
Incompressible Functions, Relative-Error Extractors, and the Power

of Nondeterministic Reductions

Benny Applebaum∗ Sergei Artemenko† Ronen Shaltiel‡ Guang Yang§

March 13, 2016

Abstract

A circuit C compresses a function f : {0, 1}n → {0, 1}m if given an input x ∈ {0, 1}n
the circuit C can shrink x to a shorter `-bit string x′ such that later, a computationally-
unbounded solver D will be able to compute f(x) based on x′. In this paper we study the
existence of functions which are incompressible by circuits of some fixed polynomial size s = nc.
Motivated by cryptographic applications, we focus on average-case (`, ε) incompressibility, which
guarantees that on a random input x ∈ {0, 1}n, for every size s circuit C : {0, 1}n → {0, 1}`
and any unbounded solver D, the success probability Prx[D(C(x)) = f(x)] is upper-bounded
by 2−m + ε. While this notion of incompressibility appeared in several works (e.g., Dubrov
and Ishai, STOC 06), so far no explicit constructions of efficiently computable incompressible
functions were known. In this work we present the following results:

(1) Assuming that E is hard for exponential size nondeterministic circuits, we construct
a polynomial time computable boolean function f : {0, 1}n → {0, 1} which is incompressible
by size nc circuits with communication ` = (1 − o(1)) · n and error ε = n−c. Our technique
generalizes to the case of PRGs against nonboolean circuits, improving and simplifying the
previous construction of Shaltiel and Artemenko (STOC 14).

(2) We show that it is possible to achieve negligible error parameter ε = n−ω(1) for nonboolean
functions. Specifically, assuming that E is hard for exponential size Σ3-circuits, we construct
a nonboolean function f : {0, 1}n → {0, 1}m which is incompressible by size nc circuits with
` = Ω(n) and extremely small ε = n−c · 2−m. Our construction combines the techniques of
Trevisan and Vadhan (FOCS 00) with a new notion of relative error deterministic extractor
which may be of independent interest.

(3) We show that the task of constructing an incompressible boolean function f : {0, 1}n →
{0, 1} with negligible error parameter ε cannot be achieved by “existing proof techniques”.
Namely, nondeterministic reductions (or even Σi reductions) cannot get ε = n−ω(1) for boolean
incompressible functions. Our results also apply to constructions of standard Nisan-Wigderson
type PRGs and (standard) boolean functions that are hard on average, explaining, in retrospect,
the limitations of existing constructions. Our impossibility result builds on an approach of
Shaltiel and Viola (STOC 08).

∗Tel Aviv University, Tel Aviv, Israel; bennyap@post.tau.ac.il.
†University of Haifa, Haifa, Israel; sartemen@gmail.com.
‡University of Haifa, Haifa, Israel; ronen@cs.haifa.ac.il.
§Tsinghua University, Beijing, P. R. China; guang.research@gmail.com.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 2 of Report No. 51 (2015)

1 Introduction

In this paper we study several non-standard pseudorandom objects including incompressible func-
tions, non-boolean PRGs and relative-error extractors for samplable and recognizable distributions.
We present new constructions of these objects, relate them to each other and to standard pseudo-
random objects, and study their limitations. Following some background on “traditional” pseudo-
random objects (Section 1.1), we define and motivate incompressible functions, non-boolean PRGs
and extractors for samplable distributions (Section 1.2). We continue with additional background
on Hardness assumptions (Section 1.3), and state our results in Sections 1.4 – 1.7.

1.1 Incomputable functions and pseudorandom generators

Functions that are hard to compute on a random input, and pseudorandom generators (PRGs) are
both fundamental objects in Complexity Theory, Pseudorandomness and Cryptography.

Definition 1.1 (incomputable functions and pseudorandom generators).

• A function f : {0, 1}n → {0, 1}m is incomputable by a function class C if f is not contained
in C. We say that f is ε-incomputable by C if for every function C : {0, 1}n → {0, 1}m in
C, Prx←Un [C(x) = f(x)] ≤ 1

2m + ε.

• A length-increasing function G : {0, 1}r → {0, 1}n (r < n) is an ε-PRG for a function class
C if for every function C : {0, 1}n → {0, 1} in C, |Pr[C(G(Ur)) = 1]− Pr[C(Un) = 1]| ≤ ε.

A long line of research is devoted to achieving constructions of explicit incomputable functions
and PRGs. As we are unable to give unconditional constructions of such explicit objects, the focus
of many previous works is on achieving conditional constructions, that rely on as weak as possible
unproven assumption. A common assumption under which explicit incomputable functions and
PRGs can be constructed is the assumption below:

Assumption 1.2 (E is hard for exponential size circuits). There exists a language L in E =
DTIME(2O(n)) and a constant β > 0, such that for every sufficiently large n, circuits of size 2βn

fail to compute the characteristic function of L on inputs of length n.

A long line of research in complexity theory is concerned with “hardness amplification” (namely,
conditional constructions of explicit ε-incomputable functions with small ε) and “hardness versus
randomness tradeoffs” (namely, conditional constructions of explicit PRGs). We sum up some of
the main achievements of this line of research in the theorem below.

Theorem 1.3 (Babai et al., 1993; Impagliazzo and Wigderson, 1997; Lipton, 1989; Nisan and
Wigderson, 1994; Sudan et al., 2001). If E is hard for exponential size circuits, then for every
constant c > 1 there exists a constant a > 1 such that for every sufficiently large n, and every r
such that a log n ≤ r ≤ n:

• There is a function f : {0, 1}r → {0, 1} that is n−c-incomputable for size nc circuits. Fur-
thermore, f is computable in time poly(nc).1

1A statement like this means that we consider a family f = {fn} for growing input lengths, and we think of
r = r(n) as a function. We use this convention throughout the paper.

1

• There is a function G : {0, 1}r → {0, 1}n that is an n−c-PRG for size nc circuits. Further-
more, G is computable in time poly(nc).

In the statement of Theorem 1.3 we allow input length r (of the functions f and G) to vary
between a log n and n. It should be noted that the case of r > a log n easily follows from the case
of r = a log n. We state the theorem this way, as we want to emphasize that by choosing r = nΩ(1),
we obtain incomputable functions/PRGs which run in time polynomial in their input length.

We also stress that in many settings in derandomization, increasing the input length r of a
pseudorandom object allows achieving a very small error of ε = 2−Ω(r). In contrast, in Theorem 1.3
this dependance is not achieved. More precisely, if we set r = nΩ(1), we only get ε = n−c = r−Ω(1)

which is polynomially small in the input length. We will elaborate on this limitation later on.

1.2 Additional pseudorandom objects

In this paper we consider generalizations of incomputable functions and PRGs that were introduced
by Dubrov and Ishai (2006). We also consider the notion of extractors for samplable distributions
introduced by Trevisan and Vadhan (2000).

1.2.1 Incompressible functions

Compression. Consider the following scenario. A computationally bounded machine C wishes
to compute some complicated function f on an input x of length n. While C cannot compute f(x)
alone, it has a communication-limited access to a computationally-unbounded trusted “solver” D,
who is willing to help. Hence, C would like to “compress” the n-bit input x to a shorter string x′

of length ` (the communication bound) while preserving the information needed to compute f(x).
This notion of compression was explicitly introduced by Dubrov and Ishai (2006) and was

later extended by several works. Harnik and Naor (2010) studied the case where f is an NP-hard
function and the compressor C runs in (arbitrary) polynomial-time. This form of compressibility is
closely related to the notion of “kernelization” studied in the context of Parameterized Complexity
(see Bodlaender et al., 2009 and references therein). In this setting, it is known that, under standard
complexity-theoretic assumptions, some functions are unlikely to be compressible (cf. Bodlaender
et al., 2009; Dell and van Melkebeek, 2014; Fortnow and Santhanam, 2011). One can also consider
a different setting in which the compressor is coming from a low-complexity class (e.g., constant-
depth circuits). In this case, it is possible to prove unconditional incompressibility results for
explicit polynomial-time computable functions (cf. Chattopadhyay and Santhanam, 2012; Dubrov
and Ishai, 2006; Oliveira and Santhanam, 2015).

Following Dubrov and Ishai (2006), we focus on an intermediate setting of the problem where
the gap between the time-complexity of f to the time-complexity of the compressor C is some fixed
polynomial (e.g., C runs in time n2, while f is computable in time n3). In this setting, the notion
of incompressibility is a natural strengthening of incomputability (as defined in Definition 1.1). We
proceed with a formal definition of incompressible functions. In the following, the reader should
think of the input length n as being larger than the communication-bound `, which is, in turn,
larger than the output length m, i.e., n > ` > m.

Definition 1.4 (incompressible function (Dubrov and Ishai, 2006)). A function f : {0, 1}n →
{0, 1}m is incompressible by a function C : {0, 1}n → {0, 1}` if for every function D : {0, 1}` →
{0, 1}n, there exists x ∈ {0, 1}m such that D(C(x)) 6= f(x). We say that f is ε-incompressible

2

by C if for every function D : {0, 1}` → {0, 1}m, Prx←Un [D(C(x)) = f(x)] ≤ 1
2m + ε. We say that f

is `-incompressible (resp. (`, ε)-incompressible) by a class C if for every C : {0, 1}n → {0, 1}`
in C, f is incompressible (resp. ε-incompressible) by C.

Incompressible functions are a generalization of incomputable functions in the sense that for
every ` ≥ 1 an (`, ε)-incompressible function is in particular ε-incomputable. However, incom-
pressibility offers several additional advantages and yield some interesting positive and negative
results.

Communication lower-bounds for verifiable computation. As an immediate example, con-
sider the problem of verifiable computation where a computationally bounded client C who holds an
input x ∈ {0, 1}n wishes to delegate the computation of f : {0, 1}n → {0, 1} (an n3-time function)
to a computationally strong (say n10-time) untrusted server, while verifying that the answer is cor-
rect. This problem has attracted a considerable amount of research, and it was recently shown by
Kalai et al. (2014) that verifiable computation can be achieved with one round of communication
in which the client sends x to the server, and, in addition, the parties exchange at most a poly-
logarithmic number of bits. If (1− o(1)) · n-incompressible functions exist, then this is essentially
optimal. Furthermore, this lower bound holds even in the preprocessing model (Applebaum et al.,
2010; Chung et al., 2010; Gennaro et al., 2010) where the client is allowed to send long messages
before seeing the input. Similar tight lower bounds can be shown for other related cryptographic
tasks such as instance-hiding or garbled circuits (cf. Applebaum et al., 2015, Section 6).

Leakage-resilient storage (Dav̀ı et al., 2010). On the positive side, consider the problem
of storing a cryptographic key K on a computer that may leak information. Specifically, assume
that our device was hacked by a computationally-bounded virus C who reads the memory and
sends at most ` bits to a (computationally unbounded) server D.2 Is it possible to securely store a
cryptographic key in such a scenario? Given an (`, ε)-incompressible function f : {0, 1}n → {0, 1}m
we can solve the problem (with information-theoretic security) by storing a random x ← {0, 1}n
and, whenever a cryptographic key K is needed, compute K = f(x) on-the-fly without storing it
in the memory. For this application, we need average-case incompressibility (ideally with negligible
ε), and a large output length m. Furthermore, it is useful to generalize incompressibility to the
interactive setting in which the compressor C is allowed to have a multi-round interaction with the
server D.

Unfortunately, so far it is unknown how to construct (based on “standard assumptions”) explicit
functions which are incompressible by bounded-size circuits, even in the worst-case setting.3

1.2.2 PRGs for nonboolean circuits

Dubrov and Ishai (2006) considered a generalization of pseudorandom generators, which should be
secure even against distinguishers that output many bits. In the definition below, the reader should
think of ` ≤ r < n.

2One may argue that if the outgoing communication is too large, the virus may be detected.
3As already mentioned, functions which are incompressible by depth-limited circuits (e.g., AC0) can be constructed

unconditionally (cf. Chattopadhyay and Santhanam, 2012; Dubrov and Ishai, 2006; Oliveira and Santhanam, 2015).
Such functions were also used in the context of leakage resilient cryptography by Faust et al. (2014).

3

Definition 1.5 (PRG for boolean and nonboolean distinguishers (Dubrov and Ishai, 2006)). A
function G : {0, 1}r → {0, 1}n is an ε-PRG for a function C : {0, 1}n → {0, 1}` if the distributions
C(G(Ur)) and C(Un) are ε-close.4 G is an (`, ε)-PRG for a class C of functions, if G is an ε-PRG
for every function C : {0, 1}n → {0, 1}` in C.

Indeed, note that a (1, ε)-PRG is simply an ε-PRG. Dubrov and Ishai noted that PRGs with large
` can be used to reduce the randomness of sampling procedures. We now explain this application.
In the definition below, the reader should think of ` ≤ n.

Definition 1.6 (Samplable distribution). We say that a distribution X on ` bits is samplable by
a class C of functions C : {0, 1}n → {0, 1}` if there exists a function C in the class such that X is
distributed as C(Un).

Imagine that we can sample from some interesting distribution X on ` = n1/10 bits using
n random bits, by a procedure C that runs in time n2. If we have a poly(n)-time computable
(`, ε)-PRG G : {0, 1}r → {0, 1}n against size n2 circuits, then the procedure P (s) = C(G(s)) is
a polynomial time procedure that samples a distribution that is ε-close to X (meaning that even
an unbounded adversary cannot distinguish between the two distributions). Furthermore, this
procedure uses only r random bits (rather than n random bits) and we can hope to obtain r � n.

1.2.3 Extractors for samplable distributions

Deterministic (seedless) extractors are functions that extract randomness from “weak sources of
randomness”. The reader is referred to Shaltiel (2002, 2011b) for survey articles on randomness
extractors.

Definition 1.7 (deterministic extractor). Let C be a class of distributions over {0, 1}n. A function
E : {0, 1}n → {0, 1}m is a (k, ε)-extractor for C if for every distribution X in the class C such that
H∞(X) ≥ k, E(X) is ε-close to uniform.5

Trevisan and Vadhan (2000) considered extractors for the class of distributions samplable by
small circuits (e.g., distributions samplable by circuits of size n2).6 The motivation presented
by Trevisan and Vadhan is to extract randomness from “weak sources of randomness” in order
to generate keys for cryptographic protocols. Indeed, extractors for samplable distributions are
seedless and require no additional randomness (in contrast to seeded extractors). Note that for
this application we would like extractors that run in polynomial time. The model of samplable
distributions (e.g. circuits of size n2) is very general, and contains many subclasses of distributions
studied in the literature on seedless extractors. Finally, Trevisan and Vadhan make the philosophical
assumption that distributions obtained by nature must be efficiently samplable.

Summing up, if we are convinced that the physical device that is used by an honest party as a
“weak source of randomness” has low complexity, (say size n2), then even an unbounded adversary
that gets to choose or affect the source, cannot distinguish between the output of the extractor and
a uniformly random string with advantage ≥ ε.

4We use Un to denote the uniform distribution on n bits. Two distributions X,Y over the same domain are ε-close
if for any event A, |Pr[X ∈ A]− Pr[Y ∈ A]| ≤ ε.

