≥ 1− 2−ℓ.

Now we have the following two cases.
Case 1: H∞(Y |R = r) < k. In this case we’ll just bound Pr[BadS |R = r] by Pr[BadS |R =

r] ≤ 1. However, the probability of such R = r is at most 2−ℓ.
Case 2: H∞(Y |R = r) ≥ k. In this case, we know that ∀i ∈ S, Wi is uniform and independent

of Y (since it is a deterministic function of X conditioned on the fixing of R = r). Thus by
Theorem 3.4 we have that

|(Y i,Wi)− (U0.9k,Wi)| ≤ ǫ2.

18



Therefore ∀i ∈ S, we have that with probability 1−√ǫ2 over the fixing of Wi, Y
i is
√
ǫ2-close

to uniform. Let W = {Wi, i ∈ S}. Then with probability 1 − h
√
ǫ2 over the fixing of W , we have

that each Y i is
√
ǫ2-close to uniform. Thus again by Lemma 3.8, we have that Y S = {Y i, i ∈ S}

is h
√
ǫ2-close to another source Y ′S = {Y ′i, i ∈ S} where ∀i, Y ′i = U0.9k. Now since the size of W

is hℓ, again by Lemma 3.7 we have that with probability 1− 2−ℓ over the fixing of W , X still has
min-entropy at least k. Thus, in summary, with probability 1 − h

√
ǫ2 − 2−ℓ over the fixing of W ,

we have that X has min-entropy at least k, Y S = {Y i, i ∈ S} is h√ǫ2-close to Y ′S = {Y ′i, i ∈ S},
and X and Y S are independent (since W is a deterministic function of X). Assume for now that
Y S is just Y ′S , then we can apply Lemma 5.5 to conclude that in this case, we have

|((Zi, i ∈ S), Y )− (Uhℓ, Y )| ≤ O(bh2ǫ2).

Therefore with probability 1−O(bh
√
ǫ2) over the fixing of Y , we have that |(Zi, i ∈ S)−Uhℓ| ≤

h
√
ǫ2. Now adding back all the errors, we get that with probability 1 − O(bh

√
ǫ2) − h

√
ǫ2 =

1−O(bh
√
ǫ2) over the fixing of Y , we have that

|(Zi, i ∈ S)− Uhℓ| ≤ h
√
ǫ2 + h

√
ǫ2 + h

√
ǫ2 + 2−ℓ ≤ (3h+ 1)

√
ǫ2.

Now let ǫ′ = (3h+1)
√
ǫ2 = 2−Ω(ℓ) since ǫ2 = 2−Ω(ℓ), ℓ = kβ and h < 2kα. We have that in Case

2,

Pr[BadS |R = r] ≤ O(bh
√
ǫ2).

Therefore for any fixed S, we have that

Pr[BadS ] ≤ 2−ℓ + Pr[AS ]O(bh
√
ǫ2) = O(bh

√
ǫ2) = 2−Ω(ℓ),

since b < log n = kO(1) and h < 2kα.
Thus

Pr
y←Y

[y is bad] ≤
(

N

h

)

2−Ω(ℓ) < Nh2−Ω(ℓ) = 2−Ω(ℓ)+O(h logn) = 2−Ω(ℓ),

if we choose h, ℓ such that ℓ ≥ Ch log n for some sufficiently large constant C > 1.
Now subtracting the probability mass of the bad y’s, we get that with probability 1 − 2−k −

2−Ω(ℓ) = 1 − 2−Ω(ℓ) over the fixing of Y , there exists a subset T ⊆ [N ] such that |T | ≥ 2
3N and

∀S ⊆ T with |S| = h, we have

|(Zi, i ∈ S)− Uhℓ| ≤ ǫ′ = 2−Ω(ℓ).

Next we describe the lightest bin protocol, defined in [Li13b].
Lightest bin protocol: Assume there are N strings {zi, i ∈ [N ]} where each zi ∈ {0, 1}m

with m > logN . The output of a lightest bin protocol with r < N bins is a subset T ⊂ [N ] that is
obtained as follows. Imagine that each string zi is associated with a player Pi. Now, for each i, Pi

uses the first log r bits of zi to select a bin j, i.e., if the first log r bits of zi is the binary expression
of j − 1, then Pi selects bin j. Now let bin l be the bin that is selected by the fewest number of
players. Then

19



T = {i ∈ [N ] : Pi selects bin l.}
The following lemma is proved in [Li13a].

