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Abstract

We consider the problem of estimating the number of triangles in a graph. This problem has
been extensively studied in two models: Exact counting algorithms, which require reading the
entire graph, and streaming algorithms, where the edges are given in a stream and the memory
is limited. In this work we design a sublinear-time algorithm for approximating the number
of triangles in a graph, where the algorithm is given query access to the graph. The allowed
queries are degree queries, vertex-pair queries and neighbor queries.

We show that for any given approximation parameter 0 < ε < 1, the algorithm provides
an estimate ∆̂ such that with high constant probability, (1 − ε)∆(G) < ∆̂ < (1 + ε)∆(G),
where ∆(G) is the number of triangles in the graph G. The expected query complexity of the

algorithm is O
(

n
∆(G)1/3

+ min
{
m, m

3/2

∆(G)

})
·poly(log n, 1/ε), where n is the number of vertices in

the graph and m is the number of edges, and the expected running time is O
(

n
∆(G)1/3

+ m3/2

∆(G)

)
·

poly(log n, 1/ε). We also prove that Ω
(

n
∆(G)1/3

+ min
{
m, m

3/2

∆(G)

})
queries are necessary, thus

establishing that the query complexity of this algorithm is optimal up to polylogarithmic factors
in n (and the dependence on 1/ε).
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1 Introduction

We consider the problem of approximating the number of triangles in a graph. Detecting and
counting small subgraphs in a graph is a core problem in Computer Science, motivated by applica-
tions in a variety of areas, as well as by the basic quest to understand simple structures in graphs.
Specifically, a triangle is one of the most elementary of such structures. The number of triangles in
a graph is an important metric in a range of research areas including the study of Social Networks,
Computer Communication, Bioinformatics and more (e.g., see [Col88, Was94, Por00, MSOI+02,
EM02, FWVDC10]).

Counting the number of triangles in a graph G with n vertices and m edges can be performed
in a straightforward manner in time O(n3), given access to the adjacency matrix of G, and in
time O(m · n), given also access to the incidence-lists representation of G. This has been improved
upon in a sequence of works [IR78, CN85, AYZ97, Sch07, Lat08, Avr10, CC11, SPK14], where the
fastest known exact counting algorithm is by Alon et al. [AYZ97]. Their algorithm is based on

fast matrix multiplication and runs in time O(m
2ω
ω+1 ) where ω < 2.376 is the exponent of matrix

multiplication.1

The problem of counting triangles has also been extensively studied in the streaming model,
where the edges are given to the algorithm in a stream and the goal is to output an approximation
of the number of triangles, while keeping the space complexity minimal. We give further details
regarding previous works in the streaming model in Subsection 1.3.2.

Both models described above require reading the entire graph, which is not feasible in many
applications. In this work, we consider a different model, in which there is query access to the
graph, and the goal is to obtain an approximation of the number of triangles by performing a
number of queries that is sublinear in the size of the graph. As we shall discuss later in detail,
there is a growing body of works dealing with approximating graph parameters in sublinear time.
There are three types of standard queries that have been considered in previous works: (1) Degree
queries, in which the algorithm can query the degree d(v) of any vertex v. (2) Neighbor queries,
in which the algorithm can query what vertex is the ith neighbor of a vertex v, for any i ≤ d(v).
(3) Vertex-pair queries, in which the algorithm can query for any pair of vertices v and u whether
(u, v) is an edge.

Gonen et al. [GRS11], who studied the problem of approximating the number of stars in a graph
in sublinear time, also considered the problem of approximating the number of triangles in sublinear
time. They proved that there is no sublinear approximation algorithm for the number of triangles
when the algorithm is allowed to perform degree and neighbor queries (but not pair queries).2 They
raised the natural question whether such an algorithm exists when allowed vertex-pair queries in
addition to degree and neighbor queries. We show that this is indeed the case, as explained next.

1This upper bound is given in [AYZ97] for the triangle-finding problem, but, as observed by Latapy [Lat08] it also
holds for triangle counting (when given access to both the adjacency matrix and the incidence-lists representations
of G).

2To be precise, they showed that there exist two families of graphs over m = Θ(n) edges, such that all graphs in
one family have Θ(n) triangles, all graphs in the other family have no triangles, but in order to distinguish between
a random graph in the first family and random graph in the second family, it is necessary to perform Ω(n) degree
and neighbor queries.
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1.1 Results

We describe an algorithm that, given an approximation parameter 0 < ε < 1 and query access to a
graph G, outputs an estimate ∆̂, such that with high constant probability (over the randomness of
the algorithm), (1− ε)∆(G) ≤ ∆̂ ≤ (1 + ε)∆(G). The expected query complexity of the algorithm
is

O

(
n

∆(G)1/3
+ min

{
m,

m3/2

∆(G)

})
· poly(log n, 1/ε) ,

and its expected running time is O
(

n
∆(G)1/3 + m3/2

∆(G)

)
·poly(log n, 1/ε). We show that this result is al-

most optimal by proving that the number of queries performed by any multiplicative-approximation
algorithm for the number of triangles in a graph is

Ω

(
n

∆(G)1/3
+ min

{
m,

m3/2

∆(G)

})
.

1.2 Ideas and techniques

1.2.1 The algorithm

In what follows we assume that the algorithm has some initial constant factor estimates, m and ∆, of
the number of edges and triangles in the graph, respectively. Namely, m ≥ m

cm
and ∆

c∆
≤ ∆ ≤ c∆ ·∆

for constants cm ≥ 1 and c∆ ≥ 1. This assumption can be removed by performing a combined
(careful) search for such estimates.

Our starting point is similar to the ones in [GR08] and [GRS11]. We consider a partition of
the graph’s vertices into O(log n/ε) buckets, denoted B0, . . . , Bk. In each bucket all the vertices
have the same triangles-degree up to a multiplicative factor of (1 ± β), where β is Θ(ε). The
triangles-degree of a vertex v is the number of triangles that v participates in. If we could get a
good estimate of the number of vertices in each bucket, then we would have a good estimate of
the total number of triangles in the graph. This raises two difficulties. The first is that some of
the buckets might be too small to even be “hit” by a sublinear number of samples. The second
difficulty is that once we sample a vertex, we need some means by which to determine to which
bucket the vertex belongs to.

In order to address the second issue we present a procedure named Approx-Triangles-Degree,
which roughly does the following. Given a vertex v and an index j, the procedure determines
(approximately) whether v belongs to Bj . The query complexity of the procedure is (roughly)

O
(
d(v)
√
m

(1+β)j

)
, where d(v) is the (neighbor) degree of the vertex v. In order to achieve this complexity,

the procedure handles differently vertices whose degree is at most
√
m (referred to as low-degree

vertices), and vertices whose degree is more than
√
m (referred to as high-degree vertices). For

low-degree vertices the procedure simply samples pairs of neighbors of v and performs pair queries
on them. For high-degree vertices such a sampling process does not achieve the desired query
complexity, and hence a more sophisticated process is applied (for more details see Subsection 3.3.2).

Returning to the first issue (of hitting small buckets), how small should a bucket Bj be so that
it can be disregarded (i.e., assumed to be empty)? First observe that total number of possible

triangles in which all three endpoints reside in buckets of size at most (β∆)1/3

k+1 (each) is at most β∆
(recall that there are k + 1 buckets), and hence such buckets can be disregarded. Furthermore, if

2



the number of triangles that have at least one endpoint in a bucket Bj , that is, |Bj |(1 + β)j , is at

most β∆
k+1 , then the bucket can be disregarded as well, since its contribution to the total number of

triangles is not significant. This implies that as j increases, the size of Bj may be smaller, while it
still has a significant contribution to the total number of triangles. Therefore, the cost of estimating
|Bj | for such a “significant” bucket Bj , may grow with (1 + β)j .

Recall that the complexity of Approx-Triangles-Degree decreases as the index j increases, and
so we obtain a useful tradeoff between the size of the sample necessary to “hit” a bucket Bj and
the complexity of determining whether a vertex v belongs to Bj . This tradeoff actually eliminates
the dependence on (1 + β)j . However, the complexity of Approx-Triangles-Degree also has a linear
dependence on d(v), which may be large. Here we observe another tradeoff: While the complexity
of the procedure increases with d(v), the number of vertices with at least a given degree d is upper
bounded by 2m/d, which decreases with d.

By exploiting both tradeoffs we can show that it is possible to obtain an estimate ∆̂ such that
(with high probability) (1

3 − ε)∆(G) ≤ ∆̂ ≤ (1 + ε)∆(G) and the number of queries performed

is O
(

n
∆(G)1/3 + min

{
m, m

3/2

∆(G)

})
· poly(log n, 1/ε). In order to improve the result and get a (1 ±

ε)-approximation of the number of triangles we build on and extend related ideas presented in
[GR08, GRS11]. In particular, we let triangles “observed” from endpoints in sufficiently large
buckets (which are sampled) compensate for triangles “observed” from endpoints in small buckets
(which are not sampled).

1.2.2 The lower bound

Proving that every multiplicative-approximation algorithm must perform Ω
(

n
∆(G)1/3

)
queries is

fairly straightforward, and our main focus is on proving that Ω
(

min
{
m, m

3/2

∆(G)

})
queries are nec-

essary as well. In order to prove this claim we define, for every n, every 1 ≤ m ≤
(
n
2

)
and every

1 ≤ ∆ ≤ min{
(
n
3

)
,m3/2}, a graph G1 and a family of graphs G2 for which the following holds:

(1) The graph G1 and all the graphs in G2 have n vertices and m edges. (2) In G1 there are no
triangles, that is, ∆(G1) = 0, while ∆(G) = Θ(∆) for every graph G ∈ G2. We prove that for

values of ∆ such that ∆ ≥
√
m, at least Ω

(
m3/2

∆

)
queries are required in order to distinguish with

high constant probability between G1 and a random graph in G2. We then prove that for values
of ∆ such that ∆ <

√
m, at least Ω(m) queries are required for this task. We give four different

constructions for G1 and G2 depending on the value of ∆ as a function of m.

1.3 Related Work

1.3.1 Approximating the number of subgraphs and other graph parameters in sub-
linear time

Our work extends the works [Fei06, GR08] on approximating the average degree of a graph (the
number of edges) and the work of [GRS11] on approximating the number of stars in a graph, in
sublinear time. Feige [Fei06] investigated the problem of estimating the average degree of a graph,
denoted d, when given query access to the degrees of the vertices. He proved that O (

√
n/ε) queries

are sufficient in order to obtain a (1
2 − ε)-approximation of d (conditioned on d = Ω(1)) and proved

that a better approximation ratio cannot be achieved in sublinear time using only degree queries.
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The same problem was considered by Goldreich and Ron [GR08]. They proved that, when allowing
neighbor queries as well as degree queries, O (

√
n) · poly(log n, 1/ε) queries are sufficient in order

to obtain a (1 ± ε)-approximation of d. In both results the term
√
n can actually be replaced by√

n/d, so that the complexity of the algorithms improves as d increases.

Gonen et al. [GRS11] considered the problem of approximating the number of s-stars in a graph.
That is, subgraphs over s+ 1 vertices, where one vertex is connected to all others. They presented
an algorithm that, given an approximation parameter 0 < ε < 1 and query access to a graph G,
outputs an estimate ν̂s such that with high constant probability (1− ε)νs(G) ≤ ν̂s ≤ (1 + ε)νs(G),
where νs(G) denotes the number of s-stars in the graph. The expected query complexity and

running time of their algorithm are O
(

n
νs(G)1/(s+1) + min

{
n1−1/s, ns−1/s

νs(G)1−1/s

})
· poly(log n, 1/ε).

Additional works on sublinear algorithms for estimating other graph parameters include those
for approximating the size of the minimum weight spanning tree [CRT05, CS09, CEF+05], max-
imum matching [NO08, YYI09] and of the minimum vertex cover [PR07, MR09, NO08, YYI09,
HKNO09, ORRR12].

1.3.2 Counting the number of triangles in the streaming model

Bar-Yossef et al. [BYKS02] initiated the study of counting the number of triangles in the stream-
ing model. Many works have been conducted since, e.g. [JG05, BFL+06, BBCG08, TKMF09,
TDM+09, TKM11, YK11, KMPT12], differing in the number of passes they perform, the assump-
tions they make on the structure of the graph, the requirements on the output and more. A work
with some resemblance to ours is the work of Kolountzakis et al. [KMPT12]. They present a stream-
ing algorithm that makes three passes over the edge stream and outputs a (1± ε)-approximation of

∆(G). The space complexity of the algorithm is O
(√

m · logm+ m3/2·logn
∆(G)·ε2

)
(where m,n and ∆(G)

are as defined previously). The point of similarity between their algorithm and ours is that they
also classify the graph’s vertices into high-degree vertices, with degree strictly greater than

√
m,

and low-degree vertices, with degree at most
√
m, and apply a different approach to estimate the

triangles-degree of each type of vertices. Since their algorithm requires several passes over the edge
stream and relies heavily on direct access to uniformly selected edges, it otherwise clearly differs
from our algorithm.

2 Preliminaries

Let G = (V,E) be a simple graph with |V | = n vertices and |E| = m edges. We denote by d(v)
the degree of the vertex v ∈ V and by Γ(v) the set of v’s neighbors. For a vertex v we refer to the
number of triangles v participates as the triangles degree of v, and denote it by ∆(v). We denote
the set of triangles that a vertex v participates in by Tr(v).

All our algorithms can sample uniformly in V and perform three types of queries:

1. Degree queries, in which the algorithm may query for the degree d(v) of any vertex v of its
choice.

2. Neighbor queries, in which the algorithm may query for the ith neighbor of any vertex v of
its choice. If i > d(v), then a special symbol (e.g. †) is returned. No assumption is made on
the order of the neighbors of any vertex.

4



3. Pair queries, in which the algorithm may ask if there is an edge (u, v) ∈ E between any pair
of vertices u and v.

We denote by Tr(G) the set of triangles in the graph G, and by ∆(G) the number of triangles in
the graph. Each triangle, that is three vertices u, v, w ∈ V such that (u, v), (v, w) and (u,w) are
edges in G, is denoted by an unordered triple (v, u, w).

We note that we sometimes use set notations for operations on multisets. Also, we start with
the following assumption.

Assumption 2.1 Our algorithms take as input estimates ∆ and m on the number of edges and
triangles in the graph respectively, such that

1. ∆(G)
c∆
≤ ∆ ≤ ∆(G), for some constant c∆ that will be set later on.

2. m ≥ m
cm

, for some constant cm that will be set later on.

3. ∆ ≤ m3/2

Where the third assumption is justified by the following claim.

Proposition 2.2 For every G, ∆(G) ≤ m3/2.

Proof: Note that for every v it holds that ∆(v) ≤ m and that ∆(v) ≤ d(v)2. Therefore,

∆(G) =
1

3

∑
v∈V

∆(v) ≤ 1

3

 ∑
v: d(v)>

√
m

∆(v) +
∑

v: d(v)≤
√
m

d(v)2


≤ 1

3

2
√
m ·m+

√
m

∑
v: d(v)≤

√
m

d(v)

 ≤ m3/2,

and the proof is complete.

We remove the need for this a priori knowledge on ∆(G) and m in Section 3.5.

Since we shall use the multiplicative Chernoff bound extensively, we quote it next. Let χ1, . . . , χr
be r independent random variables, such that χi ∈ [0, 1] and Pr[χi = 1] = p for every 1 ≤ i ≤ r.
For every γ ∈ (0, 1] the following holds:

Pr

[
1

r

r∑
i=1

χi > (1 + γ)p

]
< exp

(
−γ2pr/3

)
, (1)

and

Pr

[
1

r

r∑
i=1

χi < (1− γ)p

]
< exp

(
−γ2pr/2

)
. (2)

Observe that Equation (1) holds also for independent random variables χ1, . . . , χr, such that for
every i ∈ [r], Pr[χi = 1] ≤ p. Similarly Equation (2) holds also for independent random variables
χ1, . . . , χr, such that for every i ∈ [r], Pr[χi = 1] ≥ p.

5



3 An algorithm for approximating the number of triangles

We shall say that an algorithm is a 1
3 -approximation algorithm for the number of triangles if, for

any graph G, given as input 0 < ε < 1, the algorithm computes an estimate ∆̂ such that with
high constant success probability 1

3(1− ε)∆(G) ≤ ∆̂ ≤ (1 + ε)∆(G). In Subsection 3.2 we present
a 1

3 -approximation algorithm for the number of triangles assuming we have query access to the
triangles-degree ∆(v) of each vertex v of our choice. In Subsections 3.3–3.3.4 we show how to
remove this assumption and obtain a 1

3 -approximation algorithm that does not have access to such
an oracle. In Subsection 3.4 we show how the 1

3 -approximation algorithm can be modified so as to
obtain a (1 ± ε)-approximation of the number of triangles. The aforementioned algorithms work
under the assumption that they are provided with constant-factor estimates of m and ∆(G) (as
defined in Assumption 2.1). In Subsection 3.5 we describe how to eliminate the need for a priori
knowledge on m and ∆(G), and we analyze the complexity of the resulting algorithm and the
above listed algorithms. Since the algorithm includes many details, we first provide an overview in
Subsection 3.1.

3.1 An overview of the algorithm

As noted in the introduction, we consider a partition of the graph’s vertices into O(log n/ε) buckets,
denoted B0, . . . , Bk. In each bucket Bj , all the vertices have approximately the same triangles-
degree (1 + β)j , where β is Θ(ε). Observe that 1

3

∑
j |Bj | · (1 + β)j is within (1± β) of ∆(G), since

each triangle is counted three times, once from each endpoint.

3.1.1 An oracle-based algorithm

We start by assuming that we have query access to an oracle that, given a vertex v, replies with
the triangles-degree of v. We prove that given such an oracle, if we disregard “small” buckets and
only estimate the sizes |Bj | of the “large” buckets, for an appropriate threshold of largeness, then

we can get an approximation ∆̂ such that (1
3 − ε)∆(G) ≤ ∆̂ ≤ (1 + ε)∆(G). We set the threshold

of largeness at (β∆)1/3

k+1 so that the number of triangles with all three endpoints in small buckets
(which may not be sampled) is sufficiently small (recall that the number of buckets is k+1). On the
other hand, all other triangles have at least one of their three endpoints in a large bucket (which is
sampled). This is the intuition for the source of the factor of 1/3. For an illustration see Figure 1
in Subection 3.2.

3.1.2 The procedure Approx-Triangles-Degree

We next remove the assumption on having oracle access as described above by presenting a proce-
dure named Approx-Triangles-Degree, which operates as follows (for an illustration see Figure 3 in
Subsection 3.3.2). The procedure is invoked with a vertex v and an index j. Roughly speaking, the
procedure determines whether v belongs to the bucket Bj . More precisely, if the vertex v belongs to
a bucket Bj′ such that j′ ≥ j − 1, then the procedure returns an estimation of the triangles-degree
of the vertex up to a multiplicative factor of (1± δ) for some small estimation error δ. Otherwise
the procedure returns an estimate that is sufficiently smaller than (1 + β)j (thus indicating that

v /∈ Bj). The procedure has expected query complexity and running time of roughly O
(
d(v)
√
m

(1+β)j

)
,

where d(v) is the (neighbor) degree of the vertex v.
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We use different methods to estimate the triangles-degree of a vertex v depending on its degree,
d(v). Specifically, we classify the graph vertices into two types: low-degree vertices, with d(v) ≤

√
m,

and high-degree vertices, with d(v) >
√
m. To estimate the triangles-degree of a low-degree vertex

v, we simply (repeatedly) sample uniformly a pair of its neighbors and check if there is an edge
between the pair (in which case a triangle is observed). Denote by ∆(v) the triangles-degree of the
vertex v. The probability of observing a triangle is ∆(v)/(d(v))2, which for a low-degree vertex v

that belongs to bucket Bj is Ω
(

(1+β)j

d(v)
√
m

)
.

For high-degree vertices, the probability of observing a triangle using this procedure may be
too low, implying that the number of queries necessary for estimating their triangles-degree in this
manner may be too high. Therefore we use a different method to estimate their triangles-degree.
Observe that a high-degree vertex can participate in two types of triangles: triangles in which all
three endpoints are high-degree vertices, and triangles with at least one endpoint that is a low-
degree vertex. We call the former type high triangles, and the latter crossing triangles. In order
to estimate the number of high triangles that a high-degree vertex v participates in we modify the
aforementioned sampling procedure so that it performs pair queries on uniformly selected pairs of
high-degree neighbors of v.

In order to estimate the number of crossing triangles that a high-degree vertex v participates
in we (roughly) do the following. We uniformly sample low-degree neighbors of v, and for each
such selected neighbor u, we uniformly sample a neighbor w and check whether there is an edge
between w and v (so that (v, u, w) is a triangle). We show that for both estimation procedures

it is sufficient to perform a number of queries of roughly O
(
d(v)
√
m

(1+β)j

)
. Observe that the sampling

complexity grows linearly with the degree, and inversely with the triangles-degree of the vertex.

3.1.3 Significant buckets and useful tradeoffs

The dependence on j in the query complexity and running time of the Approx-Triangles-Degree
procedure leads us to refine the threshold for largeness of buckets and we introduce the notion of
“significance”. Significant buckets are those with a significant contribution to the total number of

triangles in the graph. We say that the jth bucket Bj is significant if |Bj | ≥ β∆
(k+1)·(1+β)j

(recall that

∆ is within a constant factor from ∆(G) and that there are k + 1 buckets). In order to hit such a
bucket and estimate its size it suffices to take a sample whose size grows (roughly) like n

|Bj | , which

is upper bounded by O
(
n·(1+β)j ·(k+1)

∆(G)

)
. This enables us to benefit from the following tradeoffs.

1. While the complexity of the procedure Approx-Triangles-Degree increases as j decreases, the
size of the sample sufficient for estimating the size of Bj decreases as j decreases. Indeed, the
product of the two does not depend on j. However, this product does depend on d(v), which
may be large.

2. For any degree d, the number of vertices with degree at least d is upper bounded by 2m
d . If

we take a sample of s vertices, then we do not expect to get many more than s
n ·

2m
d vertices

with degree greater than d. So while the complexity of Approx-Triangles-Degree increases with
the degree of the vertex it is given, the number of vertices with at least any given degree,
decreases with the degree.
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3.1.4 Buckets defined based on random thresholds

In order to benefit from the first aforementioned tradeoff we estimate the size of each bucket Bj using
a separate sample whose size depends on j. This, together with the fact that the procedure Approx-
Triangles-Degree only returns an estimate of ∆(v), gives rise to an additional difficulty. Namely,
this could lead to an overestimation or underestimation of a bucket’s size due to vertices that have
a triangles-degree close to the bucket’s boundaries ((1 + β)j−1 and (1 + β)j). To deal with this
difficulty we redefine the buckets’ boundaries in a random fashion so as to achieve two properties.
The first property is that within each bucket all the vertices have the same triangles-degree up
to a multiplicative factor of (1 ± β)2. The second property is that the number of vertices with
triangles-degree that is in a small range surrounding a bucket’s boundary is small. We prove that
these properties can be obtained (with high probability) when randomly choosing the boundaries
between the buckets.

3.1.5 A (1± ε)-approximation algorithm

In what follows, we say that a bucket Bj is large if |Bj | ≥ max
{

(β·∆)1/3

k+1 , β∆
(k+1)·(1+β)j

}
. As illustrated

in Figure 1, we partition the graph’s triangles into four subsets of triangles: TrL,L,L, with all three
endpoints in large buckets, TrL,L,S , with two endpoints in large buckets, TrL,S,S , with one endpoint
in a large bucket, and TrS,S,S , with no endpoint in a large bucket. The number of triangles in TrS,S,S
is sufficiently small, so that they can be disregarded (estimated as 0). Roughly speaking, the 1

3 -
approximation algorithms sketched above obtains an estimate of 3|TrL,L,L|+ 2|TrL,L,S |+ |TrL,S,S |
(and divides it by 3). The source of the different factors of 3, 2 and 1, is the following. The
algorithm obtains a good estimate, b̂j , of the size of each large bucket Bj , and hence the sum over

all large buckets Bj of b̂j · (1 + β)j accounts for 3 “copies” of each triangle in TrL,L,L (one for each
endpoint), 2 “copies” of each triangle in TrL,L,S and one “copy” for each triangle in TrL,S,S .

The (1 ± ε)-approximation algorithm aims at estimating |TrL,L,S | and |TrL,S,S |. If we could
sample triangles uniformly among triangles that have an endpoint in a large bucket and could
determine to which buckets the other endpoints belong, then we would obtain such estimates. The
algorithm performs these tasks approximately, which is sufficient for our needs, and furthermore,
does so without increasing the complexity of the algorithm by more than a poly(log n, 1/ε) factor.

Roughly speaking, the algorithm chooses a large bucket Bj with probability proportional to
the number of triangles that have an endpoint in Bj . This is done using the approximated sizes
of the large buckets and the approximated number of triangles with an endpoint in a large bucket,
which were obtained by the 1

3 -approximation algorithm. Next, the algorithm samples a vertex v
in Bj and uses a modified version of Approx-Triangles-Degree in order to sample a triangle incident
to v. Finally, the algorithm determines for each of the two other endpoints of the sampled triangle
whether it belongs to a large bucket or a small bucket.

Since we introduce quite a lot of notations, we gathered them in Table 1.
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Table 1: Notations, their meaning, and their place of definition.

Notation Meaning Where defined

∆(G), T (G)
The number of unlabeled triangles in the graph
G

Section 1.1

∆̂
The output of the algorithm – a (1± ε) approx-
imation of ∆(G)

Section 1.1

ε An approximation parameter Section 1.1

Γ(v), d(v) The set of neighbors of v, and v’s degree Section 2

Tr(v), ∆(v)
Number of triangles that v participates in, and
v’s triangles-degree

Section 2

∆ An initial estimate of ∆(G), ∆(G)
c∆
≤ ∆ ≤ ∆(G) Assumption 2.1

m
An initial estimate of the number of edges m,
m ≥ m

cm

Assumption 2.1

T (G) Set of labeled triangles in the graph G Section 3.2

T T = 3∆, |T (G)|
c∆
≤ T ≤ |T (G)| Section 3.2 and Equation (4)

T (A)
Set of labeled triangles rooted at vertices in
A ⊆ V Section 3.2

β ε/450 Definition 3.2.1

Bj = B̃j
The jth bucket before the random threshold pro-
cess, Bj = {v : ∆(v) ∈ ((1 + β)j−1, (1 + β)j ]} Definition 3.2.1

k Number of buckets, log(1+β) T Definition 3.2.1

Ij Safety interval of the jth bucket
Create-Random-Thresholds,
Figure 2

µj Midpoint of Ij and the new threshold
Create-Random-Thresholds,
Figure 2

Bj The jth bucket, Bj = {v : ∆(v) ∈ (µj−1, µj ]} Definition 3.2.1, Figure 2

B′j Bj \ (BIj ∪BIj−1), Strict buckets Equation (9), Figure 2

B′′j B′j ∪BIj ∪BIj−1 Section 3.3.1

Vhi, V`o
Set of high degree and low degree vertices,
Vhi = {v : d(v) >

√
m}, Vlo = {v : d(v) ≤

√
m} Subsection 3.3.2

Γhi(v), Γ`o(v) Set of v’s neighbors in Vhi and V`o respectively Subsection 3.3.2

Trhi(v), ∆hi(v)
Set of high triangles v participates and their car-
dinality

Definition 3.3.3

Trcr(v), ∆cr(v)
Set of crossing triangles v participates and their
cardinality

Definition 3.3.3

∆̂(v) An estimate of the triangles degree of v Approx-Triangles-Degree
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L∗
Set of indices of the large significant buckets,

L∗ =
{
j ∈ [k] : |B′j | ≥ max

{ (β·T )1/3

k+1 , βT
(k+1)·µj

}} Definition 3.2.2

S∗ Set of indices of the small and insignificant buck-
ets, L∗ = [k] \ L∗ Definition 3.2.2

k′
Maximal triangles-degree of large significant

buckets, log(1+β)
c∆·(k+1)·T 2/3

β

Definition 3.3.12

L
Subset of indices j ∈ [k′] of the significant

buckets, L =
{
j ∈ [k′] : |B′j | ≥

β·T
(k+1)·µj

} Definition 3.3.12

B′X

⋃
j∈X

B′j Definition 3.3.7

TrX,Y,Z Triangles with endpoints in B′X , B
′
Y , B

′
Z Definition 3.3.8

b̂j An estimate for |B′j | 1
3 -Approx-Triangles

L̂
L̂ = {j : b̂j ≥ (1− β) β·Tk′·µj },
L̂ ⊇ L ⊇ L∗

1
3 -Approx-Triangles

Ŝ
Set of indices of the small significant buckets,

Ŝ =
{
j ∈ [k] \ L̂ : B′j ≥

βT
(k+1)·µj

} Definition 3.4.1

αL,Ŝ,Ŝ αL,Ŝ,Ŝ = |TrL,Ŝ,Ŝ |/|T (B′L)| Definition 3.4.2

αL,L,Ŝ αL,L,Ŝ = |TrL,L,Ŝ |/|T (B′L)| Definition 3.4.2

q
The “real”query complexity,

q = max
{

n
∆1/3 ,min

{
m, m

3/2

∆(G)

}} Discussion in Subsection 3.5.2

q The “guessed” value of q Approx-Triangles

∆q,i ∆q,i = n3

q·2i Approx-Triangles

mq,i mq,i = max
{
q, n2

22i/3

}
Approx-Triangles

3.2 A 1/3-approximation given oracle access to ∆(v)

In what follows we think of each triangle (u, v, w) as having three copies, each labeled with one of its
endpoints: (u, v, w)u, (u, v, w)v and (u, v, w)w. We say that a labeled copy of a triangle (u, v, w)u is
a labeled triangle that is rooted at u. Let T (G) denote the set of labeled (rooted) triangles. Clearly,

∆(G) =
1

3
|T (G)|. (3)

Therefore, to get an approximation of ∆(G) it suffices to approximate |T (G)|. We define T = 3∆,
and it follows from the first item in Assumption 2.1 and Equation (3) that

|T (G)|
c∆

≤ T ≤ |T (G)|. (4)
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In general, for a set of vertices A ⊆ V , we denote by T (A) the set of all labeled triangles rooted at
vertices in A.