5For a distribution X over {0, 1}n, H∞(X) := minx log 1
Pr[X=x]

, where the minimum is taken over all strings x in
the support of X.

6In this paper we won’t explicitly set a bound on the input length of the sampling circuit as such a bound is
implied by the bound on its size.

4

1.3 Hardness assumptions against nondeterministic and Σi-circuits

In contrast to incomputable functions and (standard) PRGs, poly(n)-time constructions of the three
objects above (incompressible functions, PRGs for nonboolean distinguishers and extractors for
samplable distributions) are not known to follow from the assumption that E is hard for exponential
size circuits. We now discuss stronger variants of this assumption under which such constructions
can be achieved.

Definition 1.8 (nondeterministic circuits, oracle circuits and Σi-circuits). A nondeterministic
circuit C has additional “nondeterministic input wires”. We say that the circuit C evaluates to 1
on x iff there exist an assignment to the nondeterministic input wires that makes C output 1 on
x. An oracle circuit C(·) is a circuit which in addition to the standard gates uses an additional
gate (which may have large fan in). When instantiated with a specific boolean function A, CA

is the circuit in which the additional gate is A. Given a boolean function A(x), an A-circuit is
a circuit that is allowed to use A gates (in addition to the standard gates). An NP-circuit is a
SAT-circuit (where SAT is the satisfiability function) a Σi-circuit is an A-circuit where A is the
canonical ΣP

i -complete language. The size of all circuits is the total number of wires and gates.7

Note, for example, that an NP-circuit is different than a nondeterministic circuit. The former

is a nonuniform analogue of PNP (which contains coNP) while the latter is an analogue of NP.
Hardness assumptions against nondeterministic/NP/Σi circuits appear in the literature in various
contexts of complexity theory and derandomization (Barak et al., 2007; Drucker, 2013; Feige and
Lund, 1997; Goldreich and Wigderson, 2002; Gutfreund et al., 2003; Klivans and van Melkebeek,
2002; Miltersen and Vinodchandran, 2005; Shaltiel and Umans, 2005, 2006, 2009; Trevisan and
Vadhan, 2000). Typically, the assumption used is identical to that of Assumption 1.2 except that
“standard circuits” are replaced by one of the circuit types defined above. For completeness we
restate this assumption precisely.

Definition 1.9. We say that “E is hard for exponential size circuits of type X” if there exists
a problem L in E = DTIME(2O(n)) and a constant β > 0, such that for every sufficiently large
n, circuits of type X with size 2βn fail to compute the characteristic function of L on inputs of
length n.

Such assumptions can be seen as the nonuniform and scaled-up versions of assumptions of the
form EXP 6= NP or EXP 6= ΣP

2 (which are widely believed in complexity theory). As such, these
assumptions are very strong, and yet plausible - the failure of one of these assumptions will force
us to change our current view of the interplay between time, nonuniformity and nondeterminism.8

Hardness assumptions against nondeterministic or Σi-circuits appear in the literature in several
contexts (most notably as assumptions under which AM = NP). It is known that Theorem 1.3
extends to every type of circuits considered in Definition 1.8.

7An alternative approach is to define our model using the Karp-Lipton notation for Turing machines with advice.
For s ≥ n, a size sΘ(1) deterministic circuit is equivalent to DTIME(sΘ(1))/sΘ(1), a size sΘ(1) nondeterministic

circuit is equivalent to NTIME(sΘ(1))/sΘ(1), a size sΘ(1) NP-circuit is equivalent to DTIMENP(sΘ(1))/sΘ(1), a size

sΘ(1) nondeterministic NP-circuit is equivalent to NTIMENP(sΘ(1))/sΘ(1), and a size sΘ(1) Σi-circuit is equivalent

to DTIMEΣPi (sΘ(1))/sΘ(1).
8Another advantage of constructions based on this type of assumptions is that any E-complete problem (and such

problems are known) can be used to implement the constructions, and the correctness of the constructions (with that
specific choice) follows from the assumption. We do not have to consider and evaluate various different candidate
functions for the hardness assumption.

5

Theorem 1.10 (Impagliazzo and Wigderson (1997); Klivans and van Melkebeek (2002); Shaltiel
and Umans (2005, 2006)). For every i ≥ 0, the statement of Theorem 1.3 also holds if we replace
every occurrence of the word “circuits” by “Σi-circuits” or alternatively by “nondeterministic Σi-
circuits”.

Thus, loosely speaking, if E is hard for exponential size circuits of type X, then for every c > 1
we have PRGs and incomputable functions for size nc circuits of type X, and these objects are
poly(nc)-time computable, and have error ε = n−c.9

1.4 New constructions based on hardness for nondeterministic circuits

Our first results are explicit constructions of incompressible functions and PRGs for non-boolean
distinguishers from the assumption that E is hard for exponential size nondeterministic circuits.

1.4.1 A construction of incompressible functions

Our first result is a construction of polynomial time computable incompressible functions, based
on the assumption that E is hard for exponential size nondeterministic circuits. This is the first
construction of incompressible functions from “standard assumptions”. The theorem below is stated
so that the input length of the function is n. However, The input length can be shortened to any
Ω(log n) ≤ r ≤ n as in the case of incomputable functions stated in Theorem 1.3.

Theorem 1.11. If E is hard for exponential size nondeterministic circuits, then for every constant
c > 1 there exists a constant d > 1 such that for every sufficiently large n, there is a function
f : {0, 1}n → {0, 1} that is (`, n−c)-incompressible for size nc circuits, where ` = n − d · log n.
Furthermore, f is computable in time poly(nc).

The theorem smoothly generalizes to the case of non-boolean functions f : {0, 1}n →
{0, 1}n−`−d logn, and can also be extended to the interactive setting at the expense of strengthening
the assumption to “E is hard for exponential size nondeterministic NP-circuits”. (See Section 4.)

1.4.2 A construction of PRGs for nonboolean circuits

Dubrov and Ishai (2006) showed that incompressible functions imply PRGs for nonboolean distin-
guishers. More precisely, they used the analysis of the Nisan-Wigderson generator by Nisan and
Wigderson (1994) to argue that an incompressible function with the parameters obtained by The-
orem 1.11 implies that for every constant c > 1, and every sufficiently large n and nΩ(1) ≤ ` < n,
there is a poly(nc)-time computable (`, n−c)-PRG G : {0, 1}r=O(`2) → {0, 1}n for circuits of size
nc. Using this relationship, one can obtain such PRGs under the assumption that E is hard for
exponential size nondeterministic circuits. Note that a drawback of this result is that the seed
length r is quadratic in `, whereas an optimal PRG can have seed length r = O(`). This difference

9Historically, the interest in PRGs for nondeterministic/NP circuits was motivated by the goal of proving that
AM = NP, which indeed follows using sufficiently strong PRGs (Klivans and van Melkebeek, 2002; Miltersen and
Vinodchandran, 2005; Shaltiel and Umans, 2005, 2006). It is important to note, that in contrast to PRGs against
deterministic circuits, PRGs for nondeterministic circuits are trivially impossible to achieve, if the circuit can simulate
the PRG. Indeed, this is why we consider PRGs against circuits of size nc that are computable in larger time of
poly(nc).

6

is significant in the application of reducing the randomness of sampling procedures (as explained
in detail by Artemenko and Shaltiel (2014b)).

Artemenko and Shaltiel (2014b) constructed PRG for nonboolean circuits with the parameters
above, while also achieving seed length r = O(`). However, they used the stronger assumption
that E is hard for nondeterministic NP-circuits. In the theorem below we obtain the “best of both
worlds”: We start from the assumption that E is hard for nondeterministic circuits and obtain
PRGs with the optimal seed length of r = O(`).

Theorem 1.12. If E is hard for exponential size nondeterministic circuits, then there exists a
constant b > 1 such that for every constant c > 1 there exists a constant a > 1 such that for every
sufficiently large n, and every ` such that a log n ≤ ` ≤ n, there is a function G : {0, 1}b·` → {0, 1}n
that is an (`, n−c)-PRG for size nc circuits. Furthermore, G is computable in time poly(nc).

It should be noted that if ` ≤ c log n then standard PRGs against size 2 · nc circuits are also
non-boolean PRGs. This is because any statistical test on ` = c log n bits can be implemented by
a circuit of size nc.

1.5 The power and limitations of nondeterministic reductions

1.5.1 Negligible error in pseudorandom objects?

A common theme in Theorems 1.3, 1.10, 1.11 and 1.12 is that we can get ε = n−c, but we never get
ε = n−ω(1) which would be desired, for example, for the virus application. This holds even if we are
allowed to increase the input/seed length r, and let r approach n (say r = nΩ(1)). More generally, in
all these results (and in fact, in all the literature on achieving incomputable functions/PRGs from
the assumption that E is hard for exponential size deterministic circuits) 1/ε is always smaller than
the running time of the constructed object. Consequently, polynomial time computable constructs
do not obtain negligible error of ε = n−ω(1). This phenomenon is well understood, in the sense
that there are general results showing that “current proof techniques” cannot beat this barrier
(Artemenko and Shaltiel, 2014a; Shaltiel and Viola, 2010). We give a more precise account of these
results in Section 6.

However, there are examples in the literature where assuming hardness against nondeterministic
(or more generally Σi) circuits, it is possible to beat this barrier. The first example is the seminal
work of Feige and Lund (1997) on hardness of the permanent. More relevant to our setup are
the following two results by Trevisan and Vadhan (2000), and Drucker (2013), stated precisely
below. Note that in both cases, the target function is a polynomial time computable function that
is ε-incomputable for negligible ε = n−ω(1).

Theorem 1.13 (Nonboolean incomputable function with negligible error (Trevisan and Vadhan,
2000)10). If E is hard for exponential size NP-circuits, then there exists some constant α > 0
such that for every constant c > 1 and for every sufficiently large n, there is a function f :
{0, 1}n → {0, 1}m that is ε-incomputable by size nc circuits for m = αn and ε = 2−(m/3) = 2−Ω(n).
Furthermore, f is computable in time poly(nc).

10Theorem 1.13 is not stated in this form in Trevisan and Vadhan (2000). Nevertheless, it directly follows from
Trevisan and Vadhan (2000). See Artemenko et al. (2016) (Section 7) for an explanation.

7

Theorem 1.14 (Nonboolean incomputable function with negligible error (corollary of Drucker,
2013)11). For every c > 1 there is a constant c′ > c such that if there is a problem in P that
for every sufficiently large n is (1

2 − 1
n)-incomputable by nondeterministic circuits of size nc

′
, then

for every sufficiently large n, there is a function f : {0, 1}n → {0, 1}
√
n that is ε-incomputable by

circuits of size nc, for ε = 2−n
Ω(1)

. Furthermore, f is computable in time poly(nc).12

It is important to note that in both cases above the target function that is constructed is
nonboolean. We stress that the aforementioned lower bounds of Artemenko and Shaltiel (2014a)
apply also to the case of nonboolean target functions, and the proofs above bypass these limitations
by using nondeterministic reductions.

More precisely, assuming that the target function can be computed too well, the proofs need
to contradict the assumption that E is hard for nondeterministic/Σi-circuits. They do this by
designing a reduction. This reduction uses a deterministic circuit that computes the target func-
tion too well, in order to construct a nondeterministic/Σi-circuit that contradicts the assumption.
This setting allows the reduction itself to be a nondeterministic/Σi-circuit. A precise definition of
nondeterministic reductions appears in Section 6.

Nondeterministic reductions are very powerful and previous limitations on reductions (Arte-
menko and Shaltiel, 2014a; Shaltiel and Viola, 2010) do not hold for nondeterministic reductions.
(Indeed, Theorems 1.13 and 1.14 beat the barrier and achieve polynomial time computable functions
that are n−ω(1)-incomputable).

Our Theorems 1.11 and 1.12 are also proven using nondeterministic reductions. This raises the
question whether nondeterministic reductions can achieve error ε = n−ω(1) in these cases. More
generally, given the success of Trevisan and Vadhan, and Drucker, it is natural to hope that we can
get ε = n−ω(1) in the classical results stated in Theorem 1.3, if we are willing to assume the stronger
assumption that E is hard for exponential size Σi-circuits, for some i > 0. Assuming this stronger
assumption will allow the proof to use nondeterministic reductions (and the aforementioned lower
bounds do not hold).

1.5.2 Limitations on nondeterministic reductions

In this paper we show that nondeterministic reductions (or, more generally, Σi-reductions) cannot
be used to obtain a polynomial time n−ω(1)-incomputable boolean function, starting from the as-
sumption that E is hard for exponential size Σi-circuits (no matter how large i is). To the best of
our knowledge, our model of nondeterministic reductions (that is explained in Section 6) is suffi-
ciently general to capture all known proofs in the literature on hardness amplification and PRGs.13

This is a startling contrast between boolean and non-boolean hardness amplification - the latter

11Drucker (2013) considers a more general setting, on which we will not elaborate, and proves a direct product
result. The result we state is a corollary that is easy to compare to the aforementioned results.

12The assumption of Theorem 1.14 is known to follow from the assumptions E is hard for exponential size nondeter-
ministic circuits by Theorem 1.10. Consequently, the assumption used in Theorem 1.14 follows from the assumption
in Theorem 1.13. The converse does not hold. We also remark that our Theorem 1.11 holds also if we replace the
assumption by the following assumption that is similar in structure to Drucker’s assumption: For every c > 1 there
is a constant c′ > c such that there is a problem in P that for every sufficiently large n is (1

2
− 1

n
)-incomputable by

NP-circuits of size nc
′
. The same holds for our Theorem 1.12 if we make the additional requirement that ` = nΩ(1).

13It should be noted that there are proof techniques (see e.g. Gutfreund and Ta-Shma, 2007; Gutfreund et al.,
2007) that bypass analogous limitations in a related setup. See Gutfreund and Ta-Shma (2007) for a discussion.

8

can achieve negligible error, while the former cannot.14 Our results provide a formal explanation
for the phenomenon described above, and in particular, explains why Trevisan and Vadhan, and
Drucker, did not construct boolean functions.

We show that the same limitations hold, also for incompressible functions, PRGs against both
boolean and nonboolean distinguishers, and extractors for samplable distributions. Our results are
summarized informally below, and the precise statement of our limitations appears in Section 6.

Informal Theorem 1.15. For every i ≥ 0 and c > 0, it is impossible to use “black-box reductions”
to prove that the assumption that E is hard for exponential size Σi-circuits implies that for ε =
n−ω(1), there is a poly(n)-time computable:

• functions f : {0, 1}n → {0, 1} which are ε-incomputable by size nc circuits, or

• ε-PRG G : {0, 1}r → {0, 1}n for size nc circuits (the limitation holds for every r ≤ n− 1), or

• (`, ε)-PRG G : {0, 1}r → {0, 1}n for size nc circuits (the limitation holds for every r ≤ n−1),
or

• (k, ε)-extractor E : {0, 1}n → {0, 1}m for size nc circuits (the limitation holds for every m ≥ 1
and k ≤ n− log(1/ε)).

Furthermore, these limitations hold even if we allow reductions to perform Σi-computations, make
adaptive queries to the “adversary breaking the security guarantee” and receive arbitrary polynomial-
size nonuniform advice about the adversary.