Lemma 5.8. For every constant 0 < γ < 1 there exists a constant C1 > 1 such that the following

holds. For any n, k,m,N ∈ N, any even integer h ≥ C1 and any ǫ > 0 with N ≥ h2, ǫ < N−6h,
k > 20h(log n + log(1/ǫ)) and m > 10(log n + log(1/ǫ)),2 assume that we have N sources {Zi

1, i ∈
[N ]} over m bits and a subset S ⊂ [N ] with |S| ≥ δN for some constant δ > 1/2, such that for any

S′ ⊂ S with |S′| = h, we have

(Zi
1, i ∈ S′) ≈ǫ Uhm.

Let Z1 = Z1
1 ◦ · · · ◦ ZN

1 . Use Z1 to run the lightest bin protocol with r = γ2

16hN
1− 2√

h bins
3 and let the output contain N2 elements {i1, i2, · · · , iN2 ∈ [N ]}. Assume that X is an (n, k)

source independent of Z1. For any j ∈ [N2], let Z
j
2 = Ext(X,Z

ij
1 ) where Ext is the strong seeded

extractor in theorem 3.4 that has seed length m and outputs m2 = k/(2h) bits with error ǫ. Then

with probability at least 1 − N−
√
h/2 over the fixing of Z1, there exists a subset S2 ⊂ [N2] with

|S2| ≥ δ(1− γ)N/r ≥ δ(1− γ)N2 such that for any S′2 ⊂ S2 with |S′2| = h, we have

(Zi
2, i ∈ S′2) ≈ǫ2 Uhm2

with ǫ2 < N−6h2 and m2 > 10(log n+ log(1/ǫ2)).

We can now present our construction of extractors for independent sources.

2The constants actually depend on the hidden constant in the seed length d = O(log(n/ǫ)) of an optimal seeded
extractor. Nevertheless they are always constants and don’t really affect our analysis. For simplicity and clarity we
use 20, 10 here.

3For simplicity, we assume that r is a power of 2. If not, we can always replace it with a power of 2 that is at
most 2r. This does not affect our analysis.

20



Algorithm 5.9 (Independent Source Extractor IExt).

Input: X — an (n, 2k)-source with k ≥ 1
2 log

12 n. Y = (Y1, Y2) — a (2k, 2k) block source where
each block has n bits, independent of X.
Output: V — a random variable close to uniform.

Sub-Routines and Parameters:
Let SR be the function in Algorithm 5.6. Let BasicExt be the extractor in Theorem 3.5. Let Ext
be the strong extractor in Theorem 3.4. Let 0 < α < β < 1 be the two constants defined before.
Let 0 < γ < 1 be the constant in Lemma 5.8. We will choose α = 1/6, β = 1/3 and γ = 1/4.
Let h, ℓ be the two parameters in Algorithm 5.3 with kα ≤ h < 2kα and ℓ = kβ .

1. Compute Z = Z1 ◦ · · · ◦ ZN = SR(X,Y1).

2. Let N = poly(n) be the number of rows in Z. Run the lightest bin protocol with Z and

r = γ2

16hN
1− 2√

h bins and let the output contain N1 elements {i1, i2, · · · , iN1 ∈ [N ]}. Let

Z1 = Z1
1 ◦ · · · ◦ ZN1

1 be the concatenation of the corresponding rows in Z (i.e., Zj
1 = Zij ).

3. Note that N1 ≤ ⌊N/r⌋. Without loss of generality assume that N1 = ⌊N/r⌋. If not, add
rows of all 0 strings to Z1 until N1 = ⌊N/r⌋.

4. For any j ∈ [N1], compute Zj
2 = Ext(Y2, Z

j
1) and output m2 =

√
k bits. Let Z2 =

Z1
2 ◦ · · · ◦ ZN1

2 .

5. For any j ∈ [N1], compute Zj
3 = Ext(X,Zj

2) and output m3 = 1.9k bits. Let Z3 =
Z1
3 ◦ · · · ◦ ZN1

3 .

6. Compute V = BasicExt(Y2, Z3).

We now have the following theorem.

Theorem 5.10. There exists a constant C0 > 1 such that for any n, k ∈ N with n ≥ C0 and

k ≥ 1
2 log

12 n, if X is an (n, 2k)-source and Y = (Y1, Y2) is an independent (2k, 2k) block source

where each block has n bits, then

|(IExt(X,Y ), Y )− (Um, Y )| ≤ ǫ

and

|(IExt(X,Y ), X)− (Um, X)| ≤ ǫ,

where m = 1.8k and ǫ = 2−k
Ω(1)

.