Definition 3.2.1 Let β = ε/450 and let k = log(1+β) T (so that k = O(log n/ε)). For j = 0, . . . , k,
let the bucket Bj be:

Bj = {v : ∆(v) ∈ ((1 + β)j−1, (1 + β)j ]}. (5)

In what follows we denote by [k] the set {0, . . . , k} If for each j ∈ [k] we could get an estimate b̂j
for |Bj | such that (1− β)|Bj | ≤ b̂j ≤ (1 + β)|Bj |, then by defining t̂:

t̂ =
∑
j∈[k]

b̂j · (1 + β)j , (6)

we would get

(1− β)|T (G)| ≤ t̂ ≤ (1 + β)2|T (G)|. (7)

The problem is that in order to estimate the size of a bucket Bj by sampling, the sample size

should be at least Ω
(

n
|Bj |

)
. For “small” buckets with respect to n this gives a high dependence

on n. Therefore we will only estimate the sizes of “large” buckets for some appropriate threshold
of “largeness”. Using the estimated sizes of the large buckets, we can obtain an estimate of the
number of triangles that have at least one endpoint in a large bucket. We will show that this gives
an approximation t̂ of |T (G)| such that 1

3(1−O(β))|T (G)| ≤ t̂ ≤ (1 +O(β))|T (G)|.
We start with introducing the following definitions:

Definition 3.2.2 We say that a bucket Bj is large if |Bj | ≥ (βT )1/3

k+1 and is small otherwise. We
denote by L∗ the set of indices of the large buckets, and by S∗ the set of indices of small buckets.

Namely, L∗ =
{
j ∈ [k] : |Bj | ≥ (βT )1/3

k+1

}
and S∗ = [k] \ L∗.

Definition 3.2.3 For a set of indices X ⊆ [k], let BX denote the union of all the buckets Bj for
which j ∈ X. That is, BX =

⋃
j∈X

Bj.

Definition 3.2.4 For sets on indices X,Y, Z ⊆ [k], let TrX,Y,Z denote the set of triangles (u, v, w)
such that u ∈ BX , v ∈ BY and w ∈ BW .

Claim 3.2.1 There are at most β|T (G)| labeled triangles with all three endpoints in small buckets.

Proof: Since there are k + 1 buckets, there are at most (βT )1/3 vertices in the small buckets,
which form at most βT labeled triangles with one another. By Equation (4), T ≤ |T (G)|, and the
claim follows.

Claim 3.2.2 For L∗ as defined in Definition 3.2.2,

1

3
(1− 9β)|T (G)| ≤ |T (BL∗)| ≤ |T (G)|.
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BL∗ BS∗

TrL∗,L∗,L∗
TrL∗,L∗,S∗

TrL∗,S∗,S∗

TrS∗,S∗,S∗

Figure 1: An illustration of the different types of triangles referred to in Claim 3.2.2
.

Proof: Clearly,
|T (BL∗)| ≤ |T (G)|.

To prove the lower bound on |T (BL∗)|, consider the following sets of triangles: TrL∗,L∗,L∗ , T rL,L,S ,
TrL∗,S∗,S∗ and TrS∗,S∗,S∗ . Observe that these sets partition the graph’s triangles into four disjoint
sets (see Figure 1 for an illustration). Therefore, it holds that

|T (G)| = 3|TrL∗,L∗,L∗ |+ 3|TrL∗,S∗,S∗ |+ 3|TrL∗,L∗,S∗ |+ 3|TrS∗,S∗,S∗ |. (8)

By the definition of T (BL∗),

|T (BL∗)| = 3|TrL∗,L∗,L∗ |+ 2|TrL∗,L∗,S∗ |+ |TrL∗,S∗,S∗ |
= |T (G)| − 2|TrL∗,S∗,S∗ | − |TrL∗,L∗,S∗ | − 3|TrS∗,S∗,S∗ | .

Also, by Equation (8),

2|TrL∗,S∗,S∗ |+ |TrL∗,L∗,S∗ | ≤ 2|TrL∗,S∗,S∗ |+ 2|TrL∗,L∗,S∗ | ≤
2

3
|T (G)|.

Observe that TrS,S,S is exactly the set described in Claim 3.2.1. Therefore,

3|TrS∗,S∗,S∗ | ≤ 3β|T (G)|.

Hence,

|T (BL∗)| ≥
1

3
|T (G)| − 3β|T (G)| = 1

3
(1− 9β)|T (G)|,

and the proof is complete.

Assume we had access to a triangles-degree oracle O∆ such that when queried on a vertex v would

return ∆(v). If we set the threshold for largeness at (β·T )1/3

k+1 (as in Definition 3.2.2), a sample of

size Θ
(

n

T 1/3

)
· poly(log n, 1/ε) would suffice to estimate the sizes of the large buckets and obtain

an approximation t̂ of |T (G)| such that 1
3(1−O(β))|T (G)| ≤ t̂ ≤ (1 +O(β))|T (G)|.
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3.3 A 1/3-approximation algorithm

In this subsection we remove the assumption on having oracle access to the triangles-degree of the
vertices. We describe a 1

3 -approximation algorithm for the number of triangles in a graph using
only queries to the graph (as defined in the preliminaries). We start by providing several building
blocks that will be used in the design of the algorithm.

3.3.1 Random threshold partitioning

As we show in the following subsections, in order to obtain the complexity we desire, we need to
estimate the size of each bucket j using a separate sample whose size depends on j. This, together
with the fact that for every vertex, we will only have an estimate of its triangles-degree, may lead to
an overestimation or underestimation of a bucket’s size, |Bj |, due to vertices that have a triangles-
degree close to the bucket’s boundaries ((1 + β)j−1 and (1 + β)j). The reason is that it is possible
that, when estimating |Bj |, vertices that belong to Bj−1 but whose triangles-degree is very close to
the boundary with Bj (i.e., (1 + β)j−1), will be assigned to Bj , and when estimating |Bj−1| such
sampled vertices will be assigned to Bj−1. If there are many such vertices, then this may result
in an overestimation. Alternatively, it is possible that such vertices will not be assigned to either
bucket when the size of the corresponding bucket is estimated, resulting in an underestimation.

To deal with this difficulty we redefine the buckets’ boundaries in a random fashion so as to
achieve two properties. The first property is that within each bucket all the vertices have the same
triangles-degree up to a multiplicative factor of (1± β)2. The second property is that the number
of vertices with triangles-degree that is in a small range surrounding a bucket’s boundary is small.
We prove that these properties can be obtained with high constant probability when randomly
choosing the boundaries between the buckets.

We use the following procedure to set the buckets’ boundaries.

Procedure 1 Create-Random-Thresholds (β, γ, k)

1: For j = 0, . . . , k − 1 do

2: Partition the range ((1 + β)j−1, (1 + β)j ] into logn
γ intervals of equal size I1

j , . . . , I
logn
γ

j .
3: Choose uniformly at random one of the intervals.
4: Denote the selected interval the “safety interval” Ij , and its midpoint µj .

5: Let µ−1 ← (1 + β)−1 and µk ← (1 + β)k.
6: Return {µ−1, . . . , µk}.

We start by introducing some notations.

• Denote by B̃j the buckets defined in Definition 5.

• For j ∈ [k] let the (new) jth bucket be

Bj = {v : ∆(v) ∈ (µj−1, µj ]} ,

where the µj values are as defined in Step (4) of Create-Random-Thresholds.
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• For every 1 ≤ ` ≤ logn
γ denote by BI`j

the set of vertices with triangles-degree in I`j . Namely,

BI`j
=
{
v : ∆(v) ∈ I`j

}
,

where the I`j intervals are as defined in Step (2) of Create-Random-Thresholds procedure.

• Denote by B′j the subset of vertices that belong to the bucket Bj , whose triangles-degree is
not in a safety interval. Namely,

B′j = Bj \ (BIj ∪BIj−1). (9)

We refer to the subsets B′j as strict buckets.

• Let B′′j = B′j ∪BIj ∪BIj−1 .

See Figure 2 for an illustration of the above notations.

(1 + β)j−2 (1 + β)j−1 (1 + β)j

B̃j−1 B̃j

µj−1 µj

Bj

B′j BIj

Figure 2: An illustration of the new buckets ranges.

Definition 3.3.1 We say that the selection of the safety intervals in Create-Random-Thresholds is
a good selection if for every j ∈ [k], it holds that |BIj | ≤ β|B̃j |.

Corollary 3.3.1 If the selection of the safety intervals is good, then for every j ∈ [k],

|B′′j | = |B′j ∪BIj ∪BIj−1 | ≤ |B′j |+ β|B̃j |+ β|B̃j−1|.

Claim 3.3.2 Procedure Create-Random-Thresholds outputs a good selection with probability at least
1− 1

4 log3 n
.

Proof: Fix a choice of j ∈ [k]. There can be at most 1
β intervals such that |BI`j | > β|B̃j |. We

refer to these intervals as “heavy intervals”. Since we partition each range into logn
γ intervals, the

probability of randomly selecting a heavy interval is at most γ
β logn . By applying the union bound

over all j’s we get that with probability at least 1− γ
β , for every j in [k],

|BIj | ≤ β|B̃j |.

Setting γ = β
4 log3 n

completes the proof.
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Claim 3.3.3 If the selection of the safety intervals in Create-Random-Thresholds is a good selection,
then

(1− 3β)|T (G)| ≤
∑
j∈[k]

|B′j | · µj ≤ (1 + β)2 · |T (G)|.

Proof: By the setting of the µj values in Create-Random-Thresholds, for every j ∈ [k] it holds that
µj−1 ≤ µj ≤ (1 + β)2 · µj−1. Also, for every v ∈ Bj it holds that µj−1 ≤ ∆(v) ≤ µj . Therefore,
µj ≤ (1 + β)2∆(v) and ∑

j∈[k]

|B′j | · µj ≤
∑
j∈[k]

|Bj | · µj ≤ (1 + β)2 · |T (G)|.

From the definition of B′j and of a good selection,∑
j∈[k]

|B′j | · µj ≥
∑
j∈[k]

(|Bj | − β|B̃j | − β|B̃j−1|) · µj

=
∑
j∈[k]

|Bj | · µj −
∑
j∈[k]

β|B̃j | · µj −
∑
j∈[k]

β|B̃j−1| · µj .

By the selection of µj , for every j it holds that µj ≤ (1 + β)j . Hence,∑
j∈[k]

|B′j | · µj ≥
∑
j∈[k]

|Bj | · µj −
∑
j∈[k]

β|B̃j | · (1 + β)j −
∑
j∈[k]

β|B̃j−1| · (1 + β)(1 + β)j−1

≥ |T (G)| − β|T (G)| − (1 + β)β|T (G)|
≥ (1− 3β)|T (G)|,

and the proof is complete.

Therefore in what follows we will aim to approximate the sizes of the strict buckets.

3.3.2 Approximating the triangles-degree of a vertex

In this subsection we present a procedure for estimating the triangles-degree of a vertex. To this
end, we partition the graph vertices into two disjoint sets – high-degree vertices denoted by Vhi and
low-degree vertices, denoted by V`o. Namely,

Vhi = {v | d(v) >
√
m} and V`o = {v | d(v) ≤

√
m}.

Additional notations: For a vertex v we denote by Γhi(v) the set of v’s neighbors that belong to
Vhi, and by Γ`o(v) the set of v’s neighbors that belong to V`o.

Observation 3.1 By the definition of Vhi, and by the assumption that m
cm
≤ m, we have that

|Vhi| < 2m√
m
≤ 2cm·m√

m
= O(

√
m).

We also partition all the triangles in the graph into three disjoint sets:

- Triangles with all three endpoints in Vhi, referred to as High triangles.
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- Triangles with endpoints both in V`o and in Vhi, referred to as Crossing triangles.

- Triangles with all three endpoints in V`o.

We use different methods to approximate the triangles-degree of high-degree vertices and of
low-degree vertices.

• Given a low-degree vertex v (i.e., for which d(v) ≤
√
m), we uniformly sample pairs of

neighbors, u,w ∈ Γ(v), and for each sampled pair we make a pair query to determine whether

(u,w) ∈ E. If ∆(v) = Ω(µj), then the probability of hitting a triangle (v, u, w) is Ω
(

µj
d(v)2

)
.

Therefore, if we sample Θ
(
d(v)2

µj
· logn

δ2

)
pairs of neighbors of v, then we can obtain an estimate

∆̂(v) that with probability 1 − n−2 approximates ∆(v) to within a factor of (1 ± δ). Since

d(v) ≤
√
m, the number of queries performed is O

(
d(v)·

√
m

µj
· logn

δ2

)
, as desired.

• Consider now a high-degree vertex v, that is, for which d(v) >
√
m. For such a vertex, the

query complexity of the procedure just described for low-degree vertices may be too high.
Therefore, we use a different procedure, which in particular separately estimates the number
of high triangles rooted at v and the number of crossing triangles rooted at v. In what follows
we assume that we know |Γhi(v)| (where in reality, we shall use an estimate of this size).

– Consider first high triangles rooted at v, and assume that the number of such triangles
is Ω(δ ·µj) (or else their contribution to ∆(v) is negligible). Suppose we could uniformly
sample pairs of neighbors of v that belong to Vhi. Then, similarly to the discussion

regarding low-degree vertices, a sample of Θ
(
|Γhi(v)|2
δ·µj · logn

δ2

)
pairs suffices to estimate

the number of these triangles. Since |Vhi| ≤ 2
√
m and |Γhi(v)| ≤ d(v), the number of

queries is O
(
d(v)·

√
m

µj
· logn

δ3

)
.

In order to obtain such a sample of pairs of vertices in Γhi(v), we simply take a sample

of vertices from Γ(v) whose size is Θ
(

d(v)
|Γhi(v)|

)
times larger, and perform a degree query

on each sampled vertex so as to determine whether it belongs to Vhi. Using the fact that
|Γhi(v)| ≤ |Vhi| ≤ O(

√
m) the number of degree queries performed is as desired.

– Consider next crossing triangles rooted at v. By the definition of crossing triangles, for
each such triangle (v, u, u′), either u ∈ V`o or u′ ∈ V`o (or both). Assume without loss of
generality that u ∈ V`o. In this case we would like to exploit the fact that d(u) ≤

√
m.

Consider all triples (v, u, `) where u ∈ Γ(v) and 1 ≤ ` ≤
√
m. The number of such triples

is d(v) ·
√
m. Such a triple corresponds to a crossing triangle rooted at v if u ∈ Γ`o(v)

and the `th neighbor of u is also a neighbor of v. This can be verified by performing one
degree query, one neighbor query, and one pair query.

Note that triangles (v, u, u′)v such that both u and u′ are in V`o are twice as likely to
be sampled compared to triangles (v, u, u′) such that either u or u′, but not both, are
in V`o. Therefore when we hit a triangle of the former type we consider it as “half a
triangle”. If the number of crossing triangles rooted at v is Ω(δ · µj), then the number
of queries sufficient for approximating ∆(v) to within (1± δ) is as desired.
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Figure 3: An illustration for the procedure Approx-Triangles-Degree. V`o denotes the set of low-
degree vertices, and Vhi denotes the set of high-degree vertices. For a vertex v ∈ Vhi, there are
three types of triangles that v can be an endpoint of: Triangles in which the two other endpoints
also belong to Vhi (Trhi), triangles in which the two other endpoints are in V`o (Tr1

cr) and triangles
in which one endpoint is in V`o and the other in Vhi (Tr2

cr).

We first present the three aforementioned sub-procedures, starting with the procedure for ap-
proximating the triangles-degree of a low-degree vertex.

Algorithm 2 Approx-Triangles-Of-Low-Deg-Vertices(v, j, d(v), δ)

1: r ← 0.
2: Repeat s = d(v)2

δ·µj−1
· 20 logn

δ2 times:

3: Uniformly independently at random choose u, u′ ∈ Γ(v) .
4: If (u, u′) ∈ E then
5: r ← r + 1.

6: ∆̂← r · d(v)2

s .

7: Return ∆̂.

Definition 3.3.2 We say that Approx-Triangles-Of-Low-Deg-Vertices(v, j, d(v), δ) answers correctly
if the procedure returns ∆̂ for which the following holds. If ∆(v) ≥ δ · µj−1, then (1 − δ)∆(v) ≤
∆̂ ≤ (1 + δ)∆(v) and otherwise ∆̂ ≤ (1 + δ) · δ · µj−1.

Claim 3.3.4 For every v and for every j ∈ [k′], the procedure Approx-Triangles-Of-Low-Deg-
Vertices(v, j, d(v), δ) answers correctly, as defined in Definition 3.3.2, with probability at least 1− 1

n3 .

Proof: Let χ1, . . . , χs be Bernoulli random variables such that χi = 1 if a sampled pair u, u′ from
Step sample two random neighbors in Approx-Triangles-Of-Low-Deg-Vertices is such that (v, u, u′) ∈
∆(G). It holds that E[χi] = ∆(v)

d(v)2 and r =
s∑
i=1

χi. Applying the multiplicative Chernoff bound we
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get that if ∆(v) ≥ δ · µj−1 then

Pr

[
1

s
r > (1 + δ)

∆(v)

d(v)2

]
< exp

(
−δ

2

3
· ∆(v)

d(v)2
· s
)
< exp

(
−δ

2

3
· ∆(v)

d(v)2
· d(v)2

δ · µj−1
· 20 log n

δ2

)
<

1

2n3
.

Similarly Pr
[

1
sr < (1− δ) ∆(v)

d(v)2

]
< 1

2n3 .

If ∆(v) < δ · µj−1 then

Pr

[
1

s
r > (1 + δ)

δ · µj−1

d(v)2

]
< exp

(
−δ

2

3
· δ · µj−1

d(v)2
· s
)
<

1

n3
.

Recalling that ∆̂ = r · d(v)2

s , the claim follows.

Claim 3.3.5 For every vertex v and every index j ∈ [k′], the query complexity and running time

of the procedure Approx-Triangles-Of-Low-Deg-Vertices(v, j, d(v), δ) are d(v)·
√
m

µj
· poly(log n, 1/ε).

Proof: In each iteration of the loop in Step (2), two neighbor queries are performed. All the other
steps of the procedure require constant time and no queries. Therefore, the query complexity and

running time of the procedure are 3s = 3 · d(v)2

δµj−1
· 20 logn

δ2 . Since µj−1 ≥ µj
(1+β)2 , d(v) ≤

√
m and

δ = poly(1/ε) the claim follows.

Definition 3.3.3 For a high-degree vertex v we denote by Trhi(v) and Trcr(v) its sets of high-
triangles and crossing-triangles, respectively. We let ∆hi(v) = |Trhi(v)| and ∆cr(v) = |Trcr(v)|.

Algorithm 3 Approx-High-Triangles(v, j, d(v), δ)

1: Uniformly independently at random sample s = d(v)√
δ·µj−1

· 20 logn
δ2 vertices from Γ(v).

2: Denote the selected (multi) set S.
3: Query the degree of every vertex u ∈ S.

4: Let Γ̂hi ← |S ∩ Γhi(v)| · d(v)
s .

5: If Γ̂hi < (1− δ)
√
δ · µj−1 then

6: Return 0
7: rhi ← 0.

8: Uniformly independently at random sample s′ = Γ̂hi·d(v)
(1−δ)·δ·µj−1

· 400 logn
δ2 vertices from Γ(v).

9: Denote the selected (multi) set S′.
10: Query the degree of every vertex u ∈ S′.
11: Let S′hi ← S′ ∩ Γhi(v), and s′hi ←

1
2 |S
′
hi|.

12: Partition S′hi into pairs S′hi ←
{
{u1, u

′
1}, . . . {us′hi , u

′
s′hi
}
}

.

13: For every pair {ui, u′i} ∈ S′hi do
14: If (ui, u

′
i) ∈ E then

15: rhi ← rhi + 1.

16: ∆̂hi ← rhi ·
Γ̂2
hi
s′hi

17: Return ∆̂hi.
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Definition 3.3.4 We say that Approx-High-Triangles(v, j, d(v), δ) answers correctly if the procedure
returns ∆̂hi for which the following holds. If ∆hi(v) ≥ δ · µj−1, then (1 − δ)∆hi(v) ≤ ∆̂hi ≤
(1 + δ)∆hi(v) and otherwise ∆̂hi ≤ (1 + δ) · δ · µj−1.

Claim 3.3.6 For every v and for every j ∈ [k′], with probability at least 1 − 1
n3 , the procedure

Approx-High-Triangles(v, j, d(v), δ) answers correctly, as defined in Definition 3.3.4.

Proof: First assume that ∆hi(v) ≥ δ · µj−1. Since ∆hi(v) ≤ |Γhi(v)|2, it holds that

|Γhi(v)| ≥
√
δ · µj−1.

By the choice of s in Step (1),

|Γhi(v)|
d(v)

· s ≥
√
δ · µj−1

d(v)
· d(v)√

δ · µj−1

· 20 log n

δ2
=

20 log n

δ2
. (10)

The probability of a sampled vertex in S to be in Γhi(v) is |Γhi(v)|
d(v) . Hence, by applying the multi-

plicative Chernoff bound and by Equation (10), we have that:

Pr

[
1

s
|S ∩ Γhi| > (1 + δ) · |Γhi(v)|

d(v)

]
< exp

(
−δ

2

3
· |Γhi(v)|

d(v)
· s
)
<

1

8n3
, (11)

and

Pr

[
1

s
|S ∩ Γhi| < (1− δ) · |Γhi(v)|

d(v)

]
< exp

(
−δ

2

2
· |Γhi(v)|

d(v)
· s
)
<

1

8n3
. (12)

By the setting of Γ̂hi to be Γ̂hi = |S ∩ Γhi(v)| · d(v)
s , and by Equations (11) and (12), we get that

with probability at least 1− 1
4n3 ,

(1− δ) · |Γhi(v)| ≤ Γ̂hi ≤ (1 + δ) · |Γhi(v)|. (13)

Therefore, if |Γhi(v)| >
√
δ · µj−1 then with probability at least 1− 1

4n3 we continue to approximate

∆̂hi.

In order to approximate ∆̂hi correctly, Shi should be sufficiently large. Namely, we need

|S′hi| ≥
|Γhi(v)|2

δ · µj−1
· 20 log n

δ2
. (14)

Denote the above quantity by sd. We prove that |S′hi| ≥ sd with probability at least 1 − 1
4n3 . Let

χ1, . . . , χs′ be Bernoulli random variables such that χi = 1 if the ith sampled vertex in S is in

Γhi(v), and 0 otherwise. It holds that E[χi] = |Γhi(v)|
d(v) and that |Shi| =

s′∑
i=1

χi. Observe that by

Equation (13), with probability at least 1 − 1
4n3 , it holds that |Γhi(v)| ≤ Γ̂hi/(1 − δ). Therefore,

by applying the multiplicative Chernoff and since Γ̂hi > (1 − δ) ·
√
δ · µj−1, we have that with
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probability at least 1− 1
4n3 ,

Pr

[
1

s′
|S′ ∩ Γhi(v)| < 0.1 · |Γhi(v)|

d(v)

]
< exp

(
−0.92

3
· |Γhi(v)|

d(v)
· s′
)

= exp

(
−0.92

3
· |Γhi(v)|

d(v)
· Γ̂hi · d(v)

(1− δ) · δ · µj−1
· 400 log n

δ2

)

= exp

(
−0.92

3
·

Γ̂2
hi

(1− δ)2 · δ · µj−1
· 400 log n

δ2

)
<

1

4n3
.

Therefore with probability at least 1− 1
2n3 ,

s′hi =
1

2
|S′ ∩ Γhi(v)| ≥ 0.05 · |Γhi(v)|

d(v)
· s′ ≥

Γ̂2
hi

(1− δ)2 · δ · µj−1
· 20 log n

δ2
≥ |Γhi(v)|2

δ · µj−1
· 20 log n

δ2
,

and Equation (14) hold. If Equation (14) holds, then by the assumption that ∆hi(v) ≥ δ · µj−1,
we have that:

∆hi(v)

|Γhi(v)|2
· s′hi ≥

∆hi(v)

|Γhi(v)|2
· Γ̂hi(v)2

(1− δ)2δ · µj−1
· 20 log n

δ2
≥ ∆hi(v)

δ · µj−1
· 20 log n

δ2
≥ 20 log n

δ2
. (15)

The probability of a pair of sampled vertices u, u′ ∈ Γhi(v) to form a triangle with v is ∆hi(v)
|Γhi(v)|2 .

Therefore, by the multiplicative Chernoff bound and by Equation (15):

Pr

[
1

s′hi
rhi > (1 + δ)

∆hi(v)

|Γhi(v)|2

]
< exp

(
−δ

2

3
· ∆hi(v)

|Γhi(v)|2
· s′hi

)
<

1

4n3
,

and

Pr

[
1

s′hi
rhi < (1− δ) ∆hi(v)

|Γhi(v)|2

]
< exp

(
−δ

2

2
· ∆hi(v)

|Γhi(v)|2
· s′hi

)
<

1

4n3
.

Hence, if ∆hi(v) ≥ δ · µj−1, then with probability at least 1− 1
n3 ,

(1− δ)∆hi(v) ≤ ∆̂hi ≤ (1 + δ)∆hi(v), (16)

and the proof is complete for the case that ∆hi(v) ≥ δ · µj−1.

Now consider a vertex v such that ∆hi(v) < δ · µj−1. If |Γhi(v)| ≥
√
δµj−1, then a similar

analysis to the one above gives that with probability at least 1− 1
n3 ,

Pr

[
1

s′hi
· rhi > (1 + δ)

δµj−1

|Γhi(v)|2

]
< exp

(
−δ

2

3
· δµj−1

|Γhi(v)|2
· s′hi

)
<

1

4n3
.

Therefore if ∆hi(v) < δµj−1, then the procedure returns ∆̂hi such that ∆̂hi < (1 + δ) · δµj−1, with
probability at least 1− 1

n3 , as required.

Claim 3.3.7 For every vertex v and every index j ∈ [k′], the expected query complexity and running

time of the procedure Approx-High-Triangles(v, j, d(v), δ) is d(v)·
√
m

µj
· poly(log n, 1/ε).
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Proof: The procedure performs s = d(v)√
δ·µj−1

· 20 logn
δ2 queries in Step (1). If Γ̂hi > (1− δ)

√
δ · µj−1,

then at most 3s′ = 3 · Γ̂hi·d(v)
(1−δ)2·δ·µj−1

· 30 logn
δ2 additional queries are performed. Therefore the query

complexity of the algorithm is Θ(s+ s′). By the setting of k′ = log(1+β)
c∆·(k+1)

β T 2/3
, Equation (3)

and Item (3) in Assumption 2.1, for every j ∈ [k′],

µj ≤ (1 + β)k
′

=
c∆ · (k + 1)

β
T 2/3 ≤ c∆ · (k + 1)

β
· (3∆)2/3 ≤ 3c∆ · (k + 1)

β
· 3m .

It follows that:

s =
d(v)√
δ · µj−1

· 20 log n

δ2
≤ 1√

δ
· d(v)

√
m

µj−1
·

√
9c∆ · (k + 1)

β
· 20 log n

δ2

=
d(v) ·

√
m

µj
· poly(log n, 1/ε) . (17)

It follows from the proof of Claim 3.3.6 that E[Γ̂hi] = |Γhi(v)|, and that with probability at least
1− 1

4n3 , Γ̂hi < (1 + δ)Γhi(v). Also, by the Item (2) in Assumption 2.1,

|Γhi(v)| ≤ |Vhi| ≤
2m√
m
≤ 2cm ·m√

m
≤ 2cm ·

√
m. (18)

Therefore with probability at least 1− 1
4n3 ,

s′ ≤ Γ̂hi · d(v)

(1− δ)2 · δ · µj−1
· 400 log n

δ2
=
d(v) ·

√
m

µj
· poly(log n, 1/ε). (19)

The claim follows from Equations (17) and (19).

Algorithm 4 Approx-Crossing-Triangles(v, j, d(v), δ)

1: rcr ← 0.