It is interesting to note that previous work on (deterministic) black-box reductions often can-
not handle reductions that are both adaptive and nonuniform (Gutfreund and Rothblum, 2008;
Shaltiel and Viola, 2010) (see Artemenko and Shaltiel, 2014a for a discussion) and so the model of
nondeterministic reductions that we consider is very strong.

Related work on limitations on black-box hardness amplification A “black-box proof of
hardness amplification” consists of two components: A construction (showing how to to compute
the target function given access to the hardness assumption) and a reduction (showing that an
adversary that is able to compute the target function too well, can be used to break the initial
hardness assumption). We stress that in this paper we prove limitations on reductions. Our
limitation holds without placing limitations on the complexity of the construction (and this only
makes our results stronger).

There is an orthogonal line of work which is interested in proving limitations on low complex-
ity constructions. Some of these results (Lu et al., 2007, 2008; Viola, 2005) show lower bounds
on constructions implementable in the polynomial time hierarchy. However, this line of work is
incomparable to ours, and is not relevant to the setting that we consider.

More specifically, we want to capture cases in which the hardness assumption is for a problem
in exponential time. All previous limitations on the complexity of the construction do not hold in
this setting. We elaborate on our model and the meaning of our results in Section 6.

14Another contrast between boolean and nonboolean hardness amplification was obtained by Shaltiel and Viola
(2010) for reductions that are non-adaptive constant depth circuits, and the reasons for the current contrast, are
similar. Our proof follows the strategy of Shaltiel and Viola (2010) as explained in detail in Section 2.

9

1.6 Nonboolean incompressible functions with negligible error

In light of the previous discussion, if we want to achieve poly-time computable ε-incompressible
functions with ε = n−ω(1) we must resort to nonboolean functions. In the next theorem we give
such a construction.

Theorem 1.16 (Nonboolean incompressible function with negligible error). If E is hard for ex-
ponential size Σ3-circuits then there exists a constant α > 0 such that for every constant c > 1
and every sufficiently large n, and m ≤ α · n there is a function f : {0, 1}n → {0, 1}m that is
(`, n−c · 2−m)-incompressible for size nc circuits, where ` = α · n. Furthermore, f is computable in
time poly(nc).

We remark that the proof of Theorem 1.16 uses different techniques from the proof of The-
orem 1.11. More specifically, the incompressible function of Theorem 1.16 is a consequence of a
construction of an object that we call “relative-error extractor for recognizable distributions”. We
elaborate on this object and explain the connection to incompressible functions in Section 1.7.

We also note that the conclusion of Theorem 1.16 is stronger than that of Theorems 1.13
and 1.14, even if we restrict our attention to ` = 1. Specifically for m = Ω(n), we obtain that
f : {0, 1}n → {0, 1}Ω(n) is ε-incomputable by size nc circuits, with ε = n−c · 2−Ω(n), meaning that

circuits of size nc, have probability at most 1+n−c

2m of computing f(x). This should be compared
to the probability of random guessing which is 1

2m . Note that in the aforementioned theorems of

(Drucker, 2013; Trevisan and Vadhan, 2000) the probability is larger than 2−(m/2) which is large
compared to 2−m.

Moreover, the function we get is not only ε-incomputable, but (`, ε)-incompressible for large
` = Ω(n), and we will show that this holds even in the interactive setting. Getting back to the
memory leakage scenario, we will later see that (variants of) the theorem allows us to achieve a
constant rate scheme (an m bit key is encoded by n = O(m) bits) which resists an nc-time virus
that (interactively) leaks a constant fraction of the stored bits.

1.7 Deterministic extractors with relative error

1.7.1 Previous work on extractors for samplable distributions

Trevisan and Vadhan constructed extractors for distributions samplable by size nc circuits. The
precise statement appears below.

Theorem 1.17 (Extractors for samplable distributions Trevisan and Vadhan (2000)). If E is hard
for exponential size Σ4-circuits then there exists a constant α > 0 such that for every constant c > 1
and sufficiently large n, and every m ≤ αn there is a ((1−α) ·n, 1

nc)-extractor E : {0, 1}n → {0, 1}m
for distributions samplable by size nc circuits. Furthermore, E is computable in time poly(nc).15

As explained earlier, our limitations explain why Trevisan and Vadhan did not achieve ε =
n−ω(1). This may be a significant drawback in applications. In particular, if we use the extractor to
generate keys for cryptographic protocols (as explained in Section 1.2.3) then it might be that an

15In Trevisan and Vadhan (2000), this is stated with m = 0.5 · c · logn, but a more careful argument can give
the stronger result that we state here. Another result that appears in Trevisan and Vadhan (2000) allows m to be
(1− δ) · n for an arbitrary constant δ > 0, and then Σ4 is replaced by Σ5, ε = 1/n and the running time is nbc,δ for
a constant bc,δ that depends only on c and δ.

10

adversary that has a negligible probability of attacking the protocol under the uniform distribution,
has a noticeable probability of attacking under the distribution output by the extractor.16

1.7.2 Extractors with relative error

In order to circumvent this problem we suggest the following revised notion of statistical distance,
and extractors.

Definition 1.18 (statistical distance with relative error). We say that a distribution Z on {0, 1}m
is ε-close to uniform with relative error if for every event A ⊆ {0, 1}m, |Pr[Z ∈ A]− µ(A)| ≤
ε · µ(A) where µ(A) = |A|/2m.17

Note that if Z is ε-close to uniform with relative error, then it is also ε-close to uniform. However,
we now also get that for every event A, Pr[Z ∈ A] ≤ (1 + ε) ·µ(A) and this implies that events that
are negligible under the uniform distributions cannot become noticeable under Z.

We now introduce a revised definition of deterministic extractors by replacing the requirement
that the output is ε-close to uniform by the requirement that the output is close to uniform with
relative error.

Definition 1.19 (deterministic extractor with relative error). Let C be a class of distributions
over {0, 1}n. A function E : {0, 1}n → {0, 1}m is a (k, ε)-relative-error extractor for C if for every
distribution X in the class C such that H∞(X) ≥ k, E(X) is ε-close to uniform with relative error.

To the best of our knowledge, this concept of “relative-error extractor” was not previously
considered in the literature. We first observe that a standard probabilistic argument shows existence
of such extractors for any small class of distributions. This follows by proving that random functions
satisfy this property with high probability (using the same calculation as in the case of standard
extractors). Moreover, this probabilistic argument works with random t-wise independent functions.
Specifically, the following theorem was implicitly proven by Trevisan and Vadhan (2000) (Proof of
Proposition A.1):

Theorem 1.20 (Existence of relative-error extractors). Let C be a class of at most N distributions
on {0, 1}n. Then there exists a (k, ε)-relative-error extractor E : {0, 1}n → {0, 1}m for C with m =
k−2 log(1/ε)−O(log logN). Furthermore, with probability at least 1−2−n a random O(n+logN)-
wise independent function h : {0, 1}n → {0, 1}m is a (k, ε)-relative-error extractor E : {0, 1}n →
{0, 1}m for C.

1.7.3 New constructions of relative-error extractors for samplable distributions

We are able to extend Theorem 1.17 to hold with this new definition. Specifically:

Theorem 1.21 (Extractors for samplable distributions with relative error). If E is hard for ex-
ponential size Σ4-circuits then there exists a constant α > 0 such that for every constant c > 1
and sufficiently large n, and every m ≤ αn there is a ((1 − α) · n, 1

nc)-relative-error extractor
E : {0, 1}n → {0, 1}m for distributions samplable by size nc circuits. Furthermore, E is computable
in time poly(nc).

16A function α(n) : N→ [0, 1] is noticeable if it is lower-bounded by some inverse polynomial, i.e., α(n) > 1/nΩ(1).
17While we’ll use this definition mostly with ε < 1, note that it makes sense also for ε ≥ 1.

11

As previously explained this means that events that receive negligible probability under the uni-
form distribution also receive negligible probability under the output distribution of the extractor.
We believe that this makes extractors for samplable distributions more suitable for cryptographic
applications.

1.7.4 Relative-error extractors for recognizable distributions

We say that a circuit C : {0, 1}n → {0, 1} “recognizes” a distribution X over {0, 1}n if X is uniform
over the set of satisfying assignments of C. Correspondingly, Shaltiel (2011a) introduced the notion
of “recognizable distributions” which can be viewed as dual to the notion of efficiently samplable
distributions.

Definition 1.22 (Recognizable distribution Shaltiel (2011a)). We say that a distribution X on n
bits is recognizable by a class C of functions C : {0, 1}n → {0, 1} if there exists a function C in
the class such that X is uniform over {x : C(x) = 1}.

As we will later see extractors for distributions recognizable by small circuits translate into
incompressible functions. Furthermore, relative-error extractors with large error translate into
non-boolean incompressible functions with very small error.

Lemma 1.23.

• An (n− (`+ log(1/ε) + 1), ε/2)-extractor for distributions recognizable by size 2nc circuits, is
an (`, ε)-incompressible function for size nc circuits.

• An (n− (`+ log(1/ε) +m+ 1), ε/2) relative-error extractor f : {0, 1}n → {0, 1}m for distri-
butions recognizable by size 2nc circuits, is an (`, ε · 2−m)-incompressible function for size nc

circuits.

This argument demonstrates (once again) the power of extractors with relative error. More
precisely, note that even if ε is noticeable (i.e., 1/nΩ(1)), we get guarantees on probabilities that are
negligible! This lemma shows that in order to construct nonboolean incompressible functions with
very low error, it is sufficient to construct extractors for recognizable distributions with relative
error that is noticeable.

This lemma follows because if we choose X ← Un and consider the distribution of (X|C(X) =
a) for some compressed value a ∈ {0, 1}` that was computed by the compressor C, then this
distribution is recognizable, and for most a, it has sufficiently large min-entropy for the extractor
f . It follows that f(X) is close to uniform with relative error even after seeing C(X). However,
in a distribution that is ε-close to uniform with relative error, no string has probability larger
than (1 + ε) · 2−m, and so even an unbounded adversary that sees C(X) cannot predict f(X) with
advantage better than ε · 2−m over random guessing. We give a full proof in a more general setup
in the formal section (Section 4).
Our next result is a construction of a relative-error extractor for recognizable distributions.

Theorem 1.24 (Extractors with relative error for recognizable distributions). If E is hard for
exponential size Σ3-circuits then there exists a constant α > 0 such that for every constant c > 1
and sufficiently large n, and every m ≤ αn there is a ((1 − α) · n, 1

nc)-relative-error extractor E :
{0, 1}n → {0, 1}m for distributions recognizable by size nc circuits. Furthermore, E is computable
in time poly(nc).

12

Application in the leakage resilient scenario. The same reasoning applies in the memory
leakage scenario described in Section 1.2.1. Using a relative-error extractor for recognizable dis-
tributions f , we can achieve a constant rate scheme (an m bit key is encoded by n = O(m) bits)
which resists an nc-time virus who (interactively) leaks a constant fraction of the stored bits in
the following strong sense: Say that the key K = f(x) is used as the key of some cryptographic
scheme FK , and that the scheme FK is secure in the sense that the probability that an adversary
breaks the scheme is negligible (under a uniform key); then the scheme remains secure even in the
presence of the additional information that was released by the virus.

1.8 Organization of the paper

In Section 2 we give a high-level overview of the ideas and techniques used in our results. In Section
3 we give some preliminaries and state some previous classical results on approximate counting and
sampling of NP witnesses. In Section 4 we construct incompressible functions and discuss the
“fully interactive setting” in which compression is done by a bounded communication two-way
interactive protocol. In Section 5 we construct PRGs for non-boolean circuits. In Section 6 we
give a formal model of nondeterministic reductions and prove limitations on achieving negligible ε
for pseudorandom objects by nondeterministic reductions. In section 7 we construct relative-error
extractors for distributions that are recognizable by small circuits; this, in turn, gives incompressible
functions with negligible ε and relative-error extractors for samplable distributions.

2 Overview and Technique

In this section we present a high-level overview of the techniques used to prove our results.

2.1 Boolean incompressible functions with error n−c

We start with an overview of the proof of Theorem 1.11. Our goal is to construct a boolean
incompressible function for size nc circuits. Consider a family of poly(nc)-wise independent hash
functions H = {hs : {0, 1}n → {0, 1}}. We can sample from such a family using t = nO(c) random
bits. An easy counting argument (see e.g. Trevisan and Vadhan, 2000) shows that for every not-
too-large class of distributions with min-entropy k (such as the class of distributions recognizable
by size nc circuits) a random hs ← H, is with high probability an extractor for distributions in the
class.

By Lemma 1.23, a random h ← H is, with high probability, an (`, ε)-incompressible function
for ` = (1 − o(1)) · n and negligible ε. We are assuming that E is hard for exponential size
nondeterministic circuits, and by Theorem 1.10, there is a poly(nt)-time computable PRG G :
{0, 1}n → {0, 1}t for size nO(t) nondeterministic circuits (where t = nO(c) is the number of bits
needed to specify a hash function from H). We construct an incompressible function f : {0, 1}2n →
{0, 1} as follows:

f(x, y) = hG(y)(x).

Note that f is computable in polynomial time. In order to show that f is (`, n−c)-incompressible,
it is sufficient to show that for a (1 − n−c/2)-fraction of seeds y ∈ {0, 1}n, f(·, y) = hG(y)(·) is
(`, n−c/2)-incompressible.

13

We will show that for ε = 1/poly(n), there exists a polynomial-size nondeterministic circuit P ,
that when given s ∈ {0, 1}t, accepts if hs is not (`, 2ε)-incompressible, and rejects if hs is (`, ε)-
incompressible. A key observation is that as AM ⊆ NP/poly, it is sufficient to design an Arthur-
Merlin protocol P , and furthermore by using the results of Babai and Moran (1988) and Goldwasser
and Sipser (1986) we can allow this protocol to be a private-coin, constant-round protocol, with
small (but noticeable) gap between completeness and soundness.

We now present the protocol P : Merlin (who is claiming that hs is not (`, 2ε)-incompressible)
sends a circuit C : {0, 1}n → {0, 1}` of size nc (which is supposed to compress the function well).
Arthur, chooses private coins x← Un, and sends C(x) to Merlin. Merlin responds by guessing hs(x),
and Arthur accepts if Merlin guessed correctly. It is immediate that this protocol has completeness
1
2 + 2ε and soundness 1

2 + ε and the gap is large enough to perform amplification.
It follows that for a uniform y, w.h.p. hG(y) is 2ε-incompressible, as otherwise the nondetermin-

istic circuit P distinguishes the output of G from uniform.18

We remark that this approach can be extended to yield nonboolean incompressible functions.
However, using this approach we cannot get ε = n−ω(1). This is because the error of the final
function f is at least the error of the PRG G, which cannot be negligible. We later present our
construction of nonboolean incompressible functions with very low error (as promised in Theorem
1.16), which works by giving a construction of relative-error extractors for recognizable distributions
(using quite different techniques).

