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Abstract

The approximate degree of a Boolean function f : {−1, 1}n → {−1, 1} is the minimum degree of a
real polynomial that approximates f to within error 1/3 in the `∞ norm. In an influential result, Aaronson
and Shi (J. ACM 2004) proved tight Ω̃(n1/3) and Ω̃(n2/3) lower bounds on the approximate degree of
the Collision and Element Distinctness functions, respectively. Their proof was non-constructive, using
a sophisticated symmetrization argument and tools from approximation theory.

More recently, several open problems in the study of approximate degree have been resolved via the
construction of dual polynomials. These are explicit dual solutions to an appropriate linear program that
captures the approximate degree of any function. We reprove Aaronson and Shi’s results by constructing
explicit dual polynomials for the Collision and Element Distinctness functions.
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1 Introduction

The ε-approximate degree of a Boolean function f : {−1, 1}n → {−1, 1} is the least degree of a real
polynomial that approximates f to within error ε in the `∞ norm. Approximate degree is a fundamental
measure of the complexity of a Boolean function, and has wide-ranging applications in theoretical computer
science. For example, approximate degree upper bounds underly several of the best known algorithms for
PAC learning [24], agnostic learning [22,23], learning in the presence of irrelevant information [25,31], and
differentially private data release [19, 44]. Meanwhile, lower bounds on approximate degree imply many
optimal lower bounds on quantum query complexity, circuit complexity, and communication complexity
(see for example [4, 10–12, 16, 33–35, 40]).

In an influential result, Aaronson and Shi proved tight Ω̃(n1/3) and Ω̃(n2/3) lower bounds on the approx-
imate degree of the Collision and Element Distinctness functions [4].1 The Collision lower bound matched
an earlier O(n1/3) upper bound due to Brassard et al. [15], while the lower bound for Element Distinctness
was later shown to be tight by Ambainis [8].

The Collision lower bound subsequently found many applications and extensions in quantum complexity
theory; Aaronson recently provided a retrospective overview of these developments [3]. Moreover, the
Ω̃(n2/3) lower bound for Element Distinctness remains the best known approximate degree lower bound for
any function in AC0.

Aaronson and Shi proved their lower bound for Collision with a symmetrization argument. This style
of argument proceeds in two steps. First, a polynomial p on n variables (which is assumed to approxi-
mate the target function f ) is transformed into a polynomial q on m < n variables in such a way that
deg(q) ≤ deg(p). Second, a lower bound on deg(q) is proved, typically by applying Markov-Bernstein
type inequalities from approximation theory. Aaronson and Shi’s proof of the Collision lower bound is a
particularly sophisticated application of this style of argument.

The lower bound for Element Distinctness follows from a reduction to the lower bound for Collision.
This reduction is discussed in Section 5.

The Method of Dual Polynomials. Despite the many applications of approximate degree in theoretical
computer science, significant gaps remain in our understanding of this complexity measure, and there are
many simple functions whose approximate degree remains unknown. The slow nature of progress can
be attributed in part to the limitations of symmetrization arguments. At an intuitive level, the process of
symmetrization is inherently lossy: by turning a polynomial p on n variables into a polynomial q on m <
n variables, information about p is necessarily thrown away. Hence, several works have identified that
an important research direction is to develop techniques beyond symmetrization for lower bounding the
approximate degree of Boolean functions [2, 17, 38].

The last few years have seen significant progress toward this goal. In particular, a series of works has
proved new approximate degree lower bounds for important classes of functions by constructing explicit
dual polynomials, which are dual solutions to a certain linear program capturing the approximate degree of
any function. These polynomials act as certificates of the high approximate degree of a function. Moreover,
strong LP duality implies that the technique is lossless, in contrast to symmetrization. That is, for any
function f and any ε, there is always some dual polynomial φ that witnesses a tight approximate degree
lower bound for f ; the challenge is to construct φ.

This “method of dual polynomials” was recently used to resolve the approximate degree of the AND-OR
tree [17,37], closing a long line of incrementally larger lower bounds [6,21,28,38,39]. It has also been used

1Aaronson established a lower bound of Ω̃(n1/5) for the Collision function in a paper that appeared in STOC 2002 [1], and Shi
improved it to the tight Ω̃(n1/3) in a FOCS paper that same year [39]. A joint journal paper appeared in 2004 [4]. The proof was
simplified and extended to the “small range” case by Kutin [26]. Ambainis [6] independently extended Aaronson and Shi’s lower
bound to the small range case, using different techniques than Kutin.
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to establish several “hardness amplification” results for approximate degree [18, 32, 43], and to prove new
threshold degree lower bounds for several important classes of functions, including the intersection of two
majorities [29, 38] and AC0 [32]. The latter result represented the first superlogarithmic improvement over
Minsky and Papert’s seminal Ω(n1/3) lower bound from 1969 on the threshold degree of an AC0 function.
We also note that dual polynomials have recently been used to resolve several longstanding open problems
in communication complexity, where they yield explicit distributions under which various communication
problems are hard (see the survey of Sherstov [33]).

Contribution and motivation. We reprove Aaronson and Shi’s results by constructing explicit dual poly-
nomials for the Collision and Element Distinctness functions.2 First, we give a direct construction of a dual
polynomial for Collision. In Section 2.5, we give an overview of the ideas that go into this construction. We
then show how to turn any dual polynomial ψ for Collision into a dual polynomial ϕ for Element Distinct-
ness. We construct ϕ(x) by averaging ψ(y) over a carefully constructed set of extensions from each x to a
longer input y.

We have two main motivations for reproving Aaronson and Shi’s lower bound in this manner. First,
only a handful of techniques are currently known for the construction of dual polynomials, especially for
the case where ε = Θ(1). To date, dual polynomials have been constructed only for symmetric functions
[17,41] and a handful of highly structured block-composed functions [17,18,32,36–38] (a block-composed
function F : {−1, 1}M ·N → {−1, 1} is a function of the form of the form F = g(f(x1), . . . , f(xM )) for
some g : {−1, 1}M → {−1, 1} and f : {−1, 1}N → {−1, 1}). The Collision and Element Distinctness
functions fall into neither category; our constructions of dual polynomials for these problems introduce
several new techniques that we hope will prove useful in future applications.

A second motivation is to shed new light on the Collision lower bound itself. The earlier symmetrization-
based proof [4,26], while shorter than ours, is non-constructive and relies on Markov-Bernstein inequalities
from approximation theory. In contrast, our proof is constructive and entirely elementary. We also believe
that our analysis illuminates some of the more miraculous aspects of the earlier symmetrization-based proof
– see Section 2.6 for further discussion of this point.

Related work on quantum query complexity. Aaronson and Shi’s original motivation for studying the
approximate degree of the Collision function was to understand its quantum query complexity (recall that
approximate degree provides a lower bound on quantum query complexity [10]. However, it is known that
the lower bound is not always tight [7]). Subsequent to Aaronson and Shi’s work, other methods were
developed for quantum query complexity [5,7,9,20,42,47], and it is now known that one of these methods,
called the negative-weights adversary method [20], is always tight.

The negative-weights adversary method for lower bounding quantum query complexity is closely analo-
gous to the method of dual polynomials for approximate degree: the former is characterized by a semidefinite
program, and a solution to this semidefinite program is known as an adversary matrix. A recent line of work,
similar in spirit to our own, has proved or reproved optimal quantum query complexity lower bounds for
several functions by constructing explicit adversary matrices. In particular, Belovs and Rosmanis [13] con-
structed an optimal adversary matrix for the Collision function in the “large range” case (note that the dual
polynomial that we construct applies even in the “small range” case), and Belovs and Špalek constructed an
optimal adversary matrix for the Element Distinctness function [14].

Very recently, Zhandry [46] (improving on work of Yuen [45]) has also proved a tight lower bound of
Ω(N1/3) on the quantum query complexity of finding a collision in a randomly chosen function.

2Like Kutin’s simplification and refinement of Aaronson and Shi’s original proof of the Collision lower bound, our construction
yields a dual polynomial for the Collision function even in the “small-range” case.
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2 Preliminaries

2.1 Notation

For any positive integer n, we denote the set {1, . . . , n} by [n], and the set {0, 1, . . . , n} by [[n]]. For
a function f : D → R, define the L1 norm ‖f‖1 =

∑
x∈D |f(x)|. For any subset S ⊆ [n], we let

χS : {−1, 1}n → {−1, 1} denote the parity function on S, i.e., χS(x) =
∏
i∈S xi.