2: Repeat scr = d(v)
√
m

δ·µj−1
· 20 logn

δ2 times:

3: Uniformly independently at random choose u ∈ Γ(v) and query d(u).
4: Uniformly independently at random choose ` ∈ [1, . . . ,

√
m].

5: If u ∈ Γ`o(v) and ` ≤ d(u) then
6: Query for the `th neighbor of u. Denote it by u′.
7: Query d(u′).
8: If u′ ∈ Γ`o(v) and (u′, v) ∈ E then
9: rcr ← rcr + 1.

10: Else if u′ ∈ Γhi(v) and (u′, v) ∈ E
11: rcr ← rcr + 1

2 .

12: Let ∆̂cr ← rcr
scr
· d(v)

√
m

13: Return ∆̂cr.
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Definition 3.3.5 We say that Approx-Crossing-Triangles(v, j, d(v), δ) answers correctly if the pro-
cedure returns ∆̂cr for which the following holds. If ∆cr(v) ≥ δ · µj−1, then ∆̂cr such that

(1− δ)∆cr(v) ≤ ∆̂cr ≤ (1 + δ)∆cr(v) and otherwise ∆̂cr ≤ (1 + δ) · δ · µj−1.

Claim 3.3.8 For every v and for every j ∈ [k′], with probability at least 1 − 1
n3 , the procedure

Approx-Crossing-Triangles(v, j, d(v), δ) answers correctly, as defined in Definition 3.3.5.

Proof: Denote by Tr1
cr(v) the set of triangles (v, u, u′) such that both u and u′ are in V`o, and

by Tr2
cr(v) the set of triangles (v, u, u′) such that either u or u′, but not both, are in V`o. Let

∆1
cr(v) = |Tr1

cr(v)|, ∆2
cr(v) = |Tr2

cr(v)| and let χ1, . . . , χsc be Bernoulli random variables such that

χi =


1 if a triangle (v, u, u′) ∈ Tr1

cr(v) is sampled in the ith iteration
1
2 if a triangle (v, u, u′) ∈ Tr2

cr(v) is sampled in the ith iteration

0 otherwise

.

Therefore,

E[χi] =
1

2
Pr[a triangle from Tr2

cr(v) is sampled] + Pr[a triangle from Tr1
cr(v) is sampled]. (20)

We analyze the two terms separately.

Pr
[
a specific triangle (v, u, u′) ∈ Tr2

cr(v) is sampled
]

= Pr[u is sampled in Step (3), u ∈ Γ`o(v), ` ≤ d(u), u′ is sampled in Step (6)]

+ Pr[u′ is sampled in Step (3), u′ ∈ Γ`o(v), ` ≤ d(u′), u is sampled in Step (6)]

=
1

d(v)
· 1 · d(u)√

m
· 1

d(u)
+

1

d(v)
· 1 · d(u′)√

m
· 1

d(u′)
=

2

d(v) ·
√
m
.

Therefore,

Pr
[
some triangle in Tr2

cr(v) is sampled
]

=
2 ·∆2

cr(v)

d(v) ·
√
m
. (21)

Now consider a triangle (v, u, u′) ∈ Tr1
cr(v). Without loss of generality, u is in Γ`o(v) (and u′ is

not). Hence,

Pr
[
a specific triangle (v, u, u′) ∈ Tr1

cr(v) is sampled
]

= Pr[u is sampled in Step (3), u ∈ Γ`o(v), ` ≤ d(u), u′ is sampled in Step (6)]

=
1

d(v)
· 1 · d(u)√

m
· 1

d(u)
=

1

d(v) ·
√
m
,

and

Pr
[
any triangle ∈ Tr1

cr(v) is sampled
]

=
∆1
cr(v)

d(v) ·
√
m
. (22)

Plugging Equation (21) and Equation (22) into Equation (20) we get:

E[χi] =
1

2
· 2 ·∆2

cr(v)

d(v) ·
√
m

+
∆1
cr(v)

d(v) ·
√
m

=
∆cr(v)

d(v) ·
√
m
.
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Note that by the definition of the χi variables, rcr =
scr∑
i=1

χi. If ∆cr(v) ≥ δ · µj−1 then by applying

the multiplicative Chernoff bound and by our choice of scr, we get that:

Pr

[
1

scr
rcr > (1 + δ)

∆cr(v)

d(v) ·
√
m

]
< exp

(
−δ

2

3
· ∆cr(v)

d(v) ·
√
m
· scr

)
< exp

(
−δ

2

3
· ∆cr(v)

d(v) ·
√
m
· d(v) ·

√
m

δ · µj−1
· 20 log n

δ2

)
<

1

2n3
.

Similarly Pr
[

1
scr
rcr < (1− δ) ∆cr(v)

d(v)·
√
m

]
< 1

2n3 . Since ∆̂cr = rcr
scr
· d(v)

√
m with probability at least

1− 1
n3 ,

(1− δ) ·∆cr(v) ≤ ∆̂cr ≤ (1− δ) ·∆cr(v).

If ∆cr < δ · µj−1 then

Pr

[
1

scr
rcr > (1 + δ)

δ · µj−1

d(v) ·
√
m

]
< exp

(
−δ

2

3
· δ · µj−1

d(v) ·
√
m
· scr

)
< exp

(
−δ

2

3
· δ · µj−1

d(v) ·
√
m
· d(v) ·

√
m

δ · µj−1
· 20 log n

δ2

)
<

1

2n3
,

and the proof is complete.

Claim 3.3.9 For every vertex v and every index j ∈ [k′], the query complexity and running time

of the procedure Approx-Crossing-Triangles(v, j, d(v), δ) are d(v)·
√
m

µj
· poly(log n, 1/ε).

Proof: In each iteration of the loop in Step (2) the procedure performs at most 5 queries: two
neighbor queries u, u′, two degree queries d(u), d(u′) and a pair query (u, u′). In all other steps
the running time is constant and no queries are performed. Therefore the query complexity and
running time are bounded by

5 · scr = 5 · d(v)
√
m

δ · µj−1
· 20 log n

δ2
=
d(v) ·

√
m

µj
· poly(log n, 1/ε),

as required.

We are now ready to present the procedure for estimating the triangles-degree of a vertex.
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Procedure 5 Approx-Triangles-Degree (v, j)

1: Let δ ← 1
7 ·

γ
logn ·

β
1+β .

2: Query v’s degree d(v).
3: If d(v) ≤

√
m then

4: ∆̂← Approx-Triangles-Of-Low-Deg-Vertices(v, j, d(v), δ).
5: Else
6: ∆̂hi ← Approx-High-Triangles(v, j, d(v), δ).
7: ∆̂cr ← Approx-Crossing-Triangles(v, j, d(v), δ).
8: ∆̂← ∆̂hi + ∆̂cr.

9: Return ∆̂.

Definition 3.3.6 Let δ be as defined in Approx-Triangles-Degree. We say that Approx-Triangles-
Degree(v, j) answers correctly in the following cases.

• If ∆(v) ≥ δ · µj−1 and Approx-Triangles-Degree(v, j) returns ∆̂ such that (1− 3δ)∆(v) ≤ ∆̂ ≤
(1 + 3δ)∆(v).

• If ∆(v) < δ · µj−1 and the procedure returns ∆̂ such that ∆̂ ≤ (1 + δ) · 2δ · µj−1.

Lemma 3.3.10

1. For every v and every j ∈ [k′], Approx-Triangles-Degree(v, j) answers correctly with probability
at least 1− 2

n3 .

2. For every v and every j ∈ [k′], the expected query complexity and running time of the procedure

are d(v)·
√
m

µj
· poly(log n, 1/ε).

Proof: The second item of the lemma is a direct corollary of Claims 3.3.5, 3.3.7 and 3.3.9.
Therefore, it remains to prove the first item.

Consider a vertex v ∈ V`o. If ∆(v) ≥ δµj−1 then by Claim 3.3.4, it holds that (1 − δ)∆(v) ≤
∆̂ ≤ (1 + δ)∆(v) with probability at least 1 − 1

n3 . Otherwise, if ∆(v) < δµj−1, then Approx-Deg-

Of-Low-Deg-Vertices returns ∆̂ such that ∆̂ ≤ (1 + δ) · δ · µj−1 with probability at least 1− 1
n3 . In

either case the lemma follows.

Now consider a vertex v ∈ Vhi. If ∆(v) ≥ µj−1, then either ∆hi(v) or ∆cr(v) are at least 1
2µj−1.

Assume first that both ∆hi(v) and ∆cr(v) are at least δ ·µj−1. By the first part of Claim 3.3.6 and
the first part of Claim 3.3.8 it holds that with probability at least 1− 1

n3 ,

(1− δ)∆hi(v) ≤ ∆̂hi ≤ (1 + δ)∆hi(v) (23)

and with probability at least 1− 1
n3 ,

(1− δ)∆cr(v) ≤ ∆̂cr ≤ (1 + δ)∆cr(v). (24)

By Equations (23) and (24) and by the union bound we get that with probability at least 1− 2
n3 ,

(1− δ)∆(v) ≤ ∆̂ ≤ (1 + δ)∆(v),
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as required.

We now turn to the case that either ∆hi(v) or ∆cr(v) are smaller than δµj−1, but not both.

Assume without loss of generality that ∆hi(v) < δµj−1. By Claim 3.3.6, we have that ∆̂hi ≤
(1 + δ) · δ · µj−1 with probability at least 1− 1

n3 , and by Claim 3.3.8, we have that (1− δ)∆cr(v) ≤
∆̂cr ≤ (1 + δ)∆cr(v) with probability at least 1− 1

n3 . Therefore, with probability at least 1− 2
n3 ,

∆̂ = ∆̂hi + ∆̂cr ≤ (1 + δ)∆cr(v) + (1 + δ) · δ · µj−1 < (1 + 3δ)∆(v). (25)

To prove the lower bound on ∆̂ note that since ∆cr(v) = ∆(v) − ∆hi(v) and ∆hi(v) < δµj−1, it
holds that ∆cr(v) ≥ ∆(v)− δµj−1. Therefore,

∆̂ ≥ ∆̂cr ≥ (1− δ)∆cr(v) ≥ (1− δ)(∆(v)− δµj−1) ≥ (1− 2δ)∆(v). (26)

Combining Equations (25) and (26) we get that if ∆(v) ≥ µj−1 then with probability at least 1− 2
n3 .

(1− 3δ) ≤ ∆(v) ≤ (1 + 3δ)∆,

as required. If both ∆hi(v) and ∆cr(v) are smaller than δ · µj−1, then ∆(v) < 2δ · µj−1. By
Claim 3.3.6 and Claim 3.3.8, it holds that with probability at least 1− 1

n3 ,

∆̂hi ≤ (1 + δ) · δ · µj−1 (27)

and with probability at least 1− 1
n3 ,

∆̂cr ≤ (1 + δ) · δ · µj−1. (28)

By Equations (27) and (28) and by the union bound we get that with probability at least 1− 2
n3 ,

∆̂ ≤ (1 + δ) · 2δ · µj−1,

and the proof of the first item is complete.

The following is a corollary of Item (1) in Lemma 3.3.10.

Corollary 3.3.11 With probability at least 1− 2
n3 :

1. If Approx-Triangles-Degree is invoked with a vertex v and an index j such that v ∈ B′j then

Approx-Triangles-Degree returns ∆̂(v) such that ∆̂(v) ∈ (µj−1, µj ].

2. If Approx-Triangles-Degree is invoked with a vertex v and an index j such that v /∈ B′′j then

Approx-Triangles-Degree returns ∆̂(v) such that ∆̂(v) /∈ (µj−1, µj ].

3.3.3 Significant buckets

Recall that by Lemma 3.3.10 the query complexity and running time of the procedure Approx-

Triangles-Degree(v, j) are roughly O
(
d(v)·

√
m

µj

)
, and consider using the procedure instead of the

oracle for ∆(v). That is, we select a sample of Θ
(

n

T 1/3

)
· poly(log n, 1/ε) vertices, and for each
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selected vertex v, we run the procedure for decreasing values of j, until we find an index j such
that ∆̂ ∈ (µj−1, µj ]. Putting aside the fact that the procedure only provides an estimate of ∆(v)
(so that v may be assigned to the wrong bucket), the complexity of the resulting algorithm may be

much higher than the complexity we are aiming for:
(

n
∆(G)1/3 + min

{
m, m

3/2

∆(G)

})
· poly(log n, 1/ε).

This is due to vertices v whose triangles-degree ∆(v) is relatively small (so that we need to run the
procedure with small j), while their (neighbors) degree d(v) is relatively large.

In order to reduce the overall complexity of the algorithm we first make the following observa-
tion. Recall that by the definition of the strict buckets, the number of labeled triangles that have a
vertex in B′j is roughly |B′j | · µj . Therefore, if |B′j | · µj is relatively small, i.e., smaller than β|T (G)|

k+1 ,
then we can disregard this bucket (that is, assume it is empty). This means that we only need to

estimate the sizes of strict buckets B′j such that |B′j | ≥
β|T (G)|
(k+1)·µj . In order to “hit” such a bucket

and estimate its size, it suffices to take a sample whose size grows (roughly) like n
|B′j |

which is at

most
n·(k+1)·µj
β|T (G)| .

We thus see that while the complexity of Approx-Triangles-Degree increases as j decreases, the
size of the sample sufficient for estimating the size of B′j decreases as j decreases. Indeed, the
product of the two does not depend on j. However, this product does depend on d(v), which may
be large. Our second observation is that for any degree d, the number of vertices with degree
greater than d is upper bounded by 2m/d. If we take a sample of s vertices, then we do not expect
to get many more than s

n ·
2m
d vertices with degree greater than d. So while the complexity of

Approx-Triangles-Degree increases with the degree of the vertex it is given, the number of vertices
with at least any given degree, decreases with the degree.

In order to benefit from the above tradeoffs, we introduce the notion of significance. We note
that in what follows, unless explicitly stated otherwise, when we say “buckets” we refer to strict
buckets as defined in Equation (9).

Definition 3.3.7 For a set of indices X ⊆ [k], let B′X denote the union of all the strict buckets
B′j for which j ∈ X. That is, B′X =

⋃
j∈X

B′j.

Definition 3.3.8 For sets on indices X,Y, Z ⊆ [k], let TrX,Y,Z denote the set of triangles (u, v, w)
such that u ∈ B′X , v ∈ B′Y and w ∈ B′W .

Definition 3.3.9 We say that a bucket B′j is significant if |B′j | ≥
βT

(k+1)·µj , and otherwise we say it

is insignificant.

Note that for every j ∈ [k], |T (B′j)| is at most |B′j | · µj . Therefore if a bucket B′j is insignificant,

then |T (B′j)| <
βT
k+1 , implying that the bucket’s contribution to the total number of triangles in the

graph is insignificant.

We now redefine our notion of largeness to include both largeness in size and in contribution to
the number of triangles.

Definition 3.3.10 Let L∗ =
{
j ∈ [k] : |B′j | ≥ max

{ (β·T )1/3

k+1 , βT
(k+1)·µj

}}
. That is, L∗ is the set of

indices of large significant buckets.

To see why approximating the sizes of the large significant buckets gives a good approximation of
|T (G)|, we prove that similar claims to Claim 3.2.1 and Claim 3.2.2 hold for the redefined set L∗.
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Definition 3.3.11 Let TrI denote the set of triangles with an endpoint in BIj for some j ∈ [k] or
with an endpoint in an insignificant bucket.

Claim 3.3.12 If the selection of the safety intervals is good (as defined in Definition 3.3.1), then
for L∗ as defined in Definition 3.3.10,

1

3
(1− 30β)|T (G)| ≤ |T (B′L∗)| ≤ |T (G)|.

Proof: As in the proof of Claim 3.2.2, we consider the following partition of the graph’s triangles
into disjoint sets: TrL∗,L∗,L∗ , T rL∗,L∗,S∗ , T rL∗,S∗,S∗ , T rS∗,S∗,S∗ and TrI . Since the above sets are
disjoint, we have that:

|T (G)| = 3|TrL,L,L|+ 3|TrL,S∗,S∗ |+ 3|TrL∗,L∗,S∗ |+ 3|Tr′S∗,S∗,S∗ |+ 3|TrI |, (29)

and

|T (B′L∗)| = 3|TrL∗,L∗,L∗ |+ 2|TrL∗,L∗,S∗ |+ |TrL∗,S∗,S∗ |
= |T (G)| − |TrL∗,L∗,S∗ | − 2|TrL∗,S∗,S∗ | − 3|TrS∗,S∗,S∗ | − 3|TrI | . (30)

By Equation (29),

2|TrL∗,S∗,S∗ |+ |TrL∗,L∗,S∗ | ≤ 2|TrL∗,S∗,S∗ |+ 2|TrL∗,L∗,S∗ | ≤
2

3
|T (G)|. (31)

Observe that the set TrS∗,S∗,S∗ is a subset of the set of triangles with all three endpoints in small
buckets. Hence, from Claim 3.2.1, it holds that

|TrS∗,S∗,S∗ | ≤ β|T (G)|. (32)

From the definition of a good selection of the safety intervals in Definition 3.3.1,∑
j∈[k]

|BIj | · µj ≤
∑
j∈[k]

β|B̃j |(1 + β)j ≤ β|T (G)|. (33)

By the definition of the insignificant buckets and T (BI), and by Equation (4),

|T (BI)| ≤
∑
j∈I
|Bj |µj <

∑
j∈I

βT
(k + 1) · µj

· µj ≤ βT ≤ β|T (G)|. (34)

It follows from Equation (33) and Equation (34) that

|TrI | ≤
∑
j∈[k]

|BIj | · µj + T (BI) ≤ 2β|T (G)|. (35)

Plugging Equations (31), (32) and (35) into Equation (30) we get:

|T (B′L∗)| ≥ |T (G)| − 2

3
|T (G)| − 3β|T (G)| − 6β|T (G)| = 1

3
(1− 30β)|T (G)|,

and the claim follows.

To complete the discussion concerning significant large buckets observe that any bucket with

a high triangles-degree of Ω(T 2/3
) cannot be large, and that buckets with a low triangles-degree

which are small are not significant. Therefore we can consider only significant buckets with a low
triangles-degree. Formally, consider the following definition and claim.
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Definition 3.3.12 Let k′ = log(1+β)
c∆·(k+1)·T 2/3

β , and let

L =

{
j ∈ [k′] : |B′j | ≥

β · T
(k + 1) · µj

}
.

Claim 3.3.13 Let L∗ be as defined in Definition 3.3.9, and let k′ and L be as defined in Defini-
tion 3.3.12. It holds that L∗ ⊆ L.

Proof: Clearly for every j such that |B′j | ≥ max
{

(β·T )1/3

k+1 , β·T
(k+1)·µj

}
it holds that |B′j | ≥

β·T
(k+1)·µj .

Therefore, it remains to prove that for every j ∈ L∗ it holds that j ≤ k′. Assume towards a

contradiction that there exists an index j ∈ L∗ such that j > k′. It follows that µj >
c∆·(k+1)·T 2/3

β ,

and that |B′j | ≥
(β·T )1/3

k+1 . The above, together with Equation (4), implies that:

|B′j | · µj >
(β · T )1/3

k + 1
· c∆ · (k + 1) · T 2/3

β
=
c∆ · T
β2/3

> c∆ · T ≥ |T (G)|,

which is a contradiction, since a bucket cannot contribute more labeled triangles then there are in
the graph. This completes the proof.

The following is a corollary of Claim 3.3.12 and Claim 3.3.13.

Corollary 3.3.14
1

3
(1− 30β)|T (G)| ≤ |T (B′L)| ≤ |T (G)|.

It follows from the above discussion that to get a 1
3 -approximation of |T (G)|, it is sufficient to

estimate the sizes of the significant buckets B′j for j’s such that j ≤ log(1+β)
c∆·(k+1)·T 2/3

β .

3.3.4 The algorithm for a 1
3-approximation

We are now ready to present our algorithm for 1
3 -approximating |T (G)|.
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Procedure 6 1
3 -Approx-Triangles (G, T ,m, ε)

1: Let β = ε/450, k′ = log(1+β)
c∆·(k+1)

β T 2/3
and γ = β

4 log3 n
. . Where c∆ is a constant

that will be set later on.
2: Let {µ0, . . . , µk′} ← Create-Random-Thresholds(β, γ, k′).
3: For j = 0, . . . , k′ do
4: t̂j ← 0.

5: Uniformly and independently select sj =
n·µj

T · 20 logn·(k+1)
β3 vertices.

6: Denote by Sj = {vj,1, . . . , vj,sj} the multiset of selected vertices.
7: For each v in Sj do

8: ∆̂(v)← Approx-Triangles-Degree(v, j).

9: If ∆̂(v) ∈ (µj−1, µj ] then
10: t̂j ← t̂j + 1 .

11: b̂j ← t̂j · nsj .

12: Let L̂ = {j : b̂j ≥ (1− β) β·T
k′·µj
}.

13: Return t̂ =
∑
j∈L̂

b̂j · µj .

Theorem 3.2 Algorithm 1
3 -Approx-Triangles returns t̂ such that, with probability at least 1− 1

2 log3 n
,

1

3
(1− 50β)|T (G)| ≤ t̂ ≤ (1 + 50β)|T (G)|.

In order to prove Theorem 3.2 we first establish the following claim and corollary.

We note that we delay the discussion regarding the running time of the algorithm for Subsec-
tion 3.5, where it will be analyzed as part of the (1± ε)-approximation algorithm.

Definition 3.3.13 For every j ∈ [k′], let b̂j be as defined in Step (11) of 1
3 -Approx-Triangles. We

say that the algorithm estimates the buckets’ sizes correctly, if the following holds.

1. For every j ∈ L, it holds that (1− β)|B′j | ≤ b̂j ≤ (1 + β)|B′′j |.

2. For every j /∈ L, it holds that 0 ≤ b̂j < (1 + β) ·
(

βT
(k+1)µj

+ β|B̃j |+ β|B̃j−1|
)

.

Claim 3.3.15 If the output of Create-Random-Thresholds is good (as Defined in Definition 3.3.1)
and Approx-Triangles-Degree(v, j) answers correctly on all the sampled vertices (as defined in Defi-
nition 3.3.6), then 1

3 -Approx-Triangles estimates the buckets’ sizes correctly, with probability at least
1− 1

n2 over the choices of the samples Sj.

Proof: Let χ′j,i for j ∈ [k′], 1 ≤ i ≤ sj be Bernoully random variables such that χ′j,i = 1 if and

only if vj,i ∈ B′j , so that
sj∑
i=1

χ′j,i = |Sj ∩B′j |. By the definition of χj,i

Pr[χ′j,i = 1] =
|B′j |
n
.
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Consider an index j ∈ L. By the definition of L, it holds that |B′j | ≥
βT

(k+1)·µj . By the selection of

sj in the algorithm,

sj ·
|B′j |
n
≥ βT

(k + 1) · µj
· 1

n
· n · µj
T
· 20 log n · (k + 1)

β3
=

20 log n

β2
.

Let t̂′j =
sj∑
i=1

χ′j,i. By applying the multiplicative Chernoff bound we get:

Pr

[
1

sj
t̂′j < (1− β)

|B′j |
n

]
< Pr

[
1

sj
t̂′j < (1− β)

|B′j |
n

]
< exp

(
−β

2

2
·
|B′j |
n
· sj
)
<

1

2n3
. (36)

By the assumption that Approx-Triangles-Degree(v, j) answers correctly on all the sampled vertices,
and by Corollary 3.3.11, we have that if v ∈ B′j , then ∆̂ is such that ∆̂ ∈ (µj−1, µj ]. Therefore, for

every sampled vertex from B′j , t̂j is incremented, and it follows that t̂j ≥ t̂′j .
To upper bound t̂j consider the following. Let χ′′j,i for j ∈ [k′], 1 ≤ i ≤ sj be a Bernoully random

variable such that χ′′j,i = 1 if and only if vj,i ∈ B′′j , so that
sj∑
i=1

χ′′j,i = |Sj ∩B′′j |. By the definition of

χ′′j,i,

Pr[χ′′j,i = 1] =
|B′′j |
n

.

Let t̂′′j =
sj∑
i=1

χ′′j,i. By applying the multiplicative Chernoff bound we get:

Pr

[
1

sj
t̂′′j > (1 + β)

|B′′j |
n

]
< exp

(
−β

2

3
· |B′′j | ·

sj
n

)
< exp

(
−β

2

3
· |B′j | ·

sj
n

)
<

1

2n3
. (37)

By Corollary 3.3.11, for any vertex v not in B′′j , Approx-Triangles-Degree(v, j) returns ∆̂ such that

∆̂ /∈ (µj−1, µj ]. Hence we have that t̂j ≤ t̂′′j . By Equations (36) and (37), and by the previous

discussion showing that t̂j ≥ t̂′j , we get that for significant buckets B′j , with probability at least

1− 1
n3 ,

sj
n
· (1− β)|B′j | ≤ t̂j ≤

sj
n
· (1 + β)(|B′j |+ β|B̃j |+ β|B̃j−1|). (38)

Recalling that b̂j = t̂j · nsj , this implies that for buckets B′j such that j ∈ L, with probability at

least 1− 1
n3 ,

(1− β)|B′j | ≤ b̂j ≤ (1 + β)|B′′j |, (39)

as stated in Item (1) of the current claim.

Now consider an index j such that j /∈ L′. From the assumption that the selection of the safety
intervals by Create-Random-Thresholds was good, we have that

Pr[χ′′j,i = 1] =
|B′′j |
n
≤
|B′j |+ β|B̃j |+ β|B̃j−1|

n
≤

βT
(k+1)·µj + β|B̃j |+ β|B̃j−1|

n
.
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By applying the multiplicative Chernoff bound we get:

Pr

 1

sj
t̂′′j > (1 + β)

βT
(k+1)·µj + β|B̃j |+ β|B̃j−1|

n

 < exp

(
−β

2

3
·
(

βT
(k + 1) · µj

+ β|B̃j |+ β|B̃j−1|
)
· sj
n

)

< exp

(
−β

2

3
· βT

(k + 1) · µj
· sj
n

)
<

1

2n3
. (40)

Therefore, for buckets B′j such that j ∈ [k′] \ L, we have that, with probability at least 1− 1
2n3 ,

b̂j ≤ (1 + β)

(
βT

(k + 1) · µj
+ β|B̃j |+ β|B̃j−1|

)
.

By taking the union bound over all the buckets, we get that the claim holds for every j ∈ [k′] with
probability at least 1− 1

n2 .

The following is a corollary of Item (1) in Definition 3.3.13 and Claim 3.3.13.

Corollary 3.3.16 Let L∗ be as defined in Definition 3.3.10, L as defined in Definition 3.3.12 and
L̂ as defined in Step (12) of 1

3 -Approx-Triangles. If 1
3 -Approx-Triangles estimates the buckets’ sizes

correctly, then
L̂ ⊇ L ⊇ L∗.

Proof: Consider an index j ∈ L. By the definition of L, B′j is significant, and therefore, by the

assumption that 1
3 -Approx-Triangles estimates the buckets’ sizes correctly, it holds that

b̂j ≥ (1− β)|B′j | ≥ (1− β)
βT

(k + 1) · µj
.

Hence, j ∈ L̂. By Claim 3.3.13, L ⊇ L∗ and the corollary follows.

Corollary 3.3.17 If 1
3 -Approx-Triangles estimates the buckets’ sizes correctly, then for every j ∈ L̂

(where L̂ is as defined in Step (12) of the algorithm), b̂j ≥ (1− β)|B′j |.

Proof: For significant buckets the corollary follows directly from the definition of estimating the
bucket’s sizes correctly. Therefore, assume towards a contradiction that there exists an insignificant
bucket B′j such that j ∈ L̂ and for which b̂j < (1− β)|B′j |. By the definition of L̂,

b̂j ≥ (1− β)
βT

(k + 1) · µj
,

implying that

|B′j | >
βT

(k + 1) · µj
.

Therefore This is a contradiction to assumption that B′j is insignificant, and therefore the corollary
follows.
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Claim 3.3.18 Algorithm 1
3 -Approx-Triangles returns t̂ such that, with probability at least 1− 1

2 log3 n
,

(1− β)|T (B′L)| ≤ t̂ ≤ (1 + 50β)|T (B′L)|.

Proof: We define the following set of “bad” events:

1. E1 – The selection of the safety intervals in Create-Random-Thresholds was not a good selec-
tion, where a good selection is as defined in Definition 3.3.1.

2. E2 – Approx-Triangles-Degree(v, j) did not answer correctly on some sampled vertex, where
“answering correctly” is as defined in Definition 3.3.6.

3. E3 – Algorithm 1
3 -Approx-Triangles did not estimate the buckets’ sizes correctly, as defined in

Definition 3.3.13.

By Claim 3.3.2 the probability of event E1 occurring is at most 1
4 log3 n

. By Lemma 3.3.10 and by

taking the union bound over all the invocations of the Approx-Triangles-Degree procedure, if event
E1 does not occur, then event E2 occurs with probability at most 2

n2 . By Claim 3.3.15, if events
E1 and E2 do not occur, then event E3 occurs with probability at most 1

n2 . Therefore any of these
events occur with probability at most 1

2 log3 n
, and the following discussion holds with probability

at least 1− 1
2 log3 n

.

