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Abstract. Predicting the winner of an election is a favorite problem
both for news media pundits and computational social choice theorists.
Since it is often infeasible to elicit the preferences of all the voters in a
typical prediction scenario, a common algorithm used for winner predic-
tion is to run the election on a small sample of randomly chosen votes
and output the winner as the prediction. We analyze the performance of
this algorithm for many common voting rules.
More formally, we introduce the (ε, δ)-winner determination problem,
where given an election on n voters and m candidates in which the mar-
gin of victory is at least εn votes, the goal is to determine the winner with
probability at least 1−δ. The margin of victory of an election is the small-
est number of votes that need to be modified in order to change the elec-
tion winner. We show interesting lower and upper bounds on the number
of samples needed to solve the (ε, δ)-winner determination problem for
many common voting rules, including scoring rules, approval, maximin,
Copeland, Bucklin, plurality with runoff, and single transferable vote.
Moreover, the lower and upper bounds match for many common voting
rules in a wide range of practically appealing scenarios.
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1. INTRODUCTION

1 Introduction

A common and natural way to aggregate preferences of agents is through an
election. In a typical election, we have a set of candidates and a set of voters, and
each voter reports his preference about the candidates in the form of a vote. We
will assume that each vote is a ranking of all the candidates. A voting rule selects
one candidate as the winner once all voters provide their votes. Determining the
winner of an election is one of the most fundamental problems in social choice
theory.

In many situations, however, one wants to predict the winner without holding
the election for the entire population of voters. The most immediate such exam-
ple is an election poll. Here, the pollster wants to quickly gauge public opinion in
order to predict the outcome of a full-scale election. For political elections, exit
polls (polls conducted on voters after they have voted) are widely used by news
media to predict the winner before official results are announced. In surveys, a
full-scale election is never conducted, and the goal is to determine the winner,
based on only a few sampled votes, for a hypothetical election on all the voters.
For instance, it is not possible to force all the residents of a city to fill out an
online survey to rank the local Chinese restaurants, and so only those voters
who do participate have their preferences aggregated.

If the result of the poll or the survey has to reflect the true election outcome,
it is obviously necessary that the number of sampled votes not be too small.
Here, we investigate this fundamental question:

What is the minimum number of votes that need to be sampled so that
the winner of the election on the sampled votes is the same as the winner
of the election on all the votes?

This question can be posed for any voting rule. The most immediate rule
to study is the plurality voting rule, where each voter votes for a single candi-
date and the candidate with most votes wins. Although the plurality rule is the
most common voting rule used in political elections, it is important to extend
the analysis to other popular voting rules. For example, the single transferable
vote rule is used in political elections in Australia, India and Ireland, and it was
the subject of a nationwide referendum in the UK in 2011. The Borda voting
rule is used in the Icelandic parliamentary elections. Outside politics, in private
companies and competitions, a wide variety of voting rules are used. For exam-
ple, the approval voting rule has been used by the Mathematical Association of
America, the American Statistical Institute, and the Institute of Electrical and
Electronics Engineers, and Condorcet consistent voting rules are used by many
free software organizations. Section 2 discusses the most common voting rules
in use.

Regardless of the voting rule, though, the question of finding the minimum
number of vote samples required becomes trivial if a single voter in the election
can change the winning candidate. In this case, all the votes need to be counted,
because otherwise that single crucial vote may not be sampled. We get around
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1. INTRODUCTION

this problem by assuming that in the elections we consider, the winning candi-
date wins by a considerable margin of victory. Formally, the margin of victory
for an election is defined as the minimum number of votes that must be changed
in order to change the election winner. Note that the margin of victory depends
not only on the votes cast but also on the voting rule used in the election.

1.1 Our Contributions

Let the number of voters be n and the number of candidates m. We introduce
and study the following problem1:

Definition 1. ((ε, δ)-winner determination)
Given a voting rule and a set of n votes over a set of m candidates such that
the margin of victory is at least εn, determine the winner of the election with
probability at least 1 − δ. (The probability is taken over the internal coin tosses
of the algorithm.)

We remind the reader that there is no assumption about the distribution
of votes in this problem. Our goal is to solve the (ε, δ)-winner determination
problem by a randomized algorithm that is allowed to query the votes of arbitrary
voters. Each query reveals the full vote of the voter. The minimum number
of votes queried by any algorithm that solves the (ε, δ)-winner determination
problem is termed the sample complexity. The sample complexity can of course
depend on ε, δ, n, m, and the voting rule in use.

A standard result [Canetti et al., 1995] shows that solving the above prob-
lem for the majority rule on 2 candidates requires at least Ω(1/ε2 log 1/δ) sam-
ples (Theorem 2). Also, a straightforward argument (Theorem 4) using Chernoff
bounds shows that for any homogeneous voting rule, the sample complexity is
at most O(m!2/ε2 · log(m!/δ)). So, when m is a constant, the sample complexity
is of the order Θ(1/ε2 log 1/δ) for any homogeneous voting rule that reduces to
majority on 2 candidates (as is the case for all rules commonly used). Note that
this bound is independent of n if ε and δ are constants, for any reasonable voting
rule!

Our main technical contribution is in understanding the dependence of the
sample complexity on m, the number of candidates. Note that the upper bound
cited above has very bad dependence on m and is clearly unsatisfactory in situ-
ations when m is large (such as in online surveys about restaurants).

– We show that the sample complexity of the (ε, δ)-winner determination prob-
lem is Θ( 1

ε2 log 1
δ ) for the k-approval voting rule when k = o(m) (Theorem 7)

and the plurality with runoff voting rule (Theorem 11). In particular, for the
plurality rule, the sample complexity is independent of m as well as n!

– We show that the sample complexity of the (ε, δ)-winner determination prob-

lem is O( log(m/δ)
ε2 ) and Ω( logm

ε2 (1 − δ))for the k-approval voting rule when

1 Throughout this section, we use standard terminlogy from voting theory. For formal
definitions, refer to Section 2.
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k = cm with 0 < c < 1 (Theorem 6), Borda (Theorem 3), approval (The-
orem 5), maximin (Theorem 8), and Bucklin (Theorem 10) voting rules.
Note that when δ is a constant, the upper and lower bounds match up to
constants. We observe a surprising jump in the sample complexity of the
(ε, δ)-winner determination problem by a factor of logm for the k-approval
voting rule as k varies from o(m) to cm with c ∈ (0, 1).

