
On Parallelizing Streaming Algorithms

Anup Rao∗

anuprao@cs.washington.edu

Makrand Sinha∗

makrand@cs.washington.edu

Abstract

We study the complexity of parallelizing streaming algorithms (or equivalently, branching programs).
If M(f) denotes the minimum average memory required to compute a function f(x1, x2, . . . , xn) how
much memory is required to compute f on k independent streams that arrive in parallel? We show that
when the inputs (updates) are sampled independently from some domain X and M(f) = Ω(n), then

computing the value of f on k streams requires average memory at least Ω
(
k · M(f)

n

)
.

Our results are obtained by defining new ways to measure the information complexity of streaming
algorithms. We define two such measures: the transitional and cumulative information content. We prove
that any streaming algorithm with transitional information content I can be simulated using average
memory O(n(I+ 1)). On the other hand, if every algorithm with cumulative information content I can
be simulated with average memory O(I + 1), then computing f on k streams requires average memory
at least Ω(k · (M(f)− 1)).

1 Introduction

Streaming algorithms are a popular way to model algorithms that operate on massive data sets. We refer
the reader to the book [Mut05] for an introduction. The algorithm sees n inputs (or updates) x1, . . . , xn

arriving sequentially in time, and must compute a function f(x1, x2, . . . , xn)
1. The complexity measure of

interest is the amount of memory that is needed to carry out the computation. Typically, we are interested
in the case where the number of inputs is so large that the algorithm cannot store all of the input.

We are interested in how the complexity of the algorithmic problem changes when the algorithm must
process k independent streams that arrive in parallel. The algorithm now gets k inputs x1 = x1

1, . . . , x
1
n, x

2 =
x2
1, . . . , x

2
n, . . . , x

k = xk
1 , . . . , x

k
n, where the inputs x1

t , . . . , x
k
t arrive simultaneously in the t’th time-step.

Obviously one can process each of the streams independently, giving an algorithm that uses k times as much
memory. The central question that we investigate in this paper is: Are there interesting functions f for
which the best algorithm that computes f on k independent data streams does not operate independently
on each stream? This question is dual to another interesting question: When can we effectively reduce the
memory of a streaming algorithm without compromising its accuracy?

These questions make a lot of sense in the context of the most common applications for streaming algo-
rithms like internet traffic analysis or data from multiple satellites. They also make sense from a theoretical
perspective: they help to identify exactly what makes some streaming tasks hard and others easy.

The extensive literature on streaming algorithms is mostly concerned with understanding the maximum
number of bits of memory used by the streaming algorithm throughout its run. One can imagine pathological

∗Computer Science and Engineering, University of Washington. Supported by the National Science Foundation under
agreement CCF-1016565, an NSF Career award, and by the Binational Science Foundation under agreement 2010089.

1There are several ways to interpret the updates, but the model we propose here captures all the interpretations. For
example, if x1, . . . , xn describe n updates to an underlying data vector, and f is the function which computes the vector and
then computes the function of interest on them, we obtain the turnstile model.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 39 (2015)

cases one can effectively process k streams at the same cost as processing a single stream using this measure of
complexity. Suppose there is a uniformly random block of n/k3 consecutive inputs that contains information
in the stream, and all other inputs are set to 0. Then without loss of generality, the best streaming algorithm
uses almost no memory for most of the time, and some memory to process the block of important inputs.
When the algorithm processes k parallel streams, it is very likely that the k informative blocks will not
overlap in time, and so the maximum memory usage remains unchanged. Thus, if we are only aiming for
an algorithm that succeeds with high probability over this distribution of inputs, one need not increase the
memory at all!

However, we see that the average memory usage per unit time-step does increase by a factor of k in
this last example. The average memory is defined to be the number of bits of memory used on an average
time-step. Arguably, the average memory is what practical applications care about. Another appealing
reason to consider average memory as a complexity measure is that some known streaming lower bounds
actually yield lower bounds on the average memory. For example, the lower bound proofs for approximating
the frequency moments [AMS99, BYJKS02, CKS03, Gro09] and for approximating the length of the longest
increasing subsequence [EJ08] can be easily adapted to give matching lower bounds for average memory. In
the rest of this work we focus on the average memory used by the algorithm.

1.1 Related Work

The interest in the field of streaming algorithms was renewed by the seminal paper of Alon, Matias and
Szegedy [AMS99] who gave algorithms for approximating lower frequency moments and also showed that
lower bounds in the multi-party number-in-hand communication model implied memory lower bounds for
streaming algorithms approximating the higher frequency moments. Since then, lower bounds in communi-
cation complexity (and more recently in information complexity) have found applications in proving memory
lower bounds in the streaming model (see [AMS99, BYJKS02, CKS03, Woo04, EJ08, GH09, Gro09, MWY13]
for some of them).

Questions analogous to the ones we study here have been studied in the setting of two-party communica-
tion complexity and information complexity [BBCR13, BR11, Bra12]. It was shown in [GKR14] that there
are communication tasks that can be solved much more efficiently in parallel than by naively solving each
one independently.

Combining these results about parallelizing communication with known methods for proving lower bounds
on streaming algorithms gives several interesting worst-case memory lower bounds for computing natural
functions on k parallel streams. To give an example, it is known that computing (1 + ε) approximation of
the pth frequency moment for p ̸= 1 requires worst-case memory Ω(1/ε2) [Woo04, Gro09]. Combining this
with the results of [BR11] one can show that computing (1 + ε) approximation of the frequency moment on
k streams in parallel requires Ω(k/ε2) memory in the worst-case. We do not give the proof here, since it is
relatively straightforward.