By the definition of t̂ in the algorithm,

t̂ =
∑
j∈L̂

b̂j · µj =
∑
j∈L̂∩L

b̂j · µj +
∑
j∈L̂\L

b̂j · µj . (41)

To upper bound t̂ we will separately upper bound the two terms on the right hand side of Equa-
tion 41. By our assumption that event E3 does not occur, we have that∑

j∈L̂\L

b̂j · µj ≤
∑
j∈L̂\L

(1 + β) ·
(

βT
(k + 1) · µj

+ β|B̃j |+ β|B̃j−1|
)
· µj

≤
∑
j∈L̂\L

(1 + β)
βT

(k + 1)
+
∑
j∈L̂\L

(1 + β)β(|B̃j |+ |B̃j−1|) · µj

≤ 2βT +
∑
j∈L̂\L

2β(|B̃j |+ |B̃j−1|) · µj , (42)

and that ∑
j∈L̂∩L

b̂j · µj ≤
∑
j∈L̂∩L

(1 + β)|B′′j |

≤
∑
j∈L̂∩L

(1 + β)(|B′j |+ β|B̃j |+ β|B̃j−1|) · µj

≤
∑
j∈L̂∩L

(1 + β)|B′j |µj +
∑
j∈L̂∩L

2β(|B̃j |+ |B̃j−1|) · µj , (43)
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where we used the fact that if event E1 does not occur, then corollary 3.3.1 holds, implying that
for every j ∈ [k], BIj ≤ β|B̃j |. Recall that by the definition of the new buckets, for every j ∈ [k],
and every v ∈ B′j , it holds that µj−1 ≤ ∆(v) ≤ µj and that µj ≤ (1 + β)2 · µj−1. Therefore,

for every j ∈ [k], and every v ∈ B′j , it holds that µj ≤ (1 + β)2 · ∆(v), and it follows that

|B′j |µj ≤ (1 +β)2|T (B′j)|. Also recall that for every j ∈ [k], it holds that µj ≤ (1 +β)j . The above,
together with Equation (42) and Equation (43), implies:

t̂ ≤
∑
j∈L̂∩L

(1 + β)|B′j |µj +
∑
j∈L̂

2β(|B̃j |+ |B̃j−1|)µj + 2β · T

≤
∑
j∈L

(1 + β)|B′j |µj +
∑
j∈[k′]

2β · |B̃j |(1 + β)j +
∑
j∈[k′]

2β|B̃j−1| · (1 + β) · (1 + β)j−1 + 2βT

≤ (1 + β)3 · |T (B′L)|+ 2β(1 + β) · |T (G)|+ 2β(1 + β)2 · |T (G)|+ 2β · |T (G)|
≤ |T (B′L)|+ 15β|T (G)|. (44)

Recall that by Claim 3.3.12,
1

3
(1− 30β)|T (G)| ≤ |T (B′L)|.

Therefore,
|T (G)| ≤ 3(1 + 30β)|T (B′L)|.

Plugging that into Equation (44), we have that

t̂ ≤ (1 + 50β)|T (B′L)|.

We now turn to lower bounding t̂. By the assumption that 1
3 -Approx-Triangles estimates the

buckets’ sizes correctly, Corollary 3.3.16 holds, and it follows that L̂ ⊇ L. Therefore,

t̂ =
∑
j∈L̂

b̂j · µj ≥
∑
j∈L

(1− β)|B′j | · µj ≥ (1− β)|T (B′L)| . (45)

The Claim follows from Equations (44) and (45).

Theorem 3.2 follows directly from Claims 3.3.18 and Corollary 3.3.14.

3.4 A (1± ε)-approximation algorithm

We now present a modified algorithm that computes a (1 ± ε)-approximation of the number of
triangles, with probability at least 1 − 1

polylog n . We start by providing the high-level idea of the
modification. In what follows we say that a labeled triangle is rooted at a bucket , or more generally,
that it is rooted at a set of vertices B, if it is rooted at some vertex v ∈ B. Roughly speaking, the
1
3 -approximation algorithm computes an estimate of 3|TrL,L,L|+ 2|TrL,L,S |+ |TrL,S,S | (and divides
it by 3). The source of the different factors of 3, 2 and 1 is that the algorithm only estimates
large significant buckets, which accounts for 3 “copies” of each triangle in TrL,L,L (one for each
endpoint), 2 “copies” of each triangle in TrL,L,S and one “copy” for each triangle in TrL,S,S .

The (1 ± ε)-approximation algorithm aims at estimating |TrL,L,S | and |TrL,S,S |. If we could
sample triangles uniformly and determine for a given triangle to which subset it belongs, then we
would obtain such estimates.
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Observe that for each triangle (v, u, w) in TrL,S,S or TrL,L,S there is at least one vertex, say v,
that belongs to a large significant bucket. Recall that we are able to obtain a good estimate, t̂, for
the number of labeled triangles (v, u, w)v that are rooted at vertices v belonging to large significant
buckets. Let α1 denote the fraction among these labeled triangles in which the two other vertices,
u and w, both belong to small significant buckets, and let α2 denote the fraction in which only one
of them belongs to a small significant bucket. If we could obtain good estimates for α1 and for
α2, then, together with t̂, we would get good estimates for |TrL,S,S | and |TrL,L,S |, respectively. It
hence remains to explain how to obtain such estimates.

Suppose we could (efficiently) sample labeled triangles (v, u, w)v uniformly among all labeled
triangles rooted at vertices v belonging to large buckets and that we could (efficiently) determine
for any vertex of our choice whether it belongs to a small significant bucket or a large one. Then
we could easily obtain good estimates for α1 and for α2. While we cannot perform these tasks
precisely, we can do so approximately, which is sufficient for our needs. Specifically, we can do the
following.

1. Using our estimates, b̂j , for the sizes of the large significant buckets, we can select a large
significant bucket with a probability that is roughly proportional to the number of labeled
triangles rooted at the bucket. Namely, we select a bucket index j with probability b̂jµj/t̂

where t̂ is the sum, over all large buckets, of b̂jµj .

2. We can select a vertex roughly uniformly in a large significant bucket Bj . This is done by
selecting a sufficiently large sample of vertices and for each sampled vertex v calling Approx-
Triangles-Degree(v, j) until we get an estimate ∆̂(v) indicating that v ∈ Bj .

3. We can select a triangle (v, u, w)v rooted at v roughly uniformly. This is done by slightly
modifying the procedure Approx-Triangles-Degree and the procedures that it calls so that
instead of returning an estimate of ∆(v) it returns a triangle rooted at v.

4. Given a triangle (v, u, w)v, we can determine (approximately) for u (similarly, for w) whether
it belongs to a small significant bucket by calling a modified version of Approx-Triangles-Degree.

We now turn to provide more precise details of the algorithm and its analysis.

3.4.1 The compensation idea

Definition 3.4.1 Let L̂ be as defined in Step (12) of 1
3 -Approx-Triangles, and let Ŝ be the set of

indices of significant buckets not in L̂. That is, Ŝ =
{
j ∈ [k] \ L̂ : B′j ≥

βT
(k+1)·µj

}
.

Definition 3.4.2 Let L be as defined in Definition 3.3.12. Define αL,Ŝ,Ŝ and αL,L,Ŝ to be

αL,Ŝ,Ŝ =
|TrL,Ŝ,Ŝ |
|T (B′L)|

and αL,L,Ŝ =
|TrL,L,Ŝ |
|T (B′L)|

.

Claim 3.4.1 For αL,Ŝ,Ŝ and αL,L,Ŝ as defined in Definition 3.4.2,

(1− 10β)|T (G)| ≤ |T (B′L)|(1 + 2αL,Ŝ,Ŝ + αL,L,Ŝ) ≤ |T (G)|. (46)
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Proof: By the definition of αL,Ŝ,Ŝ and αL,L,Ŝ ,

|T (B′L)|(1 + 2αL,Ŝ,Ŝ + αL,L,Ŝ)

= 3|TrL,L,L|+ 2|TrL,L,S |+ |TrL,S,S |+ 2|TrL,Ŝ,Ŝ |+ |TrL,L,Ŝ |

= 3|TrL,L,L|+ 3|TrL,L,S |+ 3|TrL,S,S |
− 2|TrL,S\Ŝ,S\Ŝ | − 2|TrL,S\Ŝ,S\Ŝ | − |TrL,L,S\Ŝ |. (47)

Observe that for every index j ∈ S \ Ŝ, it holds that B′j is insignificant. This is true, since for
every significant bucket B′j there are two possibilities. If j ≤ k′, then j is in L, and therefore,

j /∈ S. If j > k′ then j /∈ L̂, and therefore j ∈ Ŝ. It follows that the triangles in the sets
TrL̂,S\Ŝ,S\Ŝ , TrL̂,S\Ŝ,S\Ŝ and TrL,L,S\Ŝ are contained in TrI . Further observe that the only triangles

not accounted for in the sum in Equation (47) are triangles with at least one endpoint in an
insignificant bucket or in a safety interval. It follows that

|T (B′L)|(1 + 2αL,Ŝ,Ŝ + αL,L,Ŝ) ≥ |T (G)| − 3|TrI | ≥ (1− 10β)|T (G)|, (48)

where the last inequality follows from Equation (35) in the proof of Claim 3.3.12. Also, since the
sets TrL,L,L, TrL,L,S and TrL,S,S in Equation (47) are disjoint,

|T (B′L)|(1 + 2αL,Ŝ,Ŝ + αL,L,Ŝ) ≤ |T (G)|. (49)

The claim follows from Equations (48) and (49).

3.4.2 Sampling a random triangle and determining its type

We modify the procedure Approx-Triangles-Degree so that when invoked with a vertex v and an index
j, the procedure computes ∆̂(v), and if ∆̂(v) ∈ (µj−1, µj ], then the procedure returns a roughly
uniform triangle rooted at v. We do so by using slightly altered versions of the procedures Approx-
Triangles-Of-Low-Deg-Vertices, Approx-High-Triangles and Approx-Crossing-Triangles such that each
procedure, when invoked with a vertex v, returns both the approximated triangles-degree and the
first triangle seen during the run of the procedure (or an empty set if no such triangle was seen).

Definition 3.4.3 We say that the modified versions Approx-Triangles-Of-Low-Deg-Vertices’, Approx-
High-Triangles’ and Approx-Crossing-Triangles’ answer correctly if the following holds. First, the
procedures return ∆̂ for which the statements in Definitions 3.3.2, 3.3.4 and 3.3.5, respectively.
Second, if the procedures return the first triangles triangle “seen” during the run of the procedure
or an empty set if no triangle was seen.

Claim 3.4.2 Claims 3.3.4, 3.3.5, 3.3.6, 3.3.7, 3.3.8, and 3.3.9 hold for the modified versions
Approx-Triangles-Of-Low-Deg-Vertices’, Approx-High-Triangles’ and Approx-Crossing-Triangles’ and for
the new definition of answering correctly as defined in Definition 3.4.3.

Proof: The claim follows directly from the definitions of the new procedures and from the proofs
of the listed claims.
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Procedure 7 Sample-Random-Triangle(v, j)

1: Let δ ← 1
7 ·

γ
logn ·

β
1+β .

2: Query v’s degree d(v).

3: If d(v) ≤
√
m then

4: 〈∆̂, (v, u, w)v〉 ← Approx-Triangles-Of-Low-Deg-Vertices’(v, j, d(v), δ).

5: If ∆̂ ∈ (µj−1, µj ] then

6: Return (v, u, w)v.

7: Else

8: 〈∆̂hi, (v, u, w)v〉 ← Approx-High-Triangles’(v, j, d(v), δ).

9: 〈∆̂cr, (v, u′, w′)v〉 ← Approx-Crossing-Triangles’(v, j, d(v), δ).

10: ∆̂← ∆̂hi + ∆̂cr.

11: If ∆̂ ∈ (µj−1, µj ] then

12: Return

(v, u, w)v with probability ∆̂hi/∆̂

(v, u′, w′)v with probability ∆̂cr/∆̂
.

13: Return ∅.

Claim 3.4.3 Assume that, if invoked, the procedures Approx-Triangles-Of-Low-Deg-Vertices’, Approx-
High-Triangles’ and Approx-Crossing-Triangle’ answer correctly as defined in Definition 3.4.3. For
every vertex v and for every j ∈ [k′], Sample-Random-Triangle(v, j) satisfies the following:

1. If v ∈ B′j, then the procedure returns a triangle, and for all but at most a δ fraction of
the triangles rooted at v, the probability that each of them is returned by Sample-Random-

Triangle(v, j) is in
(

1−5δ
|∆(v)| ,

1+5δ
|∆(v)|

)
.

2. If v /∈ B′′j then Sample-Random-Triangle(v, j) returns an empty set.

3. If v ∈ B′′j \ B′j, then Sample-Random-Triangle(v, j) either returns an empty set or a roughly
uniform triangle rooted in v as described in Item (1).

Proof: If v /∈ B′′j , then by Claim 3.4.2 and by Corollary 3.3.11, ∆̂ /∈ (µj−1, µj ], and the procedure
will return an empty set. This proves the second item of the claim.

To prove the first item of the claim, consider a vertex v ∈ B′j . First assume that the vertex

v is such that d(v) ≤
√
m. By the assumption that Approx-Triangles-Of-Low-Deg-Vertices’ answers

correctly it follows that it returns ∆̂ such that ∆̂ ∈ (µj−1, µj ], implying that it also returns a triangle

and not an empty set (if ∆̂ 6= 0 then at least one triangle was seen during the run of Approx-Triangles-
Of-Low-Deg-Vertices’). All the triangles rooted at v have exactly the same probability of being the
first one seen during the run of Approx-Triangles-Of-Low-Deg-Vertices’. Hence, each triangle rooted
in v is returned with probability 1

|∆(v)| .

Now consider a vertex v such that d(v) >
√
m. As before, if the procedure Approx-Crossing-

Triangles’ returns ∆̂cr > 0, then it also returns a uniform triangle in the set Trcr(v). Similarly,
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if the procedure Approx-High-Triangles’ returns ∆̂hi > 0, then it also returns a uniform triangle
among the set Trhi(v). Therefore, for each triangle in Trhi(v) and for each triangle in Trcr(v), the
probability they it is returned is

∆̂hi

∆̂
· 1

∆hi(v)
and

∆̂cr

∆̂
· 1

∆cr(v)

respectively. If both ∆cr(v) and ∆hi(v) are at least δ · µj−1, then by the assumption that Approx-

Crossing-Triangles’ and Approx-High-Triangles’ answer correctly, it holds that (1− δ)∆hi(v) ≤ ∆̂hi ≤
(1+δ)∆hi(v) and that (1−δ)∆cr(v) ≤ ∆̂hi ≤ (1+δ)∆cr(v). The above, together with Lemma 3.3.10,
implies that the probability of a specific triangle in Trhi(v) to be returned is:

(1− δ)∆hi(v)

∆hi(v)
· 1

(1 + 3δ)∆(v)
≤ ∆̂hi

∆̂
· 1

∆hi(v)
≤ (1 + δ)∆hi(v)

∆hi(v)
· 1

(1− 3δ)∆(v)
,

implying that for every triangle (v, u, w) ∈ Trhi(v),

1− 5δ

∆(v)
≤ Pr[(v, u, w)v is returned] ≤ 1 + 5δ

∆(v)
. (50)

Similarly for every triangle (v, u′, w′) ∈ Trcr(v),

1− 5δ

∆(v)
≤ Pr[(v, u′, w′)v is returned] ≤ 1 + 5δ

∆(v)
. (51)

Therefore, every triangle in Tr(v) is returned with probability (1± 5δ) 1
∆(v) as required.

Since ∆̂(v) ∈ (µj−1, µj ] it could be that either neither or one of ∆cr(v) or ∆hi(v) is smaller than
δ ·µj−1, but not both. Assume without loss of generality that ∆cr(v) < δ ·µj−1. The probability of
each triangle in Trhi(v) to be returned is as in Equation (50). Therefore, at least (1 − δ) fraction
of the triangles rooted at v are (each) returned with probability (1 ± 5δ) 1

∆(v) . This concludes the
proof of the first item of the claim.

For a vertex v ∈ B′′j \B′j it could be that either ∆̂(v) /∈ (µj−1, µj ] and the procedure returns an

empty set, or that ∆̂(v) ∈ (µj−1, µj ], in which case the first item holds. Therefore the third item
of the Claim holds, and the proof is complete.

Claim 3.4.4 For a vertex v let Tr′(v) ⊆ Tr(v) be any subset of the triangles rooted at v. Assume
that, if invoked, the procedure Approx-High-Triangles’ and Approx-Crossing-Triangle’ answer cor-
rectly as defined in Definition 3.4.3. If Sample-Random-Triangle returns a triangle rooted at v, then
the probability it returns a triangle from Tr′(v) is in[

(1− 5δ)(|Tr′(v)| − δ · µj−1)

∆(v) ,

(1 + 5δ)|Tr′(v)|
∆(v)

]
.

Proof: First consider a low-degree vertex v. By the definition of the procedure Approx-Triangles-
Of-Low-Deg-Vertices’, every triangle in Tr(v) has the same probability to be the first one seen during
the run of the procedure. Therefore, the procedure returns a triangle from Tr′(v) with probability
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|Tr′(v)|
∆(v) , and the claim follows. Now consider a high-degree vertex v. The probability that a triangle

from Tr′(v) is returned is:∑
(v,u,w)v∈Tr′(v)

Pr[(v, u, w)v is returned] =

∑
(v,u,w)v∈

Tr′(v)∩Trhi(v)

Pr[(v, u, w)v is returned] +
∑

(v,u,w)v∈
Tr′(v)∩Trcr(v)

Pr[(v, u, w)v is returned].

If both ∆cr(v) and ∆hi(v) are at least δ · µj−1, then Equations (50) and (51) from the proof of
Claim 3.4.3 hold, and the claim follows. Observe that it is not possible that both ∆cr(v) and
∆hi(v) are smaller than δ · µj−1 and that Sample-Random-Triangle returns a triangle, since the

procedure only returns a triangle if ∆̂ ∈ (µj−1, µj ]. Therefore, assume without loss of generality
that ∆cr(v) < δ · µj−1. In such a case

|Tr′(v) ∩ Trhi(v)| = |Tr′(v)| − |Tr′(v) ∩ Trcr(v)| ≥ |Tr′(v)| −∆cr(v) ≥ |Tr′(v)| − δ · µj−1 .

Since ∆hi(v) ≥ δ · µj−1, Equation (50) from the proof of Claim 3.4.3 holds. It follows that∑
(v,u,w)v∈Tr′(v)

Pr[(v, u, w)v is returned] ≥ (1− 5δ) · |Tr′(v) ∩ Trhi(v)|
∆(v)

≥ (1− 5δ) · |Tr′(v)| − δµj−1

∆(v)
, (52)

and ∑
(v,u,w)v∈Tr′(v)

Pr[(v, u, w)v is returned] ≤ (1 + 5δ) · |Tr′(v) ∩ Trhi(v)|
∆(v)

≤ (1 + 5δ) · |Tr′(v)|
∆(v)

. (53)

The claim follows from Equations (52) and (53).

We now give a procedure for estimating whether a given vertex belongs to a small significant
bucket:

Procedure 8 Is-Small-And-Significant(u)

1: Let ∆̂(u)← Approx-Triangles-Degree(u, 1
2(βT )2/3).

2: Let ` be such that ∆̂(u) ∈ (µ`−1, µ`].
3: If ∆̂(u) < (1− δ)(βT )2/3 or ` ∈ L̂ then
4: Return 0.
5: Else
6: Return 1.

Claim 3.4.5 Assume that Approx-Triangles-Degree answers correctly on the sampled vertex in Step (1)
of Is-Small-And-Significant, and that Item (1) in Definition 3.3.13 holds. It holds that:
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1. If u ∈ B′
Ŝ

, then Is-Small-And-Significant(u) = 1.

2. If u ∈ B′
L̂

, then Is-Small-And-Significant(u) = 0.

Proof: First consider a vertex u ∈ B′
Ŝ

and let B′j be the bucket it belongs to. By the definition of Ŝ,

|B′j | ≥
βT

(k+1)µj
, implying that µj ≥ βT

(k+1)|B′j |
. By the assumption that Item (1) in Definition 3.3.13

holds, Corollary 3.3.16 holds, and therefore L ⊆ L̂. It follows that for every j /∈ L̂, B′j is small i.e.,

|B′j | <
(βT )1/3

(k+1) . This implies that µj ≥ (βT )2/3 and that µj−1 ≥ µj(1 + β)2 ≥ 1
2(βT )2/3. By the

assumptions that u belongs to a strict bucket and that Approx-Triangles-Degree answers correctly
and by Corollary 3.3.11, u will be assigned to its correct bucket. That is, ` as computed in Step (2)
is such that u ∈ B′`. Therefore, ` /∈ L̂, implying that Is-Small-And-Significant(u) = 1, and the proof
of the first item is complete.

Now consider a vertex u such that u ∈ B′j and j ∈ L′. If ∆(u) < 1
2(βT )2/3 then by

Lemma 3.3.10 and by the assumption that Approx-Triangles-Degree answers correctly, ∆̂(u) <
(1 + δ) · 1

2(βT )2/3< (1− δ)(βT )2/3 and the procedure will return 0. Otherwise, ∆(u) ≥ 1
2(βT )2/3,

so that by the assumption that Approx-Triangles-Degree answers correctly, and by Corollary 3.3.11,
u will be assigned to its correct bucket B′j . By the assumption that j ∈ L̂ it follows that ` ∈ L̂ and
that the procedure will return 0, as required.
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3.4.3 The algorithm for (1± ε)-approximation

Algorithm 9 Approx-Triangles-With-Advice (G,∆,m,ε)

1: Invoke 1
3 -Approx-Triangles(G, 3∆,m, ε), and let {µ0, . . . , µk}, b̂j and t̂ be as defined in the algo-

rithm.
2: For i = 1, . . . , r = 20 logn

β3 do

3: Pick an index j with probability
b̂jµj−1

t̂
. Denote the selected index ji.

4: Repeat at most sji =
n·µj
T ·

20 logn·(k+1)
β4 times

Sample a vertex v until Sample-Random-Triangle(v, ji) returns a triangle (v, u, w)v.

5: Let χi
L,Ŝ,Ŝ

=


0 No triangle was sampled in Step (4)

1 A triangle (v, u, w)v was sampled and both Is-Small-And-Significant(u) = 1

and Is-Small-And-Significant(w) = 1

0 otherwise

.

6: Let χi
L,L,Ŝ

=


0 No triangle was sampled in Step (4)

1 if either Is-Small-And-Significant(u) = 1 or Is-Small-And-Significant(w) = 1

but not both

0 otherwise

.

7: α̂L,Ŝ,Ŝ ←
1
r ·
∑
i
χi
L,Ŝ,Ŝ

.

8: α̂L,L,Ŝ ←
1
r ·
∑
i
χi
L,L,Ŝ

.

9: Return ∆̂ = 1
3 · t̂ · (1 + 2α̂L,Ŝ,Ŝ + 1

2 α̂L,L,Ŝ)

Definition 3.4.4 Consider the ith iteration of the loop in Step (2) of Approx-Triangles-With-Advice.
For every i, if the chosen index in Step (3), ji, is such that ji ∈ L and a triangle (v, u, w)v is
sampled in Step (4) then we say that the ith iteration was successful, and if ji ∈ L and no triangle
was sampled in Step (4) we say that the iteration was unsuccessful.

Claim 3.4.6 For every iteration of the loop in Step (2) of the algorithm Approx-Triangles-With-
Advice, the sampling process in Steps (3) and (3) is successful with probability at least 1− 1

n2 .

Proof: By the first item in Claim 3.4.3, if Sample-Random-Triangle is invoked with a vertex v and
an index ji such that v ∈ B′ji , then a triangle is returned. Therefore, the probability that a triangle

is returned in any iteration of the loop in Step (4) is at least
|B′ji |
n . For indices ji such that ji in L,

it holds that |B′ji | ≥
βT

(k+1)·µj . Therefore the probability that a triangle is not returned in sji tries

is at most (
1− βT

n · (k + 1) · µj

)n·µj
T ·

20 logn·(k+1)

β4

< exp(−10 · log n

β3
) <

1

β3
· 1

n3
.
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By applying the union bound over all the iterations we get that the probability that any of the
iterations fails is at most 1

n2 .

Definition 3.4.5 We say that α̂L,Ŝ,Ŝ is a good estimation of αL,Ŝ,Ŝ if αL,Ŝ,Ŝ ≥ 71β and (1 −
β)(αL,Ŝ,Ŝ−70β) ≤ α̂L,Ŝ,Ŝ ≤ (1+β)(αL,Ŝ,Ŝ+70β) or if αL,Ŝ,Ŝ < 71β and α̂L,Ŝ,Ŝ ≤ 150β. Similarly,

we say that α̂L,L,Ŝ is a good estimation of αL,L,Ŝ if αL,L,Ŝ ≥ 71β and (1 − β)(αL,L,Ŝ − 70β) ≤
α̂L,L,Ŝ ≤ (1 + β)(αL,Ŝ,Ŝ + 70β) or if αL,L,Ŝ < 71β and α̂L,L,Ŝ ≤ 150β.

Lemma 3.4.7 Assume that Create-Random-Thresholds returns a good selection and that Approx-
Triangles-Degree answers correctly on all the sampled vertices. Further assume that Item (1) and
Item (2) in Definition 3.3.13 hold for every j ∈ [k′] and that every iteration of the loop in Step (2) of
Approx-Triangles-With-Advice is successful. Let αL,Ŝ,Ŝ and αL,L,Ŝ be as defined in Definition 3.4.2,
and let α̂L,Ŝ,Ŝ and α̂L,L,Ŝ be as defined in Approx-Triangles-With-Advice. With probability at least

1− 1/n3,

1. α̂L,Ŝ,Ŝ is a good estimation of αL,Ŝ,Ŝ .

2. α̂L,L,Ŝ is a good estimation of αL,L,Ŝ .

Before proving the lemma we prove the following two claims.

Claim 3.4.8 Let χi
L,Ŝ,Ŝ

and χi
L,L,Ŝ

be as defined in Steps (5) and (6) in Approx-Triangles-With-

Advice. If the assumption in Lemma 3.4.7 hold, then

Pr[χL,Ŝ,Ŝ(v) = 1] ≥ αL,Ŝ,Ŝ − 70β,

and
Pr[χL,L,Ŝ(v) = 1] ≥ αL,L,Ŝ − 70β.

Proof: We start by lower bounding the probability Pr[χi
L,Ŝ,Ŝ

] = 1. For a vertex v ∈ BL, let

TrL,Ŝ,Ŝ(v) be the set of triangles (v, u, w)v rooted at v such that both u and w are in B′
Ŝ

, and let

∆L,Ŝ,Ŝ(v) = |TrL,Ŝ,Ŝ(v)|. Recall that χi
L,Ŝ,Ŝ

= 1 if a triangle (v, u, w)v was sampled in Step (4)

for which Is-Small-And-Significant(u) = 1 and Is-Small-And-Significant(w) = 1. Therefore, by Item
(1) in Claim 3.4.5 and Claim 3.4.6, for every vertex v such that v ∈ B′j for some j ∈ L̂ if the

sampled triangle is in TrL,Ŝ,Ŝ(v) then χi
L,Ŝ,Ŝ

= 1. By Claim 3.4.4 the probability that the sampled

triangle in Step (4) is from TrL,Ŝ,Ŝ(v) is at least
(1−5δ)·(∆L,Ŝ,Ŝ(v)−δ·µj−1)

∆(v) . Also note that, under the
assumption that Approx-Triangles-Degree answers correctly on all the sampled vertices, for every

index j ∈ L its probability to be the chosen index in Step (3) is
b̂j ·µj
t̂

, and for every vertex v in B′j its

probability to be the vertex for which a triangle is sampled in Step (4) is at least 1
|B′′j |

. Combining

the above we get that:

Pr[χiL,Ŝ,Ŝ = 1] ≥
∑
j∈L

b̂j · µj−1

t̂
·
∑
v∈B′j

1

|B′′j |
·

(1− 5δ)(∆L,Ŝ,Ŝ(v)− δµj−1)

∆(v)
. (54)
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For every v ∈ B′j , it holds that µj−1 ≤ ∆(v) ≤ µj , implying that

µj−1

∆(v)
≥ µj−1

µj
≥ 1

(1 + β)2
> 1− 3β . (55)

By Corollary 3.3.17 for every j ∈ L̂,
b̂j ≥ (1− β)|B′j |.

Therefore,

b̂j
|B′′j |

≥
(1− β)|B′j |
|B′′j |

≥
(1− β)(|B′′j | − β|B̃j | − β|B̃j−1|)

|B′′j |
≥ 1− β − 2β(1− β) > 1− 3β. (56)

Clearly, L̂ ⊂ [k], and recall that according to Corollary 3.3.16, L̂ ⊇ L. Therefore, by plugging
Equations (56) and (55) into Equation (54) we get

Pr[χiL,Ŝ,Ŝ = 1] ≥ (1− 3β)2(1− 5δ) ·

∑
j∈L̂

∑
v∈B′j

∆L,Ŝ,Ŝ(v)

t̂
−
∑
j∈L̂

∑
v∈B′j

δ · µj−1

t̂


≥ (1− 8β)

∑
j∈L

∑
v∈B′j

∆L,Ŝ,Ŝ(v)

t̂
− (1− 8β)

∑
j∈[k]

∑
v∈B′j

δ · µj−1

t̂

≥ (1− 8β) ·
|TrL,Ŝ,Ŝ |

t̂
− 2

δ|T (G)|
t̂

.