Proof. By Lemma 5.7, with probability 1−2−Ω(ℓ) over the fixing of Y1, there exists a subset T ⊆ [N ]
such that |T | ≥ 2

3N and ∀S ⊆ T with |S| = h, we have

|(Zi, i ∈ S)− Uhℓ| ≤ 2−Ω(ℓ).

21



We now want to apply Lemma 5.8. But first let’s check that the conditions of Lemma 5.7 and
Lemma 5.8 are satisfied. Note that kα ≤ h < 2kα, ℓ = kβ and b < logn. To apply Lemma 5.7,
we need that k ≥ 2(bh+ 2)(h2 + 12)ℓ and ℓ ≥ Ch log n for some sufficiently large constant C > 1.
To apply Lemma 5.8, we need that ǫ′ < N−6h, k > 20h(log n+ log(1/ǫ′)) and m = ℓ > 10(log n+
log(1/ǫ′)). In Algorithm 5.6 we also need k ≥ (h+1)ℓ. Altogether, it suffices to have 0 < α < β < 1
satisfy the following conditions.

k ≥ 3 lognh3ℓ, ℓ ≥ Ch log n, ǫ′ < N−6h and ℓ > 10(log n+ log(1/ǫ′)).

These conditions are satisfied if the following conditions are satisfied.

k ≥ 24k3α+β logn and ℓ = kβ ≥ Ckα log n

for some constant C > 1.
Now if α = 1/6, β = 1/3 and k ≥ 1

2 log
12 n, then we see that for sufficiently large n,

k

k3α+β
= k1/6 ≥ Ω(log2 n) > 24 log n and

kβ

kα
= k1/6 ≥ Ω(log2 n) > C logn.

Thus the above conditions are satisfied.
Notice that m2 =

√
k < k/(2h), thus by Lemma 5.8 we have that with probability at least

1−N−
√
h/2 over the fixing of Z, there exists a subset S ⊂ [N1] with |S| ≥ δ(1− γ)N/r ≥ 2

3
3
4N/r =

1
2N/r such that for any S′ ⊂ S with |S′| = h, we have

(Zi
2, i ∈ S′) ≈ǫ2 Uh

√
k

with ǫ2 < N−6h1 .
Note that Z2 is a deterministic function of Y2 and Z1, and Z1 is a deterministic function of

Z. Thus we also have that with probability at least 1 − N−
√
h/2 over the fixing of Z1, the above

property holds. Also note that N/r = 16h
γ2 N

2√
h > 16h, so |S| > 8h > 1. Thus with probability at

least 1 −N−
√
h/2 over the fixing of Z1, we have that Z2 is N−6h1 < (8h)−6h-close to an SR source

(since N1 ≥ |S|).
Note that conditioned on the fixing of Z1, we have that Z2 is a deterministic function of Y2, and

is thus independent of X. Now note that N/r = 16h
γ2 N

2√
h . Since h ≥ kα = k1/6 and k ≥ 1

2 log
12 n,

we have that

N
2√
h ≤ poly(n)O(1/ logn) = O(1).

Thus N1 ≤ N/r = O(h) < k1/4. Note that conditioned on the fixing of Y1, we have that Z1 is a
deterministic function of X, with the size of Z1 bounded by k1/4ℓ < k2/3. Therefore by Lemma 3.7,
we have that with probability 1 − 2−0.05k over the fixing of Z1, X still has min-entropy at least
2k − k2/3 − 0.05k > 1.94k.

Now since Z2 is independent of X and assuming that Z2 is indeed an SR-source, then by
Theorem 3.4 we have that for some i ∈ [N1],

|(Zi
3, Z

i
2)− (U1.9k, Z

i
2)| ≤ 2−Ω(

√
k).

22



Thus with probability at least 1 − 2−Ω(
√
k) over the fixing of Zi

2 (and thus also the fixing of

Z2), we have that Z3 is 2−Ω(
√
k)-close to an N1 × 1.9k SR-source. Moreover, conditioned on the

further fixing of Z2, we have that Z3 is a deterministic function of X, and is thus independent
of Y2. Furthermore, note the size of Z2 is bounded by N1

√
k ≤ k1/4

√
k = k3/4. Thus again by

Lemma 3.7, we have that with probability 1−2−0.05k over the fixing of Z2, Y2 still has min-entropy
at least 2k − k3/4 − 0.05k > 1.94k.