2.2 Approximate Degree and its Dual Characterization

Let D ⊆ {−1, 1}n, and let f : D → {−1, 1} be a partial Boolean function defined on D. A real polynomial
p : {−1, 1}n → {−1, 1} is said to ε-approximate f if

1. |p(x)− f(x)| ≤ ε for all x ∈ D, and

2. |p(x)| ≤ 1 + ε for all x ∈ {−1, 1}n.

The ε-approximate degree of f , denoted d̃egε(f), is the minimum degree of an ε-approximation for
f . We use d̃eg(f) to denote d̃eg1/3(f), and refer to this quantity without qualification as the approximate

degree of f . The choice of 1/3 is arbitrary, as d̃eg(f) is related to d̃egε(f) by a constant factor for any
constant ε ∈ (0, 1).

Given a partial Boolean function f , let p be a real polynomial that attains the smallest ε subject to the
constraints above, over all polynomials of degree at most d. Since we work over x ∈ {−1, 1}n, we may
assume without loss of generality that p is multilinear with the representation p(x) =

∑
|S|≤d cSχS(x),

where the coefficients cS are real numbers. Then p is an optimum of the following linear program.

min ε

such that
∣∣∣f(x)−

∑
|S|≤d cSχS(x)

∣∣∣ ≤ ε for each x ∈ D∣∣∣∑|S|≤d cSχS(x)
∣∣∣ ≤ 1 + ε for each x ∈ {−1, 1}n \D

cS ∈ R for each |S| ≤ d
ε ≥ 0

The dual linear program is as follows.

max
∑

x∈D φ(x)f(x)−
∑

x∈{−1,1}n\D |φ(x)|
such that

∑
x∈{−1,1}n |φ(x)| = 1∑
x∈{−1,1}n φ(x)χS(x) = 0 for each |S| ≤ d

φ(x) ∈ R for each x ∈ {−1, 1}n

Strong LP-duality thus implies the following dual characterization of approximate degree:

Theorem 1. Let f : D → {−1, 1} be a partial Boolean function. Then d̃egε(f) > d if and only if there is
a polynomial φ : {−1, 1}n → R such that∑

x∈D
f(x)φ(x)−

∑
x∈{−1,1}n\D

|φ(x)| > ε ·
∑

x∈{−1,1}n
|φ(x)|, (1)

and ∑
x∈{−1,1}n

φ(x)χS(x) = 0 for each |S| ≤ d. (2)
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If φ satisfies Eq. (1), we say that φ has correlation greater than ε with f . If φ satisfies Eq. (2), we say
φ has pure high degree d. We refer to any feasible solution φ to the dual linear program as an (ε, d)-dual
polynomial for f .

2.3 The Collision and Element Distinctness Functions

Let [N ] = {1, . . . , N}, and fix a triple of positive integers n,N,R such thatR ≥ N , and n = N ·log2R. For
simplicity throughout, we assume that R is a power of 2. The Collision and Element Distinctness functions
are typically thought of as properties of functions mapping [N ] to [R]. However, it will be convenient for
us to think of them instead as functions on the Boolean hypercube {−1, 1}n. To this end, given an input
x ∈ {−1, 1}n, we interpret x as the evaluations of a function gx mapping [N ] → [R]. That is, we break x
up into N blocks, each of length dlog2Re, and regard each block xi as the binary representation of gx(i).

Definition 2 (Collision Function). A function gx : [N ]→ [R] is said to be k-to-1 if for every i ∈ [N ], there
exists exactly k− 1 values j 6= i such that gx(i) = gx(j). Let Tk := {x ∈ {−1, 1}n : gx is k-to-1} (clearly,
Tk is non-empty only if k|N ). The Collision function, which we denote by ColN,R, is the partial Boolean
function defined on T1 ∪ T2 ⊆ {−1, 1}n such that ColN,R(x) = 1 if and only if x ∈ T1. That is, ColN,R
is the partial Boolean function corresponding to the property that gx is a 1-to-1 function, with the promise
that gx is either 1-to-1 or 2-to-1.

Definition 3 (Element Distinctness Function). The Element Distinctness function, denoted EDN,R, is the
total Boolean function defined such that EDN,R(x) = 1 if and only if gx is 1-to-1. That is, EDN,R is the
total Boolean function corresponding to the property that gx is 1-to-1.

LetB ⊂ {−1, 1}n denote the set of inputs x such that gx is neither 1-to-1 nor 2-to-1. Then an (ε, d)-dual
polynomial φ for ColN,R has the following properties (cf. Section 2.2):

1.
∑

x∈T1 φ(x)−
∑

x∈T2 φ(x)−
∑

x∈B |φ(x)| > ε ·
∑

x∈{−1,1}n |φ(x)|.

2.
∑

x∈{−1,1}n φ(x)χS(x) = 0 for all |S| ≤ d.

Similarly, an (ε, d)-dual polynomial for EDN,R satisfies:

1.
∑

x∈T1 φ(x)−
∑

x/∈T1 φ(x) > ε ·
∑

x∈{−1,1}n |φ(x)|.

2.
∑

x∈{−1,1}n φ(x)χS(x) = 0 for all |S| ≤ d.

2.4 Overview of the Symmetrization-Based Proof of the Collision Lower Bound

Kutin’s simplified proof of the Collision lower bound [26] proceeds in two steps. The first step is a sym-
metrization step, which establishes the following remarkable result (we state this result slightly informally
in this overview).

Lemma 4 (Informal version of Lemma 5). Call a triple (m, a, b) valid if a|m and b|(N−m). For any triple
(m, a, b), let Rm,a,b denote the set of inputs x ∈ {−1, 1}n such that gx : [N ]→ [R] maps m of its inputs to
[R] in an a-to-1 manner, and maps the remaining N −m of its inputs to [R] in a b-to-1 manner. Then there
is a trivariate polynomial P of total degree at most d such that for every valid triple (m, a, b), it holds that
P (m, a, b) = Ex∈Rm,a,b

[p(x)].
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Note in the above lemma that the sets Rm,a,b are not uniquely determined; for instance Rm,1,1 =
R0,a,1 = RN,1,b = T1 for every triple (m, a, b).

The second step of Kutin’s proof argues that if p is a (1/3)-approximating polynomial for the Collision
function, then P must have degree Ω(N1/3). Hence by Lemma 4, p must have degree Ω(N1/3) as well.

In more detail, the second step of Kutin’s proof proceeds via a case analysis. Four cases are considered.

• The first is: P (N/2, 1, 2) ≥ 1/2, and |P (N/2, 1, b)| ≤ 2 for all b ∈ [N2/3]. In this case, Kutin is able
to apply Markov’s inequality from approximation theory to conclude that the degree of P in its third
variable is Ω(N1/3).

• The second is: P (N/2, 1, 2) ≥ 1/2, and |P (N/2, 1, b)| > 2 for some b ∈ [N2/3]. In this case, Kutin
is able to apply Bernstein’s inequality from approximation theory to conclude that the degree of P in
its first variable is Ω(N1/3).

• The third is: P (N/2, 1, 2) < 1/2, and |P (N/2, a, 2)| ≤ 2 for all a ∈ [N2/3]. In this case, Kutin is
able to apply Markov’s inequality to conclude that the degree of P in its second variable is Ω(N1/3).

• The fourth is: P (N/2, 1, 2) < 1/2, and |P (N/2, a, 2)| > 2 for some a ∈ [N2/3]. In this case, Kutin
is able to apply Bernstein’s inequality to conclude that the degree of P in its first variable is Ω(N1/3).

A key technical complication that must be dealt with in the argument above is that |P (m, a, b)|may be much
larger than 1 for invalid triples (m, a, b). This may seem like a minor technicality, but in fact it is a central
issue: if P (m, a, b) were bounded for all invalid triples, then it would be possible to argue that the total
degree of P is Ω(N1/2), which would imply a (false) lower bound of Ω(N1/2) on the approximate degree
of ColN,R.

2.5 Overview of Our Construction for the Collision Function

Like Kutin’s proof, our construction also makes essential use of Lemma 4. Whereas Kutin used Lemma 4 to
reduce to a setting where Markov-Bernstein inequalities could be applied in a non-constructive manner, we
instead use Lemma 4 to argue that the dual polynomial φ that we construct has pure high degree Ω(N1/3).

In more detail, we present our construction in two stages, in order to highlight distinct ideas that go into
the proof. In the first stage, we construct a simpler dual polynomial φ : {−1, 1}n → {−1, 1} that exhibits
an Ω(

√
logN/ log logN) lower bound on the approximate degree of ColN,R. The second stage constructs

a dual polynomial ψ exhibiting the optimal Ω(N1/3) lower bound.

