
Verifying whether One-Tape Turing Machines Run in Linear
Time

David Gajser
IMFM, Jadranska 19, 1000 Ljubljana, Slovenija

david.gajser@fmf.uni-lj.si

February 17, 2015

Abstract

We discuss the following family of problems, parameterized by integersC ≥ 2 andD ≥ 1: Does
a given one-tape q-state Turing machine make at mostCn+D steps on all computations on all inputs
of length n, for all n?

Assuming a fixed tape and input alphabet, we show that these problems are co-NP-complete

and we provide good lower bounds. Specifically, these problems can not be solved in o(q(C−1)/4)
non-deterministic time by multi-tape Turing machines. We also show that the complements of these
problems can be solved in O(qC+2) non-deterministic time and not in o(q(C−1)/4) non-deterministic
time by multi-tape Turing machines.

Keywords. one-tape Turing machine; crossing sequence; linear time; running time; lower bounds

1 Introduction

For a function T : N→ R+, let us define the problem HALTT (n) as

Given a non-deterministic multi-tape Turing machine, does it run in time T (n)?

In other words, HALTT(n) is the set of all Turing machines that make at most T (n) steps on each
computation on each input of length n, for all n. Note that there is no big O notation in the definition of
the problem HALTT (n), i.e. we are not asking whether a given Turing machine runs in time O(T (n)).
This is because it is undecidable even whether a given deterministic one-tape Turing machine runs in
constant, i.e. O(1) time1. However, the problem HALTC is decidable for any constant C and one would
hope that HALTT (n) is decidable also for linear functions T . It was proven in [6] that this is not the case
in general, but if we restrict the input to one-tape Turing machines, we get a decidable problem [3]. This
motivates the definitions of the problems that we study in our paper.

For C,D ∈ N, we consider the problem HALT(C,D) defined as

Given a non-deterministic one-tape Turing machine, does it run in time Cn+D?

and the problem DHALT(C,D) defined as

Given a deterministic one-tape Turing machine, does it run in time Cn+D?

Now that we restricted the input to one-tape Turing machines, can we also verify superlinear time
bounds? It was shown in [3] that there is no algorithm that would verify a time bound T (n) = Ω(n log n),
T (n) ≥ n+ 1, for a given one-tape Turing machine. But if T (n) = o(n log n) is tangible enough, then

1This is a folkloric result, see also [3]

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 36 (2015)

mailto:david.gajser@fmf.uni-lj.si

there is an algorithm that verifies whether a given one-tape Turing machine runs in time T (n). It is
also shown in [3] that a one-tape Turing machine that runs in time o(n log n) must actually run in linear
time2, which implies that the most “natural” algorithmically verifiable time-bound for one-tape Turing
machines is the linear one.

For the rest of the paper, we fix an input alphabet Σ, |Σ| ≥ 2, and a tape alphabet Γ ⊇ Σ. It follows
that the length of most standard encodings of q-state one-tape Turing machines is O(q2). To make it
simple, we assume that each code of a q-state one-tape Turing machines has length Θ(q2) and when we
will talk about the complexity of the problems HALT(C,D) , we will always use q as a measure for the
length of the input. We discuss the encoding in detail in Section 4.1.

The main result of this paper, proven in Section 4, is the following.

Theorem 1.1. For integers C ≥ 2 and D ≥ 1, all of the following holds.

i) The problems HALT(C,D) and DHALT(C,D) are co-NP-complete.

ii) The problems HALT(C,D) and DHALT(C,D) can not be solved in time o(q(C−1)/4) by non-determi-
nistic multi-tape Turing machines.

iii) The complements of the problems HALT(C,D) and DHALT(C,D) can be solved in time O(qC+2) by
a non-deterministic multi-tape Turing machine.

iv) The complement of the problem HALT(C,D) can not be solved in time o(q(C−1)/2) by a non-deter-
ministic multi-tape Turing machine.

v) The complement of the problem DHALT(C,D) can not be solved in time o(q(C−1)/4) by a non-
deterministic multi-tape Turing machine.

To put the theorem in short, for δ = 0.2, the problems HALT(C,D) and DHALT(C,D) are
co-NP-complete with a non-deterministic and a co-non-deterministic time complexity lower bound
Ω(qδC) and a co-non-deterministic time complexity upper bound O(qC+2). This result can be com-
pared to the one of Adachi, Iwata and Kasai [1] from 1984, where they proved good deterministic lower
bounds for some problems that are complete in P.

To prove the lower bounds, we make reductions from hard problems for which hardness is proven
by diagonalization. The diagonalization in Proposition 4.7 (non-deterministic lower bound) is straight-
forward and the diagonalization in Proposition 4.5 (co-non-deterministic lower bound) is implicit in the
non-deterministic time hierarchy [9, 12]. The reductions are not so trivial and we describe the main idea
in the following paragraph.

Suppose a one-tape non-deterministic Turing machineM solves a computationally hard problem L.
Then for any input w, we can decide whether w ∈ L by first constructing a one-tape Turing machine
Mw that runs in time Cn+D iffM rejects w and then solving HALT(C,D) forMw. The machineMw

is supposed to simulateM on w, but only for long enough inputs because we do not want to violate the
running timeCn+D. Hence,Mw will on the inputs of length n first only measure the input length using
at most (C − 1)n + 1 steps to assure that n is large enough and then it will simulateM on w using at
most n steps. It turns out that the main challenge is to make Mw effectively measure the length of the
input with not too many steps and also not too many states. The latter is important because we do not
want the inputMw for HALT(C,D) to be blown up too much so that we can prove better lower bounds.
We leave the details for Section 4. Let us mention also Section 5.1, where we argue that our method of
measuring the length of the input is optimal which implies that using our methods, we can not get much
better lower bounds.

To prove the upper bounds in Theorem 1.1, we use Theorem 3.1, which we refer to as the compactness
theorem and which is interesting in its own right. We use crossing sequences to state it in its full power,
but a simple corollary of it is the following.

2In other words, no one-tape Turing machine can run in superlinear time and also in time o(n logn).

2

Corollary 1.2. For positive integers C and D, a one-tape q-state Turing machine runs in time Cn+D
iff for each input of length n ≤ O(q2C) it makes at most Cn+D steps.

To rephrase the corollary, we can solve HALT(C,D) for an input Turing machineM by just verifying
the running time ofM on the inputs of length at mostO(q2C). Behind the bigO is hidden a polynomial in
C andD (see Lemma 3.2). The result is interesting not only because it allows us to algorithmically solve
the problem HALT(C,D)

3, but also because it gives a new insight into one-tape linear time computations.
There was quite some work done in this area and a summary from 2010 can be found here [10].

A main tool in the analysis of one-tape linear time Turing machines are crossing sequences, which
we define in Section 2.2. They were first studied in1960s by Hennie [5] and Trakhtenbrot [11] who
proved one of the most well known properties of one-tape linear-time deterministic Turing machines:
they recognize only regular languages. Hartmanis [4] extended this result to the one-tape deterministic
Turing machines that run in time o(n log n) and it was furthermore extended to the non-deterministic
Turing machines by Kobayashi [7], Pighizzini [8] and Tadaki, Yamakami and Lin [10]. Hence, it is
currently well known that one-tape linear time non-deterministic Turing machines accept only regular
languages.

All of the above results were proven via crossing sequences, which are also the main tool in proving
the compactness theorem. The methods we use to prove it are not new, rather they consist of standard
cutting and pasting of the portions of the tape between cell boundaries where identical crossing sequences
are generated. We show that a Turing machine that runs in time Cn + D must produce some identical
crossing sequences on each computation, if the input is long enough. Thus, when considering some fixed
computation, we can partition the input on some parts where identical crossing sequences are generated,
and analyze each part independently. We prove that it is enough to consider small parts of the input.

