
Computations beyond Exponentiation Gates and Applications

Ilya Volkovich ∗

Abstract

In Arithmetic Circuit Complexity the standard operations are {+,×}. Yet, in some scenarios
exponentiation gates are considered as well (see e.g. [BB98, ASSS12, Kay12, KSS14]). In this
paper we study the question of efficiently evaluating a polynomial given an oracle access to its
power. That is, beyond an exponentiation gate. As applications, we show that:

• A reconstruction algorithm for a circuit class C can be extended to handle fe for f ∈ C.
• There exists an efficient algorithm for factoring sparse multiquadratic polynomials.

• There exists an efficient algorithm for testing whether two powers of sparse polynomials
are equal. That is, fd ≡ ge when f and g are sparse.

1 Introduction

Let f(x̄) ∈ F[x1, x2, . . . , xn] be a polynomial over the field F. In this paper we study the following
question: given e ∈ N and an oracle access to fe ∈ F[x1, x2, . . . , xn] can we efficiently construct an
oracle access to f? That is, we wish to evaluate f on a set of points ā, b̄, . . . (might be unknown
upfront) given an oracle access to fe. An efficient randomized algorithm for this problem was given
in [KT90]. Where, in fact, a randomized polynomial factorization algorithm was given. In addition,
in terms of circuit complexity, it was shown in [Val80, Kal85] that if fe has a small circuit then so
does f 1. In this paper we focus on solving the algorithmic problem deterministically.

It is clear that as the first step, we should be able to extract e-th roots of field elements. For
instance, if f is constant. We refer to such an algorithm as an e-th root oracle Re. However, having
root oracles is not enough for our task as demonstrated by the following example.

Let h(x) = 3x − 4 and f = h2. Suppose that we wish to evaluate h(x) at x = 1, 2 given an
oracle access to f(x) and using a square-root oracle R2. As f(1) = 1, f(2) = 4 the oracle might
return h(1) = R2(1) = 1 and h(2) = R2(4) = 2 (for example, returning the positive root). Note,
however, that these evaluations are inconsistent with either ±h! More generally, there could be
e different h1, . . . he polynomials that result in the same polynomial when raised the e-th power
(i.e. ∀i ∈ [n] : hei = f). Therefore, in order to prevent the aforementioned situation our algorithm
should output an oracle access to exactly one of them. We summarize this in the following theorem
which is our main technical contribution.

Theorem 1 (Main Technical Contribution). There exists a deterministic algorithm that given
e ∈ N, an e-th root oracle Re and an oracle access to a polynomial fe ∈ F[x1, x2, . . . , xn] of degree
at most d uses poly(n, d, log |F|) field operations and oracle calls to Re, and outputs an oracle access
to ω · f , where ω ∈ F is such that ωe = 1.

∗Department of EECS, CSE Division, University of Michigan, Ann Arbor, MI. Email: ilyavol@umich.edu.
1When the characteristic of F is zero or coprime with e.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 42 (2015)

We now discuss related problems and applications.

1.1 Multivariate Polynomial Factorization

One of the fundamental problems in algebraic complexity is the problem of polynomial factoriza-
tion: given a polynomial P ∈ F[x1, x2, . . . , xn] over a field F, find its irreducible factors. Other
than being natural, the problem has many applications such as list decoding [Sud97, GS99] and
derandomization [KI04]. A large amount of research has been devoted to finding efficient algo-
rithms for this problem (see e.g. [GG99]) and numerous randomized algorithms were designed
[GK85, Kal89, KT90, GG99, Kal03, Gat06]. However, the question of whether there exist deter-
ministic algorithms for this problem remains an interesting open question (see [GG99, Kay07]).

Perhaps the simplest factorization algorithm is a root oracle. We note that the best known
deterministic root extraction algorithms over the finite fields have polynomial dependence on the
field characteristic p (see e.g. [Sho91, GG99, GKL04, Kay07]). While in the randomized setting,
this dependence is polynomial in log p. In particular, there is no known efficient deterministic root
extraction algorithm when p is large. Over fields with characteristic 0 (e.g. Q) both the determin-
istic and the randomized complexities are polynomial in the bit-complexity of the coefficients (see
[LLL82]). Therefore, we can say that root extraction is, perhaps, the simplest hard problem. For
sake of uniformity we formulate all our results in terms of root oracles and log |F| which stands for
the bit-complexity of the coefficients in the underlying polynomials.

1.2 Polynomial Reconstruction

Let F be a field and C a class of circuits. The reconstruction problem for the class C is defined
as follows. Given an oracle access to a polynomial f ∈ F[x1, x2, . . . , xn], computable by an a
circuit from C, output a circuit C ∈ C that computes f . A reconstruction algorithm is efficient
if the number of queries it makes to f and its running time are polynomial in the size of the
representation of f in the class C. The reconstruction problem can be seen as the algebraic analog
of the learning problem.

An immediate application of our main theorem is reconstruction beyond an exponentiation gate.
More formally, we can efficiently extend a reconstruction algorithm for a circuit class C to handle
polynomials of the form fe when f is computable by a circuit C ∈ C. Note that in general fe might
not be computable by a circuit in C.

Theorem 2. Let A be a deterministic (randomized) reconstruction algorithm for a circuit class C,
let f ∈ C and let T (f) denote the number of operations A uses to reconstruct f . Then there exists
a deterministic (randomized) algorithm that given e ∈ N, an e-th root oracle Re and an oracle
access to the polynomial fe ∈ F[x1, x2, . . . , xn] of degree at most d, uses poly(n, d, log |F| , T (f))
field operations and oracles calls to Re and A, and outputs a circuit for ω · f , where ω ∈ F is such
that ωe = 1.

As a corollary we get to extend reconstruction algorithms for specific classes of circuits. An
s-sparse polynomial is polynomial with at most s (non-zero) monomials. Sparse polynomials were
deeply studied (see e.g. [BOT88, KS01, LV03]) and, in fact, several efficient deterministic recon-
struction algorithms were given. Our next result extends the reconstruction algorithm of [KS01] to
powers of sparse polynomials.

2

Theorem 3. Let n, s, d, e ∈ N and let f(x̄) ∈ F[x1, x2, . . . , xn] be an s-sparse polynomial of degree
at most d. Then there exists a deterministic algorithm that given an oracle access to the polynomial
fe ∈ F[x1, x2, . . . , xn] and an e-th root oracle Re uses poly(n, d, e, s, log |F|) field operations and
oracles calls, and outputs ω · f , where ω ∈ F is such that ωe = 1.

Read-once formulas are formulas in which each variable appears at most once. A read-once
polynomial is a polynomial computable by a read-once formula. Those are the smallest possible
polynomials that depend on all of their variables. Although they form a very restricted model
of computation, read-once formulas received a lot of attention [HH91, KLN+93, AHK93, BHH95,
BB98, BC98, SV14a, SV14b, Vol15]. Our next result extends the reconstruction algorithm of
[SV14a] to powers of read-once polynomials. We note that the reconstruction algorithm of [BB98]
actually deals with a richer model of read-once formulas with exponentiation gates. Yet, that
algorithm is randomized.