Overview of the first stage. Let Hk ⊆ {−1, 1}n denote the set of inputs of Hamming weight n. The
symmetrization-based proof of the Collision lower bound from [4, 26] carries the strong intuition that the
sets Tk should play the same role that Hk plays in Nisan and Szegedy’s seminal symmetrization-based
lower bound for the OR function [28]. We direct the interested reader to Aaronson’s lecture notes [27]
for a detailed explanation of this intuition. The construction of our simpler dual witness φ instantiates this
intuition in the dual setting.

Recall that a dual polynomial φ witnessing the fact that d̃eg(ColN,R) ≥ d must satisfy two properties:
(1) it must have correlation greater than ε with ColN,R, and (2) it must have pure high degree at least d. We
define φ in a way that mimics the structure of known dual witnesses for symmetric functions, even though
φ is not itself symmetric. Specifically, our construction ensures that the analysis establishing Properties (1)
and (2) becomes similar to the analyses of known dual polynomials for the OR function [17, 41].

In more detail, our prior work [17] built on work of Špalek [41] to give a dual witness γ for the fact that
d̃egε(ORn) = Ω(

√
n) for any constant ε < 1; moreover, γ places non-zero weight only on sets Hk, for
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values of k equal (up to scaling factors) to perfect squares. The pure high degree of γ is shown to be equal
to (at least) the number of sets Hk upon which γ places non-zero weight.

Call an input x ∈ {−1, 1}n valid if it is in Rm,a,b for some valid triple (m, a, b). By analogy with γ, the
dual witness φ that we construct in Stage 1 places weight only on inputs x ∈ Tk for divisors k of N that are
also (up to scaling factors) perfect squares. In particular, our definition of φ ensures that:

φ(x) = 0 for all invalid inputs x. (3)

We are able to combine Eq. (3) with Lemma 4 and a basic combinatorial identity (cf. Lemma 9) to show
that the pure high degree of φ is at least |S|, where S denotes the set of Tk’s upon which φ places non-zero
weight. Moreover, our definition of φ is carefully chosen to ensure that its correlation with ColN,R is large:
the precise calculation is closely analogous to the analysis from [17, 41] showing that γ is well-correlated
with the OR function [17, 41].

Overview of the second stage. In the second stage, we construct a dual polynomial ψ that exhibits the
optimal Ω(N1/3) lower bound. Rather than only weighting inputs in Tk for some some divisors k of n, ψ
weights inputs inRm,a,b for many valid triples (m, a, b). There are two key ideas that go into the construction
of ψ.

The first idea is to define ψ as the sum of two simpler dual polynomials ψ1 and ψ2, each with pure high
degree Ω(N1/3) – then the sum ψ also has pure high degree Ω(N1/3) (see Lemma 15). The first polynomial
ψ1 places a large constant fraction (close to 1/2) of its L1 mass on T1, whereas ψ2 places a large constant
fraction of its L1 mass on T2. Neither ψ1 nor ψ2 is well-correlated with ColN,R in the sense of Eq. (3).
However, they each place a constant fraction of their L1 mass on RN/2,2,1, and they are designed so that
their values exactly cancel out on inputs in RN/2,2,1. This allows us to show that ψ = ψ1 + ψ2 satisfies
Eq. (3), even though ψ1 and ψ2 individually do not.

The second idea goes into the construction of ψ1 and ψ2 themselves. Specifically, we think of ψ1 and ψ2

as each being constructed in a two-step process. We focus on ψ1 in this discussion, since the construction
of ψ2 is similar. Very roughly speaking, in the first step, we consider a “polynomial” ψ′ of pure high degree
Ω(N1/3) that places a large constant fraction of its L1 mass on T1; the construction of ψ′ is closely related
to our construction of the simpler dual polynomial φ from Stage 1.

The reason we place the term “polynomial” in quotes above is that there is an important technical
caveat to our construction of ψ′: we think of ψ′ as placing weight on sets RN/2,a,1 for many invalid triples
(N/2, a, 1), in addition to some valid ones. Of course, if (N/2, a, 1) is invalid, then RN/2,a,1 = ∅, so
ψ′ cannot place non-zero weight on the set. To address this issue, in Step 2, we add to ψ′ a bunch of
polynomials ψ′′N/2,a,1, each of pure high degree Ω(N1/3). For each invalid triple (N/2, a, 1), ψ′′N/2,a,1 is
specifically constructed to cancel out the weight that ψ′ “places” on RN/2,a,1.

Analogously to how our constructions of φ and ψ′ were closely related to the dual witness for OR
constructed in our earlier work [17], our construction of ψ′′N/2,a,1 is closely related to a dual witness η for
the Majority function, MAJ, that we constructed in the same work. Each ψ′′N/2,a,1 places additional non-
zero mass on (non-empty) sets of the form Rm,a,1 for some a 6= 1 and m ∈ [N ], but we are able to show
that the total mass placed on such sets is small, using an analysis closely related to the analysis of η from
[17]. Hence we are able to show that ψ1 = ψ′ +

∑
invalid triples (N/2,a,1) ψ

′′
N/2,a,1 still places a large constant

fraction of its L1 mass on T1.

2.6 Discussion

On Kutin’s second step. Our construction of the optimal dual witness ψ for the Collision function mimics
the second step of Kutin’s symmetrization argument in three important ways described below. We find this
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mimicry to be somewhat surprising – in our earlier work [17], we constructed an optimal dual polynomial
for symmetric Boolean functions that bore little relation to Paturi’s well-known symmetrization-based proof
of the same result [30]. We believe that this mimicry sheds new light, or at least gives a new perspective, on
why Kutin’s proof takes the structure that it does.

Recall that the second step of Kutin’s proof (cf. Section 2.4) proceeds via a case analysis. The first
“branch” in the case analysis depends on whether the expected value of the assumed n-variate approximation
p to ColN,R on the set RN/2,2,1 is large or small. This is mimicked in our construction of ψ as a sum of two
dual polynomials ψ1 and ψ2, both of which individually place a lot of weight on RN/2,2,1, but whose sum
places zero weight on RN/2,2,1.

The second “branch” in Kutin’s case analysis depends on whether |P (N/2, a, 1)| or |P (N/2, 2, b)| is
small for all a, b ≤ N2/3. He needs to consider this second branch because P (m, a, b) is not guaranteed to
be bounded for invalid triples (m, a, b).

This branch is mimicked in our construction of ψ1 (respectively, ψ2) as the sum of a single “polynomial”
ψ′ that tries to place weight on sets RN/2,a,1 for invalid triples (N/2, a, 1) (respectively, (N/2, 2, b)), and
many other polynomials ψ′′N/2,a,1 (respectively, ψ′′N/2,2,b), one for each invalid triple (N/2, a, 1) (respec-
tively, (N/2, 2, b)). In our dual setting, the reason we need to incorporate the polynomials ψ′′N/2,a,1 is to
cancel out the weight that ψ′ tries to place on invalid sets RN/2,a,1.

Finally, recall that Kutin applied Markov’s inequality from approximation theory in two of the four
cases considered in his analysis, and Bernstein’s inequality in the other two cases. Markov’s inequality
underlies Nisan and Szegedy’s standard symmetrization-based proof that the approximate degree of OR is
Ω(
√
n) [28], while Berstein’s inequality underlies Paturi’s proof that the approximate degree of MAJ is

Ω(n) [30]. This is mimicked in our construction of ψ1 and ψ2 as the sum of ψ′ and the ψ′′N/2,a,1 and ψ′′N/2,2,b
polynomials: the construction of ψ′ is closely analogous to the dual witness for OR from [17], while the
construction of the ψ′′N/2,a,1 and ψ′′N/2,2,b polynomials is based on the dual witness for MAJ from [17].

On the first step, or why k-to-1 inputs matter. As noted by several authors (e.g., [2, Slide 36]), the most
miraculous element of the symmetrization-based proof of the Collision lower bound is the first step (cf.
Lemma 4). The crux of this step is to establish, roughly speaking, that for any n-variate polynomial p of
total degree d, the function P (k) := Ex∈Tk [p(x)] is a polynomial in k of degree at most d. Why should this
hold? More basically, why should inputs that are k-to-1 even play a prominent role in the proof?

We provide some partial intuition for this in Section 6. Specifically, we explain that there is an (asymp-
totically) optimal approximation p for ColN,R such that k-to-1 inputs correspond to constraints that are
made tight by the solution corresponding to p in the primal linear program of Section 2.2. Hence, com-
plementary slackness suggests that there should be a corresponding dual witness ψ that places weight only
on inputs that are k-to-1, or nearly so, justifying the prominent role that k-to-1 inputs play in both the
symmetrization-based proof and our new dual proof.

