
Comparator Circuits over Finite Bounded Posets

Balagopal Komarath∗ Jayalal Sarma K.S. Sunil

Department of Computer Science & Engineering.
Indian Institute of Technology Madras, Chennai, India.

Email: {baluks|jayalal|sunil}@cse.iitm.ac.in

May 11, 2017

Abstract

The comparator circuit model was originally introduced in [5] (and further studied in [2])
to capture problems that are not known to be P-complete but still not known to admit effi-
cient parallel algorithms. The class CC is the complexity class of problems many-one logspace
reducible to the Comparator Circuit Value Problem and we know that NLOG ⊆ CC ⊆ P. Cook
et al. [2] showed that CC is also the class of languages decided by polynomial size comparator
circuit families.

We study generalizations of the comparator circuit model that work over fixed finite bounded
posets. We observe that there are universal comparator circuits even over arbitrary fixed finite
bounded posets. Building on this, we show the following :

• Comparator circuits of polynomial size over fixed finite distributive lattices characterize the
class CC. When the circuit is restricted to be skew, they characterize LOG. Noting that
(uniform) polynomial sized Boolean circuits (resp. skew) characterize P (resp. NLOG),
this indicates a comparison between P vs CC and NLOG vs LOG problems.

• Complementing this, we show that comparator circuits of polynomial size over arbitrary
fixed finite lattices characterize the class P even when the comparator circuit is skew.

• In addition, we show a characterization of the class NP by a family of polynomial sized
comparator circuits over fixed finite bounded posets. As an aside, we consider generaliza-
tions of Boolean formulae over arbitrary lattices. We show that Spira’s theorem [6] can
be extended to this setting as well and show that polynomial sized Boolean formulae over
finite fixed lattices capture the class NC1.

These results generalize results in [2] regarding the power of comparator circuits. Our techniques
involve design of comparator circuits and finite posets. We then use known results from lattice
theory to show that the posets that we obtain can be embedded into appropriate lattices. Our
results give new methods to establish CC upper bounds for problems and also indicate potential
new approaches towards the problems P vs CC and NLOG vs LOG using lattice theoretic methods.

∗Supported by TCS PhD Fellowship

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 35 (2015)

1 Introduction

Completeness for the class P for a problem is usually considered to be evidence that it is hard
to design an efficient parallel algorithm for the problem. However, there are many computational
problems in the class P, which are not known to be P-complete, yet designing efficient parallel
algorithms for them has remained elusive. Some of the classical examples of such problems include
lex-least maximal matching problem and stable marriage problem [5].

•

•

•a

b

c

Figure 1: A Comparator Circuit

Attempting to capture the exact complexity of com-
putation in these problems using a variant of Boolean
circuit model, Mayr and Subramanian [5] (see also [2])
studied the comparator circuit model. A comparator cir-
cuit is a sorting network working over the values 0 and 1.
A comparator gate has two inputs and two outputs. The
first output is the AND of the two inputs and the second
output is the OR of the two inputs. A comparator circuit
is a circuit that has only comparator gates. In particular, fan-out gates are not allowed. Without
loss of generality, we can assume that NOT gates are used only at the input level. A graphical
representation of a comparator circuit is shown in Figure 1. In this representation, we draw a set
of parallel lines. Each line carries a logical value which is updated by gates incident on that line.
Each gate is represented by a directed arrow from one line (say i) to another (say j) and the gate
updates the values of lines as follows. The value of line i (j) is set to the AND (resp. OR) of values
previously on lines i and j. The gates are evaluated from left to right. The output of the circuit is
the final value of a line designated as the output line. We define the model formally in Section 2.

In order to study the complexity theoretic significance of comparator circuits, the corresponding
circuit value problem was explored in [5]. That is, given a comparator circuit and an input, test
if the output wire carries a 1 or not. The class CC is defined in [5] as the class of languages that
are logspace many-one reducible to the comparator circuit value problem. They also observed that
the class CC is contained in P. Feder’s algorithm (described in [8]) for directed reachability proves
that the class CC contains NLOG as a subclass. These are the best containments currently known
about the complexity class CC.

There has been a recent spurt of activity in the characterization of CC. Cook et al. [2] showed
that the class CC is robust even if the complexity of the many-one reduction to the comparator
circuit value problem is varied from AC0 to NLOG. They also gave a characterization of the class CC
in terms of a computational model (comparator circuit families). Their main contribution in this
regard is the introduction of a universal comparator circuit that can simulate the computation of
a comparator circuit given as input (to the universal circuit). Comparison of CC with the class NC
has interesting implications to the corresponding computational restrictions. For example, hardness
for the class CC is conjectured to be evidence that the problem is not efficiently parallelizable. This
intuition was further strengthened by Cook et al. [2] by showing that there are oracle sets relative to
which CC and NC are incomparable (NC is the class of all languages efficiently solvable by parallel
algorithms). In addition, it is conjectured in [2] that the classes NC, SC and CC are pairwise
incomparable.

Our Results & Techniques: In this paper, we study the computational power of comparator
circuits working over arbitrary fixed finite bounded posets. Informally, instead of 0 and 1, the

2

values used throughout the computation could be any element from the poset and the AND and
OR gates compute maximal lower bounds and minimal upper bounds over the poset respectively.
We define this model formally in section 3. We obtain the following results:

• There exist Universal Comparator Circuits for comparator circuits irrespective of the under-
lying bounded poset. (Proposition 3, Section 3.)

• Comparator circuits of polynomial size over fixed finite distributive lattices capture the class
CC. (Theorem 4, Section 4). This leads to a new way to show that a problem is in the class
CC. That is, by designing a comparator circuit over a fixed finite lattice and then showing
that the lattice is distributive. (An application of this method to design CC algorithms for the
stable matching problem can be found in [5]. See also Section 6.2 in [2]). Since there are lattice
theoretic techniques known (cf. M3-N5 Theorem [3]) for showing that a lattice is distributive,
this alternate definition of the class CC using comparator circuits over distributive lattices
might be of independent interest.

• Going beyond distributivity, we show that comparator circuits of polynomial size over fixed
finite lattices characterize the class P. (Theorem 5, Section 4). In particular, we design a
fixed finite poset P over which, for any language L ∈ P, there is a polynomial size comparator
circuit family over P computing L. During computation, we only use lubs and glbs that exist
in the poset P . This enables the use of Dedekind-MacNeille completion (DM completion)
to construct a fixed finite lattice completing the poset P while preserving existing lubs and
glbs in the poset and that lattice can be used to perform all computations in P. A potential
drawback of the lattice thus obtained is that the complexity class captured by comparator
circuits over it may vary depending on the element in the lattice used as the accepting element.
By using standard tools from lattice theory, we derive that there is a fixed constant i ≥ 3,
such that comparator circuits over Πi (where Πi is the ith partition lattice - see Section 2 for
a definition) with polynomial size can compute all functions in P. Moreover, we show that
comparator circuits over the lattice Πi capture P irrespective of the accepting element used.

However, both partition lattices for i ≥ 3 and the lattice given by DM completion are non-
distributive. Exploring the possibility of another completion of the poset P into a distributive
lattice that preserves existing lubs and glbs (which will show P = CC), we arrive at the
following negative result : the poset P cannot be embedded into any distributive lattice while
preserving all existing lubs and glbs. (Theorem 6).

It is conceivable that the class P could be captured by a family of distributive lattices,
while no finite fixed lattice capturing P can be distributive. Motivated by this, we also
present an analogue of the main theorem using growing posets of much simpler structure (See
appendix A). However, we argue that this poset family also cannot be embedded into a family
of distributive lattices while preserving all existing lubs and glbs.

