
K.Khadiev

WIDTH HIERARCHY FOR K-OBDD OF SMALL WIDTH

Kazan Federal University, Kremlevskaya Str. 18, 420008, Kazan,

Russia

E-mail address: kamilhadi@gmail.com

Abstract. In this paper was explored well known model k-OBDD.

There are proven width based hierarchy of classes of boolean functions

which computed by k-OBDD. The proof of hierarchy is based on suffi-

cient condition of Boolean function’s non representation as k-OBDD and

complexity properties of Boolean function SAF. This function is mod-

ification of known Pointer Jumping (PJ) and Indirect Storage Access

(ISA) functions.

1. Preliminaries

The k-OBDD and OBDD models are well known models of branching pro-

grams. Good source for a different models of branching programs is the book

by Ingo Wegener [13].

The branching program P over a set X of n Boolean variables is a directed

acyclic graph with a source node and sink nodes. Sink nodes are labeled by 1

(Accept) or 0 (Reject). Each inner node v is associated with a variable x ∈ X
and has two outgoing edges labeled x = 0 and x = 1 respectively. An input

ν ∈ {0, 1}n determines a computation (consistent) path of from the source

node of P to a one of the sink nodes of P . We denote P (ν) the label of sink

finally reached by P on the input ν. The input ν is accepted or rejected if

P (ν) = 1 or P (ν) = 0 respectively.

Program P computes (presents) Boolean function f(X) (f : {0, 1}n →
{0, 1}) if f(ν) = P (ν) for all ν ∈ {0, 1}n.

A branching program is leveled if the nodes can be partitioned into levels

V1, . . . , V` and a level V`+1 such that the nodes in V`+1 are the sink nodes,

2000 Mathematical Subject Classification. 03D15.
Key words and phrases. Branching programs, Binary decision diagrams,

OBDD, k-OBDD, complexity classes.
Partially supported by Russian Foundation for Basic Research, Grant 14-07-

00557. The work is performed according to the Russian Government Program

of Competitive Growth of Kazan Federal University.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 48 (2015)

2 K.KHADIEV

nodes in each level Vj with j ≤ ` have outgoing edges only to nodes in the

next level Vj+1.

The width w(P) of leveled branching program P is the maximum of number

of nodes in levels of P : w(P) = max1≤j≤` |Vj |.
A leveled branching program is called oblivious if all inner nodes of one level

are labeled by the same variable. A branching program is called read once if

each variable is tested on each path only once.

The oblivious leveled read once branching program is also called Ordinary

Binary Decision Diagram (OBDD).

A branching program P is called k-OBDD with order θ(P) if it consists of

k layers and each i-th layer is OBDD with the same order θ(P). In nondeter-

ministic case it is denoted k-NOBDD.

The size s(P) of branching program P is a number of nodes of program P .

Note, that for k-OBDD and k-NOBDD following is right: s(P) < w(P) ·n · k.

There are many paper which explore width and size as measure of com-

plexity of classes. Most of them investigate exponential difference between

models of Branching Program. Models with less restrictions than k-OBDD

like non-deterministic, probabilistic and others also were explored, for exam-

ple in papers [7, 2, 1, 4, 6, 8, 9, 11, 12]. More precise width hierarchy is

presented in the paper.

We denote k− OBDDw is the sets of Boolean functions that have represen-

tation as k-OBDD of width w. We denote k− OBDDPOLY and k− OBDDEXP

is the sets of Boolean functions that have representation as k-OBDD of polyno-

mial and exponential width respectively. In [6] was shown that k− OBDDPOLY (
k− OBDDEXP. Result in this paper is following.

Theorem 1. For integer k = k(n), w = w(n) such that 2kw(2w + dlog ke +

dlog 2we) < n, k ≥ 2, w ≥ 64 we have k− OBDDbw/16c−3 (k− OBDDw.

Analogosly hierarchies was considered for OBDD in paper [3] and for two

way non-uniform automata in citeky14. This kind of automata can be consid-

ered like special type of branching programs.

Proof of this Theorem is presented in following section. It based on lower

bound which presented in [5].

2. Proof of Theorem 1

We start with needed definitions and notations.