2.7 Formal Statement of Lemma 4

Following Kutin [26], we define a special collection of functions which are a-to-1 on one part of the domain
and b-to-1 on the other part. For N > 0, recall that a triple of numbers (m, a, b) is valid if a|m and
b|(N −m). For each valid triple (m, a, b), we define

gm,a,b(i) =

{
di/ae if 1 ≤ i ≤ m
R− b(N − i)/bc if m < i ≤ n.

Moreover, for each valid triple (m, a, b), we define a set Rm,a,b that is the orbit of gm,a,b under the
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automorphism group SN × SR. Namely,

x ∈ Rm,a,b ⇐⇒ ∃σ ∈ SN , τ ∈ SR : τ ◦ gx ◦ σ = gm,a,b.

Note that the sets Rm,a,b are not uniquely determined; for instance Rm,1,1 = R0,a,1 = RN,1,b = T1 for
every m, a, b.

Lemma 5. Let p(x) be a real polynomial over {−1, 1}n of degree d. There is a trivariate polynomial P of
degree at most d with the property that for all valid triples (m, a, b),

P (m, a, b) = Ex∈Rm,a,b
[p(x)].

The statement of Lemma 5 differs slightly from the corresponding lemma in Kutin’s work [26] (Lemma
7 below). Lemma 5 follows by combining Kutin’s formulation with the following simple lemma from [18].

Lemma 6 ([18]). Let p be a polynomial over {−1, 1}n. Consider the map T : {−1, 1}m → {0, 1}N ·R
defined by Tij(x) = 1 if gx(i) = j, and Tij(x) = 0 otherwise. Then there is a polynomial q : {0, 1}N ·R → R
with deg q ≤ deg p, such that q(T (x)) = p(x) for all x ∈ {−1, 1}n.

Lemma 7 ([26]). Let q(t) be any degree d polynomial in the variables tij . For a valid triple (m, a, b), define
Q(m, a, b) by

P (m, a, b) = Ex∈Rm,a,b
[q(T (x))].

Then P is a degree d polynomial in m, a, b.

3 An Ω(
√

logN/ log logN) Lower Bound for the Collision Function

The following lemma is a refinement of [17, Proposition 14], which was used there to construct a dual
polynomial for OR.

Lemma 8. There exists a constant ζ > 0 such that for all δ ∈ (0, 1) and L ≥ 1, there is an explicit
ω : {1, . . . , L} → R with

1. ω(1) ≥ 1−δ
2

2. −ω(2) ≥ 1−δ
2

3.
∑L

k=1 |ω(k)| = 1

4. For every polynomial p : {1, . . . , L} → R of degree d ≤ ζ
√
δL, we have

∑L
k=1 p(k)ω(k) = 0.

The proof will make use of the following simple combinatorial identity, a simple proof of which can be
found in [29, Appendix A].

Lemma 9. For any L > 0, let q : R → R be a univariate polynomial of degree strictly less than L. Then∑L
k=0(−1)k

(
L
k

)
q(k) = 0.

Proof of Lemma 8. Let c = d16/δe. Let m = b
√

(L− 1)/cc and define the set

T = {1} ∪ {ci2 : 0 ≤ i ≤ m}.
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Note that |T | = Ω(
√
L/c). Define the function ω̂ : {0, 1, . . . , L} → R by

ω̂(k) =

(
L

k

)
cm(m!)2

L!

∏
j∈[[L]]\T

(k − j) =


cm(m!)2∏

j∈T\{k}(k − j)
if k ∈ T,

0 otherwise.

It is easy to check that ω̂(0) = 1.
For k = 1, we have |ω̂(k)| = cm(m!)2∏m

i=1(ci
2−1) . Notice that:

1 ≤ cm(m!)2∏m
i=1(ci

2 − 1)
=

m∏
i=1

i2

i2 − 1/c

=
m∏
i=1

(
1 +

1

ci2 − 1

)

≤ exp

(
m∑
i=1

2

ci2

)

≤ e8/c ≤ 1 +
3

2
δ.

On the other hand, for k = c`2 with ` > 0, |ω̂(k)| equals:

cm(m!)2

(c`2 − 1)
∏
i∈[[m]]\{`} |c`2 − ci2|

=
(m!)2

(c`2 − 1)
∏
i∈[[m]]\{`}(i+ `)|i− `|

=
2(m!)2

(c`2 − 1)(m+ `)!(m− `)!

≤ 2

c`2 − 1
,

where the last inequality follows because

(m!)2

(m+ `)!(m− `)!
=

m

m+ `
· m− 1

m+ `− 1
· . . . · m− `+ 1

m+ 1

is a product of factors that are each smaller than 1. Thus, the total contribution of terms excluding 0 and 1
to the `1 mass of ω̂ is at most

m∑
i=1

2

ci2 − 1
<

∞∑
i=1

4

ci2
<

8

c
≤ δ

2
.

Now let b = 0 if |T | is even, and b = 1 otherwise, and define ω : {1, . . . , L} → R via:

ω(k) = (−1)k+bω̂(k − 1)/‖ω̂‖1.

Then
−ω(2) ≥ ω(1) ≥ 1

1 + |ω̂(1)|+ δ/2
≥ 1

2 + 2δ
≥ 1− δ

2
.

This yields the first two claims about ω. The third claim follows immediately from the definition. Finally,
let p be a polynomial of degree strictly less than |T | − 1. Then

L∑
k=1

p(k)ω(k) =
L−1∑
k=0

(−1)k · (−1)b ·
(
L

k

)
· c
m(m!)2

L!‖ω̂‖1
·p(k+ 1)

∏
j∈[[L]]\T

(k− j) =
L−1∑
k=0

(−1)k
(
L

k

)
q(k), (4)
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where

q(k) =
(−1)bcm(m!)2

L!‖ω̂‖1
p(k + 1)

∏
j∈[[L]]\T

(k − j)

is a polynomial of degree less than L. Since q(L) = 0, the right hand side of Eq. (4) is zero by Lemma 9.
This gives the last claim.

Our prior work [17], building on work of Špalek [41], obtained a dual polynomial γ for ORL by setting
the total weight of γ on inputs in Hk (the set of inputs of Hamming weight k) to be ω(k + 1). In that work,
the first three properties of ω ensured that γ had high correlation with OR, while the fourth ensured that it
had pure high degree Ω(

√
L).

Analogously, our dual polynomial φ for ColN,R below sets the total weight of φ on Tk to be ω(k). Then
again, the first three properties of ω ensure that φ is well-correlated with ColN,R, and the fourth ensures that
it has pure high degree Ω(

√
L). However, there is the complication that Tk must be non-empty, i.e., k must

divide N , for every k in the support of ω. To handle this complication, we take N large enough so that all
k = 1, 2, . . . , L divide N , yielding an Ω(

√
logN/ log logN) lower bound.

Theorem 10. Let N = L! for some L. For δ > 0, there exists an explicit (1− 2δ, d) dual polynomial φ for
ColN,R with d = Ω(

√
δL) = Ω(

√
δ logN/ log logN).

Proof. First, notice that k|N for all k ∈ [L], so Tk 6= ∅ for every such k. Define φ(x) = ω(k)/|Tk| if x is
in Tk for some k ∈ [L], and φ(x) = 0 otherwise, where ω is obtained by applying Lemma 8. Note that φ(x)
is well-defined since |Tk| 6= 0 for all k ∈ [L], and each x ∈ {−1, 1}n is in Tk for at most one value of k.

We check: ∑
x∈T1

φ(x)−
∑
x∈T2

φ(x) = ω(1)− ω(2) ≥ 1− δ,

where the inequality holds by Parts 1 and 2 of Lemma 8. Moreover,

∑
x∈B
|φ(x)| =

L∑
k=3

|ω(k)| ≤ δ,

where the inequality holds by combining Parts 1-3 of Lemma 8. Thus,∑
x∈T1

φ(x)−
∑
x∈T2

φ(x)−
∑
x∈B
|φ(x)| ≥ 1− 2δ.

