K. Khadiev

WIDTH HIERARCHY FOR K-OBDD OF SMALL WIDTH

Kazan Federal University, Kremlevskaya Str. 18, 420008, Kazan, Russia

E-mail address: kamilhadi@gmail.com

Abstract

In this paper was explored well known model k-OBDD. There are proven width based hierarchy of classes of boolean functions which computed by k-OBDD. The proof of hierarchy is based on sufficient condition of Boolean function's non representation as k-OBDD and complexity properties of Boolean function SAF. This function is modification of known Pointer Jumping (PJ) and Indirect Storage Access (ISA) functions.

1. Preliminaries

The k-OBDD and OBDD models are well known models of branching programs. Good source for a different models of branching programs is the book by Ingo Wegener [13].

The branching program P over a set X of n Boolean variables is a directed acyclic graph with a source node and sink nodes. Sink nodes are labeled by 1 (Accept) or 0 (Reject). Each inner node v is associated with a variable $x \in X$ and has two outgoing edges labeled $x=0$ and $x=1$ respectively. An input $\nu \in\{0,1\}^{n}$ determines a computation (consistent) path of from the source node of P to a one of the sink nodes of P. We denote $P(\nu)$ the label of sink finally reached by P on the input ν. The input ν is accepted or rejected if $P(\nu)=1$ or $P(\nu)=0$ respectively.

Program P computes (presents) Boolean function $f(X)\left(f:\{0,1\}^{n} \rightarrow\right.$ $\{0,1\})$ if $f(\nu)=P(\nu)$ for all $\nu \in\{0,1\}^{n}$.

A branching program is leveled if the nodes can be partitioned into levels V_{1}, \ldots, V_{ℓ} and a level $V_{\ell+1}$ such that the nodes in $V_{\ell+1}$ are the sink nodes,

2000 Mathematical Subject Classification. 03D15.
Key words and phrases. Branching programs, Binary decision diagrams, OBDD, k-OBDD, complexity classes.

Partially supported by Russian Foundation for Basic Research, Grant 14-0700557. The work is performed according to the Russian Government Program of Competitive Growth of Kazan Federal University.
nodes in each level V_{j} with $j \leq \ell$ have outgoing edges only to nodes in the next level V_{j+1}.

The width $w(P)$ of leveled branching program P is the maximum of number of nodes in levels of $P: w(P)=\max _{1 \leq j \leq \ell}\left|V_{j}\right|$.

A leveled branching program is called oblivious if all inner nodes of one level are labeled by the same variable. A branching program is called read once if each variable is tested on each path only once.

The oblivious leveled read once branching program is also called Ordinary Binary Decision Diagram (OBDD).

A branching program P is called k-OBDD with order $\theta(P)$ if it consists of k layers and each i-th layer is OBDD with the same order $\theta(P)$. In nondeterministic case it is denoted k-NOBDD.

The size $s(P)$ of branching program P is a number of nodes of program P. Note, that for k-OBDD and k-NOBDD following is right: $s(P)<w(P) \cdot n \cdot k$.

There are many paper which explore width and size as measure of complexity of classes. Most of them investigate exponential difference between models of Branching Program. Models with less restrictions than k-OBDD like non-deterministic, probabilistic and others also were explored, for example in papers [7, 2, 1, 4, 6, 8, 9, 11, 12]. More precise width hierarchy is presented in the paper.

We denote $\mathrm{k}-\mathrm{OBDD}_{\mathrm{w}}$ is the sets of Boolean functions that have representation as k-OBDD of width w. We denote k - OBDD Poly and $\mathrm{k}-$ OBDD $_{\text {EXP }}$ is the sets of Boolean functions that have representation as k-OBDD of polynomial and exponential width respectively. In [6] was shown that $\mathrm{k}-\mathrm{OBDD}$ POLY \subsetneq $\mathrm{k}-\mathrm{OBDD}_{\text {EXP. }}$. Result in this paper is following.

