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Abstract

We prove several results which, together with prior work, provide a nearly-complete picture
of the relationships among classical communication complexity classes between P and PSPACE,
short of proving lower bounds against classes for which no explicit lower bounds were already
known. Our article also serves as an up-to-date survey on the state of structural communication
complexity.

Among our new results we show that MA 6⊆ ZPPNP[1], that is, Merlin–Arthur proof systems
cannot be simulated by zero-sided error randomized protocols with one NP query. Here the
class ZPPNP[1] has the property that generalizing it in the slightest ways would make it contain
AM ∩ coAM, for which it is notoriously open to prove any explicit lower bounds. We also prove
that US 6⊆ ZPPNP[1], where US is the class whose canonically complete problem is the variant of
set-disjointness where yes-instances are uniquely intersecting. We also prove that US 6⊆ coDP,
where DP is the class of differences of two NP sets. Finally, we explore an intriguing open issue:
are rank-1 matrices inherently more powerful than rectangles in communication complexity?
We prove a new separation concerning PP that sheds light on this issue and strengthens some
previously known separations.

1 Introduction

Complexity classes form the infrastructure of classical complexity theory. They are used to express
the power of models of computation, characterize the complexities of important computational
problems, and catalyze proofs of other results. A central project is to ascertain the full, intricate
landscape of relationships among complexity classes.

Beginning with [BFS86], there has been a lot of research on the analogues of classical (Turing
machine) complexity classes in two-party communication complexity. The analogue of P (the class of
decision problems solvable in polynomial time) is the class of functions F : {0, 1}n×{0, 1}n → {0, 1}
for which Alice and Bob, given x and y respectively, can evaluate F (x, y) with a protocol that uses
polylogarithmically many bits of communication. For other classical complexity classes representing
other models of computation, one can generally define, in a canonical way, associated communica-
tion complexity classes representing associated models of communication. There are many motiva-
tions for studying the relationships (inclusions and non-inclusions) between these communication
complexity classes.r A holy grail of classical complexity is to prove separations of classes between P and PSPACE.

Separations relative to oracles can often be viewed as class separations in the restricted
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setting of query complexity ; see [Ver99] for an excellent survey. Communication complexity
can be viewed as a restricted (but generally less restricted than query complexity) setting
for which lower bounds are more difficult to obtain. Such separations in restricted settings
are sometimes construed as evidence for the classical separations, or at least as barriers to
refuting the classical separations. A stronger form of relativization barriers is known as
algebrization [AW09], which directly employs communication complexity class separations.r Proving lower bounds against strong communication complexity classes has applications to
other areas of theoretical computer science. One of the most notorious open problems in
communication complexity is to prove lower bounds against the analogue of the polynomial
hierarchy (PH) for any explicit two-party function. Proving PH lower bounds is a necessary
step for obtaining strong rank rigidity lower bounds [Raz89, Lok01, Lok09, Wun12] (as well
as margin complexity rigidity lower bounds [LS09]), which in turn are related to circuit
complexity [Val77]. Lower bounds against PH are also related to graph complexity [PRS88,
Juk06]. It even remains open to prove communication lower bounds against the subclass of
PH known as AM (Arthur–Merlin games) for any explicit function (which would be relevant
to streaming delegation [CCMT14, KP13, GR13, CCGT14, CCM+15, KP14]).r Communication complexity has a menagerie of techniques for proving lower bounds (among
the oldest being discrepancy and corruption). These techniques often provide lower bounds
against powerful communication complexity classes, and in some cases turn out to be equiv-
alent to the communication measures corresponding to those classes (e.g., discrepancy is
equivalent to PP communication [Kla07], and corruption is equivalent to SBP communication
[GW14]). See [GLM+15] for more background on this. Thus, by studying complexity classes,
as a byproduct we study the relative strength of lower bound techniques.r The various models of communication corresponding to complexity classes are mathematically
interesting because protocols in these models can be viewed as succinct representations of
boolean matrices. The study of classes exposes natural questions about the combinatorial
power of such succinct representations.

We contribute to the exploration of the communication complexity landscape by filling in many
of the remaining gaps in the known relationships among classes, and discovering new techniques
and insights along the way. At a glance, the state of affairs (including our new results) is sum-
marized in Figure 1, which shows a map of known inclusions and non-inclusions between pairs of
communication classes. In Section 2 we state our results more precisely and provide some intuition
for the proofs. In Section 3, we provide a comprehensive survey of all the nontrivial (non-)inclusions
among the traditional classes depicted in Figure 1. This updates previous surveys by Babai, Frankl,
and Simon [BFS86] and Halstenberg and Reischuk [HR90].

We refer to [KN97, Juk12] for background on communication complexity. In Appendix B we
provide a catalog of communication complexity class definitions; throughout the text, we provide
definitions on a “need-to-know” basis. If C is the name of a model (e.g., P for deterministic or NP
for nondeterministic), we follow the convention of using C to denote both a complexity class and
the corresponding complexity measure: C(F ) denotes the minimum cost of a correct protocol for
the (possibly partial) two-party function F in model C, and C denotes the class of all (families of)
partial functions F with C(F ) ≤ poly(log n).
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Figure 1: C1 → C2 denotes C1 ⊆ C2, and C1 99K C2 denotes C1 6⊆ C2. Red indicates new results.
Blue indicates classes for which no explicit lower bounds are known.
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2 Our Contributions

Several of our results concern two-party composed functions, so we introduce some general notation
for this. A composed function is of the form f ◦gm where f : {0, 1}m → {0, 1} is a (possibly partial)
outer function and g : {0, 1}b × {0, 1}b → {0, 1} is an inner function also called a gadget. We write
F := f ◦ gm : {0, 1}n × {0, 1}n → {0, 1} where n := m · b. We view the inputs to Alice and Bob
as x, y ∈ ({0, 1}b)m, which are partitioned into blocks xi, yi ∈ {0, 1}b for i ∈ [m]. The goal is to
compute F (x, y) := f(g(x1, y1), . . . , g(xm, ym)).

2.1 MA 6⊆ ZPPNP[1]

A Merlin–Arthur (MA) communication protocol is a proof system in which a nondeterministic
party called Merlin sends a proof string (depending on the input) to Alice and Bob (collectively
constituting Arthur), who then execute a randomized protocol to verify the proof. Merlin–Arthur
communication protocols have been studied many times [Kla03, RS04, AW09, GS10, Kla11, GR13,
GR15], starting with the work of Klauck [Kla03], who gave a Ω(

√
n) lower bound on the MA

communication complexity of set-disjointness. In contrast, for the related (and stronger) model of
Arthur–Merlin (AM) communication protocols, in which Merlin’s proof string may depend on Alice’s
and Bob’s randomness, no nontrivial lower bound is known for any explicit function, and such lower
bounds have become very sought-after in the recent literature [LS09, PSS14, KP14, CCM+15].

Our first result concerns the relationship between MA and another class, ZPPNP[1], which is
a slightly obscure but intriguing character with many curious properties. A ZPP-type protocol
is randomized and may output the correct answer or ⊥ (representing “don’t know”), and must
output the correct answer with high probability on every input; granting the protocol access to one
query to an NP oracle yields ZPPNP[1]. It is not a priori clear that the model is robust with respect
to the choice of threshold for the success probability, since standard amplification by repetition
would increase the number of NP oracle queries. However, it was shown in [CP08] that ZPPNP[1]

does indeed admit efficient amplification as long as the success probability is > 1/2 (the proof for
time-bounded complexity also works for communication complexity); hence we define the model
with success probability some constant > 1/2, say 3/4.

If we allowed ZPPNP[1] to have success probability < 1/2, the class would change drastically:
it would contain AM ∩ coAM (see Section 3), and hence proving explicit lower bounds for the
communication version would yield breakthrough AM communication lower bounds. Granting the
model access to two nonadaptive NP queries (and requiring success probability > 1/2) would also
encompass AM ∩ coAM. Thus, in a sense, ZPPNP[1] represents a boundary beyond which AM
lower bounds would be the next step. The class ZPPNP[1] is also sandwiched between BPP and
S2P [CC06]; S2P is a subclass of the polynomial hierarchy that has not been studied before in
communication complexity (the definition appears in Appendix B), and no nontrivial lower bounds
against it are known for any explicit function. This is another sense in which ZPPNP[1] constitutes
a new frontier toward the elusive goal of proving explicit PH communication lower bounds. We also
mention that ZPPNP[1] shows up frequently in the literature on the “two queries problem” (e.g., if

P
NP[2]
‖ ⊆ ZPPNP[1] then PH = S2P [Tri10]).

We prove that MA 6⊆ ZPPNP[1] in the setting of communication complexity. This can be inter-
preted as saying that one-round non-interactive1 proof systems cannot be made to have zero-sided

1Here, the term non-interactive means that Alice and Bob cannot interact with Merlin other than receiving the
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error, even if the proof is generalized to an NP oracle query that depends on the randomness.
Before officially stating the theorem, we give the relevant formal definitions. An MA communi-

cation protocol computing F : {0, 1}n×{0, 1}n → {0, 1} consists of a randomized two-party protocol
which takes as input, in addition to the usual inputs x and y, a proof string (witness) w ∈ {0, 1}k
that is visible to both Alice and Bob. The completeness criterion is that for every (x, y) ∈ F−1(1)
there exists a w such that the protocol accepts with probability at least 3/4, and the soundness
criterion is that for every (x, y) ∈ F−1(0) and every w, the protocol rejects with probability at least
3/4. The cost is the witness length k plus the length of the subsequent transcript between Alice
and Bob.

A ZPPNP[1] protocol Π computing F is a distribution over PNP[1]-type protocols, each of which
is of the following form: There is a deterministic protocol where for each leaf v having associated
rectangle Rv, there is also an associated collection of “witness rectangles”

{
Sv,w ⊆ Rv : w ∈

{0, 1}k
}

and an associated “output function” ov : {0, 1} → {0, 1,⊥}. The output of the PNP[1]-
type protocol on input (x, y) is obtained by running the deterministic part to reach a leaf v, then
applying ov to the indicator of whether (x, y) ∈

⋃
w Sv,w. The correctness criterion is that for every

(x, y) ∈ F−1, P
[
Π(x, y) ∈ {F (x, y),⊥}

]
= 1 and P

[
Π(x, y) = F (x, y)

]
≥ 3/4. The cost is the witness

length k plus the maximum communication cost of the deterministic part of any of the constituent
PNP[1]-type protocols. The result of [CP08] shows that changing the success probability from 3/4
to any other constant strictly between 1/2 and 1 would only change the measure ZPPNP[1](F ) by a
constant factor.

We prove a lower bound for the block-equality function Block-Eq, defined as follows:2 Given√
n instances of the equality function Eq of length

√
n, is at least one of them a yes-instance? More

formally, we have Block-Eq := Or ◦Eqm where the input to Or is m :=
√
n bits, and each input

to Eq is b :=
√
n bits. In other words, writing x := x1 · · ·x√n ∈ ({0, 1}

√
n)
√
n and y := y1 · · · y√n ∈

({0, 1}
√
n)
√
n, we have Block-Eq(x, y) = 1 iff xi = yi for some i. Note that Block-Eq ∈ MA

since i can be nondeterministically guessed by Merlin, and then xi = yi can be verified using a
randomized protocol for Eq. (It was first noticed in [LR92] that Block-Eq ∈ Σ2P ∩ Π2P, which
is a superset of MA.)

Theorem 1. ZPPNP[1](Block-Eq) = Θ(
√
n), and hence MA 6⊆ ZPPNP[1].

To prove Theorem 1 (Section 4), we apply a new lower bound technique that combines the
corruption bound with the 1-monochromatic rectangle size bound and asserts that they hold si-
multaneously (under the same distribution over inputs). We prove that, perhaps surprisingly, this
combined technique gives a lower bound for ZPPNP[1] (though neither of the individual bounds
suffices).