Second, ∑
x∈T1∪T2∪B

|φ(x)| =
L∑
k=1

|ω(k)| = 1,

where the final equality holds by Part 3 of Lemma 8.
Finally, let d = ζ

√
δL where ζ is as in the statement of Lemma 8, and let S ⊆ [n] with |S| ≤ d. We

must show that
∑

x∈T1∪T2∪B φ(x)χS(x) = 0. Note that:

∑
x∈T1∪T2∪B

φ(x)χS(x) =
L∑
k=1

∑
x∈Tk

φ(x) ·χS(x) =

L∑
k=1

∑
x∈Tk

(ω(k)/|Tk|) ·χS(x) =
L∑
k=1

ω(k) ·Ex∈Tk [χS(x)],

where the first equality holds because φ(x) = 0 if x is not in Tk for some k ∈ [L].
By Lemma 5, there is a trivariate polynomial P of total degree at most d such that P (m, a, b) =

Ex∈Rm,a,b
[χS(x)] for all valid triples (m, a, b). In particular, since k|N for all k ∈ [L], q(k) := P (N, k, 1)
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is a univariate polynomial in k such that q(k) = Ex∈Tk [χS(x)] for all k ∈ [L]. Hence, Part 4 of Lemma 8
implies that

L∑
k=1

ω(k) · Ex∈Tk [χS(x)] = 0.

4 An Ω(N 1/3) Lower Bound for the Collision Function

The following lemma is a refinement of [18, Proposition 10], which constructed an explicit dual polynomial
for MAJ.

Lemma 11. There exists a constant ρ > 0 for which the following holds. Let δ ∈ (0, 1), N > 0 an even
integer, and k ∈ [N ]. Then there is an explicit ηk : [[N ]]→ R such that

1. ηk is supported on {2k, 4k, . . . , 2bN/2kck} ∪ {N/2}

2. ηk(N/2) > 1−δ
2

3.
∑N

r=0 |ηk(r)| = 1

4. For every polynomial p : {0, . . . , N} → R of degree d ≤ ρ
√
δN/k, we have

∑N
r=0 p(r)ηk(r) = 0.

Proof. Throughout the proof, we assume for simplicity that N/2 is not a multiple of 2k. The analysis when
N/2 is a multiple of 2k is similar.

Let c = d 10√
δ
e and t = 2bN/(4k)ck and define the set

S = {t± 2c`k : 0 ≤ ` ≤ bt/(2ck)c}.

Note that |S| = Ω(N/ck). We claim that πS(i) :=
∏
j∈S,j 6=i |j − i| is minimized at i = t. Notice that

translating all points in S by a constant does not affect πS(i), and scaling all points in S by a constant
does not affect argminiπS(i). Thus, it is enough to show that πS∗(i) is minimized at i = 0 for the set
S∗ = {±` : ` ≤ t}. In this case, πS∗(i) takes the simple form (t− i)!(t+ i)!, and we see that for all i ∈ S∗,

πS∗(0)

πS∗(i)
=

(t!)2

(t− i)!(t+ i)!
=

t

t+ |i|
· t− 1

t+ |i| − 1
· · · · · t− |i|+ 1

t+ 1

is a product of terms smaller than 1, so πS∗(i) is indeed minimized at i = 0.
Now let T = S ∪ {t− 2k,N/2} and define the function

η̂(r) =

(
N

r

)
(2ck)2h(h!)2(2k)(N/2− t)

N !

∏
j∈[[N ]]\T

(r − j) =
(2ck)2h(h!)2(2k)(N/2− t)∏

j∈T\{r}(r − j)

where h = bt/2ckc. The normalization is chosen so that |η̂(t)| = 1.
The reason that we include both (r − (t − 2k)) and (r − (N/2)) in the denominator of η̂ is to ensure

that the rate of decay of η̂(r) is at least quadratic as r moves away from t. This will ultimately allow us to
show that a large fraction of the `1 mass of η̂ comes from the point r = N/2.
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For r = t− 2k, the mass |η̂(r)| is

(2ck)2h(h!)2(2k)(N/2− t)
2k(N/2− t+ 2k)

∏h
`=1(2ck`− 2k)(2ck`+ 2k)

=
(N/2− t)

N/2− t+ 2k

h∏
`=1

(
1 +

1

(c`)2 − 1

)

≤ 1

2
exp

(
h∑
`=1

2

c2`2

)

≤ 1

2
exp

(
π2

3c2

)
<

1 + δ

2
,

where the first inequality holds because N/2 − t ≤ 2k, combined with the fact that
∏h
`=1(1 + a`) ≤

exp(
∑h

`=1 a`) for nonnegative a`.
For r = N/2, we get

|η̂(r)| = (2ck)2h(h!)2(2k)(N/2− t)
(N/2− t)(N/2− t+ 2k)

∏h
`=1(2ck`+ (N/2− t))(2ck`− (N/2− t))

=
2k

N/2− t+ 2k

h∏
`=1

(
(2ck`)2

(2ck`)2 − (N/2− t)2

)
≥ 1

2
.

Now we analyze the remaining summands, and show that their total contribution is much smaller than
1. Recall that the choice i = t minimizes πS(i), and that πS(t) = (2ck)2h(h!)2. Therefore,

|η̂(t+ 2ck`)| = (2ck)2h(h!)2(2k)(N/2− t)∏
j∈T\{t+2ck`} |t+ 2ck`− j|

≤ 2k(N/2− t)
|2ck`+ 2k||2ck`− (N/2− t)|

≤ 1

c2`2 − 1
,

where the final inequality exploits the fact that N/2− t < 2k. Similarly,

|η̂(t− 2ck`)| = (2ck)2h(h!)2(2k)(N/2− t)∏
j∈T\{t+2ck`} |t− 2ck`− j|

≤ 2k(N/2− t)
|2ck`− 2k||2ck`+ (N/2− t)|

≤ 1

c2`2 − 1
.

We can use this quadratic decay to bound the total `1 mass of the points outside of {t− k, t,N/2}:

∑
j∈S\{t}

|η̂(j)| ≤
∑
`6=0

1

(c2`2 − 1)
≤ 2

c2 − 1
· π

2

6
<
δ

2
.

Now let ηk(r) = (−1)r+h+N/2η̂(r)/‖η̂‖1. Since η̂ is supported on T ⊆ {2k, 4k, . . . , 2bN/2kck} ∪
{N/2}, the function ηk is as well, giving the first claim. Moreover,

ηk(N/2) ≥ 1/2

(1/2 + δ/2) + 1/2 + δ/2
≥ 1− δ

2
.

This yields the second claim about ηk. The third claim follows immediately from the definition. Finally, let
p be a polynomial of degree strictly less than |T | (where |T | ≥ ρN/k for a constant ρ). Then
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N∑
r=0

p(r)ηk(r) =

N∑
r=0

p(r)
(−1)r+h+N/2

‖η̂‖1

(
N

r

)
(2ck)2h(h!)2(2k)(N/2− t)

N !

∏
j∈[[N ]]\T

(r − j)

=

N∑
r=0

(−1)r
(
N

r

)
q(r)

for a polynomial q of degree strictly less than N . This is equal to zero by Lemma 9, giving the final
claim.

We obtain our dual polynomial ψ for the ColN,R as a linear combination of two simpler functions ψ1

and ψ2. These functions have the following properties.

Lemma 12. Let N > 0 be an integer multiple of 4. For R ≥ N , there exist explicit ψ1, ψ2 : {−1, 1}n → R
and d = Ω(δ1/3N1/3) such that

1.
∑

x∈T1 ψ1(x) > 1−δ
2 .

2. −
∑

x∈T2 ψ2(x) > 1−δ
2 .

3. ‖ψ1‖1 = ‖ψ2‖1 = 1.

4.
∑

x∈T2 |ψ1(x)| =
∑

x∈T1 |ψ2(x)| = 0.

5. ψ1, ψ2 have pure high degree at least d.

6.
∑

x∈T1 ψ1(x) =
∑

x∈RN/2,2,1
ψ2(x).

7.
∑

x∈RN/2,2,1
ψ1(x) =

∑
x∈T2 ψ2(x).

8. ψ1 and ψ2 are each constant on each set Rm,a,b when (m, a, b) is valid.

Together, they yield the desired dual polynomial for ColN,R.

Theorem 13. Let N > 0 be an integer multiple of 4. For R ≥ N , there exists an explicit (1 − 6δ, d)-dual
polynomial ψ for ColN,R for d = Ω(δ1/3N1/3).

Remark 14. The dependence of the lower bound Theorem 13 on both parameters δ andN for 1
N ≤ δ ≤

1
10 ,

is tight up to a logarithmic factor in the size of the range. We show this in Appendix A by constructing an
explicit approximating polynomial for ColN,R of the appropriate degree, by building on the ideas underlying
the quantum query algorithm of Brassard et al. [15].