Let π = ({xj1 , . . . , xju}, {xi1 , . . . , xiv}) = (XA, XB) be a partition of the

set X into two parts XA and XB = X\XA. Below we will use equivalent

notations f(X) and f(XA, XB).

Let f |ρ be subfunction of f , where ρ is mapping ρ : XA → {0, 1}|XA|.

Function f |ρ is obtained from f by applying ρ. We denote Nπ(f) to be

amount of different subfunctions with respect to partition π.

3

Let Θ(n) be the set of all permutations of {1, . . . , n}. We say, that partition

π agrees with permutation θ = (j1, . . . , jn) ∈ Θ(n), if for some u, 1 < u < n

the following is right: π = ({xj1 , . . . , xju}, {xju+1 , . . . , xjn}). We denote Π(θ)

a set of all partitions which agrees with θ.

Let N θ(f) = maxπ∈Π(θ)N
π(f), N(f) = minθ∈Θ(n)N

θ(f). Proof of The-

orem 1 based on following Lemmas and complexity properties of Boolean Shuf-

fled Address Function SAFk,w(X).

Let us define Boolean function SAFk,w(X) : {0, 1}n → {0, 1} for integer

k = k(n) and w = w(n) such that

(1) 2kw(2w + dlog ke+ dlog 2we) < n.

We divide input variables to 2kw blocks. There are dn/(2kw)e = a variables

in each block. After that we divide each block to address and value variables.

First dlog ke+ dlog 2we variables of block are address and other a− dlog ke+

dlog 2we = b variables of block are value.

We call xp0, . . . , x
p
b−1 value variables of p-th block and yp0 , . . . , y

p
dlog ke+dlog 2we

are address variables, for p ∈ {0, . . . , 2kw − 1}.
Boolean function SAFk,w(X) is iterative process based on definition of fol-

lowing six functions:

Function AdrK : {0, 1}n × {0, . . . , 2kw − 1} → {0, . . . , k − 1} obtains firsts

part of block’s address. This block will be used only in step of iteration which

number is computed using this function:

AdrK(X, p) =

dlog ke−1∑
j=0

ypj · 2
j(mod k).

Function AdrW : {0, 1}n × {0, . . . , 2kw − 1} → {0, . . . , 2w − 1} obtains

second part of block’s address. It is the address of block within one step of

iteration:

AdrW (X, p) =

dlog 2we−1∑
j=0

ypj+dlog ke · 2
j(mod 2w).

Function Ind : {0, 1}n×{0, . . . , 2w−1}×{0, . . . , k−1} → {0, . . . , 2kw−1}
obtains number of block by number of step and address within this step of

iteration:

Ind(X, i, t) =


p, where p is minimal number of block such that

AdrK(X, p) = t and AdrW (X, p) = i,

−1, if there are no such p.

Function V al : {0, 1}n × {0, . . . , 2w − 1} × {1, . . . , k} → {−1, . . . , w − 1}
obtains value of block which have address i within t-th step of iteration:

4 K.KHADIEV

V al(X, i, t) =

{ ∑b−1
j=0 x

p
j (mod w), where p = Ind(X, i, t), for p ≥ 0,

−1, if Ind(X, i, t) < 0.

Two functions Step1 and Step2 obtain value of t-th step of iteration. Func-

tion Step1 : {0, 1}n × {0, . . . , k − 1} → {−1, w . . . , 2w − 1} obtains base for

value of step of iteration:

Step1(X, t) =


−1, if Step2(X, t− 1) = −1,

0, if t = −1,

V al(X,Step2(X, t− 1), t) + w, otherwise.

Function Step2 : {0, 1}n×{0, . . . , k− 1} → {−1, . . . , w− 1} obtain value of

t-th step of iteration:

Step2(X, t) =


−1, if Step1(X, t) = −1,

0, if t = −1

V al(X,Step1(X, t), t), otherwise.

Note that address of current block is computed on previous step.

Result of Boolean function SAFk,w(X) is computed by following way:

SAFk,w(X) =

{
0, if Step2(X, k − 1) ≤ 0,

1, otherwise.

Let us discuss complexity properties of this function in Lemma 3 and Lemma

4. Proof of Lemma 3 uses following technical Lemmas 1 and 2.

Lemma 1. Let integer k = k(n) and w = w(n) are such that inequality (1)

holds. Let partition π = (XA, XB) is such that XA contains at least w value

variables from exactly kw blocks. Then XB contains at least w value variables

from exactly kw blocks.