– We show a sample complexity upper bound of O(
log3 m

δ

ε2 ) for the (ε, δ)-
winner determination problem for the Copelandα voting rule (Theorem 9)

and O(
m2(m+log 1

δ )

ε2 ) for the STV voting rule (Theorem 12).

We summarize the results in Table 1.

Voting Rule Sample complexity

k-approval O( 1
ε2

log k
δ
)Theorem 7 Ω( log(k+1)

ε2
. (1− δ))Theorem 3

Scoring Rules
O(

log m
δ

ε2
)Theorem 6

Borda

Ω( logm
ε2

. (1− δ))† Theorem 3

Approval O(
log m

δ
ε2

)Theorem 5

Maximin O(
log m

δ
ε2

)Theorem 8

Copeland O(
log3 m

δ
ε2

)Theorem 9

Bucklin O(
log m

δ
ε2

)Theorem 10

Plurality with runoff O(
log 1

δ
ε2

)Theorem 11

Ω( 1
ε2

log 1
δ
)∗ Corollary 1STV O(

m2(m+log 1
δ
)

ε2
)Theorem 12

Any homogeneous voting rule O(
m!2 log m!

δ
ε2

)Theorem 4

Table 1. Sample complexity of the (ε, δ)-winner determination problem for various
voting rules. †–The lower bound of Ω( logm

ε2
. (1− δ)) also applies to any voting rule

that is Condorcet consistent. ∗– The lower bound of Ω( 1
ε2

log 1
δ
) holds for any voting

rule that reduces to the plurality voting rule for elections with two candidates.

The rest of the paper is organized as follow. We introduce the terminologies
and define the problem formally in Section 2; we present the results on lower
bounds in Section 3; Section 4 contains the results on the upper bounds for
various voting rules; finally, we conclude in Section 5.

This paper is a significant extension of the conference version of this work Dey
and Bhattacharyya [2015]: this extended version includes all the proofs.
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1.2 Related Work

The subject of voting is at the heart of (computational) social choice theory,
and there is a vast amount of literature in this area. Elections take place not
only in human societies but also in manmade social networks [Boldi et al., 2009,
Rodriguez et al., 2007] and, generally, in many multiagent systems [Ephrati and
Rosenschein, 1991, Pennock et al., 2000]. The winner determination problem
is the task of finding the winner in an election, given the voting rule in use
and the set of all votes cast. It is known that there are natural voting rules,
e.g., Kemeny’s rule and Dodgson’s method, for which the winner determination
problem is NP-hard [Bartholdi III et al., 1989, Hemaspaandra et al., 1997, 2005].

The general question of whether the outcome of an election can be deter-
mined by less than the full set of votes is the subject of preference elicitation,
a central category of problems in AI. The (ε, δ)-winner determination problem
also falls in this area when the elections are restricted to those having margin
of victory at least εn. For general elections, the preference elicitation problem
was studied by Conitzer and Sandholm [Conitzer and Sandholm, 2002], who de-
fined an elicitation policy as an adaptive sequence of questions posed to voters.
They proved that finding an efficient elicitation policy is NP-hard for many com-
mon voting rules. Nevertheless, several elicitation policies have been developed
in later work [Conitzer, 2009, Ding and Lin, 2012, Lu and Boutilier, 2011a,b,
Oren et al., 2013] that work well in practice and have formal guarantees under
various assumptions on the vote distribution. Another related work is that of
Dhamal and Narahari [Dhamal and Narahari, 2013] who show that if the voters
are members of a social network where neighbors in the network have similar
candidate votes, then it is possible to elicit the votes of only a few voters to
determine the outcome of the full election.

In contrast, in our work, we posit no assumption on the vote distribution
other than that the votes create a substantial margin of victory for the winner.
Under this assumption, we show that even for voting rules in which winner de-
termination is NP-hard in the worst case, it is possible to sample a small number
of votes to determine the winner. Our work falls inside the larger framework of
property testing [Ron, 2001], a class of problems studied in theoretical computer
science, where the inputs are promised to either satisfy some property or have
a “gap” from instances satisfying the property. In our case, the instances are
elections which either have some candidate w as the winner or are “far” from
having w being the winner (in the sense that many votes need to be changed).

The basic model of elections has been generalized in several other ways to
capture real world situations. One important consideration is that the votes may
be incomplete rankings of the candidates and not a complete ranking. There can
also be uncertainty over which voters and/or candidates will eventually turn up.
The uncertainty may additionally come up from the voting rule that will be
used eventually to select the winner. In these incomplete information settings,
several winner models have been proposed, for example, robust winner [Boutilier
et al., 2014, Lu and Boutilier, 2011a, Shiryaev et al., 2013], multi winner [Lu and
Boutilier, 2013], stable winner [Falik et al., 2012], approximate winner [Doucette
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et al., 2014], probabilistic winner [Bachrach et al., 2010]. Hazon et al. [Hazon
et al., 2008] proposed useful methods to evaluate the outcome of an election
under various uncertainties. We do not study the role of uncertainty in our
work.

Organization We formally introduce the terminologies in Section 2; we present
the results on lower bounds in Section 3; Section 4 contains the results on the
upper bounds for various voting rules; finally, we conclude in Section 5.

2 Preliminaries

2.1 Voting and Voting Rules

Let V = {v1, . . . , vn} be the set of all voters and C = {c1, . . . , cm} the set of all
candidates. Each voter vi’s vote is a complete order over �i over the candidates
C. For example, for two candidates a and b, a �i b means that the voter vi
prefers a to b. We denote the set of all complete orders over C by L(C). Hence,
L(C)n denotes the set of all n-voters’ preference profiles (�1, . . . ,�n).

A map r : ]n,|C|∈N+L(C)n −→ C is called a voting rule. Given a vote profile
�∈ L(C)n, we call r(�) the winner. Note that in this paper, each election has a
unique winner, and we ignore the possibility of ties. A voting rule is called homo-
geneous if it selects the winner solely based on the fraction of times each complete
order from L(C) appears as a vote in the election. All the commonly used voting
rules including the ones that are studied in this paper are homogeneous.

