
Local Correlation Breakers and Applications to
Three-Source Extractors and Mergers

Gil Cohen∗

March 11, 2015

Abstract

We introduce and construct a pseudorandom object which we call a local correlation
breaker (LCB). Informally speaking, an LCB is a function that gets as input a sequence
of r (arbitrarily correlated) random variables and an independent weak-source. The
output of the LCB is a sequence of r random variables with the following property.
If the ith input random variable is uniform then the ith output variable is uniform
even given a bounded number of any other output variables. That is, an LCB uses
the weak-source to “break” local correlations between random variables. Using our
construction of LCBs, we obtain the following results:

• We construct a three-source extractor where one of the sources is only assumed
to have a double-logarithmic entropy. More precisely, for any integer n and con-
stant δ > 0, we construct a three-source extractor for entropies δn, O(log n) and
O(log log n). As the third source is required to have tantalizingly low entropy,
we hope that further ideas can be used to eliminate the need for this source
altogether.

• We construct a merger with weak-seeds that merges r random variables using an
independent (n, k)-weak-source with k = Õ(r) · log log n. A previous construction
by Barak et al. [Ann. Math’12] assumes k ≥ Ω(r2) + polylog(n).

∗Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot,
Israel. Email: gil.cohen@weizmann.ac.il. Partially supported by an ISF grant and by the I-CORE
program of the planning and budgeting committee. Part of this work was done while the author was visiting
Microsoft Research Silicon Valley.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 38 (2015)

Contents

1 Introduction 1
1.1 Three-source extractors with a double-logarithmic entropy source 2
1.2 Mergers with weak-seeds . 3
1.3 Organization of this paper . 5

2 Preliminaries 5

3 (L,R)-Histories 8

4 Two-Steps Look-Ahead Extractors 11

5 A Warm Up – Merging Three Rows 12
5.1 Merging r rows – an overview . 19

6 Local Correlation Breakers 21
6.1 A comparison with [Li13] . 33

7 Mergers with Weak-Seeds 35

8 Three-Source Extractors with a Double-Logarithmic Entropy Source 38

A Proof of Lemma 4.1 43

1 Introduction

A central theme in pseudorandomness concerns the design of efficient algorithms that trans-
form one or more sources of randomness to a source with a desired property. Extractors,
dispersers, mergers and condensers are examples of this theme, and have received a signif-
icant attention in the literature. In this work we introduce and construct a pseudorandom
primitive that we call a local correlation breaker (LCB for short), and present applications
of LCBs to the construction of three-source extractors and for mergers with weak-seeds.

Informally speaking, an LCB is a deterministic algorithm that gets as input a sequence
of r (arbitrarily correlated) random variables, and an independent weak-source. The output
of the LCB is a sequence of r random variables with the following property: If the ith input
random variable is uniform then the ith output variable is uniform even given some bounded
number of any other output variables. That is, an LCB uses the weak-source to “break”
local correlations between random variables. For the formal definition of LCBs we make
use of standard definitions from the literature such as min-entropy, statistical distance, and
(n, k)-weak-sources (see the Preliminaries).

Definition 1.1 (Local correlation breakers). A t-local correlation breaker (t-LCB) for min-
entropy k, with error ε, is a function

LCB :
(
{0, 1}`

)r × {0, 1}n → ({0, 1}m)r ,

with the following property. Let X = (X1, . . . , Xr) be a sequence of random variables,
each supported on {0, 1}`. Let Y be an independent (n, k)-weak-source. Denote the out-
put LCB(X, Y) by Z1, . . . , Zr, where each Zi is supported on {0, 1}m. Let g ∈ [r] be such that
Xg is uniform. Let I ⊆ [r] \ {g} be any set of size t− 1. Then,(

Zg, {Zi}i∈I
)
≈ε
(
Um, {Zi}i∈I

)
.

A pseudorandom object related to LCBs appears (implicitly) in the analysis of Li’s multi-
source extractor [Li13]. The difference between LCBs and Li’s pseudorandom object is that
the latter only guarantees that an output variable Zg that corresponds to a uniform input
variable Xg is statistically-close to uniform given output variables that correspond to t − 1
other uniform input variables. In other words, in Li’s pseudorandom object, the set I
in Definition 1.1 is assumed to contain indices only of uniform input variables. For the
applications we consider, it is crucial that Zg is close to uniform even given output variables
{Zi} that correspond to possibly non-uniform input variables.

Our first result is an explicit construction of LCBs. Our proof builds on the work of [Li13],
together with some new ideas required so to guarantee the stronger property. In Section 6.1
we give a high-level comparison between the ideas used in [Li13] and those used in our
construction of LCBs. In terms of parameters, Theorem 1.2 gives LCBs with somewhat
better parameters compared to Li’s pseudorandom object. For simplicity, the theorem below
is stated for a constant error.

1

Theorem 1.2 (Explicit LCBs; informal statement). For all integers n, r, t, there exists an
explicit t-local correlation breaker LCB :

(
{0, 1}`

)r × {0, 1}n → ({0, 1}m)r with

` = O
(
t2 · log (nr) · log r

)
,

m = Ω (`/(t · log r)) ,

for entropy
k = O (t · log(r) · log (r log n)) .

Note that the dependence of the entropy k in n is double-logarithmic. For a complete
and formal statement of Theorem 1.2, see Section 6. We turn to present our applications of
LCBs.

1.1 Three-source extractors with a double-logarithmic entropy
source

Chor and Goldreich [CG88] introduced the notion of two-source extractors. Informally speak-
ing, a function f : {0, 1}n × {0, 1}n → {0, 1}m is called a two-source extractor if for any two
independent sources X, Y over {0, 1}n, with sufficient min-entropy, it holds that f(X, Y) is
statistically-close to uniform. By a standard probabilistic argument, one can prove the exis-
tence of a two-source extractor for any entropies k1, k2 such that min(k1, k2) > log n+O(1).

Chor and Goldreich [CG88] gave an explicit construction of a two-source extractor for
any entropies k1, k2 such that k1 + k2 > (1 + δ) · n, where δ > 0 is an arbitrarily small
constant. In particular, one can take k1 = k2 > (1/2 + δ) · n, for any constant δ > 0.
This construction is far from optimal (ignoring the computational aspect). Nevertheless,
it took almost 20 years before any improvement was made. Raz [Raz05] gave an explicit
construction of a two-source extractor for sources with entropies k1, k2, with k1 = O(log n)
and k2 > (1/2 + δ) · n, where δ > 0 is an arbitrarily small constant. An incomparable result
was obtained by Bourgain [Bou05] who constructed a two-source extractor for entropies
k1 = k2 > (1/2− α) · n, where α > 0 is some (small) universal constant.

Given the difficulty of explicitly constructing two-source extractors for low entropy, a
significant research effort was directed towards the construction of t-source extractors for
t > 2. The next natural goal is constructing three-source extractors. A simple proba-
bilistic argument can be used to prove the existence of an extractor for three independent
(n, log(n)/2 + O(1))-weak-sources. Barak et al. [BKS+05] gave an explicit construction of
a three-source extractor, where the entropy of each of the sources is δn, for any constant
δ > 0. This was improved by Raz [Raz05], who requires only one of the sources to have
entropy δn, while the other two sources can have entropy O(log n). Here, again, δ > 0 is an
arbitrarily small constant. Raz’s extractor supports a constant error, and in a subsequent
work, Rao [Rao09] showed how to support exponentially small error, assuming the second
and third sources have entropy O(log4 n). Furthermore, Rao [Rao09] constructed a three-
source extractor, where the entropy of each of the sources is n0.9. This was later improved
by Li [Li11] to n1/2+δ, where δ > 0 is an arbitrarily small constant.

2

In a recent breakthrough, Li [Li15] constructed a three-source extractor for poly-logarithmic
entropy. This exciting result sets the next natural goal in multi-source extractors on im-
proving the constructions of two-source extractors by Raz [Raz05] and Bourgain [Bou05].
Towards this goal, as an application of LCBs, we construct a three-source extractor where
one of the sources is only assumed to have double-logarithmic entropy. This can also be seen
as an improvement over Raz’s three-source extractor [Raz05] that assumes the third source
has entropy Ω(log n).

Theorem 1.3 (Explicit three-source extractors; informal statement). For any integer n and
δ > 0, there exists an explicit three-source extractor 3Ext : ({0, 1}n)3 → {0, 1}m for entropies

k1 = δn,

k2 = poly(1/δ) · log n,

k3 = poly(1/δ) · log log n,

with m = poly(1/δ) · log n output bits.

A formal statement of Theorem 1.3 and its proof appear in Section 8. Although during
the introduction we omit the error of the extractors, in order to compare our extractor with
Rao’s extractor [Rao09], we mention here that the error of the three-source extractor in
Theorem 1.3 is exponentially small.

As the third source fed to our three-source extractor is required to have a tantalizingly
small entropy, we hope that further ideas can be used to eliminate the need for this third
source altogether.

Improved three-source extractors for poly-logarithmic entropy As mentioned,
Li [Li15] constructed a three-source extractor for poly-logarithmic entropy. More precisely,
the entropy required by Li’s construction is O(log12 n). For his construction, Li uses a pseu-
dorandom object that is related to LCBs, introduced in [Li13], as well as the merger with
weak-seeds of [BRSW12]. As our construction of LCBs has better parameters than Li’s re-
lated pseudorandom object (see Section 6.1) and since our merger with weak-seeds improves
that of [BRSW12], by using our results as building blocks in Li’s three-source extractor, one
can obtain a three-source extractor for a somewhat lower entropy O(logc n), where c < 12 is
some constant. We made no attempt at pinpointing the value of the constant c.

1.2 Mergers with weak-seeds

Motivated by the construction of seeded extractors, Ta-Shma [TS96] introduced the notion
of a merger. Informally speaking, a merger is a function that gets as input a sequence of
(arbitrarily correlated) random variables, at least one of which is uniform. The goal of a
merger is to “merge” the random variables into a single random variable that is statistically-
close to uniform. 1 It is not hard to show that randomness is a necessity for merging.

1Variants of mergers (which are also called mergers in the literature) assume that one of the random
variables is not necessarily uniform, yet has high entropy-rate.

3

Constructing mergers with short seeds (namely, short strings that are uniform and inde-
pendent of the random variables we wish to merge) has been studied in several works [TS96,
LRVW03, Raz05, DS07, Zuc07, DR08, DW11, DKSS09]. The state of the art construction
of Dvir and Wigderson [DW11] merges r random variables, supported on {0, 1}`, using a
seed of length O(log(r`)). An incomparable result was obtained by Dvir, Kopparty, Saraf
and Sudan [DKSS09], who use a seed of length O(log(r)/δ) to output a string that has
entropy-rate 1 − δ. As a building block for their two-source disperser, Barak, Rao, Shaltiel
and Wigderson [BRSW12] constructed, what we call, mergers with weak-seeds. 2

Definition 1.4 (Mergers with weak-seeds). A merger with weak-seeds for entropy k, with
error ε, is a function

Merg :
(
{0, 1}`

)r × {0, 1}n → {0, 1}m,
with the following property. Let X = (X1, . . . , Xr) be a sequence of random variables, sup-
ported on {0, 1}`, such that at least one of them is uniform. Let Y be an independent
(n, k)-weak-source. Then, Merg(X, Y) ≈ε Um.

In [BRSW12], a construction of a merger with weak-seeds is given, assuming k = ` >
Ω(r2) + polylog(n). 3 A probabilistic argument can be used to show that there exists a
merger with weak-seeds for parameters

` = log n+O(1),

k = log r + log log n+O(1).

In particular, the entropy k is only required to be double-logarithmic in n.
We note that constructing mergers with weak-seeds given an LCB is trivial. Indeed, one

can apply an r-LCB to X1, . . . , Xr and Y so to obtain random variables Z1, . . . , Zr. The
output of the merger is simply the XOR of all Zi’s. To see that this reduction works, note
that if Xg is uniform then, by the guarantee of the LCB, Zg is statistically-close to uniform
even given all other Zi’s. Therefore, the XOR of all Zi’s is statistically-close to uniform.
We use Theorem 1.2 with this simple idea (together with a bit more work so to improve the
output length) and obtain the following result.

Theorem 1.5 (Explicit mergers with weak-seeds; informal statement). For all integers n, r,
there exists an explicit merger with weak-seeds Merg :

(
{0, 1}`

)r × {0, 1}n → {0, 1}m, with

` = O
(
r2 · log(r) · log(nr)

)
,

k = O (r · log(r) · log(r · log n)) ,

m = Ω(`/r).

A formal statement of Theorem 1.5 and its proof appear in Section 7. In Section 5
we give a warm up for the proof of Theorem 1.5, and show how to merge r = 3 rows of

2In [BRSW12] this object is called an extractor for a general source and a somewhere-random source.
3In fact, the construction of [BRSW12] works even assuming one of the Xi’s has entropy-rate 1− o(1).

4

length ` = O(log n) using an independent weak-source with entropy k = O(log log n) (see
Theorem 5.1). This “toy-example” also demonstrates most of the ideas used in the proof of
Theorem 1.2.

The merger of Barak et al. [BRSW12] and ours are incomparable. On one hand, the
merger of [BRSW12] works even if one of the rows has min-entropy rate 1 − o(1). On the
other hand, Theorem 1.5 has a quadratically improved dependence of k in r, and more impor-
tantly, an exponentially improved dependence of k in n, which matches the probabilistic con-
struction. This feature allows us to obtain a three-source extractor with double-logarithmic
entropy source. Moreover, we believe our construction and analysis are somewhat simpler
and more intuitive than the construction of [BRSW12] which uses a completely different set
of ideas.

1.3 Organization of this paper

The paper is organized as follows. In Section 2 we give formal definitions and state some of
the results from previous works that we use. In Section 3 we prove some technical lemmata
on probabilistic processes that appear again and again throughout the paper. In Section 4
we present a restricted version of look-ahead extractors.

Before constructing LCBs and mergers with weak-seeds in their full generality, we start
with a warm up – in Section 5 we give a construction of a merger with weak-seeds for only
three random variables. Section 5 is meant only for building up intuition and presenting
the underling ideas behind the constructions of our mergers with weak-seeds and LCBs,
without getting into all the details. The reader may freely skip this section at any point
as we make no use of the results that appear in this section. In Section 6 we present
the construction of LCBs (Theorem 1.2). In Section 7, we present our construction of
mergers with weak-seeds (Theorem 1.5). In Section 8 we give our construction of three-
source extractors (Theorem 1.3).

2 Preliminaries

The logarithm in this paper is always taken base 2. For every natural number n ≥ 1, define
[n] = {1, 2, . . . , n}. For a string x ∈ {0, 1}n and an integer 1 ≤ s ≤ n, we write x|s for the
length s prefix of x. For an r × ` matrix x and 1 ≤ s ≤ `, we let x|s denote the matrix
composed of the s leftmost columns of x. For i ∈ [r], we denote by xi the ith row of x.
Throughout the paper we almost always avoid the use of floor and ceiling in order not to
make the equations cumbersome.

Random variables and distributions. We sometimes abuse notation and syntactically
treat random variables and their distribution as equal, specifically, we denote by Um a random
variable that is uniformly distributed over {0, 1}m. Furthermore, if Um appears in a joint
distribution (Um, X) then Um is independent of X. When m is clear from context, we omit
it from the subscript and write U .

5

Let X, Y be two random variables. We say that Y is a deterministic function of X if the
value of X determines the value of Y . Namely, there exists a function f such that Y = f(X).
Let X, Y, Z1, . . . , Zr be random variables. We introduce the following shorthand notation
and write (X,Z1, . . . , Zr) ≈ε (Y, ·) for (X,Z1, . . . , Zr) ≈ε (Y, Z1, . . . , Zr).

Statistical distance. The statistical distance between two distributions X, Y on the same
domain D is defined by

SD (X, Y) = max
A⊆D
{|Pr[X ∈ A]−Pr[Y ∈ A] |} .

If SD(X, Y) ≤ ε we write X ≈ε Y and say that X is ε-close to Y .