2 Preliminaries

Let N be the set of all non-negative integers. All logarithms with no base written have base 2. We use
ε for the empty word and |w| for the length of a word w. For words w1 and w2, let w1w2 denote their
concatenation.

We will use multi-tape Turing machines to solve decision problems. If not stated otherwise, lower
and upper complexity bounds will be for this model of computation. We will not describe the model (any
standard one will do). We will use the notation DTM and NTM for deterministic and non-deterministic
Turing machines, respectively.

2.1 Basic definitions

A one-tape NTM is an 8-tupleM = (Q,Σ,Γ,L, δ, q0, qacc, qrej), where Q is a set of states, Σ ⊇ {0, 1}
an input alphabet, Γ ⊇ Σ a tape alphabet, L ∈ Γ\Σ a blank symbol, δ : Q\{qacc, qrej} × Γ →
P(Q×Γ×{−1, 1})\{∅} a transition function and q0, qacc, qrej ∈ Q pairwise distinct starting, accepting
and rejecting states. Here P denotes the power set.

As can be seen from the definition, the head of M must move on each step and at the end of each
finite computation the head ofM is in a halting state (qacc or qrej). We can assume this without the loss of
generality, but especially the property that the head ofM must move on each step will be convenient when
discussing crossing sequences because it will hold that the sum of the lengths of all crossing sequences
equals the number of steps. If we allowed the head to stay in place, we would have to change the definition
of the length of a computation on a part (just before Theorem 3.1). However, what we really need is that
Σ contains at least two symbols and we denote them by 0 and 1, because a unary input alphabet would
not suffice to prove our lower bounds.

3However, this is not enough to prove the upper bound in Theorem 1.1, for which we need the more powerful compactness
theorem.

3

For one-tape NTMsM1 andM2, the composition ofM1 andM2 is the NTM that starts computing
asM1, but has the starting state ofM2 instead ofM1’s accepting state. When the starting state ofM2 is
reached, it computes asM2. IfM1 rejects, it rejects.

A one-tape DTM is a one-tape NTM where each possible configuration has at most one successive
configuration.

The number of steps that a Turing machineM makes on some computation ζ will be called the length
of ζ and denoted by |ζ|. For a function T : N→ N, we say that a Turing machineM runs in time T (n)
ifM makes at most T (n) steps on all computations on all inputs of length n, for all n ∈ N.

2.2 Crossing Sequences

For a one-tape Turing machineM , we can number the cells of its tape with integers so that the cell 0 is
the one whereM starts its computation. Using this numbering we can number the boundaries between
cells as shown in Figure 1. Whenever we say that an input is written on the tape, we mean that its ith
symbol is in the cell (i− 1) and all other cells contain the blank symbolL.

boundaries: . . . −3 −2 −1 0 1 2 3 4 5 . . .

cells: . . . −3 −2 −1 0 1 2 3 4 5 . . .

Figure 1: Numbering of tape cells and boundaries of a one-tape Turing machine. The shaded part is a
potential input of length 4.

Intuitively, a crossing sequence generated by a one-tape NTMM after t steps of a computation ζ on
an input w on a boundary i is a sequence of states of M , in which M crosses the ith boundary of its
tape, when considering the first t steps of the computation ζ on the input w. A more formal definition is
given in the next paragraph.

Suppose that a one-tape NTMM on the first t ∈ N ∪ {∞} steps of a computation ζ on an input w
crosses a boundary i of its tape at steps t1, t2 . . . (this sequence can be finite or infinite). IfM was in state
qj after the step tj for all j, then we say thatM produces the crossing sequence Cti (M, ζ,w) = q1, q2 . . .
and we denote its length by |Cti (M, ζ,w)| ∈ N ∪ {∞}. Note that this sequence contains all information
that the machine carries across the ith boundary of the tape in the first t steps of the computation ζ. If
we denote Ci(M, ζ,w) = C|ζ|i (M, ζ,w), the following trivial identity holds:

|ζ| =
∞∑

i=−∞
|Ci(M, ζ,w)|.

3 The Compactness Theorem

In this section, we present the first result of this paper, the compactness theorem. Simply put, if we want
to verify that an NTMM runs in time Cn+D, we only need to verify the number of steps thatM makes
on inputs of some bounded length. The same result can be found in [3], but the bound in the present
paper is much better.

Before we formally state the theorem, let us introduce some notation. For a one-tape NTMM , define

Sn(M) = {Cti (M, ζ,w); |w| = n, 1 ≤ i ≤ n, ζ computation on input w, t ≤ |ζ|},

so Sn(M) is the set of all possible beginnings of the crossing sequences thatM produces on the inputs
of length n on the boundaries 1, 2 . . . n.

The definition of tM (w, C) is more involved. Intuitively, tM (w, C) is the maximum number of steps
that a one-tape NTMM makes on a part w of an imaginary input, if we only consider such computations

4

on which M produces the crossing sequence C on both left and right boundaries of w. To define it
more formally, we will describe a valid computation of M on a part w with ending crossing sequence
C = (q1, q2 . . . ql)

4. We will use the term standard case to refer to the definition of a computation of an
NTM on a given input (not on a part). Assume |w| = n ≥ 1 and letM = (Q,Σ,Γ,L, δ, q0, qacc, qrej).

• A valid configuration is a 5-tuple (C1, w̃, i, q̃, C2), where C1 is the left crossing sequence, w̃ is some
word from Γn, 0 ≤ i ≤ n − 1 is the position of the head, q̃ ∈ Q is the current state of M and
C2 is the right crossing sequence. Intuitively, C1 and C2 are the endings of C that still need to be
matched.

• The starting configuration is ((q2, q3 . . . ql), w, 0, q1, (q1, q2 . . . ql)). As in the standard case, we
imagine the input being written on the tape ofM with the first bit in the cell 0 (where also the head
ofM is). The head will never leave the portion of the tape where the input is written. Note that q1
is missing in the left crossing sequence because we pretend that the head just moved from the cell
-1 to the cell 0.

• Valid configurations A = (C1A, wA, i, qA, C2A) and B = (C1B, wB, j, qB, C2B) are successive, if
one of the following holds:

– the transition function ofM allows (wA, i, qA) to change into (wB, j, qB) as in the standard
case, C1A = C1B and C2A = C2B ,

– i = j = 0, C1A is of the form (q̃, qB, C1B), wA = aw̃, wB = bw̃, (q̃, b,−1) ∈ δ(qA, a) and
C2A = C2B ,

– i = j = n− 1, C2A is of the form (q̃, qB, C2B), wA = w̃a, wB = w̃b and (q̃, b, 1) ∈ δ(qA, a)
and C1A = C1B .

• There is a special ending configuration that can be reached from configurations of the form

– ((ql), aw̃, 0, q̃, ()), if (ql, b,−1) ∈ δ(q̃, a) for some b ∈ Γ or
– ((), w̃a, n− 1, q̃, (ql)), if (ql, b, 1) ∈ δ(q̃, a) for some b ∈ Γ.

• A valid computation of M on the part w with ending crossing sequence C is any sequence of
successive configurations that begins with the starting configuration and ends with an ending con-
figuration.

Similar to the standard case, we can define Ci(M, ζ,w, C) to be the crossing sequence generated by
M on the computation ζ on the part w ∈ Σn with the ending crossing sequence C on the boundary i
(1 ≤ i ≤ n− 1) . We define

|ζ| = |C|+
n−1∑
i=1

|Ci(M, ζ,w, C)|

as the length of the computation ζ. Figure 2 justifies this definition.
We define tM (w, C) ∈ N

⋃
{−1} as the length of the longest computation ofM on the part w with

the ending crossing sequence C. If there is no valid computation of M on the part w with the ending
crossing sequence C or |C| =∞, then we define tM (w, C) = −1.