Proof of Theorem 13, assuming Lemma 12. Let a =
∑

x∈T1 ψ1(x) and let b =
∑

x∈T2 |ψ2(x)| = −
∑

x∈T2 ψ2(x),
where ψ1 and ψ2 are as in Lemma 12. Let ψ(x) = aψ1(x) + bψ2(x). By Property 5 of Lemma 12 and
Lemma 15 below, ψ also has pure high degree at least d. So we need only show that ψ has correlation at
least 1− 6δ with ColN,R. To this end, note that

1.
∑

x∈T1 ψ(x) = a2 > (1−δ)2
4 . This inequality uses Properties 1 and 3 of Lemma 12.

2. −
∑

x∈T2 ψ(x) = b2 > (1−δ)2
4 . This inequality uses Properties 2 and 3 of Lemma 12.
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3.
∑

x∈B |ψ(x)| ≤ a
∑

x∈B\RN/2,2,1
|ψ1(x)| + b

∑
x∈B\RN/2,2,1

|ψ2(x)| ≤ (a + b)δ. Here, the first
inequality exploits the fact that∑

x∈RN/2,2,1

|ψ(x)| =
∑

x∈RN/2,2,1

|a · ψ1(x) + b · ψ2(x)| = 0. (5)

The last equality in Eq. (5) holds because, for all x ∈ RN/2,2,1,

a · ψ1(x) + b · ψ2(x)

=

( ∑
x′∈T1

ψ1(x′)

)
· ψ1(x) +

(
−
∑
x′∈T2

ψ2(x′)

)
ψ2(x)

=

 ∑
x′∈RN/2,2,1

ψ2(x′)

 · ψ1(x) +

− ∑
x′∈RN/2,2,1

ψ1(x′)

ψ2(x)

=

 ∑
x′∈RN/2,2,1

ψ2(x′)

 1

|RN/2,2,1|
∑

x′∈RN/2,2,1

ψ1(x′)

+

− ∑
x′∈RN/2,2,1

ψ1(x′)

 1

|RN/2,2,1|
∑

x′∈RN/2,2,1

ψ2(x′)


= 0,

where the second equality exploited Properties 6 and 7 of Lemma 12, and the last equality exploited
Property 8.

Thus, the correlation of ψ with ColN,R is∑
x∈T1

ψ(x)−
∑
x∈T2

ψ(x)−
∑
x∈B
|ψ(x)| ≥ a2 + b2 − (a+ b)δ

≥ 1

2
− 2δ ≥ (1− 6δ) · ‖ψ‖1,

where the final inequality holds because ‖ψ‖1 ≤ a2 + b2 + (a+ b)δ ≤ 1
2 + δ.

Lemma 15. Let ψ1, ψ2 : {−1, 1}n → {−1, 1} each have pure high degree at least d. Then ψ = ψ1 + ψ2

also has pure high degree at least d.

Proof. Let S ⊆ [n] with |S| ≤ d. Then∑
x∈{−1,1}n

ψ(x)χS(x) =
∑

x∈{−1,1}n
ψ1(x)χS(x) +

∑
x∈{−1,1}n

ψ2(x)χS(x) = 0.

Proof of Lemma 12. Let ζ be the constant from Lemma 8, let ρ be the constant from Lemma 11, and let
δ′ = 1/2. Set K = 2(ρN/ζ)2/3(δ′/δ)1/3. Let d = 1

2ρ
1/3ζ2/3(δ′)1/6δ1/3N1/3 = Ω(δ1/3N1/3), noting that

d ≤ ζ(δ/8)1/2K1/2 and d ≤ ρ(δ′)1/2N/k for every k ≤ K. Let ω : {1, . . . ,K} → R, with correlation
constant δ/8, and η3, . . . , ηK : {1, . . . , N} → R, with correlation constant δ′, be as in the conclusions of
those lemmas.

We start by defining a function Ψ(m, k) as follows.

Ψ(m, k) = ω(k) · 1m=N/2 −
ω(k)

ηk(N/2)
1k≥3 · ηk(m).
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Here,

1m=N/2 =

{
1 if m = N/2,

0 otherwise,
and 1k≥3 =

{
1 if k ≥ 3,

0 otherwise.

We first show how to use Ψ to construct the polynomial ψ1. Analogously to our construction of φ, we
want ψ1 to place a total weight of Ψ(m, a) on each set Rm,a,1. Recall from our overview in Section 2.5
that we think of ψ1 = ψ′+

∑
invalid triples (N/2,a,1) ψ

′′
N/2,a,1, where ψ′ looks like the simpler “first stage” dual

polynomial φ from our informal overview (which we constructed in Section 3) and each ψ′′N/2,a,1 cancels
out the weight φ places on values of k the do not divide N . This structure underlies our construction of Ψ,
where we add multiples of the polynomials ηk(m) to cancel out the weight ω(k) places on invalid triples.

Now we construct and analyze the polynomial ψ1. Define

ψ̂1(x) =


Ψ(m, k)/|Rm,k,1| if x ∈ Rm,k,1 \ T1
Ψ(N/2, 1)/|T1| if x ∈ T1
0 otherwise.

Notice that ψ̂1 is well-defined, because any x 6∈ T1 is in Rm,k,1 for at most one triple (m, k, 1). We collect
several calculations with ψ̂1. First,∑

x∈T1

ψ̂1(x) = Ψ(N/2, 1) = ω(1) >
1− δ/8

2
,

−
∑

x∈RN/2,2,1

ψ̂1(x) = −Ψ(N/2, 2) = −ω(2) >
1− δ/8

2
,

and ∑
x∈B\RN/2,2,1

|ψ̂1(x)| =
∑

{(m,k) : k|m}\{(N/2,1),(N/2,2)}

|Ψ(m, k)|

=

K∑
k=3

∣∣∣∣ ω(k)

ηk(N/2)

∣∣∣∣ bN/2kc∑
i=1

|ηk(2ki)|

≤ 4

K∑
k=3

|ω(k)|

≤ δ

2
,

where the penultimate inequality exploits Properties 2 and 3 of Lemma 11, and the final inequality exploits
Properties 1-3 of Lemma 8.

Noting that |ω(1)| + |ω(2)| ≤ 1, it follows that ‖ψ̂1‖1 ≤ 1 + δ/2. So setting ψ1 = ψ̂1/‖ψ̂1‖1, it is
immediate that ψ1 satisfies the first three properties in the statement of the lemma. ψ1 also satisfies the
fourth property, since for any x ∈ T2, ψ1(x) = Ψ(N, 2)/|T2| = 0.

Now we will show that ψ̂1, and hence ψ1, has pure high degree at least d. We require two observations.

• Ψ is supported on (m, k) for which k|m. To see this, note first that for any k ≥ 3, Ψ(N/2, k) =

ω(k)− ω(k)
ηk(N/2)

· ηk(N/2) = 0. The claim now follows from Property 1 of Lemma 11, combined with
the fact that 2|N .

• Ψ(m, 1) is nonzero only for m = N/2, and hence
∑

x∈T1 ψ̂1(x) = Ψ(N/2, 1) =
∑N

m=1 Ψ(m, 1).
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Fix any S ⊆ [n] with |S|≤d. Let Q(m, k) be a polynomial of degree at most d − 1 in each variable
such that, for all pairs (m, k) with k|m, Q(m, k) = Ex∈Rm,k,1

[χS(x)]. The existence of such a bivariate
polynomial Q is guaranteed by Lemma 5. Then the previous two observations together imply that:∑

x∈{−1,1}n
ψ̂1(x)χS(x) =

N∑
m=1

N∑
k=1

Ψ(m, k)Q(m, k). (6)

We remark that a key point is the derivation of Eq. (6) is that we have no control over the evaluations
Q(m, k) when k does not divide m, yet this is rendered irrelevant because Ψ(m, k) = 0 for all such pairs.

The right hand side of Eq. (6) equals:

K∑
k=1

ω(k)Q(N/2, k)−
K∑
k=3

ω(k)

ηk(N/2)

ηk(N/2)Q(N/2, k) +

bN/2kc∑
i=1

ηk(2ik)Q(2ik, k)

 . (7)

The first sum in Eq. (7) is zero by Lemma 8 since Q(N/2, k) is a polynomial of degree at most d in k.
The second sum is also zero because for each fixed k, Q(r, k) is a polynomial of degree at most d in the
variable r, and hence the term in parentheses is zero by Lemma 11 (Parts 1 and 4). Thus ψ̂1 has pure high
degree at least d.

The construction of ψ2 is similar. This time, we let

ψ̂2(x) =


Ψ(m, k)/|Rm,k,2| if x ∈ Rm,k,2 \ T2
Ψ(N/2, 2)/|T2| if x ∈ T2
0 otherwise.