Min-entropy. The min-entropy of a random variable X is defined by

H∞(X) = min
x∈supp(X)

log2

(
1

Pr[X = x]

)
.

If X is supported on {0, 1}n, we define the min-entropy rate of X by H∞(X)/n. In such
case, if X has min-entropy k or more, we say that X is an (n, k)-weak-source.

Somewhere-random sources. A random variable X that has the form of an r × ` ma-
trix is called a somewhere-random source if there exists g ∈ [r] such that Xg is uniformly
distributed over {0, 1}`. In this case we say that Xg is a good row of X. We think of a
somewhere-random source as a sequence of (arbitrarily correlated) random variables given
by its rows X1, . . . , Xr.

Extractors and condensers

Definition 2.1 (Seeded extractors). A function Ext : {0, 1}n × {0, 1}d → {0, 1}m is called
a seeded extractor for entropy k, with error ε, if for any (n, k)-weak-source X it holds that
Ext(X,S) ≈ε Um, where S is uniformly distributed over {0, 1}d and is independent of X. We
say that Ext is a strong seeded-extractor if (Ext(X,S), S) ≈ε (Um, Ud), where X and S are
as above.

Throughout the paper we make an extensive (black-box) use of the following strong
seeded-extractor by Guruswami, Umans and Vadhan [GUV09].

Theorem 2.2 ([GUV09]). For all positive integers n, k and ε > 0, there exists an efficiently-
computable strong seeded-extractor Ext : {0, 1}n×{0, 1}d → {0, 1}m for entropy k, with error
ε, seed length d = log n+O(log(k/ε)), and m = 0.99 · k output bits.

Definition 2.3 (Multi-source extractors). A function Ext : ({0, 1}n)t → {0, 1}m is called a
t-source extractor for entropies k1, . . . , kt, with error ε, if for any t independent n-bit weak-
sources X1, . . . , Xt, where H∞(Xi) ≥ ki, it holds that Ext(X1, . . . , Xt) ≈ε Um. For a subset
I ⊆ [t], we say that Ext is strong in I if (Ext(X1, . . . , Xt), {Xi}i∈I) ≈ε (Um, ·).

6

Basic lemmata in probability

Throughout the paper we make a frequent use of the following simple and well-known lem-
mata.

Lemma 2.4. Let X, Y be two independent random variables on a common domain D. Let f
be a function with domain D. Then, SD (f(X), f(Y)) ≤ SD (X, Y) . Moreover, the inequality
above holds also for f which is a random function, where the internal randomness of f is
independent of (X, Y).

Lemma 2.5. For all random variables X, Y, Z, it holds that

SD ((X, Y) , (Z, Y)) = E
y∼Y

[SD ((X | Y = y), (Z | Y = y))] .

Lemma 2.6. Let X, Y, Z be random variables such that X is independent of Y and Z is
independent of Y . Then, SD ((X, Y) , (Z, Y)) = SD (X,Z) . In particular, if X is supported
on {0, 1}a then SD ((X, Y) , (Ua, Y)) = SD (X,Ua) .

Lemma 2.7. Let X, Y, Z be random variables such that for any y ∈ supp(Y), the random
variables (X | Y = y) and (Z | Y = y) are independent. Assume that X is supported on
{0, 1}a. Then,

SD ((X, Y, Z) , (Ua, Y, Z)) = SD ((X, Y) , (Ua, Y)) .

Lemma 2.8. Let X,Z be random variables on a common domain. Let Y be some random
variable. Then, SD (X,Z) ≤ SD ((X, Y) , (Z, Y)) .

Lemma 2.9. Let X, Y be two random variables on a common domain D. Let f : D → R be
a function with non-negative range, that is, f(z) ≥ 0 for all z ∈ D. Then,∣∣∣∣ E

x∼X
[f(x)]− E

y∼Y
[f(y)]

∣∣∣∣ ≤ max
z∈D
|f(z)| · SD(X, Y).

Lemma 2.10 ([Li12], Lemma 3.20). Let (X, Y) be a joint distribution. Let Z be a random
variable with the same range as X. Then, there exists a joint distribution (Z, Y) such that
SD ((X, Y) , (Z, Y)) = SD(X,Z).

Average conditional min-entropy

Definition 2.11. Let X,W be two random variables. The average conditional min-entropy
of X given W is defined as

H̃∞(X | W) = − log2

(
E

w∼W

[
max
x

Pr [X = x | W = w]
])

= − log2

(
E

w∼W

[
2−H∞(X|W=w)

])
.

7

Lemma 2.12 ([DORS08]). Let X, Y, Z be random variables such that Y has support size at
most 2`. Then,

H̃∞(X | (Y, Z)) ≥ H̃∞((X, Y) | Z)− ` ≥ H̃∞(X | Z)− `.

In particular, H̃∞(X | Y) ≥ H∞(X)− `.

Lemma 2.13 ([DORS08]). For any two random variables X, Y and any ε > 0, it holds that

Pr
y∼Y

[
H∞(X | Y = y) < H̃∞(X | Y)− log(1/ε)

]
≤ ε.

We also need the following simple lemma.

Lemma 2.14. Let X, Y, Z be random variables such that for any y ∈ supp(Y) it holds that

(X | Y = y) and (Z | Y = y) are independent. Then, H̃∞(X | (Y, Z)) = H̃∞(X | Y). In

particular, if X and Z are independent then H̃∞(X | Z) = H∞(X).

3 (L,R)-Histories

In this section we introduce the notion of an (L,R)-history and some technical lemmata
concerning it that we use repeatedly throughout the paper.

Definition 3.1 ((L,R)-histories). Let L,R be two independent random variables. A sequence
of random variables H = (Ht, Ht−1, . . . , H1) is called an (L,R)-history if for any i ∈ [t], Hi is
either a deterministic function of Hi−1, . . . , H1, L or otherwise Hi is a deterministic function
of Hi−1, . . . , H1, R.

Some remarks and notations:

• Throughout the paper we assume that each Hi is supported on bit strings of some
common length, which we can then denote by |Hi|.

• We note that if Hi+1, Hi are two consecutive random variables in some (L,R)-history,
such that Hi is a deterministic function of Hi−1, . . . , H1, L (resp. Hi−1, . . . , H1, R) and
Hi+1 is a deterministic function of Hi, . . . , H1, L (resp. Hi−1, . . . , H1, R), then one can
replace Hi+1, Hi by a single random variable which is their joint distribution. This
yields a new (L,R)-history. We allow ourselves to apply this operation freely during
the proofs.

• Given two (L,R)-histories H = (Ht, . . . , H1) and H′ = (H ′t′ , . . . , H
′
1), one can consider

the (L,R)-history which is the concatenation of H,H′, namely, H ′t′ , . . . , H
′
1, Ht, . . . , H1.

When we do not want to refer to the random variables in H but do want to refer to the
random variables in H′ (which is quite frequent), we write this concatenated (L,R)-
history as (H ′t′ , . . . , H

′
1,H).

8

The following lemma states that conditioned on any fixing of an (L,R)-history, the ran-
dom variables L,R remain independent. We omit the proof, which is done by a straightfor-
ward induction.

Lemma 3.2. Let L,R be two independent random variables, and let H be an (L,R)-history.
Then, for any h ∈ supp(H), the random variables (L | H = h) and (R | H = h) are indepen-
dent.

In the rest of this section we state and prove two technical lemmata for (L,R)-histories.
Before giving the formal statement of the first lemma, we present the lemma in an informal
manner so to give some intuition about what the lemma aims to abstract. A common scenario
in our proofs is the following. Let L,R be two independent random variables. We think of
L,R as two independent sources of randomness from which we extract randomness again and
again and preform various computations on the sequence. We denote by H = (Ht, . . . , H1)
the (L,R)-history that captures the random variables obtained from L,R so far. Typically
we will know that some random variable P is statistically-close to uniform even given H,
namely, (P,H) ≈ (U,H). Furthermore, P is either a deterministic function of L,H or
otherwise P is a deterministic function of R,H. Assume, without loss of generality, that
P is a deterministic function of L,H. Let Ext be a strong seeded extractor. The following
lemma states that if M is a deterministic function of R,H and H̃∞(M | H) is sufficiently
high, then (Ext(M,P), P,H) ≈ (U, P,H).

The proof of this technical lemma is fairly simple. Nevertheless, we apply the lemma
frequently and believe that our proofs are cleaner and conceptually simpler by identifying
the operation that is described and analyzed by the lemma as an atomic operation.

Lemma 3.3. Let L,R be two independent random variables, and let H be an (L,R)-history.
Let P be a random variable over {0, 1}p which is a deterministic function of L,H. 4 Assume
that

(P,H) ≈δ (Up,H) . (3.1)

Let M be a random variable over {0, 1}m which is a deterministic function of R,H, such
that

H̃∞ (M | H) ≥ k + log(1/ε). (3.2)

Let Ext : {0, 1}m × {0, 1}p → {0, 1}f be a strong seeded extractor for entropy k with error ε.
Define F = Ext (M,P). Then, P,H is an (L,R)-history, and

(F, P,H) ≈δ+2ε (Uf , P,H) .

Proof. Let h ∈ supp(H). For the sake of readability, for a random variable T , we denote the
random variable (T | H = h) by Th. Let δh = SD (Ph, Up). By Lemma 2.5 and Equation (3.1),

E
h∼H

[δh] = E
h∼H

[SD (Ph, Up)] = SD ((P,H) , (Up,H)) ≤ δ.

4Note that any (L,R)-history is also an (R,L)-history, and so an analog statement of the lemma in which
P is a deterministic function of R,H readily follows.

9

Note that the random variables Mh, Ph are independent. Indeed, Lemma 3.2 implies that
the random variables Lh, Rh are independent, and M is a deterministic function of R,H
whereas P is a deterministic function of L,H. Therefore, by Lemma 2.5,

SD ((Fh, Ph) , (Uf , Ph)) = E
s∼Ph

[SD (Fh | Ph = s, Uf)] = E
s∼Ph

[SD (Ext (Mh, s) , Uf)] . (3.3)

Since SD (Ph, Up) = δh and since the range of the function g(s) = SD (Ext (Mh, s) , Uf) is
contained in the interval [0, 1], Lemma 2.9 implies that

E
s∼Ph

[SD (Ext (Mh, s) , Uf)] ≤ E
s∼Up

[SD (Ext (Mh, s) , Uf)] + δh. (3.4)

Equation (3.3) and Equation (3.4) imply that

SD ((Fh, Ph) , (Uf , Ph)) ≤ E
s∼Up

[SD (Ext (Mh, s) , Uf)] + δh.

As we assume that H̃∞ (M | H) ≥ k + log(1/ε), Lemma 2.13 implies that

Pr
h∼H

[H∞ (Mh) ≥ k] ≥ 1− ε.

We say that h is good if H∞(Mh) ≥ k. Since Ext is a strong seeded extractor for entropy k
with error ε, for any good h it holds that

SD ((Fh, Ph) , (Uf , Ph)) ≤ ε+ δh.

By Lemma 2.5,

SD ((F, P,H) , (Uf , P,H)) = E
h∼H

[SD ((Fh, Ph) , (Uf , Ph))] .

The right hand side is bounded above by

E
h∼H

[
SD ((Fh, Ph) , (Uf , Ph))

∣∣ h is good
]
· Pr
h∼H

[h is good] + Pr
h∼H

[h is not good] ≤ δ + 2ε,

as stated. The fact that P,H is an (L,R)-history readily follows since H is an (L,R)-history
and P is a deterministic function of L,H.

The following lemma is also used frequently in our proofs.

Lemma 3.4. Let L,R be two independent random variables, and let H be an (L,R)-history.
Let P be a random variable that is a deterministic function of R,H. Let J be a random
variable that is a deterministic function of L,H. Then,

SD ((P, J,H) , (U, J,H)) = SD ((P,H) , (U,H)) .

Moreover, J,H is an (L,R)-history.

10

Proof. The fact that J,H is an (L,R)-history readily follows since H is an (L,R)-history
and J is a deterministic function of L,H. Now, by Lemma 2.5,

SD ((P, J,H) , (U, J,H)) = E
h∼H

[SD (((P, J) | H = h) , (U, J | H = h))] .

For any h ∈ supp(H), the random variable (P | H = h) is a deterministic function of R
whereas (J | H = h) is a deterministic function of L. Since (L | H = h), (R | H = h) are
independent, as guaranteed by Lemma 3.2, we have that (P | H = h) and (J | H = h) are
independent. Thus, Lemma 2.6 implies that

SD ((P, J,H) , (U, J,H)) = E
h∼H

[SD (P | (H = h) , U)] ,

which concludes the proof, as by Lemma 2.5, the right hand side of the above equation equals
to SD ((P,H) , (U,H)).

4 Two-Steps Look-Ahead Extractors

In this section we present a restricted version of look-ahead extractors. Building on the idea of
alternating extraction [DP07], Dodis and Wichs [DW09] introduced the notion of look-ahead
extractors. Look-ahead extractors were further used by Li [Li13, Li15] for his multi-source
extractors. In these cases, the look-ahead extractors were applied for some non-constant
number of “steps” or “rounds”. We construct our LCBs using look-ahead extractors with
only two steps. This in turn allows us to present relatively simple constructions of LCBs,
which are also easier to analyze. Since we need only this very restricted version, and since
we use it in the analysis of our constructions in a white-box manner, we give in this section
the construction for two-steps look-ahead extractors.

Let n, a, h be integers and let ε > 0 be such that a = Ω(log(h/ε)) and h = Ω(log(n/ε)).
Set s = Θ(log(n/ε)), where some appropriately chosen large enough universal constant is
hidden under the Θ notation. Let Ext1 : {0, 1}n × {0, 1}s → {0, 1}a and Ext2 : {0, 1}h ×
{0, 1}a → {0, 1}s be strong seeded extractors from Theorem 2.2, both with error ε. Note
that the choice of s and the assumption on a guarantee that the seed lengths of Ext1 and
Ext2 are sufficient. Moreover, by Theorem 2.2, Ext1 is an extractor for entropy 2a and Ext2
is an extractor for entropy 2s. Define the function

LookAheadExt : {0, 1}h × {0, 1}n → {0, 1}a × {0, 1}a

as follows. Given W ∈ {0, 1}h and Y ∈ {0, 1}n, let

A = Ext1(Y,W |s),
Z = Ext2(W,A),

B = Ext1(Y, Z).

Define
LookAheadExt(W,Y) = (A,B).

With notations as above, we have the following lemma.

11

Lemma 4.1. Let r be an integer. Let X, Y be two independent random variables, and let H
be an (X, Y)-history such that

H̃∞ (Y | H) ≥ (r + 2)a+ log(1/ε). (4.1)

Let W be a random variable of the form of an r×h matrix, which is a deterministic function
of X,H, where

h ≥ (r + 2)s+ log(1/ε). (4.2)

Assume further that there exists g ∈ [r] such that

(Wg,H) ≈δ (Uh,H) . (4.3)

For each i ∈ [r], let (Ai, Bi) be the output LookAheadExt(Wi, Y). Then the following holds:

• H′ = (W,Zg, {Ai}ri=1,W |s,H) is an (X, Y)-history.

• (Bg,H′) ≈2δ+6ε (Ua,H′).

• H̃∞(Y | H′) ≥ H̃∞(Y | H)− ra.

• For any random variable N which is a deterministic function of X,H, it holds that
H̃∞(N | H′) ≥ H̃∞(N | H)− rh.

As mentioned, Lemma 4.1 is not new and general versions of it appear in the literature.
Nevertheless, as we consider a restricted setting and since the lemma as stated uses the
notion of (L,R)-histories (which is new), a direct proof for the lemma above does not appear
in the literature (though existing proofs can be adopted in a straightforward manner). Thus,
for completeness, we give a proof for Lemma 4.1 in Appendix A.

5 A Warm Up – Merging Three Rows

In order to convey the ideas underling our LCBs, we present in this section a construction
of a merger with weak-seeds for a somewhere-random source with only three rows. This
toy example allows us to present some of the ideas used in the actual constructions of our
mergers with weak-seeds (Theorem 1.5) and LCBs (Theorem 1.2). This section is meant
only for building up intuition, and presenting the underling ideas behind our constructions
without getting into all the details.