Proof. Let IA = {i : XA contains at least w value variables from i-th

block}. And let i′ 6∈ IA then XA contains at most w − 1 value variables from

i′-th block. Hence XB contains at least b− (w − 1) value variables from i′-th

block. By (1) we have:

b− (w − 1) = (n/(2kw)− (dlog ke+ dlog 2we)− (w − 1) >

> (2w+dlog ke+dlog 2we)−(dlog ke+dlog 2we)−(w−1) = 2w−(w−1) = w+1.

Let set I = {0, . . . , 2kw − 1} is numbers of all blocks and i′ ∈ I\IA. Note

that |I\IA| = 2kw − kw = kw. �

Let us choose any order θ ∈ Θ(n). And we choose partition π = (XA, XB) ∈
Π(θ) such that XA contains at least w value variables from exactly kw blocks.

Let IA = {i : XA contains at least w value variables from i-th block} and

IB = {0, . . . , 2kw − 1}\IA. By Lemma 1 we have |IB| = kw.

5

For input ν we have partition (σ, γ) with respect to π. We define sets

Σ ⊂ {0, 1}|XA| and Γ ⊂ {0, 1}|XB | for input with respect to π, that satisfies

the following conditions: for σ, σ′ ∈ Σ, γ ∈ Γ and ν = (σ, γ), ν ′ = (σ′, γ) we

have

• for any r ∈ {0, . . . , k − 1} and z ∈ {0, . . . , w − 1} it is true that

Ind(ν, z, r) ∈ IA;

• for any r ∈ {0, . . . , k − 1} and z ∈ {w, . . . , 2w − 1} it is true that

Ind(ν, z, r) ∈ IB;

• there are r ∈ {1, . . . , k−1}, z ∈ {0, . . . , w−3}, such that V al(ν ′, z, r) 6=
V al(ν, z, r);

• value of xpj is 0, for any p ∈ IB and xpj ∈ XA;

• value of xpj is 0, for any p ∈ IA and xpj ∈ XB;

• following statement is right:

(2) V al(ν, w − 2, t) = 2w − 2, V al(ν ′, w − 1, t) = 2w − 1, for 0 ≤ t ≤ k − 1;

(3) V al(ν, 2w − 2, t) = w − 2, V al(ν, 2w − 1, t) = w − 1 for 0 ≤ t ≤ k − 2;

• for p = Ind(ν, 2w − 1, k − 1) and p′ = Ind(ν, 2w − 2, k − 1) following

statement is right:

(4) V al(ν, 2w − 1, k − 1) = 0 V al(ν, 2w − 2, k − 1) = 1.

Let us show needed property of this sets.

Lemma 2. Sets Σ and Γ such that for any sequence v = (v0, . . . , v2(k−1)(w−2)−1),

for vi ∈ {0, . . . , w − 1}, there are σ ∈ Σ and γ ∈ Γ such that: for each

i ∈ {0, . . . , (k−1)(w−2)−1} there are ri ∈ {1, . . . , k−1} and zi ∈ {0, . . . , w−3}
such that V al(ν, zi, ri) = ai, and for each i ∈ {(k−1)(w−2), . . . , 2(k−1)(w−
2) − 1} there are ri ∈ {1, . . . , k − 1} and zi ∈ {w, . . . , 2w − 3} such that

V al(ν, zi, ri) = ai.

Proof. Let pi ∈ IA, such that pi = Ind(ν, zi, ri), for i ∈ {0, . . . , (k−1)(w−
2)− 1}. Let us remind that value of xpij is 0 for any xpij ∈ XB. Hence value of

V al(ν, zi, ri) depends only on variables from XA. At least w value variables

of pi-th block belong to XA. Hence we can choose input σ with ai 1’s in value

variables of pi-th block which belongs to XA.

Input γ ∈ Γ and i ∈ {(k− 1)(w− 2), . . . , 2(k− 1)(w− 2)− 1} we can proof

by the same way. �

Lemma 3. For integer k = k(n), w = w(n) and Boolean function SAFk,w,

such that inequality (1) holds, the following statement is right: N(SAFk,w) ≥
w(k−1)(w−2).