Note that ψ̂2 is well-defined, because any x 6∈ T2 is in Rm,k,2 for at most one triple (m, k, 2). We define
ψ2 = ψ̂2/‖ψ̂2‖1. Showing that ψ2 satisfies Properties 1-4 of the lemma follows from the same calculations
we used for ψ1.

To show that ψ2 has pure high degree at least d, we require the following additional observations.

• Ψ is supported on pairs (m, k) for which k|m and 2|(N −m). To see the latter property, note that if
Ψ(m, k) 6= 0, then m is even (this holds because N/2 is even, which follows from our requirement
that N is a multiple of 4), and hence N −m is as well.

• Ψ(m, 2) is nonzero only form = N/2. It follows that
∑

x∈T2 ψ̂2(x) = Ψ(N/2, 2) =
∑N

m=1 Ψ(m, 2).

With these observations in hand, showing that ψ2 has pure high degree d then follows from calculations
analogous to the ones we used for ψ1.

Finally, the fact that ψ1 and ψ2 satisfy Properties 6, 7, and 8 of the lemma follows from their defini-
tions, combined with the fact that RN/2,1,2 = RN/2,2,1. In fact,

∑
x∈T1 ψ1(x) equals Ψ(N/2, 1), while∑

x∈RN/2,2,1
ψ2(x) also equals Ψ(N/2, 1), giving Property 6. Similarly,

∑
x∈T2 ψ2(x) equals Ψ(N/2, 2),

while
∑

x∈RN/2,1,2
ψ1(x) also equals Ψ(N/2, 1). This completes the proof.

5 A Dual Polynomial for Element Distinctness

We first recall the reduction from Collision to Element Distinctness given in [4].3 The reduction shows how
to turn a polynomial p approximating EDM,R into a polynomial q approximating ColN,R, with N ≈ M2

and deg q ≤ deg p.
3While the reduction given in Aaronson and Shi’s paper is stated in terms of quantum query algorithms, it is straightforward to

rephrase the reduction in terms of approximating polynomials instead.
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We illustrate the reduction for N = M2/12. Let p : {−1, 1}m → {−1, 1} be an (1/6)-approximation
of EDM,R, with m = M logR. Define a polynomial q : {−1, 1}n → {−1, 1} for n = N logR by

q(y1, . . . , yN ) =
1(
N
M

) ∑
1≤i1<i2<···<iM≤N

p(yi1 , yi2 , . . . , yiM ).

That is, q(y) is the expected value of p(x) where x is the concatenation of a random subset of M of the
blocks y1, . . . , yN . To simplify notation, for a set S = {i1, i2, . . . , iM}, let y|S = (yi1 , yi2 , . . . , yiM ). Note
that deg q ≤ deg p. Moreover, since q is an average of values in [−7/6, 7/6], it is always in [−7/6, 7/6]
itself. To finish arguing that q is a (1/3)-approximation to ColN,R, we consider two cases:

1. If y ∈ T1, i.e., y is a 1-to-1 input, then y|S is always 1-to-1. Hence p(y|S) ∈ [5/6, 7/6] for every
subset of indices, so q(y) ∈ [2/3, 4/3].

2. If y ∈ T2, i.e., y is a 2-to-1 input, then with high probability y|S is not 1-to-1. This follows from the
“birthday bound”:

Pr
|S|=M

[ED(y|S) = 1] ≤ exp(−M2/4N) ≤ 1

12
.

Therefore, q(y) ≤ (11/12)(−5/6) + (1/12)(7/6) ≤ −2/3.

The construction we give in this section takes a dual view of the reduction above. Namely, we show
how to transform a dual polynomial ψ for ColN,R into a dual polynomial ϕ for EDM,R, with M2 ≈ N . In
the primal reduction, we constructed q(y) from p(x) by averaging p over all subsets of size M . The right
analogue in the dual reduction is to construct ϕ(x) by averaging ψ(y) over a carefully constructed set of
extensions from x to a longer input y. In particular, ϕ(x) averages ψ(y) over all y for which x could have
been produced by taking a subset of M blocks of y.

We give this reduction formally below.

Theorem 16. Let ψ : {−1, 1}n → {−1, 1} be a (1 − δ, d)-dual polynomial for ColN,R. Then ψ can
be used to construct ϕ : {−1, 1}m → {−1, 1} that is an (1 − 2δ, d)-dual polynomial for EDM,R when
M ≥ 2

√
N log(2/δ).

Corollary 17. For any δ > 0, there is an explicit (1 − δ, d)-dual polynomial for EDM,R with d =
Ω((δ/ log(1/δ))1/3M2/3).

Remark 18. The dependence of Corollary 17 on δ is essentially tight for δ = O(M−2). See Appendix A for
details.

Proof of Theorem 16. Given a set S = {i1, . . . , iM} ⊂ [N ] with i1 < i2 < · · · < iM and a bit string y =
(y1, . . . , yN ) ∈ {−1, 1}n, define the restriction of y to the set S, denoted by y|S ∈ {−1, 1}m, to be the string
of length m = M logR obtained by concatenating the blocks yi for i ∈ S, i.e., y|S = (yi1 , yi2 , . . . , yiM ).
Given a bit string x ∈ {−1, 1}m, define the multiset of extensions of x, denoted by ext(x), to be the(
N
M

)
RN−M strings y ∈ {−1, 1}n where y|S = x for some |S| = M . Restrictions and extensions are related

by the equivalence of the multisets:

{(x, y) : x ∈ {−1, 1}m, y ∈ ext(x)} = {(x, y) : y ∈ {−1, 1}n, x = y|S for some |S| = m}.

For x ∈ {−1, 1}m, define the polynomial

ϕ(x) =
1(
N
M

) ∑
y∈ext(x)

ψ(y).

Let ϕ(x) = 0 for x /∈ {−1, 1}m. We claim that ϕ is a good dual polynomial for the Element Distinctness
function ED, which requires us to show
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1.
∑

x∈{−1,1}m ϕ(x) ED(x) > (1− 2δ) ·
∑

x∈{−1,1}m |ϕ(x)|

2.
∑

x∈{−1,1}m ϕ(x)χS(x) = 0 for all |S| ≤ d

To verify the first property, define

A(y) =
1(
N
M

) ∑
|S|=M

ED(y|S).

We collect a few observations about A.

1. |A(y)| ≤ 1 for all y.

2. If y ∈ T1, then A(y) = 1.

3. If y ∈ T2, then
Pr
|S|=M

[ED(y|S) = 1] ≤ exp(−M2/4N).

Hence,
A(y) ≤ −1 + 2 exp(−M2/4N) ≤ −1 + δ.

Therefore we get∑
x∈{−1,1}m

ϕ(x) ED(x) =
1(
N
M

) ∑
x∈{−1,1}m

∑
y∈ext(x)

ψ(y) ED(x)

=
1(
N
M

) ∑
y∈{−1,1}n

∑
|S|=M

ψ(y) ED(y|S)

=
∑

y∈{−1,1}n
A(y)ψ(y)

≥

∑
y∈T1

ψ(y)−
∑
y∈T2

ψ(y)−
∑
y∈B
|ψ(y)|

− δ ∑
y∈T2

|ψ(y)|

≥ (1− 2δ)
∑

y∈{−1,1}n
|ψ(y)|

= (1− 2δ)
∑

y∈{−1,1}n

1(
N
M

) ∑
|S|=M

|ψ(y)|

≥ 1− 2δ(
N
M

) ∑
x∈{−1,1}m

∑
y∈ext(x)

|ψ(y)|

≥ (1− 2δ)
∑

x∈{−1,1}m
|ϕ(x)|.
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For the second property, let T be a subset of [N ] with |T | ≤ d. Then∑
x∈{−1,1}m

ϕ(x)χT (x) =
1(
N
M

) ∑
x∈{−1,1}m

∑
y∈ext(x)

ψ(y)χT (x)

=
1(
N
M

) ∑
|S|=M

∑
y∈{−1,1}n

ψ(y)χT (y|S)

=
1(
N
M

) ∑
|S|=M

∑
y∈{−1,1}n

ψ(y)χT |S (y)

= 0,

where T |S denotes the subset of T contained in the blocks specified by S.

6 On Complementary Slackness

Recalling that any bounded-error quantum query algorithm can be converted into an approximating polyno-
mial [10], the collision-finding algorithm of Brassard, Høyer, and Tapp [15] yields an explicit, asymptoti-
cally optimal approximating polynomial for ColN,R. We describe this polynomial p below.