During this section we ignore the error analysis as this does not affect the parameters
and slightly complicates the presentation. In particular, when applying Lemma 3.3 and
Lemma 4.1 we ignore the expression log(1/ε) in Equation (3.2) and in Equation (4.1).

In this section we prove the following theorem which, roughly speaking, states that one
can efficiently and deterministically merge the rows of a 3 × ` somewhere-random source,
using an independent (n, k)-weak-source, even when ` = Θ(log n) and k = Ω(log log n).

12

X|h

LookAheadExt(X|h, Y)

A B

Ext3(X,)

X ′

LookAheadExt(X ′, Y)

A′ B′

Ext3(X,)

X ′′

LookAheadExt(X ′′, Y)

A′′ B′′

Ext3(X,)

X ′′′

⊕

Figure 1: A schematic diagram of the three rows merger Merg3.

13

Theorem 5.1 (Merging three rows). For any integer n, there exists a poly(n)-time com-
putable function

Merg3 :
(
{0, 1}`

)3 × {0, 1}n → {0, 1}m,

where ` = Θ(log n) and m = Ω(`), with the following property. Let X be a 3× ` somewhere-
random source. Let Y be an independent (n, k)-weak-source with k = Ω(log log n). Then,
Merg3(X, Y) ≈ Um.

Proof. During the proof of this toy example we assume that the second row, X2, is good.
Of course, the algorithm Merg3 will not rely on this assumption (or otherwise the algorithm
can simply output X2). We use the assumption that X2 is uniform only for the analysis. We
exemplify this with the good row being the second row just to avoid introducing more indices.
Since the second row is not the first or the last row, this will enable us to demonstrate all
the ideas needed to prove the theorem for any number of rows.

We turn to present the construction of Merg3. For the reader’s convenience, the con-
struction is depict in Figure 1. As mentioned, the problem of merging the 3 rows X1, X2, X3,
with X2 being the good row, is reduced to the problem of obtaining random variables
X ′′′1 , X

′′′
2 , X

′′′
3 , where each X ′′′i is a function of Xi and Y , with the following property:

(X ′′′2 , X
′′′
1 , X

′′′
3) ≈ (U,X ′′′1 , X

′′′
3), namely, constructing 3-LCBs for 3 rows. Once this inde-

pendence is obtained, one can simply output

Merg3(X, Y) = X ′′′1 ⊕X ′′′2 ⊕X ′′′3 .

Set h to be just large enough for the two-steps look-ahead extractor from Section 4 with
r = 3. Taking h = Θ(log n) will do. Set a = Θ(log log n) and note that this choice of a
satisfies the hypothesis of the two-steps look-ahead extractor. We now compute

(A1, B1) = LookAheadExt ((X1)|h, Y) ,

(A2, B2) = LookAheadExt ((X2)|h, Y) ,

(A3, B3) = LookAheadExt ((X3)|h, Y) ,

and then compute

X ′1 = Ext3(X1, B1),

X ′2 = Ext3(X2, A2),

X ′3 = Ext3(X3, A3),

where Ext3 : {0, 1}` × {0, 1}a → {0, 1}h is the strong seeded extractor from Theorem 2.2 for
entropy 2h. 5 This was the first iteration of the algorithm Merg3, in which we produced the
random variables X ′1, X

′
2 and X ′3 from X1, X2, X3 and Y . In the second iteration we will

compute X ′′1 , X
′′
2 and X ′′3 from X ′1, X

′
2, X

′
3 and X, Y in a similar way. The difference will be

5We use the name Ext3 because during the proof we will argue about the random variables obtained by
the two-steps look-ahead extractor from Section 4, which uses two strong seeded extractors we denoted by
Ext1 and Ext2.

14

that instead of taking the B variable as a seed for the first row and the corresponding A
variables to the other rows, we will take the B variable as a seed for the second row and the
corresponding A variables to the other two rows. More formally, we compute

(A′1, B
′
1) = LookAheadExt (X ′1, Y) ,

(A′2, B
′
2) = LookAheadExt (X ′2, Y) ,

(A′3, B
′
3) = LookAheadExt (X ′3, Y) ,

and then set

X ′′1 = Ext3(X1, A
′
1),

X ′′2 = Ext3(X2, B
′
2),

X ′′3 = Ext3(X3, A
′
3).

The algorithm continues for one more iteration, and computes

(A′′1, B
′′
1) = LookAheadExt (X ′′1 , Y) ,

(A′′2, B
′′
2) = LookAheadExt (X ′′2 , Y) ,

(A′′3, B
′′
3) = LookAheadExt (X ′′3 , Y) ,

and then computes

X ′′′1 = Ext3(X1, A
′′
1),

X ′′′2 = Ext3(X2, A
′′
2),

X ′′′3 = Ext3(X3, B
′′
3).

Informally speaking, we want to show that if there is enough entropy in Y and in X2 (namely,
` is large enough), then X ′′′2 is close to uniform even given X ′′′1 , X

′′′
3 . This is formalized by

the following claim. By the discussion above, once we prove Claim 5.2, Theorem 5.1 will
follow.

Claim 5.2. If k ≥ 11a and ` ≥ 13h, then

(X ′′′2 , X
′′′
1 , X

′′′
3) ≈ (Uh, X

′′′
1 , X

′′′
3).

Before proving Claim 5.2, we present the high-level strategy of the proof, which consists
of three steps.

• First, we show that in iterations that precede the “good” iteration (that is, the iteration
in which the good row is given the B variable, which in our case is the second iteration)
the assumption on the input is preserved. Namely, at the end of each such iteration, an
output row that corresponds to a good input row is uniform, and the joint distribution
of the rows is independent of Y .

15

• In the second step we show that after the good iteration was executed, the respective
output row “gains its independence”. That is, an output row that corresponds to a
good input row is uniform even conditioned on all other output rows. Moreover, the
joint distribution of the rows is independent of Y .

• In the third step we show that the independence of the good row is “preserved” through-
out the remaining iterations. Namely, an output row that corresponds to a good input
row remains uniform even conditioned on all other output rows, and moreover, the
joint distribution of all output rows is independent of Y .

Proof of Claim 5.2. The proof will follow the three iterations of the algorithm. In the first
iteration we give the “lead”, namely the B variable, to the “wrong” row X1. We show that
nothing bad happens by letting X1 have the lead, in the following sense: after this iteration,
we have that the joint distribution (X ′1, X

′
2, X

′
3) is independent of Y (more formally, this

independence holds conditioned on any fixing of carefully chosen (X, Y)-history), and X ′2 is
close to uniform. So besides losing some entropy in Y and in X2, and observing some error,
we maintain the assumption we had initially about our input – the second row X ′2 is uniform,
and the joint distribution of the three rows is independent of Y . Thus, in some sense we can
“skip” to the iteration in which we give the lead to the good row, which in our case is the
second row. This easily generalizes to any number of rows that precede the good row.

Analyzing the first iteration. Recall that A2 = Ext1 (Y, (X2)|s). Moreover, Y and (X2)|s
are independent, and H∞(Y) = k ≥ 11a. Since Ext1 is a strong seeded extractor for entropy
2a, we have that

(A2, (X2)|s) ≈ (Ua, ·). 6

Note further that conditioned on any fixing of (X2)|s, the random variables A2 and X|h are
independent. Thus, we can apply Lemma 2.7 and conclude that

(A2, X|h) ≈ (Ua, ·). (5.1)

Recall that X ′2 = Ext3(X2, A2). We apply Lemma 3.3 to the (X, Y)-history X|h with
P = A2, M = X2 and the extractor Ext3. The hypothesis of Lemma 3.3 is met since A2 is
a deterministic function of Y and X|h. Moreover, since Ext3 is an extractor for entropy 2h,
and since

H̃∞ (X2 | (X|h)) ≥ `− 3h ≥ 10h,

Equation (3.2) of Lemma 3.3 holds. Therefore, Lemma 3.3 together with Equation (5.1)
imply that

(X ′2, A2, X|h) ≈ (Uh, ·).

Moreover, A2, X|h is an (X, Y)-history.

6Recall that our notation dictates that (X,Z1, . . . , Zr) ≈ (Y, ·) is a shorthand for (X,Z1, . . . , Zr) ≈
(Y,Z1, . . . , Zr)

16

We now apply Lemma 3.4 with P = X ′2, J = (B1, A3) and the (X, Y)-history A2, X|h.
Since X ′2 is a deterministic function of X and A2 and since B1, A3 are deterministic functions
of Y and X|h, Lemma 3.4 implies that H1 = (B1, A2, A3, X|h) is an (X, Y)-history and that

(X ′2,H1) ≈ (Uh, ·). (5.2)

Since each of B1, A2, A3 consists of a bits and since Y is independent of X|h, Lemma 2.12
and Lemma 2.14 imply that

H̃∞ (Y | H1) ≥ H̃∞ (Y | (X|h))− 3a = H∞ (Y)− 3a ≥ 8a. (5.3)

Similarly, conditioned on any fixing of X|h, the random variables B1, A2, A3 are deterministic
functions of Y , whereas X2 is a deterministic function of X. Hence, Lemma 2.14 implies
that H̃∞ (X2 | H1) = H̃∞ (X2 | (X|h)) . Since X|h consists of 3h bits, we have that

H̃∞ (X2 | H1) ≥ H∞ (X2)− 3h = 10h. (5.4)

This concludes the first iteration. Note that after the first iteration X ′2 is close to uni-
form (Equation (5.2)). Moreover, Y and X2 still have (enough) entropy (Equation (5.3),
Equation (5.4)).

Analyzing the second iteration. We reached the iteration in which we give the lead to
the good row – X2. We want to show that after this iteration, (X ′′2 , X

′′
1 , X ′′3) ≈ (Uh, X

′′
1 , X ′′3).

Namely, the good row “gains its independence” in the iteration in which it takes the lead.
We continue from Equation (5.2) and apply Lemma 4.1 to the (X, Y)-historyH1, with the

3×h matrix X ′ and the weak-source Y . Equation (4.1) of Lemma 4.1 holds by Equation (5.3).
Since h ≥ 5s, Equation (4.2) of Lemma 4.1 holds as well. Therefore, Lemma 4.1 together
with Equation (5.2) imply that

H′1 = (X ′, Z ′2, A
′
1, A

′
2, A

′
3, (X

′)|s,H1)

is an (X, Y)-history, and that
(B′2,H′1) ≈ (Ua, ·).

Furthermore, the third item of Lemma (4.1) together with Equation (5.3) imply that

H̃∞ (Y | H′1) ≥ H̃∞ (Y | H1)− 3a ≥ 5a. (5.5)

The fourth item of Lemma 4.1, applied with N = X2, together with Equation (5.4), implies
that

H̃∞ (X2 | H′1) ≥ H̃∞ (X2 | H1)− 3h ≥ 7h. (5.6)

We now apply Lemma 3.4 to the (X, Y)-history H′1 with P = B′2 and J = (X ′′1 , X
′′
3).

Lemma 3.4 is applicable since B′2 is a deterministic function of Y,X ′2, and the latter is
contained in H′1. Moreover, X ′′1 , X

′′
3 are deterministic functions of X,A′1, A

′
3, and A′1, A

′
3 are

contained in H′1. Thus, Lemma 3.4 implies that

(B′2, X
′′
1 , X

′′
3 ,H′1) ≈ (Ua, ·), (5.7)

17

and that X ′′1 , X
′′
3 ,H′1 is an (X, Y)-history.

Recall thatX ′′2 = Ext3(X2, B
′
2). We now apply Lemma 3.3 to the (X, Y)-historyX ′′1 , X

′′
3 ,H′1

with P = B′2, M = X2 and the extractor Ext3. The hypothesis of the lemma holds since B′2
is a deterministic function of Y and X ′2, and the latter is contained in H′1. By Equation (5.6)
and Lemma 2.12, it holds that

H̃∞ (X2 | X ′′1 , X ′′3 ,H′1) ≥ H̃∞ (X2 | H′1)− 2h ≥ 5h. (5.8)

Since Ext3 is a strong seeded extractor for entropy 2h, Equation (3.2) of Lemma 3.3 holds.
Therefore, Lemma 3.3 together with Equation (5.7) imply that

(X ′′2 ,H2) ≈ (Uh, ·), (5.9)

where H2 = (B′2, X
′′
1 , X

′′
3 ,H′1) is an (X, Y)-history. In terms of entropy-loss,

H̃∞ (Y | H2) ≥ H̃∞ (Y | X ′′1 , X ′′3 ,H′1)− a = H̃∞ (Y | H′1)− a ≥ 4a, (5.10)

where the first inequality follows by Lemma 2.12 and the fact that |B′2| = a. The second
equality follows by Lemma 2.14 and the fact that conditioned on any fixing ofH′1, the random
variables X ′′1 , X

′′
3 are deterministic functions of X, and are thus independent of Y . The last

inequality follows by Equation (5.5).
Similarly, since B′2 is independent of X2 conditioned on any fixing of H′1, we have that

H̃∞ (X2 | H2) = H̃∞ (X2 | X ′′1 , X ′′3 ,H′1) ≥ 5h, (5.11)

where the last inequality follows by Equation (5.8). Since X ′′1 , X
′′
3 are contained in H2, this

proves what we wanted for this iteration. Namely, after the second iteration, in which the
good row takes the lead, (X ′′2 , X

′′
1 , X

′′
3) ≈ (Uh, X

′′
1 , X

′′
3).

Analyzing the third iteration. We now show that the independence of the good row X ′′2
is “preserved” throughout the following iteration, where again another row takes the lead.
We continue from Equation (5.9). We note that conditioned on any fixing of H2, the random
variables A′′1, B

′′
3 are deterministic functions of Y (as X ′′1 , X

′′
3 are contained in H2). On the

other hand, conditioned on any fixing of H2, the random variable X ′′2 is a deterministic
function of X (as B′2 is contained in H2). Thus, by Lemma 3.4 applied to the (X, Y)-history
H2 with P = X ′′2 and J = (A′′1, B

′′
3), it holds that

(X ′′2 , A
′′
1, B

′′
3 ,H2) ≈ (Uh, ·).

Furthermore, A′′1, B
′′
3 ,H2 is an (X, Y)-history. By Lemma 2.12 and Equation (5.10), it holds

that
H̃∞ (Y | A′′1, B′′3 ,H2) ≥ H̃∞ (Y | H2)− 2a ≥ 2a. (5.12)

Recall that A′′2 = Ext1(Y, (X ′′2)|s). We apply Lemma 3.3 to the (X, Y)-history A′′1, B
′′
3 ,H2

with P = (X ′′2)|s, M = Y and the extractor Ext1. Since Ext1 is an extractor for entropy 2a,

18

Equation (3.2) of Lemma 3.3 holds by Equation (5.12). Furthermore, (X ′′2)|s is a deterministic
function of X and B′2, which is contained in H2. Thus, the hypothesis of Lemma 3.3 is met,
and we get that

(A′′2, X
′′
2 , A

′′
1, B

′′
3 ,H2) ≈ (Ua, ·),

and X ′′2 , A
′′
1, B

′′
3 ,H2 is an (X, Y)-history. In terms of entropy-loss, since |X ′′2 | = h and since

A′′1, B
′′
3 are deterministic functions of Y conditioned on any fixing of X ′′1 , X

′′
3 , which are

contained in H2, Lemma 2.12 together with Equation (5.11) imply that

H̃∞ (X2 | X ′′2 , A′′1, B′′3 ,H2) ≥ H̃∞ (X2 | A′′1, B′′3 ,H2)− h = H̃∞ (X2 | H2)− h ≥ 4h. (5.13)

We now apply Lemma 3.4 to the (X, Y)-history X ′′2 , A
′′
1, B

′′
3 ,H2 with P = A′′2 and J =

X ′′′1 , X
′′′
3 . Recall that X ′′′1 = Ext3(X1, A

′′
1) and X ′′′3 = Ext3(X3, B

′′
3). Thus, conditioned on

any fixing of A′′1, B
′′
3 , it holds that X ′′′1 , X

′′′
3 are deterministic functions of X, whereas A′′2 is a

deterministic function of Y conditioned on any fixing of X ′′2 . Thus, Lemma 3.4 implies that

(A′′2, X
′′′
1 , X

′′′
3 ,H′2) ≈ (Ua, ·),

where H′2 = (X ′′2 , A
′′
1, B

′′
3 ,H2) is an (X, Y)-history. In terms of entropy-loss, by Equa-

tion (5.13) and Lemma 2.12, we have that

H̃∞ (X2 | X ′′′1 , X
′′′
3 ,H′2) ≥ H̃∞ (X2 | X ′′2 , A′′1, B′′3 ,H2)− 2h ≥ 2h. (5.14)

Recall that X ′′′2 = Ext3(X2, A
′′
2). We apply Lemma 3.3 to the (X, Y)-history X ′′′1 , X

′′′
3 ,H′2,

with P = A′′2, M = X2 and the extractor Ext3. Note that A′′2 is a deterministic function of Y
and X ′′2 , which is contained in H′2. Equation (3.2) of Lemma 3.3 follows by Equation (5.14)
and the fact that Ext3 is an extractor for entropy 2h. Lemma 3.3 then implies that

(X ′′′2 , A
′′
2, X

′′′
1 , X

′′′
3 ,H′2) ≈ (Uh, ·).