Theorem 4. Let n, e ∈ N and let f(x̄) ∈ F[x1, x2, . . . , xn] be a read-once polynomial. Then there
exists a deterministic algorithm that given an oracle access to the polynomial fe ∈ F[x1, x2, . . . , xn]
and an e-th root oracle Re uses nO(logn) · poly(e, log |F|) field operations and oracles calls, and
outputs a read-once formula Ψ that computes ω · f , where ω ∈ F is such that ωe = 1.

1.3 Sparse Polynomial Factorization

Coming up with an efficient deterministic factorization algorithm for sparse polynomials (given as a
list of monomials) is a classical open question posed by von zur Gathen and Kaltofen in [GK85]. An
inherent difficulty in tackling the problem lies within the fact that a factor of a sparse polynomial
need not be sparse. Example 5.1 in [GK85] demonstrates that a blow-up in the sparsity of a factor
can be super-polynomial over any field. Consequently, just writing down the irreducible factors as
lists of monomials can take super-polynomial time. In fact, the randomized algorithm of [GK85]
assumes that the upper bound on the sparsity of the factors is known. In light of this difficulty,
a simpler problem was posed in that same paper: Given m + 1 sparse polynomials f1, f2, . . . fm, g
test if g = f1 · f2 · . . . · fm. This problem is referred to as “testing sparse factorization”.

Our main result gives a deterministic factorization algorithm for sparse multiquadratic polyno-
mials.

Theorem 5. Let n, s ∈ N and suppose char(F) 6= 2. There exists a deterministic algorithm that
given an s-sparse multiquadratic polynomial f(x̄) ∈ F[x1, x2, . . . , xn] and a square root oracle R2

uses poly(n, s, log |F|) field operations and oracle calls to R2 and outputs the irreducible factors of
f(x̄). That is, a list h1, . . . , hk of irreducible polynomials such that f = h1 · . . . · hk.

Using techniques from Differential Field Theory we show that some identity testing algorithms
could be extended to work beyond an exponentiation gate. In particular, we prove the following
theorem which can be seen as testing symmetric sparse factorization. We note that setting e = 1
instantiates to testing sparse factorization in the case when f1 = f2 = . . . = fm.

Theorem 6. Let n, s, d, e, δ ∈ N and let f(x̄), g(x̄) ∈ F[x1, x2, . . . , xn] be two s-sparse polynomials
of degree at most δ. Furthermore, suppose that char(F) = 0 or char(F) > δ ·min(e, d). Then there
exists a deterministic algorithm that given f and h uses poly(n, s, d, e, δ, log |F|) field operations and
tests whether fd = ge.

We note that a similar result follows from the works of [ASSS12, BMS13]. We give a more direct
and simple algorithm. In addition, our result can handle a slightly better regime of parameters.

3

1.4 Techniques

Our main technique is to convert an oracle access to a power of a polynomial fe into an oracle
access to the polynomial itself f . As was discussed in the first part of the Introduction, a necessarily
condition is having an efficient root extraction algorithm for field elements, referred to as a “root
oracle”. Yet, as was demonstrated further, applying root oracles naivly can result in inconstensty.
More specifically, as there could be e roots of a polynomial, differing only by a multiplicative factor
of a root of unity of order e, a root oracle can mismatch the answers to different oracle queries.
We solve this problem by introducing an anchor and matching all the queries to that anchor. More
specifically, we fix a non-zero assignment ā of f . For query point b̄ we compute the root along
the line `ā,b̄(t) that passes through ā and b̄. Thus, we reduce the problem from n variables to 1.
Finally, we show how to use a root oracle to compute a root of a univariate polynomial. The latter
is carried out via Squarefree decomposition. See Sections 2.2 and 3.1 for more details.

In order to deal with sparse multiquadratic polynomials, we first show that a factor of such a
polynomial is also sparse. Next, we apply the quadratic formula to get explicit expressions for the
factors. Yet, these expression involve square roots. Computing a square root of a polynomial h can
be seen as computing ±f given h = f2. To this end, we first apply our main technique to get an
oracle access for f and then use a reconstruction algorithm for sparse polynomials to compute the
polynomial. See Section 3.3 for more details.

1.5 Previous Results

Over the last three decades the question of derandomizing sparse polynomial factorization has seen
only a very partial progress. In [SV10] Shpilka & Volkovich gave efficient deterministic factorization
algorithms for sparse multilinear polynomials. This result was recently extended [Vol14] to the
model of sparse polynomials that split into multilinear factors. For the testing version of the
problem, Saha et al. [SSS13] presented an efficient deterministic algorithm for the special case
when the sparse polynomials are sums of univariate polynomials.

1.6 Organization

We begin by some basic definitions and notation in Section 2 when in Section 2.2 we show how
to compute a root of a univariate polynomial and in Section 2.3.1 we prove that a factor of a
sparse multiquadratic polynomial is also sparse. In Section 3 we give all our results showing how
to preform certain computations on polynomials given an oracle access to their powers. We begin
(Section 3.1) by showing how convert an oracle access to fe into an oracle access to f using an
e-th root oracle, thus proving Theorem (Theorem 1) which is our main technical contribution. The
first application is given in Section 3.2 where we show how to extend a reconstruction algorithm
for a circuit class C to handle powers of polynomials from C (Theorem 2). As a corollary, we obtain
an efficient reconstruction algorithm for powers of sparse (Theorem 3) and read-once (Theorem
4) polynomials. Our main application is given in Section 3.3 where we present the first efficient
factorization algorithm for sparse multiquadratic polynomials, thus proving theorem Theorem 5.
In Section 3.4, using different techniques but following the general line, we show how certain
polynomial identity testing algorithms can be extended to handle powers of polynomials. We
conclude the paper with discussion and open questions in Section 4.

4

2 Preliminaries

Let F denote a field, finite or otherwise, and let F denote its algebraic closure.

2.1 Polynomials

A polynomial f ∈ F[x1, x2, . . . , xn] depends on a variable xi if there are two inputs ᾱ, β̄ ∈ F differing
only in the ith coordinate for which f(ᾱ) 6= f(β̄). We denote by var(f) the set of variables that f
depends on. We say that f is g are similar and denote by it f ∼ g if f = αg for some α 6= 0 ∈ F.

For a polynomial f(x1, . . . , xn), a variable xi and a field element α, we denote with f |xi=α the
polynomial resulting from substituting α to xi. Similarly given a subset I ⊆ [n] and an assignment
ā ∈ Fn, we define f |x̄I=āI to be the polynomial resulting from substituting ai to xi for every i ∈ I.