• Going beyond lattice structure, we show that comparator circuits over fixed finite bounded
posets capture the class NP. (Theorem 7, Section 5). Here, we crucially use the fact that
posets that are not lattices could have elements that do not have unique minimal upper bounds
to simulate non-determinism. Hence, any completion of this poset into a lattice will fail to
capture NP, unless P = NP. Note, that the DM completion of this poset would not be able to
characterize NP as in the case of P because the DM completion would introduce elements so

3

that the elements in the poset that have non-unique minimal upper bounds and/or maximal
lower bounds would end up having unique lubs and glbs.

• Restricting the structure of the comparator circuit, we obtain an exact characterization of
the class LOG using skew comparator circuits (Theorem 8). Noting that the polynomial sized
skew Boolean circuits characterize exactly the class NLOG, this leads to a comparison between
CC vs P and NLOG vs LOG problem : both problems address the power of polynomial size
Boolean circuits vs comparator circuits in general and skew circuits respectively.

• We further study generalizations of skew comparator circuits to arbitrary lattices. When
the lattice is distributive, it follows that the circuits capture exactly LOG. Complementing
this, we show that there are fixed finite lattices P over which the skew comparator circuits
characterize exactly P.(Theorem 9).

• We study generalizations of Boolean formulas to arbitrary lattices where the AND and OR
gates compute the ∧ and ∨ of the lattices. We generalize Spira’s theorem [6] to this setting
and show that polynomial sized Boolean formulae over finite fixed lattices capture exactly
NC1 (Theorem 10).

Thus, we observe that as the comparator circuit is allowed to compute over progressively general
structures (from distributive lattices to arbitrary lattices to posets), the model captures classes of
problems that are progressively harder to parallelize (From CC to P to NP). The table below
indicates the results (known results are indicated by citations).

Lattices =⇒ Boolean Distributive General Posets

poly-sized CC(see [2]) CC P NP

Skew, poly-sized LOG LOG P -

Formulae NC1(see [6]) NC1 NC1

The main technical contribution in our proofs is the design of posets and the corresponding
comparator circuits for capturing complexity classes. We then use known ideas from lattice and
order theory in order to derive lattices to which the constructed posets can be embedded.

2 Preliminaries

The standard definitions in complexity theory used in this paper can be found in standard textbooks
[1]. All reductions in this paper are computable in logspace unless mentioned otherwise. By
(standard) Boolean circuits, we mean circuits over the basis {∨,∧} where NOT gates are only
allowed at the input level. In this section, we define comparator circuits, certain restrictions on
comparator circuits and complexity classes based on those restrictions.

A comparator circuit has a set of n lines {w1, . . . , wn} and an ordered list of gates (wi, wj).
Each line can be fed as input a value that is either (Boolean) 0 or 1. We define val(wi) to be
the value of the line wi. Each gate (wi, wj) updates val(wi) to val(wi) ∧ val(wj) and val(wj) to
val(wi) ∨ val(wj) in order. After all gates have updated the values, the value of the line w1 is the
output of the circuit.

The Comparator Circuit Value problem is: Given (C, x) as input find the output of the
comparator circuit C when fed x as input. We can think of C being encoded according to the

4

above definition of comparator circuits. We call this the ordered list representation as the gates
are presented as an ordered list. Mayr and Subramanian [5] defined the complexity class CC as the
set of all languages logspace reducible to the Comparator Circuit Value problem. Cook et al. [2]
characterized the class CC as languages computed by AC0-uniform families of annotated comparator
circuits. In an annotated comparator circuit the initial value of a line could be an input variable
xi or its complement xi. In a family of annotated comparator circuits for a language L, the nth

comparator circuit in the family has exactly n input variables (x1, . . . , xn) and the circuit computes
L ∩ {0, 1}n.

Skew Comparator Circuits: We now define skewness in comparator circuits. To begin with,
we present an alternate definition of comparator circuits that is closer to the definition of standard
Boolean circuits. A comparator gate is a 2-input, 2-output gate that takes a and b as inputs
and outputs a ∧ b and a ∨ b. Then the comparator circuit is simply a circuit (in the usual sense)
that consists of only comparator gates (In particular, fan-out gates are not allowed). Using this
definition, we can encode comparator circuits by using DAGs as we encode standard Boolean
circuits. It is easy to see that given a comparator circuit encoded as an ordered list of gates, we
can obtain the DAG encoding the comparator circuit in logspace. Using this definition, we can talk
about wires in the comparator circuit.

We say that an AND gate in a comparator gate is used if the AND output wire of that com-
parator gate has a path, through comparator gates, to the output wire. An AND gate in the circuit
is called skew if and only if at least one input to that gate is the constant 0 or the constant 1 or
(in the case of annotated circuits) an input bit xi or xi for some i.

A comparator circuit is called a skew comparator circuit if and only if all used AND gates in the
circuit are skew. The complexity class SkewCC consists of all languages that can be decided by poly-
size skew comparator circuit families. We define SkewCCVP to be the circuit evaluation problem for
skew comparator circuits. Note that given the ordered list representation of a comparator circuit,

it is easy to check whether an AND gate is used or not. For ex., if the ith gate is (w1, w2), then
the AND output of this gate is unused if and only if there is no element in the list of gates with
w1 as a member at a position greater that i in the list and if the AND output of this gate is not
the output wire.

The circuit family is LOG-uniform if and only if there exists a TM M that outputs the nth circuit
in the family in O(log(n)) space given 1n as input. All circuits in this paper are LOG-uniform unless
mentioned otherwise.

Lattice and Order Theory: We include some basic definitions and terminology from standard
lattice and order theory that are required later in the paper. A more detailed treatment can be
found in standard textbooks [3].

A set P along with a reflexive, anti-symmetric and transitive relation denoted by ≤P is called a
poset. An element m ∈ P is called the greatest element if x ≤ m for all x in P . An element m ∈ P
is called the least element if m ≤ x for all x in P . A poset is called bounded if it has a greatest
and a least element. Note that any finite poset can be converted into a finite bounded poset by
adding two new elements 0 and 1 and adding the relations m ≤ 1 and 0 ≤ m for every element m
in the poset. Minimal upper bounds of two elements x, y in P , denoted by x ∨ y, is the set of all
m ∈ P such that x ≤ m, y ≤ m and there exists no m′ distinct from m such that x ≤ m′, y ≤ m′

and m′ ≤ m. Maximal lower bounds of two elements x, y in P , denoted by x ∧ y, is the set of all

5

m ∈ P such that m ≤ x, m ≤ y and there exists no m′ distinct from m such that m′ ≤ x, m′ ≤ y
and m ≤ m′. A poset P is called a lattice if every pair of elements x and y has a unique maximal
lower bound and a unique minimal upper bound. In a lattice, the minimal upper bound (maximal
lower bound) of two elements is also known as the join (meet). Since minimal upper bound and
maximal lower bound are unique in a lattice, we drop the set notation when describing them, i.e.,
instead of writing a ∨ b = {x}, we simply write a ∨ b = x. A lattice L is called distributive if for
every elements a, b, c ∈ L we have a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c). An order embedding of a poset P
into a poset P ′ is a function f : P 7→ P ′ such that f(x) ≤P ′ f(y) ⇐⇒ x ≤P y. We say that the
lattice L is a sub-lattice of L′ if L ⊆ L′ and L is also a lattice under the meet and join operations
inherited from L′. In this case, we say that L′ embeds L.