The proof of Theorem 1.11 can be viewed under the general paradigm of using a PRG to deran-
domize a probabilistic construction. This paradigm was abstracted by Klivans and van Melkebeek
(2002), and was also used in many relevant works such as Shaltiel and Umans (2006) and Artemenko
and Shaltiel (2014b). However, in contrast to previous works, we strongly rely on AM protocols
with private coins. This allows us to come up with very simple proofs that improve upon previous
work. An example is our next result that improves a recent construction of Artemenko and Shaltiel
(2014b).

2.2 PRGs for nonboolean distinguishers

We now give an overview of the proof of Theorem 1.12 and show how to construct PRGs against
nonboolean distinguishers. The argument is similar to that of the previous section. This time we
take a poly(nc)-wise independent family of hash functions H = {hs : {0, 1}2` → {0, 1}n}. First,
we show that w.h.p. a random hs ← H is an (`, ε)-PRG with very small ε. Indeed, by a standard
calculation, hs is, w.h.p, a (ε · 2−`)-PRG for size nc, and this easily implies that it is also an
(`, ε)-PRG (Artemenko and Shaltiel, 2014b). Next, we derandomize the collection using a PRG G
against poly(nc)-size nondeterministic circuits. Namely, our final PRG is G′(x, y) = hG(y)(x).

Following our earlier strategy, it is sufficient to design a private-coin, constant-round AM pro-
tocol P with noticeable gap ε between completeness and soundness, such that given s ∈ {0, 1}t, P
distinguishes the case that hs is not an (`, 2ε)-PRG from the case that hs is an (`, ε)-PRG.

18Note that for this argument it is sufficient to have a PRG G : {0, 1}n → {0, 1}t=n
O(c)

that has polynomial stretch.
Therefore, any assumption that implies such a PRG suffices for our application, and we chose the assumption that E
is hard for exponential size nondeterministic circuits, for the ease of stating it. Furthermore, it is sufficient for us that
G fools uniform AM protocols, and we don’t need to fool nonuniform nondeterministic circuits. There is a line of
work on constructing PRGs against uniform classes under uniform assumption (Gutfreund et al., 2003; Impagliazzo
and Wigderson, 2001; Shaltiel and Umans, 2009; Trevisan and Vadhan, 2007), but unfortunately, the relevant results
only give hitting set generators, and using these we can only get incompressible function with ε = 1− n−O(t).

14

We now present such a protocol, that is similar in spirit to the graph non-isomorphism protocol
by Goldreich et al. (1991). Merlin (who is claiming that hs is not a good PRG) sends a circuit
C : {0, 1}n → {0, 1}` (that is supposed to distinguish the output of hs from random). Arthur tosses
a private fair coin, and either sends C(y) for y ← Un, or C(hs(x)) for x ← U2`, depending on the
value of the coin. Merlin is supposed to guess Arthur’s coin. Note that if hs is not an (`, 2ε)-PRG,
then the two distributions C(Un) and C(hs(U2`)) are not 2ε-close and Merlin can indeed guess
Arthur’s coin with probability 1

2 + ε. If hs is an (`, ε)-PRG, then the distributions are ε-close and
Merlin cannot distinguish with probability larger than 1

2 + ε/2.
The precise argument appears in Sections 4 and 5. Figure 1 includes a roadmap for the approach
described above.

2.3 The power and limitations of nondeterministic reductions

The precise definitions of nondeterministic reductions and formal restatement of Theorem 1.15
appear in Section 6. Below, we try to intuitively explain what makes nondeterministic reductions
more powerful than deterministic reductions, and why this additional power is more helpful when
constructing nonboolean functions, and less helpful when constructing boolean functions.

Recall that we observed that nondeterministic reductions can be used to achieve negligible
error ε = n−ω(1) when constructing incomputable functions f : {0, 1}n → {0, 1}m for large m,
and we want to show that they cannot achieve this for m = 1. A powerful tool used by several
nondeterministic reductions is approximate counting.

Theorem 2.1 (approximate counting (Jerrum et al., 1986; Sipser, 1983; Stockmeyer, 1983)). For
every sufficiently large n, and every ε′ > 0 there is a size poly(n/ε′) randomized NP-circuit that,
given oracle access to a function C : {0, 1}n → {0, 1}, outputs with probability 1− 2−n an integer p
which ε′-approximates the value q = | {x : C(x) = 1} | in the sense that (1− ε′) · p ≤ q ≤ (1 + ε′) · p.

We want the oracle circuit above to have size poly(n), and so we can only afford ε′ = n−c.
Suppose that we are using approximate counting with this ε′ on some function C : {0, 1}n → {0, 1},
to try and distinguish the case that q = | {x : C(x) = 1} |/2−n satisfies q ≤ 2−m from the case that
q ≥ 2−m + ε, for negligible ε = n−ω(1). Note that an n−c-approximation can indeed perform this
distinguishing task if m ≥ log(1/ε), but it cannot do so if m = 1.

The reductions that we describe in the proofs of Theorems 1.16 and 1.21 construct functions
with m bit outputs, and critically rely on this property. We now observe that in order to be useful
for constructing functions with output length m, reductions must be able to distinguish the two
cases above.

Let us focus on the task of constructing incomputable functions f : {0, 1}n → {0, 1}m. Such
reductions receive oracle access to a circuit C : {0, 1}n → {0, 1}m, and if C computes f too well on
average, the reduction needs to contradict the hardness assumption. Loosely speaking, we observe
that the reduction must be able to distinguish the case that it is given a useful circuit C, namely
one such that Prx←Un [C(x) = f(x)] ≥ 2−m+ε (on which the reduction must succeed) from the case
that it is given a useless circuit C ′, which ignores its input and outputs a random value, so that
Prx←Un [C ′(x) = f(x)] = 2−m (and as this circuit is useless, the reduction receives no information
on f , and cannot succeed).

This explains why approximate counting is in some sense necessary for reductions that want
to achieve negligible error. In the formal proof, we use an argument similar to that of Furst et al.
(1984), to show that even reductions that are Σi-circuits, cannot approximately count with the

15

E
is
h
ar
d
fo
r
ex
p
on

en
ti
al

si
ze

n
on

d
et
er
m
in
is
ti
c
ci
rc
u
it
s

p
ol
y
(n

c
)-
ti
m
e
co
m
p
u
ta
b
le

n
−
c
-P
R
G

fo
r
si
ze

n
c
n
on

d
et
er
m
in
is
ti
c
ci
rc
u
it
s

p
ol
y
(n

c
)-
ti
m
e
co
m
p
u
ta
b
le

(`
,n
−
c
)-
P
R
G

fo
r
si
ze

n
c
ci
rc
u
it
s

w
it
h
a
se
ed

of
le
n
gt
h

2`
+
O
(l
og

n
),
`
≤

n

p
ol
y
(n

c
)–
ti
m
e
co
m
p
u
ta
b
le

fu
n
ct
io
n

f
:{
0,
1}

n
→
{0
,1
}m

th
at

is
(`
,n
−
c
)-
in
co
m
p
re
ss
ib
le

fo
r
si
ze

n
c
ci
rc
u
it
s
in

th
e

n
on

-i
n
te
ra
ct
iv
e
se
tt
in
g,

1
≤

m
≤

n
−

O
(l
og

n
)
−

`

E
is
h
ar
d
fo
r
ex
p
on

en
ti
al

si
ze

n
on

d
et
er
m
in
is
ti
c
N
P
-c
ir
cu
it
s

p
ol
y
(n

c
)-
ti
m
e
co
m
p
u
ta
b
le

n
−
c
-P
R
G

fo
r
si
ze

n
c
n
on

d
et
er
m
in
is
ti
c
N
P
-c
ir
cu
it
s

p
ol
y
(n

c
)–
ti
m
e
co
m
p
u
ta
b
le

fu
n
ct
io
n

f
:{
0,
1}

n
→
{0
,1
}m

th
at

is
(`
,n
−
c
)-
in
co
m
p
re
ss
ib
le

fo
r
si
ze

n
c
ci
rc
u
it
s
in

th
e

in
te
ra
ct
iv
e
se
tt
in
g,

1
≤

m
≤

n
−

O
(l
og

n
)
−

`

T
h
m
.
1.
10

T
h
m
.
1.
10

T
h
m

5.
6

T
h
m
.
4.
11

T
h
m
.
4.
11

re
la
ti
v
iz
in
g
p
ro
of

Figure 1: Roadmap: from hardness assumptions to incompressible functions and nb-PRGs.

16

precision needed for distinguishing the cases above if m = 1. This is shown by relating the quality
of such reductions to the quality of AC0-circuits that need to perform some task (for which there
are known lower bounds). This relationship uses ideas from the previous lower bounds of Shaltiel
and Viola (2010).

2.4 Constructing relative-error extractors for recognizable distributions

By lemma 1.23 it is sufficient to construct relative-error extractors for recognizable distributions in
order to obtain non-boolean incompressible functions with negligible error. We now explain how
to construct such extractors and prove Theorem 1.24. We use tools and techniques from Trevisan
and Vadhan (2000), together with some key ideas that allow us to get relative error. The full proof
appears in Section 7.

It is complicated to explain the precise setting, and instead we attempt to explain what enables
us to obtain relative-error. For this purpose, let us restrict our attention to the problem of con-
structing an ε-incomputable function g : {0, 1}n → {0, 1}m for ε = n−c · 2−m, which means that the
function cannot be computed with probability larger than (1 + n−c) · 2−m on a random input.

We will start from a function that is already very hard on average, say f : {0, 1}n → {0, 1}n′
that is ε-incomputable for ε = 2−n

′/3 (and we indeed have such a function by Theorem 1.13 for
n′ = Ω(n)). We want to reduce the output length of f from n′ to m ≈ log(1/ε) while preserving ε.
This will make ε small compared to 2−m.

A standard way to reduce the output length while preserving security is via the “hardcore
theorem” of Goldreich and Levin (1989), or, more generally, by concatenating with a “good” inner
code. More precisely, it is standard to define g(x, i) = EC(f(x))i for some error-correcting code
EC : {0, 1}n′ → ({0, 1}m)t that has sufficiently efficient list-decoding. Typically, the inner code
that we use is binary (that is, m = 1). However, we want to choose codes with large alphabet
that have extremely strong list decodability. One way to get such behavior is to use “extractor
codes” (defined by Ta-Shma and Zuckerman, 2004). More precisely, one sets g(x, i) = T (f(x), i)
where T : {0, 1}n′ × [t] → {0, 1}m is a “seeded extractor”. This guarantees that for every event
A ⊆ {0, 1}m, there aren’t “too many” x’s for which T (x, ·) lands in A with “too large probability”
(this is the kind of “combinatorial list-decoding” guarantee that we are interested in). It turns out
that for our application we need to replace “seeded extractors” with “2-source extractors”. A useful
property of 2-source extractors is that they can achieve error � 2−m. In particular, if applied with
error ε� 2−m, such extractors can be thought of as achieving “relative error” - the probability of
every output string is between 2−m − ε = (1− ε · 2m) · 2−m and 2−m + ε = (1 + ε · 2m) · 2−m. This
can be seen as a relative approximation with error ε′ = ε · 2m.

We observe that such extractors can be used as “inner codes” in the approach of Trevisan and
Vadhan (2000) (which can be viewed as a more specialized concatenation of codes). Precise details
appear in the formal proof.

As in the case of Goldreich-Levin, these “codes” need to have efficient “list-decoding proce-
dures”. In this setup “efficient” means: a list-decoding procedure implementable by a polynomial-
size NP-circuit. In order to obtain such a list-decoding procedure (for very small ε) we critically
use that approximate counting can indeed distinguish 2−m from 2−m + ε for negligible ε using a
noticeable approximation precision ε′ = n−c, as explained in Section 2.3.

17

2.5 Relative-error extractors for samplable distributions

We now explain how to construct relative-error extractors for samplable distributions and prove
Theorem 1.21. In this high-level overview, let us restrict our attention to samplable distributions
that are flat, that is uniform over some subset S ⊆ {0, 1}n. Let X be such a distribution, and let
C : {0, 1}t → {0, 1}n be a circuit that samples X (that is X = C(Ut)). It immediately follows
that X is recognizable by the NP-circuit that given x accepts iff there exists y ∈ {0, 1}t such
that C(y) = x. This means that it suffices to construct a relative-error extractor for distributions
recognizable by NP-circuits. This follows from Theorem 1.24 in an analogous manner, if in the
assumption we assume hardness for Σ4-circuits, instead of Σ3-circuits. This follows by observing
that the proof of Theorem 1.24 relativizes. The argument sketched above gives an extractor for flat
samplable distributions. In order to extend this to distributions that are not flat, we generalize the
notion of recognizable distributions to non-flat distributions and then Theorem 1.21 follows from
the (generalized version) of Theorem 1.24.

Our constructions of relative error extractors appear in Section 7. Figure 2 includes a roadmap
for the approach used to construct relative error extractors and consequences.

3 Preliminaries

We use the classical result on approximate counting and uniform sampling of NP-witnesses (Bellare
et al., 2000; Jerrum et al., 1986; Sipser, 1983; Stockmeyer, 1983), which we now state in a way that
is convenient for our application.

Definition 3.1 (relative approximation). We say that a number p is an ε-relative approximation
to q if (1− ε) · p ≤ q ≤ (1 + ε) · p.

It is useful to note that if p is an ε-approximation to q, then q is a 2ε-approximation to p. If p
is an ε-approximation to q and q is an ε-approximation to w, then p is 2ε-approximation to w. If
p′ is an ε-approximation to p and q′ is an ε-approximation to q, then a p′/q′ is a 2ε-approximation
to p/q. (The last property does not hold if we replace relative approximations with additive
approximations). In particular, this means that even if only want an additive approximation of
some quantity a = p/q, then it is sufficient to have relative approximations to p and q, whereas an
additive approximation does not suffice.

Theorem 3.2 (approximate counting [Jerrum et al. (1986); Sipser (1983); Stockmeyer (1983)]).
For every i ≥ 0, every sufficiently large s and every ε > 0, there is a Σi+1-circuit of size poly(s/ε)
that given a Σi-circuit C of size s outputs an ε-approximation of | {x : C(x) = 1} |.
Theorem 3.3 (uniform sampling [Bellare et al. (2000); Jerrum et al. (1986)]). For every i ≥ 0, ev-
ery sufficiently large s and every δ > 0, there is a randomized Σi+1-circuit A of size poly(s/ log(1/δ))
that given a Σi-circuit C : {0, 1}n → {0, 1} of size s outputs a value in {0, 1}n ∪ ⊥ such that for
every size s Σi-circuit, Pr[A(C) = ⊥] ≤ δ and the distribution (A(C)|A(C) 6= ⊥) is uniform over
{x : C(x) = 1}.