By Lemma 2.8 it follows that

(X ′′′2 , X
′′′
1 , X

′′′
3) ≈ (Uh, ·),

which concludes the proof of the claim.

As mentioned above, the proof of Theorem 5.1 readily follows by Claim 5.2.

5.1 Merging r rows – an overview

Generalizing the proof of the three-rows merger presented above to r > 3 rows is straightfor-
ward. Instead of three iterations, we can apply the algorithm above for r iterations, where
at the ith iteration we give the lead to row i. Working out the parameters, one can show that
this generalization works for ` = O(r4 · log n) and k = O(r3 · log log n). We now explain how
one can improve this, and construct a merger for ` = Õ(r2) · log n and k = Õ(r) · log log n,
as we obtain in the actual construction (Theorem 7.2).

19

For the purpose of constructing mergers with weak-seeds, this improvement, although
desired, is not crucial, especially when r is small. This, for example, is the case in the
construction of our three-source extractor. Thus, in these cases, the simpler merger depicted
above is sufficient. However, for our construction of LCBs the somewhat more involved
construction is necessary, and so in the rest of this section we give an informal overview of
the actual construction.

Consider the complete graph on r vertices, where vertex i ∈ [r] represents the ith row of
X. In the straightforward generalization of the three rows merger to r rows, we (implicitly)
considered r cuts of this graph, where the ith cut is ({i}, [r] \ {i}). The construction in
Theorem 5.1 guarantees that if Xi is good then after the ith iteration, row i is uniform
even given all other rows (and remains as such throughout the following iterations). In the
actual construction of our merger (and LCBs) we generalize this idea and guarantee that
the following stronger property holds. For any cut (S, Sc) of [r], the ith row is independent
of all rows with indices that are separated from i by the cut (S, Sc). Notice that when we
used the cuts of the form ({i}, [r]\{i}), we knew that at some iteration the good row g ∈ [r]
is separated from all other rows, and moreover, we knew on which side of the cut g will be
(the side that contains the single vertex). By inspecting the construction above, one can see
that the algorithm used this second piece of information. Indeed, in each iteration we gave
the lead to the single row, namely, we gave the single row the B variable, and all other rows
got the A variables.

When considering general cuts (S, Sc), we no longer know which side of the cut contains
the good row g. Namely, to who should we give the B variables – to the rows in S or to
the rows in Sc. We solve this problem by applying the construction used above twice, in a
“flip-flop”. Namely, we first give the B variables to the rows in S and the A variables to the
rows in Sc, and then run one more round, giving the B variables to the rows in Sc and the
A variables to the rows in S. We only then proceed to the next cut in the sequence.

Having the ability to use general cuts allows us to run for only log r iterations rather
than for r iterations. Indeed, instead of choosing r (highly unbalanced) cuts, and run for
r iterations, we use q = log r (efficiently computable) cuts S1, . . . , Sq with the following
property. For any two distinct i, j ∈ [r], there exists v ∈ [q] such that the cut (Sv, S

c
v)

separates i from j. By working with these cuts, the same independence guarantee holds when
the algorithm terminates. Indeed, after the vth iteration, row i is uniform and independent
of all rows that were separated from i by at least one of the cuts (S1, S

c
1), . . . , (Sv, S

c
v). By

the property of S1, . . . , Sq it follows that after all q iterations were executed, row i is uniform
and independent of all other rows. Since we run for only q = log r iterations, as apposed to
r iterations, we obtain a multiplicative saving of roughly r/ log r in both k, `, which yields
the desired improvement.

Our construction of LCBs follows the same idea as the construction of the mergers de-
scribed above. The only difference is that the analysis is done “locally” on t rows, rather
than on r rows. The fact that we run for log r iterations introduces only logarithmic factors
of r into k, `, as apposed to polynomial factors.

20

6 Local Correlation Breakers

In this section we prove Theorem 1.2. We start by giving a more formal and complete
statement of the theorem.

Theorem 6.1. For all integers n, r, t and any ε > 0, there exists a poly(n, r, log(1/ε))-time
computable t-LCB

LCB :
(
{0, 1}`

)r × {0, 1}n → ({0, 1}m)r

for entropy k, with error ε, where

` = Θ
(
t2 · log

(nr
ε

)
· log r

)
,

m = Ω

(
`

t · log r

)
,

k = Ω

(
t · log(r) · log

(
r · log n

ε

))
.

In fact, we prove the following stronger theorem which readily implies Theorem 6.1.

Theorem 6.2. Let n, r, t be integers, and let ε > 0. Set

h = Θ
(
t · log

(nr
ε

))
,

` = Θ (ht · log r) = Θ
(
t2 · log

(nr
ε

)
· log r

)
.

There exists a function LCB :
(
{0, 1}`

)r × {0, 1}n → (
{0, 1}h

)r
with the following property.

Let X be an r × ` somewhere-random source. Assume that Xg is a good row of X. Let
I = {i1, . . . , it−1} ⊆ [r] \ {g}. Let Y be an (n, k)-weak-source that is independent of X, such
that

k = Ω

(
t · log(r) · log

(
r · log n

ε

))
. (6.1)

Let W̄ = LCB(X, Y). Then, there exists an (X, Y)-history H that contains {W̄i | i ∈ I},
such that the following holds:

•
(
W̄g,H

)
≈ε (Uh,H).

• H̃∞(Xg | H) ≥ 0.9 · `.

• H̃∞(Y | H) ≥ 0.9 · k. 7

• W̄g is a deterministic function of X and H.

Furthermore, for any i ∈ [r], W̄i in computable in time poly(n, t, log r, log(1/ε)).

7The constant 0.9 in the second and third items can be replaced by 1−δ for any (not necessarily constant)
δ > 0, by taking ` to be 1/δ times the stated `, and by taking k to be log(1/δ)/δ times the stated k.

21

W j−1

LookAheadExt(W j−1, Y)

Aj−1 Bj−1

Ext3(X,)

(W ′)j−1

LookAheadExt((W ′)j−1, Y)

(A′)j−1 (B′)j−1

Ext3(X,)

W j

...

...

...

...

...

f
l
i
p

f
l
o
p

Figure 2: A schematic diagram of jth iteration of LCB.

22

Proof. Let ε′ = ε/(32r). We make use of the following building blocks for the construction
of LCB.

• Let LookAheadExt : {0, 1}h × {0, 1}n → {0, 1}a × {0, 1}a be the two-steps look-ahead
extractor from Section 4, set with error ε′ and a = Θ(log(`/ε′)). Note that this
choice of a satisfies the condition a ≥ Ω(log(h/ε′)) (since ` ≥ h), as required by the
two-steps look-ahead extractor. Note further that, by the choice of h, it holds that
h = Ω(t · log(n/ε′)). During the proof we apply Lemma 4.1 to somewhere-random
sources with t rows, for which this setting of h is sufficient.

• Let Ext3 : {0, 1}` × {0, 1}a → {0, 1}h be the strong seeded-extractor from Theorem 2.2
for entropy 2h, set with error ε′. Note that a was chosen to be large enough so that a
seed of length a is sufficient for extracting entropy from length ` sources, with error ε′.

• Let S1, . . . , Sq ⊆ [r] with the following property. For any two distinct i, j ∈ [r], there
exists v ∈ [q] such that |{i, j} ∩ Sv| = 1. We think of S1, . . . , Sq as a sequence of cuts
of the complete graph on vertex set [r]. The property above states that for any two
distinct vertices i, j ∈ [r], at least one of the cuts in the sequence separates i from j,
namely, either i ∈ Sv, j 6∈ Sv or j ∈ Sv, i 6∈ Sv, for some v ∈ [q]. We note that such
a sequence, with length q = dlog2 re, can be constructed efficiently in the sense that
given i ∈ [r] and v ∈ [q], one can determine whether or not i ∈ Sv in time polylog(r).
This can be done, for example, by taking Sv to be all i ∈ [r] such that the vth bit in
the binary expansion of i is 1. This specific sequence of cuts was used in [Li13] for
the construction of his multi-source extractor, though any sequence with the above
property will do.

The algorithm LCB iteratively computes a sequence W 0,W 1, . . . ,W q of r × h matrices as
follows. First, we set W 0 = X|h. As depict in Figure 2, for any j ≥ 1, the matrix W j is
computed as follows, given W j−1. For each row i ∈ [r] of W j−1, we apply the two-steps
look-ahead extractor together with the weak-source Y to obtain(

Aj−1
i , Bj−1

i

)
= LookAheadExt

(
W j−1
i , Y

)
.

We then define

Cj−1
i =

{
Aj−1
i , i ∈ Sj,

Bj−1
i , i 6∈ Sj.

Next, we compute
(W ′)j−1

i = Ext3
(
Xi, C

j−1
i

)
.

We apply the two-steps look-ahead extractor for the second time, as follows(
(A′)j−1

i , (B′)j−1
i

)
= LookAheadExt

(
(W ′)j−1

i , Y
)
,

and define

(C ′)j−1
i =

{
(B′)j−1

i , i ∈ Sj,
(A′)j−1

i , i 6∈ Sj.

23

Note that the roles of A,B in this application of the two-steps look-ahead extractor were
flipped, compared to the previous application. Finally, the ith row of W j is defined by

W j
i = Ext3

(
Xi, (C

′)j−1
i

)
.

The output of LCB is then defined by LCB (X, Y) = W q .

We now turn to the analysis, starting with the running-time. First, note that row W j
i

is a function only of the corresponding rows W j−1
i , Xi and the weak-source Y . For com-

puting each row i ∈ [r], the algorithm runs for q = O(log r) iterations. In each itera-
tion it checks which side of the current cut contains i, and performs a constant number
of calls to various seeded extractors (Ext3 and the two extractors Ext1,Ext2 within the
two calls to LookAheadExt). Thus, the running-time for computing each output row is
poly(n, t, log r, log(1/ε)), as claimed.

For j = 1, . . . , q, define Ij ⊆ I by

Ij = {iv ∈ I : |{g, iv} ∩ Sj| = 1} .

That is, Ij contains all vertices in I that are separated from g by the cut Sj. We further
define I0 = ∅, and let Ij = ∪jj′=0Ij′ . Note that Ij is the set of vertices in I that are separated
from g by at least one of the cuts S1, . . . , Sj. By the property of the sequence S1, . . . , Sq, we
have that Iq = I. We prove the following claim by induction on j.

Claim 6.3. There exists an (X, Y)-history Hj such that the following holds:

• Hj contains
{
W j
i | i ∈ Ij

}
.

• Hj contains
{

(C ′)j−1
i | i ∈ I ∪ {g}

}
for all j ≥ 1.

•
(
W j
g ,Hj

)
≈εj (Uh,Hj), where ε0 = 0 and εj ≤ 2εj−1 + 16ε′ for all j ≥ 1.

• H̃∞(Xg | Hj) ≥ `− 5htj.

• H̃∞(Y | Hj) ≥ k − 5atj.

Proof of Claim 6.3. We prove the claim by induction on j. The claim readily follows for
j = 0 with an empty (X, Y)-history H0. Consider j ≥ 1 and assume the correctness of the
claim for j − 1. By the induction hypothesis, we have that(

W j−1
g ,Hj−1

)
≈εj−1

(Uh, ·) .

Recall that

W j−1
g =

{
(Xg) |h, j = 1;
Ext3

(
Xg, (C

′)j−2
g

)
, j > 1.

If j = 1 then clearly W j−1
g is a deterministic function of X. For j > 1, by the induction

hypothesis, Hj−1 contains (C ′)j−2
g and so W j−1

g is a deterministic function of X,Hj−1. More-

over, by the induction hypothesis {W j−1
i | i ∈ Ij−1} are all contained in Hj−1. Since Cj−1

i is

24

a deterministic function of W j−1
i and Y , we have that {Cj−1

i | i ∈ Ij−1} are all deterministic
functions of Hj−1 and Y . Thus, we can apply Lemma 3.4 to the (X, Y)-history Hj−1 with
P = W j−1

g and J = {Cj−1
i | i ∈ Ij−1}, and conclude that(

W j−1
g ,

{
Cj−1
i

}
i∈Ij−1

,Hj−1

)
≈εj−1

(Uh, ·) , (6.2)

and that
{
Cj−1
i | i ∈ Ij−1

}
,Hj−1 is an (X, Y)-history. In terms of entropy-loss, by Lemma 2.12

and by the induction hypothesis,

H̃∞

(
Y |

{
Cj−1
i

}
i∈Ij−1

,Hj−1

)
≥ H̃∞ (Y | Hj−1)− |Ij−1| · a

≥ k − 5atj + 4at+ a, (6.3)

where we used the fact that |Ij−1| ≤ |I| ≤ t− 1 and that |Cj−1
i | = a for all i ∈ Ij−1. As for

the entropy of Xg, we have that

H̃∞

(
Xg |

{
Cj−1
i

}
i∈Ij−1

,Hj−1

)
= H̃∞ (Xg | Hj−1) ≥ `− 5ht(j − 1), (6.4)

where the first equality holds by Lemma 2.14 and by the induction hypothesis. Indeed, the
induction hypothesis implies that all random variables

{
W j−1
i | i ∈ Ij−1

}
are contained in

Hj−1. Since Cj−1
i is a deterministic function of W j−1

i and Y , it holds that conditioned on
any fixing of Hj−1, the random variables

{
Cj−1
i | i ∈ Ij−1

}
are deterministic functions of Y ,

and thus are independent of Xg. The second inequality follows by the induction hypothesis.
We proceed with the analysis by considering two cases, according to whether or not

g ∈ Sj.

Case 1: g ∈ Sj. Recall that Aj−1
g = Ext1(Y, (W j−1

g)|s). We apply Lemma 3.3 to the (X, Y)-

history
{
Cj−1
i | i ∈ Ij−1

}
,Hj−1, with P =

(
W j−1
g

)
|s, M = Y and the extractor Ext1. The

hypothesis of Lemma 3.3 is met since, as explained above, W j−1
g is a deterministic function

of X and Hj−1. Furthermore, Equation (3.2) of Lemma 3.3 follows by Equation (6.3), the
fact that Ext1 is a strong seeded extractor for entropy 2a with error ε′, and our assumption
on k, namely, Equation (6.1). Thus, Lemma 3.3 together with Equation (6.2) imply that(

Aj−1
g ,H′j−1

)
≈εj−1+2ε′ (Ua, ·) ,

where
H′j−1 =

(
W j−1
g ,

{
Cj−1
i

}
i∈Ij−1

,Hj−1

)
is an (X, Y)-history. Note that we added W j−1

g rather than (W j−1
g)|s to H′j−1. This can be

done either by applying Lemma 3.4 or by considering the extractor Ext′1 that takes W j−1
g as

the seed, ignore the length h− s suffix of it and use (W j−1
g)|s as a seed for Ext1. In terms of

entropy-loss,

H̃∞
(
Xg | H′j−1

)
≥ H̃∞

(
Xg |

{
Cj−1
i

}
i∈Ij−1

,Hj−1

)
−
∣∣W j−1

g

∣∣ ≥ `− 5htj + 5ht− h, (6.5)

25

where the first inequality follows by Lemma 2.12, and the second inequality follows by
Equation (6.4).