Theorem 3.1 (The compactness theorem). LetM be a one-tape NTM with q states and let C,D ∈ N.
Denote ` = D + 8qC , r = D + 12qC and S =

⋃`
n=1 Sn(M). It holds:

M runs in time Cn+D if and only if

a) for each input w of length at most ` and for each computation ζ ofM on w, it holds |ζ| ≤ C|w|+D
and
4The author is not aware that this description would already be present in literature, although it has most likely been con-

sidered. A slightly less general description is given in [8].

5

boundaries: 0 |w1| |w1|+ |w| |w1|+ |w|+ |w2|

w1 w w2

Figure 2: Suppose an input w1ww2 is given to M , |w1|, |w| ≥ 1 and let a computation ζ produce the
same crossing sequence C on boundaries |w1| and |w1|+ |w|. If ζ1 is the corresponding computation of
M on part w, thenM on the computation ζ spends exactly |ζ1| steps on the part w. What is more, if the
input w1w2 is given toM (we cut out w) and we look at the computation ζ2 which corresponds to ζ thus
forming a crossing sequence C on the boundary |w1|, then |ζ2| = |ζ| − |ζ1|. Such considerations will be
very useful in the proof of the compactness theorem.

b) for each C ∈ S and for each part w of length at most r, for which tM (w, C) ≥ 0, it holds tM (w, C) ≤
C|w|.

Before going to the proof, let us argue that the theorem is in fact intuitive. If a Turing machine M
runs in time Cn+D, then a) tells us thatM must run in that time for small inputs and b) tells us that on
small parts w that can be “inserted” into some input from a),M must make at most C|w| steps. For the
opposite direction, one can think about constructing each input forM from several parts from b) inserted
into some input from a) on appropriate boundaries, which results in running time Cn+D.

The following lemma already proves one direction of the compactness theorem.

Lemma 3.2. Let everything be as in Theorem 3.1. If b) does not hold, then there exists some input z of
length at most `+ (Cr+D)r such thatM makes more than C|z|+D steps on z on some computation.

Proof. If b) does not hold, then there exists some finite crossing sequence C ∈ S, a part w of length at
most r and a valid computation ζ1 of M on the part w with the ending crossing sequence C, such that
|ζ1| ≥ C|w|+ 1. From the definition of S we know that there exist words w1 and w2 such that |w1| ≥ 1
and |w1| + |w2| ≤ `, t ∈ N and a computation ζ2, such that C is generated byM on the input w1w2 on
the computation ζ2 on the boundary |w1| after t steps. As in Figure 2, we can now insert w between w1

and w2, in fact we can insert as many copies of w between w1 and w2 as we want, because the crossing
sequence C will always be formed between them.

Let us look at the input z = w1w
Cr+Dw2 for M . Let ζ be a computation of M on z that on the

part w1 (and left of it) and on the part w2 (and right of it) acts like the first t steps of ζ2 and on the
parts w it acts like ζ1. Note that after ζ spends t steps on the parts w1 and w2, crossing sequence C is
generated on the boundaries |w1|, (|w1| + |w|) . . . (|w1| + (Cr + D)|w|) and by that timeM makes at
least t+ (Cr+D)(C|w|+ 1) steps. Using t ≥ 1 and r ≥ ` ≥ |w1|+ |w2|, we see thatM makes at least

C(Cr +D)|w|+ C(|w1|+ |w2|) +D + 1 = C|z|+D + 1

steps on the computation ζ on the input z. Because |w| ≤ r and |w1| + |w2| ≤ `, we have |z| ≤
`+ (Cr +D)r and the lemma is proven. �

Next, we prove the main lemma for the proof of the other direction of the compactness theorem.

Lemma 3.3. Let C,D be non-negative integers, M a one-tape q-state NTM and w an input for M of
length n. Assume thatM makes at least t ≤ Cn+D steps on the inputw on a computation ζ and suppose
that each crossing sequence produced by M on ζ after t steps on the boundaries 1, 2 . . . n appears at
most k times. Then n ≤ D + 4kqC .

6

Proof. We know that Cn+D ≥ t ≥
∑n

i=1 |Cti (M, ζ,w)|, thus

n ≤ D + (C + 1)n−
n∑
i=1

|Cti (M, ζ,w)|

= D +
n∑
i=1

(C + 1− |Cti (M, ζ,w)|)

≤ D +

C+1∑
j=0

n∑
i=1

|Cti (M,ζ,w)|=j

(C + 1− j)

≤ D +
C+1∑
j=0

kqj(C + 1− j)

≤ D + 4kqC ,

where the last inequality follows by Lemma A.1 proven in the appendix. �

Before going into the proof of the compactness theorem, let us define w(i, j) as the subword of a
word w, containing characters from ith to jth, including ith and excluding jth (we start counting with 0).
Alternatively, if w is written on a tape of a Turing machine, w(i, j) is the word between the ith and jth
boundary.

Proof of the compactness theorem (Theorem 3.1). IfM runs in timeCn+D, then a) obviously holds
and b) holds by Lemma 3.2. Now suppose that a) and b) hold. We will make a proof by contradiction,
so suppose thatM does not run in time Cn+D. Let w be a shortest input forM such that there exists a
computation ofM on w of length more than C|w|+D. Denote this computation by ζ and let n = |w|,
t = Cn+D.

Before we continue, let us give an outline of what follows in one paragraph. Our first goal is to find
closest such boundaries j1 and j2 such thatM produces the same crossing sequence C = Ct+1

j1
(M, ζ,w) =

Ct+1
j2

(M, ζ,w) on them after the (t)th and (t+ 1)st step of the computation ζ (see Figure 3). Then using
the fact that w is a shortest input forM such that there exists a computation ofM on w of length more
than C|w| + D, we argue that tM (w(j1, j2), C) > C|w(j1, j2)|. Now the most important part of w is
between the boundaries j1 and j2, so we want to cut out the superfluous parts left of j1 and right of j2
(see Figure 4). After the cutting out we get an input w1w(j1, j2)w2 on which M on the computation
corresponding to ζ on the time-step corresponding to t generates the crossing sequence C on boundaries
|w1| and (|w1|+ j2 − j1) and all other crossing sequences are generated at most 3 times on boundaries
1, 2 . . . (|w1|+|w(j1, j2)|+|w2|): once left fromw(j1, j2), once on the boundaries ofw(j1, j2) and once
right from w(j1, j2). Using Lemma 3.3 twice, we see that |w1w2| ≤ ` and |w1w(j1, j2)w2| ≤ r, which
implies C ∈ S and |w(j1, j2)| ≤ r, which contradicts b) because tM (w(j1, j2), C) > C|w(j1, j2)|.

As we stated in the above outline, our first goal is to find boundaries j1 and j2. From a) it follows
that n > ` = D + 4 · 2qC , so by Lemma 3.3 there exist at least three identical crossing sequences
produced byM on the input w on the computation ζ after t steps on the boundaries 1, 2 . . . n. Let these
crossing sequences be generated on boundaries i1 < i2 < i3 (see Figure 3). Because Cti1(M, ζ,w) and
Cti3(M, ζ,w) are of equal length, the head of M is, before the (t + 1)st step of the computation ζ, left
of the boundary i1 or right of the boundary i3. Without the loss of generality we can assume that the
head is right from i3 (if not, we can rename i1 = i2 and i2 = i3 and continue with the proof). Thus, no
crossing sequence on the boundaries i1, (i1 + 1) . . . i2 changes in the (t + 1)st step of the computation
ζ. Let i1 ≤ j1 < j2 ≤ i2 be closest boundaries such that Ct+1

j1
(M, ζ,w) = Ct+1

j2
(M, ζ,w). Then the

crossing sequences Ctj(M, ζ,w), for j1 ≤ j < j2, are pairwise distinct and do not change in the (t+ 1)st
step of the computation ζ.