4 Incompressible Functions from Hard Functions

Outline. Our construction is based on a simple three-step approach. First, we construct a col-
lection of efficiently computable functions H that most of its members are incompressible functions

18

E
is

h
ar

d
fo

r
ex

p
on

en
ti

al
si

ze
Σ

3
ci

rc
u

it
s

p
ol

y
(n

c
)–

ti
m

e
co

m
p

u
ta

b
le

fu
n

ct
io

n
f

:{
0,

1}
n
→
{0
,1
}m

th
at

is
2−

m 3
-i

n
co

m
p

u
ta

b
le

fo
r

si
ze
n
c

Σ
2
-c

ir
cu

it
s,
m

=
α
n

p
ol

y
(n

c
)–

ti
m

e
co

m
p

u
ta

b
le

((
1
−
α

)n
,n
−
c
)-

re
la

ti
ve

-e
rr

or
ex

tr
ac

to
r

E
:{

0,
1}

n
→
{0
,1
}m

fo
r

d
is

tr
ib

u
ti

on
s

w
ea
kl
y
re
co
gn

iz
ab
le

b
y

si
ze
n
c

ci
rc

u
it

s,
m
≤
α
n

p
ol

y
(n

c
)–

ti
m

e
co

m
p

u
ta

b
le

fu
n

ct
io

n
f

:{
0,

1}
n
→
{0
,1
}m

th
at

is
(`
,n
−
c
·2
−
m

)-
in

co
m

p
re

ss
ib

le
fo

r
si

ze
n
c

ci
rc

u
it

s,
`

=
Ω

(n
)

E
is

h
ar

d
fo

r
ex

p
on

en
ti

al
si

ze
Σ

4
-c

ir
cu

it
s

p
ol

y
(n

c
)–

ti
m

e
co

m
p

u
ta

b
le

((
1
−
α

)n
,n
−
c
)-

re
la

ti
ve

-e
rr

or
ex

tr
ac

to
r

E
:{

0,
1}

n
→
{0
,1
}m

fo
r

d
is

tr
ib

u
ti

on
s

w
ea
kl
y
re
co
gn

iz
ab
le

b
y

si
ze
n
c

Σ
1

ci
rc

u
it

s,
m
≤
α
n

p
ol

y
(n

c
)–

ti
m

e
co

m
p

u
ta

b
le

((
1
−
α

)n
,n
−
c+

1
)-

re
la

ti
ve

-e
rr

or
ex

tr
ac

to
r

E
:{

0,
1}

n
→
{0
,1
}m

fo
r

d
is

tr
ib

u
ti

on
s

sa
m
pl
ab
le

b
y

si
ze
n
c

ci
rc

u
it

s,
m
≤
α
n

T
h

m
.

7.
4

T
h

m
.

7.
2

T
h

m
.

1.
23

L
em

m
a

7.
3

re
la

ti
v
iz

in
g

p
ro

of

Figure 2: Roadmap: from hardness assumptions to relative error extractors and incompressible
(nonboolean) functions with negligible error.

19

against s-size circuits. This collection is efficiently computable but large (contains 2poly(s) mem-
bers). This step is based on a simple connection between incompressible functions and extractors
against recognizable distributions, and on the fact that t-wise independent hash functions are good
extractors. At the second step, we reduce the size of the collection to poly(s). This partial de-
randomization is based on the observation that good functions in the large collection H can be
identified by poly(s)-size nondeterministic circuits, and so one can sub-sample functions from the
large collection via an appropriate (standard) NW-PRG. Finally, we note that collections of incom-
pressible functions F can be easily combined into a single incompressible function while increasing
the input length by log |F|. For small collections of size poly(s), this leads to a minor logarithmic
loss in the parameters.

Interactive compressibility. We begin by extending the notion of incompressibility to the
interactive setting in which the compressor C is allowed to interact with an unbounded solver D in
(arbitrarily) many rounds. As in the non-interactive setting we assume that C is a circuit of size
s and restrict the total communication from C to D to be at most ` bits. We do not restrict the
communication from D to C, though it is implicitly restricted by the circuit size of C. It will be
convenient to think of such an interactive compression protocol (C,D) as an s-size circuit C with
oracle gates to a stateful oracle D : {0, 1}∗ → {0, 1}∗, with the restriction that the total bit-length
of all calls to D is upper-bounded by `. Formally, a stateful oracle is defined by an initial state M0

and a mapping D : {0, 1}∗×{0, 1}∗ → {0, 1}∗×{0, 1}∗ which takes a (current) state M and a query
q and generates a new state M ′ and an output z. Since the oracle is computationally unbounded
we may assume, without loss of generality, that the state M consists of the full history of all queries
that were asked so far.

Definition 4.1 (Incompressible function in the interactive setting). We say that f : {0, 1}n →
{0, 1}m is (`, ε)-incompressible by s-size circuits in the interactive setting if for every s-size
oracle-aided circuit C which sends to its oracle a total number of ` bits, and every stateful oracle
D, we have that Prx←Un [CD(x) = f(x)] ≤ 1

2m + ε.

Obviously, interactive incompressibility implies non-interactive incompressibility (with the same
parameters). Interactive compressibility was first presented by Dell and van Melkebeek (2014) (for
NP-hard problems) and was further studied for depth-limited compressors by Chattopadhyay and
Santhanam (2012); Oliveira and Santhanam (2015).

4.1 Incompressible functions from extractors

We proceed by relating incompressible functions to extractors for recognizable distributions. The
following lemma extends Lemma 1.23 to the interactive setting.

Lemma 4.2 (Incompressible functions from Extractors). For every integers m < ` < n and s, and
every real ε ∈ [0, 1] the following holds. If f : {0, 1}n → {0, 1}m is an (n− `−∆1, ε

′) extractor for
s′-size recognizable distributions, then f is (`, ε)-incompressible by s-size circuits in the interactive
setting where ∆1 = 1 + log(1/ε), ε′ = ε/2 and s′ = 2s. Moreover, this holds even if f is an
(n− `−∆1, ε

′2m)-relative-error extractor for s′-size recognizable distributions.

Concretely for any constant c > 0, we get that an (n − ` − c log n − 1, n−c/2) extractor for
2nc-size recognizable distributions is (`, n−c)-incompressible by nc-size circuits.

20

Proof. Let f : {0, 1}n → {0, 1}m be an (n−`−∆1, ε
′) extractor for s′-size recognizable distributions

or (n− `−∆1, ε
′2m)-relative-error extractor for s′-size recognizable distributions. Assume, towards

a contradiction, that there exists an s-size interactive compressor C that makes q calls to an
unbounded solver D with total communication of `, such that Prx[CD(x) = f(x)] ≥ 2−m + ε. A
transcript a = (a1, . . . , aq) ∈ {0, 1}` is a concatenation of all the messages sent by C to the solver
oracle D. Such a transcript uniquely defines the answers (b1, . . . , bq) of the solver as well as the final
output of the protocol y. The compressor C (together with D) defines a mapping ρ from an input
x ∈ {0, 1}n to a transcript a ∈ {0, 1}`, and so a random choice of x← {0, 1}n induces a probability
distribution over the transcripts. Let w(a) = Prx[ρ(x) = a] denote the weight of a transcript a,
and σ(a) denote the conditional success probability Prx[CD(x) = f(x)|ρ(x) = a].

We first claim there exists a good transcript a for which both w(a) ≥ ε · 2−`−1 and σ(a) ≥
2−m + ε/2. Indeed, we can write

2−m + ε ≤ Pr
x

[CD(x) = f(x)] =
∑

a:w(a)<ε·2−`−1

w(a) · σ(a) +
∑

a:w(a)≥ε·2−`−1

w(a) · σ(a). (4.3)

As the first summand is upper-bounded by ε · 2−`−1 · 2` ≤ ε/2, the second summand must be at
least 2−m + ε/2, and so the claim follows by an averaging argument.

Let us fix a good transcript a = (a1, . . . , aq) ∈ {0, 1}`, let b = (b1, . . . , bq) be the corresponding
answers of the decoding oracle, and let y be the final outcome of CD. Consider the uniform
distribution X over n-bit strings which are mapped (by ρ) to the transcript a. Since w(a) ≥ ε·2−`−1,
the min-entropy of X is at least k = n−`−1− log(1/ε). Furthermore, X is recognizable by a circuit
C ′ of size s′ ≤ 2s. (Indeed, compute C(x), with the answers b hardwired, and accept if all the queries
to D are consistent with the transcript a, i.e., if C1(x) = a1, and Ci(x, b1, . . . , bi−1) = ai for every
1 < i ≤ q where Ci denotes th sub-circuit that computes the i-th query based on the input x and the
answers of the previous queries). Finally, we have, by assumption, that Pr[f(X) = y] ≥ 2−m + ε/2,
and so f is neither (k, ε′) extractor nor (k, ε′2m)-relative-error extractor for s′-recognizable sources,
in contradiction to our hypothesis.

4.2 Ensembles of extractors

Our next goal is to construct a polynomial-time computable ensemble of functions almost all of
whose members are extractors for recognizable distributions. For this purpose we will make use of
t-wise independent hashing.

Definition 4.4 (t-wise independent hashing). A collection of functions H =
{hz : {0, 1}n → {0, 1}m} which is indexed by τ -bit identifiers z ∈ {0, 1}τ is called t-wise
independent hash function if for every t distinct strings x1, . . . , xt the random variables
hz(x1), . . . , hz(xt) induced by a uniformly random choice of z ← {0, 1}τ are uniformly distributed
in ({0, 1}m)t.

We will make use of efficiently computable families of t-wise independent hash functions. That
is, we assume that there exists a poly(n)-time evaluation algorithm H : {0, 1}τ ×{0, 1}n → {0, 1}m
which takes an identifier z ∈ {0, 1}τ and an input x ∈ {0, 1}n and outputs y = hz(x). It is
well known that for every polynomial t(n) ∈ poly(n) efficient families of t-wise independent hash
functions exists (e.g., based on Reed-Solomon codes).

21

We say that H = {hz : {0, 1}n → {0, 1}m} is a collection of (k, ε) extractors for a family of
sources C with a failure probability δ if

Pr
z

[hz is a (k, ε)− extractor for C] > 1− δ.

Collections of (k, ε) incompressible functions (or PRGs) are defined analogously. Trevisan and
Vadhan (2000) show that t-wise independent hash functions H form a good collection of relative-
error extractors against any fixed family C of N sources, provided that t = O(n + logN). (See
Theorem 1.20.) Since the number of s-size circuits is N ≤ 22s log s+5s, and since there are families of
t-wise independent functions computable by (uniform) circuits of size T = poly(t, n) (say quadratic
in nt) we derive the following proposition.

Proposition 4.5. Let s = s(n) = ω(n) be some polynomially-bounded function, ε = 1/s, and let
k = k(n) ≤ n be some entropy bound which is lower-bounded by ∆2 = 3 log s − log log s + Ω(1).
Then, there exists a collection H = {hz : {0, 1}n → {0, 1}m} with m = k − ∆2 of (k, ε)-(relative-
error)-extractors for s-size recognizable sources with failure probability δ = 2−n. Furthermore, H is
computable by an evaluation algorithm H : {0, 1}τ × {0, 1}n → {0, 1}m of complexity poly(s).

4.3 Partial derandomization: obtaining a small collection

From now on, we fix some constant c > 1, and some arbitrary function `(n) ≤ n − Ωc(log n) and
strive for an (`, n−c)-incompressible for nc-size compressors. Concretely, we let ∆1 = 1 + c log n as
in Lemma 4.2 and ∆2 = 3c log n− log log n+ Ω(1) as in Proposition 4.5 instantiated with s = 2nc,
and require that `(n) ≤ n− (∆1 + ∆2) = n− Ωc(log n). We also let k = n− `−∆1 be an entropy
bound, and m = k −∆2 = n− `− (∆1 + ∆2) = n− `− Ωc(log n) be the desired output length.

Let Hc,` : {0, 1}τ × {0, 1}n → {0, 1}m be the evaluation algorithm that satisfies Proposition 4.5
with respect to the parameters s and k (defined above), and note that by Lemma 4.2, all but 2−n

fraction of the functions in H are (`, n−c)-incompressible for nc-size compressors. Consider the
promise problem Πc,` whose YES instances are the τ(n)-bit strings z for which H(z, ·) is (`, 2n−c)-
compressible by nc-size circuits in the non-interactive setting, and the NO instances τ(n)-bit strings
z for which H(z, ·) is (`, n−c)-incompressible by nc-size circuits in the non-interactive setting. (The
interactive setting will be discussed later.)

Claim 4.6. There exists a nondeterministic circuit of a size nb which accepts the YES instances
of Πc,` and rejects the NO instances of Πc,`, where b is a constant which depends on c.

Proof. We prove a stronger statement, namely that Πc,` is in AM. Consider the following inter-
active proof system. On joint input z, Merlin sends a description of an nc-size (non-interactive)
compressing circuit C : {0, 1}n → {0, 1}`, Arthur samples a random string x← {0, 1}n and sends to
Merlin C(x), who responds with y ∈ {0, 1}m. Arthur accepts if y = Hc,`(z, x). Clearly, if z is a YES
instance then Merlin can make Arthur accept with probability 1/2+2n−c, whereas on NO instance
the acceptance probability is upper-bounded by 1

2 + n−c. Using standard amplification techniques
together with the transformations of Goldwasser and Sipser (1986) and Babai and Moran (1988),
we get that Πc,` has a two-message public-coin AM protocol, which, in turn, means that Πc,` has
a nondeterministic circuit of poly(n)-size.

Recall that, by Proposition 4.5 and Lemma 4.2, all but 2−n fraction of the functions in H are
(`, n−c)-incompressible for nc-size compressors. Hence, all but a 2−n fraction of the τ -bit strings z
are NO-instances. As a result we obtain the following proposition.

22

Proposition 4.7. Let G : {0, 1}r → {0, 1}τ be an n−b-PRG for nondeterministic circuits of size nb

where b > c is the constant from Claim 4.6. Consider the algorithm f : {0, 1}r ×{0, 1}n → {0, 1}m
where

f(w, x) = Hc,`(G(w), x).

Then, the ensemble F = {f(w, ·) : {0, 1}n → {0, 1}m}w∈{0,1}r is a collection of (`, n−c)-incompress-

ible functions for nc-size circuits (in the non-interactive setting) with failure probability 2−n+n−2c.

The interactive setting. We would like to prove an analogous statement for incompressible
functions in the interactive setting. However, we do not know how to recognize compressible
functions with few alternations. (Note that a straightforward generalization of Claim 4.6 yields
an interactive proof with polynomially many rounds of interaction.) An easier task is to identify
extractors for recognizable distributions. In fact, we will make use of the fact that it suffices to
recognize extractors with relative error.

Concretely, let Π′c,` denote the promise problem whose YES instances are the τ(n)-bit strings
z for which H(z, ·) is not (k + 1, 2ε)-relative-error extractors for s-size recognizable sources, and
the NO instances are τ -bit strings for which H(z, ·) is (k, ε)-relative-error extractors for s-size
recognizable sources. We prove the following claim.

Claim 4.8. There exists a nondeterministic NP-circuit A of size nb that accepts the YES instance
of Π′c,` and rejects its NO instances, where b is a constant that depends on c.

Proof. The circuit A takes a string z as an input, and a witness (C, y) where C : {0, 1}n → {0, 1}
is an s-size circuit and y ∈ {0, 1}m is a string. The circuit A will test whether C recognizes a
high-entropy distribution, and that the quantity p = Prx[H(z, C(x)) = y] is far enough from 2−m.
Both checks will be implemented by using the NP-oracle to approximate the number of satisfiable
assignments of a poly(T, s)-size circuit, where T is the time complexity of the evaluation algorithm
of H. (Recall that both T and s are polynomials in nc.)