Definition 2.1 (Line). Given ā, b̄ ∈ Fn we define a line passing through ā and b̄ as `ā,b̄ : F→ Fn,

`ā,b̄(t)
∆
= (1− t) · ā+ t · b̄. In particular, `ā,b̄(0) = ā and `ā,b̄(1) = b̄.

Definition 2.2 (Degrees, Leading Monomials, Leading Coefficients). The leading monomial of a
polynomial f , lm(f) is defined as the largest non-zero monomial of f (with its coefficient) with
respect to the lexicographical order of the monomials. The degree of f is defined as the degree of
lm(f). Let xi ∈ var(f). We can write: f =

∑d
j=0 fj · x

j
i such that ∀j, xi 6∈ var(fj) and fd 6≡ 0. The

leading coefficient of f w.r.t to xi is defined as lcxi(f)
∆
= fd. The individual degree of xi in f is

defined as degxi(f)
∆
= d.

It easy to see that for every f, g ∈ F[x1, x2, . . . , xn] and i ∈ [n] we have that: lm(f · g) =
lm(f) · lm(g) and lcxi(f · g) = lcxi(f) · lcxi(g).

2.1.1 Partial Derivatives

The concept of a partial derivative of a multivariate function and its properties are well-known
and well-studied for continuous domains (such as, R, C etc.). This concept can be extended to
polynomials and rational functions over arbitrary fields from a purely algebraic point of view. For
more details we refer to reader to [Kap57].

Definition 2.3. For a monomial M = α · xe11 · · ·x
ei
i · · ·xenn ∈ F[x1, x2, . . . , xn] and a variable xi

we define the partial derivative of M with respect to xi, as ∂M
∂xi

∆
= αei · xe11 · · ·x

ei−1
i · · ·xenn . The

definition can be extended to F[x1, x2, . . . , xn] by imposing linearity and to F(x1, x2, . . . , xn) via the
quotient rule.

Observe that the sum, product, quotient and chain rules carry over. In addition, when F = R
or F = C the definition coincides with the analytical one. The following set of rational function
plays an important role.

Definition 2.4 (Field of Constants). The Field of Constants of F(x1, x2, . . . , xn) is defined as

C(F(x1, x2, . . . , xn))
∆
=
{
f ∈ F(x1, x2, . . . , xn)

∣∣∣ ∀i ∈ [n], ∂f∂xi ≡ 0
}
.

It is easy to see that the field of constants is, indeed, a field and in particular F ⊆ C(F(x1, x2, . . . , xn)).
Furthermore, this containment is proper for fields with positive characteristics and equality holds
only for fields with characteristic 0. The following Lemma gives a precise characterization of
C(F(x1, x2, . . . , xn)).

5

Lemma 2.5. Let F be a field of characteristic p. Then for every n ∈ N:

1. C(F(x1, x2, . . . , xn)) = F when p = 0.

2. C(F(x1, x2, . . . , xn)) = F(xp1, x
p
2, . . . , x

p
n) when p is positive.

2.1.2 Factors and Perfect Powers

Let f, g ∈ F[x1, x2, . . . , xn] be polynomials. We say that g divides f , or equivalently g is a factor
of f , and denote it by g | f if there exists a polynomial h ∈ F[x1, x2, . . . , xn] such that f = g · h.
We say that f is irreducible if f is non-constant and cannot be written as a product of two non-
constant polynomials. For e ∈ N, we say that f is a perfect e-th power if there exists a polynomial
h ∈ F[x1, x2, . . . , xn] such that f = he. Equivalently, we say that h is f ’s e-th root.

Given the notion of divisibility we define the gcd of a set of polynomials in the natural way. Given
the notion of irreducibility we can state the important property of the uniqueness of factorization,

Lemma 2.6 (Uniqueness of Factorization). Let he11 · . . . · h
ek
k = g

e′1
1 · . . . · g

e′
k′
k′ be two factorizations

of the same non-zero polynomial into irreducible, pairwise comprise factors. Then k = k′ and there
exists a permutation σ : [k]→ [k] such that hi ∼ gσ(i) and ei = e′σ(i) for i ∈ [k].

By definition, the ratio α/β of two e-th of roots a field element (i.e. αe = βe 6= 0) is a root of
unity of order e. We show that the same holds for perfect roots of polynomials. More precisely,
two e-th roots of the same polynomial differ only by a multiplicative factor ω satisfying ωe = 1.

Lemma 2.7. Let f(x̄), h(x̄), g(x̄) ∈ F[x1, x2, . . . , xn] be polynomials such that f(x̄) = h(x̄)e = g(x̄)e

for some e ∈ N. In addition, let α ∈ F, ā ∈ Fn such that αe = f(ā) 6= 0. Then

1. There exists ω ∈ F such that ωe = 1 and h(x̄) = ω · g(x̄).

2. There exists a unique polynomial u(x̄) ∈ F[x1, x2, . . . , xn] s.t. f(x̄) = u(x̄)e and u(ā) = α.

Proof.

1. If h ≡ 0 then clearly g ≡ 0 and the claim follows. Otherwise, let h = he11 · . . . · h
ek
k and

g = g
e′1
1 · . . . · g

e′
k′
k′ be factorizations of h and g into irreducible, pairwise comprise factors,

respectively. We have that he1·e1 · . . . · hek·ek = he = ge = g
e′1·e
1 · . . . · ge

′
k′ ·e
k′ are two factorizations

of the same non-zero polynomial. By Lemma 2.6, k = k′ and, wlog hi ∼ gi and ei = e′i.
Consequently, h = ω · g for some ω ∈ F. Finally, he = ωe · ge = ωe · he and the claim follows.

2. First, note that h(ā)e = f(ā) 6= 0 and thus h(ā) 6= 0. Let us consider u(x̄)
∆
= αh(x̄)

h(ā) . By

definition, u(ā) = αh(ā)
h(ā) = α and u(x̄)e = αeh(x̄)e

h(ā)e = f(ā)f(x̄)
f(ā) = f(x̄). Now, suppose there

exists a polynomial v(x̄) ∈ F[x1, x2, . . . , xn] satisfying the same properties. By the first part
of the Lemma we have that u = ω · v for some ω ∈ F. Therefore, α = u(ā) = ω · v(ā) = ω · α
implying that ω = 1. Consequently, u = v.

6

2.2 Univariate Polynomials: Squarefree Decomposition and Root Computation

In this section we show how to compute the e-th roots of univariate polynomials using root oracles.
We begin by discussing a Squarefree Decomposition of a polynomial. This is one of the steps in
the majority of the polynomial factorization algorithms.

Definition 2.8 (Squarefree polynomials). We say that a polynomial f(y) ∈ F[y] is squarefree if
g(y)2 6 | f(y) for every g(y) ∈ F[y].

Definition 2.9 (Squarefree Decomposition). Let f(y) ∈ F[y] be polynomial of degree at most d.
The squarefree decomposition of f(y) is a sequence of pairwise coprime, squarefree polynomials
(g1, . . . , gd) such that f = g1 · g2

2 · . . . · gdd.