Given an election E, we can construct a weighted graph GE called weighted
majority graph from E. The set of vertices in GE is the set of candidates
in E. For any two candidates x and y, the weight on the edge (x, y) is
DE(x, y) = NE(x, y) − NE(y, x), where NE(x, y)(respectively NE(y, x)) is the
number of voters who prefer x to y (respectively y to x). A candidate x is called
the Condorcet winner in an election E if DE(x, y) > 0 for every other candidate
y 6= x. A voting rule is called Condorcet consistent if it selects the Condorcet
winner as the winner of the election whenever it exists.

Some examples of common voting rules2 are:

– Positional scoring rules: A collection of m-dimensional vectors sm =
(α1, α2, . . . , αm) ∈ Rm with α1 ≥ α2 ≥ · · · ≥ αm and α1 > αm for every
m ∈ N naturally defines a voting rule – a candidate gets score αi from a vote
if it is placed at the ith position, and the score of a candidate is the sum of
the scores it receives from all the votes. The winner is the candidate with
maximum score.
Without loss of generality, we assume that for any score vector α, there
exists a j such that αj = 1 and αk = 0 for all k > j. The vector α that is
1 in the first k coordinates and 0 otherwise gives the k-approval voting rule.

2 In all these rules, the possibilities of ties exist. If they do happen, we assume that
some arbitrary but fixed tie breaking rule is applied.
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1-approval is called the plurality voting rule, and (m− 1)-approval is called
the veto voting rule. The score vector (m−1,m−2, . . . , 1, 0) gives the Borda
voting rule.

– Approval: In approval voting, each voter approves a subset of candidates.
The winner is the candidate which is approved by the maximum number of
voters.

– Maximin: The maximin score of a candidate x is miny 6=xD(x, y). The win-
ner is the candidate with maximum maximin score.

– Copelandα: The Copelandα score of a candidate x is |{y 6= x : DE(x, y) >
0}|+α|{y 6= x : DE(x, y) = 0}|, where α ∈ [0, 1]. The winner is the candidate
with the maximum Copeland score.

– Bucklin: A candidate x’s Bucklin score is the minimum number l such that
more than half of the voters rank x in their top l positions. The winner is
the candidate with lowest Bucklin score.

– Plurality with runoff: The top two candidates according to plurality score
are selected first. The pairwise winner of these two candidates is selected as
the winner of the election. This rule is often called the runoff voting rule.

– Single Transferable Vote: In Single Transferable Vote (STV), a candi-
date with least plurality score is dropped out of the election and its votes
are transferred to the next preferred candidate. If two or more candidates
receive least plurality score, then tie breaking rule is used. The candidate
that remains after (m− 1) rounds is the winner.

Among the above voting rules, only the maximin and the Copeland voting
rules are Condorcet consistent.

Given an election, the margin of victory of this election is:

Definition 2. Given a voting profile �, the margin of victory (MOV) is the
smallest number of votes k such that the winner can be changed by changing k
many votes in �, while keeping other votes unchanged.

Xia [Xia, 2012] showed that for most common voting rules (including all
those mentioned above), when each voter votes i.i.d. according to a distribution
on the candidates, the margin of victory is with high probability, either Θ(

√
n)

or Θ(n).

2.2 Statistical Distance Measures

Given a finite set X, a distribution µ on X is defined as a function µ : X −→
[0, 1], such that

∑
x∈X µ(x) = 1. The finite set X is called the base set of the

distribution µ. We use the following distance measures among distributions in
our work.

Definition 3. The KL divergence [Kullback and Leibler, 1951] and the Jensen-
Shannon divergence [Lin, 1991] between two distributions µ1 and µ2 on X are
defined as follows.

DKL(µ1||µ2) =
∑
x∈X

µ1(x) log
µ1(x)

µ2(x)
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JS(µ1, µ2) =
1

2

(
DKL

(
µ1||

µ1 + µ2

2

)
+DKL

(
µ2||

µ1 + µ2

2

))
The Jensen-Shannon divergence has subsequently been generalized to mea-

sure the mutual distance among more than two distributions as follows.

Definition 4. Given n distributions µ1, . . . , µn over the same base set, the gen-
eralized Jensen-Shannon divergence3 among them is:

JS(µ1, . . . , µn) =
1

n

n∑
i=1

DKL

µi|| 1
n

n∑
j=1

µj



2.3 Chernoff Bound

We repeatedly use the following concentration inequality:

Theorem 1. Let X1, . . . , X` be a sequence of ` independent random variables
in [0, 1] (not necessarily identical). Let S =

∑
iXi and let µ = E [S]. Then, for

any 0 ≤ δ ≤ 1:

Pr[|S − µ| ≥ δ`] < 2 exp(−2`δ2)

and

Pr[|S − µ| ≥ δµ] < 2 exp(−δ2µ/3)

The first inequality is called an additive bound and the second multiplicative.

3 Results on Lower Bounds

Our lower bounds for the sample complexity of (ε, δ)-winner determination are
derived from information-theoretic lower bounds for distinguishing distributions.

We start from the following basic observation. Let X be a random variable
taking value 1 with probability 1

2−ε and 0 with probability 1
2 +ε; Y be a random

variable taking value 1 with probability 1
2 + ε and 0 with probability 1

2 − ε.
Then, it is well-known that every algorithm needs Ω( 1

ε2 log 1
δ ) many samples to

distinguish between X and Y with probability of making an error being at most
δ [Bar-Yossef et al., 2001, Canetti et al., 1995]. Immediately, we have:

Theorem 2. The sample complexity of the (ε, δ)-winner determination problem
for the plurality voting rule is Ω( 1

ε2 log 1
δ ).

3 The generalized Jensen-Shannon divergence is often formulated with weights on each
of the n distributions. The definition here puts equal weight on each distribution and
is sufficient for our purposes.
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Proof. Consider an election with two candidates a and b. Consider two vote
distributions X and Y . In X, exactly 1

2 + ε fraction of voters prefer a to b and
thus a is the plurality winner of the election. In Y , exactly 1

2 +ε fraction of voters
prefer b to a and thus b is the plurality winner of the election. Also, the margin
of victory of both the elections corresponding to the vote distributions X and Y
is εn, since each vote change can change the plurality score of any candidate by
at most one. Any (ε, δ)-winner determination algorithm for plurality will give us
a distinguisher between the distributions X and Y with probability of error at
most δ and hence will need Ω( 1

ε2 log 1
δ ) samples. ut

Theorem 2 immediately gives us the following corollary.