Let ζ1 be the computation on part w(j1, j2) with ending crossing sequence C that corresponds to ζ
and let ζ2 be a computation on input w(0, j1)w(j2, n) that in first (t+ 1− |ζ1|) steps corresponds to the

7

boundaries: 0 i1 j1 j2 i2 i3 n

Figure 3: Finding boundaries j1 and j2. The shaded area represents the inputw. First, we find boundaries
i1, i2 and i3 on which the same crossing sequence is generated after t steps of the computation ζ. Because
the crossing sequences generated on the boundaries i1, i2 and i3 are of the same length, after t steps of
the computation ζ the head of M is on some cell left of the boundary i1 or on some cell right of the
boundary i3, hence either the crossing sequences generated on the boundaries between (and including)
i1 and i2 remain intact in the (t+ 1)st step of the computation ζ, either the crossing sequences generated
on the boundaries between (and including) i2 and i3 remain intact in the (t+1)st step of the computation
ζ. Without the loss of generality we may assume that the former holds. We choose i1 ≤ j1 < j2 ≤ i2 to
be closest boundaries such that Ct+1

j1
(M, ζ,w) = Ct+1

j2
(M, ζ,w).

first (t + 1) steps of ζ. Because the input w(0, j1)w(j2, n) is strictly shorter than n, M makes at most
C(|w(0, j1)|+ |w(j2, n)|) +D steps on any computation on this input, thus

t+ 1− |ζ1| ≤ |ζ2|
≤ C(|w(0, j1)|+ |w(j2, n)|) +D.

From t = Cn+D and n = |w(0, j1)|+ |w(j2, n)|+ j2 − j1 it follows that

|ζ1| ≥ t+ 1− C(|w(0, j1)|+ |w(j2, n)|)−D
= C(j2 − j1) + 1,

thus tM (w(j1, j2), C) > C|w(j1, j2)|.
Next, we will cut out some pieces of w to eliminate as many redundant parts as possible (if they

exist), while leaving the part of w between the boundaries j1 and j2 intact. Redundant parts are those
where identical crossing sequences are generated on the computation ζ after t steps. We will cut out parts
recursively and the result will not necessarily be unique (see Figure 4).

boundaries: 0 k1 l1 j1 j2 k2 k3 l2 l3

w(j1, j2)

Figure 4: Cutting out parts of w left and right of w(j1, j2). IfM on the input w (shaded) on the compu-
tation ζ after t steps produces the same crossing sequence on boundaries k1 and l1, then we can cut out
w(k1, l1). The same holds also for pairs (k2, l2) and (k3, l3). What is more, we can cut out bothw(k1, l1)
and w(k2, l2) if Ctk1(M, ζ,w) = Ctl1(M, ζ,w) and Ctk2(M, ζ,w) = Ctl2(M, ζ,w). However, we can not
cut out both w(k2, l2) and w(k3, l3) because they overlap, and we may get a different outcome if we cut
out w(k2, l2) or w(k3, l3).

Suppose that Ctk(M, ζ,w) = Ctl (M, ζ,w) for 1 ≤ k < l ≤ j1 or j2 ≤ k < l ≤ n. Cut out the part of
w between the kth and lth boundary. Let w′ be the new input. Let the boundaries j′1 and j′2 for the input
w′ correspond to the boundaries j1 and j2 for the inputw. Let ζ ′ be a computation onw′ that corresponds
to ζ (at least for the first t steps of ζ) and let t′ be the step in the computation ζ ′ that corresponds to the
step t of the computation ζ. Now recursively find new k and l. The recursion ends, when there are no
k, l to be found.

From the recursion it is clear that at the end we will get an input for M of the form w0

= w1w(j1, j2)w2, where |w1| ≥ 1. Let ζ0 be a computation that corresponds to ζ after the cutting

8

out (at least for the first t steps of ζ) and let t0 be the step in ζ0 that corresponds to t. If we denote
n0 = |w0|, then it holds t0 ≤ Cn0 + D because either there was nothing to remove and w0 = w,
t0 = t or w0 is a shorter input than w and t0 ≤ Cn0 + D must hold by the definition of w. From
the construction it is clear that M on input w0 on computation ζ0 after t0 steps generates the crossing
sequence C on the boundaries |w1| and (|w1| + j2 − j1). What is more, the crossing sequences on
the boundaries 1, 2 . . . |w1| are pairwise distinct. The same is true for the crossing sequences on the
boundaries (|w1| + 1), (|w1| + 2) . . . (|w1| + j2 − j1) and the crossing sequences on the boundaries
(|w1|+ j2− j1), (|w1|+ j2− j1 + 1) . . . n0. Because t0 ≤ Cn0 +D, we get that n0 ≤ D+ 4 · 3qC = r
by Lemma 3.3, hence |w(j1, j2)| ≤ r.

Denote w̃ = w1w2 and ñ = |w1| + |w2|. Let the computation ζ̃ on w̃ be a computation that cor-
responds to ζ0 (at least for the first t0 steps of ζ0) and let t̃ be the time step of ζ̃ that corresponds to
the time step t0 of ζ0. Because ñ < n0 ≤ n and because w is a shortest input for M that violates the
Cn + D bound, M makes at most Cñ + D steps on any computation on the input w̃, thus also on the
computation ζ̃. Note that no three crossing sequences from {C t̃i (M, ζ̃, w̃); 1 ≤ i ≤ ñ} are identical, thus
by Lemma 3.3, ñ ≤ D+ 4 ·2qC = `. Because C t̃|w1|(M, ζ̃, w̃) = C, it follows that C ∈ S, which together
with |w(j1, j2)| ≤ r and tM (w(j1, j2), C) > C|w(j1, j2)| contradicts b). �

If we combine the compactness theorem with Lemma 3.2, we get Corollary 1.2:
For positive integers C and D, a one-tape q-state Turing machine runs in time Cn+D iff for each

input of length n ≤ O(q2C) it makes at most Cn+D steps.
Behind the big O is hidden a polynomial in C and D (see Lemma 3.2).

4 The Complexity of Solving HALT(C,D) and DHALT(C,D)

In this section, we prove the main result of this paper, Theorem 1.1, which is about the complexity of the
problems

HALT(C,D) = {M |M is a one tape NTM that runs in time Cn+D} and
DHALT(C,D) = {M |M is a one tape DTM that runs in time Cn+D},

for C,D ∈ N. We use an overline to refer to the complements of the problems, like

HALT(C,D) = {M |M is a one tape NTM that does not run in time Cn+D}.

4.1 The Encoding of One-Tape Turing Machines

As already stated in the introduction, we assume a fixed input alphabet Σ ⊇ {0, 1} and a fixed tape
alphabet Γ, hence we will actually be analyzing the problems HALT(C,D)(Σ,Γ), which will enable us to
have the codes of q-state one-tape Turing machines of length Θ(q2). Because q will describe the length
of the code up to a constant factor, we will express the complexity of algorithms with a q-state one-tape
NTM (or DTM) as input in terms of q instead of n = Θ(q2).

Let us state the properties that should be satisfied by the encoding of one-tape Turing machines.