Theorem 1. For integer $k=k(n), w=w(n)$ such that $2 k w(2 w+\lceil\log k\rceil+$ $\lceil\log 2 w\rceil)<n, k \geq 2, w \geq 64$ we have $\mathrm{k}-\mathrm{OBDD}_{\lfloor\mathrm{w} / 16\rfloor-3} \subsetneq \mathrm{k}-\mathrm{OBDD}_{\mathrm{w}}$.

Analogosly hierarchies was considered for OBDD in paper [3] and for two way non-uniform automata in citeky14. This kind of automata can be considered like special type of branching programs.

Proof of this Theorem is presented in following section. It based on lower bound which presented in 5.

2. Proof of Theorem 1

We start with needed definitions and notations.
Let $\pi=\left(\left\{x_{j_{1}}, \ldots, x_{j_{u}}\right\},\left\{x_{i_{1}}, \ldots, x_{i_{v}}\right\}\right)=\left(X_{A}, X_{B}\right)$ be a partition of the set X into two parts X_{A} and $X_{B}=X \backslash X_{A}$. Below we will use equivalent notations $f(X)$ and $f\left(X_{A}, X_{B}\right)$.

Let $\left.f\right|_{\rho}$ be subfunction of f, where ρ is mapping $\rho: X_{A} \rightarrow\{0,1\}^{\left|X_{A}\right|}$. Function $\left.f\right|_{\rho}$ is obtained from f by applying ρ. We denote $N^{\pi}(f)$ to be amount of different subfunctions with respect to partition π.

Let $\Theta(n)$ be the set of all permutations of $\{1, \ldots, n\}$. We say, that partition π agrees with permutation $\theta=\left(j_{1}, \ldots, j_{n}\right) \in \Theta(n)$, if for some $u, 1<u<n$ the following is right: $\pi=\left(\left\{x_{j_{1}}, \ldots, x_{j_{u}}\right\},\left\{x_{j_{u+1}}, \ldots, x_{j_{n}}\right\}\right)$. We denote $\Pi(\theta)$ a set of all partitions which agrees with θ.

Let $N^{\theta}(f)=\max _{\pi \in \Pi(\theta)} N^{\pi}(f), \quad N(f)=\min _{\theta \in \Theta(n)} N^{\theta}(f)$. Proof of Theorem 1 based on following Lemmas and complexity properties of Boolean Shuffled Address Function $S A F_{k, w}(X)$.

Let us define Boolean function $S A F_{k, w}(X):\{0,1\}^{n} \rightarrow\{0,1\}$ for integer $k=k(n)$ and $w=w(n)$ such that

$$
\begin{equation*}
2 k w(2 w+\lceil\log k\rceil+\lceil\log 2 w\rceil)<n \tag{1}
\end{equation*}
$$

We divide input variables to $2 k w$ blocks. There are $\lceil n /(2 k w)\rceil=a$ variables in each block. After that we divide each block to address and value variables. First $\lceil\log k\rceil+\lceil\log 2 w\rceil$ variables of block are address and other $a-\lceil\log k\rceil+$ $\lceil\log 2 w\rceil=b$ variables of block are value.

We call $x_{0}^{p}, \ldots, x_{b-1}^{p}$ value variables of p-th block and $y_{0}^{p}, \ldots, y_{\lceil\log k\rceil+\lceil\log 2 w\rceil}^{p}$ are address variables, for $p \in\{0, \ldots, 2 k w-1\}$.

Boolean function $S A F_{k, w}(X)$ is iterative process based on definition of following six functions:

Function $A d r K:\{0,1\}^{n} \times\{0, \ldots, 2 k w-1\} \rightarrow\{0, \ldots, k-1\}$ obtains firsts part of block's address. This block will be used only in step of iteration which number is computed using this function:

$$
\operatorname{Adr} K(X, p)=\sum_{j=0}^{\lceil\log k\rceil-1} y_{j}^{p} \cdot 2^{j}(\bmod k)
$$

Function $A d r W:\{0,1\}^{n} \times\{0, \ldots, 2 k w-1\} \rightarrow\{0, \ldots, 2 w-1\}$ obtains second part of block's address. It is the address of block within one step of iteration:

$$
A d r W(X, p)=\sum_{j=0}^{\lceil\log 2 w\rceil-1} y_{j+\lceil\log k\rceil}^{p} \cdot 2^{j}(\bmod 2 w)
$$