We now apply Lemma 3.4 to the (X, Y)-history H′j−1, with P = Aj−1
g and

J =
{

(W ′)j−1
i | i ∈ Ij−1

}
∪
{
W j−1
i | i ∈ I \ Ij−1

}
.

To see that this application of Lemma 3.4 is valid, note that Aj−1
g is a deterministic function

of Y andW j−1
g , and the latter is contained inH′j−1 – the history to which we apply the lemma.

On the other hand, each of the random variables in
{

(W ′)j−1
i | i ∈ Ij−1

}
is a deterministic

function of X and
{
Cj−1
i | i ∈ Ij−1

}
, all of which are contained in H′j−1. Moreover, as

explained above,
{
W j−1
i | i ∈ I \ Ij−1

}
are all deterministic functions of X and Hj−1 (this

was shown for i = g but can be easily shown to hold for all i ∈ I ∪ {g}). Thus, Lemma 3.4
implies that (

Aj−1
g ,

{
(W ′)j−1

i

}
i∈Ij−1

,
{
W j−1
i

}
i∈I\Ij−1

,H′j−1

)
≈εj−1+2ε′ (Ua, ·) ,

and that
{

(W ′)j−1
i | i ∈ Ij−1

}
,
{
W j−1
i | i ∈ I \ Ij−1

}
, H′j−1 is an (X, Y)-history. In terms

of entropy-loss, Equation (6.5) together with Lemma 2.12 imply that

H̃∞

(
Xg |

{
(W ′)j−1

i

}
i∈Ij−1

,
{
W j−1
i

}
i∈I\Ij−1

,H′j−1

)
≥ H̃∞

(
Xg | H′j−1

)
− |I| · h

≥ `− 5htj + 4ht. (6.6)

Recall that (W ′)j−1
g = Ext3

(
Xg, C

j−1
g

)
. Since g ∈ Sj it holds that Cj−1

g = Aj−1
g . We

apply Lemma 3.3 to the (X, Y)-history
{

(W ′)j−1
i | i ∈ Ij−1

}
,
{
W j−1
i | i ∈ I \ Ij−1

}
, H′j−1,

with P = Aj−1
g = Cj−1

g , M = Xg and the extractor Ext3. The hypothesis of Lemma 3.3 is
met since Aj−1

g is a deterministic function of Y and W j−1
g , and the latter in contained in the

(X, Y)-history to which we apply the lemma. Furthermore, Equation (3.2) of Lemma 3.3
follows by Equation (6.6) and our hypothesis on k, namely, Equation (6.1), and since Ext3
is a strong seeded extractor for entropy 2h with error ε′. Therefore, Lemma 3.3 implies that(

(W ′)j−1
g ,H′′j−1

)
≈εj−1+4ε′ (Uh, ·) ,

where
H′′j−1 =

(
Aj−1
g ,

{
(W ′)j−1

i

}
i∈Ij−1

,
{
W j−1
i

}
i∈I\Ij−1

,H′j−1

)
.

In terms of entropy-loss,

H̃∞
(
Y | H′′j−1

)
≥ H̃∞

(
Y |

{
(W ′)j−1

i

}
i∈Ij−1

,
{
W j−1
i

}
i∈I\Ij−1

,H′j−1

)
− a

= H̃∞
(
Y | H′j−1

)
− a

= H̃∞

(
Y |

{
Cj−1
i

}
i∈Ij−1

,Hj−1

)
− a

≥ k − 5atj + 4at, (6.7)

26

where the first inequality follows by Lemma 2.12, and since |Aj−1
g | = a. The second equality

follows by Lemma 2.14, which is applicable since conditioned on any fixing of the random
variables

{
Cj−1
i | i ∈ Ij−1

}
, all of which are all contained in H′j−1, the random variables{

(W ′)j−1
i | i ∈ Ij−1

}
are deterministic functions of X, and in particular are independent

of Y . Moreover, as explained above, conditioned on any fixing of H′j−1, the random vari-

ables
{
W j−1
i | i ∈ I \ Ij−1

}
are deterministic functions of X. The third equality follows by

Lemma 2.14 as W j−1
g is a deterministic function of X and Hj−1. The last inequality follows

by Equation (6.3).
We now apply Lemma 3.4 to the (X, Y)-history H′′j−1, with P = (W ′)j−1

g and

J =
{

(C ′)j−1
i | i ∈ Ij−1

}
∪
{
Cj−1
i | i ∈ I \ Ij−1

}
.

This application of Lemma 3.4 is valid since (W ′)j−1
g is a deterministic function of X,Cj−1

g ,
and Cj−1

g is contained in the history to which we apply the lemma. This is because Cj−1
g =

Aj−1
g since g ∈ Sj. On the other hand, each random variable in

{
(C ′)j−1

i | i ∈ Ij−1

}
is a deter-

ministic function of Y and (W ′)j−1
i , and all of the random variables

{
(W ′)j−1

i | i ∈ Ij−1

}
are

contained in the H′′j−1. Furthermore, each of the random variables in
{
Cj−1
i | i ∈ I \ Ij−1

}
is a deterministic function of Y and

{
W j−1
i | i ∈ I \ Ij−1

}
, and the latter random variables

are all contained in H′′j−1. Thus, Lemma 3.4 implies that(
(W ′)j−1

g ,H′′′j−1

)
≈εj−1+4ε′ (Uh, ·) , (6.8)

where
H′′′j−1 =

({
(C ′)j−1

i

}
i∈Ij−1

,
{
Cj−1
i

}
i∈I\Ij−1

,H′′j−1

)
is an (X, Y)-history. By Lemma 2.12, Equation (6.7) and the fact that |I| = t− 1, it holds
that

H̃∞
(
Y | H′′′j−1

)
≥ H̃∞

(
Y | H′′j−1

)
− |I| · a ≥ k − 5atj + 3at+ a. (6.9)

Note that all random variables
{
Cj−1
i | i ∈ I ∪ {g}

}
are contained in H′′′j−1. Indeed,{

Cj−1
i | i ∈ I \ Ij−1

}
are contained in H′′′j−1 by definition. Moreover, the random variables{

Cj−1
i | i ∈ Ij−1

}
are contained in H′j−1 which in turn is contained in H′′′j−1. Finally, since

g ∈ Sj, it holds that Cj−1
g = Aj−1

g , and Aj−1
g is contained in H′′j−1, and so it is also contained

in H′′′j−1.
We apply Lemma 4.1 to the (X, Y)-history H′′′j−1, with W (in the notation of Lemma 4.1)

equals to rows I ∪ {g} of (W ′)j−1. The hypothesis of Lemma 4.1 is met since these rows of
(W ′)j−1 are deterministic functions of X and

{
Cj−1
i | i ∈ I ∪ {g}

}
which, by the above, are

contained in H′′′j−1. Furthermore, Equation (4.1) of Lemma 4.1 follows by Equation (6.9),
and Equation (4.2) follows by our choice of h. Lemma 4.1 together with Equation (6.8)
imply that (

(B′)j−1
g ,H′′′′j−1

)
≈2εj−1+14ε′ (Ua, ·) ,

where

H′′′′j−1 =
({

(W ′)j−1
i

}
i∈I∪{g} , (Z

′)j−1
g ,

{
(A′)j−1

i

}
i∈I∪{g} ,

{(
(W ′)j−1

i

)
|s
}
i∈I∪{g} ,H

′′′
j−1

)
27

is an (X, Y)-history. Moreover, by the third item of Lemma 4.1 and Equation (6.9), we have
that

H̃∞
(
Y | H′′′′j−1

)
≥ H̃∞

(
Y | H′′′j−1

)
− |I ∪ {g}| · a ≥ k − 5atj + 2at+ a. (6.10)

As for the entropy-loss of Xg, it holds that

H̃∞
(
Xg | H′′′′j−1

)
≥ H̃∞

(
Xg | H′′′j−1

)
− |I ∪ {g}| · h

= H̃∞
(
Xg | H′′′j−1

)
− th

= H̃∞
(
Xg | H′′j−1

)
− th

= H̃∞

(
Xg |

{
(W ′)j−1

i

}
i∈Ij−1

,
{
W j−1
i

}
i∈I\Ij−1

,H′j−1

)
− th

≥ H̃∞
(
Xg | H′j−1

)
− (2t− 1)h

≥ `− 5htj + 2ht+ h, (6.11)

where the first inequality follows by the fourth item of Lemma 4.1, with N = Xg. The
second equality follows since |I ∪ {g}| = t. The third equality follows by Lemma 2.14 and
the fact that conditioned on any fixing of H′′j−1, all random variables

{
(C ′)j−1

i | i ∈ Ij−1

}
,{

Cj−1
i | i ∈ I \ Ij−1

}
are deterministic functions of Y . The fourth equality follows by Lemma 2.14

since Aj−1
g is a deterministic function of Y conditioned on any fixing of H′j−1. The penulti-

mate inequality follows by Lemma 2.12. The last inequality follows by Equation (6.6).
Recall that

{
(C ′)j−1

i | i ∈ Ij−1

}
are contained in H′′′′j−1, as these random variables are

already contained in H′′′j−1. However, due to the application of Lemma 4.1 above, we have

that
{

(C ′)j−1
i | i ∈ Ij

}
are all contained in H′′′′j−1. To see this, note that after the application

of the two-steps look-ahead extractor,
{

(A′)j−1
i | i ∈ I ∪ {g}

}
are all contained in H′′′′j−1.

However, (A′)j−1
i = (C ′)j−1

i for i 6∈ Sj, which is equivalent to i ∈ Ij as g ∈ Sj. Since
Ij = Ij−1 ∪ Ij, it follows that (C ′)j−1

i is contained in H′′′′j−1 for all i ∈ Ij, as claimed.

We apply Lemma 3.4 to the (X, Y)-historyH′′′′j−1 with P = (B′)j−1
g and J =

{
W j
i | i ∈ Ij

}
,

and conclude that (
(B′)j−1

g ,
{
W j
i

}
i∈Ij

,H′′′′j−1

)
≈2εj−1+14ε′ (Ua, ·) .

This application of Lemma 3.4 is valid since (B′)j−1
g is a deterministic function of Y and

(W ′)j−1
g , which is contained in H′′′′j−1. Furthermore, the random variables

{
W j
i | i ∈ Ij

}
are

deterministic functions of X and
{

(C ′)ji | i ∈ Ij
}

which, by the above, are also contained in
H′′′′j−1. By Equation (6.11) and Lemma 2.12, it holds that

H̃∞

(
Xg |

{
W j
i

}
i∈Ij

,H′′′′j−1

)
≥ H̃∞

(
Xg | H′′′′j−1

)
− (t− 1)h ≥ `− 5htj + ht+ 2h. (6.12)

We apply Lemma 3.3 to the (X, Y)-history
{
W j
i | i ∈ Ij

}
,H′′′′j−1 with P = (B′)j−1

g ,
M = Xg and the extractor Ext3. The hypothesis of Lemma 3.3 is met since (B′)j−1

g is

28

a deterministic function of Y and (W ′)j−1
g , which is contained H′′′′j−1. Moreover, Equa-

tion (3.2) of Lemma 3.3 follows by Equation (6.12). Since W j
i = Ext3

(
Xi, (C

′)j−1
i

)
, and

since (C ′)j−1
g = (B′)j−1

g (as g ∈ Sj), Lemma 3.3 implies that(
W j
g , (B

′)j−1
g ,

{
W j
i

}
i∈Ij

,H′′′′j−1

)
≈2εj−1+16ε′ (Uh, ·) .

Finally, we apply Lemma 3.4 to the (X, Y)-history (B′)j−1
g ,

{
W j
i | i ∈ Ij

}
, H′′′′j−1, with

P = W j
g and J =

{
(C ′)j−1

i | i ∈ I \ Ij
}

. This application of Lemma 3.4 is valid since W j
g

is a deterministic function of X and (C ′)j−1
g , which is contained in the history to which

we apply the lemma, since (C ′)j−1
g = (B′)j−1

g (recall that g ∈ Sj). Moreover, the random

variables
{

(C ′)j−1
i | i ∈ I \ Ij

}
are deterministic functions of Y and

{
(W ′)j−1

i | i ∈ I \ Ij
}

,
all of which are contained in H′′′′j−1. Thus, Lemma 3.4 implies that(

W j
g ,Hj

)
≈2εj−1+16ε′ (Uh, ·) ,

where
Hj =

({
(C ′)j−1

i

}
i∈I\Ij

, (B′)j−1
g ,

{
W j
i

}
i∈Ij

,H′′′′j−1

)
is an (X, Y)-history. This proves the third item of the claim. Note that Hj contains{
W j
i | i ∈ Ij

}
, which proves the first item of the claim.

As for the second item, as proved above,
{

(C ′)j−1
i | i ∈ Ij

}
are contained in H′′′′j−1 and

therefore also contained in Hj. Moreover, by definition,
{

(C ′)j−1
i | i ∈ I \ Ij

}
are contained

in Hj, and so all random variables
{

(C ′)j−1
i | i ∈ I

}
are contained in Hj. Finally, since

g ∈ Sj it holds that (C ′)j−1
g = (B′)j−1

g , and the latter is contained in Hj. To summarize, all

random variables
{

(C ′)j−1
i | i ∈ I ∪ {g}

}
are contained in Hj, and so the second item of the

claim follows.
The fourth item of the claim follows by Equation (6.12), Lemma 2.14 and the fact that

(B′)j−1
g and

{
(C ′)j−1

i | i ∈ I \ Ij
}

are all deterministic functions of Y and
{

(W ′)j−1
i | i ∈ I ∪ {g}

}
.

As for the fifth item,

H̃∞ (Y | Hj) ≥ H̃∞

(
Y |

{
W j
i

}
i∈Ij

,H′′′′j−1

)
− (|I \ Ij|+ 1) · a

= H̃∞
(
Y | H′′′j−1

)
− (|I \ Ij|+ 1) · a

≥ k − 5atj + at+ a,

where the first inequality follows by Lemma 2.12. The second equality follows by Lemma 2.14,
which is applicable as conditioned on any fixing of H′′′′j−1, the random variables {W j

i | i ∈ Ij}
are deterministic functions of X. Indeed, W j

i is a deterministic function of X and (C ′)j−1
i ,

and as shown above, all random variables {(C ′)j−1
i | i ∈ Ij} are contained in H′′′′j−1. The last

inequality follows by Equation (6.10).

29

Case 2: g 6∈ Sj. We continue from Equation (6.2), and apply Lemma 4.1 to the (X, Y)-
history

{
Cj−1
i | i ∈ Ij−1

}
,Hj−1, and rows I ∪ {g} of W j−1. We note that the hypothesis of

Lemma 4.1 is met. Indeed, as shown above, for any i ∈ I ∪ {g}, W j−1
i is a deterministic

function of X and Hj−1. Moreover, Equation (4.1) of Lemma 4.1 follows by Equation (6.3),
and Equation (4.2) follows by our choice of h. Therefore, by Lemma 4.1 and Equation (6.2)
we have that (

Bj−1
g ,H′j−1

)
≈2εj−1+6ε′ (Ua, ·) ,

where

H′j−1 =
({
W j−1
i

}
i∈I∪{g} , Z

j−1
g ,

{
Aj−1
i

}
i∈I∪{g} ,

{(
W j−1
i

)
|s
}
i∈I∪{g} ,

{
Cj−1
i

}
i∈Ij−1

,Hj−1

)
is an (X, Y)-history. Furthermore, by the third item of Lemma 4.1 and by Equation (6.3) it
holds that

H̃∞
(
Y | H′j−1

)
≥ H̃∞

(
Y |

{
Cj−1
i

}
i∈Ij−1

,Hj−1

)
− |I ∪ {g}| · a ≥ k− 5atj+ 3at+ a. (6.13)

The fourth item of Lemma 4.1, with N = XG, together with Equation (6.4) imply that

H̃∞
(
Xg | H′j−1

)
≥ H̃∞

(
Xg |

{
Cj−1
i

}
i∈Ij−1

,Hj−1

)
− |I ∪ {g}| · h ≥ `− 5htj + 4ht. (6.14)

Note that
{
Cj−1
i | i ∈ Ij−1

}
are all contained in H′j−1 even prior to the application of the

two-steps look-ahead extractor. But in fact, after this application, all random variables in{
Cj−1
i | i ∈ Ij

}
are contianed in H′j−1. To see this, recall that Aj−1

i = Cj−1
i for all i ∈ Sj.