The next lemma shows that for monic polynomials the squarefree decomposition is unique.
Moreover, this decomposition can be computed efficiently.

Lemma 2.10 (Theorem 14.23 of [GG99] and extensions). Let f(y) ∈ F[y] be a non-constant, monic
polynomial of degree at most d. Then there exists a unique squarefree decomposition into a sequence
of monic polynomials. Moreover, there exists a deterministic algorithm that given the polynomial
f(y) uses poly(d, log |F|) field operations and computes its squarefree decomposition.

The squarefree decomposition gives rise to a simple e-th root computation algorithm for univari-
ate polynomials. In addition, this algorithm can be used to test whether a univariate polynomial
is indeed a perfect power.

Lemma 2.11. Let g(y) ∈ F[y] be a non-constant, monic polynomial of degree at most d an let
(g1, . . . , gd) be its squarefree decomposition. Then g(y) = h(y)e for some e ∈ N and h(y) ∈ F[y] iff
gi = 1 when e 6 | i.

Proof. Let (g1, . . . , gd) be as above. Consider the polynomial h
∆
=
∏
e | i

g
i/e
i . We have that:

he =
∏
e | i

gii =
∏
i

gii = g

when the last equality follows from the property of gi and we are done. For the other direction,
let g = he and let (h1, . . . , hd) be the squarefree decomposition of h(y). Consider the following
sequence:

ĝi =

{
hi/e e | i

1 otherwise

We have that
∏
i
ĝii =

∏
e | i

hii/e =
∏
j
hj·ej =

(∏
j
hjj

)e
= he = g. In addition, (ĝ1, . . . , ĝd) is a sequence

of pairwise coprime, squarefree polynomials. By uniqueness, the sequence (ĝ1, . . . , ĝd) is squarefree
decomposition of g and the claim follows.

The following is immediate given the previous lemmas.

Corollary 2.12. There exists a deterministic algorithm that given a non-constant, monic polyno-
mial f(y) ∈ F[y] of degree at most d outputs a polynomial h(y) ∈ F[y] such that f(y) = h(y)e if one
exists using poly(d, log |F|) field operations.

7

We can extend the algorithm to handle arbitrary univariate polynomials by making a call to a
root oracle.

Lemma 2.13. There exists a deterministic algorithm that given e ∈ N, an e-th root oracle Re and
a polynomial f(y) ∈ F[y] of degree at most d uses poly(d, log |F|) field operations and one oracle call
to Re and computes an e-th root of f(y). That is, the algorithm outputs a polynomial h(y) ∈ F[y]
such that f(y) = h(y)e if one exists. Otherwise, the algorithm rejects.

Proof. If f(y) = α ∈ F is a field element (i.e. a constant polynomial), output Re(α). Otherwise,

consider f̂(y)
∆
= f(y)/lc(f). As f̂(y) is a non-constant, monic polynomial we can apply Corollary

2.12 to compute ĥ(y) ∈ F[y] such that f̂(y) = ĥ(y)e. In addition, let α = Re(lc(f)). Output α ·ĥ(y).
Observing that (α · ĥ(y))e = f(y) completes the proof.

2.3 Sparse Polynomials

An s-sparse polynomial is polynomial with at most s (non-zero) monomials. We denote by ‖f‖ the
sparsity of f . In this section we list several results related to sparse polynomials. We begin with a
corollary from [SV10] that shows that a sparse multilinear polynomial can be factored efficiently.
Moreover, all its factors are sparse.

Lemma 2.14 ([SV10]). Given a multilinear polynomial f ∈ F[x1, x2, . . . , xn], there is a poly(n, ‖f‖)
time deterministic algorithm that outputs the irreducible factors, h1, . . . , hk of f . Furthermore,
‖h1‖ · ‖h2‖ · . . . · ‖hk‖ = ‖f‖.

The following result gives an efficient reconstruction algorithm for sparse polynomials.

Lemma 2.15 ([KS01]). Let n, s, d ∈ N. There exists a deterministic algorithm that given an oracle
access to an s-sparse polynomial f ∈ F[x1, x2, . . . , xn] of degree d uses poly(n, s, d, log |F|) field
operations and outputs f .

As a corollary we obtain an efficient algorithm for sparse polynomial division given an upper
bound on the sparsity of the quotient polynomial.

Lemma 2.16 ([KS01, DdO14]). Let n, s, d, t ∈ N. Let f, g ∈ F[x1, x2, . . . , xn] be s-sparse polyno-
mials of degree at most d. Then there exists an algorithm that given f, g uses poly(n, d, s, t, log |F|)
field operations and computes the quotient polynomial of f and g if it a t-sparse polynomial. That
is, if f = gh for some h ∈ F[x1, x2, . . . , xn], ‖h‖ ≤ t then the algorithm outputs h. Otherwise, the
algorithm rejects.

2.3.1 Sparse Multiquadratic Polynomials

In this section we prepare the ground for our main application - efficient factorization algorithm for
sparse multiquadratic polynomials. We begin by showing that a factor of a sparse multiquadratic
polynomials is also sparse. Recall that in general a sparse polynomial can have a dense factor.

Lemma 2.17. Let 0 6≡ f, g ∈ F[x1, x2, . . . , xn] be polynomials such that g is multiquadratic. Then
f | g =⇒ ‖f‖ ≤ ‖g‖.

8

Proof. The proof is by induction on the number of variables. The base case is when n = 0.
That is, f, g ∈ F. Clearly, in this case ‖f‖ = ‖g‖ = 1 and the claim holds. Now suppose that
n ≥ 1. By definition, f · h = g for some h ∈ F[x1, x2, . . . , xn]. We have two cases to consider:
Suppose var(f) ∩ var(h) = ∅. In this case ‖f‖ · ‖h‖ = ‖g‖ and hence ‖f‖ ≤ ‖g‖. Otherwise, pick
xi ∈ var(f) ∩ var(h). Since g is multiquadratic we can write f = fixi + f0 and h = hixi + h0 such
that fi, hi, f0 and h0 do not depend on xi. Therefore:

‖g‖ = ‖(fixi + f0) · (hixi + h0)‖ = ‖fihix2
i + (f0hi + fih0)xi + f0h0‖ ≥ ‖fihi‖+ ‖f0h0‖

By the induction hypothesis ‖fihi‖ ≥ ‖fi‖ and ‖f0h0‖ ≥ ‖f0‖. Consequently,

‖g‖ ≥ ‖fihi‖+ ‖f0h0‖ ≥ ‖fi‖+ ‖f0‖ = ‖f‖

implying the claim of the lemma.

It is easy to see that this bound is tight. The following corollary is immediate by combining
the bound with Lemma 2.16.