Note that N1 < k1/4 and k1−2/4 = k1/2 > log1.1 n, thus by Theorem 3.5, we have that

|(V, Y2)− (Um, Y2)| ≤ ǫ2

and

|(V, Z3)− (Um, Z3)| ≤ ǫ2,

where m = 1.8k and ǫ2 = 2−k
Ω(1)

. Since we have already fixed Y1, Z1 and Z2, we have that Z3 is
a deterministic function of X. Thus conditioned on Z3, we have that V is a deterministic function
of Y2, which is independent of X. Thus we also have that

|(V,X)− (Um, X)| ≤ ǫ

and

|(V, Y )− (Um, Y )| ≤ ǫ,

where by adding back all the errors we have

ǫ ≤ ǫ2 + 2−Ω(ℓ) +N−
√
h/2 + (8h)−6h + 2−0.05k + 2−Ω(

√
k) + 2−Ω(

√
k) + 2−0.05k = 2−k

Ω(1)
.4

Note that when n < C0, the extractor can be constructed in constant time just by exhaustive
search (in fact, we can get a two-source extractor in this way). Thus, we have the following theorem
(by replacing 2k with k).

Theorem 5.11. For all n, k ∈ N with k ≥ log12 n, there is an efficiently computable function

IExt : {0, 1}n × {0, 1}2n → {0, 1}m such that if X is an (n, k)-source and Y = (Y1, Y2) is an

independent (k, k) block source where each block has n bits, then

|(IExt(X,Y ), Y )− (Um, Y )| ≤ ǫ

and

|(IExt(X,Y ), X)− (Um, X)| ≤ ǫ,

where m = 0.9k and ǫ = 2−k
Ω(1)

. 5

As a corollary, we immediately obtain the following theorem.

4One can show that in this case ǫ2 is n−ω(1), as well as all the other terms. So the entire error is n−ω(1).
5The constant 0.9 can be replaced by any constant less than 1.

23



Theorem 5.12. For all n, k ∈ N with k ≥ log12 n, there is an efficiently computable three-source

extractor IExt : ({0, 1}n)3 → {0, 1}m such that if X,Y, Z are three independent (n, k)-sources, then

|IExt(X,Y, Z)− Um| ≤ ǫ,

where m = 0.9k and ǫ = 2−k
Ω(1)

.

If the entropy k gets very close to log2 n, then we can use a similar construction as the extractor
in [Li13a], except replacing the step of creating the initial SR-source with the method in this paper.
In this case we can get an extractor for two independent block sources each with a constant number
of blocks of min-entropy k. We have the following algorithm.

Algorithm 5.13 (Block Source Extractor BExt).

Input: X = (X1, X2, · · ·Xt), Y = (Y1, Y2, · · ·Yt) — two independent (2k, 2k, · · · , 2k)-block
sources where each block has n bits and k ≥ 1

2 log
2+η n for any constant η > 0.

Output: W — a random variable close to uniform.

Sub-Routines and Parameters:
Let SR be the function in Algorithm 5.6. Let BasicExt be the extractor in Theorem 3.5. Let Ext
be the strong extractor in Theorem 3.4. Let α = µ

6(2+µ) and β = 6+2µ
6(2+µ) , where µ = 0.95η be the

two constants defined before, and γ = η
70 be another constant. Let h, ℓ be the two parameters

in Algorithm 5.3 with kα ≤ h < 2kα and ℓ = kβ .

1. Compute Z1 = Z1
1 ◦ · · · ◦ZN1

1 = SR(X1, Y1) where N1 = poly(n). Set the boolean indicator
vy = 1.

2. Set t = 1. While Nt (the number of rows in Zt) is bigger than
16h3

γ2 do the following:

(a) Run the lightest bin protocol with Zt and rt =
γ2

16hN
1− 2√

h

t bins and let the output
contain Nt+1 elements {i1, i2, · · · , iNt+1 ∈ [Nt]}.

(b) If vy = 1, take a fresh new block Y ′ from Y , and for any j ∈ [Nt+1], compute

Zj
t+1 = Ext(Y ′, Z

ij
t ) and output ℓ ≤ k/(2h) bits (note that we have k ≥ 2hℓ by our

choices of α, β). Set vy = 0. Otherwise, take a fresh new block X ′ from X, and for

any j ∈ [Nt+1], compute Zj
t+1 = Ext(X ′, Z

ij
t ) and output ℓ ≤ k/(2h) bits. Set vy = 1.