We now state some technical theorems from the theory which we crucially use. The following
theorem shows that given a poset one can find a lattice that contains the poset.

Theorem 1 (Dedekind-Macneille Completion[3]). For any poset P , there always exists a smallest
lattice L that order embeds P . This lattice L is called the Dedekind-MacNeille completion of P .

One crucial property of Dedekind-MacNeille completion is that it preserves all meets and joins
that exist in the poset, i.e., if a and b are two elements in the poset and a ∨ b = x in the poset,
then we have f(a) ∨ f(b) = f(x) in the Dedekind-MacNeille completion of the poset, where f is
the embedding function that maps elements in P to elements in L.

We now state a very important theorem that concerns the structure of distributive lattices.

Theorem 2 (Birkhoff’s Representation Theorem[3]). The elements of any finite distributive lattice
can be represented as finite sets, in such a way that the join and meet operations over the finite
distributive lattice correspond to unions and intersections of the finite sets used to represent those
elements.

The nth partition lattice for n ≥ 2, denoted Πn, is the lattice where elements are partitions of
the set {1, . . . , n} ordered by refinement. Equivalently, the elements are equivalence relations on
the set {1, . . . , n} where the glb is the intersection and lub is the transitive closure of the union.

Theorem 3 (Pudlák, Tůma[7]). For any finite lattice L, there exists an i such that L can be
embedded as a sublattice in Πi.

We can describe elements of the partition lattice Πn by using undirected graphs on the vertex
set {1, . . . , n}. Given an undirected graph G = ({1, . . . , n}, E), the corresponding element AG ∈ Πn

is the equivalence relation AG = {(i, j) : j is reachable from i in G}. We may choose transitively
closed graphs (disjoint union of cliques) as the canonical representation for elements of partition
lattices. Figure 2 shows the lattice Π4 and two undirected graphs representing two different elements
in Π4.

Some Relations in Partition Lattices: A formula over a lattice is defined analogously to a
Boolean formula. The Boolean AND and OR operations are generalized to glb and lub operations
of the lattice and the formula may contain elements of the lattice as constants (Similar to Boolean
values 0 and 1 in a Boolean formula). In this section, we prove the existence of a certain formula
over partition lattices. The following statements hold1 for any partition lattice Πi where i ≥ 2. In
the following propositions, the element 0 refers to the least element of the lattice and the element
1 refers to the greatest element of the lattice.

1Since we have not seen them explicitly in the literature, we include the proofs in this paper.

6

1234

1/2/3/4

12/34134/2123/413/24124/31/23414/23

1/2/3412/3/413/2/41/24/314/2/31/23/4

13/24

1

2

3

4

123/4
1

2

3

4

Figure 2: The lattice Π4 and the undirected graph representation of 13/24 and 123/4

Proposition 1. For any A,B ∈ Πi such that A 6≤ B, there exists a formula DISTA,B over Πi such
that DISTA,B(x) = 1 if x = A and strictly less than 1 if x = B.

Proof. There are two cases to consider. Case when [A > B]: Let P ∈ Πi be the element correspond-
ing to a path with exactly one vertex from each partition in A. We define DISTA,B(x) = x ∨ P .
Case when [A 6> B]: Let e1, . . . , em be the edges in B\A (using canonical representation) and
let Bi denote the element in the partition lattice that correspond to the undirected graph hav-
ing only the edge ei. Let g(x) = x ∨ B1 ∨ . . . ∨ Bm. We have g(A) > g(B) = B. Then define
DISTA,B(x) = DISTg(A),B(g(x)).

Proposition 2. For any A ∈ Πi, there exists a formula GEA(x) that is 1 iff x ≥ A. In addition,
there exists a formula GE′A(x) that evaluates to 1 if x ≥ A and evaluates to 0 otherwise.

Proof. For the first part, simply define the formula GEA(x) =
∧

B 6≥A DISTA,B(x) when A 6= 0 where
DISTA,B(x) is as defined in Proposition 1. Define GE0 as identically 1.

For the second part, consider the formula fZ that is defined if and only if Z 6= 1 and it maps 1
to 1 and Z to 0 (the images of the rest of the elements in the lattice can be arbitrary). Let Z have
k ≥ 2 partitions. Let e1, . . . , em be the edges of the complete k-partite graph on these k partitions.
Let B1, . . . , Bm be lattice elements such that Bi corresponds to the undirected graph that contains
only the edge ei. fZ(x) =

∨m
i=1 (x ∧Bi). Now to complete the second part, define the formula

GE′A(x) =
∧

B<1 fB(GEA(x)) (GE′0 is identically 1).

3 Generalization to Finite Bounded Posets and Universal Circuits

In this section, we consider comparator circuit models over arbitrary fixed finite bounded posets
instead of the Boolean lattice on two elements. We then prove the existence of universal circuits for
these models. The existence of these generalized universal comparator circuits imply that the classes
characterized by comparator circuit families over fixed finite bounded posets also have canonical
complete problems – the comparator circuit evaluation problem over the same fixed finite bounded
poset.

7

Definition 1 (Comparator Circuits over Fixed Finite Bounded Posets). A comparator circuit
family over a finite bounded poset P with an accepting element2 a ∈ P is a family of circuits
C = {Cn}n≥0 where Cn = (W,G, f) and f : W 7→ (P ∪ {(i, g) : 1 ≤ i ≤ n and g : Σ 7→ P}). Here
W = {w1, . . . , wm} is a set of lines and G is an ordered list of gates (wi, wj).

On input x ∈ Σn, we define the output of the comparator circuit Cn as follows. Each line is
initially assigned a value according to f as follows. We denote the value of the line wi by val(wi).
If f(w) ∈ P , then the value is the element f(w). Otherwise f(w) = (i, g) and the initial value
is given by g(xi). A gate (wi, wj) (non-deterministically) updates the value of the line wi into
val(wi) ∧ val(wj) and the value of the line wj into val(wi) ∨ val(wj). The values of lines are
updated by each gate in G in order and the circuit accepts x if and only if val(w1) = a at the end
of the computation for some sequence of non-deterministic choices.

Let Σ be any finite alphabet. A comparator circuit family C over a bounded poset P with an
accepting element a ∈ P decides L ⊆ Σ∗ if C|x|(x) = a if and only if x ∈ L ∀x ∈ Σ∗.

All comparator circuit families in this paper are logspace-uniform unless mentioned otherwise.

Remark 1. Note that when the underlying poset is a lattice, the output of all gates in the comparator
circuit is deterministic. In other words, the non-determinism in the circuit comes from the fact
that two elements in a poset need not have unique lubs and glbs.

Note that we can generalize any circuit model that uses only AND and OR gates to work
over arbitrary bounded posets. However, as we will see in this paper, the most interesting case
is comparator circuits over arbitrary bounded posets as they lead to new characterizations of
complexity classes other than CC.

Definition 2. We define the complexity class (P, a)–CC as the set of all languages accepted by
poly-size comparator circuit families over the finite bounded poset P with accepting element a ∈ P .

If the complexity class does not change with the accepting element, i.e., (P, a)–CC = (P, b)–CC
for any a, b ∈ P , we simply write P–CC to refer to the complexity class (P, a)–CC.

We note that for any bounded poset P with at least 2 elements, we can simulate a Boolean
lattice by using 0 (least element) and some a > 0 in P . Therefore, we have CC ⊆ (P, a)–CC.