To apply our technique to Block-Eq, we first note that it is straightforward to achieve the
two bounds separately: the 1-monochromatic rectangle size bound follows by simple counting,
and the corruption bound follows by using Razborov’s corruption lemma for the set-intersection
function Inter [Raz92] together with a simple reduction from Inter to Block-Eq. However,
the latter does not result in a distribution satisfying the 1-monochromatic rectangle size bound
for Block-Eq. To fix this problem, we argue that if we average Razborov’s distribution over all
ways of implementing the reduction (of which there are many), then the corruption bound is still
satisfied, and now the 1-monochromatic rectangle size bound is also satisfied.

proof string.
2The complement of block-equality is often known as list-non-equality.
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2.2 US 6⊆ ZPPNP[1]

For the set-intersection function Inter, Alice and Bob are each given a subset of [n] (and we identify
the subset with its characteristic vector, a length-n bit string), and the goal is to output 1 when
the sets are intersecting and 0 when they are disjoint.3 Phrased as a composed function, Inter :=
Or ◦ Andn (for single-bit And). This is the canonical NP-complete problem in communication
complexity, holding a comparable status to satisfiability, the canonical NP-complete problem in
time-bounded complexity.

In the literature, “unique-set-intersection” commonly refers to the partial function version of
Inter where the intersection is promised to have size 0 or 1. We propose a change in terminology, in
order to be consistent with the following corresponding terminology from time-bounded complexity
(see, e.g., [BG82, VV86, CKR95]): Unique-satisfiability is the problem of determining whether the
number of satisfying assignments of a formula is exactly 1, and is complete for the complexity
class called US. Unambiguous-satisfiability is the problem of determining whether the number of
satisfying assignments of a formula is 0 or 1 under the promise that one of these cases holds, and
is complete for the complexity class called UP.

Therefore, we make the following declarations: Unique-set-intersection is the total function
Unique-Inter : {0, 1}n×{0, 1}n → {0, 1} that maps (x, y) to 1 iff |x∩y| = 1, i.e., Unique-Inter :=
Unique-Or ◦ Andn where Unique-Or(z) = 1 iff the Hamming weight of z is 1. Unambiguous-
set-intersection is the partial function Unambig-Inter : {0, 1}n × {0, 1}n → {0, 1} that maps
(x, y) to |x ∩ y| if the latter is in {0, 1}, i.e., Unambig-Inter := Unambig-Or ◦ Andn where
Unambig-Or(z) equals the Hamming weight of z if the latter is in {0, 1}.

Note that Unique-Inter is US-complete, where a cost-k US communication protocol is defined
as a collection of rectangles

{
Rw ⊆ {0, 1}n × {0, 1}n : w ∈ {0, 1}k

}
, where on input (x, y) the

output of the protocol is 1 iff (x, y) is in Rw for exactly one w.

Theorem 2. ZPPNP[1](Unique-Inter) = Θ(n), and hence US 6⊆ ZPPNP[1].

We give two proofs of Theorem 2. Both proofs show that Theorem 2 holds even under the
promise that the input sets intersect in at most two coordinates. Also, in both proofs, handling
ZPPNP[1] instead of PNP[1] incurs almost no extra complication.

The first proof (Section 4) employs the same lower bound technique as in Theorem 1, but where
we use Razborov’s corruption lemma [Raz92] directly (and we must do a little analysis to verify the
1-monochromatic rectangle size bound). The optional second proof (relegated to Appendix A) uses
information complexity tools (including an adaptation of the “partial information cost” approach
from [JKS03]) and, although longer to write, has some minor advantages over the first proof: It
is more self-contained, as it does not rely on the corruption lemma (only on some basic facts that
are standard in information complexity). Also, it directly handles success probability 1/2 + ε (for
any constant ε > 0) without relying on the amplification result of [CP08] (whereas the first proof
assumes success probability 0.999).

2.3 US 6⊆ coDP

The class DP was introduced in [PY84] to capture the complexity of certain exact versions of
optimization problems. A set (of all 1-inputs of a function) is in DP iff it is the difference between

3We let “set-disjointness” refer to the complementary function where 1-inputs are disjoint.
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two NP sets. The classes P, NP, and DP are the 0th, 1st, and 2nd (respectively) levels of the so-called
boolean hierarchy.

We have US ⊆ DP since to check that there is exactly one witness, we can use an NP computation
to check that there is at least one witness, and another to check that there are at least two witnesses,
and require that the first computation returns 1 and the second returns 0. However, it is unlikely
that US ⊆ coDP: [CKR95] showed that this inclusion cannot hold in the classical time-bounded
setting unless the polynomial hierarchy collapses. This result does not yield a communication
separation, since it is unknown whether the polynomial hierarchy collapses in the communication
setting. Nevertheless, we show that indeed US 6⊆ coDP in communication complexity.

Formally, a cost-k coDP communication protocol is defined as a pair of collections of rectangles,{
Sw ⊆ {0, 1}n × {0, 1}n : w ∈ {0, 1}k

}
and

{
Tw ⊆ {0, 1}n × {0, 1}n : w ∈ {0, 1}k

}
, where on

input (x, y) the output is 0 iff (x, y) ∈
⋃
w Sw r

⋃
w Tw.

Theorem 3. coDP(Unique-Inter) = Θ(n), and hence US 6⊆ coDP.

To prove Theorem 3 (Section 4), we show that the same lower bound technique we introduced for
ZPPNP[1] (the combination of the corruption bound and the 1-monochromatic rectangle size bound)
also lower bounds coDP complexity. Thus we can simply reuse the application of the technique to
Unique-Inter from Theorem 2. (Reusing the application to Block-Eq from Theorem 1 would
show that Block-Eq 6∈ coDP, but in fact Block-Eq 6∈ PNP ⊇ coDP was already known [IW10].)

2.4 ZPPNP[1] ⊆ PostBPP

Consider bounded-error randomized computations (like in BPP) but with postselection: the output
may come from {0, 1,⊥} and must be correct with high probability conditioned on not outputting
⊥ (and the probability of this conditioning event must be positive). The complexity class corre-
sponding to this model was originally called BPPpath [HHT97], but the name PostBPP (inspired by
[Aar05]) has gained popularity in the recent literature ([GLM+15] is one example) and seems more
appropriate, so we use it instead.

According to modern conventions, the standard way to define the cost of a PostBPP communi-
cation protocol for F would be as the communication cost plus log(1/α), where α is the minimum
over all (x, y) ∈ F−1 of the probability of not outputting ⊥. (Allowing public randomness and
not charging for α would enable PostBPP protocols to compute every function with constant cost.)
Similarly, the cost of a PP (i.e., unbounded-error randomized) protocol would be the communica-
tion cost plus log(1/ε) where 1/2 + ε is the minimum over all (x, y) ∈ F−1 of the probability of
outputting the correct answer.

However, for reasons that will become clear in Section 2.5, we choose to revert to the original
convention of [BFS86] and define PostBPP and PP in a slightly different but equivalent way: we
do not charge for α or ε but we require the public randomness to be uniformly distributed over
{0, 1}k and we charge for k. For both PostBPP and PP, this cost measure is equivalent to the above
“modern” definition within a constant factor and additive O(log n) term, by standard sparsification
of the public randomness [New91].

Formally, we define a PostBPP communication protocol Π for F in the following succinct way:
For each outcome of the public randomness (which is uniformly distributed over {0, 1}k) there
is a deterministic protocol outputting values in {0, 1,⊥}. For each (x, y) ∈ F−1 we must have
P
[
Π(x, y) = F (x, y)

]
> 2 · P

[
Π(x, y) = 1− F (x, y)

]
. The cost is the randomness length k plus the

maximum communication cost of any of the constituent deterministic protocols.
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A priori it is not clear that any explicit lower bounds for ZPPNP[1] follow from prior work. The
following result shows that in fact they do, since many explicit lower bounds for PostBPP were
known (see Section 3).

Theorem 4. PostBPP(F ) ≤ O
(
ZPPNP[1](F ) + log n

)
for all F , and hence ZPPNP[1] ⊆ PostBPP.

The proof of Theorem 4 (Section 5) also works for time-bounded complexity, and does not exploit
any special properties of communication. Intuitively, the worst case for simulating a ZPPNP[1]

protocol is the following situation: Whenever the NP oracle responds “0” the protocol outputs the
right answer, and whenever the NP oracle responds “1” the protocol outputs ⊥ but would have
output the wrong answer if the response were “0”. In this situation, pretending the oracle always
responds “0” would yield a BPP protocol (this is where we crucially need the success probability to
be > 1/2). To handle more general situations, we must also randomly guess and verify a witness
for the NP query, outputting ⊥ if the witness is invalid.

2.5 Open issue: Rank-1 vs. rectangles

The classes PostBPP and PP can be further generalized by allowing the use of private randomness,
which does not count toward the cost. This gives rise to the so-called “unrestricted probabilities”
classes UPostBPP (which was defined, but not extensively studied, in [GLM+15]) and UPP (which
is well-studied [PS86, For02, She11b, RS10]). In UPostBPP and UPP we can dispense with public
randomness altogether as the public coins could be tossed privately by Alice and then sent to Bob.

Combinatorially, PostBPP and PP protocols of cost c induce a distribution over 2c labeled
rectangles (rank-1 matrices with 0-1 entries) each occurring with a “restricted” probability of
at least 2−c (Observations 51 and 56). In the case of UPostBPP and UPP there is a similar
characterization with rectangles replaced by nonnegative rank-1 matrices (Observations 52 and 57).
A natural question arises:

Informal question: Are rank-1 matrices inherently more powerful than rectangles in
communication complexity?

While it has been shown that, e.g., PP 6= UPP [BVdW07, She08], the known examples of func-
tions F ∈ UPPrPP can actually be computed without exploiting the full power of private random-
ness (their rank-1 property): we can use a UPP protocol whose associated rank-1 matrices are still
rectangles, but occurring with unrestricted, possibly tiny, probability. We conclude that “PP vs.
UPP” is not the right way to formalize our informal question (and the existing proofs for PP 6= UPP
do not incidentally answer our question).

A better formalization is as follows. We define new communication classes, UPostBPP� ⊆
UPostBPP and UPP� ⊆ UPP, in the same way as PostBPP and PP, except allowing the public
randomness to be arbitrarily distributed over {0, 1}k (still charging for k and not for α or ε).
Combinatorially, we have a distribution over 2k labeled rectangles, but with no restrictions on their
probabilities. Our informal question can now be formalized as follows:

Formal question: Do we have UPostBPP = UPostBPP�? How about UPP = UPP�?

The seemingly minor syntactic generalization introduced in the definitions of the �-classes makes a
huge difference: We observe (Section 7) that PNP ⊆ UPostBPP�,4 whereas it is known that PostBPP

4This inclusion also holds for time-bounded complexity. In defining the time-bounded version of UPostBPP�, we
would allow the distribution of the random string to depend nonuniformly on the input length n, though for the
inclusion of PNP, the distribution is computable in exponential time given the string 1n.
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and PNP are incomparable (see Section 3). Hence UPostBPP� is a strict superset of both PostBPP
and PNP. This leaves us with no known examples of functions to witness a separation for our “rank-
1 vs. rectangle” question; currently the best gap is UPostBPP(F ) ≤ O(1) vs. UPostBPP�(F ) ≥
Ω(log n) where F is the usual Greater-Than function defined by F (x, y) = 1 iff x > y when
x, y ∈ [2n] are viewed as numbers. There is also no clear analogue of the “rank-1 vs. rectangle”
distinction in query complexity, so a separation of the two notions in communication complexity
might require interesting techniques. In fact, in the context of SBP (subclass of PostBPP), it can
be shown that rank-1 matrices do not add any power over mere rectangles [GLM+15].

2.6 PP 6⊆ UPostBPP�

Our final result is to develop and apply a useful lower bound method for the class UPostBPP�
introduced above. PostBPP already has a tight rectangle-based lower bound technique, which was
dubbed “extended discrepancy” in [GL14] but was used earlier in [Kla03] to show that PP 6⊆
PostBPP. We strengthen the latter result to show that PP 6⊆ UPostBPP�. (Showing PP 6⊆
UPostBPP remains open.) In our proof, we make use of the main theorem from [GLM+15], which
applies to composed functions where the gadget is as follows.