(c) Let Zt+1 = Z1
t+1 ◦ · · · ◦ Z

Nt+1

t+1 . Set t = t+ 1.

3. At the end of the above iteration we get a source Zt with Nt ≤ 16h3

γ2 rows. Without loss of

generality assume that at this time vy = 0 (otherwise switch the roles of X and Y ), and

the last two blocks of X,Y used are X ′, Y ′. For any j ∈ [Nt], compute Z ′j = Ext(X ′, Zj
t )

and output m2 = 1.9k bits. Let Z ′ = Z ′1 ◦ · · · ◦ Z ′Nt .

4. Compute W = BasicExt(Y ′, Z ′).

24



We now have the following theorem.

Theorem 5.14. For every constant η > 0 there exists a constant C0 > 1 such that for any n, k ∈ N

with n ≥ C0 and k ≥ 1
2 log

2+η n, if X = (X1, X2, · · ·Xt), Y = (Y1, Y2, · · ·Yt) are two independent

(2k, 2k, · · · , 2k)-block sources where each block has n bits and t = ⌈ 7η ⌉+ 1, then

|(BExt(X,Y ), Y )− (Um, Y )| ≤ ǫ

and

|(BExt(X,Y ), X)− (Um, X)| ≤ ǫ,

where m = 1.8k and ǫ = 2−k
Ω(1)

.

Proof. (Sketch) By Lemma 5.7, with probability 1 − 2−Ω(ℓ) over the fixing of Y1, there exists a
subset T ⊆ [N ] such that |T | ≥ 2

3N and ∀S ⊆ T with |S| = h, we have

|(Zi
1, i ∈ S)− Uhℓ| ≤ 2−Ω(ℓ)

.
We now want to apply Lemma 5.8. Again, we need to first make sure that the conditions of

Lemma 5.7 and Lemma 5.8 are satisfied. As in the proof of Theorem 5.10, these conditions are
satisfied if the following conditions are satisfied.

k ≥ 24k3α+β logn and ℓ = kβ ≥ Ckα log n

for some constant C > 1.
Thus when k ≥ 1

2 log
2+η n, α = µ

6(2+µ) , β = 6+2µ
6(2+µ) , and µ = 0.95η, we have that for sufficiently

large n,

k

k3α+β
= k

6+µ
6(2+µ) > Ω(log1+

µ
6 n) > 24 log n and

kβ

kα
= k

6+µ
6(2+µ) ≥ Ω(log1+

µ
6 n) > C log n.

Also note that ℓ ≤ k/(2h) thus the output length in each iteration of the lightest bin protocol
also satisfies the condition of Lemma 5.8. Thus we can apply that lemma. Note that we can first
fix Y1, and conditioned on this fixing Z1 is a deterministic function of X1, and thus at the end of
the first iteration of the lightest bin protocol, we can use Z1 to extract Z2 from Y2. By Lemma 5.8,
again with probability 1− 2−k

Ω(1)
over the further fixing of X1 (and thus Z1), we will have that Z2

has the h-wise independent property. Moreover now Z2 is a deterministic function of Y2 and thus
at the end of the next iteration of the lightest bin protocol, we can use Z2 to extract Z3 from X2.
Thus, since in the algorithm we are applying the lightest bin protocol in an “alternating” manner,
the whole algorithm works through as if we are dealing with independent sources.

Note that the lightest bin protocol stops only if the number of rows in Zt is at most 16h3

γ2 . Thus

before the iteration stops, we always have Nt >
16h3

γ2 > h3 > h2. By Lemma 5.8 the probability of

the “bad event” in each iteration is at most N
−
√
h/2

t < (h3)−
√
h/2 = 2−k

Ω(1)
. We now compute the

number of iterations needed to decrease the number of rows from N1 = poly(n) to 16h3

γ2 .

25



In each iteration the number of rows in Zt decreases from Nt to Nt+1 ≤ 16h
γ2 N

2√
h

t . When

Nt ≥ h
√
h, we have that N

2√
h

t ≥ h2 > 16h
γ2 . Thus

Nt+1 ≤
16h

γ2
N

2√
h

t < N
4√
h

t .