Definition 3. For any finite bounded poset P and any a ∈ P , the comparator circuit evaluation
problem (P, a)–CCVP is defined as the set of all tuples (C, x) such that C on input x has a sequence
of non-deterministic choices where it outputs a ∈ P where C is a comparator circuit over P .

We now describe an encoding for the (P, a)–CCVP problem. The input is encoded by a binary
string of the form 1n01m0{0, 1}n(n−1)m+n. Here the last n(n− 1)m bits of the string can be viewed

as m blocks of n(n−1) bits where the ith block has exactly one set bit, say (k, j) where k 6= j, and

it encodes the fact that the ith gate is from line k to line j. The n bits prior to these bits encode
the initial values of n lines. This encoding is logspace-equivalent to the ordered list representation.
We call strings of this form (n,m)-valid. A given N -bit string can be valid for at most one (n,m)
pair. We first prove that a universal comparator circuit exists even for comparator circuit model
working over arbitrary finite fixed posets.

2In the definition of general Boolean circuits it is implicit that the element 1 is the accepting element. However,
it does not make any difference even if we use 0 as the accepting element. This is because a Boolean circuit that
accepts using 0 can be easily converted to one that accepts using 1 by complementing the output. This is not true
for comparator circuits over bounded posets in general. Using different elements as accepting elements may change
the power of the comparator circuit.

8

Proposition 3. For any bounded poset P , there exists a universal comparator circuit Un,m over P
that when given (C, x) as input, where C is a comparator circuit over P with n lines and m gates,
simulates the computation of C. That is, Un,m has a non-deterministic path that outputs a ∈ P if
and only if C has such a path, for any a ∈ P . Moreover, the size of Un,m is poly(n,m).

Proof. We simply observe that the construction for a universal circuit for the class CC in [2] gen-
eralizes to arbitrary bounded posets. The gadget shown in Figure 3 simulates the comparator gate
g = (y, x) depending on the “enable” input e. Here the inputs e and e satisfy the following property.
If e = 0 (e = 1), then e = 1 (e = 0 resp) where 0 and 1 are the least and greatest elements of the
bounded poset P respectively. If the enable input is 1, then gate g is active. If the enable input is
0, then the gate g acts as a pass-through gate, i.e., the lines labelled x and y retain their original
values.

Now to simulate a single gate in the circuit C, the universal circuit uses n(n− 1) such gadgets
where n is the number of lines in C. The inputs e and e for each gadget is set according to C. The
circuit C can be simulated using n(n− 1)m gates where m is the number of gates in C.

• •

•

•e

x

y

e

Figure 3: Conditional Comparator Gadget

The following proposition is a generalization
of the corresponding theorem for Boolean com-
parator circuits in [2].

Proposition 4. The language (P, a)–CCVP is
complete under logspace reductions for the class
(P, a)–CC for all finite bounded posets P and
any a ∈ P .

Proof. The problem (P, a)–CCVP is trivially
hard for the class (P, a)–CC. Let L ∈ (P, a)–CC
via a logspace-uniform circuit family {Cn}.
Now given x as input, we output the tuple (Cn, x) by running the uniformity algorithm.

The fact that (P, a)–CCVP ∈ (P, a)–CC follows from Proposition 3. Given a string, it can be
checked in logspace whether it is (n,m)-valid once n and m are fixed. Let Vn,m be a logspace
uniform comparator circuit over the 0–1 lattice that takes an N bit string as input and outputs 1
iff the input is an (n,m)-valid string. Let N = 2n+m+ 2 + n(n− 1)m be the total length of the
input. The uniformity machine on input N writes out the description of

∨
(n,m) Un,m ∧ Vn,m over

all (n,m) pairs satisfying N = 2n+m+ 2 + n(n− 1)m.

4 Comparator Circuits over Lattices

First, we show that comparator circuits over distributive lattices characterize the class CC.

Theorem 4. Let L be any non-trivial finite distributive lattice and a ∈ L be an arbitrary element.
Then CC = (L, a)–CC.

Proof. By Birkhoff’s representation theorem, every finite distributive lattice of k elements is iso-
morphic to a lattice where each element is some subset of [k] (ordered by inclusion) and the join
and meet operations in the original finite distributive lattice correspond to set union and set inter-
section operations in the new lattice. We will use this to simulate a circuit over an arbitrary finite

9

distributive lattice L of size k using a circuit over the 0–1 lattice. Each line w in the original circuit
is replaced by k lines w1, . . . , wk. The invariant maintained is that whenever a line in the original
circuit carries a ∈ L, these k lines carry the characteristic vector of the set corresponding to the
element a. Now a gate (w, x) in the original circuit is replaced by k gates (w1, x1), . . . , (wk, xk) in
the new circuit. The correctness follows from the fact that meet and join operations in the original
circuit correspond to set union and set intersection which in turn correspond to AND and OR
operations of the characteristic vectors.

We now prove that CC ⊆ (L, a)–CC. First, we consider the case where a 6= 0. We replace the
Boolean value 0 by the minimum element in L and the Boolean value 1 by the maximum element
in L. The output wire of the new circuit is o ∧ a where o is the original output wire. It is easy to
see that this circuit output a if and only if the original circuit outputs 1. If a 6= 0, we can use the
fact that the class CC is closed under complementation to construct a Boolean comparator circuit
that accepts using 0. This can be easily translated to an (L, a)–CC circuit as above.

Now we consider comparator circuits over fixed finite lattices. Note that when characterizing the
class P in terms of Boolean circuits, the fan-out of gates is required to be at least 2. In fact, Mayr
and Subramanian’s [5] primary motivation while introducing the class CC was to study fan-out
restricted circuits. We show that if comparator circuits are given the freedom to compute over any
lattice (as opposed to the Boolean lattice on 2 elements), then the fan-out restriction is irrelevant.

p 0′′ 0′◦ z

0

1′′

x

1 0′ 1′◦

0◦ 0′◦◦

1◦ w 1′ y 1′◦◦

Figure 4: The poset for simulating P

The following lemma describes a fixed finite lattice
over which comparator circuits capture P. However, it
is not clear whether the class captured by comparator
circuits over this lattice is independent of the accepting
element. In Theorem 5, we show that there exists a lattice
that captures P irrespective of the accepting element. The
language MCVP consists of all tuples (C, x) where C is
a Boolean circuit with only AND, OR and input gates.
Here x ∈ {0, 1}n where n is the number of input gates to
C and x specifies the value of each of these input gates. In
the proof, we will reduce in logspace the language MCVP
which is complete for the class P under logpace reductions
to the comparator circuit value problem over the finite lattice given in Figure 5.

Lemma 1. Let L be the lattice in Figure 5. Then P = (L, 1)–CC (Note that 1 is not the maximum
element in the lattice).

Proof. Let (C, x) be the input to MCVP. For each wire in C, we add a line to our comparator
circuit. The initial value of the lines that correspond to the input wires of C are set to 0 or 1
of the poset P shown in Figure 4 according to whether they are 0 or 1 in x. The comparator
circuit simulates C in a level by level fashion maintaining the invariant that the lines carry 0 or 1
depending on whether they carry 0 or 1 in C. We will show how our comparator circuit simulates
a level 1 OR gate of fan-out 2. The proof then follows by an easy induction.

Since 0 ≤P 1 an AND (OR) gate in C can be simulated by a meet (join) operation in P . The
gadget shown in Figure 6 is used to implement the fan-out operation. The idea is that the first gate
in the gadget implements the AND/OR operation and the rest of the gates in this gadget “copy”
the result of this operation into the lines o1 and o2 that correspond to the two output wires of the
gate. The reader can verify that the elements of P satisfy the following meet and join identities.