Corollary 2.18. Let n, s, d ∈ N. There exists an algorithm that given s-sparse multiquadratic poly-
nomials f, g ∈ F[x1, x2, . . . , xn] uses poly(n, s, d, log |F|) field operations and computes the quotient
polynomial of f and g. That is, if f = gh for some h ∈ F[x1, x2, . . . , xn] then the algorithm outputs
h. Otherwise, the algorithm rejects.

We can extend the result to the case when a polynomial is a factor of a product of sparse
multiquadratic polynomials. Note that such a product need not be either sparse or multiquadratic.

Corollary 2.19. Let 0 6≡ f, g1, . . . , gk ∈ F[x1, x2, . . . , xn] be polynomials such that for all i ∈ [k],
gi is multiquadratic. Then f | g1 · . . . · gk =⇒ ‖f‖ ≤ ‖g1‖ · . . . · ‖gk‖.

Proof. Since f | g1 ·. . .·gk, we can write f = f1 ·. . .·fk such that fi | gi. By the Lemma: ‖fi‖ ≤ ‖gi‖.
Therefore: ‖f‖ ≤ ‖f1‖ · . . . · ‖fk‖ ≤ ‖g1‖ · . . . · ‖gk‖.

The following lemma shows that if a sparse multiquadratic polynomial over a field with an odd
characteristic factors in a certain way, then the corresponding discriminant is a polynomial and, in
fact, a sparse polynomial.

Lemma 2.20. Suppose char(F) 6= 2. Let f = ax2
i + bxi + c ∈ F[x1, x2, . . . , xn] be a multiquadratic

polynomial that can be factored as f = g · h when both g and h depend on xi. Then there exists a
multiquadratic polynomial ∆ ∈ F[x1, x2, . . . , xn] be such that ∆2 = b2−4ac. Moreover, ‖∆‖ ≤ ‖f‖2.

Proof. Let g = gixi + g0 and h = hixi + h0. By comparing the coefficients of xi on both sides of
the equation we get that a = gihi , b = gih0 + g0hi and c = g0h0. Therefore,

b2 − 4ac = (gih0 + g0hi)
2 − 4gihig0h0 = (gih0 − g0hi)

2.

Consequently, selecting ∆
∆
= gih0 − g0hi takes care of the first claim. The claim regarding the

degree follows from the fact that the degree of every variable in b2 − 4ac is at most 4. Finally, as
(b+ ∆)(b−∆) = 4ac, by Corollary 2.19: ‖b+ ∆‖ ≤ ‖a‖ · ‖c‖, implying that

‖∆‖ ≤ ‖a‖ · ‖c‖+ ‖b‖ ≤ ‖f‖2.

9

3 Computations beyond an Exponentiation Gate and Application

In this section we give all our results showing how preform certain computations on polynomials
given an oracle access to their powers.

3.1 Evaluation beyond an Exponentiation Gate

The most basic task for polynomial manipulation is evaluating a polynomial given via an oracle
access. In this section we show how to transform an oracle access to the polynomial fe into an
oracle access to f itself. This can be thought of having an oracle equipped with a clever root
extraction algorithm. Our main result is given in the following algorithm.

Input: Oracle access to a polynomial f = ge ∈ F[x1, x2, . . . , xn]; ā ∈ Fn s.t. f(ā) 6= 0;
e ∈ N, e-th root oracle Re.
Evaluation points b̄1, b̄2, . . . ∈ F[x1, x2, . . . , xn]
Output: h(b̄1), h(b̄2), . . . when h(x̄) ∈ F[x1, x2, . . . , xn] is a polynomial s.t. he = f .

1 α← Re(f(ā)) /* Computed only once. */

2 Compute hb̄(t) such that hb̄(t)
e = f(`ā,b̄(t)) /* Invoking Lemma 2.13 */

3 β ← hb̄(0) ;
4 return hb̄(1) · α/β

Algorithm 1: Polynomial Oracle Transformation

Lemma 3.1. Let h(x̄) ∈ F[x1, x2, . . . , xn] be such that f(x̄) = h(x̄)e and h(ā) = α. Then for every
b̄ ∈ F[x1, x2, . . . , xn] Algorithm 1 outputs h(b̄).

Proof. First, by Lemma 2.7 such a polynomial h(x̄) exists and is unique. In addition, β 6= 0 since
βe = hb̄(0)e = f(`ā,b̄(0)) = f(ā) 6= 0. Therefore, the output of algorithm is well-defined. Next, we
have that hb̄(t)

e = f(`ā,b̄(t)) = h(`ā,b̄(t))
e. By Lemma 2.7, hb̄(t) = ω · h(`ā,b̄(t)) for some ω ∈ F.

Therefore:
hb̄(1) · α

β
=
ω · h(`ā,b̄(1)) · α

hb̄(0)
=
ω · h(b̄) · α
ω · h(ā)

= h(b̄).

Note that Algorithm 1 requires a non-zero point of f(x̄) as an additional input. Generally
speaking, finding such a point is the well-known problem of Polynomial Identity Testing (PIT)
which is not known to have an efficient deterministic algorithm. We now argue that for our purposes
we do not need a PIT algorithm.

Recall that we are in the setting where the root of f(x̄) is evaluated on a sequence of points.
Given each new query point b̄ ∈ Fn we can first evaluate f(x̄) on b̄. If f(b̄) 6= 0, we can set ā = b̄
and use this ā as the non-zero input onwards. Observe that Algorithm 1 works for the case ā = b̄ as
well. However, one may ask what happens with the previous query points? Or, what if for all the
query points b̄ are zeros of f? Observe that if f(b̄) = 0 then h(b̄) = 0 for any h(x̄) ∈ F[x1, x2, . . . , xn]
such that h(x̄)e = f(x̄). Therefore, there is no issue of inconsistency here and the oracle just needs
to output 0. Consequently, we can patch Algorithm 1 by using the first non-zero query point as ā
(if one exists). Theorem 1 follows as a corollary of Lemma 3.1 and the above discussion.

10

3.2 Reconstruction beyond an Exponentiation Gate

An immediate application of the polynomial evaluation algorithm is reconstruction beyond an
exponentiation gate. More formally, let A be a reconstruction algorithm for a circuit class C. By
definition, A requires an oracle access to f ∈ C to reconstruct it. We can extend the algorithm to
reconstruct f(x̄) given an oracle access to f(x̄)e and an e-th root oracle Re, by simulating each query
of A. However, in the spirit of Lemma 2.7 the reconstruction algorithm might end up outputting
ω · f(x̄) depending on the root oracle Re at hand. This reasoning is summarized in Theorem 2. As
a corollary we get the following:

Proof of Theorem 3. Apply Theorem 2 with Lemma 2.15.

Theorem 4 also follows as a corollary given the following result:

Lemma 3.2 ([SV14a]). Let n ∈ N. There exists a deterministic algorithm that given an oracle
access to a read-once polynomial f ∈ F[x1, x2, . . . , xn] uses nO(logn) · poly(log |F|) field operations
and outputs a read-once formula Ψ that computes f .