Therefore, as long as Nt ≥ h
√
h, in each iteration the number of rows in Zt decreases from Nt

to Nt+1 ≤ N
4√
h

t . Since initially we have N1 = poly(n), the number of iterations needed to decrease

the number of rows from N1 = poly(n) to h
√
h is at most c′ which equals

log√
h
4

logN1√
h log h

=
log logN1 − 1

2 log h− log log h
1
2 log h− 2

=
log log n+O(1)− 1

2 log h− log log h
1
2 log h− 2

≤ log log n
1
2 log h− 2

− 1

≤ log log n
1
2.1 log h

− 1 ≤ log logn
α(2+η)

2.2 log logn
− 1 (since k ≥ 1

2 log
2+η n)

<
13.2(2 + µ)

µ(2 + η)
− 1 <

13.2

µ
− 1 <

14

η
− 1.

Once Nt ≤ h
√
h, in the next iteration we have

Nt+1 ≤
16h

γ2
N

2√
h

t ≤ 16h3

γ2
.

Thus the number of iterations needed to decrease the number of rows from N = poly(n) to 16h3

γ2

is at most c3 = c′ + 1 < 14
η , which is also a constant. Since γ = η

70 < 1
5c3

, we have that in each Zt,

the fraction of “good rows” is at least 2
3(1 − γ)c3 > 2

3(1 − c3γ) ≥ 4
5 · 23 > 1/2, which satisfies the

requirement of Lemma 5.8. Also note that there exists a constant C0 = C0(η) such that whenever
n ≥ C0 and k ≥ log2 n we have h ≥ kα ≥ C1 where C1 is the constant in Lemma 5.8. Thus we are
all good. Note that the number of blocks from (X,Y ) used in the iteration is at most c3 + 2.

Finally, when we stop at step t, we can fix all previous blocks of (X,Y ) used in the algorithm

except (X ′, Y ′). Since the number of blocks is a constant, with probability 1 − 2−k
Ω(1)

over this
fixing, we have that Zt−1 has the h-wise independent property as in Lemma 5.8. Moreover now
Zt−1 is a deterministic function of X. Let Z ′t−1 be the concatenation of the rows of Zt−1 with index
in the output of the last lightest bin protocol. Note that Z ′t−1 is a deterministic function of Zt−1

and has at most 16h3

γ2 rows. Without loss of generality, we can assume that Z ′t−1 has exactly ⌊16h3

γ2 ⌋
rows, otherwise we can add rows of all 0 strings to it until this is achieved. This ensures that Z ′t−1
is a deterministic function of Zt−1 with a fixed output domain. Thus the size of Z ′t−1 is bounded

by 16h3

γ2 ℓ = O(k3α+β) = o(k
1+µ
2+µ ).

We now fix Z ′t−1. By Lemma 3.7 with probability 1 − 2−k
Ω(1)

over the fixing of Z ′t−1, we have

that X ′ still has min-entropy 2k−o(k
1+µ
2+µ )−kΩ(1) = 2k−o(k). Also, by Lemma 5.8 with probability

1 − 2−k
Ω(1)

over the fixing of Zt−1 (and thus also the fixing of Z ′t−1), we have that Zt has the the

26



h-wise independence property. Thus with probability 1 − 2−k
Ω(1)

over the fixing of Z ′t−1, we have

that Zt is 2
−kΩ(1)

-close to an SR-source.
Moreover, conditioned on the fixing of Z ′t−1, we have that Zt is a deterministic function of Y ′, and

is thus independent of X ′. Thus by Theorem 3.4, with probability 1− 2−k
Ω(1)

over the fixing of Zt,
we have that Z ′ is 2−k

Ω(1)
-close to an SR-source (where each row has 1.9k bits). Note that the size

of Zt is also bounded by 16h3

γ2 ℓ = O(k3α+β) = o(k
1+µ
2+µ ). Thus again by Lemma 3.7 with probability

1−2−kΩ(1)
over the fixing of Zt, we have that Y

′ still has min-entropy 2k−o(k
1+µ
2+µ )−kΩ(1) = 2k−o(k).

Moreover, conditioned on the fixing of Zt, we have that Z ′ is a deterministic function of X ′, and is

thus independent of Y ′. Note that the number of rows in Z ′ is at most 16h3

γ2 = O(k3α) = O(k
3µ

6(2+µ) )

and k
1−2· 3µ

6(2+µ) = k
2

2+µ > log2 n, thus by Theorem 3.5 we have that

∣

∣(W,Y ′)− (Um, Y ′)
∣

∣ ≤ 2−k
Ω(1)

and

∣

∣(W,Z ′)− (Um, Z ′)
∣

∣ ≤ 2−k
Ω(1)

,

where m = 1.8k. Note that we have fixed all previously used blocks of (X,Y ), and now Z ′ is a
deterministic function ofX ′. Thus conditioned on the fixing of Z ′, we have thatW is a deterministic
function of Y ′, and is thus independent of X. Therefore by adding back all the errors we also have

|(W,Y )− (Um, Y )| ≤ 2−k
Ω(1)

and

|(W,X)− (Um, X)| ≤ 2−k
Ω(1)

.