10

Figure 6 shows how one could use the following identities to copy the output of a∨ b into two lines
(labelled o1 and o2).

The identity 0 ∨ 1 = 1 is used to implement the Boolean AND/OR operation. This is used by
the first gate in Figure 6. Once the required value is computed. We add a gate between the line
carrying the result of the AND/OR operation and a line with value x. As the following identities
show, this makes two “copies” of the result of the Boolean operation. 0 ∨ x = 0′, 1 ∨ x = 1′,
0 ∧ x = 0′′, 1 ∧ x = 1′′

Now, the following identities can be used to convert the first copy (0′ or 1′) into the original
value (0 or 1). 0′ ∧ y = 0′◦, 1′ ∧ y = 1′◦, 0′◦ ∨ z = 0′◦◦, 1′◦ ∨ z = 1′◦◦, 0′◦◦ ∧ w = 0, 1′◦◦ ∧ w = 1

Similarly, the following identities can be used to convert the second copy (0′′ or 1′′) into the
original value (0 or 1). 0′′ ∨ p = 0◦, 1′′ ∨ p = 1◦, 0◦ ∧ w = 0, 1◦ ∧ w = 1

The lattice in Figure 5 is simply the Dedekind-MacNeille completion of P . Since the Dedekind-
MacNeille completion preserves all existing meets and joins, the same computation can also be
performed by this lattice.

To see that for any lattice L and any a ∈ L, (L, a)–CC is in P, observe that in poly-time we
can evaluate the nth comparator circuit from the comparator circuit family for the language in
(L, a)–CC.

Lemma 1 shows that the complexity class captured by the comparator circuit could change
(Assuming CC 6= P) depending on the underlying lattice and the accepting element. In the following
theorem, we show that if we consider any partition lattice, say Πi, that embeds L (in Lemma 1),
then the complexity class is P irrespective of the accepting element. We crucially use the fact that
the circuit in the proof of Lemma 1 outputs only the elements 0 and 1 in L.

Theorem 5. There exists a constant i such that Πi–CC = P.

Proof. We know that there exists a finite lattice L and an a, b ∈ L such that for any language
M ∈ P there exists a comparator circuit family over L that decides M by using a to accept and b to
reject. Also b < a. By Pudlák-Tůma theorem [7], we know that there exists a constant i such that
L can be embedded in Πi. It remains to show that the accepting element used does not change the
complexity. In fact, we will show that for any X, Y ∈ Πi where X 6= Y , we can design a comparator
circuit family over Πi that accepts M using X and rejects using Y . Let A and B be the elements in
Πi that a and b gets mapped to by this embedding (B < A). Then there exists a circuit family C
over Πi, deciding M, that accepts using A and rejects using B. We will construct a circuit family
C ′ over Πi from C such that C ′ uses 1 to accept and 0 to reject. Here 1 and 0 are the maximum
and minimum elements in Πi. Now if we let x be the output of a circuit in the circuit family C, we
can construct C ′ by computing GE′A(x) (See Proposition 2). Similarly, we can construct a circuit
family C ′′ that accepts using 0 and rejects using 1 by reducing the language M to MCVP and then
applying the construction in Lemma 1 and then computing GE′A(x) on the output of this circuit.
The required circuit family is then the one computing (X ∧ C ′) ∨ (Y ∧ C ′′).

If we can show that there exists a finite distributive lattice such that the poset in Figure 4 can
be embedded in that lattice while preserving all existing meets and joins, then P = CC. In the
following theorem, we show that such an embedding is not possible.

Theorem 6. The poset in Figure 4 cannot be embedded into any distributive lattice while preserving
all meets and joins.

11

•

p 0′′ 0′◦ z

0

1′′ ••
x •

1
0′

1′◦

0◦ • 0′◦◦

1◦ w 1′ y 1′◦◦

•

Figure 5: The lattice for simulating P

•

•

• •

•

•

•

(a)

(b)

x

y

z

(o1)w

p

(o2)w

Figure 6: Copy a ∨ b into o1 and o2

12

0

1

ccn′0 r′′

cn′0 r′ cn′1 cccn′1

ccn′1

cccn′0

n0

n′0

n0
′

n0 `
′ n1

n1
′

`
′′ `

`′′`′

n′′0

r

n′′1

n′1

n1

V arn

`

Figure 7: The poset for simulating NP

Proof. We use proof by contradiction. Assume that such an embedding exists. Then by Birkhoff’s
representation theorem, the elements of the poset in Figure 4 can be labelled by finite sets such that
lub and glb operations over the embedding distributive lattice correspond to union and intersection
of these sets respectively. We will denote the set labelling each element of the poset in Figure 4 by
the corresponding uppercase letter except that 0, 1, 0′, 1′, 0′′ and 1′′ are labelled by A, B, A′, B′,
A′′ and B′′ respectively.

Let {x1, . . . , xk} = B \ A. Since A ⊂ B, we have k ≥ 1. Our first goal is to prove that all
of these xi must be in B′′ too. Since B ⊂ W , we have for all i that xi ∈ W . Now suppose for
contradiction that there exists an i such that xi ∈ P , then we can conclude that xi ∈ A since
A = (A′′ ∪ P) ∩W . So for all i we have xi /∈ P . Since B = (B′′ ∪ P) ∩W and xi /∈ P , we have
xi ∈ B′′. But then for all i we have xi ∈ A′ as A′ ⊃ B′′. So A′ ⊇ B which is a contradiction since
A′ and B are incomparable.

5 Comparator Circuits over Bounded Posets

In this section, we consider the most general form of comparator circuits, i.e., we consider com-
parator circuits over fixed finite bounded posets. We show that the resulting complexity class is
the class NP.

Theorem 7. Let P be any poset and let a ∈ P be an arbitrary element in P , then (P, a)–CC ⊆ NP.
Also, there exists a finite poset P and an a ∈ P such that NP = (P, a)–CC.

Proof. First, we prove that there exists a poset P and an accepting element a ∈ P such that
NP ⊆ (P, a)–CC. Let P be the poset in Figure 7. We will reduce the well-known NP-complete

13

•

•

• •

•

• •

•

•

•

Var

n

`

`′

(xi)`
′′

r′

r′′

r

`

`
′

(xi)`
′′

Figure 8: Nondeterministically generate xi and xi

problem SAT into (P, a)–CCVP. Without loss of generality, we can assume that the circuit does
not contain any NOT gates.

Note that the poset P contains the poset in the proof of Theorem 5. This is represented by the
hexagon in Figure 7. The elements marked 0 and 1 inside this hexagon are the elements marked
0 and 1 in Figure 4. This containment ensures that we can implement all operations that we used
while simulating MCVP to be used here as well. Let C be the input to the SAT problem. The 0
and 1 values carried by wires will be represented by 0 and 1 in P as in the proof of Theorem 5.
The non-trivial part is to simulate the input variables x1, . . . , xn. These input variables to C are
handled by non-deterministically generating 0 or 1 (of P) on the lines corresponding to the wires
attached to these input gates. We also have to ensure that when we non-deterministically generate
the values of input variables, the values generated for xi and xi are consistent. This is ensured by
generating xi non-deterministically and then complementing the generated value to get xi. The
fan-out operation is implemented as in the proof of Theorem 5.