A related model is that of dynamic distributed functional monitoring introduced by Cormode, Muthukr-
ishnan and Yi [CMY11] where there are multiple sites receiving data streams and communicating with a
central coordinator who wants to maintain a function of all the input streams. Recent progress has been
made in understanding the communication complexity of various tasks in this model [CMY11, WZ12, WZ14].
Variants of this model have been studied extensively in relation to databases and distributed computing (see
[Cor05, CG05, SSK08, SSK10, CMZ06, CMYZ10, ABC09, MSDO05, KCR06, BO03] for some of the applica-
tions). Another closely related model is the multi-party private message passing model introduced in [DR98].
Any lower bound proved in the message passing model implies a lower bound in the streaming model. Many
works have studied this model and its variants (see [GH09, GG10, PVZ12, BEO+13, CRR14, HRVZ15] for
some of them). These works do not appear to have any connection to the questions we study here.

2

2 Our Results

Our results are proved in the setting of average-case complexity: we assume that there is a known distri-
bution on inputs, and consider the performance of algorithms with respect to that distribution. Let A be
a randomized streaming algorithm which receives an input stream X1, . . . , Xn sampled from a distribution
p(x1, . . . , xn). Throughout this paper we will only consider the case when p is a product distribution except
in section 4.1, where we discuss the issues that arise when considering non-product input distributions.

Let M1, . . . ,Mn denote the contents of the memory of the algorithm at each of the time-steps. Let |Mt|
denote the number of bits used to store Mt. The average memory used by the algorithm is (1/n)

∑n
t=1 |Mt|.

Let M(f) denote the minimum average memory required to compute a function f with probability 2/3 when
the inputs are sampled according to p.

Let pk(x) denote the product distribution on k independent streams, each identically distributed as p(x),
where the resulting streams arrive synchronously in parallel. Thus at time t the input is the tth element of
all the k streams. Write fk to denote the function that computes f on each of the k streams. Then we prove

Theorem 2.1.

M(fk) = Ω

(
k

(
M(f)

n
− 1

))
.

Theorem 2.1 is proved by a reduction that compresses streaming algorithms with regards to its information
complexity. There are several reasonable measures of information complexity for streaming algorithms. Here
we define two such information complexity measures. We use Shannon’s notion of mutual information, which
is defined in the preliminaries (Section 3).

The transitional information content captures the average amount of information that the algorithm
learns about the next input conditioned on its current state.

Definition 2.2 (Transitional Information). ICtr(A) = 1
n

∑n
t=1 I(Mt;Xt|Mt−1).

The cumulative information content measures the average amount of information that the streaming
algorithm remembers about the inputs seen so far.

Definition 2.3 (Cumulative Information). ICcum(A) = 1
n

∑n
t=1 I(Mt;X1 . . . Xt).

Note that both the transitional and the cumulative information content for an algorithm are bounded by
the average memory used by the algorithm. We prove that algorithms with low transitional information can
be efficiently simulated:

Theorem 2.4. Every streaming algorithm with transitional information content I can be simulated with
average memory O(nI+ n).

The above theorem is tight as the following example shows. Let us define the following input distribution
over the input domain {0, 1}n×n (i.e. the updates are n-bit strings): x1 is a uniform n-bit string, while each
one of x2, . . . , xn is the all-zero string. Consider the streaming algorithm A which outputs the first element
x1 of the stream. Note that the average memory used by the algorithm is Ω(n) since it has to remember
the input x1 for all n steps. On the other hand the transitional information content of this algorithm is 1.
In this case the compression algorithm given by the above theorem would simulate A with average memory
O(n) which is the best one could hope for.

Finally, we show that if algorithms with low cumulative information can be simulated, then one can
obtain no savings when parallelizing streaming algorithms:

Theorem 2.5. If every algorithm with cumulative information I can be simulated using average memory
O(I), then M(fk) = Ω (k · (M(f)− 1)).

3

In section 5, we discuss more about the possibility of compressing algorithms with low cumulative infor-
mation content.

3 Preliminaries

Throughout this report, the base of all logarithms is 2. Random variables will be denoted by capital letters
and the values that they attain will be denoted by lower-case letters. Given x = x1, . . . , xn, we write
x≤i to denote the sequence x1, x2, . . . , xi. We define x<i, x>i and x≥i similarly. We write x−i to denote
x1, . . . , xi−1, xi+1, . . . , xn.

We use p(x) to denote both the distribution on the variable x and the probability Pp[X = x], the
distinction will be clear from context. For any joint random variables X and Y , we will write X|Y = y to
denote the random variable X conditioned on the event Y = y and use p(x|y) to denote the distribution of
X|Y = y as well as the probability Pp[X = x|Y = y].

We denote by pk(x) the product distribution sampling k independent copies of x according to p. Given
a joint distribution p(x, y, z), we write p(x, y) to denote the marginal distribution (or probability according
to the marginal distribution) on the variables x and y. We often write p(xy) instead of p(x, y) to make
the notation more concise. When X,Y are random variables, XY denotes the random variable that is the
concatenation of X and Y .

Let X,W,M be random variables distributed according to p(x,w,m). We say that they form a Markov
chain iff p(x,w,m) = p(w) · p(x|w) · p(m|w) and we denote this by X −W −M . In some cases we will have
Markov chains where W determines M (p(m|w) is a point distribution). To emphasize this we will write
this Markov chain as X −W → M . For brevity we will write X|R −W |R −M |R to assert that p(xwm|r)
is a Markov chain for every r.