Definition 5. The confounding gadget g is defined by g(xi, yi) := 〈xi, yi〉 mod 2, where xi, yi ∈
{0, 1}b and the block length b is b(m) := 100 logm.

We introduce the confounded-majority function, defined as Conf-Maj := f ◦ gm where f is
the majority function and g is the confounding gadget. Note that Conf-Maj has input length
n := m · b = m · 100 logm and is in PP since Alice and Bob can pick i ∈ [m] uniformly at random
and then exchange b+ 1 ≤ O(log n) bits to evaluate g(xi, yi).

Theorem 6. UPostBPP�(Conf-Maj) = Θ(n), and hence PP 6⊆ UPostBPP�.

To prove Theorem 6 (Section 6) we introduce a lower bound technique for UPostBPP� that
strengthens the extended discrepancy bound (for PostBPP) by requiring it to hold under a product
distribution over inputs (analogously to how [PSS14] showed that the “monochromatic rectangle
size bound under product distributions” gives a lower bound for PNP). However, only a Ω(

√
n log n)

lower bound for Conf-Maj follows using this technique, so to get the Ω(n) lower bound in Theo-
rem 6, we generalize the technique further by allowing a rectangle’s size to be measured with respect
to some product distribution while its error is measured with respect to some other (arbitrary)
distribution. (This is very analogous to the idea of relative discrepancy [GKR15, FJK+15].) To
apply our general lower bound technique to Conf-Maj, we employ the communication-to-query
machinery from [GLM+15] in a new, somewhat indirect way.

Finally, we mention another intriguing property of UPostBPP�: By our lower bound technique
and the results of [GL14] it follows immediately that to prove the Log Rank Conjecture, i.e., that
P(F ) ≤ poly(log rank(F )) for all total boolean matrices F , it suffices to prove the same with
UPostBPP� instead of P. See Section 6 for more details.

3 Cartography

In this section we explore in detail the known (non-)inclusions shown on the map in Figure 1. We
have not drawn any redundant arrows in the map: other relationships can be inferred from those
shown; e.g., if C1 6⊆ C2 and C1 ⊆ C3 and C4 ⊆ C2, then C3 6⊆ C4.

9



Inclusions. The following inclusions also hold for time-bounded (Turing machine) complexity,
as they do not exploit any special properties of communication. Also recall that all our classes
consist of partial functions (promise problems); in particular, none of these inclusions exploit special
properties of total functions.

BPP ⊆ ZPPNP[1]: This was first shown implicitly in [NW94, GZ11]. A particularly clean
and elegant argument was given in [CC06].

ZPPNP[1] ⊆ PostBPP: This is our Theorem 4.

PNP
‖ ⊆ PostBPP: This was shown in [HHT97].

PNP ⊆ UPostBPP�: We sketch the proof of this in Section 7 (Observation 25).

SBP ⊆ AM: This was shown in [GS86].

AM ∩ coAM ⊆ ZPP
NP[2]
‖ : This follows from the well-known facts that AM = coR · NP and that

ZPP = RP ∩ coRP relativizes. (We do not know whether ZPP
NP[2]
‖ ad-

mits efficient amplification, but for concreteness we define it with success
probability 3/4.) The same argument shows that AM ∩ coAM would be
in ZPPNP[1] if we allowed the latter to have success probability a constant
less than 1/2.

PNP ⊆ S2P: This was shown in [RS98, Can96].

MA ⊆ S2P: This was shown in [RS98]. (It was shown in [Can96] that BPP ⊆ S2P.)

ZPPNP[1] ⊆ S2P: This was shown in [CC06].

S2P ⊆ ZPPNP: This was shown in [Cai07]. See also [FIKU08].

Non-inclusions. For a non-inclusion C1 6⊆ C2, the result is strengthened if we show that some
total function is in C1 but not in C2. All the following non-inclusions are known to hold for a total
function, except in cases where we say otherwise.

MA 6⊆ ZPPNP[1]: This is our Theorem 1.

US 6⊆ ZPPNP[1]: This is our Theorem 2.

US 6⊆ coDP: This is our Theorem 3.

RP 6⊆ US: This is fairly simple to show, but was not recorded in the literature before, so
we take the opportunity to do so in Section 7 (Observation 26).

NP ∩ coNP 6⊆ BPP: This was shown in [Kla03]. Of course, it is known that NP ∩ coNP = P for
total functions, so the function witnessing this is necessarily partial.

coNP 6⊆ SBP: This was shown in [GW14] using the corruption lemma of [Raz92].

P
NP[q+1]
‖ 6⊆ P

NP[q]
‖ : This holds for all constants q ≥ 0 [HR90]. It is also known that PNP[q] =

P
NP[2q−1]
‖ for all constants q ≥ 0 [Bei91], and hence PNP[q+1] 6⊆ PNP[q].

BPP 6⊆ PNP: This was implicitly shown in [PSS14], though only for a partial function (the
variant of gap-Hamming-distance with a constant relative gap). Progress to-
ward witnessing BPP 6⊆ PNP by a total function can be made in two directions:
finding a total function not in PNP that is in a small superclass of BPP, and
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finding a total function in BPP that is not in a large subclass of PNP. For
the former, MA 6⊆ PNP is witnessed by Block-Eq [IW10]. For the latter,
BPP 6⊆ PNP

‖ is witnessed by Greater-Than [HR90].5

SBP 6⊆ MA: This was shown in [GLM+15], though only for a partial function.

AM ∩ coAM 6⊆ PP: This was shown in [Kla11] (by combining the results of [Ver95, She11a]), though
only for a partial function.

PNP 6⊆ PP: This was shown in [BVdW07]; there it was only stated that UPP 6⊆ PP, but
the function witnessing this is, in fact, in PNP.

PP 6⊆ UPostBPP�: This is our Theorem 6. Previously, PP 6⊆ PostBPP was shown in [Kla03], and
PP 6⊆ PNP was known since the negation would imply ⊕P ⊆ PNP by binary
search, and a fairly simple proof that ⊕P 6⊆ PNP was given in [PSS14].

ZPP 6⊆ ⊕P: This is fairly simple to show, but was not recorded in the literature before, so
we take the opportunity to do so in Section 7 (Observation 27). Of course, it
is known that ZPP = P for total functions, so the function witnessing this is
necessarily partial. The non-equality total function Neq witnesses RP 6⊆ ⊕P.

⊕P 6⊆ UPP: This was shown in [For02].

Π2P 6⊆ UPP: This was shown in [RS10].

Open issues. In summary, everything is now known about the relations between pairs of classes
in Figure 1, except for the following conjectured non-inclusions:r PP 6⊆ UPostBPP (or even UPP 6⊆ UPostBPP),r UPostBPP 6⊆ UPP� (or even UPP 6⊆ UPP� or UPostBPP 6⊆ UPostBPP�),r AM ∩ coAM 6⊆ UPP (or even Σ2P ∩ Π2P 6⊆ UPostBPP� or AM 6⊆ UPostBPP�),r S2P 6⊆ UPP,

and except for conjectured non-inclusions that would entail explicit AM lower bounds6 or explicit
S2P lower bounds:r coNP 6⊆ AM (or even PSPACE 6⊆ AM ∩ coAM or UPP 6⊆ AM ∩ coAM),r SBP 6⊆ Σ2P (or even PSPACE 6⊆ S2P or UPP 6⊆ S2P),r ⊕P 6⊆ Π2P,r MA 6⊆ ZPP

NP[2]
‖ ,r PNP

‖ 6⊆ ZPP
NP[2]
‖ ,r AM ∩ coAM 6⊆ S2P,r UPostBPP� 6⊆ PSPACE,

and except for showing the following non-inclusions for total functions:

5It was only claimed in [HR90] that Greater-Than 6∈ P
NP[q]
‖ for any constant q, but in fact their proof shows

that Greater-Than 6∈ PNP
‖ .

6Note that if we had an AM∩ coAM lower bound for an explicit function F , then we would also have an AM lower
bound for the explicit function that maps ((b, x), y) 7→ F (x, y)⊕ b where b ∈ {0, 1}.
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r BPP 6⊆ PNP (or even ZPP
NP[2]
‖ 6⊆ PNP),r SBP 6⊆ MA (or even AM 6⊆ MA),r AM ∩ coAM 6⊆ PP (or even ZPP

NP[2]
‖ 6⊆ PostBPP).

4 Lower Bounds for Block-Equality and Unique-Set-Intersection

We now describe a technique for lower bounding both ZPPNP[1] and coDP communication.

Lemma 7. Suppose µ0 is a distribution over F−1(0), µ1 is a distribution over F−1(1), and C is
a constant such that for every rectangle R ⊆ {0, 1}n × {0, 1}n, µ0(R) ≤ C · µ1(R) + δ, and if R is
1-monochromatic (i.e., contains no 0-inputs) then µ1(R) ≤ δ. Then

(i) ZPPNP[1](F ) ≥ Ω(log(1/δ)),

(ii) coDP(F ) ≥ Ω(log(1/δ)).

The first half of the technique (µ0(R) ≤ C ·µ1(R) + δ) is the corruption bound (which is a tight
lower bound technique for so-called coSBP [GW14]), and the other half is the 1-monochromatic
rectangle size bound (which is a tight lower bound technique for NP [KN97, §2.4]). The combined
technique gives a lower bound for both ZPPNP[1] and coDP, even though neither of these classes
appears to be a “combination” of coSBP and NP.

We prove parts (i) and (ii) of Lemma 7 in Section 4.1 and Section 4.2. Then we apply the
technique to Block-Eq in Section 4.3 (thus proving Theorem 1), and finally we apply the technique
to Unique-Inter in Section 4.4 (thus proving Theorem 2 and Theorem 3).

4.1 Proof of Lemma 7.(i)

Suppose for contradiction there is a cost-o(log(1/δ)) ZPPNP[1] protocol Π computing F . Then in
particular we have δ ≤ o(1). By the amplification result of [CP08], we may assume P

[
Π(x, y) =

⊥
]
≤ 1/10C for all (x, y) ∈ F−1. By Markov’s inequality and a union bound, we may fix

a PNP[1]-type protocol Π∗ in the support of Π such that P(x,y)∼µ0
[
Π∗(x, y) = ⊥

]
≤ 1/5C and

P(x,y)∼µ1
[
Π∗(x, y) = ⊥

]
≤ 1/5C. Let the notation k,Rv, Sv,w, ov be with respect to Π∗ (see the def-

inition of ZPPNP[1] in Section 2.1), and note that without loss of generality, each ov is non-constant
(otherwise we could redefine Sv,w = ∅ for all w and redefine ov(1) arbitrarily).

For b ∈ {0, 1,⊥}, define Wb :=
⋃
v,w : ov(1)=b Sv,w as the set of “witnessed” inputs (the NP

oracle responds “1”) on which Π∗ outputs b, and define Nb :=
⋃
v : ov(0)=b

(
Rv r

⋃
w Sv,w

)
as the

set of “non-witnessed” inputs (the NP oracle responds “0”) on which Π∗ outputs b. Note that
{W0, N0,W1, N1,W⊥, N⊥} partitions {0, 1}n × {0, 1}n. By assumption, µ0(W⊥ ∪N⊥) ≤ 1/5C and
µ1(W⊥ ∪N⊥) ≤ 1/5C. By the correctness of Π, for b ∈ {0, 1} we have (Wb ∪Nb)∩F−1(1− b) = ∅.

Claim 8. µ0(W0) ≤ 1/4.

Claim 9. µ0(N0) ≤ 1/4.

This provides the contradiction since then µ0

(
{0, 1}n × {0, 1}n

)
= µ0(W0) + µ0(N0) + µ0(W1 ∪

N1) + µ0(W⊥ ∪N⊥) ≤ 1/4 + 1/4 + 0 + 1/5C < 1.