Recall that from Claim 3.3.18, t̂ ≤ (1 + 50β)|T (B′L)|. Also, it follows from Theorem 3.2 that

|T (G)|
t̂

≤ 3

1− 50β
≤ 4. (57)

Therefore,

Pr[χiL,Ŝ,Ŝ = 1] ≥ (1− 8β)
|TrL,Ŝ,Ŝ |

(1 + 50β)|T (B′L)|
− 8β ≥ (1− 60β)αL,Ŝ,Ŝ − 8β ≥ αL,Ŝ,Ŝ − 70β, (58)

as claimed.

The proof for the second part of the claim follows in an almost identical manner.

Claim 3.4.9 Let χi
L,Ŝ,Ŝ

and χi
L,L,Ŝ

be as defined in Steps (5) and 6 in Approx-Triangles-With-

Advice. If the assumption in Lemma 3.4.7 hold, then

Pr[χL,Ŝ,Ŝ(v) = 1] ≤ αL,Ŝ,Ŝ + 70β,

and
Pr[χL,L,Ŝ(v) = 1] ≤ αL,L,Ŝ + 70β.

42



Proof: We will only upper bound the probability Pr[χi
L,Ŝ,Ŝ

] = 1, aa the proof for upper bounding

Pr[χL,L,Ŝ(v) = 1] is almost identical. For a vertex v ∈ B′′
L̂

, denote by TrL̂,[k]\L̂,[k]\L̂(v) the set of

triangles (v, u, w)v rooted at v such that both u and w are in [k] \ L̂. Observe that for any triangle
(v, u, w)v rooted in v that is not in the set TrL̂,[k]\L̂,[k]\L̂(v), either u or w are in L̂, and therefore,

by Item (2) in Claim 3.4.5, if such a triangle is selected in Step (3) of the algorithm, then χi
L,Ŝ,Ŝ

is

set to 0.

For every index j chosen in Step (3) of the algorithm, the probability that χi
L,Ŝ,Ŝ

= 1 (con-

ditioned on the choice of j) is upper bounded by the maximum, over all subsets Bj such that
B′j ⊆ Bj ⊆ B′′j of the following expression:

∑
v∈Bj

1

|Bj |
·min

{
1,

(1 + 5δ)|TrL̂,[k]\L̂,[k]\L̂(v)|
∆(v)

}

≤ 1

|Bj |

∑
v∈B′j

min

{
1,

(1 + 5δ)|TrL̂,[k]\L̂,[k]\L̂(v)|
∆(v)

}
+ |BIj ∩Bj |

 . (59)

The right-hand side of Equation (59) is maximized when Bj = B′′j . Therefore,

Pr[χiL,Ŝ,Ŝ = 1] ≤
∑
j∈L̂

b̂j · µj−1

t̂
·

 1

|B′′j |
·
∑
v∈B′j

min

{
1,

(1 + 5δ)|TrL̂,[k]\L̂,[k]\L̂(v)|
∆(v)

}
+
|BIj |
|B′′j |


≤
∑
j∈L

b̂j · µj−1

t̂
·

 1

|B′′j |
·
∑
v∈B′j

min

{
1,

(1 + 5δ)|TrL̂,[k]\L̂,[k]\L̂(v)|
∆(v)

}
+
|BIj |
|B′′j |


+

∑
j∈L̂\L

b̂j · µj−1

t̂
·

(
|B′j |
|B′′j |

+
|BIj |
|B′′j |

)

≤ 1

t̂
·
∑
j∈L

b̂j
|B′′j |

·
∑
v∈B′j

µj−1

∆(v)
· (1 + 5δ)|TrL̂,[k]\L̂,[k]\L̂(v)| +

1

t̂
·
∑
j∈L

b̂j
|B′′j |

· |BIj | · µj−1

+
1

t̂

∑
j∈L̂\L

b̂j · µj−1 . (60)

For every v ∈ B′′j , ∆(v) ≥ µj−2, implying that

µj−1

∆(v)
≤ µj−1

µj−2
≤ (1 + β)2 ≤ 1 + 3β . (61)

By the assumption that Item (1) in Definition 3.3.13 holds, for every j ∈ L, it holds that b̂j ≤
(1 + β)|B′′j |. We also use the fact that ∆(v) ≥ µj−1 for every j ∈ [k] and v ∈ B′j . Starting with the
last term in Equation (60), it follows from Equation (42) in the proof of Claim 3.3.15, that

1

t̂
·
∑
j∈L̂\L

b̂j · µj−1 ≤
6βT
t̂
≤ 6β|T (G)|

t̂
≤ 24β . (62)
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Turning to the second term, it follows from Equation (33) in the proof of Claim 3.3.12 that

1

t̂
·
∑
j∈L

b̂j
|B′′j |

· |BIj | · µj−1 ≤
1

t̂

∑
(1 + β)|BIj | · µj−1 ≤

(1 + β)β|T (G)|
t̂

≤ 8β . (63)

And finally, in order to bound the first term, observe that a triangle (v, u, w)v is in TrL̂,[k]\L̂,[k]\L̂ \
TrL,Ŝ,Ŝ if it has at least one endpoint in either L̂ \L or in ([k]\ L̂)\ Ŝ. That is, if it has at least one
endpoint in an insignificant bucket or in a safety interval. Hence the first term is upper bounded
by

1

t̂
·
∑
j∈L

b̂j
|B′′j |
·
∑
v∈B′j

µj−1

∆(v)
· (1 + 5δ)|TrL̂,[k]\L̂,[k]\L̂(v)|

≤ (1 + β)(1 + 5δ) · 1

t̂
·
∑
j∈L

∑
v∈B′j

|TrL̂,[k]\L̂,[k]\L̂(v)| .

≤ (1 + 2β) · 1

t̂
·

∑
j∈L

∑
v∈B′j

|TrL,Ŝ,Ŝ(v)|+
∑
j∈L

∑
v∈B′j

|TrL̂,[k]\L̂,[k]\L̂(v) \ TrL,Ŝ,Ŝ(v)|


≤ (1 + 2β) ·

(
TrL,Ŝ,Ŝ

t̂
+

TrI

t̂

)
≤ (1 + 2β)

(
TrL,Ŝ,Ŝ

(1− β)|T (B′L)|
+

2β|T (G)|
t̂

)
≤ (1 + 3β)αL,Ŝ,Ŝ + 24β . (64)

Where we used the fact that if the assumptions in this claim holds, then from the proof of
Claim 3.3.18 it holds that:

(1− β)|T (B′L)| ≤ t̂ ≤ (1 + 50β)|T (B′L)| .

Plugging Equations (62), (63) and (64) into Equation (60), we get that

Pr[χiL,Ŝ,Ŝ ] ≤ αL,Ŝ,Ŝ + 70β , (65)

as required.

Proof of Lemma 3.4.7: By Claim 3.4.9 and Claim 3.4.8 it holds that

αL,Ŝ,Ŝ − 70β ≤ Pr[χL,Ŝ,Ŝ(v) = 1] ≤ αL,Ŝ,Ŝ + 70β.

Recall that αL,Ŝ,Ŝ = 1
r

∑
χi
L,Ŝ,Ŝ

(v).

If αL,Ŝ,Ŝ ≥ 71β then by applying the multiplicative Chernoff bound on α̂L,Ŝ,Ŝ we get:

Pr

[
1

r

∑
χiL,Ŝ,Ŝ > (1 + β)

(
αL,Ŝ,Ŝ + 70β

)]
< exp

(
−β

2

3
·
(
αL,Ŝ,Ŝ + 70β

)
· r
)

< exp

(
−β

3

3
· 20 log n

β3

)
<

1

4n3
,

44



and similarly

Pr

[
1

r

∑
χiL,Ŝ,Ŝ < (1− β)

(
αL,Ŝ,Ŝ − 70β

)]
< exp

(
−β

2

2
·
(
αL,Ŝ,Ŝ − 70β

)
· r
)

< exp

(
−β

3

2
· 20 log n

β3

)
<

1

4n3
.

Therefore if αL,Ŝ,Ŝ ≥ 71β, then with probability at least 1− 1
2n3

(1− β)(αL,Ŝ,Ŝ − 70β) ≤ α̂L,Ŝ,Ŝ ≤ (1 + β)(αL,Ŝ,Ŝ + 70β). (66)

If αL,Ŝ,Ŝ ≤ 70β then

Pr

[
1

r

∑
χiL,Ŝ,Ŝ(v) > (1 + β) · 140β]

]
< exp

(
−β

2

3
· 140β · r

)
< exp

(
−β

3

3
· 20 log n

β3

)
<

1

2n3
.

Therefore, if αL,Ŝ,Ŝ ≤ 70β, then with probability at least 1− 1/2n3,

α̂L,Ŝ,Ŝ ≤ 150β. (67)

The first item of the claim follows from Equations (66) and (67). The second item of the claim
follows in an almost identical manner.

Theorem 3.3 Algorithm Approx-Triangles-With-Advice〈G,∆,m, ε〉 returns ∆̂ such that, with prob-
ability at least 1− 1

log3 n
,

(1− ε)∆(G) ≤ t̂ ≤ (1 + ε)∆(G).

Proof: Recall the set of bad events defined in Claim 3.3.18:

1. E1 – The selection of the safety intervals in Create-Random-Thresholds was not a good selec-
tion, where a good selection is as defined in Definition 3.3.1.

2. E2 – Approx-Triangles-Degree(v, j) did not answer correctly on some sampled vertex, where
“answering correctly” is as defined in Definition 3.3.6.

3. E3 – Algorithm 1
3 -Approx-Triangles did not estimate the buckets’ sizes correctly, as defined in

Definition 3.3.13.

We define two additional bad events:

4. E4 – Any of iterations of the loop in Step (2) of the algorithm Approx-Triangles-With-Advice
was unsuccessful, as defined in Definition 3.4.4.

5. E5 – α̂L,Ŝ,Ŝ is a not a good estimation of αL,Ŝ,Ŝ or α̂L,L,Ŝ is not a good estimation of αL,L,Ŝ ,
where good estimations are as defined in Definition 3.4.5.

As shown in the proof of Claim 3.3.18, with probability at least 1− 1
2 log3 n

events E1-E3 does not

occur. By Claim 3.4.3, if events E1-E3 do not occur, then event E4 occurs with probability at most
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1
n2 . By Claim 3.4.7, if events E1-E4 do not occur, then event E5 occurs with probability at most
1/n3. Therefore, the following discussion holds with probability at least 1− 1

log3 n
.

Consider first the case that αL,Ŝ,Ŝ ≥ 71β and αL,L,Ŝ ≥ 71β. By Claims 3.3.18, 3.4.7 and 3.4.1
it holds that

∆̂ =
1

3
t̂ · (1 + 2α̂L,Ŝ,Ŝ +

1

2
α̂L,L,Ŝ) ≤ 1

3
t̂ ·
(

1 + 2(1 + β)(αL,Ŝ,Ŝ + 70β) +
1

2
(1 + β)(αL,L,Ŝ + 70β)

)
≤ 1

3
t̂ · (1 + 2αL,Ŝ,Ŝ +

1

2
αL,L,Ŝ) + 70βt̂

≤ 1

3
(|T (B′L)|+ 50β|T (G)|) · (1 + 2αL,Ŝ,Ŝ +

1

2
αL,L,Ŝ) + 70β(1 + 50β)|T (G)|

≤ 1

3
(|T (G)|+ 450β)|T (G)|,

and that

∆̂ ≥ 1

3
t̂ ·
(

1 + 2(1 + β)(αL,Ŝ,Ŝ − 70β) +
1

2
(1 + β)(αL,L,Ŝ − 70β)

)
≥ 1

3
t̂ · (1 + 2αL,Ŝ,Ŝ +

1

2
αL,L,Ŝ)− 100βt̂

≥ 1

3
(1− 300β)|T (G)|.

Putting the above together we get

1

3
(1− 300β)|T (G)| ≤ t̂ ≤ 1

3
(1 + 450β)|T (G)|. (68)

Now assume that αL,Ŝ,Ŝ ≥ 71β and αL,L,Ŝ < 71β.

∆̂ =
1

3
t̂ · (1 + 2α̂L,Ŝ,Ŝ +

1

2
α̂L,L,Ŝ) ≤ 1

3
t̂ ·
(

1 + 2(1 + β)(αL,Ŝ,Ŝ + 70β) + (1 + β) · 75β
)

≤ 1

3
t̂ · (1 + 2αL,Ŝ,Ŝ +

1

2
αL,L,Ŝ) + 100βt̂

≤ 1

3
|T (G)|+ 70β|T (G)| ≤ 1

3
(1 + 300β)|T (G)|.

As for the lower bound, note that if αL,Ŝ,Ŝ < 71β then αL,Ŝ,Ŝ − 71β < 0. Therefore

∆̂ =
1

3
t̂ · (1 + 2α̂L,Ŝ,Ŝ +

1

2
α̂L,L,Ŝ) ≥ 1

3
t̂ ·
(

1 + 2(1 + β)(αL,Ŝ,Ŝ − 70β) +
1

2
(αL,L,Ŝ − 71β)

)
≥ 1

3
t̂ · (1 + 2αL,Ŝ,Ŝ +

1

2
αL,L,Ŝ)− 100βt̂

≥ 1

3
(1− 300β)|T (G)|.

The analysis for the remaining cases, where either αL,Ŝ,Ŝ < 71β and αL,L,Ŝ ≥ 71β or both αL,Ŝ,Ŝ
and αL,L,Ŝ are smaller than 71β is almost identical.

Therefore for every value of αL,Ŝ,Ŝ and αL,L,Ŝ Equation (68) holds. Setting β = ε/450 we get

that with probability at least 1− 1
log3 n

,

(1− ε)|T (G)| ≤ ∆̂ ≤ (1 + ε)|T (G)|,

and the proof is complete.
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3.5 Removing the need for a priori knowledge on ∆(G) and m

We start by giving the high level idea. So far, we assumed that we have estimations ∆ and m such
that ∆(G)

c∆
≤ ∆ ≤ ∆(G) and m ≥ m

cm
. In order to remove this assumption, we describe an iterative

process over the possible values of ∆ and m, which runs until we get a good estimation of ∆(G).
Namely, for ∆ we consider the values 1, 2, 4, . . . , n3 and for m the values 1, 2, 4, . . . , n2, so that we get
O(log2 n) possible pairs. We prove that, with a small modification to Approx-Trianlges-With-Advice,
for a pair 〈∆,m〉 the query complexity of the algorithm is(

n

T 1/3
+ min

{
m,

m3/2

T

})
· poly(log n, 1/ε), (69)

and that the output ∆̂ of the algorithm is such that ∆̂ ≤ (1 + ε)∆. That is, it is either an

underestimation of ∆(G) or a good estimation of it. We define q = max
{

n

∆
1/3 ,min

{
m, m

3/2

∆

}}
and iterate over the possible pairs of ∆ and m to get increasing values of q. If during the iterative
process the algorithm outputs ∆̂ such that ∆̂ ≥ (1 + ε)∆, we halt the process and return ∆̂. We
prove that this is indeed a good estimation of ∆(G) with probability at least 1− 1

polylog n . We also
prove that the process halts when running with good estimations of the values of ∆(G) and m,
with probability at least 1− 1

poly n . This implies that the query complexity will not exceed(
n

∆(G)1/3
+ min

{
m,

m3/2

∆(G)

})
· poly(log n, 1/ε) ,

with probability at least 1− 1
polylog n .

3.5.1 Complexity analysis for fixed ∆ and m

The assumption that m ≥ m
cm

was only used directly in the proof of Claim 3.3.7 regarding the query
complexity and running time of Approx-High-Triangles. To obtain a query complexity and running
time as stated in Equation (69) we modify the procedure as follows.

Definition 3.5.1 Let Approx-High-Triangles′′ operate exactly as the procedure Approx-High-Triangles’
operates except for the following modification. If Approx-High-Triangles’ computes Γ̂hi that is greater
than (1 + δ) · 2cm ·

√
m, then the procedure aborts, causing Approx-Triangles-Degree and Approx-

Triangles-With-Advice to abort as well.

We first prove that with probability at least 1− 1
poly n the procedure does not abort for values of m

such that m ≥ m
cm

, and then proceed to prove that the above modification gives the desired running
time.

Recall from Proposition 2.2 that for every graph G it holds that ∆(G) ≤ m3/2. Therefore we

can consider only pairs 〈∆,m〉 such that m ≥ ∆
2/3

.

Claim 3.5.1 For every ∆ ≤ m3/2, vertex v and index j ∈ [k′], if invoked with a value of m such
that m ≥ m

cm
, then Approx-High-Triangles”(v, j, d(v)) aborts with probability at most 1

2n3 .
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Proof: Recall from the proof of Claim 3.3.6, that if |Γhi(v)| ≥
√
δ · µj−1, then with probability at

least 1− 1
4n3 ,

(1− δ) · |Γhi(v)| ≤ Γ̂hi ≤ (1 + δ) · |Γhi(v)|.

Therefore if |Γhi(v)| ≥
√
δ · µj−1, then with probability at least 1− 1

4n3 , it holds that

Γ̂hi(v) ≤ (1 + δ) · |Γhi(v)| ≤ (1 + δ)
2cm ·m√

m
≤ 2(1 + δ)

√
m ,

and the procedure does not abort.

If |Γhi(v)| <
√
δ · µj−1, then by the choice of s = d(v)√

δ·µj−1
· 20 logn

δ2 in Approx-High-Triangles and

by the multiplicative Chernoff bound,

Pr

[
1

s
|S ∩ Γhi| > (1 + δ) ·

√
δ · µj−1

d(v)

]
< exp

(
−δ

2

3
·
√
δ · µj−1

d(v)
· s

)
<

1

8n3
.

Note that the procedure is invoked only with indices j such that j ≤ k′ = log(1+β)
c∆·(k+1)

β T 2/3
.

Therefore, for every j, µj ≤ (1 + β)k
′ ≤ 5c∆(k+1)

β ·m, implying that
√
δ · µj−1 ≤ 2cm ·

√
m. Hence,

with probability at least 1− 1
8n3 ,

Γ̂hi ≤ (1 + δ) ·
√
δ · µj−1 ≤ (1 + δ)2cm ·

√
m ,

and the procedure does not abort.

Claim 3.5.2 For every m, the query complexity and running time of Approx-High-Triangles′′, as

defined in Definition 3.5.1, are d(v)·
√
m

µj
· poly(log n, 1/ε).

Proof: If m ≥ m
cm

then the proof of Claim 3.3.7 holds and the claim follows.

If m < m
cm

then Equation (18) does not hold, and therefore Equation (19) does not follow.
However, with the modification described in Definition 3.5.1, if the procedure reaches Step (8),
then it did not abort, implying that Γ̂hi ≤ (1 + δ)2cm ·

√
m. Therefore, Equation (19) holds by the

modification, and the claim follows as before.

Corollary 3.5.3 For every v and j the query complexity and running time of procedures Approx-
Triangles-Degree(v, j) and Sample-Random-Triangle(v, j) with the modified procedures Approx-High-

Triangles”, Approx-Triangles-Of-Low-Deg-Vertices’ and Approx-Crossing-Triangles’ are d(v)·
√
m

µj
·poly(log n, 1/ε).

To ensure that the query complexity is as stated in Equation (69) we also need to slightly
modify the algorithms 1

3 -Approx-Triangles and Approx-Triangles-With-Advice. The main issue is that
m might be smaller than the real value m, causing the running time to be higher than desired.
Therefore we would like to modify the algorithms so that if they detects a “violation” to the values
that they expect they abort.

The modified version of 1
3 -Approx-Triangles works as follows. After sampling the set of vertices

Sj in Step (5), the modified algorithm queries the degree of all the sampled vertices. For ` =
0, . . . , log n, denote by Sj,` the subset of vertices in Sj with degree in (2`−1, 2`]. For every vertex
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degree 2` there are at most 2m
2`

vertices of that degree. Therefore for every j ∈ [k′] and for every
` = 0, . . . , log n the expected number of vertices in Sj,` is

E[|Sj,`|] ≤ sj ·
2m

n · 2`
.

We modify 1
3 -Approx-Triangles so that if for some Sj,` it detects a discrepancy between |Sj,`| and

its expected value then it aborts, causing Approx-Triangles-With-Advice to abort as well. Namely,
1
3 -Approx-Triangles aborts if 2cm·m

n·2` ≥ β and |Sj,`| ≥ (1 + β)sj · 2cm·m
n·2` , or if 2cm·m

n·2` < β and |Sj,`| ≥
(1 + β)β · sj .

Similarly, let Sji,` be the set of vertices sampled in Step (4) of Approx-Triangles-With-Advice,
and denote by Sji,` the vertices v with d(v) ∈ (2`−1, 2`]. As before,

E[|Sji,`|] ≤ sji ·
2m

n · 2`
.

Therefore we modify Approx-Triangles-With-Advice to query the degree of every sampled vertex in
Step (4) and keep track of the sizes of Sji,` as more vertices are being sampled. Again, if at any
step of the loop in Step (4) the algorithm detects a discrepancy as described before, it aborts.

Finally, in order to ensure that 1
3 -Approx-Triangles and Approx-Triangles-With-Advice will not

perform more than
(

n

T 1/3 + min
{
m, m

3/2

T

})
· poly(log n, 1/ε) queries we can do as follows. If the

algorithms are invoked with values ∆ and m such that ∆ <
√
m, then instead of performing pair

queries, the algorithms simply query for all the neighbors of the two vertices in the pair. Observe
that we can always assume that the algorithms do not perform queries they can answer themselves.
That is, we can allow the algorithms to save all the information they obtained from past queries,
and assume they do not query for information they can deduce from their past queries. If in this
setting the algorithms detect more than 2 ·m edges, they abort.

We formalize the above discussion with the following definitions.

Definition 3.5.2 Let 1
3 -Approx-Triangles’ be a modified version of 1

3 -Approx-Triangles, which is de-
fined as follows.

• After sampling the set of vertices Sj in Step (5), the modified algorithm queries the degree of
all the sampled vertices, and for every ` = 0, . . . , log n, defines the set Sj,` to be the subset
of vertices in Sj with degree in (2`−1, 2`]. If 2cm·m

n·2` ≥ β and |Sj,`| ≥ (1 + β)sj · 2cm·m
n·2` , or if

2cm·m
n·2` < β and |Sj,`| ≥ (1 + β)β · sj then the algorithm aborts.

• If the algorithm is invoked with values ∆ and m such that ∆ <
√
m then instead of performing

pair queries, the algorithm queries for all the neighbors of the two vertices in the pair. If the
algorithm detects more than 2 ·m edges, then it aborts.

Definition 3.5.3 Let Approx-Triangles-With-Advice’ be modified version of Approx-Triangles-With-
Advice, where the modifications are defined as follows.

• Approx-Triangles-With-Advice’ invokes 1
3 -Approx-Triangles’, instead of invoking 1

3 -Approx-Triangles.

• As more vertices are being sampled for the set Sji in Step (4), the modified algorithm queries
the degree of all the sampled vertices, and for every ` = 0, . . . , log n, defines the set Sji,` to be
the subset of vertices in Sji with degree in (2`−1, 2`]. If 2cm·m

n·2` ≥ β and |Sji,`| ≥ (1 + β) · sji ·
2cm·m
n·2` , or if 2cm·m

n·2` < β and |Sji,`| ≥ (1 + β)β · sji then the algorithm aborts.
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• If the algorithm is invoked with values ∆ and m such that ∆ <
√
m then instead of performing

pair queries, the algorithm queries for all the neighbors of the two vertices in the pair. If the
algorithm detects more than 2 ·m edges, then it aborts.

Claim 3.5.4 For every m ≥ m
cm

Approx-Triangles-With-Advice’(G,∆,m, ε) aborts with probability

at most 1
n2 .

Proof: By Claim 3.5.1, for valuesm ≥ m
cm

, in each invocation, the procedure Approx-High-Triangles”

aborts with probability at most 1− 1
2n3 . Therefore during the entire run of Approx-Triangles-With-

Advice’ the procedure aborts with probability at most 1
2n2 .

Now consider the invocation of 1
3 -Approx-Triangles’. For every j and `, let χj,`1 , . . . , χj,`sj be

Bernoulli random variables such that χj,`i = 1 if and only if the ith sampled vertex in Sj has degree
in the range (2`−1, 2`]. First consider ` such that 2m

n·2` ≥ β. Since m ≥ m
cm

it follows that 2cm·m
n·2` ≥ β

and the probability the algorithm will abort is

Pr

[
1

sj

sj∑
i=1

χj,`i ≥ (1 + β)
2cm ·m
n · 2`

]
≤ Pr

[
1

sj

sj∑
i=1

χj,`i ≥ (1 + β)
2m

n · 2`

]
≤ exp

(
−β

2

3
· sj ·

2m

n · 2`

)
≤ exp

(
−β

2

3
· 2m

n · 2`
· n · µj
T
· 20 log n · (k + 1)

β3

)
≤ exp (−6 log n · (k + 1)) ≤ 1

2n3
.

Now consider ` such that 2m
n·2` < β. If 2cm·m

n·2` ≥ β then the algorithm aborts if |Sj,`| > (1 + β) · sj ·
2cm·m
n·2` ≥ (1 + β)β · sj . If 2m

n·2` < β then the algorithm aborts if |Sj,`| > (1 + β)β · sj . Therefore the
probability that the algorithm aborts is at most

Pr

[
1

sj

sj∑
i=1

χj,`i ≥ (1 + β)β

]
≤ exp

(
−β

2

2
· β · n · µj

T
· 20 log n · (k + 1)

β3

)
≤ exp (−5 log n · (k + 1)) ≤ 1

2n3
.

Since there are (k′ + 1) · (logm + 1) = O(log n) indices j ∈ [k′] and ` ∈ [logm], it follows that
1
3 -Approx-Triangles aborts with probability at most 1− 1

2n2 .

An almost identical analysis proves that the probability that Approx-Triangles-With-Advice’
aborts during the loop in Step (4) is at most 1

2n2 . Therefore, the probability that Approx-Triangles-
With-Advice’ aborts during its entire run is at most 1

n2 .

Lemma 3.5.5 For every ∆ and m, the query complexity of Approx-Triangles-With-Advice’(G,∆,m, ε)
is (

n

T 1/3
+ min

{
m,

m3/2

T

})
· poly(log n, 1/ε),

and the running time is (
n

T 1/3
+
m3/2

T

)
· poly(log n, 1/ε).
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Proof: It is clear that the running time of the algorithm is of the same order as the number of
queries performed by it. Therefore, in the following discussion we only analyze the query complexity.

We first consider the case that ∆ ≥
√
m, and start by analyzing the query complexity of

1
3 -Approx-Triangles’, invoked by Approx-Triangles-With-Advice’ in Step (1). Fix an index j ∈ [k′].
The query complexity of Steps (4) to (11) is as follows. In Step (5) the algorithm performs sj =
n·µj
T ·

20 logn(k+1)
β3 queries. By Corollary 3.5.3 for every sampled vertex v ∈ Sj the query complexity of

Approx-Triangles-Deg(v, j) is d(v)
√
m

µj
·poly(log n, 1/ε). For ` = 0, . . . , log n, denote by Sj,` the subset

of vertices in Sj with degree in (2`−1, 2`]. By the definition of 1
3 -Approx-Triangles’ (Definition 3.5.2),

the query complexity for all the sampled vertices in Sj is upper bounded by

logn∑
`

|Sj,`| ·
2` ·
√
m

µj
· poly(log n, 1/ε)

=
∑

`: 2m

n·2`
≥β

|Sj,`| ·
2` ·
√
m

µj
· poly(log n, 1/ε) +

∑
`: 2m

n·2`
<β

|Sj,`| ·
2` ·
√
m

µj
· poly(log n, 1/ε)

≤
∑

`: 2m

n·2`
≥β

(1 + β)sj ·
2m

n · 2`
· 2` ·

√
m

µj
· poly(log n, 1/ε) +

∑
`: 2m

n·2`
<β

(1 + β)sj · β · poly(log n, 1/ε)

≤ log n · n · µj
T
· 20 log n · (k + 1)

β3
· 2m

n · 2`
· 2` ·

√
m

µj
· poly(log n, 1/ε)

≤ m3/2

T
· poly(log n, 1/ε).

Therefore, for every j ∈ [k′] the expected query complexity of Steps (4) to (11) is upper bounded
by (

n · µj
T

+
m3/2

T

)
· poly(log n, 1/ε) .

Since by definition k′ = log(1+β)
c∆·(k+1)

β T 2/3
, for every j ∈ [k′] it holds that µj ≤ c∆·(k+1)

β T 2/3
.

Hence, we have that for every j ∈ [k′] the expected query complexity of Steps (4) to (11) is(
n

T 1/3
+
m3/2

T

)
· poly(log n, 1/ε).