3.3 Deterministic Factorization of Sparse Multiquadratic Polynomials

For the case of sparse multiquadratic polynomials we can actually push those techniques further to
obtain complete factorization thus proving Theorem 5. We now give the overview of the algorithm.

Suppose char(F) 6= 2. Let f ∈ F[x1, x2, . . . , xn] be a multiquadratic polynomial and let xi be
a variable such that f factors as f = g · h when both g and h depend on xi. We can view f as
f = ax2

i + bxi + c when a(x̄), b(x̄) are c(x̄) polynomials that do not depend on xi. Given this view,
we can express g and h in terms of a, b and c using the quadratic formula. That is, we can write

a · f = (axi + b/2 + ∆/2) · (axi + b/2−∆/2)

when ∆ is a polynomial satisfying ∆2 = b2 − 4ac. By Lemma 2.17, both factors are ‖f‖-sparse
so we could continue this process recursively. However, there are some issues with this approach.
First, it is not clear that ∆ is a polynomial since the expression b2 − 4ac might not be a perfect
square. Next, suppose that ∆ were a polynomial. Is it sparse? Answers to these question are
given in Lemma 2.20. Finally, how do we compute ∆? For that purpose we apply Theorem 3 that
allows us reconstruct a sparse polynomial f given an oracle access to its power fe. Formally, an
instantiation of Theorem 3 with e = 2, d = 4n, s = ‖f‖2 together with Lemma 2.20 give rise to the
following corollary.

Corollary 3.3. Suppose char(F) 6= 2. Let f = ax2
i + bxi + c ∈ F[x1, x2, . . . , xn] be a multiquadratic

polynomial that can be factored as f = g · h when both g and h depend on xi. Then there exists
a deterministic algorithm that given i ∈ [n], the polynomial f(x̄) and a square root oracle R2

uses poly(n, ‖f‖, log |F|) field operations and oracles calls, and outputs a multiquadratic polynomial
∆ ∈ F[x1, x2, . . . , xn] such that ∆2 = b2 − 4ac and ‖∆‖ ≤ ‖f‖2.

However, this still does not solve the problem entirely, as we obtain a factorization of a · f
instead of f , while a need not be constant. Another issue is that f could factor differently: f =
(a′x2

i + b′xi + c′)h and in particular the polynomial a = a′ · h could be reducible. We solve both
problems by changing the way we apply recursion: we first recursively factorize a(x) and then
iteratively use Corollary 2.18 to write f as f = gcd(f, a) · f ′. To finish the algorithm we need to
observe that f ′ is either irreducible or factors as above. We now move the proof of Theorem 5.

11

Input: A multiquadratic polynomial f(x̄) ∈ F[x1, x2, . . . , xn]; A square root oracle R2.
Output: A list h1, . . . , hk of the irreducible factors of f . That is, f = h1 · . . . · hk.

1 f̂ ← lcxn(f) ;

2 if f̂ is a constant then S ← ∅ else S ← Factor(f̂);
3 u← f ; T ← ∅;
4 foreach h ∈ S do
5 v ← u/h; /* using the algorithm in Corollary 2.18. */

6 if v 6=⊥ then u← v else S ← S \ {h}; T ← T ∪ {h};
7 end
8 if degxn(u) = 1 then
9 return S ∪ {u}

10 else
11 Write u = ax2

n + bxn + c ;

12 Compute ∆←
√
b2 − 4ac; /* using the algorithm in Corollary 3.3. */

13 η+ ← axn + b/2 + ∆/2; η− ← axn + b/2−∆/2;
14 foreach h ∈ T do
15 v ← η+/h; /* using the algorithm in Corollary 2.18. */

16 if v 6=⊥ then η+ ← v; else η− ← η−/h;

17 end
18 γ ← lm(u)/lm(η+ · η−);
19 if u = γη+ · η− then return S ∪ {γη+, η−} else return S ∪ {u};
20 end

Algorithm 2: Factoring Sparse Multiquadratic Polynomials when char(F) 6= 2.

12

Proof of Theorem 5. The outline of the algorithm is given in Algorithm 2. First of all, as f(x̄) is
given to us as a list of monomials, we can assume wlog that var(f) = [n] by renaming the variables.

The proof is by induction on m(f)
∆
= |var(lcxn(f))|.

Running time: Observe that throughout the execution of the algorithm ‖u‖, ‖v‖ ≤ ‖f‖ and
‖η+‖, ‖η−‖ ≤ ‖f‖2. Initially, the bound holds by the definition of the polynomials. As each update
results from a division, the claim regarding the sparsity follows from Lemma 2.17. Therefore, by
Corollaries 2.18 and 3.3 we get that the total number of field operations and oracle calls to R2

satisfies the following recurrent expression:

t(m, ‖f‖) ≤ t(m− 1, ‖f‖) + poly(m, ‖f‖, log |F|)

resulting in t(m, ‖f‖) = poly(m, ‖f‖, log |F|). As m ≤ n− 1, the claim regarding the running time
follows.

Analysis: Suppose that m(f) ≥ 1. We need to fix some notations. Let f = h1 · . . . · hk be a
factorization of f into irreducible factors. Let g denote the product of those hi-s that depend on
xn. Note that there can be at most two such factors. Therefore, we can write: f = h1 · . . . · hk′ · g.
Finally, let ĝ = lcxn(g) and let ĝ = ĝ1 · . . . · ĝ` be a factorization of ĝ into irreducible factors. Note
that gcd(g, ĝ) = 1 since xn 6∈ var(ĝ) and g contains only the factors the depend on xn. Moreover,
given the above we get that:

f̂ = h1 · . . . · hk′ · ĝ = h1 · . . . · hk′ · ĝ1 · . . . · ĝ`

is a factorization of f̂ into irreducible factors. As m(f̂) < m(f), by the induction hypothesis the set
S will contain the irreducible factors of f̂ . By the uniqueness of factorization, S will contain exactly
the polynomials α1h1, . . . , αk′hk′ and β1ĝ1, . . . , β`ĝ` for some {αi}, {βj} ⊆ F \ {0}. Consequently,
the ‘for each’ loop separates the hi-s from ĝj-s by gradually dividing f by the containment of S.
Observe, that at the end of the loop we get that: S = {α1h1, . . . , αk′hk′}, T = {β1ĝ1, . . . , β`ĝ`}.
Moreover, as u = f = h1 · . . . · hk′ · g at the beginning of the loop and gcd(g, ĝj) = 1 for every j, we
get that

u =
f

α1h1 · . . . · αk′hk′
=
g

γ

For some γ ∈ F. Therefore, to complete the algorithm we need to compute the irreducible factors
of u and concatenate them with S. Recall that by definition g (and hence u) is a product of at
most two irreducible polynomials, both depending on xn.