12



Proof of Claim 8. For each v, w such that ov(1) = 0, we have µ1(Sv,w) = 0 and hence µ0(Sv,w) ≤ δ.
Thus by a union bound, µ0(W0) ≤

∑
v,w : ov(1)=0 µ0(Sv,w) ≤ 2o(log(1/δ)) · δ ≤ δ1−o(1) ≤ 1/4.

Proof of Claim 9. If v is such that ov(0) = 0, then we have

µ0

(
Rv r

⋃
w Sv,w

)
≤ µ0(Rv) ≤ C · µ1(Rv) + δ = C · µ1

(⋃
w Sv,w

)
+ δ

by the fact that
(
Rv r

⋃
w Sv,w

)
∩ F−1(1) = ∅. Also, since each ov is non-constant, we have∑

v : ov(0)=0 µ1

(⋃
w Sv,w

)
=
∑

v : ov(0)=0, ov(1)=⊥ µ1

(⋃
w Sv,w

)
+
∑

v : ov(0)=0, ov(1)=1 µ1

(⋃
w Sv,w

)
≤ µ1(W⊥) +

∑
v,w : ov(1)=1 µ1(Sv,w)

≤ µ1(W⊥ ∪N⊥) + 2o(log(1/δ)) · δ
≤ 1/5C + δ1−o(1)

where the third line follows since Sv,w is 1-monochromatic if ov(1) = 1. Combining these, we have

µ0(N0) =
∑

v : ov(0)=0 µ0

(
Rv r

⋃
w Sv,w

)
≤
∑

v : ov(0)=0

(
C · µ1

(⋃
w Sv,w

)
+ δ
)

≤ C ·
(∑

v : ov(0)=0 µ1

(⋃
w Sv,w

))
+ 2o(log(1/δ)) · δ

≤ C ·
(
1/5C + δ1−o(1)

)
+ δ1−o(1)

≤ 1/4.

4.2 Proof of Lemma 7.(ii)

Suppose for contradiction there is a cost-k coDP protocol Π computing F where k ≤ o(log(1/δ)).
Then in particular we have δ ≤ o(1). We have a pair of collections of rectangles,

{
Sw : w ∈ {0, 1}k

}
and

{
Tw : w ∈ {0, 1}k

}
, such that if F (x, y) = 0 then (x, y) ∈

⋃
w Sw and (x, y) 6∈

⋃
w Tw, and if

F (x, y) = 1 then (x, y) 6∈
⋃
w Sw or (x, y) ∈

⋃
w Tw. Since µ0

(⋃
w Sw

)
= 1, there exists a w∗ such

that µ0(Sw∗) ≥ 2−k ≥ δ1/3 and hence µ1(Sw∗) ≥ 1
C · (δ

1/3−δ) ≥ δ1/2. Since Sw∗ ∩F−1(1) ⊆
⋃
w Tw,

there exists a w′ such that µ1(Tw′) ≥ µ1

(
Sw∗ ∩ F−1(1)

)
· 2−k > δ1/2 · δ1/2 = δ. But Tw′ is

1-monochromatic since F−1(0) ∩
⋃
w Tw = ∅, so this is a contradiction.

4.3 Proof of Theorem 1

Let µ0 be the uniform distribution over Block-Eq−1(0), and let µ1 be the uniform distribution
over the subset of Block-Eq−1(1) consisting of all (x, y) for which xi = yi for a unique i.

Lemma 10. µ0(R) ≤ 45 · µ1(R) + 2−Ω(
√
n) holds for every rectangle R ⊆ {0, 1}n × {0, 1}n.

Lemma 11. µ1(R) ≤ 2−Ω(
√
n) holds for every 1-monochromatic rectangle R of Block-Eq.

Together, Lemma 10 and Lemma 11 show that the hypothesis of Lemma 7 holds with F :=
Block-Eq, C := 45, and δ := 2−Ω(

√
n). The lower bound in Theorem 1 follows. For the upper

bound, in fact ZPP(Block-Eq) ≤ O(
√
n) holds [KN97, §4.1.1] (though it is slightly quicker to see

that NP(Block-Eq) ≤ O(
√
n) holds by guessing i and deterministically verifying that xi = yi).

For the proofs of the lemmas, we define m :=
√
n and b :=

√
n (as in the notation for the

decomposition Block-Eq := Or ◦Eqm where Eq takes b-bit inputs).
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Proof of Lemma 10. For x0, x1, y0, y1 ∈ {0, 1}b, we say the tuple (x0, x1, y0, y1) is valid iff x0 6= y0,
x0 6= y1, x1 6= y0, and x1 = y1. We say

Ξ :=
(
(x0

1, x
1
1, y

0
1, y

1
1), . . . , (x0

m, x
1
m, y

0
m, y

1
m)
)

is valid iff it is a tuple of valid tuples. If Ξ is valid then the injection ΦΞ : {0, 1}m × {0, 1}m →
{0, 1}n × {0, 1}n defined by

ΦΞ(u, v) :=
(
xu11 · · ·x

um
m , yv11 · · · y

vm
m

)
is a reduction from Inter := Or ◦Andm (for single-bit And) to Block-Eq:

Inter(u, v) = Block-Eq
(
ΦΞ(u, v)

)
.

(In other words, the image of ΦΞ, as a submatrix of the Block-Eq matrix, is a copy of the Inter
matrix.)

Define Unambig-Inter := Unambig-Or ◦Andm where the partial function Unambig-Or is
Or restricted to the domain of strings of Hamming weight 0 or 1. That is, Unambig-Inter−1(0)
consists of all pairs of disjoint sets, and Unambig-Inter−1(1) consists of all pairs of uniquely
intersecting sets.

Lemma 12 ([Raz92]). There exists a distribution ν0 over Unambig-Inter−1(0) and a distribu-
tion ν1 over Unambig-Inter−1(1) such that ν0(R) ≤ 45 · ν1(R) + 2−Ω(m) holds for every rectangle
R ⊆ {0, 1}m×{0, 1}m. Moreover, the uniquely intersecting coordinate in ν1 is uniformly distributed.

We claim that for a ∈ {0, 1} we have µa = EΞ ΦΞ(νa) where a valid Ξ is chosen uniformly at
random independently of νa. In other words, µa equals the distribution obtained by choosing Ξ,
then independently taking a sample from νa, then applying ΦΞ to the sample (i.e., the uniform
mixture of the distributions ΦΞ(νa)). We only argue that µ1 = EΞ ΦΞ(ν1) (the argument for
µ0 = EΞ ΦΞ(ν0) is essentially the same). In fact, we make the stronger claim that for every
(u, v) ∈ Unambig-Inter−1(1), say with ui = vi = 1, the distribution EΞ ΦΞ(u, v) is uniform over
the subset of Block-Eq−1(1) consisting of all (x, y) for which xi = yi and xj 6= yj for all j 6= i. The
original claim follows from this since the uniquely intersecting coordinate i is uniformly distributed.
The stronger claim follows immediately from the facts that the coordinates of Ξ are independent,
that (x1

i , y
1
i ) is uniformly distributed over Eq−1(1), and that for j 6= i, (x0

j , y
0
j ), (x0

j , y
1
j ), and (x1

j , y
0
j )

are all marginally uniformly distributed over Eq−1(0). The claim is established.
Now for every rectangle R ⊆ {0, 1}n×{0, 1}n, if we let Φ−1

Ξ (R) denote the rectangle of all points
in {0, 1}m × {0, 1}m that map into R under ΦΞ, then we have

µ0(R) = EΞ

(
ΦΞ(ν0)(R)

)
= EΞ ν0

(
Φ−1

Ξ (R)
)

≤ EΞ

(
45 · ν1

(
Φ−1

Ξ (R)
)

+ 2−Ω(m)
)

= 45 · EΞ ν1

(
Φ−1

Ξ (R)
)

+ 2−Ω(m)

= 45 · EΞ

(
ΦΞ(ν1)(R)

)
+ 2−Ω(m)

= 45 · µ1(R) + 2−Ω(
√
n).
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Proof of Lemma 11. Note that µ1 is uniform over a set of size

m · 2b · (22b − 2b)m−1 = m · 2b · 22b(m−1) · (1− 2−b)m−1 ≥ Ω(m · 2b · 22b(m−1)).

If R := A × B is 1-monochromatic then |A| ≤ m · 2b(m−1) (since for any y ∈ B there are at most
m · (2b)m−1 many x’s for which Block-Eq(x, y) = 1), and similarly |B| ≤ m · 2b(m−1), and hence
|R| ≤ m2 · 22b(m−1). It follows that

µ1(R) ≤ m2 · 22b(m−1)

Ω(m · 2b · 22b(m−1))
≤ O(m · 2−b) ≤ 2−Ω(

√
n).

4.4 Proof of Theorem 2 and Theorem 3

We again use the corruption lemma from [Raz92], but now we need to take a closer look at the distri-
bution over 1-inputs. Let n = 4`−1. Let µ0 be the distribution over Unique-Inter−1(0) that sam-
ples uniformly random disjoint sets of size `, and let µ1 be the distribution over Unique-Inter−1(1)
that samples uniformly random uniquely intersecting sets of size `.

Lemma 13 ([Raz92]). µ0(R) ≤ 45·µ1(R)+2−Ω(n) holds for every rectangle R ⊆ {0, 1}n×{0, 1}n.

Lemma 14. µ1(R) ≤ 2−Ω(n) holds for every 1-monochromatic rectangle R of Unique-Inter.

Together, Lemma 13 and Lemma 14 show that the hypothesis of Lemma 7 holds with F :=
Unique-Inter, C := 45, and δ := 2−Ω(n). Theorem 2 and Theorem 3 follow.

Proof of Lemma 14. For each i ∈ [n] let us define the rectangle Ri :=
{

(x, y) ∈ R : xi = yi = 1
}

,
and note that the Ri’s partition R. For each i we have |Ri| ≤ 2n−1 since every (x, y) ∈ Ri is disjoint
on the coordinates [n] r {i}.7 Hence |R| ≤ n2n−1 ≤ 2(1+o(1))n.

Note that µ1 can be sampled by the following process.

1. Pick a uniformly random i ∈ [n].
2. Pick a uniformly random H ⊆ [n] r {i} of size 2`− 2. There are

(
n−1
2`−2

)
= Θ(2n/

√
n) choices.

3. Pick a uniformly random partition H = H1 ∪H2 into sets of size ` − 1. There are
(

2`−2
`−1

)
=

Θ(20.5n/
√
n) choices.

4. Let x := {i} ∪H1 and y := {i} ∪H2.

Hence µ1 is uniform over its support of size n · Θ(2n/
√
n) · Θ(20.5n/

√
n) = Θ(21.5n) ≥ 2(1.5−o(1))n.

It follows that µ1(R) ≤ 2(1+o(1))n/2(1.5−o(1))n ≤ 2−Ω(n).

5 Proof of Theorem 4

Consider an optimal ZPPNP[1] protocol Π for F with deterministic communication cost c and witness
length k. By standard sparsification, we may assume the public randomness is uniformly distributed
over {0, 1}O(logn). We use r to denote an outcome of this randomness, we let Πr denote the PNP[1]-
type protocol induced by r, and we let the notation Rrv, S

r
v,w, o

r
v be with respect to Πr (see the

7By [KW15], the bound |Ri| ≤ 2n−1 also holds assuming every input in R has intersection size either 1 or ≥ 3.
Using this, it follows that Theorem 2 and Theorem 3 hold under the promise that at most two coordinates intersect.
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definition of ZPPNP[1] in Section 2.1). We claim that the following protocol Π̃ is a PostBPP protocol
for F of cost O

(
ZPPNP[1](F ) + log n

)
.