Since there are at most k′ = O(log T ) = O(log n) indices j ∈ [k′], the above is also the running
time of Steps (3) to (11).

We now turn to analyze Steps (2) to (9) of Approx-Triangles-With-Advice’. By Corollary 3.5.3,

for every sampled vertex v, invoking Sample-Random-Triangle(v, ji) requires d(v)
√
m

µj
·poly(log n, 1/ε)

queries. Therefore, by a similar analysis to the above, for every j the number of queries performed

in Step (4) of the algorithm is at most m3/2

T · poly(log n, 1/ε).

For every sampled triangle (v, u, w)v, invoking Is-Small-And-Significant(u) and Is-Small-And-

Significant(w) requires (d(v)+d(w))·
√
m

T 2/3 · poly(log n, 1/ε) queries. Since the loop is repeated 20 logn
β3 =
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poly(1/ε) times, and Steps (7) to and (9) take a constant time, the query complexity and running
time of the entire algorithm are(

n

T 1/3
+
m3/2

T

)
· poly(log n, 1/ε).

Now consider the case that ∆ <
√
m, so that m ≤ m3/2

∆
. In this setting, pair queries are replaced

by querying for all the neighbors of the two vertices in the pair, and if at any point the algorithm
detects more than 2m edges then it aborts. Consider the vertices observed by the algorithm during
its run. These vertices can be classified into two types. Vertices that are uniformly sampled by
the algorithm among the set of all vertices, and vertices that are reached by a neighbor query.
Observe that a vertex could be of both types. It follows from the above analysis that at most
n

T 1/3 vertices are sampled directly, and it follows from the description of the modified version, that

at most 2m additional vertices are being observed through neighbor queries. Since the number
of degree queries is upper bounded by the number of vertices observed by the algorithm, and the
number of neighbor queries is upper bounded by 2 ·m, it follows that the query complexity in this

case is O
(

n

T 1/3 + 2m
)

.

Therefore, for every pair of values ∆ and m, the number of queries performed by the algorithm
is (

n

T 1/3
+ min

{
m,

m3/2

T

})
· poly(log n, 1/ε).

The running time is bounded as in the case that ∆ ≥
√
m.

Claim 3.5.6 If Approx-Triangles-With-Advice’ does not abort, then the following holds with proba-
bility 1− 1

log3 n
.

1. If ∆ is such that ∆
c∆
≤ ∆ ≤ ∆ and the algorithm does not abort, then the output ∆̂ of the

algorithm is such that (1− ε)∆(G) ≤ ∆̂ ≤ (1 + ε)∆(G).

2. For every ∆ and m, the output of the algorithm ∆̂ is such that ∆̂ ≤ (1 + ε)∆(G).

Proof: Observe that in the previous subsections, the assumption that m ≥ m
cm

was only used in the
proof of the claim regarding the running time of the procedure Approx-High-Triangles (Claim 3.3.7),
and not in any of the proofs regarding the correctness of the output of the algorithm. Therefore
the only affect on the correctness of the output could stem from the use of the modified procedure
Approx-High-Triangles” described in Definition 3.5.1. By Definition 3.5.1, the procedure operates
exactly as Approx-High-Triangles’, except that if for some vertex v it computes Γ̂hi such that Γ̂hi ≥
2(1 + δ)

√
m then it aborts, and consequently Approx-Triangles-With-Advice’ aborts. This implies

that if Approx-Triangles-With-Advice’ does not abort, then the removal of the assumption on m does
not affect the correctness of the estimation of |T (G)|. Therefore, if ∆

c∆
≤ ∆ ≤ ∆, then for any value

of m, if the algorithm does not abort, then it outputs ∆̂ such that (1− ε)∆(G)∆̂ ≤ (1 + ε)∆(G).

The assumption that ∆ ≤ ∆(G) is directly used only in Claims 3.2.1 and 3.3.12 and the
assumption that ∆ ≥ ∆(G)/c∆ is directly used only in Claim 3.3.13. Therefore, if we remove the
assumption on ∆, then the above claims no longer hold. If ∆ > ∆ then the number of triangles in
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TrS∗,S∗,S∗ and in TrI is no longer bounded by an order of β|T (G)|. Hence, ignoring these buckets
might lead to an underestimation of |T (G)|, but it may not cause an overestimation.

If ∆ < ∆
c∆

then there may be large significant buckets for which µj >
c∆·(k+1)·T 2/3

β . Since we

only let j run up to k′ = log(1+β)
c∆·(k+1)·T 2/3

β the algorithm does not estimate the sizes of these
buckets. This again could lead to an underestimation of |T (G)|, but not to an overestimation.
Hence ∆̂ ≤ (1 + ε)∆.

For values of ∆ and m such that ∆
c∆
≤ ∆ ≤ ∆ and m ≥ m

cm
, Assumption 2.1 holds. Therefore,

if the algorithm does not abort, then it returns ∆̂ such that (1 − ε)∆ ≤ ∆̂ ≤ (1 + ε)∆(G) with
probability at least 1− 1

log3 n
.

3.5.2 The search for ∆ and m: The Approx-Triangles algorithm

Algorithm 10 Approx-Triangles(G, ε)

1: Let q̂ ← 1.
2: While q̂ ≤ n2 do
3: For q = 1, 2, 4 . . . , q̂ do
4: For i = 0, 1, 2, 3, . . . , log(q2) do

5: Let ∆q,i = n3

q·2i , mq,i = max
{
q, n2

22i/3

}
and let pq,i = 〈∆q,i,mq,i〉.

6: Let ∆̂q,i ← Approx-Triangles-With-Advice’(G,∆q,i,mq,i, ε).
7: If Approx-Triangles-With-Advice’(G,∆q,i,mq,i, ε) aborted then
8: q̂ ← 2q̂.
9: Go to Step (3). . In this case we say that the algorithm skips.

10: If ∆̂ ≥ (1 + ε)∆ then
11: Return ∆̂.
12: Continue to the next pair. . In this case we say that the algorithm continues.

13: End for
14: End for
15: Let q̂ ← 2q̂.

16: End while

Theorem 3.4 Algorithm Approx-Triangles returns ∆̂ such that with probability at least 2/3,

(1− ε)∆(G) ≤ ∆̂ ≤ (1 + ε)∆(G).

The expected query complexity of Approx-Triangles is(
n

∆(G)1/3
+ min

{
m,

m3/2

∆(G)

})
· poly(log n, 1/ε) ,

and the expected running time is(
n

∆(G)1/3
+
m3/2

∆(G)

)
· poly(log n, 1/ε) .
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Moreover, for every k, the probability that the running and query complexity exceeds 2k times
their expected values is at most ( 1

log2 n
)k.

In what follows we prove Theorem 3.4, but we start by briefly explaining one aspect of the
algorithm which may seem redundant. Namely, a natural question is why does the algorithm have
both an outer loop over q̂ and an inner loop over q ≤ q̂, rather than just one loop over increasing
values of q. Indeed we can prove that once the algorithm considers a value q that is within a

constant factor of q = max
{

n
∆(G)1/3 ,min

{
m, m

3/2

∆(G)

}}
, then with high probability it will output

a good estimate of ∆(G), as desired. We can also prove that as long as q is significantly smaller
than q, then the probability that the algorithm outputs a bad estimate of ∆(G) is sufficiently
small. Furthermore, the accumulated query complexity and running time of the algorithm (over
all q = O(q)) is sufficiently small. However, once q “passes” q, which may occur with a small
probability, we do not know how to bound the probability that the algorithm terminates. Therefore,
we have an outer loop over increasing values of q̂, but for each such value, we “reconsider” all
values q ≤ q̂. This ensures that if we reach q̂ > q, we still call Approx-Triangles-With-Advice’ with
a “correct” setting of 〈∆,m〉, which corresponds to q = Θ(q). Hence, the probability that the
algorithm does not terminate after q̂ becomes larger than q (if this occurs), decreases exponentially
with the number of different settings of q̂.

We start by proving the following claim regarding the relationship between q and the pairs
〈∆q,mq〉. For the sake of brevity, in what follows let ∆ = ∆(G).

Claim 3.5.7 For every q and every 0 ≤ i ≤ log(q2), let ∆q,i and mq,i be as defined in Step (5) of
Approx-Triangles. For every 0 ≤ i ≤ log(q2),

max

 n

∆
1/3
q,i

,min

{
mq,i,

m
3/2
q,i

∆

} = q .

Proof: By the setting of ∆q,i in Approx-Triangles, for every 0 ≤ i ≤ log(q2), ∆q,i = n3

q·2i . Therefore,

n

∆
1/3
q,i

= (q · 2i)1/3 ≤ (q · q2)1/3 ≤ q . (70)

Therefore, in order to prove the claim it is sufficient to prove that for every i ∈ [log(q2)], it holds

that min

{
mq,i,

m
3/2
q,i

∆q,i

}
= q.

By the setting of mq,i in Approx-Triangles, for every i ∈ [log(q2)], mq,i = max
{
q, n2

22i/3

}
, and

there are two possibilities. First consider the case that q ≥ n2

22i/3 , so that mq,i = q. In this case,

2i ≥ n3

q3/2
, (71)

Implying that

m
3/2
q,i

∆q,i

=
q3/2

∆q,i

=
q3/2

n3

q·2i
=
q5/2

n3
· 2i ≥ q5/2

n3
· n

3

q3/2
= q . (72)
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Therefore,

min

{
mq,i,

m
3/2
q,i

∆q,i

}
= q, (73)

and together with Equation (70), the claim follows.

If q ≤ n2

22i/3 then mq,i = n2

22i/3 . In this case, the direction of the inequality in Equation (72) is
“flipped”, and we get

m
3/2
q,i

∆q,i

≤ q ≤ n2

22i/3
= mq,i . (74)

The above, together with the setting of ∆q,i implies

min

{
mq,i,

m
3/2
q,i

∆q,i

}
=
m

3/2
q,i

∆q,i

=

(
n2

22i/3

)3/2

n3

q·2i
= q . (75)

This completes the proof.

The following is a corollary of Lemma 3.5.5 and Claim 3.5.7.

Corollary 3.5.8 For every q and every 0 ≤ i ≤ log(q2), let ∆q,i and mq,i be as defined in Step (5)
of Approx-Triangles. The query complexity of Approx-Triangles-With-Advice’(G,∆q,i,mq,i, ε) is q ·

poly(log n, 1/ε), and the running time is max

(
n

∆
1/3
q,i

+
m

3/2
q,i

∆q,i

)
· poly(log n, 1/ε).

Definition 3.5.4 Let ∆̂ be the returned value from the invocation of Approx-Triangles-With-Advice’
in Step (6) of Approx-Triangles. If a value ∆̂ is returned, and is such that (1−ε)∆ ≤ ∆̂ ≤ (1+ε)∆,
then we say that ∆̂ is a good estimate, and otherwise we say that ∆̂ is a bad estimate.

Claim 3.5.9 For every pair 〈∆q,i,mq,i〉 the following holds:

1. If ∆ > ∆ then Approx-Triangles either skips or continues with probability at least 1− 1
log3 n

,

where “skips” and “continues” are as defined in Steps (9) and (12), respectively.

2. If ∆
2 < ∆ ≤ ∆ then Approx-Triangles returns a bad estimate with probability at most 1

log3 n
.

3. If ∆
c∆
≤ ∆ ≤ ∆

2 then there are two possibilities.

(a) If m ≥ m
cm

, then with probability at least 1 − 2
log3 n

, Approx-Triangles returns a good

estimate.

(b) Otherwise, with probability at least 1 − 1
log3 n

, Approx-Triangles either skips or returns

∆̂ which is a good estimate.

Proof: Let ∆̂ be the returned value of Approx-Triangles-With-Advice’(G,∆,m, ε).

1. Let ∆ be such that ∆ > ∆. By Item (2) in Claim 3.5.6, for every values of ∆ and m, it
holds that ∆̂ ≤ (1 + ε)∆ with probability at least 1− 1

log3 n
. Therefore, the probability that

∆̂ ≥ (1 + ε)∆ > (1 + ε)∆ is at most 1
log3 n

.
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2. If ∆
2 < ∆ ≤ ∆ then by Item (1) in Claim 3.5.6, if Approx-Triangles-With-Advice’ does not abort,

then ∆̂ is a good estimate with probability at least 1 − 1
log3 n

. Therefore Approx-Triangles

returns a bad estimate with probability at most 1
log3 n

.

3. (a) Let 〈∆,m〉 be a pair for which ∆
c∆
≤ ∆ ≤ ∆

2 and m ≥ m
cm

. Since m ≥ m
cm

, by Claim 3.5.4,

Approx-Triangles-With-Advice’ aborts with probability at most 1
2n3 . Since ∆

c∆
≤ ∆ ≤ ∆

2 ,
by Item (1) in Claim 3.5.6, Approx-Triangles-With-Advice’ returns a good estimate with
probability at least 1− 2

log3 n
. Therefore, with probability at least 1− 2

log3 n
,

∆̂ ≥ (1− ε)∆ ≥ 2(1− ε)∆ ≥ (1 + ε)∆,

and Approx-Triangles returns ∆̂ which is a good estimate.

(b) If ∆
c∆
≤ ∆ ≤ ∆

2 and m < m
cm

, then by Item (2) in Claim 3.5.6, Approx-Triangles-With-

Advice’ either aborts or it returns ∆̂ which is a good estimate with probability at least
1− 1

log3 n
. If ∆̂ is a good estimate then as before,

∆̂ ≥ (1− ε)∆ ≥ (1− ε) · 2∆ ≥ (1 + ε)∆,

and therefore Approx-Triangles returns ∆̂. Hence we get that if Approx-Triangles-With-
Advice’ does not abort then Approx-Triangles returns a good estimate with probability
at least 1− 1

log3 n
.

In order to complete the discussion we set c∆ = 4 and cm = 4 and prove the following claim.

Claim 3.5.10 Let q = max
{

n
∆1/3 ,min

{
m, m

3/2

∆

}}
. For q̂ such that q̂ < 2q, it holds that n3

q̂ > ∆
c∆

.

Proof: Since q = max
{

n
∆1/3 ,min

{
m, m

3/2

∆

}}
, then either q = n

∆1/3 or q = min
{
m, m

3/2

∆

}
. In the

first case ∆ = n3

q3 and

n3

q̂
>
n3

2q
≥ n3

2q3
≥ ∆

2
>

∆

c∆
.

In the second case, q = min
{
m, m

3/2

∆

}
implying that q ≤ m3/2

∆ . Hence,

n3

q̂
>
n3

2q
≥ n3

2m3/2/∆
≥ ∆

2
>

∆

c∆
.

Therefore, in either case the claim holds.

Proof of Theorem 3.4: Let q = max
{

n
∆(G)1/3 ,min

{
m, m

3/2

∆(G)

}}
, for every q̂ = 1, 2, 4, . . . , n2 let

Q′ = {1, 2, 4 . . . , q̂}, and for every q ∈ Q′ let pq,i be as defined in Step (5) of Approx-Triangles so

that pq,i =
〈
n3

q·2i ,max
{

n2

n2i/3 , q
}〉

. Let Pq = {pq,0, . . . , pq,log(q2)}.
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1. Consider q̂ such that q̂ < 2q. For every q ∈ Q′, q ≤ q̂ < 2q, and by Claim 3.5.10, n3

q > ∆
c∆

.

By the order of the pairs in Pq, for each pair 〈∆q,i,mq,i〉 in Pq, it holds that ∆q,i = n3

q·2i ≤
n3

q ,
and there are two possibilities:

(a) For all the pairs in Pq, ∆q,i ≥ ∆
c∆

. In this case, for every pair the probability that

Approx-Triangles-With-Advice’ returns a bad estimate is at most 1
log3 n

. Since for every

value of q there are at most 2 log n pairs in Pq, the probability that Approx-Triangles

returns a bad estimate for q̂ ≤ 2q is at most 2 logn
log3 n

.

(b) The second possibility is that there exist pairs in Pq such that ∆q,i <
∆
c∆

. For these
pairs we do not have a guarantee that Approx-Triangles returns a good estimate, but
we show that with high probability we will not reach them. Observe that the order of
the pairs in Pq implies a monotonic decreasing order on ∆q,i. Let pq,i∗ be the first pair
in Pq for which ∆q,i <

∆
c∆

. By the order of the pairs in Pq, if we set c∆ = 4, then it

holds that there exists a pair pq,j for some j < i∗ for which ∆
4 ≤ ∆q,j ≤ ∆

2 . By Item (3)
of Claim 3.5.9, for the pair pq,j , with probability at least 1 − 1

log3 n
, Approx-Triangles

either returns a good estimate or it skips, implying that all the following pairs in Pq are
skipped. Therefore the probability of returning a bad estimate is at most 1

log3 n
.

Therefore for every q̂ < 2q, Approx-Triangles returns a bad estimate with probability at most
2 logn
log3 n

= 1
log2 n

.

2. Now let 2q ≤ q̂ ≤ 4q. For q = q̂ it holds that 2q ≤ q ≤ 4q, and since ∆q,log(q2) ≤ ∆
8 , then there

exists a pair p∗ = pq,i∗ = 〈∆q,i∗ ,mq,i∗〉 in Pq such that ∆
4 ≤ ∆q,i∗ ≤ ∆

2 . By Equations (73)

and (75) in Claim 3.5.7, q = min

{
mq,i,

m
3/2
q,i

∆q,i

}
for every pair 〈∆q,i,mq,i〉 in Pq. If q = m3/2

∆

then
m

3/2
q,i∗

∆q,i∗
≥ min

{
mq,i∗ ,

m
3/2
q,i∗

∆q,i∗

}
= q ≥ 2q = 2 · m

3/2

∆
,

and if q = m then

mq,i∗ ≥ min

{
mq,i∗ ,

m
3/2
q,i∗

∆q,i∗

}
= q ≥ 2q = 2m.

It follows that for the pair pq,i∗ , mq,i∗ ≥ m
cm

. Hence, by Item (3a) in Claim 3.5.9, Approx-

Triangle returns ∆̂, which is a good estimate of ∆ with probability at least 1− 2
log3 n

.

3. Finally, consider q̂ such that q̂ > 4q. In this case we cannot bound the probability that
Approx-Triangles returns a bad estimate. However, since for every q̂ Approx-Triangles first
runs over all q’s such that q ≤ q̂, it holds by the previous two items that for every q̂ > 4q,
the probability for returning a good estimate is at least 1− 2

log2 n
.

It follows from Items (1) to (3) that Approx-Triangles returns a good estimate with probability at
least 1− 2 logn

log2 n
≥ 2

3 . Hence, the first part of the theorem holds.

By Corollary 3.5.8, for every q ≤ q, the expected query complexity of Approx-Triangles-With-
Advice’ is q · poly(log n, 1/ε) Therefore for every q̂ ≤ 4q the query complexity is bounded by
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O(q) · poly(log n, 1/ε). For every q̂ > 4q the probability that Approx-Triangles will reach q such
that q > 4q is at most 2

log2 n
. Therefore, the expected query complexity of Approx-Triangles is(
n

∆(G)1/3
+ min

{
m,

m3/2

∆(G)

})
· poly(log n, 1/ε).

Similarly, the expected running time is(
n

∆(G)1/3
+
m3/2

∆(G)

)
· poly(log n, 1/ε).

The probability that the query complexity and running time exceed 2k times their expected values
is at most ( 1

log2 n
)k.

4 A Lower Bound

In this section we present a lower bound on the number of queries necessary for estimating the
number of triangles in a graph. This lower bound matches our upper bound in terms of the
dependence on n, m and ∆(G), up to polylogarithmic factors in n and the dependence in 1/ε. In
what follows, when we refer to approximation algorithms for the number of triangles in a graph,
we mean multiplicative-approximation algorithms that output with high constant probability an
estimation ∆̂ such that ∆(G)/C ≤ ∆̂ ≤ C ·∆(G) for some predetermined approximation factor C.

We consider multiplicative-approximation algorithms that are allowed the following three types
of queries: Degree queries, pair queries and random new-neighbor queries. Degree queries and pair
queries are as defined in Section 2. A random new-neighbor query qi is a single vertex u and the
corresponding answer is a vertex v such that (u, v) ∈ E and the edge (u, v) is selected uniformly
at random among the edges incident to u that have not yet been observed by the algorithm. In
Corollary 4.1 we show that this implies a lower bound when the algorithm may perform (standard)
neighbor queries instead of random new-neighbor queries.

We first give a simple lower bound that depends on n and ∆(G).

Theorem 4.1 Any multiplicative-approximation algorithm for the number of triangles in a graph

must perform Ω
(

n
∆(G)1/3

)
queries, where the allowed queries are degree queries, pair queries and

random new-neighbor queries.

Proof: For every n and every 1 ≤ ∆ ≤
(
n
3

)
we next define a graph G1 and a family of graphs G2

for which the following holds. The graph G1 is the empty graph over n vertices. In G2, each graph
consists of a clique of size

⌊
∆1/3

⌋
and an independent set of size n −

⌊
∆1/3

⌋
. See Figure 4 for an

illustration. Within G2 the graphs differ only in the labeling of the vertices. By construction, G1

contains no triangles and each graph in G2 contains Θ(∆) triangles. Clearly, unless the algorithm
“hits” a vertex in the clique it cannot distinguish between the two cases. The probability of hitting
such a vertex in a graph selected uniformly at random from G2 is

⌊
∆1/3

⌋
/n. Thus, in order for this

event to occur with high constant probability, Ω
(

n
∆1/3

)
queries are necessary.

We next state our main theorem.
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n
∆1/3

n−∆1/3

Figure 4: An illustration of the two families.

Theorem 4.2 Any multiplicative-approximation algorithm for the number of triangles in a graph

must perform Ω
(

min
{
m3/2

∆(G) ,m
})

queries, where the allowed queries are degree queries, pair queries

and random new-neighbor queries.

For every n, every 1 ≤ m ≤
(
n
2

)
and every 1 ≤ ∆ ≤ min{

(
n
3

)
,m3/2} we define a graph G1 and a

family of graphs G2 for which the following holds. The graph G1 and all the graphs in G2 have n
vertices and m edges. For the graph G1, ∆(G1) = 0, and for every graph G ∈ G2, ∆(G) = Θ(∆).

We prove it is necessary to perform Ω
(

min
{
m3/2

∆ ,m
})

queries in order to distinguish with high

constant probability between G1 and a random graph in G2. For the sake of simplicity, in everything
that follows we assume that

√
m is even.

We prove that for values of ∆ such that ∆ < 1
4

√
m, at least Ω(m) queries are required, and for

values of ∆ such that ∆ ≥
√
m at least Ω

(
m3/2

∆

)
queries are required. We delay the discussion

on the former case to Subsection 4.4, and start with the case that ∆ ≥
√
m. Our construction of

G2 depends on the value of ∆ as a function of m. We show three different constructions for the
following ranges of ∆:

1. ∆ = m.

2. m < ∆ ≤ m3/2

8 .

3.
√
m ≤ ∆ ≤ m

4 .

We prove that for every ∆ as above, Ω(m
3/2

∆ ) queries are needed in order to distinguish between
the graph G1 and a random graph in G2.

We start by addressing the case that ∆ = m in Subsection 4.1, and deal with the case that

m < ∆ ≤ m3/2

8 in Subsection 4.2, and with the case that
√
m ≤ ∆ ≤ m

4 in Subsection 4.3.

Observe that by Proposition 2.2, for every graph G, it holds that ∆(G) ≤ m3/2. Hence, the
above ranges indeed cover all the possible values of ∆ as a function of m.

Before embarking on the proof for ∆ = m, we introduce the notion of a knowledge graph (as
defined previously in e.g., [GR02]), which will be used in all lower bound proofs. Let ALG be a
triangles approximation algorithm that performs Q queries, let qt denote its tth query and let at
denote the corresponding answer. Then ALG is a (possibly probabilistic) mapping from query-

answer histories π
def
= 〈(q1, a1), . . . , (qt, at)〉 to qt+1, for every t < Q, and to N for t = Q.
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We assume that the mapping determined by the algorithm is determined only on histories that
are consistent with the graph G1 or one of the graphs in G2. Any query-answer history π of length
t can be used to define a knowledge graph Gknπ at time t. Namely, the vertex set of Gknπ consists
of n vertices. For every new-neighbor query ui answered by vi for i ≤ t, the knowledge graph
contains the edge (ui, vi), and similarly for every pair query (uj , vj) that was answered by 1. In
addition, for every pair query (ui, vi) that is answered by 0, the knowledge graph maintains the
information that (ui, vi) is a non-edge. The above definition of the knowledge graph is a slight
abuse of the notation of a graph since Gknπ is a subgraph of the graph tested by the algorithm, but
it also contains additional information regarding queried pairs that are not edges. For a vertex u,
we denote its set of neighbors in the knowledge graph by Γknπ (u), and let dknπ (u) =

∣∣Γknπ (u)
∣∣. We

denote by Nkn
π (u) the set of vertices v such that (u, v) is either an edge or a non-edge in Gknπ .

4.1 A lower bound for ∆ = m

4.1.1 The lower-bound construction

The graph G1 has two components. The first component is a complete bipartite graph with
√
m

vertices on each side, i.e, K√m,
√
m, and the second component is an independent set of size n−2

√
m.

We denote by L the set of vertices `1, . . . , `√m on the left-hand side of the bipartite component and
by R the set of vertices r1, . . . , r√m on its right-hand side. The graphs in the family G2 have the
same basic structure with a few modifications. We first choose for each graph a perfect matching
MC between the two sides R and L and remove the edges in MC from the graph. We refer to the
removed matching as the “red matching” and its pairs as “crossing non-edges” or “red pairs”. Now,
we add two perfect matching from L to L and from R to R, denoted ML and MR respectively.
We refer to these matchings as the blue matchings and their edges as “non-crossing edges” or “blue
pairs”. Thus for each choice of three perfect matchings MC , ML and MR as defined above, we
have a corresponding graph in G2.

√
m n− 2

√
m

Figure 5: An illustration of the family G2 for ∆ = m.

4.1.2 Definition of the processes P1 and P2

In what follows we describe two random processes, P1 and P2, which interact with an arbitrary
algorithm ALG. The process P1 answers ALG’s queries consistently with G1. The process P2

answers ALG’s queries while constructing a uniformly selected random graph from G2. We assume
without loss of generality that ALG does not ask queries whose answers can be derived from its
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knowledge graph, since such queries give it no new information. For example, ALG does not ask
a pair query about a pair of vertices that are already known to be connected by an edge due to a
neighbor query. Also, we assume ALG knows in advance which vertices belong to L and which to
to R, so that ALG need not query vertices in the independent set. Since the graphs in G2 differ
from G1 only in the edges of the subgraph induced by L ∪ R, we think of G1 and graphs in G2 as
consisting only of this subgraph. Finally, since in our constructions all the vertices in L ∪ R have
the same degree of

√
m, we assume that no degree queries are performed.

For every, Q, every t ≤ Q and every query-answer history π of length t − 1 the process P1

answers the tth query of the algorithm consistently with G1. Namely:

• For a pair query qt = (u, v) if the pair (u, v) is a crossing pair in G1, then the process replies
1, and otherwise it replies 0.

• For a random new-neighbor query qt = u the process answers with a random neighbor of u that
has yet been observed by the algorithm. That is, for every vertex v such that v ∈ Γ(u)\Γknπ (u)
the process replies at = v with probability 1/(

√
m− dknπ (u)).

The process P2 is defined as follows:

• For a query-answer history π we denote by G2(π) ⊂ G2 the subset of graphs in G2 that are
consistent with π.

• For every t ≤ Q and every query-answer history π of length t− 1, the process P2 answers the
tth query as follows.

1. If the tth query is a pair query qt = (u, v), then the answer at is selected as follows. We
let at = 1 with probability

|G2(π ◦ (qt, 1))|
|G2(π)|

,

and let at = 0 with probability
|G2(π ◦ (qt, 0))|
|G2(π)|

,

where by ◦ we denote concatenation.

2. If the tth query is a random new-neighbor query qt = ut, then for every vertex v ∈ V such
that the pair (ut, v) is not an edge in Gknπ , the process answers at = v with probability

|G2(π ◦ (qt, v))|
|G2(π)|

· 1√
m− dknπ (ut)

.

• After all queries are answered (i.e., after Q queries), uniformly choose a random graph G
from G2(π).

For a query-answer history π of length Q we denote by π≤t the length t prefix of π and by π≥t

the Q− t+ 1 suffix of π.