3.1 Information Theory Basics

Here we collect some standard facts from information theory. For more details, we refer the reader to the
textbook [CT06]. For a discrete random variable X with probability distribution p(x), the entropy of X is
defined as

H(X) = Ep(x)

[
log

1

p(x)

]
.

For any two random variables X and Y with the joint distribution p(x, y), the entropy of X conditioned
on Y is defined as H(X|Y) = Ep(y)[H(X|Y = y)]. The conditional entropy H(X|Y) is at most H(X) where
the equality holds if and only if X and Y are independent.

The mutual information between X and Y is defined as I(X;Y) = H(X)−H(X|Y) = H(Y)−H(Y |X).
Similarly, the conditional mutual information I(X;Y |Z) is defined to be H(X|Z)−H(X|Y Z). If X and Y
are independent then I(X;Y) = 0. Moreover, 0 ≤ I(X;Y) ≤ min{H(X),H(Y)}. A standard fact about
mutual information is the chain rule: For jointly distributed random variables X1, . . . , Xn, Y and Z,

I(X1, . . . , Xn;Y |Z) =
n∑

i=1

I(Xi;Y |X<iZ).

Lemma 3.1. If Y and Z are independent, I(X;Y) ≤ I(X;Y |Z).

Proof. We repeatedly use the chain rule:

I(X;Y) ≤ I(X;Y) + I(Z;Y |X) = I(XZ;Y) = I(Z;Y) + I(X;Y |Z) = I(X;Y |Z).

4

Proposition 3.2 (Data Processing Inequality). Let X,W and M be random variables such that X−W−M ,
then I(X;M) ≤ I(X;W).

Proposition 3.3. Let X,Y, Z and W be random variables such that XY − Z − W , then I(X;Y |ZW) =
I(X;Y |Z).

Proof. Using the chain rule we expand I(XW ;Y |Z) in two different ways:

I(W ;Y |Z) + I(X;Y |ZW) = I(XW ;Y |Z) = I(X;Y |Z) + I(W ;Y |XZ).

The terms I(W ;Y |Z) and I(W ;Y |XZ) are 0 since XY − Z −W .

The next proposition says that for any discrete random variable X there is a prefix-free encoding with
average length at most H(X) + 1.

Proposition 3.4 (Huffman Encoding). Let X and Y be random variables where X is discrete. Then, there
exists a prefix-free encoding ℓ : supp(X) → {0, 1}∗ satisfying Exy[|ℓ(x)| | Y = y] ≤ H(X|Y) + 1.

3.2 Common Information and Error-free Sampling

Wyner [Wyn75] defined the quantity common information between X and M as

C(X;M) = inf
X−W−M

I(XM ;W),

where the infimum is taken over all jointly distributed W such that, X −W −M and W is supported over
a finite set. Wyner showed that the above infimum is always achieved. By the data-processing inequality
applied to the Markov chain X −W −M it is easily seen that C(X;M) ≥ I(X;M).

It turns out that the gap between C(X;M) and I(X;M) can be very large. There are known examples
of random variables X and M where C(X;M) = ω(I(X;M)). We include one simple example in Appendix
A. Another example is described in the work of Harsha et al. [HJMR10], who also proved a related upper
bound. They showed that there always exist C and S, where S is independent of X, X − CS → M and
H(C) ≈ I(X;M). The random variable S in their work depends on the distribution of M . Braverman and
Garg [BG13] showed a similar result that we quote and use in this work:

Lemma 3.5 ([BG13]). Let p(xm) be an arbitrary discrete probability distribution, with finite support. Let
S be an infinite list of uniform samples from supp(M) × [0, 1], independent of XM . Then there exists a
random variable C such that X − CS → M and H(C) ≤ I(X;M) + log(I(X;M) + 1) +O(1).

3.3 Streaming Algorithms

Without loss of generality, we associate the values stored by the algorithm with a non-negative integer.
Assuming that the inputs to the algorithm come from the domain X , a streaming algorithm defines a function
A : [n] × N × X → N. At time t − 1, let the memory state of the algorithm be mt−1 (we define m0 := 1).
On seeing the input xt at time t, the algorithm computes the tth memory state mt := A(t,mt−1, xt). The
output of the algorithm is mn. Randomized streaming algorithms toss independent random coins rt at each
time-step t and sample the memory state at time t as follows: mt := A(t,mt−1, rt, xt).

The following is obvious from the definition:

Proposition 3.6 (Markov Chain Property). If m1, . . . ,mn denote the memory of a (possibly randomized)
streaming algorithm, then for each t ∈ [n], X≤nM<t −XtMt−1 −Mt.

The last proposition also implies the following.

5

Proposition 3.7. For a randomized streaming algorithm, the following holds,

I(M≤n;X≤n) = I(M1;X1) + I(M2;X2|M1) + · · ·+ I(Mn;Xn|Mn−1).

Proof. Applying the chain-rule, we get

I(M≤n;X≤n) =

n∑
t=1

I(Mt;X≤n|M<t)

≤
n∑

t=1

I(Mt;XtX≤nM<t−1|Mt−1).

The second inequality follows since I(Mt;XtX≤nM<t−1|Mt−1) = I(Mt;M<t−1|Mt−1) + I(Mt;X≤n|M<t) +
I(Mt;Xt|M<tX≤n) and mutual information is a non-negative quantity.

Applying the chain rule one more time, we have

I(M≤n;X≤n) ≤
n∑

t=1

I(Mt;XtX≤nM<t−1|Mt−1)

=
n∑

t=1

I(Mt;Xt|Mt−1) +
n∑

t=1

I(Mt;X≤nM<t−1|XtMt−1).