Input: (x, y)
Output: ∈ {0, 1,⊥}

1 pick r uniformly at random
2 run the deterministic part of Πr(x, y) to a leaf vr

3 pick a ∈ {0, 1} uniformly at random
4 if a = 1 then
5 pick w ∈ {0, 1}k uniformly at random
6 if (x, y) ∈ Srvr,w then output orvr(1)

7 else output ⊥
8 else if a = 0 then

9 output orvr(0) with probability 2−(k+2)

10 output ⊥ with the remaining probability

11 end

Π̃ has communication cost c + O(1) and randomness cost O(log n) + k + O(1) and hence cost
O(c + k + log n). We now argue the correctness. Let Π̃r denote Π̃ with a particular r chosen on
line 1. Fix an input (x, y), and let χr ∈ {0, 1} indicate whether (x, y) ∈

⋃
w S

r
vr,w (i.e., the NP

oracle’s response). Let A := {r : χr = 1}, A := {r : χr = 0}, B :=
{
r : orvr(χr) = F (x, y)

}
, and

B :=
{
r : orvr(χr) = ⊥

}
. We have

P
[
Π̃r(x, y) = F (x, y)

]
≥


2−(k+1) if r ∈ A ∩B
0 if r ∈ A ∩B
2−(k+3) if r ∈ A ∩B
0 if r ∈ A ∩B

and

P
[
Π̃r(x, y) = 1− F (x, y)

]
≤

{
2−(k+3) if r ∈ A
0 if r ∈ A

.

Thus since P[r ∈ B] ≥ 3/4 we have

P
[
Π̃(x, y) = F (x, y)

]
≥ 2−(k+3) · P[r ∈ B] +

(
2−(k+1) − 2−(k+3)

)
· P[r ∈ A ∩B]

= 2−(k+3) ·
(
P[r ∈ B] + 3 · P[r ∈ A ∩B]

)
≥ 2−(k+3) ·

(
3 · P[r ∈ B] + 3 · P[r ∈ A ∩B]

)
≥ 3 · 2−(k+3) · P[r ∈ A]

≥ 3 · P
[
Π̃(x, y) = 1− F (x, y)

]
so Π̃ is a correct PostBPP protocol for F .
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6 Lower Bound for Majority

In this section we prove Theorem 6. We first give a general lower bound technique for UPostBPP�
in Section 6.1, then we describe the machinery we borrow from [GLM+15] in Section 6.2, and finally
we give the proof of Theorem 6 in Section 6.3.

6.1 Lower bound technique

Definition 15. For F : {0, 1}n×{0, 1}n → {0, 1}, R ⊆ {0, 1}n×{0, 1}n, and µ a distribution over
{0, 1}n×{0, 1}n, we say R is µ-unbiased (with respect to F ) if 1

2 ·µ
(
R∩F−1(0)

)
≤ µ

(
R∩F−1(1)

)
≤

2 · µ
(
R ∩ F−1(0)

)
, and is µ-biased otherwise.

Lemma 16. Suppose µ is a distribution over F−1 and ρ is a product distribution over {0, 1}n ×
{0, 1}n such that for every rectangle R ⊆ {0, 1}n × {0, 1}n, if ρ(R) ≥ δ then R is µ-unbiased (with
respect to F ), and if ρ(R) ≥ 1/2 then µ(R) > 0. Then UPostBPP�(F ) ≥ Ω(log(1/δ)).

The case where µ = ρ is equivalent to extended discrepancy [GL14] under product distributions,
and leads to the lower bound UPostBPP�(Conf-Maj) ≥ Ω(

√
n log n) (details omitted). The more

general form is needed to get the Ω(n) lower bound. The results of [GL14] show that for total
F , P(F ) ≤ poly(log n) follows from the assumptions that F ’s matrix has poly(log n) rank (over
the reals) and that every rectangle S has a subrectangle that has measure ≥ 2− poly(logn) and is
biased (both with respect to the uniform distribution over S). By letting ρ = µ be uniform over
an arbitrary S in Lemma 16, the latter property follows from the existence of a poly(log n)-cost
UPostBPP� protocol. Hence to prove the Log Rank Conjecture, it suffices to prove the same with
UPostBPP� instead of P.

Proof of Lemma 16. Suppose Π is a cost-k UPostBPP� protocol for F . By Observation 51, we
may assume Π is just a distribution over 2k many {0, 1}-labeled rectangles. For R a rectangle and
o ∈ {0, 1}, we let πR,o denote the probability of getting R with label o under Π.

We start by recording the following observation: For every distribution ν over F−1 there exists
an (R, o) such that πR,o > 0 and R is ν-biased. This follows by considering the 2-player 0-sum
game where the row strategies are inputs (x, y) ∈ F−1, the column strategies are (R, o) pairs with
πR,o > 0, and the payoff to the column player is 1 if (x, y) ∈ R and F (x, y) = o, is −2 if (x, y) ∈ R
and F (x, y) = 1 − o, and is 0 if (x, y) 6∈ R. The mixed column strategy π demonstrates that the
game has positive value, and hence for every mixed row strategy there exists a pure column strategy
for which the expected payoff to the column player is positive. This implies the observation. Only
the straightforward direction of the Minimax Theorem is used.

Consider the following procedure.

1 let Q0 := {0, 1}n × {0, 1}n
2 for i = 1, 2, . . . do
3 let Ri be a (µ | Qi−1)-biased rectangle such that πRi,oi > 0 for some oi
4 let Ai ×Bi := Ri ∩Qi−1

5 let Qi := Qi−1 r
(
either Ai × {0, 1}n or {0, 1}n ×Bi, whichever is smaller under ρ

)
6 until ρ(Qi) < 1/2

We show by induction on i that lines 3 and 4 always succeed, Qi is a rectangle, ρ(Qi) ≥ 1−i·
√
δ,

and the Rj ’s for j ∈ {1, . . . , i} are all distinct from each other and disjoint from Qi. The base case

17



i = 0 is trivial, so assume this holds for i − 1. Since Qi−1 is a rectangle and ρ(Qi−1) ≥ 1/2 by
line 6, we have µ(Qi−1) > 0 by assumption (with R := Qi−1) and hence the conditioning on line
3 is valid. By the above observation (with ν := (µ | Qi−1)), line 3 succeeds. Since Qi−1 is a
rectangle, so are Ri ∩Qi−1 (hence line 4 succeeds) and Qi. Since Ri is (µ | Qi−1)-biased, we have
that Ri ∩ Qi−1 is µ-biased and hence ρ(Ri ∩ Qi−1) < δ by assumption (with R := Ri ∩ Qi−1).
Since ρ is a product distribution, either ρ

(
Ai × {0, 1}n

)
<
√
δ or ρ

(
{0, 1}n × Bi

)
<
√
δ. Hence

ρ(Qi) ≥ ρ(Qi−1) −
√
δ ≥ 1 − i ·

√
δ. Since Ri ∩Qi−1 is µ-biased, Ri is not disjoint from Qi−1 and

hence Ri is distinct from the Rj ’s for j ∈ {1, . . . , i− 1} (since the latter are all disjoint from Qi−1).
Since Qi ⊆ Qi−1, the Rj ’s for j ∈ {1, . . . , i − 1} are also disjoint from Qi. Finally, line 5 ensures
that Ri is disjoint from Qi, since Qi ⊆ Qi−1 r (Ai×Bi) = Qi−1 rRi. This completes the induction
step.

Since the Ri’s are all distinct and πRi,oi > 0, there are at most 2k iterations. Let i∗ be the
final value of i. By line 6, we have 1/2 > ρ(Qi∗) ≥ 1 − i∗ ·

√
δ and hence 2k ≥ i∗ > 1/2

√
δ. Thus

k > 1
2 · log(1/δ)− 1.

6.2 Conjunction rectangles

We now state the “Packing with Conjunctions Theorem” from [GLM+15], which is the technical
heart of the main “Junta Theorem” from that paper. The theorem makes no reference to the outer
function f ; it is simply a statement about the function G := gm where g is the confounding gadget
with block length b.

Definition 17. Two distributions over {0, 1}m are ε-close if for every z ∈ {0, 1}m, the probabilities
of z under the two distributions are within a factor (1± ε) of each other.

Definition 18. A rectangle S is a (d, ε)-conjunction rectangle if there exists a width-d conjunction
h : {0, 1}m → {0, 1} (i.e., h can be written as (`1 ∧ · · · ∧ `w) where w ≤ d and each `i is an input
variable or its negation) such that the distributions over {0, 1}m obtained in the following two ways
are ε-close:r picking a uniformly random z ∈ {0, 1}m and a uniformly random (x, y) ∈ G−1(z) and condi-

tioning on (x, y) ∈ S,r picking a uniformly random z ∈ h−1(1).

Definition 19. A distribution ν over {0, 1}n×{0, 1}n is the lift of a distribution ξ over {0, 1}m if
ν(x, y) = ξ(z)/|G−1(z)| where z := G(x, y). Note that a lifted distribution is a convex combination
of distributions that are uniform over a set G−1(z).

Theorem 20. For ε := 1/100, and for every d ≥ 0, every lifted distribution ν, and every rectangle
R with ν(R) ≥ 2−db/20, there exist disjoint (d, ε)-conjunction subrectangles S1, S2, . . . ⊆ R such that
ν
(⋃

i Si | R
)
≥ 1− ε.

The proof in [GLM+15] actually gives ε := 2−Θ(b), but we only need ε := 1/100.

6.3 Proof of Theorem 6

For convenience, assume m is odd. We have Conf-Maj := f ◦G where G := gm. Let M :=
{
z ∈

{0, 1}m : |z| ∈ {bm/2c, dm/2e}
}

(the “middle layers” of the Hamming cube), and let L := G−1(M)
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(the “lifted version” of the set M). Let the distribution µ be the lift of the uniform distribution
over M (so µ is supported on L), and let ρ be the uniform distribution over {0, 1}n×{0, 1}n (which
is a product distribution). We argue the following two claims, both of which exploit Theorem 20.
Recall that b := 100 logm and n := m · b.

Claim 21. For every rectangle R, if ρ(R) ≥ 0.99999n then µ(R) ≥ 0.997n.

Claim 22. For every rectangle R, if µ(R) ≥ 0.997n then R is µ-unbiased.

Theorem 6 follows because the assumptions of Lemma 16 hold with δ := 0.99999n: The first
part (if ρ(R) ≥ δ then R is µ-unbiased) holds by Claim 21 and Claim 22. The second part (if
ρ(R) ≥ 1/2 then µ(R) > 0) holds by Claim 21 alone.

Observation 23. Let ρ′ be the lift of the uniform distribution over {0, 1}m, and note the following.

(i) ρ and ρ′ are (1/2)-close. (This is straightforward to verify using b := 100 logm and the fact
that |g−1(0)|, |g−1(1)| ∈ 22b−1 ± 2b+1.)

(ii) µ(·) = ρ′(· | L).

(iii) The first distribution in Definition 18 picks z with probability ρ′
(
G−1(z) | S

)
; hence this value

is in (1±ε)·Pz′∈h−1(1)[z
′ = z] where the notation Pz′∈h−1(1) means a uniformly random choice.

In the proof of Claim 21 we use the following fact, which holds by Stirling approximations.

Fact 24. For all s ≥ t we have
(
s
t

)
= Θ

(
1√
s
·
(
s
t

)t+1/2 ·
(
s
s−t
)s−t+1/2

)
≥ Ω

(
1√
s
·
(

s
max(t, s−t)

)s)
.