Furthermore, i ∈ Sj ⇐⇒ i ∈ Ij as g 6∈ Sj. Since Ij = Ij−1∪Ij, and since {Aj−1
i | i ∈ I∪{g}}

are all contained in H′j−1, the claimed assertion follows. Namely, for all i ∈ Ij, the random

variable Cj−1
i is contained in H′j−1.

We now apply Lemma 3.4 to the (X, Y)-historyH′j−1, with P = Bj−1
g and J =

{
(W ′)j−1

i | i ∈ Ij
}

.
Lemma 3.4 is applicable as Bj−1

g is a deterministic function of Y and W j−1
g , which is con-

tained in H′j−1. Moreover, by the above, for each i ∈ Ij, the random variable Cj−1
i is

contained in H′j−1, and so
{

(W ′)j−1
i | i ∈ Ij

}
are all deterministic functions of X and H′j−1.

Thus, Lemma 3.4 implies that(
Bj−1
g ,

{
(W ′)j−1

i

}
i∈Ij

,H′j−1

)
≈2εj−1+6ε′ (Ua, ·) .

In terms of entropy-loss, Lemma 2.12 together with Equation (6.14) imply that

H̃∞

(
Xg |

{
(W ′)j−1

i

}
i∈Ij

,H′j−1

)
≥ H̃∞

(
Xg | H′j−1

)
− |Ij| · h ≥ `− 5htj + 3ht+ h. (6.15)

We now apply Lemma 3.3 to the (X, Y)-history
{

(W ′)j−1
i | i ∈ Ij

}
, H′j−1, with P = Bj−1

g ,

M = Xg and the extractor Ext3. Recall that (W ′)j−1
g = Ext3

(
Xg, C

j−1
g

)
. Since g 6∈ Sj, it

follows that Cj−1
g = Bj−1

g . Thus, Lemma 3.3 implies that(
(W ′)j−1

g , Bj−1
g ,

{
(W ′)j−1

i

}
i∈Ij

,H′j−1

)
≈2εj−1+8ε′ (Uh, ·) .

30

Lemma 3.3 is applicable since Bj−1
g is a deterministic function of Y and W j−1

g , which is
contained in H′j−1. Furthermore, Equation (3.2) of Lemma 3.3 follows by Equation (6.15).
In terms of entropy-loss, we have that

H̃∞

(
Y | Bj−1

g ,
{

(W ′)j−1
i

}
i∈Ij

,H′j−1

)
≥ H̃∞

(
Y |

{
(W ′)j−1

i

}
i∈Ij

,H′j−1

)
− a

= H̃∞
(
Y | H′j−1

)
− a

≥ k − 5atj + 3at, (6.16)

where the first inequality follows by Lemma 2.12 and the fact that
∣∣Bj−1

g

∣∣ = a. The second
equality follows by Lemma 2.14 and the fact that conditioned on any fixing ofH′j−1, each ran-

dom variable in
{

(W ′)j−1
i | i ∈ Ij

}
is a deterministic function of X. Indeed, as shown above,{

Cj−1
i | i ∈ Ij

}
are all contained in H′j−1. The last inequality follows by Equation (6.13).

We now apply Lemma 3.4 to the (X, Y)-history Bj−1
g ,

{
(W ′)j−1

i | i ∈ Ij
}

, H′j−1, with
P = (W ′)j−1

g and

J =
{

(C ′)j−1
i | i ∈ Ij

}
∪
{
Cj−1
i | i ∈ I \ Ij

}
.

Lemma 3.4 is applicable since (W ′)j−1
g is a deterministic function of X and Cj−1

g = Bj−1
g ,

which is contained in H′j−1. On the other hand, each random variable in
{

(C ′)j−1
i | i ∈ Ij

}
is a deterministic function of Y and

{
(W ′)j−1

i | i ∈ Ij
}

, and the latter are contained in the

history to which we apply the lemma. Similarly, every random variable in
{
Cj−1
i | i ∈ I \ Ij

}
is a deterministic function of Y and

{
W j−1
i | i ∈ I \ Ij

}
, and the latter are contained inH′j−1.

We conclude that (
(W ′)j−1

g ,H′′j−1

)
≈2εj−1+8ε′ (Uh, ·) ,

where
H′′j−1 =

({
(C ′)j−1

i

}
i∈Ij

,
{
Cj−1
i

}
i∈I\Ij

, Bj−1
g ,

{
(W ′)j−1

i

}
i∈Ij

,H′j−1

)
.

In terms of entropy, Equation (6.16) together with Lemma 2.12 imply that

H̃∞
(
Y | H′′j−1

)
≥ H̃∞

(
Y | Bj−1

g ,
{

(W ′)j−1
i

}
i∈Ij

,H′j−1

)
− |I| · a

≥ k − 5atj + 2at+ a. (6.17)

Recall that (A′)j−1
g = Ext1(Y, ((W ′)j−1

g)|s). We apply Lemma 3.3 to the (X, Y)-history
H′′j−1 with P = ((W ′)j−1

g)|s, M = Y and the extractor Ext1. Lemma 3.3 is applicable since
(W ′)j−1

g is a deterministic function of X and Cj−1
g = Bj−1

g , which is contained in H′′j−1.
Furthermore, Equation (3.2) of Lemma 3.3 holds by Equation (6.17). Thus, Lemma 3.3
implies that (

(A′)j−1
g , (W ′)j−1

g ,H′′j−1

)
≈2εj−1+10ε′ (Ua, ·) .

In terms of entropy-loss, we have that

H̃∞
(
Xg | (W ′)j−1

g ,H′′j−1

)
≥ H̃∞

(
Xg | H′′j−1

)
− h

= H̃∞

(
Xg |

{
(W ′)j−1

i

}
i∈Ij

,H′j−1

)
− h

≥ `− 5htj + 3ht, (6.18)

31

where the first inequality follows by Lemma 2.12 and the fact that
∣∣(W ′)j−1

g

∣∣ = h. The
second equality follows by Lemma 2.14 which is applicable as conditioned on any fixing of
H′j−1, all random variables

{
(C ′)j−1

i | i ∈ Ij
}

,
{
Cj−1
i | i ∈ I \ Ij

}
and Bj−1

g are deterministic
functions of Y . The last inequality follows by Equation (6.15).

Next we apply Lemma 3.4 to the (X, Y)-history (W ′)j−1
g ,H′′j−1, with P = (A′)j−1

g and

J =
{
W j
i | i ∈ Ij

}
∪
{

(W ′)j−1
i | i ∈ I \ Ij

}
to conclude that(

(A′)j−1
g ,

{
W j
i

}
i∈Ij

,
{

(W ′)j−1
i

}
i∈{g}∪I\Ij

,H′′j−1

)
≈2εj−1+10ε′ (Ua, ·) .

This application of Lemma 3.4 is valid since (A′)j−1
g is a deterministic function of Y and

(W ′)j−1
g , which is contained in the history to which we apply the lemma. On the other hand,{

W j
i | i ∈ Ij

}
are all deterministic functions of X and

{
(C ′)ji | i ∈ Ij

}
, all of which are con-

tained in H′′j−1. Furthermore, all random variables
{

(W ′)j−1
i | i ∈ I \ Ij

}
are deterministic

functions of X and
{
Cj−1
i | i ∈ I \ Ij

}
, and these random variables are contained in H′′j−1.

As for the entropy-loss, Lemma 2.12 and Equation (6.18) imply that

H̃∞

(
Xg |

{
W j
i

}
i∈Ij

,
{

(W ′)j−1
i

}
i∈{g}∪I\Ij

,H′′j−1

)
≥ H̃∞

(
Xg | (W ′)j−1

g ,H′′j−1

)
− |I| · h

≥ `− 5htj + 2ht+ h. (6.19)

We apply Lemma 3.3 to the (X, Y)-history
{
W j
i | i ∈ Ij

}
,
{

(W ′)j−1
i | i ∈ {g} ∪ I \ Ij

}
,

H′′j−1, with P = (A′)j−1
g , M = Xg and the extractor Ext3. Recall thatW j

g = Ext3
(
Xg, (C

′)j−1
g

)
.

Since g 6∈ Sj, we have that (C ′)j−1
g = (A′)j−1

g . Thus, Lemma 3.3 implies that(
W j
g , (A

′)j−1
g ,

{
W j
i

}
i∈Ij

,
{

(W ′)j−1
i

}
i∈{g}∪I\Ij

,H′′j−1

)
≈2εj−1+12ε′ (Uh, ·) .

We note that Lemma 3.3 is applicable since (A′)j−1
g is a deterministic function of Y and

(W ′)j−1
g , which is contained in the history to which we apply the lemma. Furthermore,

Equation (3.2) of Lemma 3.3 follows by Equation (6.19).
We apply Lemma 3.4 to the (X, Y)-history (A′)j−1

g ,
{
W j
i | i ∈ Ij

}
,
{

(W ′)j−1
i | i ∈ {g} ∪ I \ Ij

}
,

H′′j−1, with P = W j
g and J =

{
(C ′)j−1

i | i ∈ I \ Ij
}

. Lemma 3.4 is applicable since W j
g is

a deterministic function of X and (C ′)j−1
g . Recall that (C ′)j−1

g = (A′)j−1
g as g 6∈ Sj, and so

(C ′)j−1
g is contained in the history to which we apply the lemma. Moreover, all random vari-

ables
{

(C ′)j−1
i | i ∈ I \ Ij

}
are deterministic functions of Y and

{
(W ′)j−1

i | i ∈ I \ Ij
}

and
these random variables are contained in the history to which we apply the lemma. Therefore,
Lemma 3.4 implies that (

W j
g ,Hj

)
≈2εj−1+12ε′ (Uh, ·) ,

where

Hj =
({

(C ′)j−1
i

}
i∈I\Ij

, (A′)j−1
g ,

{
W j
i

}
i∈Ij

,
{

(W ′)j−1
i

}
i∈{g}∪I\Ij

,H′′j−1

)
.

32

This proves the third item of the claim. The first item of the claim holds sinceHj contains{
W j
i | i ∈ Ij

}
. To see that the second item follows, recall that

{
(C ′)j−1

i | i ∈ Ij
}

are con-

tained inH′′j−1. By the last application of Lemma 3.4, the random variables
{

(C ′)j−1
i | i ∈ I \ Ij

}
are also contained in Hj. Finally, since g 6∈ Sj we have that (C ′)j−1

g = (A′)j−1
g , which is also

contained in Hj. Thus,
{

(C ′)j−1
i | i ∈ I ∪ {g}

}
are all contained in Hj, and the second item

of the claim holds.
The fourth item follows by Equation (6.19), Lemma 2.14 and the fact that (A′)j−1

g is a

deterministic function of Y conditioned on the fixing of (W ′)j−1
g , and

{
(C ′)j−1

i | i ∈ I \ Ij
}

are deterministic functions of Y conditioned on the fixing of
{

(W ′)j−1
i | i ∈ I \ Ij

}
. The

fifth item follows since

H̃∞ (Y | Hj) ≥ H̃∞

(
Y |

{
W j
i

}
i∈Ij

,
{

(W ′)j−1
i

}
i∈{g}∪I\Ij

,H′′j−1

)
− (1 + |I \ Ij|) · a

= H̃∞
(
Y | H′′j−1

)
− (1 + |I \ Ij|) · a

≥ k − 5atj + at+ a,

where the first inequality follows by Lemma 2.12. The second equality follows by Lemma 2.14
and the fact that conditioned on any fixing of H′′j−1, the random variables

{
W j
i | i ∈ Ij

}
,{

(W ′)j−1
i | i ∈ {g} ∪ I \ Ij

}
are deterministic functions of X. The third inequality follows

by Equation (6.17).
This concludes the proof for the case g 6∈ Sj. The proof of the claim then follows.

By Claim 6.3 applied with j = q, we have that H , Hq contains
{
W j
i | i ∈ I

}
as I = Iq.

Furthermore,

•
(
W q
g ,H

)
≈ε (Uh,H). This follows since

εq ≤ (2q − 1) · 16 · ε′ ≤ 32r · ε′ ≤ ε,

where the second inequality follows since q = dlog2 re, and the last inequality holds by
our choice of ε′.

• H̃∞(Xg | H) ≥ `− 5htq ≥ 0.9`.

• H̃∞(Y | H) ≥ k − 5atq ≥ 0.9k.

Since W̄ = W q, the first three items of the theorem follows. As for the fourth item, recall
that W̄g = W q

g = Ext3
(
Xg, (C

′)q−1
g

)
. The second item of the claim states that (C ′)q−1

g is
contained inHq, and so W q

g is a deterministic function of X andH, as stated. This concludes
the proof of the theorem.

6.1 A comparison with [Li13]

As mentioned, our construction of LCBs builds on ideas by Li [Li13]. For the construction
of his multi-source extractor, Li constructs an object related to LCBs that has a weaker

33

guarantee. Namely, an output variable that corresponds to a good input variable is uniform
even given some bounded number of any other output variables which correspond to good
input variables. Since both Li’s construction and ours are fairly technical, it might be hard
to pinpoint the new ideas required so to guarantee the stronger property, and so in this
section we highlight the differences between the two constructions.

To review the ideas used so to guarantee the stronger property of LCBs, we first give
a high-level overview of Li’s argument used for the construction of his related object. Let
X be a random variable that has the form of an r × ` matrix with the following property:
there exists G ⊆ [r] such that for each i ∈ G, Xi is uniform. Let Y be an independent
weak-source. Given a parameter t ≥ 1, Li’s pseudorandom object produces an r×m matrix
Z with the following property. For any S ⊆ G with size at most t, it holds that the joint
distribution of {Zi | i ∈ S} is close to uniform. To this end, Li’s algorithm runs for O(logt r)
iterations, where the input for iteration i is a matrix X i as well as X, Y , and the output is a
matrix X i+1. The output matrix Z is defined to be the output matrix produced by the last
iteration. We set X1 to be the h leftmost columns of X, for some sufficiently large integer
h. In each iteration, the algorithm is defined as follows.

First, the algorithm applies a look-ahead extractor for t steps to each row ` ∈ [r] of X i

and Y . The output is a sequence of t “blocks” which we denote by Ri
`,1, . . . , R

i
`,t. Then, the

algorithm selects for each row ` one of these blocks according to some rule. The selected
block is used as a seed for extracting from X` to obtain the `th row of the output matrix
X i+1. The rule for selecting the block is based on the representation of ` in base t. More
precisely, the selected block corresponds to the ith digit in this representation.

The analysis is as follows. Let S ⊆ G and let i1 > i2 > · · · > it be the elements in
S. Li shows that at some iteration j1, row i1 of Xj1 is uniform even given the rows of
Xj1 indexed by i2, . . . , it. Moreover, this property is preserved throughout the remaining
iterations (namely, for Xj with j > j1). Similarly, at some iteration j2 ≥ j1, row i2 of Xj2

is uniform even given the rows of Xj2 with indices i3, . . . , it. Therefore, after all iterations
were executed, for every v ∈ [t], Ziv is close to uniform even given (Zi1 , . . . , Ziv−1). Thus,
the joint distribution of the rows of Z indexed by S is close to uniform.