Proposition 3.6 implies that X≤nM<t−XtMt−1−Mt for every t ∈ [n] and hence the second term on the
right hand side is zero.

The following proposition states that both the transitional and cumulative information content are upper
bounded by the average memory.

Proposition 3.8. For a randomized streaming algorithm A with average memory M ,

max{ICtr(A), ICcum(A)} ≤ M.

Definition 3.9 (Simulation). We say that a streaming algorithm A1 simulates another algorithm A2 if for
every input x1, . . . , xn, the distribution on outputs is exactly the same in both algorithms.

In general it even makes sense to allow errors during simulation. Our simulations have no error, so we
define simulation using the strong definition given above.

4 Compression and Direct Sums for Streaming Computation

The following is a natural strategy to prove our direct-sum theorem: given an algorithm that computes
fk correctly with probability 2/3 on all the streams and uses average memory M , first show that there is
some stream “with respect to” which the information content is M/k. Then derive a randomized streaming
algorithm that computes f and has information content at most M/k as follows: embed the input stream
at the location j about which the memory has small information and simulate the behavior of the algorithm
on this stream by generating the other streams randomly, or to say alternately, sample from the distribution
p(mn|X(j) = x). The resulting algorithm would have information content at most M/k but would still use
M bits of average memory. The last step would then be to give a way to simulate a streaming algorithm
that has information content I with a streaming algorithm that uses average memory approximately I.

6

For product distributions, we can show that if there exists an algorithm for computing k copies of f
with memory M , then there is a randomized algorithm for computing a single copy of f with transitional
and cumulative information content at most M/k. To prove our direct-sum result, we are able to show that
algorithms with transitional information content I can be simulated with O(nI+ n) average memory which
as discussed before is best possible. To give an optimal direct-sum result, one could still hope that streaming
algorithms with cumulative information content I can be simulated with O(I) average memory. We discuss
more about this possibility in Section 5.

4.1 Non-product Distributions and Correlated Randomness

Before we begin the proof of our compression and direct-sum results, we briefly discuss the difficulty that
arises in dealing with non-product distributions. For proving a direct-sum result for non-product distributions
using the above strategy, the natural way of using an algorithm that computes k copies of f to compute a
single copy of f , is to embed our input stream at position j and generate other streams as randomness so that
we can run the algorithm for k copies. The algorithm we get for computing f in this way uses randomness
that is correlated across various time-steps if the input stream distribution is non-product.

Transitional information content is not a useful information measure for compressing such algorithms as
the following example shows. We give an example of a function which require Ω(1) average memory, but can
be computed by an algorithm that uses correlated randomness and has transitional information content 0.
Let f(x) =

∑n
t=1 xt mod 2. Consider the following algorithm that takes as input a random input stream x

(each update xt is a bit) and computes f(x). The algorithm at time t uses randomness rt where r1, . . . , rt
are correlated so that they satisfy

∑n
t=1 rt = 0 mod 2. At time t, the algorithm stores in its memory∑t

i=1(xt+rt) mod 2 and at time t = n outputs the last value stored in memory. Since
∑n

t=1 rt = 0 mod 2,
the algorithm outputs f(x). This algorithm has transitional information content 0, but one can not hope to
compute the parity of an n bit string without using Ω(1) bits of average memory.

4.2 Compressing Streaming Algorithms

In this section we show how algorithms with small transitional information content can be simulated with
small average memory.

Theorem 4.1 (Restated). Let A be a randomized streaming algorithm with ICtr(A) = I. Then there exists
a randomized streaming algorithm Atr with average memory O(nI+ n) that simulates A.

Let m1, . . . ,mn denote the memory states of the algorithm A. Recall that Lemma 3.6 implies that for
each t ∈ [n], X≤nM<t−XtMt−1−Mt. Hence, to prove Theorem 4.1, it suffices to sample from p(mt|xt,mt−1)
if mt−1 has been sampled correctly. The compression algorithm will toss random coins to sample an infinite
list st of samples from supp(Mt)× [0, 1] and then sample Ct (whose existence is guaranteed by Lemma 3.5)
satisfying

Xt − CtSt|Mt−1 → Mt|Mt−1, (4.1)

H(Ct|StMt−1) = I(Mt;Xt|Mt−1) + log(I(Mt;Xt|Mt−1) + 1) +O(1). (4.2)

The value of mt determined by the sample ct is distributed according to the distribution p(mt|xt,mt−1).

The algorithm will store the Huffman encoding (Proposition 3.4) of Ct conditioned on St and Mt−1. This
encoding determines Ct given St and Mt−1, both of which are known to the algorithm at this time.

Note that the algorithm needs to store the encodings of all the previous c≤t at time t since in order
to determine mt uniquely, the value of mt−1 needs to be known which depends on the previous memory
contents.

The following proposition is straightforward from (4.1).

7

(Algorithm 1) Randomized Streaming Algorithm Atr

Input : Stream x ∼ p(x)
Randomness: s1, . . . , sn where si is an infinite sequence of uniform samples from supp(Mi)× [0, 1].

// At time t: the content of the memory are some encodings of c<t, where ci
determines mi given si and mi−1.

1. Let mt−1 be determined by ct−1 and st−1. On input xt, sample ct from the Markov chain in (4.1);
2. Append the Huffman encoding of ct conditioned on st and mt−1 to the previous memory contents;

Proposition 4.2. The algorithm Atr simulates A.

Next we finish the proof of Theorem 4.1 by bounding the total memory used by Atr.