Proof of Claim 21. Assuming ρ(R) ≥ 0.99999n, we have ρ′(R) ≥ 0.99998n. Apply Theorem 20
with ν := ρ′ and d := m/1000 (noting that 0.99998n ≥ 2−db/20) to get disjoint (d, ε)-conjunction
subrectangles S1, S2, . . . ⊆ R with associated conjunctions h1, h2, . . ., such that ρ′

(⋃
i Si | R

)
≥ 1−ε

(where ε := 1/100). For each i, assuming for convenience that hi depends on exactly d variables,
exactly j of which are positive literals, we have∣∣h−1

i (1) ∩M
∣∣ =

(
m−d
bm/2c−j

)
+
(

m−d
dm/2e−j

)
≥
(

m−d
bm/2c−j

)
≥ Ω

(
1√
m
·
(
m−d
dm/2e

)m−d)
≥ 2m−d · Ω

(
1√
m
· 0.9987m−d

)
≥ 2m−d · 0.9985m

where the third line follows by Fact 24 and the fourth line follows by d := m/1000. Thus we have

Pz∈h−1
i (1)[z ∈M ] =

|h−1
i (1)∩M |

2m−d ≥ 0.9985m, and hence

ρ′(L | Si) =
∑

z∈M ρ′
(
G−1(z) | Si

)
∈
∑

z∈M (1± ε) · Pz′∈h−1
i (1)[z

′ = z]

= (1± ε) · Pz∈h−1
i (1)[z ∈M ]

≥ 0.9983m

19



where the second line follows since Si is a (d, ε)-conjunction rectangle. Then we have

ρ′(L | R) ≥
∑

i ρ
′(L ∩ Si | R)

=
∑

i ρ
′(L | Si) · ρ′(Si | R)

≥
∑

i 0.9983m · ρ′(Si | R)

= 0.9983m · ρ′
(⋃

i Si | R
)

≥ 0.998m

where the last line follows by ρ′
(⋃

i Si | R
)
≥ 1− ε, and finally

µ(R) = ρ′(R | L) ≥ ρ′(L | R) · ρ′(R) ≥ 0.998m · 0.99998n ≥ 0.997n.

Proof of Claim 22. Apply Theorem 20 with ν := µ and d := m/10 (noting that 0.997n ≥ 2−db/20) to
get disjoint (d, ε)-conjunction subrectangles S1, S2, . . . ⊆ R with associated conjunctions h1, h2, . . .,
such that µ

(⋃
i Si | R

)
≥ 1− ε (where ε := 1/100). Recall that f : {0, 1}m → {0, 1} is the majority

function. For each i, assuming for convenience that hi depends on exactly d variables, exactly j of
which are positive literals, we have

Pz∈h−1
i (1)

[
z ∈ f−1(0) ∩M

]
Pz∈h−1

i (1)

[
z ∈ f−1(1) ∩M

] =

(
m−d
bm/2c−j

)(
m−d
dm/2e−j

) =
dm/2e − j
dm/2e − d+ j

= 1 +
d− 2j

dm/2e − d+ j
∈ [3

4 ,
4
3 ]

since d := m/10. Now fix any output o ∈ {0, 1}, and let Eo := Conf-Maj−1(o) = G−1(f−1(o)).
We have

ρ′(Eo ∩ L | Si) =
∑

z∈f−1(o)∩M ρ′
(
G−1(z) | Si

)
∈
∑

z∈f−1(o)∩M (1± ε) · Pz′∈h−1
i (1)[z

′ = z]

= (1± ε) · Pz∈h−1
i (1)

[
z ∈ f−1(o) ∩M

]
≥ (1− ε) · 3

4 · Pz∈h−1
i (1)

[
z ∈ f−1(1− o) ∩M

]
≥ (1− ε) · 3

4 · (1− ε) · ρ
′(E1−o ∩ L | Si)

≥ 2
3 · ρ

′(E1−o ∩ L | Si).

If µ(Si) > 0 (equivalently, ρ′(L | Si) > 0) then

µ(Eo | Si) = ρ′(Eo | L ∩ Si)
= ρ′(Eo ∩ L | Si) / ρ′(L | Si)
≥ 2

3 · ρ
′(E1−o ∩ L | Si) / ρ′(L | Si)

= 2
3 · µ(E1−o | Si)

and hence µ(Eo | Si) ≥ 2
5 . Now we have

µ(Eo | R) ≥
∑

i µ(Eo ∩ Si | R)

=
∑

i :µ(Si)>0 µ(Eo | Si) · µ(Si | R)

≥
∑

i :µ(Si)>0
2
5 · µ(Si | R)
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= 2
5 · µ

(⋃
i Si | R

)
≥ 1

3 .

where the last line follows by µ
(⋃

i Si | R
)
≥ 1 − ε. Thus µ(Eo | R) ≥ 1

2 · µ(E1−o | R) and hence
µ(R∩Eo) ≥ 1

2 · µ(R∩E1−o). Since this holds for either o ∈ {0, 1}, R is µ-unbiased with respect to
Conf-Maj.

7 Additional Observations

Observation 25. UPostBPP�(F ) ≤ O
(
PNP(F )

)
for all F , and hence PNP ⊆ UPostBPP�.

Proof sketch. It is a classical fact that if we consider “super-witnesses” that consist of a string of
purported responses to the NP oracle queries along with purported witnesses for all the queries for
which the purported response is “1”, and if we order the super-witnesses reverse-lexicographically
by the string of oracle responses (the witnesses do not matter for the ordering), then the output of
a PNP computation is determined by the first super-witness for which all the purported oracle query
witnesses check out. (This fact was phrased as an “overlay” characterization in [PSS14] and was
also used in the proof that PNP ⊆ S2P [RS98, Can96].) To get a UPostBPP� protocol, we can pick
a random super-witness with probabilities geometrically decreasing according to the order, output
⊥ if one of the purported witnesses does not check out, and otherwise produce the same output as
the computation path given the purported oracle responses.

Let Neq be the non-equality function, which is in RP.

Observation 26. US(Neq) = Θ(n), and hence RP 6⊆ US.

Proof. The matrix of Neq is the complement of the identity matrix. Consider a collection of
rectangles that touches each off-diagonal entry exactly once, and touches each diagonal entry either
zero times or at least twice. If we sum these rectangles as 0-1 matrices over the reals, the resulting
matrix M has all off-diagonal entries = 1 and all diagonal entries 6= 1. Subtracting the all-1’s
matrix from M results in a diagonal matrix with all nonzero diagonal entries, which has full rank.
Thus M has rank at least 2n − 1 since the all-1’s matrix has rank 1. However, the number of
rectangles upper bounds the rank since each rectangle has rank 1.

Consider the partial function Which-Eq : {0, 1}n × {0, 1}n → {0, 1} that partitions each of its
two inputs into two strings of length n/2, x := x0x1 and y := y0y1, where Which-Eq(x, y) = 0 iff
x0 = y0 and x1 6= y1, and Which-Eq(x, y) = 1 iff x0 6= y0 and x1 = y1. Note that Which-Eq ∈
ZPP.

Observation 27. ⊕P(Which-Eq) = Θ(n), and hence ZPP 6⊆ ⊕P.

Proof. Consider any total boolean matrix M that agrees with Which-Eq on the latter’s domain.
We claim that M contains a 2n/2−1 × 2n/2−1 identity or complement-of-identity submatrix; hence
M has rank at least 2n/2−1 − 1 over GF (2). If M(z, z) = 1 for at least half of all z ∈ {0, 1}n, fix
z0 so that M(z0z1, z0z1) = 1 for all z1 in some Z1 ⊆ {0, 1}n/2 of size 2n/2−1, and note that for
x1, y1 ∈ Z1, M(z0x1, z0y1) indicates whether x1 = y1. On the other hand, if M(z, z) = 0 for at
least half of all z ∈ {0, 1}n, fix z1 so that M(z0z1, z0z1) = 0 for all z0 in some Z0 ⊆ {0, 1}n/2 of size
2n/2−1, and note that for x0, y0 ∈ Z0, M(x0z1, y0z1) indicates whether x0 6= y0.
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8 Conclusion and Open Questions

It is open to prove that any explicit function is not in S2P; we wish to highlight this as a new frontier
(presumably incomparable to the AM ∩ coAM frontier) toward proving explicit lower bounds for
the communication polynomial hierarchy.

Is Lemma 16 a tight lower bound technique for UPostBPP�? (This is related to the open
question of whether the lower bound technique given in [PSS14] for PNP is tight.) It is also open
to prove a UPostBPP� lower bound for the majority function lifted with a constant-size gadget
(which, without loss of generality, would be And or Xor). Finally, we mention that for some
known results, there is room for quantitative improvement; e.g., is there an F ∈ MA such that
ZPPNP[1](F ) ≥ ω(

√
n)?

Our survey in Section 3 lists all the open problems that fall directly within the scope of this
paper. Although we aimed for our survey to be fairly comprehensive, there are some further
topics concerning communication complexity classes that we have not addressed. Our discussion
has excluded classes involving limited ambiguity (such as UP, FewP [KNSW94, Kla10], and UAM
[GPW15]), more exotic counting classes (such as Few, APP,8 WPP, AWPP, WAPP, LWPP, SPP,
C=P, and ModmP [DKMW04] for integers m > 2), classes defined using the dot operator (such
as BP · UP [Kla10], U · BPP, and N · BPP which may differ from MA), and classes with oracles
other than NP. One can also ask about more complicated relationships among the classes (e.g.,
concerning intersections of different classes, although we have mentioned NP∩coNP, AM∩coAM, and
Σ2P∩Π2P), and about closure properties (e.g., it is open whether UPP is closed under intersection).
Finally, we have not considered average-case models, quantum models, multi-party models, variable
partition models, round-restricted models, asymmetric models, search problems, or functions with
non-boolean codomains.

A Appendix: Information Complexity Proof of Theorem 2

In this appendix we provide an alternate proof of Theorem 2 using information complexity tools.

A.1 Preliminaries

In this proof it is more convenient to consider the private-randomness version of ZPPNP[1], in
which a protocol consists of a single PNP[1]-type protocol over the domain

(
{0, 1}n × {0, 1}q

)
×(

{0, 1}n×{0, 1}q
)

(for some q), and on input (x, y) the protocol is applied to
(
(x, rx), (y, ry)

)
where

rx, ry ∈ {0, 1}q are chosen independently uniformly at random. This model is equivalent to the
public-randomness version, within a constant factor and additive O(log n) term in the cost, by
standard sparsification of randomness and the fact that the success probability can be amplified as
long as it is a constant greater than 1/2 [CP08].

Throughout this appendix, we use bold letters for random variables, P for probability, E for
expectation, H for Shannon entropy, I for mutual information, H for Hellinger distance, and ∆ for
statistical (total variation) distance. Recall that if Ψ1,Ψ2 are distributions over a finite set Ω, then
H2(Ψ1,Ψ2) := 1−

∑
ω∈Ω

√
Ψ1(ω)Ψ2(ω) and ∆(Ψ1,Ψ2) := 1

2

∑
ω∈Ω

∣∣Ψ1(ω)−Ψ2(ω)
∣∣. We use the

following (by-now standard) lemmas [Lin91, BYJKS04].

8Not to be confused with the measure APP from [Kla03], which is equivalent to PostBPP.
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Lemma 28. Suppose Ψ,Λ are jointly distributed random variables and Λ is uniform over two
outcomes, say {1, 2}. Then H2(Ψ1,Ψ2) ≤ I(Ψ ; Λ) where ΨΛ := (Ψ | Λ = Λ) for Λ ∈ {1, 2}.

Lemma 29. If Ψ1,Ψ2 are distributions, then H2(Ψ1,Ψ2) ≤ ∆(Ψ1,Ψ2) ≤
√

2H(Ψ1,Ψ2).

A.2 Proof of Theorem 2

Suppose for contradiction there is a cost-o(n) private-randomness ZPPNP[1] protocol Π comput-
ing Unique-Inter with success probability 1/2 + ε (for any constant ε > 0). Let the notation
k,Rv, Sv,w, ov be with respect to Π (similarly to the definition of ZPPNP[1] in Section 2.1), and let c
be the communication cost of the deterministic part of Π. Consider the following jointly distributed
random variables.r Let i be uniform over [n].r Let z := z1 · · · zn be distributed as follows. For each j ∈ [n] (independently), if j = i then zj

is uniform over the two outcomes
{
{00}, {11}

}
, and if j 6= i then zj is uniform over the two

outcomes
{
{00, 10}, {00, 01}

}
.r Let x := x1 · · ·xn and y := y1 · · ·yn be distributed as follows. For each j ∈ [n] (indepen-

dently), xjyj is uniform over the elements of the outcome of zj .r Let rx, ry be the private random strings, which are independent of x,y.r Let v ∈ {0, 1}c be the leaf reached (i.e., the deterministic transcript) of Π
(
(x, rx), (y, ry)

)
.r Let χ ∈ {0, 1} indicate whether

(
(x, rx), (y, ry)

)
∈
⋃
w Sv,w (i.e., the NP oracle’s response).r Let w ∈ {ε} ∪ {0, 1}k (where ε is the empty string) be distributed as follows. If χ = 0 then

w := ε. If χ = 1 then let w ∈ {0, 1}k be chosen arbitrarily such that
(
(x, rx), (y, ry)

)
∈ Sv,w.r Let Π := vw, which is distributed over {0, 1}c ∪ {0, 1}c+k. Note that Π is a deterministic

function of
(
(x, rx), (y, ry)

)
.