• Given a code of a q-state one-tape NTM M , a multi-tape NTM can simulate each step of M in
O(q2) time. Similarly, given a code of a q-state one-tape DTMM , a multi-tape DTM can simulate
each step ofM in O(q2) time.

• A code of a composition of two one-tape Turing machines can be computed in linear time by a
multi-tape DTM.

• The code of a q-state one-tape Turing machine has to be of length Θ(q2). This is a technical
requirement that makes arguments easier and it gives a concrete relation between the number of
states of a one-tape Turing machine and the length of its code. We can achieve this because we
assumed a fixed input and tape alphabet.

9

Now we describe an example of such an encoding. It is clear that we can easily convert any standard
code of a one-tape Turing machine to ours and vice versa.

A code of a q-state Turing machine M is a code of a q × q matrix A, where A[i, j] is a (possibly
empty) list of all the triples (a, b, d) ∈ Γ×Γ×{−1, 1} such thatM can come in one step from the state
qi to the state qj replacing the symbol a below the head by the symbol b and moving in the direction d.
In other words, A[i, j] is a list of all the triples (a, b, d) ∈ Γ×Γ×{−1, 1} such that (qj , b, d) ∈ δ(qi, a).
We assume that the indices i and j range from 0 to (q − 1) and that the index 0 corresponds to the
starting state, the index (q − 2) corresponds to the accepting state and the index (q − 1) corresponds to
the rejecting state.

Because the tape alphabet Γ is fixed, a code of a q-state one-tape Turing machine is of length Θ(q2)
and it is clear that we can simulate each step of a given one-tape q-state Turing machine in O(q2) time
by a multi-tape Turing machine. Furthermore, the composition of two one-tape Turing machines can be
computed in linear time by a multi-tape DTM as can be seen in Figure 5.

A1

A2

Figure 5: The code of a composition of two Turing machines. Suppose that we want to compute the code
of a composition of Turing machines M1 and M2. Let A1 and A2 be the corresponding matrices that
were used to encodeM1 andM2. Then we can erase the last two lines of the matrixA1 (they correspond
to the halting states ofM1) and adjustA2 “below”A1 as shown on the figure. Note that the column of the
accepting state ofM1 coincides with the column of the starting state ofM2. The last column of A1 that
corresponds to the rejecting state ofM1 is flushed to the right. To compute the code of the composition
of two Turing machines, we have to compute the code of this matrix, which can be done in linear time
given the codes of A1 and A2.

4.2 The Upper Bound

Let us define the problem

HALT(·,·) ={(C,D,M)|C,D ∈ N andM is a one tape NTM that runs in time Cn+D}.

Hence, the problem HALT(·,·) is the same as the problem HALT(C,D) , only that C andD are parts of the
input.

Proposition 4.1. There exists a multi-tape NTM that solves HALT(·,·) in time O(p(C,D)qC+2) for some
quadratic polynomial p.

Proof. Let us describe a multi-tape NTMMmult that solves HALT(·,·) .

• On the input (C,D,M), where M is a q-state one-tape NTM, compute ` = D + 8qC and r =
D + 12qC .

10

• Non-deterministically choose an input of length n ≤ ` and simulate a non-deterministically chosen
computation ofM on it. IfM makes more than Cn+D steps, accept.

• Non-deterministically choose an input w0 = w1w2w3 such that |w1| ≥ 1, 1 ≤ |w2| ≤ r and
|w1|+ |w3| ≤ `. Initialize C1 and C2 to empty crossing sequences and counters t0 = C|w0|+D,
t2 = C|w2|.

• Simulate a non-deterministically chosen computation ζ ofM on the inputw0. After each simulated
step t ofM , do:

– decrease t0 by one,
– if the head ofM is on some cell |w1| ≤ i < |w1|+ |w2|, decrease t2 by one,
– update the crossing sequences C1 = Ct|w1|(M, ζ,w0) and C2 = Ct|w1|+|w2|(M, ζ,w0).
– If t0 < 0, accept.
– Non-deterministically decide whether to do the following:
∗ If C1 = C2 and t2 < 0, accept. Else, reject.

– IfM halts, reject.

Note that the counter t0 counts the number of simulated steps, while the counter t2 counts the
number of steps done on the part w2.

It is clear thatMmult accepts if either a) or b) from the compactness theorem are violated and it rejects
ifM runs in time Cn+D and b) from the compactness theorem is not violated. HenceMmult correctly
solves the problem HALT(·,·) .

Because the condition C1 = C2 is verified at most once during the algorithm and

|C1|, |C2| ≤ C|w0|+D

≤ C(`+ r) +D

= O
(
(CD + C +D + 1)qC

)
,

testing whether C1 = C2 contributes O((CD + C + D + 1)qC+1) time to the overall running time.
BecauseMmult needs O(q2) steps to simulate one step ofM ’s computation and it has to simulate at most
C(2`+ r) +D steps,Mmult runs in time O((CD + C +D + 1)qC+2). �

Corollary 4.2. The problems HALT(C,D) and DHALT(C,D) are in co-NP and their complements can be
solved in time O(qC+2) by a non-deterministic multi-tape Turing machine.

4.3 The Lower Bounds

Let us again state the idea that we use to prove the lower bounds in Theorem 1.1. Suppose a one-tape
non-deterministic Turing machineM solves a problem L. Then for any input w, we can decide whether
w ∈ L by first constructing a one-tape Turing machine Mw that runs in time Cn + D iff M rejects w
and then solving HALT(C,D) forMw. If we choose L to be a hard language, then we can argue that we
can not solve HALT(C,D) fast. The next lemma gives a way to constructMw.

Lemma 4.3. Let C ≥ 2 and D ≥ 1 be integers, let T (n) = Knk + 1 for some integers K, k ≥ 1 and
letM be a one-tape q-state NTM that runs in time T (n). Then there exists an

O
(
T (n)2/(C−1) + n2

)
-time

multi-tape DTM that given an input w forM , constructs a one-tape NTMMw such that

Mw runs in time Cn+D iffM rejects w.

11

Proof. Let us first describe the NTM Mw. The computation of Mw on an input w̃ will consist of two
phases. In the first phase,Mw will use at most (C − 1) deterministic passes through the input to assure
that w̃ is long enough. We will describe this phase in detail later.

In the second phase, Mw will write w on its tape and simulate M on w. Hence O(|w|) states and
O(T (|w|)) time are needed for this phase (note that q is a constant). IfM acceptsw,Mw starts an infinite
loop, else it halts. Let c be a constant such that Mw makes at most cT (|w|) steps in the second phase
before starting the infinite loop.

To describe the first phase, define

m =
⌈(
cT (|w|)(C − 2)!

)1/(C−1)⌉
= O

(
T (|w|)1/(C−1)

)
,

where dxe denotes the smallest integer that is greater than or equal to x. In the first phase, the machine
Mw simply passes through the input (C−1) times, each time verifying that |w̃| is divisible by one of the
numbers (m+ i), for i = 0, 1 . . . (C− 2). If this is not the case,Mw rejects. Else, the second phase is to
be executed. It suffices to have (m + i) states to verify in one pass if the length of the input is divisible
by (m+ i), so we can makeMw have

O

(
C−2∑
i=0

(m+ i)

)
= O ((C − 1)m)

= O(m)

states for the first phase such that it makes at most (C−1)|w̃|+1 steps before entering the second phase5.
We assume thatMw erases all symbols from the tape in the last pass of the first phase so that the second
phase can begin with a blank tape.

If the second phase begins, we know that

|w̃| ≥ lcm{m, (m+ 1) . . . (m+ C − 2)}

≥ mC−1

(C − 2)!