Formally, A will perform the following checks: (1) Ask for a (1 ± 1/4) multiplicative approxi-
mation of the number of assignments that satisfy C, and check that the result is at least 1.5 · 2k;
(2) Ask for a (1 ± ε2) multiplicative approximation of the number of assignments x that satisfy
H(z, C(x)) = y, and check that the result is not in the interval 2n−m · (1 ± 1.5ε). Such an ap-
proximation is implementable with an NP oracle (Stockmeyer, 1983) with circuit complexity of
poly(T, s, 1/ε) = poly(nc). (See Theorem 3.2.)

The analysis is straightforward. First, assume that z is a yes instance. Then there exists a
witness (C, y) such that: (a) C recognizes a distribution with min-entropy k + 1; and (b) p =
Prx[H(z, C(x)) = y] /∈ (1 ± 2ε)2−m. Part (a) means that the set C−1(1) is larger than 2k+1

and so the approximated value must be larger or equal to 1.5 · 2k, and the first check will go
through. Similarly, (b) means that the number of x’s which satisfy H(z, C(x)) = y is either less
than 2n−m(1 − 2ε) or larger than 2n−m(1 + 2ε). In the first case, the approximated value will be
at most 2n−m(1 − 2ε)(1 + ε2) < 2n−m · (1 − 1.5ε) for ε < 1. In the second case, the approximated
value will be at least 2n−m(1 + 2ε)(1− ε2) which is larger than 2n−m · (1 + 1.5ε) for ε < 0.3. (Recall
that ε = o(1) in our setting.) Hence, in both cases the second check passes, and A accepts.

On the other hand, it is not hard to show that a NO instance z is always rejected. Indeed, fix a
potential witness (C, y) if C passes the first check then it must sample a source with at least k bits
of min-entropy. For such a source we know that p = Prx[H(z, C(x)) = y] ∈ [2−m(1− ε), 2−m(1 + ε)]

23

and so the approximation computed in the second part of the test must be in the interval

[2n−m(1− ε)(1− ε2), 2n−m(1 + ε)(1 + ε2)] ⊂ [2n−m(1− 1.5ε), 2n−m(1 + 1.5ε)],

which means that the second check fails. This completes the proof of the claim.

By construction, all but a 2−n fraction of the τ -bit strings z are NO-instances of Π′c,`. Further-

more, by Lemma 4.2, for each of these strings, the function H(z, ·) is (`, n−c)-incompressible by
nc-size circuits in the interactive setting. As a result we obtain the following proposition (which is
analogous to Proposition 4.7).

Proposition 4.9. Let G : {0, 1}r → {0, 1}τ be an n−b-PRG for nondeterministic NP-circuits of
size nb, where b > c is the constant from Claim 4.8. Consider the algorithm f : {0, 1}r ×{0, 1}n →
{0, 1}m where

f(w, x) = Hc,`(G(w), x).

Then, the ensemble F = {f(w, ·) : {0, 1}n → {0, 1}m}w∈{0,1}r is a collection of (`, n−c)-incompress-

ible functions for nc-size circuits in the interactive setting with failure probability 2−n + n−2c.

4.4 From a small collection to a single function

Finally, we need the following simple observation.

Claim 4.10 (Combining incompressible functions). Let

F = {fz : {0, 1}n → {0, 1}m}z∈{0,1}τ

be a collection of (`, ε)-incompressible functions for s-size circuits with failure probability δ, and
let f(z, x) be the evaluator of F . Then the function f(z, x) viewed as a single-input function over
(τ +n)-bit strings is (`, ε+ δ)-incompressible for s-size circuits. Furthermore, this holds both in the
interactive and non-interactive setting.

Proof. Assume, towards a contradiction, that f is compressible by an s-size circuit C with com-
munication of `-bits and solver D with success probability larger than 2−m + ε+ δ. Then, for more
than δ fraction of the strings z ∈ {0, 1}τ it holds that

Pr
x←{0,1}n

[CD(z, x) = f(z, x)] ≥ 2−m + ε.

Observe that for each of these z’s, the function fz is (`, ε)-compressed by C(z, ·) (with respect to
solver D). It follows that more than a δ fraction of the fz are (`, ε)-compressible, in contradiction
to our assumption.

We can now prove a stronger variant of Theorem 1.11.

Theorem 4.11. If E is hard for exponential size nondeterministic circuits (resp., nondeterministic
NP-circuits), then for every constant c > 1 there exists a constant d > 1 such that for every
sufficiently large n and every ` < n− d log n, there is a function f : {0, 1}n → {0, 1}n−`−d logn that
is (`, n−c)-incompressible for size nc circuits in the non-interactive setting (resp., in the interactive
setting). Furthermore, f is computable in time poly(nc).

24

Proof. We will prove that for every constant c > 1 and every integer-valued function `(n) ≤
n−Ωc(log n) there exists an efficiently computable function f : {0, 1}n+Ωc(logn) → {0, 1}n−`−Ωc(logn)

which is (`, 2n−c)-incompressible for nc-size circuits in the non-interactive setting (resp., in the
interactive setting). The theorem then follows by renaming the input length and by starting with
a larger constant, e.g., c′ = c+ 1.

To prove the above statement, fix some constant c > 1, and use the parameters in the previous
subsection. That is, let `(n) ≤ n − (∆1 + ∆2) = n − 4c log n − log logn + Ω(1), and let m =
n − ` − 4c log n − log logn + Ω(1). Let Hc,` : {0, 1}τ × {0, 1}n → {0, 1}m be the collection defined
in the previous section and let b(c) > c be the corresponding constant from Claim 4.6 (resp.,
Claim 4.8). By Theorem 1.10, our hypothesis implies the existence of n−b-PRG G : {0, 1}r →
{0, 1}τ(n) against nondeterministic circuits (resp., nondeterministic NP-circuits) of size nb, where
r = a log n for some constant a which depends on c. By Proposition 4.7 (resp., Proposition 4.9)
and Claim 4.10 the function f : {0, 1}r+n → {0, 1}m defined via the mapping (w, x) 7→ H(G(w), x)
is (`, n−c + n−b)-incompressible for nc-size circuits in the non-interactive setting (resp., in the
interactive setting).

5 Constructing non-boolean PRGs

In this section we prove Theorem 1.12 by following the outline sketched in Section 2. We begin
with a simple observation.

Proposition 5.1. If G is an (1, 2−`ε)-PRG for size s circuits then it is also an (`, ε)-PRG for size
s circuits.

A standard probabilistic argument shows that a function h which is randomly chosen from a
t-wise collection of hash functions H is a good ε-PRGs against any s-size circuits with probability
1− δ, where t = Ω(s log s+ log(1/δ)).

Claim 5.2 (Collections of PRGs from Hashing). For every s and ε, δ ∈ [0, 1] a family of t-wise
independent hash functions H = {hz : {0, 1}r → {0, 1}n} is a collection of ε-PRG against s-size
circuits with failure probability δ, where t = 4s log s+ 2 log(1/δ) and r = 2 log(1/ε) + log t.

Proof. Fix an s-size distinguisher C and let µ = Pr[C(Un) = 1]. For every fixed string x ∈ {0, 1}r
let vx be the random variable which takes the value 1 if h(x) ∈ C−1(1) where the probability
is taken over a choice of a random h ← H. Note that the expectation of vx is µ and that the
random variables {vx}x∈{0,1}r are t-wise independent. Applying a tail inequality for sums of t-wise
independent variables from (Bellare and Rompel, 1994, Lemma 2.2), we have

Pr
h

[|Pr[C(h(Ur)) = 1]− Pr[C(Un) = 1]| > ε] = Pr
h

[|(2−r ·
∑
x

vx)− µ| > ε] ≤
(

t

ε22r

)t/2
≤ δ/N,

(5.3)

where N = 22s log s+5s upper-bounds the number of all s-size circuits. The claim now follows by
taking a union-bound over all distinguishers of size s.

We derive the following corollary.

25

Corollary 5.4. For every constant c > 1 and function `(n) the following holds. With probability
1− n−c, a random t = nc+1-wise independent hash function h : {0, 1}r → {0, 1}n with input length
of r = 2`+ (2c+ 1) log n forms an (`, n−c)-PRG against nc-size circuits.

For some c > 1 and `, let Hc,` denote an efficiently computable hash function which satisfies the
corollary, and let H be its evaluation algorithm whose complexity is nb for some constant b = b(c).
Define a promise problem Πc,` whose YES instances are the strings z for which H(z, ·) is not an
(`, 2n−c)-PRG against nc-size circuits, and the NO instances are the strings z for which H(z, ·) is
(`, n−c)-PRG against nc-size circuits.

Claim 5.5. There exists a nondeterministic circuit of size nc
′

which accepts the YES instances of
Πc,` and rejects the NO instances of Πc,`, where c′ is a constant which depends on c.

Proof. We prove a stronger statement, namely that Πc,` is in AM. Consider the following interactive
proof system. On joint input z, Merlin sends a description of an nc-size nonboolean distinguisher
C : {0, 1}n → {0, 1}`, Arthur samples a pair of strings y0 = C(Un) and y1 = C(H(z, Ur)), tosses a
coin σ ← {0, 1} and sends to Merlin the sample yσ. Merlin guesses a bit σ′ and Arthur accepts if
σ = σ′. It is not hard to verify that YES instances are accepted with probability 1

2 + n−c and NO
instances are accept with probability at most 1

2 + n−c/2. Using standard amplification techniques
together with the Goldwasser and Sipser (1986) andBabai and Moran (1988) transformations,
we get that Π has a two-message public-coin AM protocol, which, in turn, means that Π has a
nondeterministic circuit of poly(n)-size.

We can now prove Theorem 1.12 (restated here in a stronger form).

Theorem 5.6. If E is hard for exponential size nondeterministic circuits, then for every constant
c > 1 there exists a constant a > 1 such that for every sufficiently large n, and every ` ≤ n, there is
a function G : {0, 1}2·`+a logn → {0, 1}n that is an (`, n−c)-PRG for size nc circuits. Furthermore,
G is computable in time poly(nc).

Proof. Fix some constant c > 1, let ac be a constant whose value will be determined later and let `
be an arbitrary function which satisfies ` ≤ n. Let Hc,` : {0, 1}τ×{0, 1}r → {0, 1}n be the collection
defined above, where r = 2`+ (2c+ 1) log n. Let Πc,` be the corresponding promise problem which,
by Claim 5.5, is recognizable by a nondeterministic circuit of size nc

′
where c′ depends on c. By

Thm. 1.10, our hypothesis implies the existence of (standard) n−c
′
-PRG G′ : {0, 1}r′ → {0, 1}τ(n)

against nondeterministic circuits of size nc
′
, where r′ = a′ log n for some constant a′ which depends

on c′ (and therefore depends on c). Consider the function G : {0, 1}r′ × {0, 1}r → {0, 1}n defined
by

G(w, x) = Hc,`(G
′(w), x).

Recall that, by Corollary 5.4, a random w is a NO instance of Π with probability 1−n−c. It follows
that, for 1− 2n−c-fraction of the w’s, we have that G(w, ·) is (`, n−c)-PRG against nc-size circuits.
Therefore, G is a (`, 3n−c)-PRG. Overall, G has an input length of r+r′ = 2`+(2c+1) log n+a′ log n
which, for some constant ac, simplifies to 2`+ ac log n. The theorem follows.

6 Limitations on nondeterministic reductions

In this section we formally state and prove the limitation stated loosely in Theorem 1.15. The-
orem 1.15 discusses several different objects: incomputable functions, incompressible functions,

26

pseudorandom generators (for boolean or nonboolean distinguishers) and extractors for samplable
distributions. Since incompressible functions are incomputable, and PRGs for nonboolean distin-
guishers are also standard PRGs, we do not need to discuss them separately.

We start by proving limitations on the derivation of incomputable functions from more weakly
incomputable functions (as this task, known as “hardness amplification”, is extensively studied with
many previous results showing limitations). In Sections 6.2 we extend our approach to limitations
on pseudorandom generators. In Section 6.3 we explain how to extend our approach to extractors
for samplable distributions.

6.1 Black-box hardness amplification and nondeterministic reductions

6.1.1 Formal definition of black-box hardness amplification

We start by considering limitations on obtaining incomputable functions from the assumption that
E is hard for exponential size Σi-circuits. The task of converting a worst-case hard function f into
an average-case hard function g is called “hardness amplification”.

To the best of our knowledge, all proofs of such results in the literature work by presenting two
components: A construction which specifies how to transform a given function f : {0, 1}k → {0, 1}
into a boolean function g where g : {0, 1}n → {0, 1}. The second component of the proof is a
reduction showing that if there exists a “too small” circuit C such that Pry←Un [C(y) = g(y)] ≥ 1

2 +ε
then there exists a “too small” circuit A that computes f .

In typical hardness amplification results such as those stated in Theorem 1.3 one sets k =
O(log n) and lets f be the characteristic function of an E-complete problem. However, in our formal
definition we do not require this dependence between k and n, which only makes our limitations
stronger. In the setting of hardness amplification it is also common to consider the stronger
assumption that the initial function f is hard on average (making the hardness amplification task
easier). Our limitations also hold in this stronger setup (which make the results stronger) and the
formal definition (given below) already discusses this more general case.

Definition 6.1 (black-box hardness amplification Shaltiel and Viola (2010)19). A δ → (1
2 − ε)

black-box hardness amplification with input lengths k and n, and list size 2a is a pair (Con,Red)
such that:

• A construction Con is a map from functions f : {0, 1}k → {0, 1} to functions Conf : {0, 1}n →
{0, 1}.

• A reduction Red is an oracle procedure Red(·)(x, α) that accepts two inputs x ∈ {0, 1}k and
α ∈ {0, 1}a which is called a “nonuniform advice string”. Red also receives oracle access to a
function C : {0, 1}n → {0, 1}.

We say that a function C : {0, 1}n → {0, 1} ε-breaks a function f : {0, 1}k → {0, 1} if

Pr
y←Un

[C(y) = Conf (y)] ≥ 1

2
+ ε.

19We use a different notation from Shaltiel and Viola (2010). More precisely, in Shaltiel and Viola (2010) instead
of a single reduction Red that receives an a bit long advice string α, they define a list/class of reductions of size 2a.
This notation is clearer for the results that we present.

27

We require that for all functions f : {0, 1}k → {0, 1} and C : {0, 1}n → {0, 1} such that C ε-breaks
f , there exists α ∈ {0, 1}a such that

Pr
x←Uk

[RedC(x, α) = f(x)] ≥ 1− δ.

We omit δ and say that (Con,Red) is a worst-case → (1
2−ε) black-box amplification if δ < 2−k

(which means that the requirement above translates to RedC(x, α) computes f(x) correctly on all
inputs x).

We now elaborate on the formal choices made in the definition.