Let x−i,y−i, z−i denote the restrictions of x,y, z to coordinates in [n] r {i}. We have

I
(
Π ; x−i,y−i | i, z

)
≤ H

(
Π | i, z

)
≤ c+ k ≤ o(n).

By the standard direct sum property for mutual information [BYJKS04, JKS03], if j is uniform
over [n] r {i} (and independent of the other random variables, conditioned on i) then

I
(
Π ; xj ,yj | i, j, z

)
≤ 1

n−1 · I
(
Π ; x−i,y−i | i, z

)
≤ o(1).

Define two more random variables (which are deterministic functions of (i, j, z)) as follows: h :=
{i, j} and

g :=

{
heads if i < j and zi = {11}, or if i > j and zi = {00}
tails if i < j and zi = {00}, or if i > j and zi = {11}

.

Let x−h,y−h, z−h denote the restrictions of x,y, z to coordinates in [n] r h. Since we have
I
(
Π ; xj ,yj | g,h, i, j, z

)
≤ o(1), there must exist outcomes g∗ ∈ {heads,tails}, h∗ ∈

(
[n]
2

)
,

and z∗−h∗ such that if we let E denote the event
(
g = g∗, h = h∗, z−h = z∗−h∗

)
then

I
(
Π ; xj ,yj | E, i, j, zh

)
≤ o(1). (1)
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Figure 2: The shaded rectangles are all 1-inputs, and the unshaded rectangles are all 0-inputs.

Assume g∗ = heads and h∗ = {1, 2} (the other cases are analogous). As illustrated in Figure 2, de-
fine a := (00, 00), b := (10, 00), c := (00, 10), d := (10, 10), e := (11, 10), f := (10, 11). Conditioned
on E, there are the following four equally likely outcomes of (i, j, zh).(

i = 2, j = 1, zi = {00}, zj = {00, 10}
)

so (x1x2,y1y2) is uniform over {a,b}.(
i = 2, j = 1, zi = {00}, zj = {00, 01}

)
so (x1x2,y1y2) is uniform over {a,c}.(

i = 1, j = 2, zi = {11}, zj = {00, 10}
)

so (x1x2,y1y2) is uniform over {d,e}.(
i = 1, j = 2, zi = {11}, zj = {00, 01}

)
so (x1x2,y1y2) is uniform over {d, f}.

Letting e ∈ {ab,ac,de,df} be the random variable indicating which of these cases holds, (1) says
that I

(
Π ; xj ,yj | E, e

)
≤ o(1). Thus for each outcome e we have

I
(
Π ; xj ,yj | E, e = e

)
≤ o(1).

Conditioned on (E, e = e), (xj ,yj) is uniform over two outcomes, so we can apply Lemma 28 with
Ψ := (Π | E, e = e) and Λ := (xj ,yj | E, e = e).

Hence, if for s ∈ {a,b,c,d,e, f} we let Es denote the event
(
(x1x2,y1y2) = s, z−h∗ = z∗−h∗

)
and we define the distribution Πs := (Π | Es), then (noting that Πa is distributed iden-
tically to

(
Π | E, e = ab, x1y1 = 00

)
and similarly for the other possibilities) we have

H(Πa,Πb), H(Πa,Πc), H(Πd,Πe), H(Πd,Πf) ≤ o(1). Assuming that “close” means “within
Hellinger distance o(1)” or equivalently “within statistical distance o(1)” (by Lemma 29), by the
triangle inequality, Πa,Πb,Πc are all close and Πd,Πe,Πf are all close. In particular, the same
holds for the distributions vs := (v | Es) (equivalently, vs is the marginal of the first c bits of Πs):
va,vb,vc are all close and vd,ve,vf are all close.

Note that (x,y | Es) is uniform over a rectangle consisting only of 0-inputs if s ∈ {a,b,c} and
only of 1-inputs if s ∈ {d,e, f}. Since for every leaf v, the event v = v consists of a rectangle in
the domain of

(
(x, rx), (y, ry)

)
, we have P[va = v] · P[vd = v] = P[vb = v] · P[vc = v]. This implies

that H(va,vd) = H(vb,vc) ≤ o(1), and hence va,vb,vc,vd,ve,vf are all close.
Let Es,v denote the intersection of the event v = v with Es. Let ws,v denote the distribution

(w | Es,v) assuming P[Es,v] > 0 (equivalently, assuming P[vs = v] > 0).

Claim 30. There exists a leaf v∗ such that the following all hold.
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r P[Es,v∗ ] > 0 for all s ∈ {a,b,c,d,e, f}.r P[ov∗(χ) = ⊥ | Ed,v∗
]
< 1.r P[ov∗(χ) = ⊥ | Ea,v∗
]
< 1.r ∆

(
wb,v∗ ,wc,v∗

)
< 1.r ∆

(
we,v∗ ,wf,v∗

)
< 1.

Proof. Since Ev∼vd P
[
ov(χ) = ⊥ | Ed,v

]
= P

[
ov(χ) = ⊥ | Ed

]
≤ 1/2− ε, we have

Pv∼vd

[
P
[
ov(χ) = ⊥ | Ed,v

]
< 1 and P[Ed,v] > 0

]
≥ 1/2 + ε (2)

by Markov’s inequality. Similarly, (2) holds with a in place of d, and thus

Pv∼vd

[
P
[
ov(χ) = ⊥ | Ea,v

]
< 1 and P[Ea,v] > 0

]
≥ 1/2 + ε− o(1) (3)

since ∆(va,vd) ≤ o(1). Next, we show that

Pv∼vd

[
∆
(
wb,v,wc,v

)
< 1 and P[Eb,v] > 0 and P[Ec,v] > 0

]
≥ 1− o(1) (4)

holds. Similarly,

Pv∼vd

[
∆
(
we,v,wf,v

)
< 1 and P[Ee,v] > 0 and P[Ef,v] > 0

]
≥ 1− o(1) (5)

will hold. The claim then follows from (2), (3), (4), and (5) by a union bound over v ∼ vd. It
remains to show (4). Let

V :=
{
v : ∆

(
wb,v,wc,v

)
= 1 and P[Eb,v] > 0 and P[Ec,v] > 0

}
and let T :=

{
vw : v ∈ V and w ∈ supp(wb,v)

}
. Note that P[Πc ∈ T ] = 0 since supp(wb,v) ∩

supp(wc,v) = ∅ for each v ∈ V . Thus P[vb ∈ V ] = P[Πb ∈ T ] ≤ 0 + ∆(Πb,Πc) ≤ o(1). It follows
that P[vd ∈ V ] ≤ o(1) + ∆(vd,vb) ≤ o(1). We also have Pv∼vd

[
P[Eb,v] = 0

]
≤ ∆(vb,vd) ≤ o(1)

and Pv∼vd

[
P[Ec,v] = 0

]
≤ ∆(vc,vd) ≤ o(1). Hence the left side of (4) is at least

1− Pv∼vd [v ∈ V ]− Pv∼vd

[
P[Eb,v] = 0

]
− Pv∼vd

[
P[Ec,v] = 0

]
≥ 1− o(1).

By the correctness of Π, we have P
[
ov∗(χ) = 0 | Ea,v∗

]
> 0 and P

[
ov∗(χ) = 1 | Ed,v∗

]
> 0.

Thus 0 and 1 are both possible outputs of ov∗ , and hence ⊥ is not a possible output of ov∗ . In what
follows, note that Es can be viewed as a subset of the domain of

(
(x, rx), (y, ry)

)
.

First suppose ov∗(1) = 0 and ov∗(0) = 1. For all s ∈ {a,b,c}, we actually have P
[
ov∗(χ) =

0 | Es,v∗
]

= 1 and hence P
[
χ = 1 | Es,v∗

]
= 1 and hence P

[
ws,v∗ 6= ε

]
= 1. Since

∆
(
wb,v∗ ,wc,v∗

)
< 1, this implies that there exists a w∗ ∈ {0, 1}k such that P

[
wb,v∗ = w∗

]
> 0 and

P
[
wc,v∗ = w∗

]
> 0. Hence there exists a

(
(x, rx), (y, ry)

)
∈ Sv∗,w∗ ∩ Eb and a

(
(x′, r′x), (y′, r′y)

)
∈

Sv∗,w∗ ∩Ec. Since Sv∗,w∗ is a rectangle,
(
(x, rx), (y′, r′y)

)
∈ Sv∗,w∗ and hence Π outputs ov∗(1) = 0.

This contradicts the correctness since (x, y′) is a 1-input (having x ∩ y′ = {1} and lying in the d
cell).

On the other hand, suppose ov∗(1) = 1 and ov∗(0) = 0. The argument is very similar: For all
s ∈ {d,e, f}, we actually have P

[
ov∗(χ) = 1 | Es,v∗

]
= 1 and hence P

[
χ = 1 | Es,v∗

]
= 1 and

hence P
[
ws,v∗ 6= ε

]
= 1. Since ∆

(
we,v∗ ,wf,v∗

)
< 1, this implies that there exists a w∗ ∈ {0, 1}k such

that P
[
we,v∗ = w∗

]
> 0 and P

[
wf,v∗ = w∗

]
> 0. Hence there exists a

(
(x, rx), (y, ry)

)
∈ Sv∗,w∗ ∩Ee

and a
(
(x′, r′x), (y′, r′y)

)
∈ Sv∗,w∗ ∩ Ef. Since Sv∗,w∗ is a rectangle,

(
(x, rx), (y′, r′y)

)
∈ Sv∗,w∗ and

hence Π outputs ov∗(1) = 1. This contradicts the correctness since (x, y′) is a 0-input (having
x ∩ y′ = {1, 2} and lying in the bottom-right cell in Figure 2).
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B Appendix: Catalog of Communication Complexity Classes

We now provide formal definitions of all the communication complexity classes considered in Sec-
tion 3. If C is the name of a model and F : {0, 1}n × {0, 1}n → {0, 1} is a partial function, then we
let C(F ) denote the minimum cost of a correct protocol for F in model C, and we also let C denote
the class of all (families of) partial functions F with C(F ) ≤ poly(log n). We let coC(F ) := C(¬F ).

For example, P(F ) is the minimum cost of a deterministic protocol for F , and P is the set
of partial functions with poly(log n)-cost deterministic protocols. We group the remaining models
into four categories (corresponding to the four subsections): the NP query hierarchy, bounded-error
randomized models, models with postselection or unbounded error, and models with alternation.

In the definitions that follow, we always use Π to denote a protocol, F to denote an arbitrary
partial function, and (x, y) to denote an arbitrary input in the domain of F (the models are worst-
case, so the correctness criteria always hold for all such (x, y)). All randomized models are assumed
to have public randomness except when noted otherwise.

B.1 The NP query hierarchy

Definition 31. (NP)

Syntax: Π is a collection of rectangles
{
Rw : w ∈ {0, 1}k

}
, and Π outputs 1 or 0 indicating

whether (x, y) ∈
⋃
w Rw.

Correctness: Π(x, y) = F (x, y).

Cost: k.

Definition 32. (US)

Syntax: Π is a collection of rectangles
{
Rw : w ∈ {0, 1}k

}
, and Π outputs 1 or 0 indicating

whether the number of w’s such that (x, y) ∈ Rw is exactly one.

Correctness: Π(x, y) = F (x, y).