If degxn(u) = degxn(g) = 1 then u must be a single irreducible factor and thus f = α1h1 · . . . ·
αk′hk′ · u is a factorization of f into irreducible factors. Otherwise, degxn(u) = degxn(g) = 2 and
there can be two cases. If u is irreducible, then again f = α1h1 · . . . · αk′hk′ · u is a factorization of
f into irreducible factors and the algorithm will return this factorization since for every η− and η+

the identity test u =? γη+ · η− will fail. Otherwise, we can write u as a product of two irreducible
polynomials, both depending on xn. By Corollary 3.3 the discriminant polynomial ∆ in Line 12 is
computed successfully. As γu = g we have that ĝ = γa. Consequently, we can write

u · ĝ1 · . . . · ĝ` = u · ĝ = u · γa = γη+ · η−.

13

As each ĝi is an irreducible polynomial, it must be the case that either ĝi | η+ or ĝi | η−. Thus, at
Line 17 we have that u = γη+ · η−. We can easily compute γ by noting that

lm(u) = lm(γη+ · η−) = γlm(η+ · η−).

In conclusion, f = α1h1 · . . . ·αk′hk′ · γη+ · η− is a factorization of f into irreducible factors and the
algorithm will return this factorization passing the identity test u =? γη+ · η−.

The analysis of the base case m(f) = 0 is similar. First, note that if u = f is irreducible then the
algorithm will return {u}. Otherwise, we can write u as a product of two irreducible polynomials,
both depending on xn. By definition, a · u = η+ · η−. As a 6= 0 ∈ F,

γ =
lm(u)

lm(η+ · η−)
=

lm(u)

lm(a · u)
=

1

a

and hence

u =
1

a
η+ · η− = γη+ · η−.

In conclusion we get that in the base case, f = γη+ · η− is a factorization of f into irreducible
factors and the algorithm will return this factorization passing the identity test u =? γη+ ·η−. This
completes the proof.

3.4 Polynomial Identity Testing beyond an Exponentiation Gate

Using techniques from Differential Field Theory we show how to transform an identity test of powers
of polynomials into an identity test that involves partial derivatives of those same polynomials. This
transformation can be applied for classes of polynomials that are closed under partial derivatives
such as sparse polynomials.

Lemma 3.4. Let f(x̄), h(x̄) 6≡ 0 ∈ F(x1, x2, . . . , xn) and let e, d ∈ N. There exists c(x̄) ∈
F(x1, x2, . . . , xn) such that f(x̄)d = c(x̄) · h(x̄)e and ∂c

∂xi
≡ 0 and iff d · h · ∂f∂xi = e · f · ∂h∂xi .

Proof. (⇒) Suppose f(x̄)d = c(x̄) · h(x̄)e. Then

d · h · ∂f
∂xi

=
h

fd−1
· ∂(fd)

∂xi
=

h

fd−1
· c(x̄) · e · ∂h

∂xi
· h(x̄)e−1 = e · c(x̄) · h(x̄)e

fd−1
· ∂h
∂xi

= ef · ∂h
∂xi

.

(⇐) Consider c
∆
= fd

he . By definition:

∂c

∂xi
=

1

h2e
·
(
d · ∂f

∂xi
· fd−1 · he − e · ∂h

∂xi
· he−1 · fd

)
=
fd−1

he+1
·
(
d · ∂f

∂xi
· h− e · ∂h

∂xi
· f
)
≡ 0

and the claim follows.

The following theorem provides an algorithm for an identity testing of powers of polynomials
over fields with zero or large enough characteristics.

Theorem 3.5. Let f(x̄), h(x̄) 6≡ 0 ∈ F[x1, x2, . . . , xn] be polynomials of degree at most δ and let

e, d ∈ N. Furthermore, suppose that p
∆
= char(F) = 0 or p > δ ·min(e, d). Then f(x̄)d = h(x̄)e iff

lm(f)d = lm(h)e and for each i ∈ [n] we have that d · h · ∂f∂xi = e · f · ∂h∂xi .

14

Proof. (⇒) Follows from Lemma 3.4 and the definition of lm.
(⇐) By iterative application of Lemma 3.4 we get that there exists c(x̄) ∈ C(F(x1, x2, . . . , xn))
such that f(x̄)d = c(x̄) · h(x̄)e. We claim that c(x̄) ∈ F. Assume the contrary. Then, by Lemma

2.5 p > 0 and there exist u(x̄), v(x̄) ∈ F[xp1, x
p
2, . . . , x

p
n] such that gcd(u, v) = 1 and c(x̄) = u(x̄)

v(x̄) .
Therefore, we can write:

f(x̄)d · v(x̄) = h(x̄)e · u(x̄).

By definition
lm(f)d · lm(v) = lm(h)e · lm(u)

which implies that lm(v) = lm(u). In particular, v(x̄), u(x̄) 6∈ F as c(x̄) 6∈ F and thus deg(u),deg(v) ≥
p. Assume wlog that d ≤ e. Then p > δd. As gcd(u, v) = 1 we get that up | fd which implies that
p ≤ δd thus leading to a contradiction. Therefore, c(x̄) = α ∈ F. By definition lm(f)d = α · lm(h)e,
which implies that α = 1 and we are done.

Theorem 6 follows an easy corollary by noting that the pre-conditions of Theorem 3.5 can be
efficiently checked given two sparse polynomials.

4 Discussion & Open Questions

In this paper we study computations beyond a (single) exponentiation gate and present some
applications, with the main one being the first efficient deterministic factorization algorithm for
sparse multiquadratic polynomials over odd characteristics. Can we devise such algorithms for
multicubic polynomials? Or more generally, when the individual degree of each variable is constant?
One of the milestones on the route to this goal has to do with estimating the sparsity of the factors
of such polynomials. To this end, we propose the following conjecture:

Conjecture 4.1. There exists a function ν : N→ N such that if f ∈ F[x1, x2, . . . , xn] is a polyno-
mial with individual degrees at most d then g | f =⇒ ‖g‖ ≤ ‖f‖ν(d).

Our results show that ν(1) = ν(2) = 2. As we noted before, the value of ν(3) is unknown. We
also note that the conjecture gives rise to an efficient deterministic algorithm for testing sparse
factorization into polynomials with constant individual degrees.

Another milestone in sparse polynomial factorization is computing a root of a sparse polynomial.
Theorem 6 allows us to test whether the polynomial f is an e-th root of the polynomial g. But can
we actually compute f given g? Once again, an upper bound on the corresponding sparsity could
be useful. We can get the desired result by combining this bound with Theorem 3. We propose the
following conjecture:

Conjecture 4.2. Suppose char(F) = 0 or “large enough”. Let f ∈ F[x1, x2, . . . , xn] be a polynomial.
Then for every e ∈ N: ‖f‖ ≤ ‖fe‖.