Function Ind : $\{0,1\}^{n} \times\{0, \ldots, 2 w-1\} \times\{0, \ldots, k-1\} \rightarrow\{0, \ldots, 2 k w-1\}$ obtains number of block by number of step and address within this step of iteration:

$$
\operatorname{Ind}(X, i, t)= \begin{cases}p, & \text { where } p \text { is minimal number of block such that } \\ & A d r K(X, p)=t \text { and } \operatorname{Adr} W(X, p)=i \\ -1, & \text { if there are no such } p\end{cases}
$$

Function Val : $\{0,1\}^{n} \times\{0, \ldots, 2 w-1\} \times\{1, \ldots, k\} \rightarrow\{-1, \ldots, w-1\}$ obtains value of block which have address i within t-th step of iteration:

$$
\operatorname{Val}(X, i, t)= \begin{cases}\sum_{j=0}^{b-1} x_{j}^{p}(\bmod w), & \text { where } p=\operatorname{Ind}(X, i, t), \text { for } p \geq 0, \\ -1, & \text { if } \operatorname{Ind}(X, i, t)<0\end{cases}
$$

Two functions Step ${ }_{1}$ and Step $_{2}$ obtain value of t-th step of iteration. Function Step ${ }_{1}:\{0,1\}^{n} \times\{0, \ldots, k-1\} \rightarrow\{-1, w \ldots, 2 w-1\}$ obtains base for value of step of iteration:

$$
\operatorname{Step}_{1}(X, t)= \begin{cases}-1, & \text { if } \operatorname{Step}_{2}(X, t-1)=-1 \\ 0, & \text { if } t=-1, \\ \operatorname{Val}\left(X, \operatorname{Step}_{2}(X, t-1), t\right)+w, & \text { otherwise }\end{cases}
$$

Function Step $2:\{0,1\}^{n} \times\{0, \ldots, k-1\} \rightarrow\{-1, \ldots, w-1\}$ obtain value of t-th step of iteration:

$$
\operatorname{Step}_{2}(X, t)= \begin{cases}-1, & \text { if } \operatorname{Step}_{1}(X, t)=-1, \\ 0, & \text { if } t=-1 \\ \operatorname{Val}\left(X, \operatorname{Step}_{1}(X, t), t\right), & \text { otherwise }\end{cases}
$$

Note that address of current block is computed on previous step.
Result of Boolean function $S A F_{k, w}(X)$ is computed by following way:

$$
S A F_{k, w}(X)= \begin{cases}0, & \text { if } \operatorname{Step}_{2}(X, k-1) \leq 0, \\ 1, & \text { otherwise }\end{cases}
$$

Let us discuss complexity properties of this function in Lemma 3 and Lemma 4. Proof of Lemma 3 uses following technical Lemmas 1 and 2.

Lemma 1. Let integer $k=k(n)$ and $w=w(n)$ are such that inequality (1) holds. Let partition $\pi=\left(X_{A}, X_{B}\right)$ is such that X_{A} contains at least w value variables from exactly $k w$ blocks. Then X_{B} contains at least w value variables from exactly kw blocks.

Proof. Let $I_{A}=\left\{i: X_{A}\right.$ contains at least w value variables from i-th block $\}$. And let $i^{\prime} \notin I_{A}$ then X_{A} contains at most $w-1$ value variables from i^{\prime}-th block. Hence X_{B} contains at least $b-(w-1)$ value variables from i^{\prime}-th block. By (1) we have:

$$
\begin{gathered}
b-(w-1)=(n /(2 k w)-(\lceil\log k\rceil+\lceil\log 2 w\rceil)-(w-1)> \\
>(2 w+\lceil\log k\rceil+\lceil\log 2 w\rceil)-(\lceil\log k\rceil+\lceil\log 2 w\rceil)-(w-1)=2 w-(w-1)=w+1 .
\end{gathered}
$$

Let set $I=\{0, \ldots, 2 k w-1\}$ is numbers of all blocks and $i^{\prime} \in I \backslash I_{A}$. Note that $\left|I \backslash I_{A}\right|=2 k w-k w=k w$.