Corollary 1. Every (ε, δ)-winner determination algorithm needs Ω( 1
ε2 log 1

δ )
many samples for any voting rule which reduces to the plurality rule for two
candidates. In particular, the lower bound holds for approval, scoring rules, max-
imin, Copeland, Bucklin, plurality with runoff, and STV voting rules.

Proof. All the voting rules mentioned in the statement except the approval vot-
ing rule is same as the plurality voting rule for elections with two candidates.
Hence, the result follows immediately from Theorem 2 for the above voting rules
except the approval voting rule. The result for the approval voting rule follows
from the fact that any arbitrary plurality election is also a valid approval election
where every voter approves exactly one candidate. ut

We derive stronger lower bounds in terms of m by explicitly viewing the
(ε, δ)-winner determination problem as a statistical classification problem. In
this problem, we are given a black box that contains a distribution µ which
is guaranteed to be one of ` known distributions µ1, . . . , µ`. A classifier is a
randomized oracle which has to determine the identity of µ, where each oracle call
produces a sample from µ. At the end of its execution, the classifier announces a
guess for the identity of µ, which has to be correct with probability at least 1−δ.
Using information-theoretic methods, Bar-Yossef [Bar-Yossef, 2003] showed the
following:

Lemma 1. The worst case sample complexity q of a classifier C for µ1, . . . , µ`
which does not make error with probability more than δ satisfies following.

q ≥ Ω
(

log `

JS (µ1, . . . , µ`)
. (1− δ)

)
The connection with our problem is the following. A set V of n votes on a

candidate set C generates a probability distribution µV on L(C), where µV (�)
is proportional to the number of voters who voted �. Querying a random vote
from V is then equivalent to sampling from the distribution µV . The margin of
victory is proportional to the minimum statistical distance between µV and µW ,
over all the voting profiles W having a different winner than the winner of V .

Now, suppose we have m voting profiles V1, . . . , Vm having different winners
such that each Vi has margin of victory at least εn. Any (ε, δ)-winner determina-
tion algorithm must also be a statistical classifier for µV1

, . . . , µVm in the above

9



3. RESULTS ON LOWER BOUNDS

sense. It then remains to construct such voting profiles for various voting rules
which we do in the proof of the following theorem:

Theorem 3. Every (ε, δ)-winner determination algorithm needs

Ω
(

logm
ε2 . (1− δ)

)
many samples for approval, Borda, Bucklin, and any

Condorcet consistent voting rules, and Ω
(

log k
ε2 . (1− δ)

)
many samples for the

k-approval voting rule.

Proof. For each voting rules mentioned in the theorem, we will show d (d = k+1
for the k-approval voting rule and d = m for the rest of the voting rules) many
distributions µ1, . . . , µd on the votes with the following properties the result
follows from Lemma 1. Let Vi be an election where each vote v ∈ L(C) occurs

exactly µi(v) · n many times. Let µ = 1
d

∑d
i=1 µi.

1. For every i 6= j, the winner in Vi is different from the winner in Vj .
2. For every i, the margin of victory of Vi is Ω(εn).
3. DKL(µi||µ) = O(ε2)

The distributions for different voting rules are as follows. Let the candidate set
be C = {c1, . . . , cm}.

k-approval voting rule. Fix any arbitrary M := k + 1 many candidates
c1, . . . , cM . For i ∈ [M ], we define a distribution µi on all k sized subsets of C
(for the k-approval voting rule, each vote is a k-sized subset of C) as follows.
Each k sized subset corresponds to top k candidates in a vote.

µi(x) =


ε

(M−1
k−1 )

+ 1−ε
(Mk )

if ci ∈ x and x ⊆ {c1, . . . , cM}
1−ε
(Mk )

ci /∈ x and x ⊆ {c1, . . . , cM}

0 else

The score of ci in Vi is n

(
ε+ (1− ε) (M−1

k−1 )
(Mk )

)
, the score of any other candidate

cj ∈ {c1, . . . , cM} \ {ci} is n (1− ε) (M−1
k−1 )
(Mk )

, and the score of the rest of the can-

didates is zero. Hence, the margin of victory is Ω(εn), since each vote change
can reduce the score of ci by at most one and increase the score of any other
candidate by at most one. This proves the result for the k-approval voting rule.
Now, we show that DKL(µi||µ) to be O(ε2).

DKL(µi||µ) =

(
ε+ (1− ε) k

M

)
log

(
1− ε+ ε

M

k

)
+ (1− ε)

(
1− k

M

)
log (1− ε)

≤
(
ε+ (1− ε) k

M

)(
ε
M

k
− ε
)
− (1− ε)

(
1− k

M

)
ε

= ε2
(
M

k
− 1

)
≤ 2ε2
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Approval voting rule. The result follows from the fact that every m
2 -

approval election is also a valid approval election and Lemma 2.

Borda, any Condorcet consistent voting rule. The score vector for the
Borda voting rule which we use in this proof is (m,m − 1, . . . , 1). For i ∈ [m],
we define a distribution µi on all possible linear orders over C as follows.

µi(x) =

{
ε

(m−1)! + 1−ε
m! if ci is within top m

2 positions in x.
1−ε
m! else

The score of ci in Vi is mn
2 (1 + ε

2 ) whereas the score of any other candidate
cj 6= ci is mn

2 . Hence, the margin of victory is at least εn
8 , since each vote change

can reduce the score of ci by at most m and increase the score of any other
candidate by at most m. Also, in the weighted majority graph for the election
Vi, w(ci, cj) = εn

2 . Hence, the margin of victory is at least εn
4 , since each vote

change can change the weight of any edge in the weighted majority graph by at
most two. Now, we show that DKL(µi||µ) to be O(ε2).