Lemma 4.1.1 For every algorithm ALG, the process P2, when interacting with ALG, answers
ALG’s queries according to a uniformly generated graph G in G2.
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Proof: For a specific algorithm ALG and a fixed setting r of its random coins, we denote by
ALGr the corresponding deterministic (possibly adaptive) algorithm. Consider a specific graph
G ∈ G2, and let ΠQ(ALGr, G) denote all the query-answer history of length Q that are consistent
with the algorithm ALGr and G. Since ALGr and G are fixed throughout the proof, we shall use
the shorthand ΠQ for ΠQ(ALGr, G). For any π ∈ ΠQ, let the tth query in π be denoted by qt(π)
and the tth answer by at(π). The probability that G is generated by an interaction of length Q
between ALGr and the process P2 is

∑
π∈ΠQ

PrP2,ALGr [π] · 1

|G2(π)|
=
∑
π∈ΠQ

Q∏
t=1

PrP2 [at(π) |π≤t−1, qt(π)] · 1

|G2(π)|
. (76)

Consider first a query-answer history π ∈ ΠQ such that π= ((q1, a1), . . . , (qt, at)) contains only
pair queries. For every pair query qt there is only one possible answer that is consistent with G.
We denote this answer by aG(qt). The probability that π is generated by the interaction between
ALGr and the process P2 is

PrP2 [π] =

Q∏
t=1

PrP2 [aG(qt) |π≤t−1, qt]

=

∣∣G2

(
(q1, aG(q1))

)∣∣
|G2|

·
∣∣G2

(
(q1, aG(q1)), (q2, aG(q2))

)∣∣∣∣G2

(
(q1, aG(q1))

)∣∣ ·
. . .
·
∣∣G2(π≤Q)

∣∣
|G2(π≤Q−1)|

. (77)

We got a telescopic product that leaves us with

PrP2,ALGr [π] =

∣∣G2(π≤Q)
∣∣

|G2|
=
|G2(π)|
|G2|

.

Now consider a query-answer history π that consists also of random new-neighbor queries. If
the tth query is a random new-neighbor query qt = u, then the corresponding answer at is some
vertex v in ΓG(u) \Γkn

π≤t−1(u). Recall that by the definition of the processes, given the prefix π≤t−1

and the query qt, the probability that the process P2 replied with v is

PrP2

[
v |π≤t−1, qt

]
=
|G2(π≤t−1 ◦ (qt, v))|
|G2(π≤t−1)|

· 1
√
m− dkn

π≤t−1(u)
.

Therefore, the expression for the probability PrP2,ALGr [π] looks similar to the one in Equa-
tion (77), except that for queries qt that are random new-neighbor queries there is an additional
multiplicative factor of 1/(

√
m − dkn

π≤t−1(u)). As in Equation (77) all the terms will cancel each

other except for the 1/(
√
m− dkn

π≤t−1(u)) terms in each random new-neighbor query and the term
|G2(π)|
|G2| . Hence, for every query-answer history π of length Q we define the following functions:

αt(π) =

{
1 if qt(π) is a pair query

1/
(√
m− dkn

π≤t−1(u)
)

if qt(π) = u is a random new-neighbor query
,

and

α(π) =

Q∏
t=1

αt(π).
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It follows from the above discussion that

PrP2,ALGr [π] =

Q∏
t=1

PrP2 [at |π≤t−1, qt] ·
|G2(π)|
|G2|

= α(π) · |G2(π)|
|G2|

.

By Equation (76), the probability that G is generated by ALGr and P2 is∑
π∈ΠQ

PrP2,ALGr [π] · 1

|G2(π)|
=
∑
π∈ΠQ

α(π) · |G2(π)|
|G2|

· 1

|G2(π)|
=

1

|G2|
·
∑
π∈ΠQ

α(π) . (78)

To conclude the proof we show that ∑
π∈ΠQ

α(π) = 1 , (79)

implying that the probability that G is generated is 1/|G2|.
We prove the above by induction on the length ` of the history π. Observe that since ALGr

is deterministic, for any query-answer history π of length t − 1, its next query, qt, is uniquely
determined. This implies that for every `, all query-answer histories in Π` start with the same
query q1, and that if a subset of histories in Π` agree on a common prefix of queries and answers,
then they also agree on the next query.

For the base of the induction, ` = 1, let π be a query-answer history of length 1. If q1(π) = q1

is a pair query, then α(π) = α1(π) = 1. Since there is only one answer to q1 that is consistent with
the graph G, it holds that |Π1| = 1. Hence, we get∑

π∈Π1

α(π) =
∑

π=(q1,aG(q1))

α1(π) = 1.

If q1 = u is a random new-neighbor query, then there are
√
m answers that are consistent with

the graph G, and every answer is selected with probability 1/(
√
m− dkn

π≤t−1) = 1/
√
m. Therefore,

Π1 = {(q1, v) |v ∈ ΓG(u)} and ∑
π∈Π1

α(π) =
∑

v∈ΓG(u)

1√
m

= 1.

This concludes the proof for the base of the induction, and we turn to the induction step.

Assume that Equation (79) holds for query-answer histories of length `−1 where 1 ≤ `−1 < Q,
and consider histories of length ` ≤ Q. We partition the set Π`−1 into two subsets as follows. For
a query-answer history π′ ∈ Π`−1, let q(π′) = ALGr(π

′) denote the query asked by ALGr given the
query-answer history π′. The subset Π`−1

pq contains those histories π′ ∈ Π`−1 for which the query

q(π′) is a pair query on some pair (u, v) and the subset Π`−1
nq contains those histories π′ ∈ Π`−1 for

which the query q(π′) is a random new-neighbor query on some vertex u.

Observe that for each π′ ∈ Π`−1
pq there is one possible answer to q(π′) that is consistent with G,

denoted aG(q(π′)). It follows that for each π′ ∈ Π`−1
pq there is a single query-answer history π ∈ Π`

such that π≤`−1 = π′, namely, π = π′ ◦ (q(π′), aG(q(π′))), and α`(π) = 1. For each π′ ∈ Π`−1
nq

there are
√
m − dknπ′ (q(π′)) possible answers that are consistent with G, one for each neighbor of

q(π′) that is not in Γknπ′ (q(π
′)). It follows that for each π′ ∈ Π`−1

nq there are
√
m− dknπ′ (q(π′)) query-

answer histories π ∈ Π` such that π≤`−1 = π′. Each of them is of the form π = π′ ◦ (q(π′), v) for
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v ∈ ΓG(q(π′)) \ Γknπ′ (q(π
′)), and for each α`(π) = 1/(

√
m− dknπ′ (q(π′))). Therefore,∑

π∈Π`

α(π) =
∑

π′∈Π`−1
pq

α(π′) · α`
(
π′ ◦ (q(π′), aG(q(π′)))

)
+

∑
π′∈Π`−1

nq

α(π′) ·
∑

v∈ΓG(q(π′))\Γkn
π′ (q(π

′))

α`
(
π′ ◦ (q(π′), v))

)
=

∑
π′∈Π`−1

pq

α(π′) +
∑

π′∈Π`−1
nq

α(π′) ·
∑

v∈ΓG(q(π′))\Γkn
π′ (q(π

′))

1
√
m− dknπ′ (q(π′))

=
∑

π′∈Π`−1

α(π′) = 1 (80)

where in the last equality we used the induction hypothesis. This concludes the proof that
Equation (79) holds for all query-answer histories π of length at most Q. Combining Equation (79)
with Equation (78) completes the proof of the lemma.

For a fixed algorithm ALG that performs Q queries, and for b ∈ {1, 2}, let DbALG denote the
distribution on query-answers histories of length Q induced by the interaction between ALG and

Pb. We shall show that for every algorithm ALG that performs at most Q = m3/2

100∆ queries, the
statistical distance between DALG

1 and DALG
2 , denoted d

(
DALG

1 ,DALG
2

)
, is at most 1

3 . This will
imply that the lower bound stated in Theorem 4.2 holds for the case that ∆(G) = m. In order to
obtain this bound we introduce the notion of a query-answer witness pair, defined next.

Definition 4.1.1 We say that ALG has detected a query-answer witness pair in three cases:

1. If qt is a pair query for a crossing pair (ut, vt) ∈ L×R and at = 0.

2. If qt is a pair query for a non-crossing pair (ut, vt) ∈ (L× L) ∪ (R×R) and at = 1.

3. If qt = ut is a random new-neighbor query and at = v for some v such that (ut, v) is a
non-crossing pair.

We note that the source of the difference between DALG
1 and DALG

2 is not only due to the
probability that the query-answer history contains a witness pair (which is 0 under DALG

1 and
non-0 under DALG

2 ). There is also a difference in the distribution over answers to random new
neighbor queries when the answers do not result in witness pairs (in particular when we condition
on the query-answer history prior to the tth query). However, the analysis of witness pairs serves
us also in bounding the contribution to the distance due to random new neighbor queries that do
not result in a witness pairs.

Let w be a “witness function”, such that for a pair query qt on a crossing pair, w(qt) = 0, and
for a non-crossing pair, w(qt) = 1. The probability that ALG detects a witness pair when qt is a
pair query (ut, vt) and π is a query-answer history of length t− 1, is

PrP2 [w(qt) |π] =
|G2 (π ◦ (qt, w(qt)))|

|G2 (π)|
≤ |G2 (π ◦ (qt, w(qt)))|
|G2(π ◦ (qt, w(qt)))|

.

Therefore, to bound the probability that the algorithm observes a witness pair it is sufficient to
bound the ratio between the number of graphs in G2 (π ◦ (q, w(qt))) and the number of graphs in
G2(π ◦ (q, w(qt) )). We do this by introducing an auxiliary graph, which is defined next.
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4.1.3 The auxiliary graph for ∆ = m

For every t ≤ Q, every query-answer history π of length t−1 for which π is consistent with G1 (that
is, no witness pair has yet been detected), and every pair (u, v), we consider a bipartite auxiliary
graph Aπ,(u,v). On one side of Aπ,(u,v) we have a node for every graph in G2(π) for which the pair
(u, v) is a witness pair. We refer to these nodes as witness graphs. On the other side of the auxiliary
graph, we place a node for every graph in G2(π) for which the pair is not a witness. We refer
to these nodes as non-witness graphs. We put an edge in the auxiliary graph between a witness
graph W and a non-witness graph W if the pair (u, v) is a crossing (non-crossing) pair and the two
graphs are identical except that their red (blue) matchings differ on exactly two pairs – (u, v) and
one additional pair. In other words, W can be obtained from W be performing a switch operation,
as defined next.

Definition 4.1.2 We define a switch between pairs in a matching in the following manner. Let
(u, v) and (u′, v′) be two matched pairs in a matching M . A switch between (u, v) and (u′, v′)
means removing the edges (u, v) and (u′, v′) from M and adding to it the edges (u, v′) and (u′, v).

Note that the switch process maintains the cardinality of the matching. We denote by dw(Aπ,(u,v))
the minimal degree of any witness graph in Aπ,(u,v), and by dnw(Aπ,(u,v)) the maximal degree of the
non-witness graphs. See Figure 6 for an illustration.

witness
graphs

dw

dw

dw

non-witness
graphs

(a) The auxiliary graph with witness nodes on
the left and non-witness nodes on the right.

u v

u′ v′

A witness graph W

edge in
Aπ,(u,v)

u v

u′ v′

W – A neighbor of W

(b) An illustration of two neighbors in the auxiliary
graph for ∆ = m.

Figure 6

Lemma 4.1.2 Let ∆ = m and Q = m3/2

100∆ . For every t ≤ Q, every query-answer history π of length
t− 1 such that π is consistent with G1 and every pair (u, v),

dnw(Aπ,(u,v))

dw(Aπ,(u,v))
≤ 2√

m
=

2∆

m3/2
.
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Proof: Recall that the graphs in G2 are as defined in Subsection 4.1.1 and illustrated in Figure 5.
In the following we consider crossing pairs, as the proof for non-crossing pairs is almost identical.
Recall that a crossing pair is a pair (u, v) such that u ∈ L and v ∈ R or vise versa. A witness graph
W with respect to the pair (u, v) is a graph in which (u, v) is a red pair, i.e., (u, v) ∈ MC . There
is an edge from W to every non-witness graph W ∈ G2(π) such that MC(W ) and MC(W ) differ
exactly on (u, v) and one additional edge.

Every red pair (u′, v′) ∈MC(W ) creates a potential non-witness graph W (u′,v′) when switched
with (u, v) (as defined in Definition 4.1.2). However, not all of the these non-witness graphs are in
G2(π). If u′ is a neighbor of v in the knowledge graph Gknπ , i.e., u′ ∈ Γknπ (v), then W (u′,v′) is not

consistent with the knowledge graph, and therefore W (u′,v′) /∈ G2(π). This is also the case for a

pair (u′, v′) such that v′ ∈ Γknπ (u). Therefore, only pairs (u′, v′) ∈ MC such that u′ /∈ Γknπ (v) and
v′ /∈ Γknπ (u) produce a non-witness graph W (u′,v′) ∈ G2(π) when switched with (u, v). We refer to

these pairs as consistent pairs. Since t ≤
√
m

100 , both u and v each have at most m
100 neighbors in the

knowledge graph, implying that out of the
√
m− 1 potential pairs, the number of consistent pairs

is at least
√
m− 1− dknπ (u)− dknπ (v) ≥

√
m− 1− 2 ·

√
m

100
≥ 1

2

√
m.

Therefore, the degree of every witness graph W ∈ Aπ,(u,v) is at least 1
2

√
m, implying that

dw(Aπ,(u,v)) ≥ 1
2

√
m.

In order to prove that dnw(Aπ,(u,v)) = 1, consider a non-witness graph W . Since W is a non-
witness graph, the pair (u, v) is not a red pair. This implies that u is matched to some vertex
v′ ∈ R, and v is matched to some vertex u′ ∈ L. That is, (u, v′), (v, u′) ∈MC . By the construction
of the edges in the auxiliary graph, every neighbor W of W can be obtained by a single switch
between two red pairs in the red matching. The only possibility to switch two pairs in MC(W )
and obtain a matching in which (u, v) is a red pair is to switch the pairs (u, v′) and (v, u′). Hence,
every non-witness graph W has at most one neighbor.

We showed that dw(Aπ,(u,v)) ≥ 1
2

√
m and that dnw(Aπ,(u,v)) ≤ 1, implying

dnw(Aπ,(u,v))

dw(Aπ,(u,v))
≤ 2√

m
=

2∆

m3/2
,

and the proof is complete.

4.1.4 Statistical distance

For a query-answer history π of length t−1 and a query qt, let Ans(π, qt) denote the set of possible
answers to the query qt that are consistent with π. Namely, if qt is a pair query (for a pair that
does not belong to the knowledge graph Gknπ ), then Ans(π, qt) = {0, 1}, and if qt is a random
new-neighbor query, then Ans(π, qt) consists of all vertices except those in Nkn

π .

Lemma 4.1.3 Let ∆ = m and Q = m3/2

100∆ . For every t ≤ Q, every query-answer history π of length
t− 1 such that π is consistent with G1 and for every query qt:∑

a∈Ans(π,qt)

∣∣∣PrP1 [a |π, qt]− PrP2 [a |π, qt]
∣∣∣ ≤ 12√

m
=

12∆

m3/2
.
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Proof: We prove the lemma separately for each type of query.

1. We start with a crossing pair query (ut, vt). In this case the witnesses are red pairs. Namely,
our witness graphs for this case are all the graphs in G2(π◦(qt, 0)), and the non-witness graphs
are all the graphs in G2(π ◦ (qt, 1)). By the construction of the auxiliary graph

|G2 (π ◦ (qt, 0))| · dw(Aπ,(u,v)) ≤ |G2 (π ◦ (qt, 1))| · dnw(Aπ,(u,v)).

This, together with Lemma 4.1.2, implies

|G2(π ◦ (qt, 0))|
|G2(π)|

≤ |G2(π ◦ (qt, 0))|
|G2(π ◦ (qt, 1))|

≤
dnw(Aπ,(u,v))

dw(Aπ,(u,v))
=

2√
m

=
2∆

m3/2
.

For a pair query qt, the set of possible answers Ans(π, qt) is {0, 1}. Therefore,∑
a∈{0,1}

∣∣∣PrP1 [a |π, qt]− PrP2 [a |π, qt]
∣∣∣

=
∣∣∣PrP1 [0 |π, qt]− PrP2 [0 |π, qt]

∣∣∣+
∣∣∣PrP1 [1 |π, qt]− PrP2 [1 |π, qt]

∣∣∣
=

2∆

m3/2
+ 1−

(
1− 2∆

m3/2

)
=

4∆

m3/2
=

4√
m
. (81)

2. For a non-crossing pair query qt = (u, v) our witness graphs are graphs that contain qt as a
blue pair, i.e., graphs from G2(π, (qt, 1)), and our non-witness graphs are graphs in which no
blue pair had been queried, i.e., graphs from G2(π, (qt, 0)). From Lemma 4.1.2 we get that
for a non-crossing pair query qt:

|G2 (π ◦ (qt, 1))|
|G2(π)|

≤ |G2 (π ◦ (qt, 1))|
|G2 (π ◦ (qt, 0))|

≤
dnw(Aπ,(u,v))

dw(Aπ,(u,v))
=

2∆

m3/2
=

2√
m
.

Therefore, ∑
a∈{0,1}

∣∣∣PrP1 [a |π, qt]− PrP2 [a |π, qt]
∣∣∣

=
∣∣∣PrP1 [0 |π, qt]− PrP2 [0 |π, qt]

∣∣∣+
∣∣∣PrP1 [1 |π, qt]− PrP2 [1 |π, qt]

∣∣∣
= 1−

(
1− 2∆

m3/2

)
+

2∆

m3/2
=

4∆

m3/2
=

4√
m
. (82)

3. For a new-neighbor query qt = ut, the set of possible answers Ans(π, qt) is the set of all the
vertices in the graph. Therefore,∑

a∈Ans(π,qt)

∣∣∣PrP1 [a |π, qt]− PrP2 [a |π, qt]
∣∣∣

=
∑
v∈R

∣∣∣PrP1 [v |π, qt]− PrP2 [v |π, qt]
∣∣∣+
∑
v∈L

∣∣∣PrP1 [v |π, qt]− PrP2 [v |π, qt]
∣∣∣ .
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Recall that for a vertex v ∈ Γknπ (u), PrP1 [v |π, qt] = PrP2 [v |π, qt] = 0. Therefore, it suffices to
consider only vertices v such that v /∈ Γknπ (u). Assume without loss of generality that u ∈ L,
and consider a vertex v ∈ R, v /∈ Γknπ (u). Since for every v ∈ R we have that (ut, v) ∈ E(G1),
by the definition of P1,

PrP1 [v |π, qt] =
1√

m− dknπ (ut)
. (83)

Now consider the process P2. By its definition,

PrP2 [v |π, qt] =
G2 (π ◦ (qt, v))

G2(π)
· 1√

m− dknπ (u)

=
G2 (π ◦ ((u, v), 1))

G2(π)
· 1√

m− dknπ (u)

=

(
1− G2 (π ◦ ((u, v), 0))

G2(π)

)
· 1√

m− dknπ (u)
.

By the first item in the proof, for any crossing pair qt = (u, v),

G2(π ◦ (qt, 0))

G2(π)
=

4∆

m3/2
=

4√
m
,

and it follows that

PrP2 [v |π, qt] =

(
1− 4∆

m3/2

)
· 1√

m− dknπ (u)
. (84)

By Equations (83) and (84), we get that for every v ∈ R such that v /∈ Γknπ (u),∣∣∣PrP1 [v |π, qt]− PrP2 [v |π, qt]
∣∣∣ =

4∆/m3/2

√
m− dknπ (u)

. (85)

Therefore,∑
v∈R

∣∣∣PrP1 [v |π, qt]− PrP2 [v |π, qt]
∣∣∣ =

∑
v∈R,v/∈Γknπ (u)

∣∣∣PrP1 [v |π, qt]− PrP2 [v |π, qt]
∣∣∣

=
(√

m− dknπ (u)
)
· 4∆/m3/2

√
m− dknπ (u)

=
4∆

m3/2
=

4√
m
. (86)

Now consider a vertex v ∈ L. Observe that for every v ∈ L, it holds that v /∈ Γknπ (u) since
otherwise π is not consistent with G1. For the same reason,

PrP1 [v |π, qt] = 0 . (87)

As for P2, as before,

PrP2 [v |π, qt] =
G2(π, (ut, v))

G2(π)
· 1√

m− dknπ (ut)
.
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By the second item of the claim, since for every v ∈ L, (ut, v) is a non-crossing pair, we have
that

|G2(π, (ut, v))|
|G2(π)|

=
4∆

m3/2
=

4√
m
. (88)

Combining Equations (87) and (88) we get that for every v ∈ L∣∣∣PrP1 [v |π, qt]− PrP2 [v |π, qt]
∣∣∣ =

4∆/m3/2

√
m− dknπ (u)

.

Since Q = m3/2

100∆ =
√
m

100 , for every t ≤ Q, dknπ (u) < 1
2

√
m, and it follows that

√
m−1√

m−dkn(u)
is

bounded by 2. Hence,∑
v∈L

∣∣∣PrP1 [v |π, qt]− PrP2 [v |π, qt]
∣∣∣ = (

√
m− 1) · 4∆/m3/2

√
m− dknπ (u)

=
8∆

m3/2
=

8√
m
. (89)

By Equations (86) and (89) we get∑
v∈R

∣∣∣PrP1 [v |π, qt]− PrP2 [v |π, qt]
∣∣∣+
∑
v∈L

∣∣∣PrP1 [v |π, qt]− PrP2 [v |π, qt]
∣∣∣

=
12∆

m3/2
=

12√
m
. (90)

This completes the proof.

Recall that DALG
b , b ∈ {1, 2}, denotes the distribution on query-answer histories of length Q,

induced by the interaction of ALG and Pb. We will show that the two distributions are indistin-
guishable for Q that is sufficiently small.

Lemma 4.1.4 Let ∆ = m. For every algorithm ALG that asks at most Q = m3/2

100∆ queries, the
statistical distance between DALG

1 and DALG
2 is at most 1

3 .

Proof: Consider the following hybrid distribution. Let DALG
1,t be the distribution over query-

answer histories of length Q, where in the length t prefix ALG is answered by the process P1 and
in the length Q − t suffix ALG is answered by the process P2. Observe that DALG

1,Q = DALG
1 and

that DALG
1,0 = DALG

2 . Let π = (π1, π2, . . . , π`) denote a query-answer history of length `. By the
triangle inequality

d(DALG
1 ,DALG

2 ) ≤
Q−1∑
t=0

d(DALG
1,t+1,DALG

1,t ) .

It thus remains to bound d(DALG
1,t+1,DALG

1,t ) = 1
2

∑
π

∣∣∣PrDALG
1,t+1

[π] − PrDALG
1,t

[π]
∣∣∣ for every 0 ≤ t ≤

Q− 1. Let Q denote the set of all possible queries.
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∑
π

∣∣∣PrDALG
1,t+1

[π]− PrDALG
1,t

[π]
∣∣∣

=
∑

π1,...,πt−1

PrP1,ALG[π1, . . . , πt−1] ·
∑
q∈Q

PrALG[q |π1, . . . , πt−1]

·
∑

a∈Ans((π1,...,πt−1),q)

∣∣∣PrP1 [a |π1, . . . , πt−1, q]− PrP2 [a |π1, . . . , πt−1, q]
∣∣∣

·
∑

πt+1,...,πQ

PrP2,ALG[πt+1, . . . , πQ |π1, . . . , πt−1, (q, a)] .

By Lemma 4.1.3, for every 1 ≤ t ≤ Q− 1, and every π1, . . . , πt−1 and q,∑
a∈Ans((π1,...,πt−1),q)

∣∣∣PrP1 [a |π1, . . . , πt−1, q]− PrP2 [a |π1, . . . , πt−1, q]
∣∣∣ ≤ 12∆

m3/2
.

We also have that for every pair (q, a),∑
πt+1,...,πQ

PrP2,ALG[πt+1, . . . , πQ |π1, . . . , πt−1, (q, a)] = 1 .

Therefore,∑
π

∣∣∣PrDALG
1,t+1

[π]− PrDALG
1,t

[π]
∣∣∣

≤
∑

π1,...,πt−1

PrP1,ALG[π1, . . . , πt−1]
∑
q∈Q

PrALG[q |π1, . . . , πt−1] · 12∆

m3/2
=

12∆

m3/2
.

Therefore, for Q =
√
m

100

d(DALG
1 ,DALG

2 ) =
1

2

∑
π

Q−1∑
t=1

∣∣∣PrDALG
1,t+1

[π]− PrDALG
1,t

[π]
∣∣∣ ≤ 1

2
·Q · 12∆

m3/2
≤ 1

3
,

and the proof is complete.

In the next subsection we turn to prove the theorem for the cases where m < ∆ ≤ m3/2

8 , and for
the case where

√
m ≤ ∆ ≤ m

4 . We start with the former case. The proof will follow the building
blocks of the proof for ∆ =

√
m, where the only difference is in the description of the auxiliary

graph Aπ,(u,v) and in the proof that
dnw(Aπ,(u,v))

dw(Aπ,(u,v))
≤ 2∆

m3/2 = 2r√
m

.

4.2 A lower bound for m < ∆ < m3/2

Let ∆ = r ·m for an integer r such that 1 < r ≤ 1
8

√
m. It is sufficient for our needs to consider only

values of ∆ for which r is an integer. The proof of the lower bound for this case is a fairly simple
extension of the proof for the case of ∆ = m, that is, r = 1. We next describe the modifications
we make in the construction of G2.

70



4.2.1 The lower-bound construction

Let G1 be as defined in Subsection 4.1.1. The construction of G2 for ∆ = r · m can be thought
of as repeating the construction of G2 for ∆ = m (as described in Subsection 4.1.1) r times. We
again start with a complete bipartite graph K√m,

√
m and an independent set of size n− 2

√
m. For

each graph G ∈ G2 we select r perfect matchings between the two sides R and L and remove these
edges from the graph. We denote the r perfect matchings by MC

1 , . . . ,M
C
r and refer to them as the

red matchings. We require that each two perfect matchings MC
i and MC

j do not have any shared

edges. That is, for every i and for every j, for every (u, v) ∈ MC
i it holds that (u, v) /∈ MC

j . In
order to maintain the degrees of the vertices, we next select r perfect matchings for each side of the
bipartite graph (L to L and R to R). We denote these matchings by MR

1 , ...,M
R
r and ML

1 , ...,M
L
r

respectively. Again we require that no two matchings share an edge. We refer to these matchings
as the blue matchings and their edges as blue pairs. Each such choice of 3r matchings defines a
graph in G2.

4.2.2 The processes P1 and P2

The definition of the processes P1 and P2 is the same as in Subsection 4.1.2 (using the modified
definition of G2), and Lemma 4.1.1 holds here as well.

4.2.3 The auxiliary graph

As before, for every t ≤ Q, every query-answer history π of length t−1 such that π is consistent with
G1 and every pair (u, v), we define a bipartite auxiliary graph Aπ,(u,v), such that on one side there
is a node for every witness graph W ∈ G2(π), and on the other side a node for every non-witness
graph W ∈ G2(π). The witness graphs for this case are graphs in which (u, v) is a red (blue) edge
in one of the red (blue) matchings. If (u, v) is a crossing pair, then for every witness graph W ,
(u, v) ∈ MC

i (W ) for some 1 ≤ i ≤ r. If (u, v) is a non-crossing pair, then for every witness graph
W , (u, v) ∈ ML

i (W ) or (u, v) ∈ ML
i (W ). There is an edge from W to every graph W such that

the matching that contains (u, v) in W and the corresponding matching in W differ on exactly two
pairs – (u, v) and one additional pair. For example, if (u, v) ∈ MC

i (W ), there is an edge from W
to every graph W such that MC

i (W ) and MC
i (W ) differ on exactly (u, v) and one additional pair.

Lemma 4.2.1 Let ∆ = r ·m for an integer r such that 1 < r ≤
√
m
8 and let Q = m3/2

100∆ . For every
t ≤ Q, every query-answer history π of length t − 1 such that π is consistent with G1 and every
pair (u, v),

dnw(Aπ,(u,v))

dw(Aπ,(u,v))
≤ 2∆

m3/2
=

2r√
m
.

Proof: We again analyze the case in which the pair is a crossing pair (u, v), as the proof for a
non-crossing pair is almost identical. We first consider the minimal degree of the witness graphs in
Aπ,(u,v). Let MC

i be the matching to which (u, v) belongs. As before, only pairs (u′, v′) ∈MC
i such

that u′ /∈ Γknπ (u), v′ /∈ Γknπ (v) result in a non-witness graph W ∈ G2(π) when switched with (u, v).
However, we have an additional constraint. Since by our construction no two red matchings share
an edge, it must be that u′ is not matched to v in any of the other r red matching, and similarly

that u is not matched to v′ in any of the other matchings. It follows that of the (
√
m−1−2 · m3/2

100·r·m)
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potential pairs (as in the proof of Lemma 4.1.2), we discard 2r additional pairs. Since 1 ≤ r ≤
√
m
8

we remain with (
√
m− 1−

√
m

50 −
1
4

√
m) ≥ 1

2

√
m potential pairs. Thus, dw(Aπ,(u,v)) ≥ 1

2

√
m.