Let us choose any order $\theta \in \Theta(n)$. And we choose partition $\pi=\left(X_{A}, X_{B}\right) \in$ $\Pi(\theta)$ such that X_{A} contains at least w value variables from exactly $k w$ blocks. Let $I_{A}=\left\{i: X_{A}\right.$ contains at least w value variables from i-th block $\}$ and $I_{B}=\{0, \ldots, 2 k w-1\} \backslash I_{A}$. By Lemma 1 we have $\left|I_{B}\right|=k w$.

For input ν we have partition (σ, γ) with respect to π. We define sets $\Sigma \subset\{0,1\}^{\left|X_{A}\right|}$ and $\Gamma \subset\{0,1\}^{\left|X_{B}\right|}$ for input with respect to π, that satisfies the following conditions: for $\sigma, \sigma^{\prime} \in \Sigma, \gamma \in \Gamma$ and $\nu=(\sigma, \gamma), \nu^{\prime}=\left(\sigma^{\prime}, \gamma\right)$ we have

- for any $r \in\{0, \ldots, k-1\}$ and $z \in\{0, \ldots, w-1\}$ it is true that $\operatorname{Ind}(\nu, z, r) \in I_{A}$;
- for any $r \in\{0, \ldots, k-1\}$ and $z \in\{w, \ldots, 2 w-1\}$ it is true that $\operatorname{Ind}(\nu, z, r) \in I_{B} ;$
- there are $r \in\{1, \ldots, k-1\}, z \in\{0, \ldots, w-3\}$, such that $\operatorname{Val}\left(\nu^{\prime}, z, r\right) \neq$ $\operatorname{Val}(\nu, z, r)$;
- value of x_{j}^{p} is 0 , for any $p \in I_{B}$ and $x_{j}^{p} \in X_{A}$;
- value of x_{j}^{p} is 0 , for any $p \in I_{A}$ and $x_{j}^{p} \in X_{B}$;
- following statement is right:
(2) $\operatorname{Val}(\nu, w-2, t)=2 w-2, \operatorname{Val}\left(\nu^{\prime}, w-1, t\right)=2 w-1$, for $0 \leq t \leq k-1$;
$\operatorname{Val}(\nu, 2 w-2, t)=w-2, \operatorname{Val}(\nu, 2 w-1, t)=w-1$ for $0 \leq t \leq k-2 ;$
- for $p=\operatorname{Ind}(\nu, 2 w-1, k-1)$ and $p^{\prime}=\operatorname{Ind}(\nu, 2 w-2, k-1)$ following statement is right:

$$
\begin{equation*}
\operatorname{Val}(\nu, 2 w-1, k-1)=0 \quad \operatorname{Val}(\nu, 2 w-2, k-1)=1 . \tag{4}
\end{equation*}
$$

Let us show needed property of this sets.
Lemma 2. Sets Σ and Γ such that for any sequence $v=\left(v_{0}, \ldots, v_{2(k-1)(w-2)-1}\right)$, for $v_{i} \in\{0, \ldots, w-1\}$, there are $\sigma \in \Sigma$ and $\gamma \in \Gamma$ such that: for each $i \in\{0, \ldots,(k-1)(w-2)-1\}$ there are $r_{i} \in\{1, \ldots, k-1\}$ and $z_{i} \in\{0, \ldots, w-3\}$ such that $\operatorname{Val}\left(\nu, z_{i}, r_{i}\right)=a_{i}$, and for each $i \in\{(k-1)(w-2), \ldots, 2(k-1)(w-$ 2) -1$\}$ there are $r_{i} \in\{1, \ldots, k-1\}$ and $z_{i} \in\{w, \ldots, 2 w-3\}$ such that $\operatorname{Val}\left(\nu, z_{i}, r_{i}\right)=a_{i}$.

Proof. Let $p_{i} \in I_{A}$, such that $p_{i}=\operatorname{Ind}\left(\nu, z_{i}, r_{i}\right)$, for $i \in\{0, \ldots,(k-1)(w-$ $2)-1\}$. Let us remind that value of $x_{j}^{p_{i}}$ is 0 for any $x_{j}^{p_{i}} \in X_{B}$. Hence value of $\operatorname{Val}\left(\nu, z_{i}, r_{i}\right)$ depends only on variables from X_{A}. At least w value variables of p_{i}-th block belong to X_{A}. Hence we can choose input σ with a_{i} 1's in value variables of p_{i}-th block which belongs to X_{A}.