DKL(µi||µ) =
1 + ε

2
log (1 + ε) +

1− ε
2

log (1− ε)

≤ 1 + ε

2
ε− 1− ε

2
ε

= ε2

Bucklin. For i ∈ [m], we define a distribution µi on all m4 sized subsets of C
as follows. Each m

4 sized subset corresponds to the top m
4 candidates in a vote.

µi(x) =


1−ε

(m−1
m
4

−1)
+ ε

(mm
4

)
if ci ∈ x

ε

(mm
4

)
else

The candidate ci occurs within the top m
4 positions at least n(1 − 3ε

4 ) many
times, and any candidate cj 6= ci occurs within the top m

4 positions at most
n
3 −

εn
12 many times. Hence, the margin of victory is at least εn

6 , since each vote
change can change the number of time any particular candidate occurs within
top m

4 positions by at most one. Now, we show that DKL(µi||µ) to be O(ε2).

DKL(µi||µ) =

(
1− 3ε

4

)
log (4− 3ε) +

3ε

4
log ε

≤
(

1− 3ε

4

)
log (4− 3ε)

= 2ε2

ut
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4 Results on Upper Bounds

In this section, we present the upper bounds on the sample complexity of the
(ε, δ)-winner determination problem for various voting rules. The general frame-
work for proving the upper bounds is as follows. For each voting rule, we first
prove a useful structural property about the election when the margin of victory
is known to be at least εn. Then, we sample a few votes uniformly at random to
estimate either the score of the candidates for score based voting rules or weights
of the edges in the weighted majority graph for other voting rules. Finally, ap-
pealing to the structural property that has been established, we argue that, the
winner of the election on the sampled votes will be the same as the winner of
the election, if we are able to estimate either the scores of the candidates or
the weights of the edges in the weighted majority graph to a certain level of
accuracy.

Before getting into specific voting rules, we prove a straightforward bound
on the sample complexity for the (ε, δ)-winner determination problem for any
voting rule.

Theorem 4. There is a (ε, δ)-winner determination algorithm for every homo-

geneous voting rules with sample complexity O(
m!2 log m!

δ

ε2 ).

Proof. We sample ` votes uniformly at random from the set of votes with re-
placement. Let Xi be an indicator random variable that is 1 exactly when x
is the i’th sample, and let g(x) be the total number of voters whose vote is x.

Define ĝ(x) = n
l

∑l
i=1Xi. Using the Chernoff bound (Theorem 1), we have the

following:

Pr
[
|ĝ(x)− g(x)| > εn

2m!

]
≤ 2 · exp

(
− ε2`

2m!2

)
By using the union bound, we have the following,

Pr
[
∃x ∈ L(C), |ĝ(x)− g(x)| > εn

2m!

]
≤ 2m! · exp

(
− ε2`

2m!2

)
Since the margin of victory is εn and the voting rule is anonymous, the winner of
the ` sample votes will be same as the winner of the election if |ĝ(x)−g(x)| ≤ εn

2m!
for every linear order x ∈ L(C). Hence, it is enough to take ` = O(m!2/ε2 ·
log(m!/δ)). ut

4.1 Approval Voting Rule

We derive the upper bound on the sample complexity for the (ε, δ)-winner de-
termination problem for the approval voting rule.

Lemma 2. If MOV ≥ εn and w be the winner of a approval election, then,
s(w) − s(x) ≥ εn, for every candidate x 6= w, where s(y) is the number of
approvals that a candidate y receives.

12
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Proof. Suppose there is a candidate x 6= w such that s(w) − s(x) < εn. Then
there must exist εn−1 votes which does not approve the candidate x. We modify
these votes to make it approve x. This makes w not the unique winner in the
modified election. This contradicts the fact that the MOV is at least εn. ut

Theorem 5. There is a (ε, δ)-winner determination algorithm for the approval

voting rule with sample complexity O( log(m/δ)
ε2 ).

Proof. Suppose w is the winner. We sample ` votes uniformly at random from
the set of votes with replacement. For a candidate x, let Xi be a random variable
indicating whether the i’th vote sampled approved x. Define ŝ(x) = n

l

∑l
i=1Xi.

Then, by an argument analogous to the proof of Theorem 4, Pr[∃x ∈ C, |ŝ(x)−
s(x)| > εn/2] ≤ 2m · exp

(
−ε2`/2

)
. Thus since MOV≥ εn and by Lemma 2, if

we take ` = O( logm/δ
ε2 ), ŝ(w) is greater than ŝ(x) for all x 6= w. ut

4.2 Scoring Rules

Now, we move on to the scoring rules. Again, we first establish a structural
consequence of having large MOV.

Lemma 3. Suppose α = (α1, . . . , αm) be a normalized score vector and w is the
winner of an election using scoring rule α with MOV ≥ εn. Then, s(w)− s(x) ≥
α1εn/2 for every candidate x 6= w, where s(w) and s(x) denote the score of the
candidates w and x respectively.

Proof. There must be at least εn many votes where w is preferred over x, since
we can make x win the election by exchanging the positions of x and w in all
these votes and MOV ≥ εn. Let v be a vote where w is preferred to x. Suppose
we replace the vote v by another vote v′ = x � others � w. We claim that
this replacement reduces the current value of s(w) − s(x) by at least α1. If we
change εn/2 such votes, then s(w) − s(x) decreases by at least α1εn/2 but, at
the same time, w must still be the winner after the vote changes because of the
MOV condition. So, s(w)− s(x) ≥ α1εn/2.

To prove the claim, suppose w and x were receiving a score of αi and αj
respectively from the vote v. By replacing the vote v by v′, the current value of
s(w) − s(x) reduces by α1 − αj + αi, since αm = 0. Now, α1 − αj + αi ≥ α1

since in the vote v, the candidate w is preferred over x and hence, αj < αi. This
proves the result. ut

Theorem 6. Suppose α = (α1, . . . , αm) be a normalized score vector. There
is a (ε, δ)-winner determination algorithm for the α-scoring rule with sample

complexity O( log(m/δ)
ε2 ).