Lemma 4.3. The average memory used by Atr is O(nI+ n).

Proof. At time t, the expected number of bits appended to the memory (where the expectation is over the
choice of x≤t and s≤t) is bounded by H(Ct|StMt−1). From (4.2), this is at most 2I(Mt;Xt|Mt−1) +O(1).
Hence, the number of bits stored in the memory at a time t ∈ [n] is at most

t∑
i=1

(2I(Mi;Xi|Mi−1) +O(1)) ≤
n∑

i=1

(2I(Mi;Xi|Mi−1) +O(1)) = 2nI+O(n).

Since this is true for every time-step t, the average memory is also upper bounded by 2nI+O(n).

4.3 Direct Sum for Product Distributions

Recall that we want to prove the following theorem.

Theorem 4.4 (Direct Sum - Restated). If p is product input distribution, then

M(fk) = Ω

(
k

(
M(f)

n
− 1

))
.

To prove the above we first show that if there is a deterministic algorithm for computing k copies of f
with average memory M and error probability 1/3, then there is a randomized algorithm which computes
a single copy of f with error at most 1/3 and has transitional information content at most M/k. Then, we
apply Theorem 4.1 to compress this algorithm and get a contradiction if M is smaller than the right hand
side in Theorem 4.4.

4.3.1 Computing f with Small Information

Let A be a deterministic streaming algorithm that uses average memory M and computes fk on inputs
sampled from pk with error at most 1/3. Let m1, . . . ,mn denote the memory states of the algorithm A.
Consider the following randomized algorithm Aran that computes f with error at most 1/3 on inputs sampled
from p. The algorithm chooses a random j ∈ [k], embeds the input stream at position j and at time t, samples

and stores the memory state mt from the distribution p(mt|x(j)
t = xt,mt−1).

Note that for any fixed value of j, the algorithm Aran uses independent randomness x
(−j)
t in each step

as the input distribution p is product. We show that on average over the choice of j, the transitional and
cumulative information content of the above algorithm is at most M/k.

8

(Algorithm 2) Randomized Streaming Algorithm Aran

Input : Stream x sampled from p(x)
Randomness: j uniformly drawn from [k], streams x(−j)

Output : f(x) with error at most 1/3

1. Set Stream x(j) to be x;

2. At time t, use randomness x
(−j)
t to sample mt from p(mt|x(j)

t = xt,mt−1);
3. Output the answer of the algorithm on stream j;

Lemma 4.5. Ej [IC
tr(Aran|J = j)] ≤ M/k and Ej [IC

cum(Aran|J = j)] ≤ M/k.

Proof. Conditioned on any event J = j, the transitional information content of Aran is given by

ICtr(Aran|J = j) =
1

n

n∑
t=1

I(Mt;Xt | Mt−1, J = j)

=
1

n

n∑
t=1

I(Mt;X
(j)
t | Mt−1, J = j) (with probability 1, X(j) = X)

=
1

n

n∑
t=1

I(Mt;X
(j)
t | Mt−1) (Mt is independent of the event J = j).

Since the input stream comes from a product distribution, X
(1)
t , . . . , X

(k)
t are all independent conditioned

onMt−1. By Lemma 3.1, the term I(Mt;X
(j)
t |Mt−1) in the above sum is bounded by I(Mt;X

(j)
t |X(<j)

t Mt−1).
Taking an expectation over j, we get

Ej [IC
tr(Aran|J = j)] ≤ Ej

(
1

n

n∑
t=1

I(Mt;X
(j)
t | X(<j)

t Mt−1)

)

=
1

k

 1

n

n∑
t=1

k∑
j=1

I(Mt;X
(j)
t | X(<j)

t Mt−1)

From the chain rule the right hand side above equals

1

k

(
1

n

n∑
t=1

I(Mt;X
(1)
t . . . X

(k)
t |Mt−1)

)
=

1

k
ICtr(A) ≤ M

k
,

where the last inequality follows since the transitional information content is bounded by the average memory
(Proposition 3.8).

Analogously, the cumulative information content of Aran is given by

ICcum(Aran|J = j) =
1

n

n∑
t=1

I(Mt;X≤t | J = j)

=
1

n

n∑
t=1

I(Mt;X
(j)
≤t | J = j) (with probability 1, X(j) = X)

=
1

n

n∑
t=1

I(Mt;X
(j)
≤t) (Mt is independent of the event J = j).

9

SinceX(1), . . . , X(k) are all independent, by Lemma 3.1, the term I(Mt;X
(j)
≤t) is at most I(Mt;X

(j)
≤t |X(<j)

≤t).
Taking an expectation over j and using the chain rule, we get

Ej [IC
cum(Aran|J = j)] ≤ Ej

(
1

n

n∑
t=1

I(Mt;X
(j)
≤t | X(<j)

≤t)

)

=
1

k

 1

n

n∑
t=1

k∑
j=1

I(Mt;X
(j)
≤t | X(<j)

≤t)

=

1

k

(
1

n

n∑
t=1

I(Mt;X
(1)
≤t . . . X

(k)
≤t)

)

=
1

k
ICcum(A) ≤ M

k
.

4.3.2 Direct-sum Theorem

With the above, we can now apply Theorem 4.1 to get Theorem 4.4.

Proof of Theorem 4.4. Let A be a streaming algorithm that computes fk with error at most 1/3 and average
memory M . By Lemma 4.5, there is an algorithm Aran that uses randomness j and r, computes f with error
at most 1/3 and satisfies Ej [IC

tr(Aran)|j] ≤ M/k. Applying Theorem 4.1 to Aran gives us a randomized
algorithm that uses random coins j and r′ and computes f using average memory Ej,r′ [

1
n

∑n
t=1 |Mt|] =

O(nM/k + n).