Input $\gamma \in \Gamma$ and $i \in\{(k-1)(w-2), \ldots, 2(k-1)(w-2)-1\}$ we can proof by the same way.

Lemma 3. For integer $k=k(n), w=w(n)$ and Boolean function $S A F_{k, w}$, such that inequality (1) holds, the following statement is right: $N\left(S A F_{k, w}\right) \geq$ $w^{(k-1)(w-2)}$.

Proof. Let us choose any order $\theta \in \Theta(n)$. And we choose partition $\pi=$ $\left(X_{A}, X_{B}\right) \in \Pi(\theta)$ such that X_{A} contains at least w value variables from exactly $k w$ blocks. Let us consider two different inputs $\sigma, \sigma^{\prime} \in \Sigma$ and corresponding
mappings τ and τ^{\prime}. Let us show that subfunctions $\left.S A F_{k, w}\right|_{\tau}$ and $\left.S A F_{k, w}\right|_{\tau^{\prime}}$ are different. Let $r \in\{1, \ldots, k-2\}$ and $z \in\{0, \ldots, w-3\}$ are such that $s^{\prime}=\operatorname{Val}\left(\nu^{\prime}, z, r\right) \neq \operatorname{Val}(\nu, z, r)=s$. Let us choose $\gamma \in \Gamma$ such that $\operatorname{Val}(\nu, s+$ $w, r)=w-1, \operatorname{Val}\left(\nu^{\prime}, s^{\prime}+w, r\right)=w-2$ and $\operatorname{Val}(\nu, i, r-1)=\operatorname{Val}\left(\nu^{\prime}, i, r-1\right)=$ z, where $i \in\{w, \ldots, 2 w-1\}$.

It means $\operatorname{Step}_{2}(\nu, r-1)=\operatorname{Step}_{2}\left(\nu^{\prime}, r-1\right)=z$ and $\operatorname{Step}_{2}(\nu, r)=w-$ $1, \operatorname{Step}_{2}\left(\nu^{\prime}, r\right)=w-2$. Also conditions (2), (3) mean that $\operatorname{Step}_{2}(\nu, t)=$ $w-1, \operatorname{Step}_{2}\left(\nu^{\prime}, t\right)=w-2$, for $r<t \leq k$. Hence $\operatorname{Step}_{1}(\nu, k-1)=2 w-$ $2, \operatorname{Step}_{1}\left(\nu^{\prime}, k-1\right)=2 w-1$ and by (4) we have $S A F_{k, w}(\nu) \neq S A F_{k, w}\left(\nu^{\prime}\right)$.

Let $r=k-1, z \in\{0, \ldots, w-3\}$ such that $s^{\prime}=\operatorname{Val}\left(\nu^{\prime}, z, r\right) \neq \operatorname{Val}(\nu, z, r)=$ s. Let us choose $\gamma \in \Gamma$ such that $\operatorname{Val}(\nu, s+w, r)=1, \operatorname{Val}\left(\nu^{\prime}, s^{\prime}+w, r\right)=0$. Therefore $\left.S A F_{k, w}\right|_{\tau}(\gamma) \neq\left. S A F_{k, w}\right|_{\tau^{\prime}}(\gamma)$ also $\left.S A F_{k, w}\right|_{\tau} \neq\left. S A F_{k, w}\right|_{\tau^{\prime}}$.

Let us compute $|\Sigma|$. For $\sigma \in \Sigma$ by Lemma 2 we can get each value of $\operatorname{Val}(\nu, i, t)$ for $0 \leq i \leq w-3$ and $1 \leq t \leq k-1$. It means $|\Sigma| \geq w^{(k-1)(w-2)}$. Therefore $N^{\pi}\left(S A F_{k, w}\right) \geq w^{(k-1)(w-2)}$ and by definition of $N\left(S A F_{k, w}\right)$ we have $N\left(S A F_{k, w}\right) \geq w^{(k-1)(w-2)}$.