Recall that any approximating polynomial for ColN,R represents a feasible solution to the primal linear
program considered in Section 2.2. If the polynomial pwere an exactly optimal ε-approximation for ColN,R,
then complementary slackness would imply that the optimal dual polynomial ψ for ColN,R is supported on
the points corresponding to constraints made tight by p. That is, ψ : {−1, 1}n → {−1, 1} is supported on
x ∈ {−1, 1}n for which |p(x)− Col(x)| = ε. We refer to these as the maximum-error points of p.

While we do not know whether p is an exactly optimal approximating polynomial for ColN,R, we might
still expect that an approximate version of complementary slackness might holds, in the sense that a “good”
dual polynomial should place all or most of its weight on points that are “nearly” maximum-error points of p.
Indeed, this intuition has proven accurate for all of the dual polynomials constructed in prior work, including
for symmetric functions (see [17, Section 4.5]), block-composed functions (see [43, Section 1.2.4]), and the
intersection of two majorities [38]. Below, we argue that k-to-1 inputs are nearly maximum-error points for
p, which explains why our dual polynomials for collision are supported on inputs that are roughly k-to-1, in
addition to why these inputs play a prominent role in the original symmetrization-based proof.

An asymptotically optimal approximation p for ColN,R. For a subset S ⊂ [N ], define crossS : {−1, 1}n →
R via:

crossS(x1, . . . , xN ) = |{i ∈ S, j /∈ S : xi = xj}| =
∑

i∈S,j 6∈S
EQ(xi, xj),

where EQ denotes the equality function. That is, crossS(x) counts the number of cross-collisions between
indices in S and indices outside of S. Notice that EQ(xi, xj) is a function of only 2 · logR variables, and
hence crossS(x1, . . . , xN ) is exactly computed by a polynomial of degree 2 · logR.

In addition, for a subset S ⊂ [N ], define the function IED,S(x1, . . . , xN ) to be 1 if xi 6= xj for all pairs
i, j ∈ S with i 6= j, and 0 otherwise. That is, IED,S indicates whether x is 1-to-1 on the indices in S. Notice
that IED,S is a function of only |S| · logR variables, and hence is exactly computed by a polynomial of
degree |S| · logR.

For the remainder of the discussion, let r = N1/3 – we focus on the quantity crossS(x) when |S| = r.
We will need the following simple observations.

19



1. If x ∈ T1, i.e., x is a 1-to-1 input, then crossS(x) = 0 and IED,S(x) = 1 for any S.

2. If x ∈ T2, i.e., x is a 2-to-1 input, then IED,S(x) = 1 =⇒ crossS(x) = r.

3. If x ∈ T2, then, over the random choice of S, IED,S(x) = 0 with probability at most (N/2)·(r/N)2 ≤
N−1/3.

4. For all x ∈ {−1, 1}n, IED,S(x) = 1 =⇒ crossS(x) ≤ N − r.

Let Td : R → R denote the degree-d Chebyshev polynomial of the first kind. This polynomial has the
following properties:

• Td(x) ∈ [−1, 1] for x ∈ [−1, 1].

• Td(1 +M/d2) ≥ 10 for a constant M independent of d.

• The extreme points of Td in [−1, 1] are the degree-d Chebyshev nodes, which take the form cos(iπ/d)
for 0 ≤ i ≤ d.

Truncating the Taylor expansion of cos(x) = 1− x2/2 + . . . after the quadratic term, one sees that the
Chebyshev nodes are well-approximated via the expression cos(iπ/d) ≈ 1− (ci2/d2) for some constant c.

Applying an appropriate affine transformation to Td, we obtain a polynomial Ad with the following
properties:

• Ad(0) = 1.

• Ad(i) ∈ [−1,−3/4] for all real numbers i ∈ [1, d2/M ].

• Ad(i) ∈ [−1, 1] for all real numbers i ∈ [0, d2/M ].

• The extreme points of Ad are well approximated by the points c · i2 for i ∈ {0, 1, . . . , bd ·M−1/2c}.

Let pS(x) = IED,S(x) ·Ad(crossS(x1, . . . , xN )/r) for d = 100 ·M ·N1/3, and let

p(x) = E|S|=r[pS(x)] =
1(
N
r

) ∑
|S|=r

pS(x).

Then p is a polynomial of degree |S| logR+ 2 · d · logR = O(N1/3 logR). We argue that p approximates
ColN,R to error ε for some ε ≤ 1/3. The analysis falls into three cases.

Case 1: For x ∈ T1, pS(x) = Ad(0) = −1 for all S, where the first equality follows from Property 1 above.
So p(x) = E|S|=r[pS(x)] = 1.

Case 2: For x ∈ T2, IED,S(x) = 1 =⇒ pS(x) = Ad(1) ∈ [−1,−3/4], where the equality follows from
Property 2 above. Meanwhile, IED,S(x) 6= 1 =⇒ pS(x) = 0. Combining these two facts with
Property 3 above establishes that p(x) = E|S|=r[pS(x)] ∈ [−1,−2/3].

Case 3: For x ∈ {−1, 1}n, pS(x) ∈ [−1, 1]. This follows from Property 4 above.
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Identifying maximum-error points of p. For any fixed S, the maximum error points of pS are well-
approximated by the x ∈ {1, 1}n for which the following two equations hold:

crossS(x) = c · i2 · r for some i ∈ {0, 1, . . . , bd ·M−1/2c} (8)

and
IED,S(x) = 1. (9)

(This follows from the fact that the extreme points ofAd are roughly of the form c·i2 for 0 ≤ i ≤ d·M−1/2).
However, the maximum-error points for the averaged polynomial p(x) = E|S|=r[pS(x)] are the points

x that satisfy Eq. (8) and Eq. (9) with high probability over the choice of S. Indeed, for these points x, the
error of p(x) is at least ε · (1− o(1)) ≈ ε.

Consider any k of the form k = c · i2 + 1 for some i ∈ {0, 1, . . . , bd ·M−1/2c}, such that k = o(N1/3).
Consider any x ∈ Tk; we claim that x satisfies Eq. (8) and Eq. (9) with probability 1− o(1) over choice of
S. To see this, observe that the probability that IED,S(xS) = 0 is at most (N/k) ·k2 ·(r/N)2 = k·r2

N = o(1).
And if IED,S(xS) 6= 0, then the number of cross-collisions is exactly

crossS(x1, . . . , xN ) = r · (k − 1).

When k takes the form k = c · i2 + 1, this means that x satisfies Eq. (8). Hence, x has nearly maximal error
even for the averaged polynomial p.
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A On the Tightness of Theorem 13 and Corollary 17

To complement Theorem 13, we construct an approximating polynomial that gives a nearly matching up-
per bound on the approximate degree of ColN,R. The construction is a refinement of the approximating
polynomial given in Section 6.

Proposition 19. For 0 ≤ δ ≤ 1/N , there exists a polynomial p of degree O(δ1/3N1/3 logR) that (1− δ)-
approximates ColN,R.

Proof sketch. See Section 6 for the construction of an approximating polynomial of degree O(N1/3 logR)
in the case where δ is constant. In order to obtain an improved upper bound for vanishing δ, we make the
following changes to that construction:

1. We instead choose r = δ1/3N1/3. Now if x is a 2-1 input, the probability over the random choice
of the set S of obtaining a collision inside S, i.e. the probability that IED,S = 0, is at most (N/2) ·
(r/N)2 ≤ δ/2.

2. We instead letAd be an affine transformation of a Chebyshev polynomial with the following properties
for some constant M :

• Ad(0) ≥ δ
2

• Ad(i) ∈ [−1,− δ
2 ] for i ∈ [1, d2/Mδ]

• Ad(i) ∈ [−1, 1] for x ∈ [0, d2/Mδ].

3. Setting d = 100 ·M · r ensures that the polynomial p has degree O(δ1/3N1/3 logR) and is a (1− δ)-
approximation of ColN,R.

We now show that Corollary 17 is tight up to a factor of logR, when δ ≤ 1/M2. This gives mild
evidence that the lower bound has the right dependence on both parameters M, δ for vanishing δ.
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Proposition 20. Let δ ≤ 1/M2. Then there exists a (1 − δ)-approximating polynomial for EDM,R with
degree O(logR).

Proof. We write
EDM,R(x1, . . . , xM ) =

∧
i 6=j

NEQ(xi, xj),

where NEQ(xi, xj) = 1 if i and inputs j are distinct, and is zero otherwise. The function NEQ can be
computed exactly by a polynomial of degree O(logR). Therefore, the polynomial

1(
M
2

)
1

2
−
∑
i 6=j

NEQ(xi, xj)


has degree O(logR) and approximates EDM,R to within error 1− 1/M2.
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