To construct our LCBs, our first observation is that one can simply use two-steps look-
ahead extractors in the construction above, and there is no reason to use look-ahead extrac-
tors for t steps, where t is the parameter that determines the independence guarantee. This
observation can also be used to simplify Li’s construction and analysis without deteriorating
the parameters. In fact, it seems to improve the parameters as although with the two-steps
look-ahead extractors one needs to run for log2 r iterations rather than for logt r iterations,
in each iteration one needs to fix only 2t blocks rather than t2 blocks. This saves a factor
of t/ log t in entropy-loss. In the setting used by Li, t = polylog(n), and so this saves a
polylog(n) factor in entropy-loss.

Our second idea, which becomes somewhat more transparent given the observation above,
is the “flip-flip” idea. Using the “flip-flip” idea we can guarantee the stronger property we
need (without any asymptotical cost in parameters). Namely, as we work with only two
blocks (which we call A,B), we can break the correlation between a good row and any other

34

row by first giving the B variable to one of the rows and the A variable to the second row,
and then flip. Regardless of which row is good, at the end of this process the good row will
be uniform even given the other row. We note that when working with t blocks, one can
apply an analog strategy which will require t iterations. Indeed, while two blocks induce a
partition of the complete graph on r vertices to two parts, t blocks induce a partition of the
graph to t parts. One can then consider a cyclic assignment of the blocks to the different
parts in the partition (though this will deteriorate the entropy requirement by another factor
of t).

7 Mergers with Weak-Seeds

In this section we prove Theorem 1.5 using Theorem 6.2. We start by giving a formal
definition of mergers with weak-seeds using the definition of somewhere-random sources.
We further define strong mergers with weak-seeds. We then give a complete and formal
restatement of Theorem 1.5 and present its proof.

Definition 7.1 (Mergers with weak-seeds). A function

Merg :
(
{0, 1}`

)r × {0, 1}n → {0, 1}m
is called a merger with weak-seeds for entropy k, with error ε, if the following holds. For
any r × ` somewhere-random source X and an independent (n, k)-weak-source Y , it holds
that

Merg(X, Y) ≈ε Um.
We say that Merg is strong if

(Merg(X, Y), Y) ≈ε (Um, Y) .

Theorem 7.2. For all integers n, r and for any ε > 0, there exists a poly(n, r, log(1/ε))-time
computable strong merger with weak-seeds for entropy k, with error ε,

Merg :
(
{0, 1}`

)r × {0, 1}n → {0, 1}m,
with

` = Θ
(
r2 · log(r) · log

(nr
ε

))
,

k = Ω

(
r · log(r) · log

(
r · log n

ε

))
,

m = `/(2r).

Before proving the theorem, we remark that if one is willing to output Ω(`/(r log r))
bits rather than Ω(`/r), one can construct a merger with weak-seeds using the LCB from
Theorem 6.2 in a slightly simpler way. Indeed, one can compute W = LCB(X, Y) with t = r
and then output Merg(X, Y) = ⊕ri=1Wi. That is, one can skip the extra “round” that has
the purpose of increasing the output length.

35

Proof of Theorem 7.2. We first describe the construction of Merg, and then turn to the
analysis. To this end, we need the following building blocks.

• Let LCB :
(
{0, 1}`

)r × {0, 1}n → (
{0, 1}h

)r
be the t-LCB from Theorem 6.2, set with

t = r and error ε. Note that the hypothesis of Theorem 6.2 is met by our choice of
`, k. Furthermore, by Theorem 6.2, h = Θ(r · log(nr/ε)).

• Set s = Θ(log(`/ε)) = Θ(log(r · log(n)/ε)). Let Ext4 : {0, 1}n × {0, 1}h → {0, 1}s be
the strong seeded extractor from Theorem 2.2 for entropy 2s, with error ε. Note that
h = Ω(log(n/ε)), and so a seed of length h suffices for Theorem 2.2.

• Let Ext5 : {0, 1}` × {0, 1}s → {0, 1}m be the extractor from Theorem 2.2 for entropy
2m, set to extract with error ε. Note that s was chosen so that a seed of length s
suffices for Theorem 2.2.

The function Merg is defined as follows. First, we compute the r×h matrix W = LCB(X, Y).
For each i ∈ [r], we compute

Zi = Ext4(Y,Wi),

Ti = Ext5(Xi, Zi).

The output of Merg(X, Y) is then defined to be

Merg(X, Y) =
r⊕
i=1

Ti .

We now turn to the analysis. Let g ∈ [r] be such that Xg is uniformly distributed. By
Theorem 6.2, applied with I = [r] \ {g}, there exists an (X, Y)-history H that contains
{Wi | i ∈ [r] \ {g}}, such that the following holds:

• (Wg,H) ≈ε (Uh,H).

• H̃∞(Xg | H) ≥ 0.9 · `.

• H̃∞(Y | H) ≥ 0.9 · k.

• Wg is a deterministic function of X and H.

We apply Lemma 3.4 to the (X, Y)-history H with P = Wg and J = {Zi | i ∈ [r] \ {g}}.
Lemma 3.4 is applicable since Wg is a deterministic function of X and H. Moreover, since
Zi = Ext4 (Y,Wi) and since {Wi | i ∈ [r] \ {g}} are all contained in H, the random variables
{Zi | i ∈ [r] \ {g}} are deterministic functions of Y and H. Therefore, Lemma 3.4 implies
that (

Wg, {Zi}i∈[r]\{g} ,H
)
≈ε (Uh, ·) .

36

In terms of entropy, by Lemma 2.12, we have that

H̃∞

(
Y | {Zi}i∈[r]\{g} ,H

)
≥ 0.9k − (r − 1)s ≥ 2s+ log(1/ε). (7.1)

We apply Lemma 3.3 to the (X, Y)-history {Zi | i ∈ [r] \ {g}}, H with P = Wg, M = Y
and the extractor Ext4. Lemma 3.3 is applicable since Wg is a deterministic function of
X and H. Furthermore, Equation (3.2) of Lemma 3.3 follows by Equation (7.1). Since
Zg = Ext4(Y,Wg), we have that(

Zg,Wg, {Zi}i∈[r]\{g} ,H
)
≈3ε (Us, ·) .

In terms of entropy,

H̃∞

(
Xg | Wg, {Zi}i∈[r]\{g} ,H

)
≥ H̃∞

(
Xg | {Zi}i∈[r]\{g} ,H

)
− h

= H̃∞ (Xg | H)− h
≥ 0.9`− h, (7.2)

where the first inequality follows by Lemma 2.12 and the fact that |Wg| = h. The sec-
ond equality follows by Lemma 2.14 and since conditioned on the fixing of H, the random
variables {Zi | i ∈ [r] \ {g}} are all deterministic functions of Y .

Next we apply Lemma 3.4 to the (X, Y)-history Wg, {Zi | i ∈ [r] \ {g}}, H, with P = Zg
and J = {Ti | i ∈ [r] \ {g}}. Lemma 3.4 is applicable since Zg is a deterministic function of
Y and Wg, and the latter is contained in the history to which we apply the lemma. On the
other hand, {Ti | i ∈ [r] \ {g}} are all deterministic functions of X and {Zi | i ∈ [r] \ {g}},
all of which are contained in the history to which we apply the lemma. Lemma 3.4 implies
that (

Zg, {Ti}i∈[r]\{g} ,Wg, {Zi}i∈[r]\{g} ,H
)
≈3ε (Us, ·) .

Equation (7.2) together with Lemma 2.12 imply that

H̃∞

(
Xg | {Ti}i∈[r]\{g} ,Wg, {Zi}i∈[r]\{g} ,H

)
≥ 0.9`− h− (r − 1)m ≥ 2m+ log(1/ε). (7.3)

Recall that Tg = Ext5(Xg, Zg). We apply Lemma 3.3 to the (X, Y)-history {Ti | i ∈ [r] \ {g}},
Wg, {Zi | i ∈ [r] \ {g}}, H, with P = Zg and M = Xg. The application of Lemma 3.3 is
valid since Zg is a deterministic function of Y and Wg, and the latter is contained in the
history to which we apply the lemma. Furthermore, Equation (3.2) of Lemma 3.3 holds by
Equation (7.3). Hence, Lemma 3.3 implies that(

Tg, Zg, {Ti}i∈[r]\{g} ,Wg, {Zi}i∈[r]\{g} ,H
)
≈5ε (Um, ·) .

We apply Lemma 3.4 to the (X, Y)-history Zg, {Ti | i ∈ [r] \ {g}}, Wg, {Zi | i ∈ [r] \ {g}},
H with P = Tg and J = Y . This application of Lemma 3.4 is valid since Tg is a deterministic

37

function of X and Zg, and the latter is contained in the history to which we apply the lemma.
Thus, (

Tg, Y, Zg, {Ti}i∈[r]\{g} ,Wg, {Zi}i∈[r]\{g} ,H
)
≈5ε (Um, ·) .

Lemma 2.8 then implies that(
Tg, {Ti}i∈[r]\{g} , Y

)
≈5ε (Um, ·) .

Since Merg(X, Y) = ⊕ri=1Ti, it holds that(
Merg (X, Y) , {Ti}i∈[r]\{g} , Y

)
≈5ε (Um, ·) .

By applying Lemma 2.8 again, one get that

(Merg (X, Y) , Y) ≈5ε (Um, ·) .

Note further that the error can be reduced from 5ε to ε without affecting the theorem’s
hypothesis. This concludes the proof of the theorem.

8 Three-Source Extractors with a Double-Logarithmic

Entropy Source

In this section we prove Theorem 1.3. We give a formal restatement of the theorem here
that accounts for the dependence in the error ε, as well as the strongness properties of the
extractor.

Theorem 8.1. There exist universal constants 0 < α < 1 < c such that the following holds.
For any integer n, ε > 0 and for any δ > Ω((log(n/ε)/n)α), there exists a poly(n, log(1/ε))-
time computable three-source extractor 3Ext : ({0, 1}n)3 → {0, 1}m, with error ε, that is
strong in {1, 3} and in {2, 3}, for entropies

k1 = δn,

k2 = Ω
(
(1/δ)3c · log (n/ε)

)
,

k3 = Ω

(
(1/δ)2c · log

(
log n

ε

))
.

The number of output bits is m = Ω ((1/δ)c · log(n/ε)).

For the proof of Theorem 8.1, we make use of the following two-source extractor of
Raz [Raz05].

38

Theorem 8.2 ([Raz05]). For all integers n1, n2, b1, b2, such that

n1 ≥ 6 log n1 + 2 log n2,

b1 ≥ 0.6n1 + 3 log n1 + log n2,

b2 ≥ 5 log n1,

m ≤ min (n1/80, b2/400)− 1,

there exists an efficiently-computable function Raz : {0, 1}n1 × {0, 1}n2 → {0, 1}m with the
following property. For any (n1, b1)-weak-source X, and an independent (n2, b2)-weak-source
Y ,

(Raz(X, Y), X) ≈ε (Um, X) ,

(Raz(X, Y), Y) ≈ε (Um, Y) ,

where ε = 2−1.5m.

We also make use of the following construction of a somewhere-condenser.

Theorem 8.3 ([Raz05, BKS+05, Zuc07]). There exist universal constants c1, c2 > 0 such
that the following holds. For every δ > 0, there exists an efficiently-computable function
Cond : {0, 1}n → ({0, 1}`)r, where the output is interpreted as an r × ` matrix, with r =
Θ((1/δ)c1) rows and ` = Θ(n · δc2) columns. If X is an (n, δn)-weak-source, then Cond(X)
is 2−Ω(δ2n)-close to a convex combination of distributions, each of which has some row with
min-entropy rate 0.9.

Proof of Theorem 8.1. We start by describing the construction of 3Ext, and then turn to the
analysis. For the construction of 3Ext we need the following building blocks:

• Let Cond : {0, 1}n →
(
{0, 1}`

)r
be the somewhere-condenser from Theorem 8.3. By

Theorem 8.3, r = Θ((1/δ)c1) and ` = Θ(n · δc2), where c1, c2 > 1 are the universal
constants from Theorem 8.3. We set c = c1.

• Let Raz : {0, 1}` × {0, 1}n → {0, 1}t be the extractor from Theorem 8.2, set to extract
t = Θ(r2 · log(r) · log(nr/ε)) bits.

• Let Merg : ({0, 1}t)r → {0, 1}m be the merger with weak-seeds from Theorem 7.2, set
with error ε and output length m = t/(2r) = Θ(r · log(r) · log(nr/ε)).

Given these building blocks, the construction of 3Ext is as follows. Let X1, X2, X3 be
n-bit sources with entropies k1, k2, k3, respectively. We first compute Cond(X1), which is an
r×` matrix R. Secondly, for each i ∈ [r], we compute Si = Raz(Ri, X2). We stack S1, . . . , Sr
in an r × t matrix S. The output is then 3Ext(X1, X2, X3) = Merg(S,X3).

We now turn to the analysis. We prove that the extractor is strong in {2, 3}. Since Raz
is strong in both of its sources, a similar argument can be used to show that the extractor
is also strong in {1, 3}. By Theorem 8.3, since X1 is an (n, δn)-weak-source, the matrix

39

R is 2−Ω(δ2n)-close to a convex combination of distributions, each of which has some row
with min-entropy rate 0.9. Therefore, we may assume that R is 2−Ω(δ2n)-close to a random
variable R′, such that there exists g ∈ [r] where R′g has min-entropy rate 0.9. Note that by

taking the universal constant α to be smaller than 1/2, we get that 2−Ω(δ2n) ≤ ε.
One can easily verify that the hypothesis of Theorem 8.2 is met assuming

δ ≥ Ω

((
log(n/ε)

n

)1/(3c1+c2)
)
,

which holds by taking the universal constant α = 1/(3c1 + c2) (note that α ≤ 1/2). By
Theorem 8.2, and since 2−1.5t ≤ ε,(

Raz(R′g, X2), X2

)
≈ε (Ut, X2).

Since (Rg, R
′
g) and X2 are independent and since SD(R,R′) ≤ ε, Lemma 2.4 (applied to

the random function f(Z) = (Raz(Zg, X2), X2), where X2 is the internal randomness of f)
implies that

(Sg, X2) = (Raz(Rg, X2), X2) ≈2ε (Ut, X2).

Thus, by Markov’s inequality, with probability at least 1 −
√
ε over the fixing X2 = x2, it

holds that (Sg | X2 = x2) is 2
√
ε-close to uniform. We condition on the event X2 = x2 for

such x2. Lemma 2.10 then implies that S ≈2
√
ε S
′, where S ′ is a somewhere-random source.

We apply the merger from Theorem 7.2 to S ′ and the weak-source X3. By the choice of
t, and since k3 ≥ Ω(r · log(r) · log(r log(n)/ε)), the hypothesis of Theorem 7.2 is met, and so
Theorem 7.2 implies that

(Merg(S ′, X3), X3) ≈ε (Um, X3) . (8.1)

Since S ≈2
√
ε S

′, and since (S, S ′) and X3 are independent, Lemma 2.4 (applied to the
random function f(Z) = (Merg(Z,X3), X3), where X3 is the internal randomness of f),
implies that

(Merg(S,X3), X3) ≈2
√
ε (Merg(S ′, X3), X3) , (8.2)

and so by Equation (8.1) and Equation (8.2) we have that

(Merg(S,X3), X3) ≈3
√
ε (Um, X3) .

By Markov’s inequality, with probability at least 1− ε1/4 over the further fixing of X3 = x3,
it holds that Merg(S, x3) is 3ε1/4-close to uniform. Thus, we have that

(3Ext(X1, X2, X3), X2, X3) = (Merg(S,X3), X2, X3) ≈O(ε1/4) (Um, X2, X3) .

Note that the error can be reduced from O(ε1/4) to ε without affecting the theorem statement.
This concludes the proof of the theorem.

40

Acknowledgement

This work began while the author was hosted as an intern of Guy Rothblum at the Microsoft
Research Silicon Valley lab. The author wish to thank Guy for his warm hospitality and
guidance, for many insightful discussions regarding this work, and for his suggestions that
improved the presentation of this paper. During the internship we had many interesting
discussions with Raghu Meka and Omer Reingold for whom we wish to thank.