Proof. Let us choose any order θ ∈ Θ(n). And we choose partition π =

(XA, XB) ∈ Π(θ) such that XA contains at least w value variables from exactly

kw blocks. Let us consider two different inputs σ, σ′ ∈ Σ and corresponding

6 K.KHADIEV

mappings τ and τ ′. Let us show that subfunctions SAFk,w|τ and SAFk,w|τ ′
are different. Let r ∈ {1, . . . , k − 2} and z ∈ {0, . . . , w − 3} are such that

s′ = V al(ν ′, z, r) 6= V al(ν, z, r) = s. Let us choose γ ∈ Γ such that V al(ν, s+

w, r) = w−1, V al(ν ′, s′+w, r) = w−2 and V al(ν, i, r−1) = V al(ν ′, i, r−1) =

z, where i ∈ {w, . . . , 2w − 1}.
It means Step2(ν, r − 1) = Step2(ν ′, r − 1) = z and Step2(ν, r) = w −

1, Step2(ν ′, r) = w − 2. Also conditions (2), (3) mean that Step2(ν, t) =

w − 1, Step2(ν ′, t) = w − 2, for r < t ≤ k. Hence Step1(ν, k − 1) = 2w −
2, Step1(ν ′, k − 1) = 2w − 1 and by (4) we have SAFk,w(ν) 6= SAFk,w(ν ′).

Let r = k−1, z ∈ {0, . . . , w−3} such that s′ = V al(ν ′, z, r) 6= V al(ν, z, r) =

s. Let us choose γ ∈ Γ such that V al(ν, s + w, r) = 1 ,V al(ν ′, s′ + w, r) = 0.

Therefore SAFk,w|τ (γ) 6= SAFk,w|τ ′(γ) also SAFk,w|τ 6= SAFk,w|τ ′ .
Let us compute |Σ|. For σ ∈ Σ by Lemma 2 we can get each value of

V al(ν, i, t) for 0 ≤ i ≤ w − 3 and 1 ≤ t ≤ k − 1. It means |Σ| ≥ w(k−1)(w−2).

Therefore Nπ(SAFk,w) ≥ w(k−1)(w−2) and by definition of N(SAFk,w) we have

N(SAFk,w) ≥ w(k−1)(w−2). �

Lemma 4. There is 2k-OBDD P of width 3w + 1 which computes SAFk,w

Proof. Let us construct P . Let us use natural order (1, . . . , n) and in

each (2t− 1)-th layer P computes Step1(X, t− 1) and in each (2t)-th layer it

computes Step2(X, t− 1). Let us consider computation on input ν ∈ {0, 1}n.

Let us consider layer 2t − 1. The first level contains w nodes for store

each value of function Step2(ν, t − 2). For i-th node of first level program

P checks each block with the following conditions AdrK(ν, j) = t − 1 and

AdrW (ν, j) = i. If this condition is true then P computes V al(ν, i, t − 1) by

this j-th block. The result of computation by this j-th block is the value of

Step1(ν, t−1). If this condition is false P goes to next block without branching.

Note that computing of V al(ν, i, t− 1) does not depend on i if we know j.

And it means the part for computing of V al(ν, i, t−1) is common for different

i.

In each level program P has w+1 nodes for result of layer. After computing

of Step1(ν, t − 1) by block j program P goes to one of result of layer nodes.

From result of layer nodes P goes to end of layer without branching, because

result of layer is already obtained. If block j such that AdrK(ν, j) = t−1 and

AdrW (ν, j) = i are not founded then P goes to −1 result of layer node and

from this node P goes to 0 result of program node without branching.

Let us consider layer 2t. The first level has w nodes for store each value

of function Step1(ν, t− 1). For i-th node of first level program P checks each

block for the following condition AdrK(ν, j) = t− 1 and AdrW (ν, j) = i+w.

If this condition is true then P computes V al(ν, i+w, t−1) by this j-th block.

The result of computation by this j-th block is the value of Step2(ν, t− 1). If

this condition is false P goes to next block without branching.

7

In each level program P has w + 1 nodes for result of the layer. After

computing of Step2(ν, t − 1) by block j program P goes to one of result of

layer nodes.