≥ cT (|w|),

where we used the inequality

lcm{m, (m+ 1) . . . (m+ C − 2)} ≥ m
(
m+ C − 2

C − 2

)
proven in [2]. Hence,Mw makes at most |w̃| steps in the second phase iff it does not go into an infinite
loop. So we have proven that

Mw runs in time Cn+ 1 iff Mw runs in time Cn+D iff M rejects w.

To constructMw, we first computem which takes O(|w|) time and then in O(m2) time we compute
a Turing machineM1 that does the first phase (the construction is straightforward). Finally we compose
M1 with the Turing machineM , only thatM first writes w on the tape andM , instead of going to the
accept state, starts moving to the right forever. Because M is not a part of the input and because we
can compute compositions of Turing machines in linear time, the description ofMw can be obtained in
O(m2 + |w|2) time, which is O

(
T (n)2/(C−1) + n2

)
. �

We now combine Corollary 4.2 and Lemma 4.3 to show that HALT(C,D) is co-NP-complete.
5The “plus one” in (C− 1)|w̃|+ 1 is needed because each Turing machine makes at least one step on the empty input. This

is also the reason for why we needD ≥ 1 in the statement of the lemma.

12

Proposition 4.4. The problems HALT(C,D) are co-NP-complete for all C ≥ 2 and D ≥ 1.

Proof. Corollary 4.2 proves that these problems are in co-NP and Lemma 4.3 gives a Karp reduction of
an arbitrary problem in co-NP to the above ones. �

The first lower bound for the problems HALT(C,D) follows. To prove it, we will use Lemma 4.3 to
translate a hard problem to HALT(C,D) .

Proposition 4.5. For positive integers C and D, the problem HALT(C,D) can not be solved by a multi-
tape NTM in time o(q(C−1)/2).

Proof. For C ≤ 5, the proposition holds (the length of the input is Θ(q2)), so suppose C ≥ 6. By the
non-deterministic time hierarchy theorem [9, 12] there exists a language L and a multi-tape NTMM that
decides L and runs in time O(nC−1), while no multi-tape NTM can decide L in time o(nC−1). We can
reduce the number of tapes ofM to get a one-tape NTMM ′ that runs in time O(n2(C−1)) and decides
L. By Lemma 4.3 there exists a multi-tape DTMMmult that runs in time O(n4) and given an input w for
M ′, constructs a one-tape qw-state NTMMw such that

Mw runs in time Cn+D iff M ′ rejects w.

Because the description ofMw has length O(|w|4), it follows that qw = O(|w|2).
If there was some multi-tape NTM that could solve HALT(C,D) in time o

(
q(C−1)/2

)
, then for all w,

we could decide whether w ∈ L in o(nC−1) non-deterministic time: first runMmult to getMw and then
solve HALT(C,D) forMw. By the definition of L this is impossible, hence the problem HALT(C,D) can
not be solved by a multi-tape NTM in time o

(
q(C−1)/2

)
. �

For all of the rest lower bounds, we need to reformulate Lemma 4.3 a bit. We say that an NTMM is a
two-choice NTM if in each step it has at most two possible non-deterministic choices.

Lemma 4.6. Let C ≥ 2 and D ≥ 1 be integers and let T (n) = Knk + 1 for some integers K, k ≥ 1.
Then there exists a multi-tape DTM Mmult, which given an input (M,w), where w is an input for a
one-tape two-choice q-state NTMM , constructs a one-tape DTMMw such that

Mw runs in time Cn+D iffM makes at most T (|w|) steps on the input w.

We can makeMmult run in time

O
(
T (|w|)4/(C−1) + qκ + |w|2

)
for some integer κ ≥ 1, independent of C, D, K and k.

Proof. The proof is based on the same idea as the proof of Lemma 4.3. The main difference is that this
time we will have to count steps while we will simulate M and we will have to use the symbols of an
input of the DTMMw to simulate non-deterministic choices ofM .

Again, we begin with the description ofMw. The computation ofMw on an input w̃ will consist of
two phases. In the first phase, Mw will use at most (C − 1) deterministic passes through the input to
assure that w̃ is long enough. This phase will be the same as in Lemma 4.3, only that we will need more
states to measure longer inputs because the second phase will be more time consuming.

This time we define

m =

⌈((
cT (|w|)

)2
(C − 2)!

)1/(C−1)⌉
= O

(
T (|w|)2/(C−1)

)

13

for some constant c defined later. In the first phase, the machineMw simply passes through the input (C−
1) times, each time verifying that |w̃| is divisible by one of the numbers (m+ i), for i = 0, 1 . . . (C−2).
If this is not the case,Mw rejects. Else, the second phase is to be executed. It suffices to have (m + i)
states to verify in one pass if the length of the input is divisible by (m+ i), so we can makeMw have

O

(
C−2∑
i=0

(m+ i)

)
= O(m)

states for the first phase such that it makes at most (C−1)|w̃|+1 steps before entering the second phase.
We also need that while the Turing machineMw passes through the input in the first phase, it does not
change it, except that it erases the first symbol of w̃ (if not,Mw would need (n + 1) steps for one pass
through the input). Additionally, if the input w̃ contains some symbol that is not 0 or 1,Mw rejects6.

w̃ L L 0 w1 1 w2 1 . . . 1 wn L 12T (|w|)

Figure 6: The preparation for the simulation in the phase two. The input w̃ (without the first symbol) is
much longer compared to what is on the right side of it (phase one takes care for that). After the phase
one, the head ofMw could be on the left side of the input w̃ or on the right side of it, depending on the
parity of C. Let us assume that C is even and hence the head ofMw is on the right side of w̃ after the
phase one. Before the simulation begins,Mw writes the following on the right side of w̃: LL0 followed
by w with the symbol 1 inserted between each two of its symbols. Then on the right of w it computes
2T (|w|) in unary so that we get the situation as shown on the figure. If C is odd, we can look on the tape
ofMw from behind and do everything the same as in the case of C being even.

In the second phase,Mw will compute T (|w|) and simulateM on w for at most T (|w|) steps, using
the non-deterministic choices determined by w̃. IfM will not halt,Mw will start an infinite loop, else it
will halt. In Figure 6 we see howMw makes the preparation for the second phase. Let us call the part
of the tape with the symbols of w̃ written on it the non-deterministic part, the part of the tape from 0 to
wn the simulating part and the part of the tape with 12T (|w|) written on it the counting part. During the
simulation, the following will hold.

• In the simulating part, it will always be the case that the symbols from the tape of M will be in
every second cell and between each two of them will always be the symbol 1, except on the left of
the cell with the head ofM on it where it will be 0.

• There will always be at least two blank symbols left of the simulating part and there will always
be at least one blank symbol right of the simulating part. This will be possible because before
each simulated step ofM , as explained below, the number of blank symbols left and right of the
simulating part will be increased by two for each side, hence when simulating a step of M , the
simulating part can be increased as necessary.

• Before each simulated step ofM ,Mw will use the rightmost symbol of the non-deterministic part
of the tape to determine a non-deterministic choice forM and it will overwrite the two rightmost
symbols of the non-deterministic part of the tape with two blank symbols.

• Before each simulated step ofM ,Mw will overwrite the two leftmost symbols of the counting part
of the tape with two blank symbols.

• IfM halts before the counting part of the tape vanishes,Mw halts. Else,Mw starts an infinite loop.
6Recall that in the definition of a one-tape Turing machine in Section 2 it was required that 0, 1 ∈ Σ.