Note that the minimal upper bounds for the elements Var and n in the poset P are n0 and n1.
These values stand for a non-deterministically generated 0 and 1 resp. Now for each variable xi we
take the minimal upper bound of these two elements in P to non-deterministically generate the value
of xi. The only thing that remains to be done is to make the corresponding x̄i variable consistent,
i.e., when a 0 is generated non-deterministically for xi, we have to ensure that all lines carrying x̄i
in that non-deterministic path carry the value 0. The sequence of meet and join identities that we
are going to describe can be used to implement this computation. Figure 8 shows how to generate
xi and xi consistently in a non-deterministic fashion using the identities given below.

The following identity enables us to non-deterministically generate a 0 or a 1. Note that we are
only generating n0 and n1 at this point. But we will later convert this into 0 or 1 that are used for
implementing the Boolean operations.

Var ∨ n = {n0, n1}

14

Now we use the following identities to convert n0 or n1 into a 0 or a 1 respectively.

` ∨ n0 = n′0 ` ∨ n1 = n′1

`′ ∧ n′0 = n′′0 `′ ∧ n′1 = n′′1

`′′ ∨ n′′0 = 0 `′′ ∨ n′′1 = 1

Note that the original n0 or n1 that was generated will be destroyed by the above sequence of
operations (By doing ` ∧ n0 for ex.). Using the following identities, we ensure that the original
value generated non-deterministically is restored.

` ∧ n0 = cn
′
0 ` ∧ n1 = cn

′
1

r′ ∨ cn0
′ = ccn0

′ r′ ∨ cn1
′ = ccn1

′

r′′ ∧ ccn0
′ = cccn0

′ r′′ ∧ ccn1
′ = cccn1

′

r ∨ cccn0
′ = n0 r ∨ cccn1

′ = n1

Now we use the restored value along with the following identities to generate the value for the
line carrying xi.

` ∨ n0 = n0 ` ∨ n1 = n1

`
′ ∧ n0 = n0

′ `
′ ∧ n1 = n1

′

`
′′ ∧ n0′ = 1 `

′′ ∧ n1′ = 0

The reduction from SAT is as follows. First, we use the reduction from CVP to (P, a)–CC to
construct a (P, a)–CC circuit, say C, that evaluates the input formula. Then, we construct a circuit
for non-deterministically generating 0/1 values for all the variables in the formula. The wires of
this circuit that carry the generated values are then connected to the input wires in C that take
the values of variables in the formula as input. It is easy to see that the resulting circuit evaluates
to 1 if and only if the formula is satisfiable.

To see that (P, a)–CC is in NP, observe that we can evaluate any (P, a)–CC circuit in NP by
guessing the output value of each gate to be one of the possible values. i.e., if the gate is an OR
(AND) gate taking a and b as input, we non-deterministically guess that the gate outputs one of
the values in a ∨ b (a ∧ b). Finally, we simply check whether the value on the output wire is in the
accepting set.

6 Skew Comparator Circuits

In this section, we study the skew comparator circuits defined in the preliminaries. We show
that SkewCC is the class LOG. Recall that the class NLOG can be characterized as the set of all
languages computed by logpsace-uniform Boolean circuits with skewed AND gates. So the result
in this section draws a parallel between the P vs CC problem and the NLOG vs LOG problem. It
immediately follows that SkewCC over distributive lattices also characterize the class LOG.

15

We begin by considering a canonical complete problem for the class LOG. The language DGAP1
consists of all tuples (G, s, t) where G = (V,E) is a directed graph where each vertex has out-degree
at most one and s, t ∈ V and there is a directed path from s to t. We use a variant of DGAP1
problem in our setting. The variant (called DGAP1′) is that the out-degree constraint is not applied
to s. It is easy to see that DGAP1′ is also in LOG. Indeed, for each neighbour u of s, run the DGAP1
algorithm to check whether t is reachable from u.

Theorem 8. SkewCC = LOG

Proof. (⊆) Let L ∈ SkewCC. We will prove that L ∈ LOG by reducing L to DGAP1′. The reduction
is as follows. Observe that we can reduce the language L to SkewCCVP by a logspace reduction
(using the uniformity algorithm). Then we reduce SkewCCVP to DGAP1′ as follows. Let C be an
instance of SkewCCVP. For each wire in C add a vertex to the graph G. The vertex corresponding
to the output wire is the destination vertex t. Add a source vertex s. The edges of G are as follows.
For each vertex v that corresponds to an input wire of C having value 1, add the edge (s, v) to the
graph. Now consider a comparator gate g in C with input wires e1 and e2 and AND output wire
e3 and OR output wire e4. There are two cases.

Gate g has an AND output Without loss of generality, assume that e2 is an input wire to C.
If e2 = 1, then add the edges (e1, e3) and (e2, e4) to G. If e2 = 0, then add the edge (e1, e4)
to the graph G.

Gate g has an unused AND output Add the edges (e1, e4) and (e2, e4). Note that it is easy
to check in logspace whether the AND output of a gate is used or not. Simply scan forward
on the input to check whether any gate in the input after g is incident on the AND output
line of g or not.

It is clear that G has an s–t path if and only if C outputs 1. This follows from the observation
that every vertex v in G where v 6= s corresponds to a wire in C and v is reachable from s if
and only if the wire corresponding to v carries the value 1. All vertices other than s in G have
out-degree at most 1. Furthermore, the reduction can be implemented in logspace.

(⊇) Let L ∈ LOG and let B be a poly-sized layered branching program deciding L. We will
design a skew comparator circuit C to simulate B. Let s be a state in B reading xi and let the
edge labelled 1 be directed towards a state t and let the edge labelled 0 be directed towards a state
u. Then the gadget shown in Figure 9b simulates this part of the BP B (We say that this gadget
corresponds to the state s). The truth table for this gadget is shown in the Table 9a. This table
assumes that the lines t and u carry the value 0 initially. The value of the line labelled s will be 1
on input x just before the gates in this gadget are evaluated if and only if the input x reaches the
state s in B. It is clear that after all the gates in this gadget are evaluated, the value of the line
labelled t (or u) is 1 if and only if the input x reaches t (or u resp.) in B.

Now the circuit C is as follows. For each state in B introduce a line in C and for each state
in each layer from the first layer to the last layer, in that order, add the gates in the gadgets
corresponding to these states in the same order to C. Note that the lines annotated xi and xi in
a gadget are only used in that gadget. When these values are required again, new annotated lines
are used. The line corresponding to the accepting state is the output line. The initial value of lines
corresponding to each state other than the start state of B is 0 and the initial value of the line
corresponding to the start state is 1. Also the circuit is a skew circuit since all used AND gates in

16

the gadget are skew. For establishing the correctness, we observe that the following claim holds.
The circuit C outputs 1 on input x if and only if there is a path in B from the start state to the
accepting state on input x. To complete the correctness proof, we prove the following claim:

Claim 1. The circuit C outputs 1 on input x if and only if there is a path in B from the start state
to the accepting state on input x.

Proof. Let the ith block of C include all the gadgets corresponding to all the states in layer i of
B. We will prove the more general claim that after all gates up to and including the ith block are
evaluated, if we consider all the lines that correspond to states in the (i+ 1)th layer of B, the only
line that will have a value 1 will correspond to the state on (i+ 1)th layer reached on input x. We
will prove this by induction on the layer number.

Base case: i = 0 Since there is only the start state in layer 1 and it is initialized to the value 1,
the base case is true.