We now turn to consider the degree of the non-witness graphs and prove that dnw(Aπ,(u,v)) ≤ r.
Consider a non-witness graph W . To prove that W has at most r neighbors it is easier to consider
all the possible options to “turn” W from a non-witness graph into a witness graph. It holds that
for every j ∈ [r], (u, v) /∈MC

j (W ). Therefore for every matching MC
j , u is matched to some vertex,

denoted v′j and v is matched to some vertex, denoted u′j . If we switch between the pairs (u, v′j)
and (v, u′j), this results in a matching in which (u, v) is a witness pair. We again refer the reader

to Figure 6b, where the illustrated matching can be thought of as the jth matching. Denote the
resulting graph by W(u′j ,v

′
j)

. If the pair (u′j , v
′
j) has not been observed yet by the algorithm then

W(u′j ,v
′
j)

is a witness graph in Aπ,(u,v). Therefore there are at most r options to turn W into a

witness graph, and dnw(Aπ,(u,v)) ≤ r. We showed that dw(Aπ,(u,v)) ≥ 1
2

√
m and dnw(Aπ,(u,v)) ≤ r,

implying
dnw(Aπ,(u,v))

dw(Aπ,(u,v))
≤ 2r√

m
=

2∆

m3/2
,

as required.

4.2.4 Statistical distance

The proof of the next lemma is exactly the same as the proof of Lemma 4.1.3, except that occur-
rences of the term (∆/m3/2) are replaced by (r/

√
m) instead of (1/

√
m), and we apply Lemma 4.2.1

instead of Lemma 4.1.2.

Lemma 4.2.2 Let ∆ = r ·m for an integer r such that 1 < r ≤
√
m
8 and let Q = m3/2

100∆ . For every
t ≤ Q, every query-answer history π of length t− 1 such that π is consistent with G1 and for every
query qt, ∑

a∈Ans(π,qt)

∣∣∣PrP1 [a |π, qt]− PrP2 [a |π, qt]
∣∣∣ =

12∆

m3/2
=

12r√
m
.

The proof of the next lemma is same as the proof of Lemma 4.1.4 except that we replace the
application of Lemma 4.1.3, by an application of Lemma 4.2.2.

Lemma 4.2.3 Let ∆ = r ·m for an integer r such that 1 < r ≤
√
m
8 . For every algorithm ALG

that performs at most Q = m3/2

100∆ queries, the statistical distance between DALG
1 and DALG

2 is at
most 1

3 .

4.3 A lower bound for
√
m ≤ ∆ ≤ 1

4
m

Similarly to the previous section, we let ∆ = k
√
m and assume that k is an integer such that

1 ≤ k ≤
√
m
4 .

4.3.1 The lower-bound construction

The construction of the graph G1 is as defined in Subsection 4.1.1, and we modify the construction of
the graphs in G2. As before, the basic structure of every graph is a complete bipartite graphK√m,

√
m
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and an independent set of size n−2
√
m vertices. In this case, for each graph in G2, we do not remove

a perfect matching from the bipartite graph, but rather a matching MC of size k. In order to keep
the degrees of all vertices to be

√
m, we modify the way we construct the blue matchings. Let MC =

{(`i1 , ri1), (`i2 , ri2), . . . , (`ik , rik)} be the crossing matching. The blue matchings will be ML =
{(`i1 , `i2), (`i3 , `i4), . . . , (`ik−1, `ik)} and MR = {(ri1 , ri2), (ri3 , ri4), . . . , (rik−1, rik)}. Note that every
matched pair belongs to a four-tuple 〈`ij , `ij+1 , rij+1 , rij 〉 such that (`ij , rij ) and (`ij+1 , rij+1) are red
pairs and (`ij , `ij+1) and (rij , rij+1) are blue pairs. We refer to these structures as matched squares
and to four-tuples (`x, `y, rz, rw) such that no pair in the tuple is matched as unmatched squares.
See Figure 7 for an illustration. Every graph in G2 is defined by its set of k four-tuples.

√
m

The ith

matched square

Figure 7: An illustration of the bipartite component in the family G2 for
√
m ≤ ∆ ≤ 1

4m.

4.3.2 The processes P1 and P2

We introduce a small modification to the definition of the processes P1 and P2. Namely, we leave
the answering process for pair queries as described in Subsection 4.1.2 and modify the answering
process for random new-neighbor queries as follows. Let t ≤ Q, and π be a query-answer history of
length t− 1 such that π is consistent with G1. If the tth query is a new-neighbor query qt = u and
dknπ (u) < 1

2

√
m, then the processes P1 and P2 answer as described in Subsection 4.1.2. However, if

the tth query is a new-neighbor query qt = u such that dknπ (u) ≥ 1
2

√
m, then the processes answers

as follows.

• The process P1 answers with the set of all neighbors of u in G1. That is, if u is in L, then the
process replies with a = R = {r1, . . . , r√m}, and if u is in R, then the process replies with
a = L = {`1, . . . , `√m}.
The process P2 answers with a = {v1, . . . , v√m}, where {v1, . . . , v√m} is the set of neighbors
of u in a subset of the graphs in G2. By the definition of G2, if u is in L, then this set is either
R, or it is R \ {ri} ∪ {`j} for some ri ∈ R and `j ∈ L, and if u is in R, then this set is either
L, or it is L \ {`i} ∪ {rj} for some `i ∈ L and rj ∈ R. For every such set a ∈ Ans(π, qt), the
process returns a as an answer with probability

|G2(π ◦ (qt, a))|
|G2(π)|

.

We call this query an all-neighbors query.
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First note that the above modification makes the algorithm “more powerful”. That is, every
algorithm that is not allowed all-neighbors query can be emulated by an algorithm that is allowed
this type of query. Therefore this only strengthen our lower bound results.

Also note that this modification does not affect the correctness of Lemma 4.1.1. We can redefine
the function αt(π) to be

αt(π) =


1 if qt(π) is a pair query

1/
(√
m− dkn

π≤t−1(u)
)

if qt(π) = u is a random new-neighbor query

1 if qt(π) is an all-neighbors query

,

and the rest of the proof follows as before.

4.3.3 The auxiliary graph

For every t ≤ Q, every query-answer history π of length t − 1 such that π is consistent with G1

and every pair (u, v), the witness graphs in Aπ,(u,v) are graphs in which (u, v) is either a red pair

or a blue pair. There is an edge between a witness graph W and a non-witness graph W if the two
graphs have the same set of four-tuples except for two matched squares – one that contains the
pair (u, v), 〈u, v, u′, v′〉 and another one.

Definition 4.3.1 We define a switch between a matched square and an unmatched square in the
following manner. Let 〈u, v, u′, v′〉 be a matched square and 〈x, y, x′, y′〉 be an un matched squares.
Informally, a switch between the squares is “unmatching” the matched square and instead “match-
ing” the unmatched square.

Formally, a switch consists of two steps. The first step is removing the edges (u, v) and (u′, v′)
from the red matching MC and the edges (u, u′) and (v, v′) from the blue matchings ML and MR

respectively. The second step is adding the edges (x, y) and (x′, y′) from the red matching MC and
the edges (x, x′) and (y, y′) from the blue matchings ML and MR respectively. See Figure 8 for an
illustration.

u v

u′ v′

x y

x′ y′

u v

u′ v′

x y

x′ y′

A switch

Figure 8: An illustration of a switch between the squares 〈u, v, u′, v′〉 and 〈x, y, x′, y′〉.
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Lemma 4.3.1 Let ∆ = k ·
√
m for an integer k such that 1 < k ≤

√
m
4 and let Q = m3/2

600∆ . For
every t ≤ Q, every query-answer history π of length t − 1 such that π is consistent with G1 and
every pair (u, v),

dnw(Aπ,(u,v))

dw(Aπ,(u,v))
=

16k

m
=

16∆

m3/2
.

Proof: We start with proving that dw(Aπ,(u,v)) ≥ 1
2m. A witness graph in Aπ,(u,v) with respect

to a pair (u, v) is a graph in which (u, v) is part of a matched square 〈u, v, u′, v′〉. Potentially,
〈u, v, u′, v′〉 could be switched with every unmatched square to get a non-witness pair. There are√
m − k unmatched vertices on each side, so that there are

(√
m−k
2

)
·
(√

m−k
2

)
≥ 1

8m
2 potential

squares. To get a graph that is in G2(π), the unmatched square 〈x, y, x′, y′〉 must be such that
none of the induced pairs between the vertices x, x′, y, y′ have been observed yet by the algorithm.
When all-neighbor queries are allowed, if at most Q queries has been performed, then at most 4Q
pairs have been observed by the algorithm. Therefore, for at most 4 m

100k ≤
1
4m of the potential

squares, an induced pair was queried. Hence, every witness square can be switched with at least
1
8m

2 − 1
4m ≥

1
16m

2 consistent unmatched squares, implying that dw(Aπ,(u,v)) ≥ 1
16m

2.

To complete the proof it remains to show that dnw(Aπ,(u,v)) ≤ mk. To this end we would like

to analyze the number of witness graphs that every non-witness W can be “turned” into. In every
non-witness graph W the pair (u, v) is unmatched, and in order to turn W into a witness graph,
one of the k matched squares should be removed and the pair (u, v) with an additional pair (u′, v′)
should be “matched”. There are k options to remove an existing square, and at most m options to
choose a pair u′, v′ to match (u, v) with. Therefore, the number of potential neighbors of W is at
most mk. It follows that

dnw(Aπ,(u,v))

dw(Aπ,(u,v))
=

16mk

m2
=

16k

m
=

16∆

m3/2
,

and the proof is complete.

4.3.4 Statistical distance

For an all-neighbors query q = u we say that the corresponding answer is a witness answer if
u ∈ L and a 6= R, or symmetrically if u ∈ R and a 6= L. Let EQ be the set of all query-answer
histories π of length Q such that there exists a query-answer pair (q, a) in π in which q is an

all-neighbors pair and a is a witness answer with respect to that query, and let E
Q

= ΠQ \ EQ.

That is, E
Q

is the set of all query-answer histories of length Q such that no all-neighbors query is
answered with a witness answer. Let P̃1 and P̃2 by the induced distributions of the processes P1

and P2 conditioned on the event that the process do not reply with a witness answer. Observe that
for every query-answer history π of length t− 1, for every query qt that is either a pair query or a
random new-neighbor query and for every a ∈ Ans(π, qt),

Pr
P̃b

[a |π, qt] = PrPb [a |π, qt].

for b ∈ {1, 2}. Therefore, the proof of the next lemma is exactly the same as the proof of
Lemma 4.1.3, except that occurrences of the term (∆/m3/2) are replaced by (k/m) instead of
(1/
√
m) and we apply Lemma 4.3.1 instead of Lemma 4.1.2.
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Lemma 4.3.2 Let ∆ = k ·
√
m for an integer k such that 1 < k ≤

√
m
4 and let Q = m3/2

600∆ . For
every t ≤ Q, every query-answer history π of length t− 1 such that π is consistent with G1 and for
every pair or random new-neighbors query qt,∑

a∈Ans(π,qt)

∣∣∣Pr
P̃1

[a |π, qt]− Pr
P̃2

[a |π, qt]
∣∣∣ =

96k

m
=

96∆

m3/2
.

Note that Lemma 4.3.2 does not cover all-neighbors queries, and hence we establish the next lemma.

Lemma 4.3.3 Let ∆ = k ·
√
m for an integer k such that 1 < k ≤

√
m
4 and let Q = m3/2

600∆ . For
every t ≤ Q, every query-answer history π of length t− 1 such that π is consistent with G1 and for
every all-neighbors query qt,

PrP2 [at is a witness answer |π, qt] ≤
16k√
m
.

Proof: Assume without loss of generality that u ∈ L. By the definition of the process P2, it
answers the query consistently with a uniformly selected random graph G2 ∈ G2(π) by returning
the complete set of u’s neighbors in G2. In G2, there are two types of graphs. First, there are graphs
in which u is not matched, that is (u, u′) /∈ ML for every vertex u′ ∈ L. In these graphs the set
of u’s neighbors is R ={r1, . . . , r√m}. We refer to these graphs as non-witness graphs. The second

type of graphs are those in which (u, u′) ∈ ML for some u′ ∈ L and (u, v) ∈ MC for some v ∈ R.
In these graphs the set of u’s neighbors is (R \ {v}) ∪ {u′}. We refer to these graphs as witness
graphs. As before, let Ans(π, qt) be the set of all possible answers for an all-neighbors query qt. It
holds that

PrP2 [at is a witness answer |π, qt] =
∑

a∈Ans(π,qt)
a6=R

PrP2 [a |π, qt]

=
∑

u′∈L,v∈R

|G2 (π ◦ ((u, u′), 1) ◦ ((u, v), 0))|
|G2(π)|

=
∑
u′∈L

|G2 (π ◦ ((u, u′), 1))|
|G2(π)|

·
∑
v∈R

|G2 (π ◦ ((u, u′), 1) ◦ ((u, v), 0))|
|G2(π)|

=
∑
u′∈L

|G2 (π ◦ ((u, u′), 1))|
|G2(π)|

.

Similarly to the proof of Lemma 4.1.3, for every u and u′ in L, |G2(π◦((u,u′),1))|
|G2(π)| ≤ 16k

m . Therefore,

PrP2 [at is a witness answer |π, qt] =
∑
u′∈L

|G2 (π ◦ ((u, u′), 1))|
|G2(π)|

≤
√
m · 16k

m
=

16k√
m
,

and the lemma follows.

It remains to prove that a similar lemma to Lemma 4.1.4 holds for
√
m ≤ ∆ ≤ 1

4m (and the
distributions DALG

1 and DALG
2 as defined in this subsection).

76



Lemma 4.3.4 Let ∆ = k ·
√
m for an integer k such that 1 < k ≤

√
m
4 . For every algorithm ALG

that performs at most Q = m3/2

600∆ queries, the statistical distance between DALG
1 and DALG

2 is at
most 1

3 .

Proof: Let the sets EQ and E
Q

be as defined in the beginning of this subsection. By the definition
of the statistical distance, and since PrP1,ALG[EQ] = 0,

d(DALG
1 ,DALG

2 ) =
1

2

 ∑
π∈EQ

∣∣∣PrP1,ALG[π]− PrP2,ALG[π]
∣∣∣+

∑
π∈EQ

∣∣∣PrP1,ALG[π]− PrP2,ALG[π]
∣∣∣


=
1

2

PrP2,ALG[EQ] +
∑
π∈EQ

∣∣∣PrP1,ALG[π]− PrP2,ALG[π]
∣∣∣
 . (91)

By Lemma 4.3.3, the probability of detecting a witness as a result of an all-neighbors query is at
most 16k√

m
. Since in Q queries, there can be at most 4Q/

√
m all-neighbors queries, we have that

PrDALG
2

[EQ] ≤ 1

6
. (92)

We now turn to upper bound the second term. Let α = PrP2,ALG[EQ].∑
π∈EQ

∣∣∣PrP1,ALG[π]− PrP2,ALG[π]
∣∣∣ =

∑
π∈EQ

∣∣∣Pr
P̃1,ALG

[π] · PrP1,ALG[E
Q

]− Pr
P̃2,ALG

[π] · PrP2,ALG[E
Q

]
∣∣∣

=
∑
π∈EQ

∣∣∣Pr
P̃1,ALG

[π]− (1− α) · Pr
P̃2,ALG

[π]
∣∣∣ (93)

≤
∑
π∈EQ

∣∣∣Pr
P̃1,ALG

[π]− Pr
P̃2,ALG

[π]
∣∣∣+ α · Pr

P̃2,ALG
[E

Q
]

≤
∑
π∈EQ

∣∣∣Pr
P̃1,ALG

[π]− Pr
P̃2,ALG

[π]
∣∣∣+

1

6
, (94)

where in Equation (93) we used the fact that PrP1,ALG[E
Q

] = 1, and in Equation (94) we used the

fact that Pr
P̃2,ALG

[E
Q

] = 1 and that α ≤ 1/6.

Therefore, it remains to bound∑
π∈EQ

∣∣∣Pr
P̃1,ALG

[π]− Pr
P̃2,ALG

[π]
∣∣∣ .

Let the hybrid distributions DALG
1,t for t ∈ [Q− 1] be as defined in Lemma 4.1.4 (based on the

distributions DALG
1 and DALG

2 that are induced by the processes P1 and P2 that were defined in

this subsection). Also, let D̃ALG
1,t be the hybrid distribution DALG

1,t conditioned on the event that no

all-neighbors query is answered with a witness. That is, D̃ALG
1,t is the distribution over query-answer

histories π of length Q, where in the length t prefix ALG is answered by the process P1, in the
length Q − t suffix ALG is answered by the process P2, and each all-neighbors query is answered
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consistently with G1 (so that no witness is observed). By the above definitions and the triangle
inequality,

∑
π∈EQ

∣∣∣Pr
P̃1,ALG

[π]− Pr
P̃2,ALG

[π]
∣∣∣ ≤ Q−1∑

t

∑
π∈EQ

∣∣∣PrD̃ALG
1,t+1

[π]− PrD̃ALG
1,t

[π]
∣∣∣ . (95)

As in the proof of Lemma 4.1.4 we have that for every t ∈ [Q− 1],∑
π∈EQ

∣∣∣PrD̃ALG
1,t+1

[π]− PrD̃ALG
1,t

[π]
∣∣∣

=
∑

π′=π1,...,πt−1,qt:

π′∈Et−1

Pr
P̃1,ALG

[π′, qt] ·
∑

a∈Ans(π′,qt):
π′◦(qt,a)∈Et

∣∣∣Pr
P̃1

[a |π′, qt]− Pr
P̃2

[a |π′, qt]
∣∣∣ . (96)

By Lemma 4.3.2 (and since for an all-neighbor query qt we have that the (unique) answer according
to P̃2 is the same as according to P̃1),∑

a∈Ans(π′,qt):
π′◦(qt,a)∈Et

∣∣∣Pr
P̃1

[a |π′, qt]− Pr
P̃2

[a |π′, qt]
∣∣∣ ≤ 96k

m
=

96∆

m3/2
,

and it follows that ∑
π∈EQ

∣∣∣PrD̃ALG
1,t+1

[π]− PrD̃ALG
1,t

[π]
∣∣∣ ≤ 96k

m
=

96∆

m3/2
.

Hence, for Q = m3/2

600∆ ,

Q−1∑
t

∑
π∈EQ

∣∣∣PrD̃ALG
1,t+1

[π]− PrD̃ALG
1,t

[π]
∣∣∣ ≤ Q · 48∆

m3/2
≤ 1

6
. (97)

Combining Equations (91), (92), (94), (95) and (97), we get

d(DALG
1 ,DALG

2 ) ≤ 1

2

(
1

6
+

1

6
+

1

6

)
≤ 1

3
, (98)

and the proof is complete.

4.4 Lower Bound for ∆ < 1
4

√
m.

4.4.1 The construction

In this case the basic structure of G1 and G2 is a bit different. Also, for the sake of simplicity, we
present graphs with 2m edges, and either 0 or 4∆ triangles. The graph G1 has three components
– two complete bipartite graphs, each over 2

√
m vertices, and an independent set of size n− 4

√
m.

Let A and B be the left-hand side and the right-hand side sets, respectively, of the first bipartite
component, and C and D of the second one. We refer to the edges between A and B and the edges
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between C and D as black edges. We divide each of these sets into
√
m

∆ subsets of size ∆, denoted

{Λ1, . . . ,Λ√m
∆

} for Λ ∈ {A,B,C,D}. For every 1 ≤ i ≤
√
m

∆ , we first remove a complete bipartite

graph between Ai and Bi and between Ci and Di, and refer to the removed edges as red edges.
We then add a complete bipartite graph between Bi and Ci and between Di and Ai, and refer to
added edges as blue edges. Note that this maintains the degrees of all the vertices to be

√
m.

In G2 the basic structure of all the graphs is the same as of G1 with the following modifications.
Each graph is defined by the choice of four “special” vertices a∗, b∗, c∗, d∗ such that a∗ ∈ Aia∗ , b∗ ∈
Bib∗ , c

∗ ∈ Cic∗ and d∗ ∈ Did∗ for some indices ia∗ , ib∗ , ic∗ and id∗ such that no two indices are equal.
We then add edges (a∗, c∗) and (b∗, d∗), referred to as green edges, and remove edges (a∗, b∗) and
(c∗, d∗), referred to as purple edges. We also refer to the green and purple edges as special edges.
Note that we add one edge and remove one edge from each special vertex, thus maintaining their
initial degrees. See Figure 9.

A B C D

b∗

d∗

a∗

c∗

Figure 9: An illustration of a graph in G2. The broken thin (red) edges describe edges that were
removed and the thin (blue) edges describe edges that were added. The broken thick (purple) edges
describe the special non-edges (a∗, b∗) and (c∗, d∗). The curly (green) edges describe the special
edges (a∗, c∗) and (b∗, d∗).

We first prove that ∆(G1) = 0 and then that for every graph G in G2, ∆(G) = 4∆.

Claim 4.4.1 The graph G1 has no triangles.

Proof: Consider an edge (u, v) in G1. First assume u and v are connected by a black edge, that
is, they are on different sides of the same bipartite component. Hence we can assume without loss
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of generality that u ∈ A and that v ∈ B. Since u is in A it is only connected to vertices in B or
vertices in D. Since v is in B it is only connected to vertices in A or vertices in C. Thus u and v
cannot have a common neighbor. A similar analysis can be done for a pair (u, v) that is connected
by a blue edge. Therefore ∆(G) is indeed zero as claimed.

Claim 4.4.2 For every graph G ∈ G2, ∆(G) = 4∆.

Proof: Since the only differences between G1 and graphs in G2 are the two added green edges
and the two removed red edges, any triangle in G2 must include a green edge. Therefore we can
count all the triangles that the green edges form. Consider the green edge (a∗, c∗) and recall that
a∗ is in Aia∗ and c∗ is in Cic∗ . The only common neighbors of (a∗, c∗) are all the vertices in Bic∗
and all the vertices in Dia∗ . A vertex v such that v /∈ Bic∗ and v /∈ Dia∗ is either (1) in A or in
D \ Dia∗ , in which case it is not a neighbor of a∗, or it is (2) in C or in B \ Bic∗ , in which case
it is not a neighbor of c∗. Since both Bic∗ and Dia∗ are of size ∆, the edge (a∗, c∗) participates
in 2∆ triangles. Similarly the edge (b∗, d∗) participate in 2∆ triangles, and together we get that
∆(G) = 4∆, as claimed.

4.4.2 The processes P1 and P2

The definition of the processes P1 and P2 is the same as in Subsection 4.3.2 (using the modified
definitions of G1 and G2).

4.4.3 The auxiliary graph

We define a switch for this case as well. Informally, a switch between a matched pair (u∗, v∗) and
an unmatched pair (u, v) is “unmatching” (u∗, v∗) and “matching” (u, v) instead. Formally stating
we define a switch as follows.

Definition 4.4.1 A switch between a green pair (a∗, c∗) and a pair (a, c) such that a ∈ Ai, c ∈ Cj
and none of the indices i, j, ib∗ , id∗ are equal, is the following two steps process. In the first step we
“unmatch” (a∗, c∗) by removing the green edge (a∗, c∗) and adding the edges (a∗, b∗) and (c∗, d∗).
In the second step we “match” (a, c) by adding the green edge (a, c) and removing the edges (a, b∗)
and (c, d∗). A switch with the pair (b∗, d∗) can be defined in a similar manner.

a∗

b∗

c∗

d∗

a
c

A switch

a∗

b∗

c∗

d∗

a
c

Figure 10: An illustration of a switch between the pairs (a∗, c∗) and (a, c).
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Let ∆ <
√
m and let Q = m

600 . For every t ≤ Q, every query-answer history π of length t−1 and
every pair (u, v) we define the following auxiliary graph. The witness nodes are graphs in which
(u, v) is one of the four special pairs. If the pair is a green matched pair then there is an edge in
the auxiliary graph between a witness graph W and a non-witness graph W , if W can be obtained
from W by a single switch between (u, v) and another unmatched pair.

Lemma 4.4.3 For ∆ < 1
4

√
m let Q = m

600 . For every t ≤ Q, every query-answer history π of
length t− 1 such that π is consistent with G1 and every pair (u, v),

dnw(Aπ,(u,v))

dw(Aπ,(u,v))
=

8

m
.

Proof: We analyze the case where the pair (u, v) is such that u ∈ A and v ∈ C, as the proof for
the other cases is almost identical. We first prove that dw(Aπ,(u,v)) ≥ 1

8m. A witness graph W is
a graph in which (a, c) is a special pair. That is (u, v) = (a∗, c∗). Potentially, for every pair (a′, c′)
such that a′ ∈ Ai, c′ ∈ Cj and none of the indices i, j, ib∗ , id∗ are equal, the graph resulting from
a switch between (a∗, c∗) and (a′, c′) is a non-witness graph. There are

√
m − 2∆ vertices a′ in

A\ (Aib∗ ∪Aid∗ ) and for each such a′ there are
√
m−3∆ vertices c′ in C \ (Cib∗ ∪Cid∗ ∪Cia′ )). Since

∆ < 1
4

√
m, there are at least (

√
m− 2∆) · (

√
m− 3∆) = m− 6∆2 ≥ 1

4m potential pairs (a′, c′) that
(a∗, c∗) could be switched with. For the resulting graph to be consistent, that is, to be in G2(π),
the pair (a′, c′) must be such that the pairs (a′, c′), (a∗, b∗) and (c∗, d∗) have not been observed yet
by the algorithm. Since the number of queries is at most 1

600m, at least 1
4m −

1
125m ≥

1
8m of the

potential pairs (a′, c′) can be switched with (a∗, c∗) such that the resulting graph is consistent with
G2(π). Therefore, dw(Aπ,(u,v)) ≥ 1

8m.

Now consider a non-witness graph W . There is only one possibility to turn W into a witness
graph, which is to switch the pair (u, v) with the green pair (a∗, c∗). Therefore, the maximal degree
of every non-witness graph, dnw(Aπ,(u,v)), is 1.

Together we get that
dnw(Aπ,(u,v))

dw(Aπ,(u,v))
≤ 8

m
,

and the proof is complete.

4.4.4 Statistical distance

A similar proof to the ones of Lemma 4.3.2 and Lemma 4.3.3 using Lemma 4.4.3 gives the following
lemmas for the case that 1 ≤ ∆ < 1

4

√
m.

Lemma 4.4.4 Let 1 ≤ ∆ < 1
4

√
m and Q = m

600 . For every t ≤ Q, every query-answer history π of
length t− 1 such that π is consistent with G1 and for every all-neighbors query qt,

PrP2 [at is a witness answer |π, qt] ≤
16

m
.

Lemma 4.4.5 Let 1 ≤ ∆ < 1
4

√
m and Q = m

600 . For every t ≤ Q, every query-answer history π of
length t− 1 such that π is consistent with G1 and for every pair or random new-neighbors query qt,∑

a∈Ans(π,qt)

∣∣∣Pr
P̃1

[a |π, qt]− Pr
P̃2

[a |π, qt]
∣∣∣ =

96

m
.
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The next lemma is proven in a similar way to 1.3.4 based on the above two lemma.

Lemma 4.4.6 Let 1 ≤ ∆ < 1
4

√
m. For every algorithm ALG that asks at most Q = m

600 , the
statistical distance between DALG

1 and DALG
2 is at most 1

3 .

4.5 Wrapping things up

Theorem 4.2 follows from Lemmas 4.1.4, 4.2.3, 4.3.4 and 4.4.6, and the next corollary is proved
using Theorems 4.2 and 4.1.

Corollary 4.3 Any multiplicative-approximation algorithm for the number of triangles in a graph

must perform Ω
(

n
∆(G)1/3 + min

{
m, m

3/2

∆(G)

})
queries, where the allowed queries are degree queries,

pair queries and neighbor queries.

Proof: Assume towards a contradiction that there exists an algorithm ALG’ for which the following
holds:

1. ALG’ is allowed to ask neighbor queries as well as degree queries and pair queries.

2. ALG’ asks Q′ queries.

3. ALG’ outputs a (1± ε)-approximation to the number of triangles of any graph G with prob-
ability greater than 2/3.

Using ALG’ we can define an algorithm ALG that is allowed random new-neighbor queries, performs
at most Q = 3Q′ queries and answers correctly with the same probability as ALG’ does. ALG runs
ALG’ and whenever ALG’ performs a query q′t, ALG does as follows:

• If q′t is a degree query, ALG performs the same query and sets a′t = at.

• If q′t is a pair query (u, v), then ALG performs the same query q = q′. Let at be the
corresponding answer.

– If at = 0, then ALG sets a′t = at.

– If at = 1, then ALG sets a′t = (at, i, j), such that i and j are randomly chosen labels
that have not been previously used for neighbors of u and v, and are within the ranges
[1..d(u)] and [1..d(v)] respectively.

• If q′t is a neighbor query (u, i), ALG performs a random new-neighbor query qt = u, and
returns the same answer a′t = at.

We note that the above requires the algorithm ALG to store for every vertex v, all the labels used for
its neighbors in the previous steps. Once ALG’ outputs an answer, ALG outputs the same answer.
It follows that ALG performs at most 3Q queries to the graph G. By the third assumption above,
ALG outputs a (1± ε)-approximation to the number of triangles of any graph G with probability

greater than 2/3. If Q′ /∈ Ω
(

n
∆(G)1/3 + min

{
m, m

3/2

∆(G)

})
then Q /∈ Ω

(
n

∆(G)1/3 + min
{
m, m

3/2

∆(G)

})
which is a contradiction to Theorem 4.1 and Theorem 4.2. Therefore, the corollary follows.
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