Finally, note that the number of blocks required in each block source is at most ⌈ c3+2
2 ⌉ =

⌈ 7η ⌉+ 1.

Note that when n < C0, the extractor can be constructed in constant time just by exhaustive
search (in fact, we can get a two-source extractor in this way). Thus, we have the following theorem
(by replacing 2k with k).

Theorem 5.15. For every constant η > 0 and all n, k ∈ N with k ≥ log2+η n, there is an efficiently

computable extractor BExt : ({0, 1}n)t × ({0, 1}n)t → {0, 1}m with t = ⌈ 7η ⌉ + 1, such that if X =
(X1, X2, · · ·Xt), Y = (Y1, Y2, · · ·Yt) are two independent (k, k, · · · , k)- block sources where each block

has n bits, then

|(BExt(X,Y ), Y )− (Um, Y )| ≤ ǫ

and

|(BExt(X,Y ), X)− (Um, X)| ≤ ǫ,

where m = 0.9k and ǫ = 2−k
Ω(1)

. 6

6The constant 0.9 can be replaced by any constant less than 1.

27



As a corollary, we immediately obtain the following theorem.

Theorem 5.16. For every constant η > 0 and all n, k ∈ N with k ≥ log2+η n, there is an efficiently

computable extractor IExt : ({0, 1}n)t → {0, 1}m with t = ⌈14η ⌉ + 2 such that if X1, · · · , Xt are t
independent (n, k)-sources, then

|IExt(X1, · · · , Xt)− Um| ≤ ǫ,

where m = 0.9k and ǫ = 2−k
Ω(1)

.

6 Conclusions and Open Problems

In this paper we constructed an explicit extractor for three independent (n, k) sources with min-

entropy k ≥ log12 n, and error ǫ = 2−k
Ω(1)

. In fact our extractor works for one (n, k) source and
another independent (k, k) block source. This improves the previously best known construction for
general (n, k) sources in [Li13a], and brings the construction of independent source extractors to
nearly optimal. We also have improved results for the case of k ≥ log2+η n for any constant η > 0,
where we achieve a better constant-source extractor and in fact an extractor for two independent
block sources with each having a constant number of blocks. As a by-product, we developed a
general method to reduce the error in somewhere random sources from 1/poly(n) to 2−Ω(k) while
keeping the number of rows to be poly(n), at the cost of one extra weak source.

Our new results essentially subsume all previous results about independent source extractors,
except in the case of two-source extractors. The natural next step is thus to try to break the
entropy rate 0.49 barrier in Bourgain’s extractor [Bou05]. Another interesting direction is to use
our techniques to build better two-source dispersers and Ramsey graphs, in the spirit of [BRSW06].
Finally, it would be interesting to see if the techniques developed recently by the author in [Li13b,
Li13a] and here can be applied to the constructions of extractors and dispersers for other classes
of sources, such as affine sources and small space sources.

References

[BIW04] Boaz Barak, R. Impagliazzo, and Avi Wigderson. Extracting randomness using few in-
dependent sources. In Proceedings of the 45th Annual IEEE Symposium on Foundations

of Computer Science, pages 384–393, 2004.

[BKS+05] Boaz Barak, Guy Kindler, Ronen Shaltiel, Benny Sudakov, and Avi Wigderson. Simu-
lating independence: New constructions of condensers, Ramsey graphs, dispersers, and
extractors. In Proceedings of the 37th Annual ACM Symposium on Theory of Comput-

ing, pages 1–10, 2005.

[Bou05] Jean Bourgain. More on the sum-product phenomenon in prime fields and its applica-
tions. International Journal of Number Theory, 1:1–32, 2005.

[BRSW06] Boaz Barak, Anup Rao, Ronen Shaltiel, and Avi Wigderson. 2 source dispersers for no(1)

entropy and Ramsey graphs beating the Frankl-Wilson construction. In Proceedings of

the 38th Annual ACM Symposium on Theory of Computing, 2006.

28



[CG88] Benny Chor and Oded Goldreich. Unbiased bits from sources of weak randomness and
probabilistic communication complexity. SIAM Journal on Computing, 17(2):230–261,
1988.