Induction Assume that the claim is true for i. Let s be the state in the (i+ 1)th layer that is
reached by x and let t be the state in the (i+ 2)th that is reached by x. Now from the truth table
in Table 9a it is clear that after the gadget for state s is evaluated the value of line t will become 1.
Also, from the truth table, it is clear that the values of all the other lines that correspond to states
in the (i+ 2)th layer remains 0. Notice that all gates in block i+ 1 incident on t are OR gates. So
once the value of line t becomes 1, it remains so until block i+ 2.

Let s be the number of states in B. Then the number of lines in C is at most 3s and the number
of gates in C is at most 4s. Since B is poly-size, so is C.

s xi xi t u

0 1 0 0 0
0 0 1 0 0
1 1 0 1 0
1 0 1 0 1

(a) Truth Table for the gadget for BPs

• •

• •

s

xi

xi

t

u

(b) The gadget for simulating BPs

It is easy to see that this reduction can be implemented in NC1.

Since the construction in Theorem 4 preserves skewness of the circuit, we have the following
corollary.

Corollary 1. Let L be any distributive lattice and let a be any element in L, then (L, a)–SkewCC =
LOG.

We now look at skewed comparator circuits over arbitrary lattices and show that they also
characterize the class P. We prove this by modifying the proof of Theorem 5. More specifically, we
show that by changing the underlying lattice, we can simulate any AND gate using OR gates and
skewed AND gates.

Theorem 9. There exists an i such that Πi–SkewCC = P.

17

Proof. We will start with the comparator circuit in the proof of Theorem 5 and show how to replace
AND gates in that circuit with OR gates and skewed AND gates. We start with the poset shown in
Figure 4. We then add new elements q, r, and v to the poset that satisfies the following relations.

q ∧ 0 = 0q

q ∧ 1 = 1q

r ∨ 0q = 0r

r ∨ 1q = 1r

v ∧ 0r = 0+

v ∧ 1r = 1+

Here, the elements 0+ and 1+ can be thought of as placeholders for 0 and 1 respectively. We
then add four new elements to the poset (a, b)+ where a, b ∈ {0, 1} satisfying a+ ∨ b = (a, b)+.
Then we introduce new elements s, t, and u such that

s ∧ (1, 1)+ = 1s

s ∧ (a, b)+ = 0s, otherwise

t ∨ 0s = 1t

t ∨ 1s = 0t

u ∧ 0t = 0

u ∧ 1t = 1

Now given an AND gate computing x∧y ∈ {0, 1} in the circuit in the proof of Theorem 5 (Note
that the non-skew AND gates in that circuit always take input from {0, 1}). We replace that AND
gate with the following sequence of operations. First we compute ((x∧ q)∨ r)∧ v to yield x+. We
then OR the wires containing x+ and y (This is the only non-skew gate used in this construction)
to yield (x, y)+. Finally, we compute (((x, y)+∧ s)∨ t)∧ u to yield the required value x∧ y. Note
that all AND gates used in this construction are skewed. The complete set of relations added to
the poset in Figure 4 is listed in Figure 10.

We use the same argument as in the proof of Theorem 5 to show that this can be simulated in
a partition lattice irrespective of the accepting element.

7 Formulae over Lattices

It is well known that languages decided by poly-size formulae is the class NC1. By definition, the
class NC1 is also the class of languages decided by log-depth Boolean circuits with bounded fan-in
AND and OR gates. We can modify Definition 1 to define formulae over finite bounded posets.
We denote by (L, a)–Formulae, where L is a lattice and a ∈ L, the class of all languages decided
by poly-size formulae over L using a as the accepting element. In this section, we show that the
languages computed by poly-size formulae over any fixed finite lattice is the class NC1. The proof
for the Boolean case is by [6] and it works by depth reducing an arbitrary formula of poly-size to a

18

t ≤ 0t 0t ≤ 1t 0s ≤ 0t 0s ≤ 1s 0s ≤ (0, 0)+

1s ≤ 1t 1s ≤ s 1s ≤ (1, 1)+ (0, 1)+ ≤ (1, 1)+ (1, 0)+ ≤ (1, 1)+

(0, 0)+ ≤ (0, 1)+ (0, 0)+ ≤ (1, 0)+ 0+ ≤ (0, 0)+ 0+ ≤ 1+ 0+ ≤ 0r

1+ ≤ (0, 1)+ 1+ ≤ v 1+ ≤ 1r 0r ≤ 1r r ≤ 0r

0q ≤ 0r 0q ≤ 1q 0q ≤ 0 1q ≤ 1r 1q ≤ q
1q ≤ 1 1 ≤ u 1 ≤ 1t 1 ≤ (1, 0)+ 0 ≤ 0t

0 ≤ (0, 0)+

Figure 10: Relations added to the poset in Figure 4 to make the circuit skewed

Boolean formula of poly size and log depth. The depth reduction is done by identifying a separator
vertex in the tree and then evaluating the separated components (which are smaller circuits) in
parallel. We show that a similar argument can be extended to the case of finite lattices as well.
Our main theorem in this section is the following.

Theorem 10. Let L be any finite lattice and let a be an arbitrary element in L. We have
(L, a)–Formulae = NC1.

Proof. (⊇) Any lattice with at least 2 elements contains the 0–1 lattice as a sublattice. Also since
NC1 is closed under complementation, the class does not change even if the acceptor is 0.

(⊆) Let F be a poly-size formula family over L. Let i be such that L can be embedded in Πi.
Let F ′ be the formula family over Πi that corresponds to F . We will now construct a log-depth
poly-size formula family F ′′ that computes the same language as F ′. We will use F ′ to denote a
formula in the family F ′. Let v be the tree separator of the tree corresponding to F ′. For each
ai ∈ Πi, we will construct two formulae. The first one, say F v

1 , computes the value at the root of F ′

assuming that value at v is ai and the other, say F v
2 computes the value at the node v and applies

GE′ai (See Proposition 2) on that value. Then we compute the sub-formula F v
1 ∧F v

2 . After that we
take the lub over all such sub-formulae (one for each ai). This construction is applied recursively
on F v

1 and F v
2 to obtain a log-depth poly-size formula equivalent to F .

Suppose the correct value of the sub-formula of F ′ rooted at v is ai. Then the only sub-formulae
F v
1 ∧ F v

2 outputting a non-zero value are the ones corresponding to aj ≤ ai. The non-zero value
output by such a sub-formula is bj , the value obtained at the root when the value of v is aj . But
we know that bi, the actual value of the original formula is greater than or equal to the value bj of
any sub-formula by monotonicity of lub and glb. So the topmost lub will always output the correct
value bi.

The final formula is log-depth, poly-size since the formulae GE′a have constant depth. Now we
can construct an NC1 circuit from F ′′ by encoding each element in Πi in binary and replacing each
gate in F ′′ by constant-sized circuits computing the lub and glb over Πi.

8 Discussion and Conclusion

We studied the computational power of comparator circuits over bounded posets. We provide
alternative characterizations of P, LOG, NLOG and NP in terms of comparator circuits.

19

A natural open problem that comes out of our approach is about a possible dichotomy between
P and CC with respect to lattice structure. More concretely, can we design comparator circuits
over fixed lattices M3 or N5 (or powers of it) for all languages in P? Noting that existence of M3

or N5 as a sublattice is a necessary and sufficient condition for non-distributivity (by the M3-N5

theorem [3]), if we manage to show that M3–CC = (N5, a)–CC = P for any a ∈ N5, this will show
a dichotomy between P and CC.