Since the random coins j and r′ are independent of the input, we can fix them to get a deterministic
streaming algorithm with average memory O(nM/k + n). Since this must be at least M(f), we have

O
(
nM

k
+ n

)
≥ M(f).

Rearranging the above gives us that M is lower bounded by Ω
(
k
(

M(f)
n − 1

))
.

5 Towards Optimal Direct Sums

The algorithm 2 that we gave in the last section also had cumulative information content at most M/k as
shown in Lemma 4.5. Analogous to Theorem 4.4, the following result follows. We omit the proof since it is
very similar to that of Theorem 4.4.

Theorem 5.1 (Restated). If every algorithm with cumulative information I can be simulated using average
memory O(I), then M(fk) = Ω (k · (M(f)− 1)).

In this section, we describe a compression algorithm that could possibly simulate an algorithm with
cumulative information content I with average memory O(I + 1). However, we are unable to either prove
or disprove it.

To give some intuition about the new algorithm, let us recall Algorithm 1 where the compression algorithm
stored Huffman encodings (Proposition 3.4) of Ct satisfying Xt −CtSt|Mt−1 → Mt|Mt−1. This necessitated

10

storing the whole history since to determine the sample mt required knowing encodings of all the previous
c<t.

The new algorithm that we call Acum, on receiving the input xt at time t, samples Ct conditioned on the
value of xt and mt−1 where Ct satisfies the following properties that follow from Lemma 3.5:

Xt − CtSt|S<t → Mt|S<t, (5.1)

H(Ct|S≤t) ≤ I(Mt;XtMt−1|S<t) + log(I(Mt;XtMt−1|S<t) + 1) +O(1). (5.2)

Again the value ofmt determined by the sample ct is distributed according to the distribution p(mt|xt,mt−1).
Moreover, the algorithm Acum will store the Huffman encoding of Ct conditioned on S≤t which avoids the
need to store all the previous memory contents since S≤t is randomness independent of the input and can
be fixed in the beginning.

Randomized Streaming Algorithm Acum

Input : Stream x ∼ p(x)
Randomness: s1, . . . , sn where si is an infinite sequence of uniform samples from supp(Mi)× [0, 1].

// At time t: the content of the memory are some encodings of c<t, where ci
determines mi given s≤i.

1. Let mt−1 be determined by ct−1 and st−1. On input xt, sample ct from the Markov chain in (5.1);
2. Store the Huffman encoding of ct conditioned on s≤t;

Conjecture 5.2. Let A be a randomized streaming algorithm with ICcum(A) = I. Then, Acum simulates A
using O(I+ 1) average memory.

The proof that the above compression algorithm gives a correct simulation is straightforward from (5.1).
We are able to prove the following bounds on the memory used by the above algorithm.

Lemma 5.3. In expectation over the choice of s≤t and x≤t, the memory used by algorithm Acum at time t
is at most

O(I(Mt;X≤t|S<t) + 1)

Proof. The memory used by algorithm Acum at time t is bounded by H(Ct|S≤t) which as given by (5.2) is
at most O(I(Mt;XtMt−1|S<t) + 1). Moreover, since Mt−1|S<t is determined given Ct−1|S<t,

I(Mt;XtMt−1|S<t) ≤ I(Mt;XtCt−1|S<t),

by the data processing inequality (Proposition 3.2).

To finish the proof, we will show that I(Mt;XtCt−1|S<t) is upper bounded by I(Mt;X≤t|S<t). To show
this we apply the chain rule as follows,

I(Mt;XtCt−1|S<t) ≤ I(Mt;X≤tCt−1|S<t)

= I(Mt;X<tCt−1|S<t) + I(Mt;Xt|S<tX<tCt−1).

= I(Mt;X<t|S<t) + I(Mt;Ct−1|S<tX<t) + I(Mt;Xt|S<tX<tCt−1).

Note that in the algorithm Acum, X<t and S<t completely determine Ct−1. Hence, the second term in
the above expression is 0. Moreover, by the same fact MtXt − S<tX<t → Ct−1 and hence by Proposition
3.3, the last term I(Mt;Xt|S<tX<tCt−1) = I(Mt;Xt|X<tS<t).

11

The above discussion yields that

I(Mt;XtCt−1|S<t) ≤ I(Mt;X<t|S<t) + I(Mt;Xt|X<tS<t)

= I(Mt;X≤t|S<t),

where the second equality follows by another application of the chain rule.

Note that since S<t is independent of X≤t, the above quantity I(Mt;X≤t|S<t) is at least as large as
I(Mt;X≤t) (recall Lemma 3.1), but it is possible that similar to Lemma 3.5, they could be the same up to
some lower order error terms. Towards proving such a statement, we first propose to investigate whether
the following stronger version of Lemma 3.5 holds.

Conjecture 5.4. Let X and M be arbitrary discrete random variables with finite support. Let S be an
infinite list of samples from supp(M)× [0, 1]. Then, there exist a random variable C such that

• X − CS → M .

• H(C|S) ≤ I(M ;X) + log(I(M ;X) + 1) +O(1).

• For any discrete random variable N such that X −M −N , it holds that

I(N ;M |S) ≤ I(N ;X) + log(I(N ;X) + 1) +O(1).