[DKSS09] Zeev Dvir, Swastik Kopparty, Shubhangi Saraf, and Madhu Sudan. Extensions to the
method of multiplicities, with applications to kakeya sets and mergers. In Proceedings

of the 50th Annual IEEE Symposium on Foundations of Computer Science, 2009.

[DW08] Zeev Dvir and Avi Wigderson. Kakeya sets, new mergers and old extractors. In Pro-

ceedings of the 49th Annual IEEE Symposium on Foundations of Computer Science,
2008.

[DW09] Yevgeniy Dodis and Daniel Wichs. Non-malleable extractors and symmetric key cryp-
tography from weak secrets. In Proceedings of the 41st Annual ACM Symposium on

Theory of Computing, pages 601–610, 2009.

[Fei99] Uriel Feige. Noncryptographic selection protocols. In IEEE, editor, Proceedings of the

40th Annual IEEE Symposium on Foundations of Computer Science, pages 142–152.
IEEE Computer Society Press, 1999.

[GUV09] Venkatesan Guruswami, Christopher Umans, and Salil Vadhan. Unbalanced expanders
and randomness extractors from Parvaresh-Vardy codes. Journal of the ACM, 56(4),
2009.

[KLR09] Yael Kalai, Xin Li, and Anup Rao. 2-source extractors under computational assump-
tions and cryptography with defective randomness. In Proceedings of the 50th Annual

IEEE Symposium on Foundations of Computer Science, pages 617–628, 2009.

[KLRZ08] Yael Tauman Kalai, Xin Li, Anup Rao, and David Zuckerman. Network extractor
protocols. In Proceedings of the 49th Annual IEEE Symposium on Foundations of

Computer Science, pages 654–663, 2008.

[KRVZ06] Jesse Kamp, Anup Rao, Salil Vadhan, and David Zuckerman. Deterministic extractors
for small space sources. In Proceedings of the 38th Annual ACM Symposium on Theory

of Computing, 2006.

[Li11a] Xin Li. Improved constructions of three source extractors. In Proceedings of the 26th

Annual IEEE Conference on Computational Complexity, pages 126–136, 2011.

[Li11b] Xin Li. A new approach to affine extractors and dispersers. In Proceedings of the 26th

Annual IEEE Conference on Computational Complexity, pages 137–147, 2011.

[Li12] Xin Li. Non-malleable extractors, two-source extractors and privacy amplification. In
Proceedings of the 53rd Annual IEEE Symposium on Foundations of Computer Science,
pages 688–697, 2012.

[Li13a] Xin Li. Extractors for a constant number of independent sources with polylogarithmic
min-entropy. In Proceedings of the 54th Annual IEEE Symposium on Foundations of

Computer Science, pages 100–109, 2013.

29



[Li13b] Xin Li. New independent source extractors with exponential improvement. In Pro-

ceedings of the 45th Annual ACM Symposium on Theory of Computing, pages 783–792,
2013.

[Li15] Xin Li. Non-malleable condensers for arbitrary min-entropy, and almost optimal proto-
cols for privacy amplification. In 12th IACR Theory of Cryptography Conference, pages
502–531. Springer-Verlag, 2015. LNCS 9014.

[LRVW03] C. J. Lu, Omer Reingold, Salil Vadhan, and Avi Wigderson. Extractors: Optimal up
to constant factors. In Proceedings of the 35th Annual ACM Symposium on Theory of

Computing, pages 602–611, 2003.

[MW97] Ueli M. Maurer and Stefan Wolf. Privacy amplification secure against active adversaries.
In Advances in Cryptology — CRYPTO ’97, 17th Annual International Cryptology

Conference, Proceedings, 1997.

[NZ96] Noam Nisan and David Zuckerman. Randomness is linear in space. Journal of Computer

and System Sciences, 52(1):43–52, 1996.

[Rao06] Anup Rao. Extractors for a constant number of polynomially small min-entropy in-
dependent sources. In Proceedings of the 38th Annual ACM Symposium on Theory of

Computing, 2006.

[Raz05] Ran Raz. Extractors with weak random seeds. In Proceedings of the 37th Annual ACM

Symposium on Theory of Computing, pages 11–20, 2005.

[Zuc97] D. Zuckerman. Randomness-optimal oblivious sampling. Random Structures and Al-

gorithms, 11:345–367, 1997.

30

 

ECCC                 ISSN 1433-8092 

http://eccc.hpi-web.de 