In the context of NLOG vs LOG, there are two open problems. Firstly, it will also be interesting
to see if a dichotomy theorem holds, with respect to the lattice structure. Secondly, we note that
the upper bound of NLOG for the case of skew comparator circuits over finite lattices, uses the
embeddability into partition lattices. The power of skew comparator circuits over finite bounded
posets is unclear. It is not even clear whether they compute only languages in P.

Cook et al. [2] proposed the question whether membership testing for CFLs is in CC. Our
characterization of CC in terms of distributive lattices leads to a concrete approach towards proving
this. Namely, designing a lattice to decide membership testing for CFLs and showing that this
lattice is distributive.

Acknowledgments: We thank the anonymous reviewers for their constructive comments, which
helped us improve the paper. In particular, we thank the reviewer who pointed out an error in the
proof of earlier Theorem 9 (where we had erroneously claimed that there exists an i, Πi–SkewCC =
NLOG). The reviewer also had outlined an argument the details of which we have incoroporated in
this version as the proof of Theorem 9.

References

[1] S. Arora and B. Barak. Computational Complexity: A Modern Approach. Cambridge University
Press, 2009.

[2] Stephen A. Cook, Yuval Filmus, and Dai Tri Man Lê. The complexity of the comparator circuit
value problem. ACM Trans. Comput. Theory, 6(4):15:1–15:44, August 2014.

[3] Brian A. Davey and Hilary A. Priestley. Introduction to lattices and order. Cambridge University
Press, Cambridge, 1990.

[4] Bernhard Ganter and Sergei O. Kuznetsov. Stepwise construction of the Dedekind-MacNeille
completion. In Conceptual structures: theory, tools and applications. 6th international confer-
ence, ICCS ’98, Montpellier, France, August 10–12, 1998. Proceedings, pages 295–302. Berlin:
Springer, 1998.

[5] Ernst W. Mayr and Ashok Subramanian. The complexity of circuit value and network stability.
J. Comput. Syst. Sci., 44(2):302–323, 1992.

[6] P.M.Spira. On time-hardware complexity tradeoffs for boolean functions. In Proceedings of 4th
Hawaii Symp. on System Sciences, pages 525–527, 1971.

[7] Pavel Pudlák and Jǐŕı Tůma. Every finite lattice can be embedded in a finite partition lattice.
algebra universalis, 10(1):74–95, 1980.

20

[8] Ashok Subramanian. The Computational Complexity of the Circuit Value and Network Stability
Problems. PhD thesis, Stanford, CA, USA, 1990. AAI9102356.

21

A Comparator Circuits over Growing Lattices

We can generalize the comparator circuit model even further by allowing it to compute over lattices
that grow with the size of the input. If the size of the lattice is polynomial in the size of the input
and if the lattice can be computed by the uniformity machine, then the languages computed by
these circuits are in the class P. However, since we have the freedom to change the lattice according
to the size of the input, we may be able to capture the class P using structurally simpler lattices.
It is conceivable that the class P could be captured by a family of distributive lattices, while no
finite lattice capturing P can be distributive.

In this section, we present a formal definition of comparator circuits over growing posets and
then present a lattice family that captures the class P. Then we will show that, even for this simpler
lattice, an embedding to a family of distributive lattices is not possible (Similar to Theorem 6).

Definition 4 (Comparator Circuits over Growing Bounded Posets). A comparator circuit family
over a growing bounded poset family P = {Pn} with accepting set A = {An} where An ⊆ Pn is
a family of circuits C = {Cn}n≥0 where Cn = (W,G, f) where f : W 7→ (Pn ∪ {(i, g) : 1 ≤ i ≤
n and g : Σ 7→ Pn}) is a comparator circuit. Here W = {w1, . . . , wm} is a set of lines and G is an
ordered list of gates (wi, wj).

On input x ∈ Σn, we define the output of the comparator circuit Cn as follows. Each line is
initially assigned a value according to f as follows. We denote the value of the line wi by val(wi).
If f(w) ∈ Pn, then the value is the element f(w). Otherwise f(w) = (i, g) and the initial value
is given by g(xi). A gate (wi, wj) (non-deterministically) updates the value of the line wi into
val(wi) ∧ val(wj) and the value of the line wj into val(wi) ∨ val(wj). The values of lines are
updated by each gate in G in order and the circuit accepts x iff val(w) = a ∈ An at the end of the
computation for some sequence of non-deterministic choices.

Let Σ be any finite alphabet. A comparator circuit family C over a growing bounded poset family
Pn with an accepting An ⊆ Pn decides L ⊆ Σ∗ iff C|x| correctly decides whether x ∈ L for all x ∈ Σ∗.

The circuit family is called P-uniform if there exists a TM that given 1n as input runs in poly(n)
time and outputs Pn, An and Cn.

First, we show a lattice family that captures P.

Theorem 11. The comparator circuit family over DM completions for the poset family in Figure 11
captures the class P.

Proof Sketch. We construct a comparator circuit over the poset family in Figure 11 from a layered
circuit with NOT gates only at the input level. The elements 0i and 1i in the poset correspond
to the logical values 0 and 1 at the ith level of the circuit. As in the proof of Lemma 1, there is
a sequence of lubs and glbs that creates two copies of the logical value at the ith level and then
converts them to the corresponding value in the (i+ 1)th level.

Define m = |Pn|. The elements of the DM completion of Pn consists of ordered pairs (A,B)
where A,B ⊆ Pn and A = UP (B) and B = DOWN(A). Here UP (A) (DOWN(A)) is the set
of all elements in the poset that are greater (less) than or equal to all elements in A. Note that
in the poset Pn, if |A| > 11, then we have DOWN(A) = φ = B and then we have A = Pn. We
claim that the DM completion has at most O(m24) elements. Consider an element (A,B) in the
DM completion such that |A| > 11 or |B| > 11. If |A| > 11, then we have B = φ and therefore
A = Pn. Similarly, if |B| > 11, then we have A = φ and B = Pn. Therefore, all elements (A,B)

22

0

1

0′′

1′′

0′

1′

0◦

1◦

x

y

z

02

12

(02)
′′

(12)
′′

(02)
′

(12)
′

(02)
◦

(12)
◦

x2

y2

z2

03

13

Figure 11: A growing poset family for simulating P

except (φ, Pn) and (Pn, φ) in the DM completion has |A| ≤ 11 and |B| ≤ 11. This implies that the
DM completion has at most O(m24) elements. To prove the P-uniformity of the comparator circuit
family, we have to prove that the DM completion can be computed in polynomial time. There exists
an algorithm that can compute the DM completion of a poset in time polynomial in the number
of elements in the DM completion [4]. Since, the number of elements in the DM completion of Pn

is polynomial in n, the P-uniformity of the comparator circuit family follows.

Now we prove that even this growing lattice family cannot be embedded into any distributive
lattice.

Theorem 12. The poset in Figure 11 cannot be embedded in any distributive lattice.

Proof Sketch. The proof is similar to the proof of Theorem 6. We use the same labelling used in
the proof of Theorem 6.

We have A2 = (A′′ ∪ Y) ∩ Z = A◦ ∩ Z and B2 = (B′′ ∪ Y) ∩ Z. Since B2 ⊃ A2, we have
x ∈ B2\A2. So x ∈ Z and x ∈ (B′′ ∪ Y)\A′. Now if x ∈ Y , then x ∈ A′′ ∪ Y and so x ∈ A2. But if
x /∈ Y , then x ∈ B′′ which implies x ∈ A′ which in turn implies x ∈ A2. A contradiction.

23

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