We also point out that an inductive use of the above conjecture does not give a non-trivial upper bound
on the memory used by the algorithm Acum because of the error terms in the last statement of the conjecture.
But we hope that the techniques used in proving the above conjecture would be helpful in analyzing the
memory used by the algorithm Acum. Nonetheless the above conjecture might be interesting in its own right
and of potential use somewhere else.

Acknowledgments

We thank Paul Beame for helpful comments.

References

[ABC09] Chrisil Arackaparambil, Joshua Brody, and Amit Chakrabarti. Functional monitoring without
monotonicity. In Susanne Albers, Alberto Marchetti-Spaccamela, Yossi Matias, Sotiris Nikolet-
seas, and Wolfgang Thomas, editors, Automata, Languages and Programming, volume 5555 of
Lecture Notes in Computer Science, pages 95–106. Springer Berlin Heidelberg, 2009.

[AMS99] Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approximating the
frequency moments. Journal of Computer and System Sciences, 58(1):137 – 147, 1999.

[BBCR13] Boaz Barak, Mark Braverman, Xi Chen, and Anup Rao. How to compress interactive commu-
nication. SIAM J. Comput., 42(3):1327–1363, 2013.

[BEO+13] Mark Braverman, Faith Ellen, Rotem Oshman, Toniann Pitassi, and Vinod Vaikuntanathan. A
tight bound for set disjointness in the message-passing model. In FOCS, pages 668–677, 2013.

[BG13] Mark Braverman and Ankit Garg. Public vs private coin in bounded-round information. Elec-
tronic Colloquium on Computational Complexity (ECCC), 20:130, 2013.

12

[BO03] Brian Babcock and Chris Olston. Distributed top-k monitoring. In Proceedings of the 2003
ACM SIGMOD International Conference on Management of Data, SIGMOD ’03, pages 28–39,
New York, NY, USA, 2003. ACM.

[BR11] Mark Braverman and Anup Rao. Information equals amortized communication. In FOCS, pages
748–757, 2011.

[Bra12] Mark Braverman. Interactive information complexity. In STOC, pages 505–524, 2012.

[BYJKS02] Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, and D. Sivakumar. An Information Statistics
Approach to Data Stream and Communication Complexity. In FOCS, pages 209–218, 2002.

[CG05] Graham Cormode and Minos Garofalakis. Holistic aggregates in a networked world: Distributed
tracking of approximate quantiles. In In SIGMOD, pages 25–36, 2005.

[CKS03] Amit Chakrabarti, Subhash Khot, and Xiaodong Sun. Near-optimal lower bounds on the multi-
party communication complexity of set disjointness. In 18th Annual IEEE Conference on Com-
putational Complexity (Complexity 2003), 7-10 July 2003, Aarhus, Denmark, pages 107–117,
2003.

[CMY11] Graham Cormode, S. Muthukrishnan, and Ke Yi. Algorithms for distributed functional moni-
toring. ACM Trans. Algorithms, 7(2):21:1–21:20, March 2011.

[CMYZ10] Graham Cormode, S. Muthukrishnan, Ke Yi, and Qin Zhang. Optimal sampling from distributed
streams. In Proceedings of the Twenty-ninth ACM SIGMOD-SIGACT-SIGART Symposium on
Principles of Database Systems, PODS ’10, pages 77–86, New York, NY, USA, 2010. ACM.

[CMZ06] G. Cormode, S. Muthukrishnan, and Wei Zhuang. What’s different: Distributed, continuous
monitoring of duplicate-resilient aggregates on data streams. In Data Engineering, 2006. ICDE
’06. Proceedings of the 22nd International Conference on, pages 57–57, April 2006.

[Cor05] Graham Cormode. Sketching streams through the net: Distributed approximate query tracking.
In In VLDB, pages 13–24, 2005.

[CRR14] Arkadev Chattopadhyay, Jaikumar Radhakrishnan, and Atri Rudra. Topology matters in com-
munication. Electronic Colloquium on Computational Complexity (ECCC), 21:74, 2014.

[CT06] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory (Wiley Series in
Telecommunications and Signal Processing). Wiley-Interscience, 2006.

[DR98] Pavol Duris and Jose D.P. Rolim. Lower bounds on the multiparty communication complexity.
Journal of Computer and System Sciences, 56(1):90 – 95, 1998.

[EJ08] Funda Ergun and Hossein Jowhari. On distance to monotonicity and longest increasing sub-
sequence of a data stream. In Proceedings of the Nineteenth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA ’08, pages 730–736, Philadelphia, PA, USA, 2008. Society for
Industrial and Applied Mathematics.

[GG10] Anna Gál and Parikshit Gopalan. Lower bounds on streaming algorithms for approximating the
length of the longest increasing subsequence. SIAM J. Comput., 39(8):3463–3479, August 2010.

[GH09] Sudipto Guha and Zhiyi Huang. Revisiting the direct sum theorem and space lower bounds in
random order streams. In Susanne Albers, Alberto Marchetti-Spaccamela, Yossi Matias, Sotiris
Nikoletseas, and Wolfgang Thomas, editors, Automata, Languages and Programming, volume
5555 of Lecture Notes in Computer Science, pages 513–524. Springer Berlin Heidelberg, 2009.

13

[GKR14] Anat Ganor, Gillat Kol, and Ran Raz. Exponential separation of information and communication
for boolean functions. Electronic Colloquium on Computational Complexity (ECCC), 21:113,
2014.

[Gro09] Andr Gronemeier. Asymptotically optimal lower bounds on the nih-multi-party information
complexity of the and-function and disjointness. In In STACS 2009, pages 505–516, 2009.