The role of the nonuniform advice string. Sudan et al. (2001) observed that if (Con,Red)
is a worst-case → (1

2 − ε)-black-box hardness amplification then Con is a (1
2 − ε, 2a)-list decodable

code. It is known that for ε < 1/4 such codes do not allow unique decoding, and so the notions
of “list size” and “nonuniform advice string” that show up in Definition 6.1 are necessary for
studying hardness amplification with small ε. (In other words, it is not interesting to rule out
black-box hardness amplification with a = 0). The reader is referred to Shaltiel and Viola (2010)
for additional discussion on this issue.

Usefulness of definition. Let us observe that black-box hardness amplification indeed proves
hardness amplification results. Indeed, if f is (1− δ)-incomputable by some class D of circuits, and
for every circuit C in C and every α ∈ {0, 1}a, the function D(x) = RedC(x, α) is in D, then we
can indeed conclude that g = Conf is ε-incomputable by C.

Hardness assumptions against nondeterministic circuits We will be interested in the case
where D consists of poly-size Σi-circuits, and C consists of poly-size deterministic circuits. This
allows the reduction Red to use nondeterminism and motivates the following definition.

Definition 6.2 (nondeterministic reductions). A reduction Red is size s deterministic, if Red is a
size s deterministic oracle circuit. Red is size s nondeterministic, if Red is a size s nondeterminis-
tic oracle circuit. More generally, Red is size s, i-nondeterministic if there exists a deterministic
size s oracle circuit A(·) such that for every x ∈ {0, 1}k, α ∈ {0, 1}a and C : {0, 1}n → {0, 1}:

RedC(x, α) = 1 ⇔ ∃z1∀z2∃z3∀z4 . . .Qzi : AC(x, α, z1, . . . , zi) = 1

where Q stands for “∃” if i is odd, and for “∀” if i is even.20

Note that the more general definition captures deterministic reductions (for i = 0) and non-
deterministic reductions for i = 1. Let us discuss some aspects of Definition 6.2. This definition
captures nondeterministic reductions that are used in the literature (Drucker, 2013; Feige and Lund,
1997; Klivans and van Melkebeek, 2002; Trevisan and Vadhan, 2000). Indeed, if there is a size s,
i-nondeterministic reduction Red and some construction Con such that (Con, Red) is a worst-case
→ (1

2 − ε)-black box hardness amplification, then it follows that if f is incomputable by Σi-circuits
of size s · s′ + a, then g = Conf is ε-incomputable by (deterministic) circuits of size s′.

20We make no explicit bound on the length of z1, . . . , zi. However, the fact that A is a size s circuit, places a bound
of s on the total length of z1, . . . , zi.

28

Remark 6.3 (Comparison of this model to previous limitations on reductions). Previous lower
bounds on black-box hardness amplification (Artemenko and Shaltiel, 2014a; Shaltiel and Viola,
2010) cannot handle nondeterministic reductions. This is because previous lower bounds rely on
the following assumption: given an x ∈ {0, 1}k and α ∈ {0, 1}a, there must be many queries
y to the oracle C, that the reduction RedC(x, α) did not make. This indeed holds for small size
deterministic reductions, as the number of queries that RedC(x, α) makes is bounded by the total size
of the reduction. Note, that in contrast, nondeterministic reductions are “armed with quantifiers”,
and the computation of RedC(x, α) may (when varying over all choices of z1) query the oracle on
all y ∈ {0, 1}n. Indeed, this is the property that is used in the aforementioned positive results of
(Drucker, 2013; Feige and Lund, 1997; Trevisan and Vadhan, 2000) to bypass the limitations on
deterministic reductions.

Remark 6.4 (Comparison of this model to previous limitations on constructions). An orthogonal
line of work, initiated by Viola (2005) (see also Lu et al., 2007, 2008) considers the setting in
which we place no limitations on the reduction, and instead require that the construction is defined
by Conf (x) = Af (x) where A is a “low complexity” oracle procedure. Here low complexity, typi-
cally means: the polynomial time hierarchy. These works prove impossibility results for black-box
hardness amplification in this setting. In our model, the construction is unbounded, and we place
computational limitations on the reduction.

We stress that previous work on restricting the construction does not seem relevant to the
setting that we consider. This line of work is concerned with hardness amplification results where
(the characteristic function of) f is computable in the polynomial time hierarchy (whereas we want
to rule out the case that f is in E).

More specifically, hardness amplification results that start from a hardness assumption on E,
typically set k = O(log n). This means that in time poly(n), A can read the entire truth table of f .
The aforementioned limitations do not hold in such a case (and in fact, the intuition behind these
limitations is based on the fact that A cannot perform poly-time computations on the entire truth
table of f). Summing up, our results are the first limitations that are applicable when assuming a
hardness assumption of the form E is hard for exponential size Σi-circuits.

6.1.2 Formal statement of our limitations

We now state our limitations formally. We start by stating limitations for reductions which are
based on worst case assumptions.

Theorem 6.5 (Limitations on nondeterministic reductions). For every constants i ≥ 0 and d > 1,
and every sufficiently large n and k such that 2d log n ≤ k ≤ n, a ≤ nd, there does not exist a
worst-case → (1/2− ε) black-box hardness amplification with input lengths k and n where Red is a
size nd, i-nondeterministic reduction with ε = n−ω(1).

We now elaborate on the meaning of Theorem 6.5. In our hardness amplification setting we
want to obtain g = Conf that is computable in time poly(n) and is n−ω(1)-incomputable by size
nc circuits. In our formal model we make no assumption about the complexity of the construction.
However, when interpreting the result let us make the assumption that the implementation of
g = Conf generates a function g with time complexity that is at least the time complexity of f .
(This follows immediately if g = Conf is obtained by some oracle “construction procedure” that
invokes f at least once, as is the case in all known constructions). We are interested in the case

29

where g is computable in time poly(n) and by the former discussion, this implies that f must be
computable in time poly(n).

We are assuming that f is incomputable by circuits of some size, and since f is computable in
time poly(n), this size must be smaller than nd for some constant d. Thus, in order to contradict
the assumption that f is incomputable by size nd circuits, the reduction cannot have size larger
than nd.21 This discussion motivates the choice of parameters in the theorem.

Indeed, Theorem 6.5 shows that if we start with some function f : {0, 1}k → {0, 1} that is
incomputable by size poly(n) circuits (e.g. if we set k = O(log n) and let f be the characteristic
function of an E-complete problem) then we cannot use nondeterministic reductions to obtain an ε-
incomputable function for ε = n−ω(1), even if we are willing to assume that E is hard for exponential
size Σi-circuits, for a large i.

Finally, let us make the technical remark that in Theorem 6.5 we indeed must require that
k > d log n as otherwise, the reduction Red could ask for an nd long nonuniform advice string
that is the truth table of f , and the theorem will not hold. Moreover, the case that k ≤ d log n is
uninteresting, as in this case, circuits of size 2k = nd can compute f and we will not be able to
assume that f is incomputable by circuits of size larger than nd.

Theorem 6.5 is a special case of the following more general result, in which we rule out black-box
hardness amplification even starting from average case hardness, and we also give a more precise
estimate on what is the smallest ε that can be achieved. In the following, let H : [0, 1] → [0, 1]
denote the binary entropy function defined by H(p) = p log2(1/p) + (1− p) log2(1/(1− p)).

Theorem 6.6 (Limitations on nondeterministic reductions (general case)). There exists a constant
c > 1 such that for every constants i ≥ 0, d > 1 and for every sufficiently large n, and every k such
that 2d log n ≤ k ≤ n, a ≤ nd, and δ < 1

2 − 1
n such that H(δ + 1

n) ≤ 1− 1
n2d , and ε > 0, there does

not exist a δ → (1/2−ε) black-box hardness amplification where Red is a size nd, i-nondeterministic
reduction with ε = n−(i+c)·d.

Note that we can allow δ to be any constant δ < 1
2 and even slowly approach 1

2 .

6.1.3 Proof of the lower bound

In this section we prove Theorem 6.6. Our approach is based on a previous lower bound of Shaltiel
and Viola (2010). It will be helpful to identify boolean functions C : {0, 1}n → {0, 1} with their
truth tables C ∈ {0, 1}2n . We also need the following definition.

Definition 6.7 (Noise vectors and oracles). For 0 ≤ p ≤ 1, and an integer t, we use N t
p to denote

the distribution of t i.i.d. bits where each of them has probability p to evaluate to one. We omit t
if it is 2n, and note that by our conventions, we can think of Np as a probability distribution over
functions Np : {0, 1}n → {0, 1}.

Let Red be a size nd, i-nondeterministic reduction as in the statement of the theorem. We will
show that ε cannot be small. For a function f : {0, 1}k → {0, 1}, we will consider two distributions
over oracles. The first is

C1 = Conf ⊕N 1
2
−2ε,

21We remark that the reductions used to prove Theorem 1.3 use k = O(d · logn) and so it indeed follows that if f
is the characteristic function of a problem in E then it is computable in time 2O(k) = poly(n).

30

where for two functions A,B : {0, 1}n → {0, 1}, the function A⊕B : {0, 1}n → {0, 1} is defined by
(A⊕B)(y) = A(y)⊕B(y).

By a multiplicative Chernoff bound, C1 is likely to agree with Conf on a fraction of 1
2 + ε of

the inputs (i.e., C1 is likely to ε-break f), and so, by assumption, the reduction is likely to succeed.
This is stated precisely below.

Lemma 6.8. For every f : {0, 1}k → {0, 1}, with probability 1−2−Ω(2n) over the choice of a “noise
function” N : {0, 1}n → {0, 1} from the distribution N 1

2
−2ε, we get that there exists α ∈ {0, 1}k

such that Prx←Uk [RedConf⊕N (x, α) = f(x)] ≥ 1− δ.

Proof. By the multiplicative Chernoff bound the probability that the N 1
2
−2ε evaluates to one on a

fraction of inputs less than 1
2 − ε is at least 1− 2−Ω(2n). If this event occurs, then Conf ⊕N agrees

with Conf on a 1
2 + ε fraction of the inputs. By the guarantee of the reduction, this implies that

there exists α ∈ {0, 1}k such that Prx←Uk [RedConf⊕N (x, α) = f(x)] ≥ 1− δ.

The second oracle we consider is
C2 = Conf ⊕N 1

2
.

This oracle is distributed like N 1
2

and carries no information on the function f . Therefore, given

such an oracle, the reduction Red will not be able to approximate a function f that is chosen at
random. This is stated in the next lemma.

Lemma 6.9. For every α ∈ {0, 1}k, with probability

1− 2−(1−H(δ+ 1
n

))·2k

over the choice of a “noise function” N : {0, 1}n → {0, 1} from the distribution N 1
2
, and a uniform

function f : {0, 1}k → {0, 1}, we get that Prx←Uk [RedConf⊕N (x, α) = f(x)] < 1− (δ + 1/n).

Proof. The oracle given to the reduction is independent of f . Thus, for every α ∈ {0, 1}k, the
reduction computes a function that is independent of f . The reduction succeeds if these two
functions (viewed as strings) have relative Hamming distance ≤ δ+ 1

n , and the number of strings of
length t that have relative Hamming distance distance ≤ α from some fixed string is upper-bounded
by 2H(α)·t.

Thus, loosely speaking, Red can be used to distinguish N 1
2
−2ε from N 1

2
. Following Furst et al.

(1984) we can convert a size nd, i-noneterministic reduction into a (deterministic) circuit of size

2O(nd) and depth i+ 2 that receives C as a 2n bit-long input.

Lemma 6.10. There exists a constant e > 1 such that for every x ∈ {0, 1}k, α ∈ {0, 1}a there

exists (deterministic) circuit Bx,α : {0, 1}2n → {0, 1} of size 2e·n
d

such that for every x ∈ {0, 1}k,
α ∈ {0, 1}a and C : {0, 1}n → {0, 1}, Bx,α(C) = RedC(x, α) (where on the l.h.s. we think of C as
a string C ∈ {0, 1}2n and on the r.h.s. we think of C : {0, 1}n → {0, 1} as a function).

Proof. Let A be the size nd deterministic circuit that is used by the reduction (as define in Definition
6.2). For every fixed x, α and z1, . . . , zi, the computation AC(x, α, z1, . . . , zi) can be viewed as a
depth nd decision tree that makes queries to C. It can thus be implemented by a depth 2 circuit

31

Bx,α,z1,...,zi(C) of size 2O(nd) that receives (the 2n bit long) input C. We now consider the function
Bx,α(C) defined to be one iff ∃z1∀z2 . . .Qzi : Bx,α,z1,...,zi(C) = 1. Note that this function can

be implemented by a circuit of depth i + 2 and size 2O(nd) times the size of a circuit Bx,α,z1,...,zi .

Overall, we get a depth i+ 2, size 2O(nd) circuit.

We now show that Red can be used to construct a constant depth circuit of size 2O(nd) that
distinguishes between N 1

2
−2ε and N 1

2
.

Lemma 6.11. There is a circuit B of size 2O(nd) and depth i + O(1) such that |Pr[B(N 1
2
−2ε) =

1]− Pr[B(N 1
2
) = 1]| ≥ 0.99.

Proof. For every function f : {0, 1}k → {0, 1} let us consider the circuit Af : {0, 1}n → {0, 1}
defined as follows: The circuit Af is hardwired with f and Conf . Upon receiving an input N ∈
{0, 1}2n it computes C ∈ {0, 1}2n defined by C(y) = N(y) ⊕ Conf (y). For every x ∈ {0, 1}k and
α ∈ {0, 1}a, Af computes Bx,α(C). For every α ∈ {0, 1}a, the circuit Af approximately counts
the fraction of x ∈ {0, 1}k such that f(x) = Bx,α(C). If there exists an α ∈ {0, 1}a such that this
fraction is at least 1− δ then the circuit accepts. If for all α ∈ {0, 1}a the fraction is smaller than
1− (δ+ 1

n) the circuit rejects. The difference of 1/n was chosen so that this approximate counting

task can be done by a circuit of size 2O(n) and constant depth (as proven by Ajtai, 1983). Overall,

the circuit Af described above can be implmented by a depth i+O(1) circuit of size 2O(nd).
We now use the probabilistic method to show that there exists f : {0, 1}k → {0, 1}n, for which

B = Af is the circuit that we need to construct. We choose F : {0, 1}k → {0, 1} uniformly at
random. By Lemma 6.8, For every function f , Pr[Af (N 1

2
−2ε) = 1] ≥ 1 − 2−Ω(2n) and therefore,

Pr[AF (N 1
2
−2ε) = 1] ≥ 1 − 2−Ω(2n). By Lemma 6.9 and a union bound over all α ∈ {0, 1}a, we

have Pr[AF (N 1
2
) = 1] ≤ 2a · 2−(1−H(δ+ 1

n
))·2k = o(1) by our choice of parameters. By an averaging

argument, there exists an f such that Af distinguishes the two distributions with probability
1− o(1) ≥ 0.99.

However, it is known that such circuits do not exist for small ε. This follows by reduction to
lower bounds on constant depth circuits that compute the majority function, and appears e.g. in
(Shaltiel and Viola, 2010; Viola, 2006).