In last layer program P computes V al(ν, i+w, k−1) and if V al(ν, i+w, k−
1) = 0 then P answers 0 and answers 1 otherwise.

Let us compute width of program. The block checking procedure needs only

2 nodes in level. Hence for each value of i we need 2w nodes in checking levels.

Computing of V al(ν, i, t − 1) and V al(ν, i + w, t − 1) needs w nodes in non

checking levels. And w nodes for going to next block in case the block is not

needed for non checking levels. And result of layer nodes needs w + 1 nodes.

Therefore we have at most 3w + 1 nodes on each layer. �

From paper [5] we have the following lower bound.

Theorem 2 ([5]). Let function f(X) is computed by k-OBDD P of width w,

then N(f) ≤ w(k−1)w+1.

Finally we complite the proof of Theorem 1. It is obvious that k− OBDDbw/16c−3 ⊆
k− OBDDw. Let us show inequality of this classes. Let us look at func-

tion SAFdk/3e,dw/4e. By Lemma 4 we have SAFdk/3e,dw/4e ∈ k− OBDDw. By

Lemma 3 N(SAFdk/3e,dw/4e) ≥ (dw/4e)(dk/3e−1)(dw/4e−2).

Let us compute N(SAFdk/4e,dw/5e)/(bw/16c − 3)(k−1)(bw/16c−3)+1.

N(SAFdk/3e,dw/4e)

(bw/16c − 3)(k−1)(bw/20c−3)+1
≥ (dw/4e)(dk/3e−1)(dw/4e−2)

(bw/16c − 3)(k−1)(bw/16c−3)+1
=

= 2(dk/3e−1)(dw/4e−2) log(dw/4e)−((k−1)(bw/16c−3)+1) log(bw/16c−3) ≥
≥ 2(dk/3e−1)(dw/4e−2) log(dw/4e)−(k−1)(bw/16c−2) log(bw/16c−3) >

> 2
1
4

(k−1)(dw/4e−2) log(dw/4e)−(k−1)(bw/16c−2) log(bw/16c−3) >

> 2(k−1)(dw/16e−2) log(dw/4e)−(k−1)(bw/16c−2) log(bw/16c−3) > 1

Hence N(SAFdk/3e,dw/4e) > (bw/16c − 3)(k−1)(bw/16c−3)+1 and by Theorem

2 we have SAFdk/3e,dw/4e /∈ k− OBDDbw/16c−3. �

References

[1] Farid Ablayev. Electronic Colloquium on Computational Complexity (ECCC).

21 (4) (1997).

[2] Farid Ablayev, Aida Gainutdinova, Marek Karpinski, Cristopher Moore, Cristo-

pher Pollette. Information and Computation. 203 (2), 145–162 (2005).

[3] Farid Ablayev, Aida Gainutdinova, Kamil Khadiev, Abuzer Yakaryılmaz. LNCS.

8614, 53-64 (2014).

[4] Ablayev, F., Karpinski, M. ICALP’96 Lecture Notes in Computer Science. 1099,

348-356 (1998).

[5] F. Ablayev and K. Khadiev. Russian Mathematics. 57 (3), 46–50 (2013).

8 K.KHADIEV

[6] Bollig, B., Sauerhoff, M., Sieling, D., Wegener, I. Theoretical Computer Science.

205 (1-2), 45-60 (1998).

[7] Borodin, A., Razborov, A., Smolensky, R. Computational Complexity. 3 (1),

1-18, (1993).

[8] Hromkovic, J., Sauerhoff, M. 17th STACS, LNCS. 1770, 145-156, Springer-

Verlag (2000).

[9] Hromkovic, J., Sauerhoff, M. Theory of Computing Systems. 36, 159-182 (2003).

[10] Kamil Khadiev, Abuzer Yakaryılmaz. Sixth Workshop on Non-Classical Models

of Automata and Applications (NCMA 2014). Short Papers, 13-18 (2014).

[11] Sauerhoff, M. Theory of Computing Systems. 33, 313-329 (2000).

[12] Thathachar, J.S., 30th ACM STOC, 653-662. ACM (1998).

[13] Ingo Wegener Branching Programs and Binary Decision Diagrams: Theory and

Applications (Society for Industrial and Applied Mathematics, Philadelphia

2000)

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