Proof. It is enough to show the result for the (2ε, δ)-winner determination prob-
lem. We sample ` votes uniformly at random from the set of votes with replace-
ment. For a candidate x, define Xi = αi

α1
if x gets a score of αi from the ith sample

13



4. RESULTS ON UPPER BOUNDS

vote, and let ŝ(x) = nα1

`

∑`
i=1Xi. Now, using Chernoff bound (Theorem 1), we

have:

Pr [|ŝ(x)− s(x)| ≥ α1εn/4] ≤ 2 exp

(
−ε

2`

2

)
The rest of the proof follows from an argument analogous to the proof of Theo-
rem 5 using Lemma 3. ut

From Theorem 6, we have a (ε, δ)-winner determination algorithm for the

k-approval voting rule which needs O( log(m/δ)
ε2 ) many samples for any k. This is

tight by Theorem 3 when k = cm for some c ∈ (0, 1).
When k = o(m), we have a lower bound of Ω( 1

ε2 log 1
δ ) for the k-approval

voting rule (see Corollary 1). We show next that this lower bound is also tight
for the k-approval voting rule when k = o(m). Before embarking on the proof of
the above fact, we prove the following lemma which will be crucially used.

Lemma 4. Let f : R −→ R be a function defined by f(x) = e−
λ
x . Then,

f(x) + f(y) ≤ f(x+ y), for x, y > 0,
λ

x+ y
> 2, x < y

Proof. For the function f(x), we have following.

f(x) = e−
λ
x

⇒ f ′(x) =
λ

x2
e−

λ
x

⇒ f ′′(x) =
λ2

x4
e−

λ
x − 2λ

x3
e−

λ
x

Hence, for x, y > 0, λ
x+y > 2, x < y we have f ′′(x), f ′′(y), f ′′(x + y) > 0. This

implies following for x < y and an infinitesimal positive δ.

f ′(x) ≤ f ′(y)

⇒ f(x− δ)− f(x)

δ
≥ f(y)− f(y − δ)

δ
⇒ f(x) + f(y) ≤ f(x− δ) + f(y + δ)

⇒ f(x) + f(y) ≤ f(x+ y)

ut

Theorem 7. There is a (ε, δ)-winner determination algorithm for the k-

approval voting rule with sample complexity O(
log( kδ )

ε2 ).

Proof. It is enough to show the result for the (2ε, δ)-winner determination prob-
lem. We sample ` votes uniformly at random from the set of votes with replace-
ment. For a candidate x, let Xi be a random variable indicating whether x is
among the top k candidates for the ith vote sample. Define ŝ(x) = n

`

∑l
i=1Xi,

14
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and let s(x) be the actual score of x. Then by the multiplicative Chernoff bound
(Theorem 1), we have:

Pr [|ŝ(x)− s(x)| > εn] ≤ 2 exp

(
− ε2`n

3s(x)

)
By union bound, we have the following,

Pr[∃x ∈ C, |ŝ(x)− s(x)| > εn]

≤
∑
x∈C

2 exp

(
− ε2`n

3s(x)

)
≤ 2k exp

(
−ε2`/3

)
Let the candidate w be the winner of the election. The second inequality in the

above derivation follows from the fact that, the function
∑
x∈C exp

(
− ε2`n

3s(x)

)
is

maximized in the domain, defined by the constraint: for every candidate x ∈ C,
s(x) ∈ [0, n] and

∑
x∈C s(x) = kn, by setting s(x) = n for every x ∈ C′ and

s(y) = 0 for every y ∈ C \ C′, for any arbitrary subset C′ ⊂ C of cardinality k
(due to Lemma 4). The rest of the proof follows by an argument analogous to
the proof of Theorem 4 using Lemma 3. ut

Notice that, the sample complexity upper bound in Theorem 7 is indepen-
dent of m for the plurality voting rule. Theorem 7 in turn implies the following
Corollary which we consider to be of independent interest.

Corollary 2. There is an algorithm to estimate the `∞ norm `∞(µ) of a dis-
tribution µ within an additive factor of ε by querying only O( 1

ε2 log 1
δ ) many

samples, if we are allowed to get i.i.d. samples from the distribution µ.

Such a statement seems to be folklore in the statistics community [Dvoretzky
et al., 1956]. Recently in an independent and nearly simultaneous work, Wag-
goner [Waggoner, 2015] obtained a sharp bound of 4

ε2 log( 1
δ ) for the sample

complexity in Corollary 2.

4.3 Maximin Voting Rule

We now turn our attention to the maximin voting rule. The idea is to sample
enough numer of votes such that we are able to estimate the weights of the edges
in the weighted majority graph with certain level of accuracy which in turn leads
us to predict winner.

Lemma 5. Suppose MOV ≥ εn and w be the winner of a maximin election.
Then, s(w) − s(x) ≥ εn, for every candidate x 6= w, where s(.) is the maximin
score.
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Proof. Let w be the winner and x be any arbitrary candidate other than w.
Suppose, for contradiction, s(w) − s(x) < εn. Suppose y be a candidate such
that N(w, y) = s(w). Now there exist at least εn− 1 votes as below.

c1 � · · · � w � · · · � y � · · · � cm−2

We replace εn− 1 of such votes by the votes as below.

c1 � · · · � y � · · · � cm−2 � w

This makes the maximin score of w less than the maximin score of x. This
contradicts the assumption that MOV ≥ εn. ut

Theorem 8. There is a (ε, δ)-winner determination algorithm for the maximin

voting rule with sample complexity O(
log mδ
ε2 ).

Proof. Let x and y be any two arbitrary candidates. We sample ` votes uniformly
at random from the set of votes with replacement. Let Xi be a random variable
defined as follows.