14

We see thatMw, if it does not go into an infinite loop, finishes the second phase in time O(T (|w|)2) using
O(|w|+ q) states. Note that to achieve that, the counting part of the tape really has to be computed and
not encoded in the states, which takes O(T (|w|)2) steps. A possible implementation of this would be to
first write |w| in binary (|w| can be encoded in the states), then compute T (|w|) in binary and extend it
to unary.

To define the integer c that is used in the first phase, suppose that Mw makes at most (cT (|w|))2
steps in the second phase before starting the infinite loop. Note that c is independent ofM and w. If the
second phase begins, we know that

|w̃| ≥ lcm{m, (m+ 1) . . . (m+ C − 2)}

≥ mC−1

(C − 2)!

≥ (cT (|w|))2 ,

as in the proof of Lemma 4.3, thusMw makes at most |w̃| steps in the second phase iff it does not go
into an infinite loop. This inequality also implies that the non-deterministic part of the tape in the phase
two is long enough so that it does not vanish during the simulation ofM .

Now if M makes at most T (|w|) steps on all computations on the input w, then Mw runs in time
Cn + 1. But if there exists a computation ζ on input w such thatM makes more than T (|w|) steps on
it, then because M is a two-choice machine, there exists a binary input w̃ for Mw such that the non-
deterministic part of the tape in the phase two corresponds to the non-deterministic choices of ζ, hence
Mw on the input w̃ simulates more than T (|w|) steps of M which means that the counting part of the
tape vanishes and thusMw does not halt on the input w̃. So we have proven that

Mw runs in time Cn+ 1 iff Mw runs in time Cn+D iff M makes at most T (|w|) steps on the input w.

Now let us describe a multi-tape DTMMmult that constructsMw from (M,w). First we prove that,
for some integer κ independent of C, D, K and k, the DTMMmult can construct, in time O(qκ + |w|2),
a one-tape DTM M2 that does the second phase. To see this, let MT be a one-tape DTM that given
a number x in binary, its head never crosses the boundary −1 and it computes T (x) in unary in time
O(T (x)2). Note thatMT does not depend on the input (M,w) forMmult and thus it can be computed in
constant time. NowM2 can be viewed as a composition of three deterministic Turing machines:

• The first DTMwrites down the simulating part of the tape, followed by |w|written in binary. Mmult
needs O(|w|2) time to construct this DTM.

• The second DTM isMT andMmult needs O(1) time to construct it.

• The third DTM performs the simulation ofM on w andMmult needs O(qκ) time to construct it,
where κ is independent of C, D, K and k.

Because the composition of Turing machines can be computed in linear time, we can construct M2 in
time O(qκ + |w|2).

Because the first phase does not depend onM and we need O(m) states to do it,Mmult can compute
the DTMM1 that does the first phase in time

O(m2) = O
(
T (|w|)4/(C−1)

)
,

as in the proof of Lemma 4.3. SinceMw is the composition ofM1 andM2,Mmult can constructMw in
time

O
(
T (|w|)4/(C−1) + qκ + |w|2

)
. �

Proposition 4.7. For positive integers C andD, the problem DHALT(C,D) can not be solved by a multi-
tape NTM in time o(q(C−1)/4).

15

Proof. For C ≤ 9, the proposition holds (the length of the input is Θ(q2)), so suppose C ≥ 10. Let κ
be as in Lemma 4.6. Define a padded code of a one-tape NTMM as a code ofM , padded in front by
any number of 0s followed by a redundant 1. Thus the padded code of a one-tape NTM can be arbitrarily
long.

LetM be the following one-tape NTM:

• On an input w, which is a padded code of a one-tape two-choice NTMM ′, construct a one-tape
qw-state DTMMw such that

Mw runs in time Cn+D iff M ′ makes at most |w|κ(C−1) steps on the input w.

The machineMw can be constructed by a multi-tape DTM in time O(|w|4κ) by Lemma 4.6, hence
it can be constructed in time O(|w|8κ) by a one-tape DTM. It also follows that qw = O(|w|2κ).

• Verify whetherMw runs in time Cn+D. If so, start an infinite loop, else halt.

Nowwemake a standard diagonalization argument to prove the proposition. Suppose that DHALT(C,D)
can be solved by a multi-tape NTM in time o(q(C−1)/4). Then it can be solved in time o(q(C−1)/2) by
a one-tape NTM. Using more states and for a constant factor more time, DHALT(C,D) can be solved in
time o(q(C−1)/2) by a one-tape two-choice NTM. IfM uses this machine to verify whetherMw runs in
time Cn + D, then considering qw = O(|w|2κ) and C ≥ 10, M is a one-tape two-choice NTM that
makes

O
(
|w|8κ

)
+ o

(
|w|κ(C−1)

)
= o

(
|w|κ(C−1)

)
steps on any computation on the input w, if it does not enter the infinite loop.

Letw be a padded code ofM . IfM makes at most |w|κ(C−1) steps on the inputw, the Turingmachine
Mw will run in time Cn + D which implies thatM will start an infinite loop on some computation on
the input w, which is a contradiction. Hence, M must make more steps on the input w than |w|κ(C−1)
which implies thatMw does not run in time Cn+D and henceM does not start the infinite loop, thus
it makes o

(
|w|κ(C−1)

)
steps. It follows that

o
(
|w|κ(C−1)

)
> |w|κ(C−1)

which is impossible since the padding can be arbitrarily long. �

Corollary 4.8. For positive integersC andD, the problemHALT(C,D) can not be solved by a multi-tape
NTM in time o(q(C−1)/4).

Proof. The result follows by Proposition 4.7 because a Turingmachine that solves HALT(C,D) also solves
DHALT(C,D) . �

The following lemma is a “deterministic” analog of Lemma 4.3.

Lemma 4.9. Let C ≥ 2 and D ≥ 1 be integers, let T (n) = Knk + 1 for some integers K, k ≥ 1 and
letM be a one-tape two-choice q-state NTM that runs in time T (n). Then there exists an

O
(
T (n)4/(C−1) + n2

)
-time

multi-tape DTM that given an input w forM , constructs a one-tape DTMMw such that

Mw runs in time Cn+D iffM rejects w.

Proof. LetM ′ be a one-tape two-choice (q+ 1)-state NTM that computes just likeM only that it starts
an infinite loop wheneverM would go to the accepting state. It follows that

16

M ′ makes at most T (|w|) steps on the input w iff M rejects w.

Now we can use Lemma 4.6 to construct a DTMMw such that

Mw runs in time Cn+D iff M ′ makes at most T (|w|) steps on the input w iff M rejects w.

BecauseM andM ′ are only parameters in the lemma we are proving, we can constructMw in time

O
(
T (|w|)4/(C−1) + |w|2

)
by Lemma 4.6. �

We now combine Corollary 4.2 and Lemma 4.9 to show that DHALT(C,D) is co-NP-complete.

Proposition 4.10. The problems DHALT(C,D) are co-NP-complete for all C ≥ 2 and D ≥ 1.

Proof. Corollary 4.2 proves that these problems are in co-NP and Lemma 4.9 gives a Karp reduction of
an arbitrary problem in co-NP to the above ones. �

To prove the last lower bound, we use Lemma 4.9 to translate a hard problem to DHALT(C,D) , the same
way as in Proposition 4.5.

Proposition 4.11. For positive integers C and D, the problem DHALT(C,D) can not be solved by a
multi-tape NTM in time o(q(C−1)/4).