Example 6.1 in [Vol14] shows that when the field characteristic is close to the degree of the
polynomial in question, even a square root of sparse polynomial could be very dense. Therefore,
the bound could only hold for “large enough” (in terms of n, d etc..) characterstic. Finally, can we
extend Theorem 6 to fields with “small” charactersitcs? Perhaps, by extending Lemma 3.4?

15

References

[AHK93] D. Angluin, L. Hellerstein, and M. Karpinski. Learning read-once formulas with queries.
J. ACM, 40(1):185–210, 1993.

[ASSS12] M. Agrawal, C. Saha, R. Saptharishi, and N. Saxena. Jacobian hits circuits: Hitting-sets,
lower bounds for depth-d occur-k formulas & depth-3 transcendence degree-k circuits.
In Proceedings of the 44th Annual ACM Symposium on Theory of Computing (STOC),
pages 599–614, 2012.

[BB98] D. Bshouty and N. H. Bshouty. On interpolating arithmetic read-once formulas with
exponentiation. JCSS, 56(1):112–124, 1998.

[BC98] N. H. Bshouty and R. Cleve. Interpolating arithmetic read-once formulas in parallel.
SIAM J. on Computing, 27(2):401–413, 1998.

[BHH95] N. H. Bshouty, T. R. Hancock, and L. Hellerstein. Learning boolean read-once formulas
with arbitrary symmetric and constant fan-in gates. JCSS, 50:521–542, 1995.

[BMS13] M. Beecken, J. Mittmann, and N. Saxena. Algebraic independence and blackbox identity
testing. Information & Computation, 222:2–19, 2013.

[BOT88] M. Ben-Or and P. Tiwari. A deterministic algorithm for sparse multivariate polynom-
inal interpolation. In Proceedings of the 20th Annual ACM Symposium on Theory of
Computing (STOC), pages 301–309, 1988.

[DdO14] Z. Dvir and R. Mendes de Oliveira. Factors of sparse polynomials are sparse. CoRR,
abs/1404.4834, 2014.

[Gat06] J. von zur Gathen. Who was who in polynomial factorization:. In ISSAC, page 2, 2006.

[GG99] J. von zur Gathen and J. Gerhard. Modern computer algebra. Cambridge University
Press, 1999.

[GK85] J. von zur Gathen and E. Kaltofen. Factoring sparse multivariate polynomials. Journal
of Computer and System Sciences, 31(2):265–287, 1985.

[GKL04] S. Gao, E. Kaltofen, and A. G. B. Lauder. Deterministic distinct-degree factorization
of polynomials over finite fields. J. Symb. Comput., 38(6):1461–1470, 2004.

[GS99] V. Guruswami and M. Sudan. Improved decoding of reed-solomon codes and algebraic-
geometry codes. IEEE Transactions on Information Theory, 45(6):1757–1767, 1999.

[HH91] T. R. Hancock and L. Hellerstein. Learning read-once formulas over fields and extended
bases. In Proceedings of the 4th Annual Workshop on Computational Learning Theory
(COLT), pages 326–336, 1991.

[Kal85] E. Kaltofen. Polynomial-time reductions from multivariate to bi- and univariate integral
polynomial factorization. SIAM J. on computing, 14(2):469–489, 1985.

16

[Kal89] E. Kaltofen. Factorization of polynomials given by straight-line programs. In S. Micali,
editor, Randomness in Computation, volume 5 of Advances in Computing Research,
pages 375–412. 1989.

[Kal03] E. Kaltofen. Polynomial factorization: a success story. In ISSAC, pages 3–4, 2003.

[Kap57] I. Kaplansky. An Introduction to Differential Algebra. Hermann, Paris, 1957.

[Kay07] N. Kayal. Derandomizing some number-theoretic and algebraic algorithms. PhD thesis,
Indian Institute of Technology, Kanpur, India, 2007.

[Kay12] N. Kayal. An exponential lower bound for the sum of powers of bounded degree poly-
nomials. Electronic Colloquium on Computational Complexity (ECCC), 19:81, 2012.

[KI04] V. Kabanets and R. Impagliazzo. Derandomizing polynomial identity tests means prov-
ing circuit lower bounds. Computational Complexity, 13(1-2):1–46, 2004.

[KLN+93] M. Karchmer, N. Linial, I. Newman, M. E. Saks, and A. Wigderson. Combinatorial
characterization of read-once formulae. Discrete Mathematics, 114(1-3):275–282, 1993.

[KS01] A. Klivans and D. Spielman. Randomness efficient identity testing of multivariate poly-
nomials. In Proceedings of the 33rd Annual ACM Symposium on Theory of Computing
(STOC), pages 216–223, 2001.

[KSS14] S. Kopparty, S. Saraf, and A. Shpilka. Equivalence of polynomial identity testing and
deterministic multivariate polynomial factorization. In Proceedings of the 29th Annual
IEEE Conference on Computational Complexity (CCC), pages 169–180, 2014.

[KT90] E. Kaltofen and B. M. Trager. Computing with polynomials given by black boxes for
their evaluations: Greatest common divisors, factorization, separation of numerators
and denominators. J. of Symbolic Computation, 9(3):301–320, 1990.

[LLL82] A.K. Lenstra, H.W. Lenstr, and L. Lovász. Factoring polynomials with rational coeffi-
cients. Mathematische Annalen,, 261(4):515–534, 1982.

[LV03] R. J. Lipton and N. K. Vishnoi. Deterministic identity testing for multivariate polynomi-
als. In Proceedings of the 14th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 756–760, 2003.

[Sho91] V. Shoup. A fast deterministic algorithm for factoring polynomials over finite fields of
small characteristic. In ISSAC, pages 14–21, 1991.

[SSS13] C. Saha, R. Saptharishi, and N. Saxena. A case of depth-3 identity testing, sparse
factorization and duality. Computational Complexity, 22(1):39–69, 2013.

[Sud97] M. Sudan. Decoding of reed solomon codes beyond the error-correction bound. Journal
of Complexity, 13(1):180–193, 1997.

[SV10] A. Shpilka and I. Volkovich. On the relation between polynomial identity testing and
finding variable disjoint factors. In Automata, Languages and Programming, 37th In-
ternational Colloquium (ICALP), pages 408–419, 2010. Full version at http://eccc.hpi-
web.de/report/2010/036.

17

[SV14a] A. Shpilka and I. Volkovich. On reconstruction and testing of read-once formulas. Theory
of Computing, 10:465–514, 2014.

[SV14b] A. Shpilka and I. Volkovich. Read-once polynomial identity testing. Computational
Complexity, 2014. (accepted).

[Val80] L. G. Valiant. Negation can be exponentially powerful. Theoretical Computer Science,
12(3):303–314, nov 1980.

[Vol14] I. Volkovich. Deterministically factoring sparse polynomials into multilinear factors.
Electronic Colloquium on Computational Complexity (ECCC), 21:168, 2014.

[Vol15] I. Volkovich. Characterizing arithmetic read-once formulae. ACM Transactions on
Computation Theory, 2015. (accepted).

18

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