Lemma 4. There is $2 k-O B D D P$ of width $3 w+1$ which computes $S A F_{k, w}$
Proof. Let us construct P. Let us use natural order $(1, \ldots, n)$ and in each $(2 t-1)$-th layer P computes $\operatorname{Step}_{1}(X, t-1)$ and in each $(2 t)$-th layer it computes Step $_{2}(X, t-1)$. Let us consider computation on input $\nu \in\{0,1\}^{n}$.

Let us consider layer $2 t-1$. The first level contains w nodes for store each value of function $\operatorname{Step}_{2}(\nu, t-2)$. For i-th node of first level program P checks each block with the following conditions $\operatorname{Adr} K(\nu, j)=t-1$ and $\operatorname{Adr} W(\nu, j)=i$. If this condition is true then P computes $\operatorname{Val}(\nu, i, t-1)$ by this j-th block. The result of computation by this j-th block is the value of $\operatorname{Step}_{1}(\nu, t-1)$. If this condition is false P goes to next block without branching.

Note that computing of $\operatorname{Val}(\nu, i, t-1)$ does not depend on i if we know j. And it means the part for computing of $\operatorname{Val}(\nu, i, t-1)$ is common for different i.

In each level program P has $w+1$ nodes for result of layer. After computing of $\operatorname{Step}_{1}(\nu, t-1)$ by block j program P goes to one of result of layer nodes. From result of layer nodes P goes to end of layer without branching, because result of layer is already obtained. If block j such that $\operatorname{Adr} K(\nu, j)=t-1$ and $\operatorname{Adr} W(\nu, j)=i$ are not founded then P goes to -1 result of layer node and from this node P goes to 0 result of program node without branching.

Let us consider layer $2 t$. The first level has w nodes for store each value of function $\operatorname{Step}_{1}(\nu, t-1)$. For i-th node of first level program P checks each block for the following condition $\operatorname{Adr} K(\nu, j)=t-1$ and $\operatorname{Adr} W(\nu, j)=i+w$. If this condition is true then P computes $\operatorname{Val}(\nu, i+w, t-1)$ by this j-th block. The result of computation by this j-th block is the value of $\operatorname{Step}_{2}(\nu, t-1)$. If this condition is false P goes to next block without branching.

In each level program P has $w+1$ nodes for result of the layer. After computing of $\operatorname{Step}_{2}(\nu, t-1)$ by block j program P goes to one of result of layer nodes.

In last layer program P computes $\operatorname{Val}(\nu, i+w, k-1)$ and if $\operatorname{Val}(\nu, i+w, k-$ 1) $=0$ then P answers 0 and answers 1 otherwise.

Let us compute width of program. The block checking procedure needs only 2 nodes in level. Hence for each value of i we need $2 w$ nodes in checking levels. Computing of $\operatorname{Val}(\nu, i, t-1)$ and $\operatorname{Val}(\nu, i+w, t-1)$ needs w nodes in non checking levels. And w nodes for going to next block in case the block is not needed for non checking levels. And result of layer nodes needs $w+1$ nodes. Therefore we have at most $3 w+1$ nodes on each layer.

From paper [5] we have the following lower bound.
Theorem 2 (5). Let function $f(X)$ is computed by $k-O B D D P$ of width w, then $N(f) \leq w^{(k-1) w+1}$.

Finally we complite the proof of Theorem 1. It is obvious that $k-\operatorname{OBDD}_{\lfloor w / 16\rfloor-3} \subseteq$ $\mathrm{k}-\mathrm{OBDD}_{\mathrm{w}}$. Let us show inequality of this classes. Let us look at function $S A F_{\lceil k / 3\rceil,\lceil w / 4\rceil}$. By Lemma 4 we have $S A F_{\lceil k / 3\rceil,\lceil w / 4\rceil} \in \mathrm{k}-$ OBDD $_{\mathrm{w}}$. By Lemma $3 N\left(S A F_{\lceil k / 3\rceil,\lceil w / 4\rceil}\right) \geq(\lceil w / 4\rceil)(\lceil k / 3\rceil-1)(\lceil w / 4\rceil-2)$.