Proof. The proof is the same as the proof of Proposition 4.5, only that we use Lemma 4.9 instead of
Lemma 4.3. �

To sum up this section, we have proven Theorem 1.1 which states
For integers C ≥ 2 and D ≥ 1, all of the following holds.

i) The problems HALT(C,D) and DHALT(C,D) are co-NP-complete.
Proposition 4.4 and Proposition 4.10 prove this.

ii) The problemsHALT(C,D) andDHALT(C,D) can not be solved in non-deterministic time o(q(C−1)/4).
Proposition 4.7 and Corollary 4.8 prove this.

iii) The problems HALT(C,D) and DHALT(C,D) can be solved in non-deterministic time O(qC+2).
Corollary 4.2 proves this.

iv) The problem HALT(C,D) can not be solved in non-deterministic time o(q(C−1)/2).
Proposition 4.5 proves this.

v) The problem DHALT(C,D) can not be solved in non-deterministic time o(q(C−1)/4).
Proposition 4.11 proves this. �

5 Final Words

In this section we first show that our methods can not give essentially better lower bounds as in Theo-
rem 1.1. Then we observe that, for Theorem 1.1, we needed C ≥ 2 and D ≥ 1 and we discuss what
happens if C = 0, C = 1 or D = 0.

17

5.1 The Optimality of Our Measuring of the Length of an Input

Let us again have a look at how we proved the lower bound in Proposition 4.5. A very similar idea was
also used to prove all the other lower bounds in Theorem 1.1, so what follows can be applied to any of
them.

Let a one-tape non-deterministic Turing machineM solve a problem L in time T (n). Then for any
input w, we can decide whether w ∈ L by first constructing a one-tape Turing machineMw that runs in
time Cn+D iffM rejects w and then solving HALT(C,D) forMw. On the inputs of length n, the Turing
machineMw computed in two phases (see Lemma 4.3): in the first phaseMw only measured the input
length using at most (C − 1)n+ 1 steps to assure that n was large enough, specifically n = Ω(T (|w|)),
and then in the second phase it simulatedM onw using at most n steps. In our implementationMw used
O(T (|w|)1/(C−1)) states for the first phase and we claim that this is optimal.

If we want Mw to measure the length T (|w|) in the first phase using at most (C − 1)n + 1 steps,
then for each computation on inputs of length T (|w|), it can not produce the same crossing sequence on
two boundaries. By Lemma 3.3,Mw has Ω(T (|w|)1/(C−1)) states which implies that our measuring of
the length of the input was optimal. What is more, Lemma 3.3 is tight and our method for proving lower
bounds can not give much better bounds.

5.2 An Open Problem

For D ∈ N, how hard are the problems HALT(1,D) and DHALT(1,D)?

It is clear that we can solve the problems HALT(C,0) and DHALT(C,0) , for C ∈ N, in constant time.
The answer is always NO, since any Turing machine makes at least one step on the empty input.

It is also easy to see that we can solve the problems HALT(0,D) and DHALT(0,D) , for D ∈ N, in
polynomial time. The algorithm would be to simulate a given one-tape Turing machine M on all the
inputs up to the length D and accept iff the time bound was not violated. Now if the algorithm rejects,
M clearly does not run in timeD and if it accepts, thenM never reads the (D+ 1)st symbol of an input
(see Figure 7) and hence it was enough to verify the running time on inputs up to the length D.

boundaries: 0 D n

w(0, D)

Figure 7: Suppose a Turing machine reads the (D + 1)st symbol of an input w of length n on some
computation. Then this Turing machine must cross theDth boundary on the input w(0, D) and read the
blank symbol behind. Hence it makes at least (D + 1) steps on this input of length D.

For C ≥ 2 and D ≥ 1, good complexity bounds for HALT(C,D) and DHALT(C,D) are given in
Theorem 1.1. Hence only the bounds for C = 1 are missing7. For this case, we can prove the following
proposition.

Proposition 5.1. The problemsHALT(1,1) andDHALT(1,1) are solvable in deterministic polynomial time.

Proof. The main observation is that a one-tape NTM which runs in time (n + 1) never moves its head
to the left, except possibly in the last two steps of a computation. To prove this, we suppose the opposite.
Let M be a one-tape NTM that runs in time (n + 1) and let w be an input for M such that on some
computation on w,M moves its head to the left for the first time on some time step t < n = |w| and it
makes at least two more steps afterwards. As can be seen in Figure 8,M makes more than (t+ 1) steps
on some computation on the input w(0, t) of length t, which is a contradiction.

7This paper also does not cover more general cases where C,D ∈ Q or even C,D ∈ R. We did not think much about such
generalizations.

18

boundaries: 0 t n

w(0, t)

Figure 8: Suppose that a Turing machineM on input w of length n moves its head to the left for the first
time on a time step t (the head turns left just before crossing the boundary t) and letM make at least two
more steps after this step (we assume some fixed computation). ThenM on the input w(0, t) makes at
least (t+ 2) steps.

Hence, to solve HALT(1,1) and DHALT(1,1) for a given one-tape Turing machineM , we have to verify
that the head ofM never moves to the left, except possibly in the last two steps of a computation, which
can be verified in polynomial time. �

Does a similar proof go through for all problems HALT(1,D)?

Acknowledgements

The author wishes to thank his research advisor Sergio Cabello for valuable comments and Valentine
Kabanets for the help with the presentation of results. This work is partially funded by the Slovenian
Research Agency.

References

[1] A. Adachi, S. Iwata, and T. Kasai. Some combinatorial game problems require Ω(nk) time. J.
ACM, 31(2):361–376, 1984.

[2] B. Farhi. Nontrivial lower bounds for the least common multiple of some finite sequences of inte-
gers. J. Number Theory, 125(2):393 – 411, 2007.

[3] D. Gajser. Verifying time complexity of deterministic Turing machines. CoRR, abs/1307.3648,
2013.

[4] J. Hartmanis. Computational complexity of one-tape Turing machine computations. J. ACM,
15(2):325–339, 1968.

[5] F. C. Hennie. One-tape, off-line Turing machine computations. Information and Control, 8(6):553–
578, 1965.

[6] P. Hájek. Arithmetical hierarchy and complexity of computation. Theor. Comput. Sci., 8(2):227 –
237, 1979.

[7] K. Kobayashi. On the structure of one-tape nondeterministic Turing machine time hierarchy. Theor.
Comput. Sci., 40(2-3):175–193, 1985.

[8] G. Pighizzini. Nondeterministic one-tape off-line Turing machines and their time complexity. J.
Autom. Lang. Comb., 14(1):107–124, 2009.

[9] J. I. Seiferas, M. J. Fischer, and A. R. Meyer. Separating nondeterministic time complexity classes.
J. ACM, 25(1):146–167, 1978.

[10] K. Tadaki, T. Yamakami, and J. C. H. Lin. Theory of one-tape linear-time Turing machines. Theor.
Comput. Sci., 411(1):22–43, 2010.

19

[11] B. A. Trakhtenbrot. Turing computations with logarithmic delay. Algebra i Logica 3, pages 33–48,
1964. In Russian.

[12] S. Žák. A Turing machine time hierarchy. Theoretical Computer Science, 26(3):327 – 333, 1983.

20

A Appendix

We prove here the following technical lemma.

Lemma A.1. For every q ≥ 2 and C ∈ N, it holds

C∑
j=0

qj(C − j) =
qC+1 − (C + 1)q + C

(q − 1)2
≤ 4qC−1.

Proof.

C∑
j=0

qj(C − j) = C
C∑
j=0

qj − q d
dq

 C∑
j=0

qj

= C

qC+1 − 1

q − 1
− q d

dq

(
qC+1 − 1

q − 1

)
=
qC+1 − (C + 1)q + C

(q − 1)2
.

It is easy to see that, for q ≥ 2, it follows q
C+1−(C+1)q+C

(q−1)2 ≤ qC+1

(q−1)2 ≤ 4qC−1. �

21

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