[HJMR10] Prahladh Harsha, Rahul Jain, David A. McAllester, and Jaikumar Radhakrishnan. The commu-
nication complexity of correlation. IEEE Transactions on Information Theory, 56(1):438–449,
2010.

[HRVZ15] Zengfeng Huang, Božidar Radunović, Milan Vojnović, and Qin Zhang. Communication com-
plexity of approximate maximum matching in distributed graph data. In STACS, 2015.

[KCR06] Ram Keralapura, Graham Cormode, and Jeyashankher Ramamirtham. Communication-efficient
distributed monitoring of thresholded counts. In Proceedings of the 2006 ACM SIGMOD In-
ternational Conference on Management of Data, SIGMOD ’06, pages 289–300, New York, NY,
USA, 2006. ACM.

[MSDO05] Amit Manjhi, Vladislav Shkapenyuk, Kedar Dhamdhere, and Christopher Olston. Finding (re-
cently) frequent items in distributed data streams. In Proceedings of the 21st International
Conference on Data Engineering, ICDE ’05, pages 767–778, Washington, DC, USA, 2005. IEEE
Computer Society.

[Mut05] S. Muthukrishnan. Data streams: Algorithms and applications. Foundations and Trends in
Theoretical Computer Science, 1(2):117–236, 2005.

[MWY13] Marco Molinaro, David P. Woodruff, and Grigory Yaroslavtsev. Beating the direct sum theorem
in communication complexity with implications for sketching. In SODA, pages 1738–1756, 2013.

[PVZ12] Jeff M. Phillips, Elad Verbin, and Qin Zhang. Lower bounds for number-in-hand multiparty
communication complexity, made easy. In Proceedings of the Twenty-third Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA ’12, pages 486–501. SIAM, 2012.

[SSK08] Izchak Sharfman, Assaf Schuster, and Daniel Keren. Shape sensitive geometric monitoring. In
Proceedings of the Twenty-seventh ACM SIGMOD-SIGACT-SIGART Symposium on Principles
of Database Systems, PODS ’08, pages 301–310, New York, NY, USA, 2008. ACM.

[SSK10] Izchak Sharfman, Assaf Schuster, and Daniel Keren. Ubiquitous knowledge discovery. chapter A
Geometric Approach to Monitoring Threshold Functions over Distributed Data Streams, pages
163–186. Springer-Verlag, Berlin, Heidelberg, 2010.

[Woo04] David Woodruff. Optimal space lower bounds for all frequency moments. In Proceedings of the
Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’04, pages 167–175,
Philadelphia, PA, USA, 2004. Society for Industrial and Applied Mathematics.

[Wyn75] A.D. Wyner. The common information of two dependent random variables. IEEE Transactions
on Information Theory, 21(2):163–179, 1975.

[WZ12] David P. Woodruff and Qin Zhang. Tight bounds for distributed functional monitoring. In
STOC, pages 941–960, 2012.

[WZ14] David P. Woodruff and Qin Zhang. An optimal lower bound for distinct elements in the message
passing model. In SODA, pages 718–733, 2014.

14

A Separation between common information and mutual informa-
tion

In this section we will give an explicit example of random variables X and M such that C(X;M) =
ω(I(X;M)). Let G be a bipartite graph on the vertex set [n] × [n] such that the edge density of G is
≈ 1

2 and there are no cliques with more than 3n log n edges in G. As the following lemma shows a random
bipartite graph where each edge is picked with probability 1/2 satisfies these properties with high probability,
so such graphs exist.

Lemma A.1. With probability 1− o(1), a random bipartite graph on [n]× [n] with edge density 1/2 has no
clique U × V where U, V ⊆ [n] satisfying min{|U |, |V |} ≥ 2 log n+ 2.

Proof. Set t := 2 log n + 2 for notational convenience. Then, the probability that a clique U × V where at
least one of U or V has at least t vertices exists is at most

n∑
u=t

n∑
v=t

(
n

u

)(
n

v

)
2−uv ≤

n∑
u=t

n∑
v=t

nu+v2−uv

≤ 2
∑

t≤u≤v≤n

2(u+v) logn−uv = 2
∑

t≤u≤v≤n

2v(
u
v logn+logn−u).

Note that in the last summation above, since u ≤ v, every term
(
u
v log n+ log n− u

)
≤ log n + log n −

(2 log n+ 2) = −2. Plugging it back, we get that the probability is bounded by

2
∑

t≤u≤v≤n

2−2v ≤ 2n22−2t = o(1).

A corollary of the above lemma is that the maximal clique in a random bipartite graph with edge density
1/2 has at most n · 3 log n edges with high probability.

Now we can describe the random variables X and M which will be the end points of a uniformly random
edge E in the graph G. It is easily seen that the mutual information I(X;M) ≈ 1 since H(X) = log n while
for any M = m, H(X|M = m) ≈ log n−1. On the other hand, if X−W −M , then for any value w attained
by W , supp(X|W = w) and supp(M |W = w) has to form a clique in the graph G. Since the maximal clique
in G has at most 3n log n edges, for any W = w, it holds that

|supp(X|W = w)| · |supp(M |W = w)| ≤ 3n log n.

It follows that for any such W we can write

H(XM |W) ≤ log(|supp(X|W = w)| · |supp(M |W = w)|) = log n+O(log log n).

Hence we have that the mutual information between XM and W is,

I(XM ;W) = H(XM)−H(XM |W) ≈ (2 log n− 1)− (log n+O(log log n)) = log n−O(log log n),

for any W satisfying X −W −M . It follows that C(X;M) = Ω(log n) while I(X;M) ≈ 1.

15

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