Let us compute $N\left(S A F_{\lceil k / 4\rceil,\lceil w / 5\rceil}\right) /(\lfloor w / 16\rfloor-3)^{(k-1)(\lfloor w / 16\rfloor-3)+1}$.

$$
\begin{gathered}
\frac{N\left(S A F_{\lceil k / 3\rceil,\lceil w / 4\rceil}\right)}{(\lfloor w / 16\rfloor-3)^{(k-1)(\lfloor w / 20\rfloor-3)+1}} \geq \frac{(\lceil w / 4\rceil)^{(\lceil k / 3\rceil-1)(\lceil w / 4\rceil-2)}}{(\lfloor w / 16\rfloor-3)^{(k-1)(\lfloor w / 16\rfloor-3)+1}}= \\
=2^{(\lceil k / 3\rceil-1)(\lceil w / 4\rceil-2) \log (\lceil w / 4\rceil)-((k-1)(\lfloor w / 16\rfloor-3)+1) \log (\lfloor w / 16\rfloor-3)} \geq \\
\geq 2^{(\lceil k / 3\rceil-1)(\lceil w / 4\rceil-2) \log (\lceil w / 4\rceil)-(k-1)(\lfloor w / 16\rfloor-2) \log (\lfloor w / 16\rfloor-3)}> \\
>2^{\frac{1}{4}(k-1)(\lceil w / 4\rceil-2) \log (\lceil w / 4\rceil)-(k-1)(\lfloor w / 16\rfloor-2) \log (\lfloor w / 16\rfloor-3)}> \\
>2^{(k-1)(\lceil w / 16\rceil-2) \log (\lceil w / 4\rceil)-(k-1)(\lfloor w / 16\rfloor-2) \log (\lfloor w / 16\rfloor-3)}>1
\end{gathered}
$$

Hence $N\left(S A F_{\lceil k / 3\rceil,\lceil w / 4\rceil}\right)>(\lfloor w / 16\rfloor-3)^{(k-1)(\lfloor w / 16\rfloor-3)+1}$ and by Theorem 2 we have $S A F_{\lceil k / 3\rceil,\lceil w / 4\rceil} \notin \mathrm{k}-\mathrm{OBDD}_{\lfloor\mathrm{w} / 16\rfloor-3}$.

References

[1] Farid Ablayev. Electronic Colloquium on Computational Complexity (ECCC). 21 (4) (1997).
[2] Farid Ablayev, Aida Gainutdinova, Marek Karpinski, Cristopher Moore, Cristopher Pollette. Information and Computation. 203 (2), 145-162 (2005).
[3] Farid Ablayev, Aida Gainutdinova, Kamil Khadiev, Abuzer Yakarylmaz. LNCS. 8614, 53-64 (2014).
[4] Ablayev, F., Karpinski, M. ICALP'96 Lecture Notes in Computer Science. 1099, 348-356 (1998).
[5] F. Ablayev and K. Khadiev. Russian Mathematics. 57 (3), 46-50 (2013).
[6] Bollig, B., Sauerhoff, M., Sieling, D., Wegener, I. Theoretical Computer Science. 205 (1-2), 45-60 (1998).
[7] Borodin, A., Razborov, A., Smolensky, R. Computational Complexity. 3 (1), 1-18, (1993).
[8] Hromkovic, J., Sauerhoff, M. 17th STACS, LNCS. 1770, 145-156, SpringerVerlag (2000).
[9] Hromkovic, J., Sauerhoff, M. Theory of Computing Systems. 36, 159-182 (2003).
[10] Kamil Khadiev, Abuzer Yakaryılmaz. Sixth Workshop on Non-Classical Models of Automata and Applications (NCMA 2014). Short Papers, 13-18 (2014).
[11] Sauerhoff, M. Theory of Computing Systems. 33, 313-329 (2000).
[12] Thathachar, J.S., 30th ACM STOC, 653-662. ACM (1998).
[13] Ingo Wegener Branching Programs and Binary Decision Diagrams: Theory and Applications (Society for Industrial and Applied Mathematics, Philadelphia 2000)