Xi =

{
1, if x � y in the ith sample

−1, else

Define D̂(x, y) = n
l

∑l
i=1Xi. We estimate D̂(x, y) within the closed ball of radius

εn/2 aroundD(x, y) for every candidates x, y ∈ C and the rest of the proof follows
from by an argument analogous to the proof of Theorem 5 using Lemma 5. ut

4.4 Copeland Voting Rule

Now, we move on to the Copelandα voting rule. The approach is similar to the
maximin voting rule. However, it turns out that we need to estimate the edge
weights of the weighted majority graph more accurately for the Copelandα voting
rule. Xia introduced the brilliant quantity called the relative margin of victory
(see Section 5.1 in [Xia, 2012]) which will be used crucially for showing sample
complexity upper bound for the Copelandα voting rule. Given an election, a
candidate x ∈ C, and an integer (may be negative also) t, s′t(V, x) is defined as
follows.

s′t(V, x) = |{y ∈ C : y 6= x,D(y, x) < 2t}|+ α|{y ∈ C : y 6= x,D(y, x) = 2t}|

For every two distinct candidates x and y, the relative margin of victory,
denoted by RM(x, y), between x and y is defined as the minimum integer t such
that, s′−t(V, x) ≤ s′t(V, y). Let w be the winner of the election E . We define a
quantity Γ (E) to be minx∈C\{w}{RM(w, x)}. Notice that, given an election E ,
Γ (E) can be computed in polynomial amount of time. Now we have the following
lemma.
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Lemma 6. Suppose MOV ≥ εn and w be the winner of a Copelandα election.
Then, RM(w, x) ≥ εn

2(dlogme+1) , for every candidate x 6= w.

Proof. Follows from Theorem 11 in [Xia, 2012].

Theorem 9. There is a (ε, δ)-winner determination algorithm for Copelandα

voting rule with sample complexity O(
log3 m

δ

ε2 ).

Proof. Let x and y be any two arbitrary candidates and w the Copelandα winner
of the election. We estimate D(x, y) within the closed ball of radius εn

5(dlogme+1)

around D(x, y) for every candidates x, y ∈ C in a way analogous to the proof of

Theorem 8. This needs O(
log3 m

δ

ε2 ) many samples. The rest of the proof follows
from Lemma 6 by an argument analogous to the proof of Theorem 4. ut

4.5 Bucklin Voting Rule

For the Bucklin voting rule, we will estimate how many times each candidate
occurs within the first k position for every k ∈ [m]. This eventually leads us to
predict the winner of the election due to the following lemma.

Lemma 7. Suppose MOV of a Bucklin election be at least εn. Let w be the
winner of the election and x be any arbitrary candidate other than w. Suppose

bw = min
i
{i : w is within top i places in at least

n

2
+
εn

3
votes}

bx = min
i
{i : x is within top i places in at least

n

2
− εn

3
votes}

Then, bw < bx.

Proof. We prove it by contradiction. So, assume bw ≥ bx. Now by changing
εn
3 votes, we can make the Bucklin score of w to be at least bw. By changing

another εn
3 votes, we can make the Bucklin score of x to be at most bx. Hence,

by changing 2εn
3 votes, it is possible not to make w the unique winner which

contradicts the fact that the MOV is at least εn. ut

Theorem 10. There is a (ε, δ)-winner determination algorithm for Bucklin vot-

ing rule with sample complexity O(
log mδ
ε2 ).

Proof. Let x be any arbitrary candidate and 1 ≤ k ≤ m. We sample l votes
uniformly at random from the set of votes with replacement. Let Xi be a random
variable defined as follows.

Xi =

{
1, if x is within top k places in ith sample

0, else

Let ŝk(x) be the estimate of the number of times the candidate x has been placed

within top k positions. That is, ŝk(x) = n
l

∑l
i=1Xi. Let sk(x) be the number
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of times the candidate x been placed in top k positions. Clearly, E[ŝk(x)] =
n
`

∑`
i=1E[Xi] = sk(x). We estimate ŝk(x) within the closed ball of radius εn/2

around sk(x) for every candidate x ∈ C and every integer k ∈ [m], and the rest
of the proof follows from by an argument analogous to the proof of Theorem 5
using Lemma 7. ut

4.6 Plurality with Runoff Voting Rule

Now, we move on to the plurality with runoff voting rule. In this case, we first
estimate the plurality score of each of the candidates. In the next round, we
estimate the pairwise margin of victory of the two candidates that qualifies to
the second round.

Lemma 8. Suppose MOV ≥ εn, and w and r be the winner and runner up of a
plurality with runoff election respectively, and x be any arbitrary candidate other
than and r. Then, following holds. Let s(.) denote plurality score of candidates.
Then following holds.

1. D(w, r) > 2εn.
2. For every candidate x ∈ C \ {w, r}, 2s(w) > s(x) + s(r) + εn.
3. If s(x) > s(r)− εn

2 , then D(w, x) > εn
2 .

Proof. If the first property does not hold, then by changing εn votes, we can
make r winner. If the second property does not hold, then by changing εn votes,
we can make both x and r qualify to the second round. If the third property does
not hold, then by changing εn

2 votes, the candidate x can be sent to the second
round of the runoff election. By changing another εn

2 votes, x can be made to
win the election. This contradicts the MOV assumption. ut

Theorem 11. There is a (ε, δ)-winner determination algorithm for the plurality

with runoff voting rule with sample complexity O(
log 1

δ

ε2 ).

Proof. Let x be any arbitrary candidate. We sample l votes uniformly at random
from the set of votes with replacement. Let, Xi be a random variable defined as
follows.

Xi =

{
1, if x is at first position in the ith sample

0, else

The estimate of the plurality score of x be ŝ(x). Then ŝ(x) = n
l

∑l
i=1Xi. Let

s(x) be the actual plurality score of x. Then we have following,

E[Xi] =
s(x)

n
,E[ŝ(x)] =

n

l

l∑
i=1

E[Xi] = s(x)

By Chernoff bound, we have the following,

Pr[|ŝ(x)− s(x)| > εn] ≤ 2

exp{ε2ln/3s(x)}

18



4. RESULTS ON UPPER BOUNDS

By union bound, we have the following,

Pr[∃x ∈ C, |ŝ(x)− s(x)| > εn] ≤
∑
x∈C

2

exp{ε2ln/3s(x)}

≤ 2

exp{ε2l/3}

The last line follows from Lemma 4. Notice that, we do not need the random
variables ŝ(x) and ŝ(y) to be independent for any two candidates x and y. Hence,
we can use the same l sample votes to estimate ŝ(x) for every candidate x.

Now, let y and z be the two candidates that go to the second round.