Cost: k.

Definition 33. (DP)

Syntax: Π is a pair of collections of rectangles,
{
Sw : w ∈ {0, 1}k

}
and

{
Tw : w ∈ {0, 1}k

}
,

and Π outputs 1 or 0 indicating whether (x, y) ∈
⋃
w Sw r

⋃
w Tw.

Correctness: Π(x, y) = F (x, y).

Cost: k.

Definition 34. (P
NP[q]
‖ for constant q)

Syntax: Π is a deterministic protocol where for each leaf v with associated rectangle Rv, there
are q associated collections of subrectangles

{
Sv,i,w ⊆ Rv : w ∈ {0, 1}k

}
(i ∈ [q]) and

an associated output function ov : {0, 1}q → {0, 1} that is applied to the indicators of
whether (x, y) ∈

⋃
w Sv,i,w for each i.

Correctness: Π(x, y) = F (x, y).

Cost: k + the communication cost of the deterministic part.
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Definition 35. (PNP)

Syntax: Π is a protocol tree where each internal node v is labeled with either (i) a 1-bit function
of Alice’s or of Bob’s input in the usual way, or (ii) an “NP query” consisting of
a collection of rectangles

{
Sv,w : w ∈ {0, 1}kv

}
, where the indicator of whether

(x, y) ∈
⋃
w Sv,w determines which child to descend to in the protocol tree. The output

of Π is determined by the leaf reached.

Correctness: Π(x, y) = F (x, y).

Cost: The maximum over all root-to-leaf paths of the following: the length of the path plus
the sum of kv over all type-(ii) nodes v on the path.

Definition 36. (PNP[q] for constant q)

Syntax: Π is a PNP-type protocol where there are at most q NP queries on each root-to-leaf
path.

Correctness: Π(x, y) = F (x, y).

Cost: Same as Definition 35. Affecting the cost only by a constant factor, it can be assumed
that all NP queries happen at the end and all have the same witness length kv.

Definition 37. (PNP
‖ )

Syntax: Π is a PNP-type protocol where the result of each NP query is not revealed until the
last query on any path down the tree. Thus, each type-(ii) node has 1 child if it has a
type-(ii) descendant, and has 2q children if it has no type-(ii) descendants (where q is
the number of type-(ii) nodes on that path). Hence without loss of generality, all the
NP queries are consecutive.

Correctness: Π(x, y) = F (x, y).

Cost: Same as Definition 35.

B.2 Bounded-error randomized models

Definition 38. (ZPP)

Syntax: Π is a distribution over deterministic protocols outputting values in {0, 1,⊥}.
Correctness: P

[
Π(x, y) ∈ {F (x, y),⊥}

]
= 1 and P

[
Π(x, y) = F (x, y)

]
≥ 3/4.

Cost: The maximum communication cost of any constituent deterministic protocol.

Definition 39. (RP)

Syntax: Π is a distribution over deterministic protocols outputting values in {0, 1}.
Correctness: If F (x, y) = 1 then P[Π(x, y) = 1] ≥ 1/2.

If F (x, y) = 0 then P[Π(x, y) = 0] = 1.

Cost: The maximum communication cost of any constituent deterministic protocol.

Definition 40. (BPP)

Syntax: Π is a distribution over deterministic protocols outputting values in {0, 1}.
Correctness: P

[
Π(x, y) = F (x, y)

]
≥ 3/4.

Cost: The maximum communication cost of any constituent deterministic protocol.
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Definition 41. (MA)

Syntax: Π is a distribution over deterministic protocols that take an additional input w ∈
{0, 1}k, which is visible to both Alice and Bob.

Correctness: Completeness: if F (x, y) = 1 then ∃w : P
[
Π(x, y, w) = 1

]
≥ 3/4.

Soundness: if F (x, y) = 0 then ∀w : P
[
Π(x, y, w) = 0

]
≥ 3/4.

Cost: k + the maximum communication cost of any constituent deterministic protocol.

Definition 42. (AM)

Syntax: Π is a distribution over nondeterministic (NP-type) protocols.

Correctness: P
[
Π(x, y) = F (x, y)

]
≥ 3/4.

Cost: The maximum cost of any constituent nondeterministic protocol.

Definition 43. (ZPP
NP[q]
‖ for constant q)

Syntax: Π is a distribution over P
NP[q]
‖ -type protocols outputting values in {0, 1,⊥}.

Correctness: Same as Definition 38.

Cost: The maximum cost of any constituent P
NP[q]
‖ -type protocol.

Definition 44. (ZPPNP
‖ )

Syntax: Π is a distribution over PNP
‖ -type protocols outputting values in {0, 1,⊥}.

Correctness: Same as Definition 38.

Cost: The maximum cost of any constituent PNP
‖ -type protocol.

Definition 45. (ZPPNP[q] for constant q)

Syntax: Π is a distribution over PNP[q]-type protocols outputting values in {0, 1,⊥}.
Correctness: Same as Definition 38.

Cost: The maximum cost of any constituent PNP[q]-type protocol.

Definition 46. (ZPPNP)

Syntax: Π is a distribution over PNP-type protocols outputting values in {0, 1,⊥}.
Correctness: Same as Definition 38.

Cost: The maximum cost of any constituent PNP-type protocol.

B.3 Models with postselection or unbounded error

Although SBP is not defined in terms of postselection or unbounded error, we include the definition
here since it provides a nice segue.

Definition 47. (SBP)

Syntax: Π has public randomness uniformly distributed over {0, 1}k, with each outcome having
an associated deterministic protocol outputting values in {0, 1}.

Correctness: min(x,y)∈F−1(1) P[Π(x, y) = 1] > 2 ·max(x,y)∈F−1(0) P[Π(x, y) = 1].

Cost: k + the maximum communication cost of any constituent deterministic protocol.
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Definition 48. (PostBPP)

Syntax: Π has public randomness uniformly distributed over {0, 1}k, with each outcome having
an associated deterministic protocol outputting values in {0, 1,⊥}.

Correctness: P
[
Π(x, y) = F (x, y)

]
> 2 · P

[
Π(x, y) = 1− F (x, y)

]
.

Cost: k + the maximum communication cost of any constituent deterministic protocol.

Definition 49. (UPostBPP�)

Syntax: Same as Definition 48, except the public randomness is arbitrarily distributed over
{0, 1}k.

Correctness: Same as Definition 48.

Cost: Same as Definition 48.

Definition 50. (UPostBPP)

Syntax: Π is a private-randomness protocol outputting values in {0, 1,⊥}.
Correctness: Same as Definition 48.

Cost: The communication cost of the underlying deterministic protocol.

We have UPostBPP(F ) ≤ UPostBPP�(F ) ≤ PostBPP(F ) for all F , and hence PostBPP ⊆
UPostBPP� ⊆ UPostBPP.

Observation 51. Without loss of generality, in a PostBPP or UPostBPP� protocol, each of the
constituent deterministic protocols consists of a single rectangle (with fixed output 0 or 1 on inputs
in the rectangle, and output ⊥ on inputs outside the rectangle).

Proof. We may modify a PostBPP or UPostBPP� protocol so that after choosing the original public
randomness, it then picks a uniformly random leaf rectangle (of which we assume there are exactly
2c) from the associated deterministic protocol, outputs the same value on inputs in the rectangle,
and outputs ⊥ on all inputs outside the rectangle. The correctness is unaffected. The number of
random bits becomes k + c, and the communication cost becomes 2, so the overall cost becomes
k + c + 2. If after the transformation, any rectangle has label ⊥, we can instead assume it is an
empty rectangle with non-⊥ label.

Observation 52. UPostBPP(F ) ∈ min
(
log rank+(M0) + log rank+(M1)

)
±O(1) where rank+ de-

notes nonnegative rank, and the minimum is over nonnegative real matrices M0,M1 (indexed by

inputs) such that for each (x, y) ∈ F−1, M
F (x,y)
x,y > 2 ·M1−F (x,y)

x,y .

Definition 53. (PP)

Syntax: Π has public randomness uniformly distributed over {0, 1}k, with each outcome having
an associated deterministic protocol outputting values in {0, 1}.

Correctness: P
[
Π(x, y) = F (x, y)

]
> 1/2.

Cost: k + the maximum communication cost of any constituent deterministic protocol.

Definition 54. (UPP�)

Syntax: Same as Definition 53, except the public randomness is arbitrarily distributed over
{0, 1}k.

Correctness: Same as Definition 53.

Cost: Same as Definition 53.
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Definition 55. (UPP)

Syntax: Π is a private-randomness protocol outputting values in {0, 1}.
Correctness: Same as Definition 53.

Cost: The communication cost of the underlying deterministic protocol.

We have UPP(F ) ≤ UPP�(F ) ≤ PP(F ) for all F , and hence PP ⊆ UPP� ⊆ UPP.

Observation 56. Without loss of generality, in a PP or UPP� protocol, each of the constituent
deterministic protocols consists of a single rectangle (with output only depending on whether the
input is in the rectangle).

Proof. We may modify a PP or UPP� protocol so that after choosing the original public randomness,
it then picks a uniformly random leaf rectangle (of which we assume there are exactly 2c) from
the associated deterministic protocol, outputs the same value on inputs in the rectangle, and flips
a coin to determine the output on all inputs outside the rectangle. The correctness is unaffected.
The number of random bits becomes k + c + 1, and the communication cost becomes 2, so the
overall cost becomes k + c+ 3.

Observation 57. UPP(F ) ∈ min
(
log rank+(M0) + log rank+(M1)

)
± O(1) where rank+ denotes

nonnegative rank, and the minimum is over nonnegative real matrices M0,M1 (indexed by inputs)

such that for each (x, y) ∈ F−1, M
F (x,y)
x,y > M

1−F (x,y)
x,y .

B.4 Models with alternation

Definition 58. (S2P)

Syntax: Π is a matrix with rows indexed by w0 ∈ {0, 1}k and columns indexed by w1 ∈ {0, 1}k,
with each entry (w0, w1) having an associated deterministic protocol Πw0,w1 outputting
values in {0, 1}.

Correctness: If F (x, y) = 1 then ∃w1 ∀w0 : Πw0,w1(x, y) = 1.

If F (x, y) = 0 then ∃w0 ∀w1 : Πw0,w1(x, y) = 0.

Cost: k + the maximum communication cost of any constituent deterministic protocol.

Definition 59. (Σ`P for constant `)

Syntax: Π is a complete 2k-ary tree of depth ` (root-to-leaf paths have ` edges) representing a
formula with alternating layers of Or and And gates, with an Or gate at the root,
and where each leaf is the indicator for a rectangle (if ` is odd) or the complement of
a rectangle (if ` is even).

Correctness: Π(x, y) = F (x, y).

Cost: k.

Definition 60. (Π`P for constant `)

Syntax: Π is a complete 2k-ary tree of depth ` (root-to-leaf paths have ` edges) representing a
formula with alternating layers of And and Or gates, with an And gate at the root,
and where each leaf is the indicator for a rectangle (if ` is even) or the complement
of a rectangle (if ` is odd).

Correctness: Π(x, y) = F (x, y).

Cost: k.
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The class PH is defined as
⋃
`Σ`P =

⋃
` Π`P (where the union is over constants `).

Definition 61. (PSPACE)

Syntax: Π is a formula where each leaf is the indicator for a rectangle.

Correctness: Π(x, y) = F (x, y).

Cost: The log of the size of the formula.

Although ⊕P is not defined in terms of alternation, we include the definition in this subsection
since in a sense, it is at least as powerful as alternation: PH ⊆ BP · ⊕P [Tod91].

Definition 62. (⊕P)

Syntax: Π is a collection of rectangles
{
Rw : w ∈ {0, 1}k

}
, and Π outputs 1 or 0 indicating

whether the number of w’s such that (x, y) ∈ Rw is odd.

Correctness: Π(x, y) = F (x, y).

Cost: k.

Observation 63. ⊕P(F ) ∈ log rank(F )±O(1) where the rank is over GF (2).
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