We thank Oded Goldreich for assisting us in choosing an appropriate name for our object
of interest – a local correlation breaker (which was initially called a “wiser”). We thank Roei
Tell for his suggestions which improved the presentation of this paper. The author would
like to thank his advisor Ran Raz for his continues encouragement.

References

[BKS+05] B. Barak, G. Kindler, R. Shaltiel, B. Sudakov, and A. Wigderson. Simulat-
ing independence: New constructions of condensers, Ramsey graphs, dispersers,
and extractors. In Proceedings of the thirty-seventh annual ACM Symposium on
Theory of Computing, pages 1–10. ACM, 2005.

[Bou05] J. Bourgain. More on the sum-product phenomenon in prime fields and its
applications. International Journal of Number Theory, 1(01):1–32, 2005.

[BRSW12] B. Barak, A. Rao, R. Shaltiel, and A. Wigderson. 2-source dispersers for no(1)

entropy, and Ramsey graphs beating the Frankl-Wilson construction. Annals of
Mathematics, 176(3):1483–1544, 2012.

[CG88] B. Chor and O. Goldreich. Unbiased bits from sources of weak randomness
and probabilistic communication complexity. SIAM Journal on Computing,
17(2):230–261, 1988.

[DKSS09] Z. Dvir, S. Kopparty, S. Saraf, and M. Sudan. Extensions to the method of
multiplicities, with applications to Kakeya sets and mergers. In 50th Annual
IEEE Symposium on Foundations of Computer Science, pages 181–190. IEEE,
2009.

[DORS08] Y. Dodis, R. Ostrovsky, L. Reyzin, and A. Smith. Fuzzy extractors: How to
generate strong keys from biometrics and other noisy data. SIAM Journal on
Computing, 38(1):97–139, 2008.

[DP07] S. Dziembowski and K. Pietrzak. Intrusion-resilient secret sharing. In 48th
Annual IEEE Symposium on Foundations of Computer Science, pages 227–237,
2007.

[DR08] Z. Dvir and R. Raz. Analyzing linear mergers. Random Structures & Algorithms,
32(3):334–345, 2008.

41

[DS07] Z. Dvir and A. Shpilka. An improved analysis of linear mergers. computational
complexity, 16(1):34–59, 2007.

[DW09] Y. Dodis and D. Wichs. Non-malleable extractors and symmetric key cryptogra-
phy from weak secrets. In Proceedings of the forty-first annual ACM Symposium
on Theory of Computing, pages 601–610. ACM, 2009.

[DW11] Z. Dvir and A. Wigderson. Kakeya sets, new mergers, and old extractors. SIAM
Journal on Computing, 40(3):778–792, 2011.

[GUV09] V. Guruswami, C. Umans, and S. Vadhan. Unbalanced expanders and random-
ness extractors from Parvaresh–Vardy codes. Journal of the ACM, 56(4):20,
2009.

[Li11] X. Li. Improved constructions of three source extractors. In IEEE 26th Annual
Conference on Computational Complexity, pages 126–136, 2011.

[Li12] X. Li. Non-malleable condensers for arbitrary min-entropy, and almost optimal
protocols for privacy amplification. arXiv preprint arXiv:1211.0651, 2012.

[Li13] X. Li. Extractors for a constant number of independent sources with polylogarith-
mic min-entropy. In IEEE 54th Annual Symposium on Foundations of Computer
Science, pages 100–109, 2013.

[Li15] X. Li. Three-source extractors for polylogarithmic min-entropy. Electronic Col-
loquium on Computational Complexity (ECCC), 2015.

[LRVW03] C.J. Lu, O. Reingold, S. Vadhan, and A. Wigderson. Extractors: Optimal up to
constant factors. In Proceedings of the thirty-fifth annual ACM Symposium on
Theory of Computing, pages 602–611. ACM, 2003.

[Rao09] A. Rao. Extractors for a constant number of polynomially small min-entropy
independent sources. SIAM Journal on Computing, 39(1):168–194, 2009.

[Raz05] R. Raz. Extractors with weak random seeds. In Proceedings of the thirty-seventh
annual ACM Symposium on Theory of Computing, pages 11–20, 2005.

[TS96] A. Ta-Shma. On extracting randomness from weak random sources. In Pro-
ceedings of the twenty-eighth annual ACM Symposium on Theory of Computing,
pages 276–285, 1996.

[Zuc07] D. Zuckerman. Linear degree extractors and the inapproximability of max clique
and chromatic number. Theory of Computing, 3:103–128, 2007.

42

A Proof of Lemma 4.1

For the proof of Lemma 4.1 we use the following simple lemma.

Lemma A.1. Let X, Y be two random variable over a common domain D. Let E ⊆ D be
an event. Then,

SD (X | E, Y | E) ≤ 1

Pr[E]
· SD (X, Y) .

We start by proving the following lemma.

Lemma A.2. Let L,R be two independent random variables, and let H be an (L,R)-history.
Let M be a random variable over {0, 1}m which is a deterministic function of H, L such that

(M,H) ≈δM (Um,H) . (A.1)

Let J be a random variable over {0, 1}j which is a deterministic function of H, L. Let P be
a random variable over {0, 1}p which is a deterministic function of H, R, J , such that

(P, J,H) ≈δP (Up, J,H) . (A.2)

Let Ext : {0, 1}m×{0, 1}p → {0, 1}f be a strong seeded extractor for entropy m−j− log(1/ε),
with error ε. Define F = Ext(M,P). Then, P, J,H is an (L,R)-history, and

(F, P, J,H) ≈δP +δM+2ε (Uf , P, J,H) .

Proof of Lemma A.2. For h ∈ supp(H) denote by Jh the random variable (J | H = h). For
j ∈ supp(Jh) let Eh,j be the event H = h, Jh = j. For the sake of readability, we let Mh,j

denote the random variable (M | Eh,j). Similarly, we define Ph,j, Lh,j, Rh,j to be (P | Eh,j),
(L | Eh,j) and (R | Eh,j), respectively.

Since J is a deterministic function of H, L, the random variable Jh is a deterministic
function of L. Thus, even after further conditioning on the event Jh = j, the random variables
L,R remain independent. That is, the random variables Lh,j and Rh,j are independent.
Furthermore, since P is a deterministic function of H, R, J and M is a deterministic function
of H, L, we have that Mh,j and Ph,j are independent.

Let δP ;h,j = SD (Ph,j, Up). By Equation (A.2) and Lemma 2.5 we have that

E
h∼H

E
j∼Jh

[δP ;h,j] ≤ δP .

Since Mh,j and Ph,j are independent, Lemma 2.5 implies that

SD ((Ext (Mh,j, Ph,j) , Ph,j) (Uf , Ph,j)) = E
s∼Ph,j

[SD (Ext (Mh,j, s) , Uf)] .

As the function g(s) = SD (Ext (Mh,j, s) , Uf) attains values in the interval [0, 1], Lemma 2.9
yields

E
s∼Ph,j

[SD (Ext (Mh,j, s) , Uf)] ≤ E
s∼Up

[SD (Ext (Mh,j, s) , Uf)] + δP ;h,j.

43

Thus,

SD ((F, P, J,H) , (Uf , P, J,H)) = E
h∼H

E
j∼Jh

E
s∼Ph,j

[SD (Ext (Mh,j, s) , Uf)]

≤ E
h∼H

E
j∼Jh

(
E

s∼Up

[SD (Ext (Mh,j, s) , Uf)] + δP ;h,j

)
≤ E

h∼H
E

j∼Jh
E

s∼Up

[SD (Ext (Mh,j, s) , Uf)] + δP .

Let δM ;h = SD ((M | H = h),M ′), where M ′ is a random variable that is uniformly dis-
tributed over {0, 1}m and is independent of H. By Equation (A.1) and Lemma 2.5,

E
h∼H

[δM ;h] ≤ δM .

Lemma A.1 implies that for every j ∈ supp(Jh), the distribution of the random variable Mh,j

is δM ;h,j-close to the distribution (M ′ | Jh = j), where

δM ;h,j =
δM ;h

Pr[Jh = j]
.

Let M ′
h,j be a random variable with distribution (M ′ | Jh = j). By the triangle inequality

and Lemma 2.4, it holds that

SD (Ext (Mh,j, s) , Uf) ≤ SD
(
Ext (Mh,j, s) ,Ext

(
M ′

h,j, s
))

+ SD
(
Ext
(
M ′

h,j, s
)
, Uf
)

≤ SD
(
Mh,j,M

′
h,j

)
+ SD

(
Ext
(
M ′

h,j, s
)
, Uf
)

= δM ;h,j + SD
(
Ext
(
M ′

h,j, s
)
, Uf
)
,

and so,

SD ((F, P, J,H) , (Uf , P, J,H)) ≤ E
h∼H

E
j∼Jh

E
s∼Up

[
SD
(
Ext
(
M ′

h,j, s
)
, Uf
)

+ δM ;h,j

]
+ δP

≤ E
h∼H

E
j∼Jh

E
s∼Up

[
SD
(
Ext
(
M ′

h,j, s
)
, Uf
)]

+ δM + δP . (A.3)

By Lemma 2.12, for any h ∈ supp(H), H̃∞(M ′
h,j) = H̃∞(M ′ | Jh = j) ≥ m − j. Thus, by

Lemma 2.13, for any h ∈ supp(H),

Pr
j∼Jh

[
H∞(M ′

h,j) ≥ m− j − log(1/ε)
]
≥ 1− ε.

We say that a pair h, j, where h ∈ supp(H) and j ∈ supp(Jh), is good if H∞(M ′
h,j) ≥ m− j−

log(1/ε). By the above, for every h ∈ supp(H), with probability 1 − ε over j ∼ Jh it holds
that the pair h, j is good. Since Ext is a strong seeded extractor for entropy m− j− log(1/ε)
and error ε, we have that the contribution of any good pair h, j to the expectation in
Equation (A.3) is at most ε. Since 1 − ε fraction of the pairs are good, and since any pair
contributes at most 1 to the expectation, we get that

SD ((F, P, J,H) , (Uf , P, J,H)) ≤ 2ε+ δM + δP ,

44

as stated. To conclude the proof of the lemma, note that P, J,H is an (L,R)-history since H
is an (L,R)-history, J is a deterministic function of H, L, and P is a deterministic function
of R and J,H (note that J precede P in the history and so P is allowed to depend on J).

Proof of Lemma 4.1. We apply Lemma 3.3 to the (X, Y)-historyH with P = (Wg)|s, M = Y
and the extractor Ext1. The hypothesis of Lemma 3.3 is met since the random variable P =
(Wg)|s is a deterministic function of X,H. Moreover, by the Equation (4.1), H̃∞ (Y | H) ≥
2a + log(1/ε). Since Ext1 is a strong seeded extractor for entropy 2a, Equation (3.2) of
Lemma 3.3 holds. Since Ag = Ext1 (Y, (Wg)|s), Lemma 3.3 together with Equation (4.3)
imply that

(Ag, (Wg)|s,H) ≈δ+2ε (Ua, ·).

Moreover, (Wg)|s,H is an (X, Y)-history.
Note that Ag is a deterministic function of Y and (Wg)|s, whereas the joint distribution

of {(Wi)|s}i∈[r]\{g} is a deterministic function of X and H. Thus, Lemma 3.4 applied with
P = Ag, J = {(Wi)|s}i∈[r]\{g} and the (X, Y)-history (Wg)|s,H, implies that

(Ag,W |s,H) ≈δ+2ε (Ua, ·). (A.4)

Furthermore, W |s,H is an (X, Y)-history.
We apply Lemma A.2 to the (X, Y)-history H, with M = Wg, P = Ag, J = W |s and

the extractor Ext2. The hypothesis of Lemma A.2 is met since W |s,Wg are deterministic
functions of H, X, and Ag is a deterministic function of Y,W |s. Moreover, Equation (4.2)
implies that

|Wg| − |(W |s)| − log(1/ε) = h− rs− log(1/ε) ≥ 2s.

Since Ext2 is a strong seeded extractor for entropy 2s with error ε, Lemma A.2 together with
Equation (4.3) and Equation (A.4) imply that

(Zg, Ag,W |s,H) ≈2δ+4ε (Us, ·). (A.5)

Furthermore, Ag,W |s,H is an (X, Y)-history.
We apply Lemma 3.4 with P = Zg, the (X, Y)-history Ag,W |s,H and J = {Ai}i∈[r]\{g},

and conclude that
(Zg, {Ai}ri=1,W |s,H) ≈2δ+4ε (Us, ·). (A.6)

This application of Lemma 3.4 is valid since Zg = Ext2(Wg, Ag) is a deterministic function of
Ag, which is contained in the (X, Y)-history to which we apply the lemma, and Wg which,
by assumption, is a deterministic function of X,H (and H is also contained in (X, Y)-history
above). On the other hand, the joint distribution of {Ai}i∈[r]\{g} is a deterministic function of
Y,W |s, and W |s is contained in the (X, Y)-history to which we apply the lemma. Lemma 3.4
further implies that {Ai}ri=1,W |s,H is an (X, Y)-history.

Next, we apply Lemma 3.3 to the (X, Y)-history {Ai}ri=1,W |s,H with P = Zg, M = Y
and the extractor Ext1. The hypothesis of Lemma 3.3 is met since the random variable

45

Zg = Ext2(Wg, Ag) is a deterministic function of X,H, Ag, and H, Ag are contained in the
(X, Y)-history to which we apply the lemma. In terms of entropy,

H̃∞ (Y | {Ai}ri=1,W |s,H) ≥ H̃∞ (Y | (W |s),H)− ra
= H̃∞ (Y | H)− ra
≥ 2a+ log(1/ε), (A.7)

where the first inequality follows by Lemma 2.12 and the fact that {Ai}ri=1 consists of ra bits.
The second equality follows by Lemma 2.14, which is applicable in this case as conditioned
on any fixing of H, the random variables W |s, Y are independent. The last inequality follows
by Equation (4.1). Since Ext1 is a strong seeded extractor for entropy 2a, Equation (3.2)
of Lemma 3.3 holds. As Bg = Ext1 (Y, Zg), Lemma 3.3 together with Equation (A.6) imply
that

(Bg, Zg, {Ai}ri=1,W |s,H) ≈2δ+6ε (Ua, ·).
Moreover, Zg, {Ai}ri=1,W |s,H is an (X, Y)-history.

Note that Bg is a deterministic function of Y, Zg whereas W is a deterministic function
of X,H. Thus, we can apply Lemma 3.4 with P = Bg and J = W to the (X, Y)-history
Zg, {Ai}ri=1,W |s,H and conclude that

(Bg,H′) ≈2δ+6ε (Ua, ·),

where H′ = (W,Zg, {Ai}ri=1,W |s,H) is an (X, Y)-history. This proves the first and second
items of the lemma.

As for the third item, since W and Y are independent conditioned on any fixing of
Zg, {Ai}ri=1,W |s,H, Lemma 2.14 implies that

H̃∞ (Y | H′) = H̃∞ (Y | Zg, {Ai}ri=1,W |s,H) .

Similarly, conditioned on any fixing of {Ai}ri=1,W |s,H, the random variables Y and Zg are
independent, and so

H̃∞ (Y | H′) = H̃∞ (Y | {Ai}ri=1,W |s,H) .

By Equation (A.7), the right hand side of the equation above is bounded below by H̃∞ (Y | H)−
ra, which proves the third item of the lemma.

As for the fourth item, note that Zg is a deterministic function of W,Ag, and W |s is a
deterministic function of W , and so

H̃∞ (N | H′) = H̃∞ (N | W, {Ai}ri=1,H) .

Note that conditioned on any fixing of W,H, the random variables {Ai}ri=1 are deterministic
functions of Y . Since N is a deterministic function of X,H, Lemma 2.14 further implies that

H̃∞ (N | H′) = H̃∞ (N | W,H) ≥ H̃∞ (N | H)− rh,

where the last inequality follows by Lemma 2.12.

46

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