Yi =

{
1, if y � z in the ith sample

−1, else

The estimate of D(y, z) be D̂(y, z). Then D̂(y, z) = n
l

∑l
i=1 Yi. Then we have

following,

E[Yi] =
D(y, z)

n
,E[D̂(y, z)] =

n

l

l∑
i=1

E[Yi] = D(y, z)

By Chernoff bound, we have the following,

Pr[|D̂(y, z)−D(y, z)| > εn] ≤ 2

exp{ε2l/3}

Let A be the event that ∀x ∈ C, |ŝ(x)− s(x)| ≤ εn and |D̂(y, z)−D(y, z)| ≤ εn.
Now we have,

Pr[A] ≥ 1− (
2

exp{ε2l/3}
+

2

exp{ε2l/3}
)

Since we do not need independence among the random variables ŝ(a), ŝ(b),
D̂(w, x), D̂(y, z) for any candidates a, b, w, x, y, and z, we can use the same
l sampled votes. Now, from Lemma 8, if |ŝ(x)−s(x)| ≤ εn

5 for every candidate x

and |D̂(y, z)−D(y, z)| ≤ εn
5 for every candidates y and z, then the plurality with

runoff winner of the sampled votes coincides with the actual runoff winner. The
above event happens with probability at least 1− δ by choosing an appropriate

l = O(
log 1

δ

ε2 ). ut

4.7 STV Voting Rule

Now we move on the STV voting rule. The following lemma provides an upper
bound on the number of votes that need to be changed to make some arbitrary
candidate win the election. More specifically, given a sequence of m candidates
{xi}mi=1 with xm not being the winner, the lemma below proves an upper bound
on the number of number of votes that need to be modified such that the can-
didate xi gets eliminated at the ith round in the STV voting rule.
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Lemma 9. Suppose V be a set of votes and w be the winner of a STV election.
Consider the following chain with candidates x1 6= x2 6= . . . 6= xm and xm 6= w.

C ⊃ C \ {x1} ⊃ C \ {x1, x2} ⊃ . . . ⊃ {xm}

Let sV(A, x) be the plurality score of a candidate x when all the votes in V are
restricted to the set of candidates A ⊂ C. Let us define C−i = C \ {x1, . . . , xi}
and s∗V(A) := minx∈A{sV(A, x)}. Then, we have the following.

m−1∑
i=0

(sV (C−i, xi+1)− s∗V (C−i)) ≥ MOV

Proof. We will show that by changing
∑m−1
i=0 (sV (C−i, xi+1)− s∗V (C−i)) votes,

we can make the candidate xm winner. If x1 minimizes sV(C, x) over x ∈ C,
then we do not change anything and define V1 = V. Otherwise, there exist
sV(C, x1)− s∗V(C) many votes of following type.

x1 � a1 � a2 � . . . � am−1, ai ∈ C,∀1 ≤ i ≤ m− 1

We replace sV(C, x1) − s∗V(C) many votes of the above type by the votes as
follows.

a1 � x1 � a2 � . . . � am−1

Let us call the new set of votes by V1. We claim that, sV(C\x1, x) = sV1(C\x1, x)
for every candidate x ∈ C \ {x1}. Fix any arbitrary candidate x ∈ C \ {x1}. The
votes in V1 that are same as in V contributes same quantity to both side of the
equality. Let v be a vote that has been changed as described above. If x = a1
then, the vote v contributes one to both sides of the equality. If x 6= a1, then
the vote contributes zero to both sides of the equality. Hence, we have the claim.
We repeat this process for (m − 1) times. Let Vi be the set of votes after the
candidate xi gets eliminated. Now, in the above argument, by replacing V by
Vi−1, V1 by Vi, the candidate set C by C \ {x1, . . . , xi−1}, and the candidate x1
by the candidate xi, we have the following.

sVi−1
(C−i, x) = sVi(C−i, x)∀x ∈ C \ {x1, . . . , xi}

Hence, we have the following.

sV(C−i, x) = sVi(C−i, x)∀x ∈ C \ {x1, . . . , xi}

In the above process, the total number of votes that are changed is∑m−1
i=0 (sV (C−i, xi+1)− s∗V (C−i)). ut

Theorem 12. There is a (ε, δ)-winner determination algorithm for the STV

voting rule with sample complexity O(
m2(m+log 1

δ )

ε2 ).
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Proof. We sample l votes uniformly at random from the set of votes with re-
placement and output the STV winner of those l votes say w′ as the winner of
the election. Let, w be the winner of the election. We will show that there exist

l = O(
m2(m+log 1

δ )

ε2 ) for which w = w′ with probability at least 1 − δ. Let A be
an arbitrary subset of candidates and x be any candidate in A. Let us define a
random variables Xi, 1 ≤ i ≤ l as follows.

Xi =

{
1, if x is at top ith sample when restricted to A

0, else

Define another random variable ŝV(A, x) :=
∑l
i=1Xi. Then we have,

E[ŝV(A, x)] = sV(A, x). Now, using Chernoff bound, we have the following,

Pr[|ŝV(A, x)− sV(A, x)| > εn

m
] ≤ 2

exp{ ε2l3m2 }

Let E be the event that ∃A ⊂ C and ∃x ∈ A, |ŝV(A, x) − sV(A, x)| > εn
m . By

union bound, we have,

Pr[Ē] ≥ 1− m2m+1

exp{ ε2l3m2 }

The rest of the proof follows by an argument analogous to the proof of Theorem 4
using Lemma 9. ut

5 Conclusion

In this work, we introduced the (ε, δ)-winner determination problem and showed
(often tight) bounds for the sample complexity for many common voting rules.
Besides closing the remaining gaps in the bounds, here are a few open directions
to pursue in the future:

– Is there an axiomatic characterization of the voting rules for which the sam-
ple complexity is independent of m and n? We note that a similar problem
in graph property testing was the subject of intense study [Alon et al., 2006,
Borgs et al., 2006].

– Specifically for scoring rules, is the sample complexity determined by some
natural property of the score vector, such as its sparsity?

– Is it worthwhile for the algorithm to elicit only part of the vote from each
sampled voter instead of the full vote? As mentioned in the Introduction,
vote elicitation is a well-trodden area, but as far as we know, it has not been
studied how assuming a margin of victory can change the number of queries.

– How can knowledge of a social network on the voters be used to minimize
the number of samples made? Some initial progress in this direction has
been made by Dhamal and Narahari [Dhamal and Narahari, 2013] and by
Agrawal and Devanur (private communication).
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