Theorem 6.12. There exists a constant a > 1, such that for every sufficiently small ε > 0, circuits

of depth k and size s = exp((1
ε)

1
k+a) cannot distinguish N t

1
2

and N t
1
2
−ε with advantage 0.99 for any

t ≤ s.

Theorem 6.6 follows.

6.2 Extending the limitations to pseudorandom generators

We now explain how to modify the definitions and argument of Section 6.1.1 to rule out construc-
tions of pseudorandom generator. For this purpose we will modify Definition 6.1 in two ways, so
that it captures constructions and reductions for pseudorandom generators:

• the function g = Con(f) will now be a function g : {0, 1}r → {0, 1}n where r ≤ n− 1 (as we
are now considering constructions of a pseudorandom generator g).

32

• We will say that C : {0, 1}n → {0, 1} ε-breaks f if C distinguishes the output of the construc-
tion from uniform, that is, if |Pr[C(Conf (Ur)) = 1]− Pr[C(Un) = 1] > ε.

With these modifications, Definition 6.1 now captures pairs of construction/reduction for PRGs
(rather than incomputable functions). We claim that Theorems 6.5 and Theorem 6.6 hold exactly
as stated for the modified definition. We sketch this argument below.

The proof repeats the argument of Section 6.1.3 with the following modifications:
Let Distf : {0, 1}n → {0, 1} denote the boolean function that accepts an input x ∈ {0, 1}n iff

there exists s ∈ {0, 1}r such that Conf (r) = x. Loosely speaking, this is the optimal distinguisher
against the candidate pseudorandom generator Conf . In Section 6.1.3 we use two oracles C1, C2

which we now modify as follows: given a function f : {0, 1}k → {0, 1}, we set C1 = Distf ⊕N 1
2
−2ε

and C2 = Distf ⊕N 1
2
.

Note that this is similar to the previous proof except that Conf is replaced by Distf . The
reason for this modification is that in order to ε-break f , a circuit C needs to distinguish Conf
from uniform (rather than compute Conf as was the case previously). The proof can now proceed
as before (with these modifications). Indeed, the analogs of Lemmas 6.8 and 6.9 follow with these
modifications. Loosely speaking, this is because for every f , with high probability C1 ε-breaks f ,
and on the other hand, for every f , C2 is uniformly distributed (and thus gives no information on
f). These are the two properties that come up in the proof.

6.3 Extending the limitations to extractors

In this section we explain how to extend our limitations so that they hold for extractors for dis-
tributions samplable/recognizable by small circuits. Loosely speaking, this follows because an
(n − log(1/ε), ε)-extractor is in particular a 2ε-incomputable function. We now explain this argu-
ment.

We first consider a (n− log(1/ε), ε)-extractor E : {0, 1}n → {0, 1} for distributions recognizable
by circuits of size nc. We claim that E is 2ε-incomputable for circuits of size nc. Indeed, let
C : {0, 1}n → {0, 1} be a size nc circuit, and let X ← Un. We have that:

Pr[C(X) = E(X)] =
∑

b∈{0,1}
Pr[C(X) = E(X)|C(X) = b] · Pr[C(X) = b] =

∑
b∈{0,1}

Pr[E(X) = b|C(X) = b] · Pr[C(X) = b]. (6.13)

Note that the conditional distributions (X|C(X) = b) above are recognizable by size nc circuits.
If Pr[C(X) = b] ≥ ε then the conditional distribution has min-entropy at least n − log(1/ε) and
so, by the property of the extractor Pr[E(X) = b|C(X) = b] ≤ 1

2 + ε. If this holds for both values
of b, then Pr[C(X) = E(X)] ≤ 1

2 + ε. If it doesn’t hold, then there is a single value b′, for which
Pr[C(X) = b′] < ε. In that case, the sum above can be bounded by 1

2 + 2ε. In both cases, the claim
follows.

We now consider extractors for samplable distributions, and sketch the argument for the im-
possibility result. The key observation is that by Jerrum et al. (1986) and Bellare et al. (2000) the
distribution (X|C(X) = b) is samplable by NP-circuits. Thus, an (n− log(1/ε), ε)-extractor for dis-
tributions samplable by size nc NP-circuits is 2ε-incomputable by deterministic circuits of slightly

33

smaller size. This means that an i-nondeterministic reduction showing that E is an (n−log(1/ε), ε)-
extractor for samplable distributions, implies an (i + 1)-nondeterministic reduction showing that
E is a 2ε-incomputable, and we have already ruled out such reductions for negligible ε in Section
6.1.1.

7 Extractors for recognizable distributions and incompressible
functions with low error

Our constructions of nonboolean incompressible functions with low error (stated in Theorem 1.16)
and of extractors for samplable distributions with relative error (stated in Theorem 1.21), both
follow from a construction of extractors for recognizable distributions with relative error.

7.1 Relative-error extractors for weakly recognizable distributions

We generalize Definition 1.22, introducing the notion of “weakly recognizable” distributions.

Definition 7.1 (weakly recognizable distributions). We say that a distribution X on n bits is
weakly recognizable by a class C of functions C : {0, 1}n → N if there exists a function C in C
such that for every x ∈ {0, 1}n, Pr[X = x] = C(x)∑

x′∈{0,1}n C(x′) .22

Note that a recognizable distribution is in particular weakly recognizable. However, the notion
of weakly recognizable distributions allows distributions that are not flat. The notion of extractors
for recognizable distributions (with standard error) was introduced by Shaltiel (2011a). We give a
construction of extractors for weakly recognizable distributions that have relative error under the
assumption that E is hard for exponential size Σ3-circuits.

Theorem 7.2 (Extractors for weakly recognizable distributions with relative error). If E is hard
for exponential size Σ3-circuits then there exists a constant α > 0 such that for every constant
c > 1 and sufficiently large n, and every m ≤ αn there is a ((1− α) · n, 1

nc)-relative-error extractor
E : {0, 1}n → {0, 1}m for distributions weakly recognizable by size nc circuits. Furthermore, E is
computable in time poly(nc).

7.2 Obtaining relative-error extractors for samplable distributions

We now show that extractors for distributions that are weakly recognizable by NP-circuits are
extractors for distributions samplable by (deterministic) circuits.

Lemma 7.3 (connection between samplable and recognizable distributions). If a distribution X
on {0, 1}n is samplable by a size s ≥ n circuit then for every ε > 0 there exists a distribution
X ′ on {0, 1}n that is weakly recognizable by size poly(s/ε) NP-circuits, and for every event A,
|Pr[X ∈ A]− Pr[X ′ ∈ A]| ≤ ε ·min(Pr[X ∈ A],Pr[X ′ ∈ A]).

Proof. Let C : {0, 1}n′ → {0, 1}n be a size s circuit that samples the distribution X, and let ε > 0.
By Theorem 3.3 there exists a size poly(s/ε) NP-circuit C ′(x) which given x, computes an ε/10-
relative approximation of the integer Pr[C(Un′) = x] · 2n′ . Let X ′ be the distribution on {0, 1}n

22In the definition above we don’t set an a-priori bound on length of integers used. In this paper we will always
have that C will be size s circuits, and the size bound implies an upper bound of s on length of integers output by C.

34

that is recognized by C ′. That is, for every x ∈ {0, 1}n,

Pr[X ′ = x] =
C ′(x)∑

x′∈{0,1}n C
′(x′)

Note that for every x ∈ {0, 1}n, this quantity is an ε-relative approximation of

Pr[C(Un′) = x]∑
x′∈{0,1}n Pr[C(Un′) = x′]

= Pr[X = x],

and this indeed gives that for every event A,

|Pr[X ∈ A]− Pr[X ′ ∈ A]| ≤ ε ·min(Pr[X ∈ A],Pr[X ′ ∈ A]).

It follows that for every constant c > 1, if we have a (k, n−(c+1))-relative-error extractor for
distributions weakly recognizable by size nO(c) NP-circuits, then this extractor is also a (k, n−c)-
relative-error extractor for distributions samplable by size nc circuits. Theorem 7.2 can be pushed
“one level up the hierarchy”. That is, assume that E is hard for exponential size Σ4-circuits, and
conclude that the extractor works for distributions weakly recognizable by size nc NP-circuits. This
gives a construction of extractors for samplable distributions, and proves Theorem 1.21.

7.3 Constructing relative-error extractors for recognizable distributions

We now give our construction of a relative-error extractor for recognizable distributions. The
construction and its analysis relies on components and ideas of Trevisan and Vadhan (2000). We
imitate the overall argument structure of Trevisan and Vadhan (2000). The key point is that we
are able to obtain extractors with relative error.

We start by using our assumption to obtain a function that is ε-incomputable by Σ2-circuits.
This is done by observing that the proof of Theorem 1.13 is relativizing, and so we can “push it”
up the hierarchy and get:

Theorem 7.4 (Trevisan and Vadhan, 2000). If E is hard for exponential size Σ3-circuits, then
there exists some constant α > 0 such that for every constant c > 1 and for every sufficiently large
n, there is a function f : {0, 1}n → {0, 1}n′ that is ε-incomputable by size nc Σ2-circuits for n′ = αn
and ε = 2−(n′/3). Furthermore, f is computable in time poly(nc).

The statement above is identical to Theorem 1.13 except that we assume hardness for Σ3-circuits
and conclude incomputability by Σ2-circuits. An additional modification is that we now denote
the output length by n′ (and not m). This is because we reserve m for the output length of the
extractor (to be defined next).

Our construction will use 2-source extractors, defined below (see e.g., the survey article Shaltiel,
2011b).

Definition 7.5. A (k1, k2, ε)-2-source extractor is a function T : {0, 1}n′ × {0, 1}n′ → {0, 1}m
such that for any two independent random variables R1, R2 with H∞(R1) ≥ k and H∞(R2) ≥ k,
T (R1, R2) is ε-close to Um.

Theorem 7.6 (Chor and Goldreich, 1988; Dodis et al., 2004; Vazirani, 1987). There exists a
constant α > 0 such that for every sufficiently large n′ and every m ≤ αn′ there is a poly-time
computable (0.2n′, 0.9n′, 2−3m)-2-source extractor T : {0, 1}n′ × {0, 1}n′ → {0, 1}m.

35

The construction: Let 0 < ν ≤ 1 be some constant. Let n′ = ν · n and let n̄ = n + n′. These
three parameters are going to serve as input lengths for various functions in our construction, and
the reader should keep in mind that the three parameters are polynomially related.

Given functions f : {0, 1}n → {0, 1}n′ and T : {0, 1}n′ × {0, 1}n′ → {0, 1}m we construct a
function E : {0, 1}n̄ → {0, 1}m as follows: Given an input z ∈ {0, 1}n̄ we split it into two parts:
x ∈ {0, 1}n and i ∈ {0, 1}n′ and set

E(z) = T (f(x), i).

This construction should be compared to the more standard idea of code-concatenation, or
the Goldreich-Levin theorem. Indeed, the standard way to take a nonboolean function that is
ε-incomputable and convert it to a boolean function that is ε′-incomputable for some ε′ related to ε
is to take E(z) = EC(f(x))i where EC is a boolean error-correcting code, with sufficiently efficient
decoding. Here, the input to E is not uniform, but rather a high min-entropy distribution, and
code concatenation does not work. Nevertheless, it turns out that a 2-source extractor gives us the
following “list-decoding” guarantee that will be used in the proof.

Lemma 7.7. Let α > 0 and T be the constant and 2-source extractor of Theorem 7.6. For
every sufficiently large n′, and every m ≤ αn′, every ε ≥ 2−m, every a ∈ {0, 1}m, and every
distribution R2 with H∞(R2) ≥ 0.9n′, there are at most 20.2·n′ strings y ∈ {0, 1}n′ such that
Pr[E(y,R2) = a] ≥ (1 + ε)2−m, and similarly there are at most 20.2·n′ strings y ∈ {0, 1}n′ such that
Pr[E(y,R2) = a] ≤ (1− ε)2−m.

Proof. We prove the first conclusion, and the second follows in the same manner. Fix some R2

with H∞(R2) ≥ 0.9n′. If there exists an a ∈ {0, 1}m with more than 20.2·n′ strings y ∈ {0, 1}n′ such
that Pr[E(y,R2) = a] ≥ (1 + ε)2−m, then let R1 be the uniform distribution over these strings, and
note that H∞(R1) ≥ 0.2 · n′. It follows that

Pr[T (R1, R2) = a] ≥ (1 + ε) · 2−m ≥ 2−m + 2−2m = Pr
Z←Un

[Z = a] + 2−2m.

This contradicts the guarantee that T is a (0.2n′, 0.9n′, 2−3m)-2-source extractor

The next theorem shows the correctness of our construction.

Theorem 7.8. There exist constants ν, β > 0, such that for every constant c > 1, there exists a
constant α > 0, such that for every sufficiently large n, n′ = ν · n, n̄ = n+ n′ the following holds.

• Let f : {0, 1}n → {0, 1}n′ be a 2−n
′/3-incomputable for size nc, Σ3-circuits.

• Let T be the (0.2n′, 0.9n′, 2−3m)-2-source extractor T : {0, 1}n′ × {0, 1}n′ → {0, 1}m=α·n of
Theorem 7.6.

It follows that E : {0, 1}n̄ → {0, 1}m is an (n̄ − ∆, n−βc)-relative-error extractor for distributions
weakly recognizable by size nβc circuits, for ∆ = α · n ≥ α · n̄/2.

Theorem 7.2 now follows, as with these choices the function f of Theorem 7.4 satisfies the
requirements Theorem 7.8, and noting that n, n′, n̄ are linearly related and so polynomials in one
can be replaced by polynomials in another.

36

7.4 Proof of Theorem 7.8

In this section we prove Theorem 7.8. The proof is by contradiction. Let β > 0 be a constant
that we choose later, and let ε = n−βc/9. Assume that the conclusion on Theorem 7.8 does not
hold. That is, that for some sufficiently large n, E is not an (n̄ − ∆, 9ε)-relative-error extractor
for distributions weakly recognizable by size nβ·c circuits. By an averaging argument over all
a ∈ {0, 1}m we get that:

Lemma 7.9. There exists a distribution Z ′ = (X ′, I ′) over {0, 1}n̄ with H∞(Z) ≥ n̄ − ∆ that is
weakly recognizable by a circuit C of size nc, and there exists a ∈ {0, 1}m such that Pr[E(Z ′) = a]
is either at least (1 + 9ε) · 2−m or at most (1− 9ε) · 2−m.

From now on we assume that Pr[E(Z ′) = a] ≥ (1 + 9ε) · 2−m. (The case that Pr[E(Z ′) = a] ≤
(1 − 9ε) · 2−m follows the same way using the fact that in Lemma 7.7 we have control over both
cases). We need the following definition.

Definition 7.10 (useful inputs). We say that x ∈ {0, 1}n is useful if

• Pr[E(x, I ′) = a|X ′ = x] = Pr[T (f(x), I ′) = a|X ′ = x] ≥ (1 + 2ε) · 2−m, and

• H∞(I ′|X ′ = x) ≥ 0.9 · n′.

The parameters were chosen so that by another averaging argument we get that:

Lemma 7.11. Pr[X ′ is useful] ≥ ε · 2−m.

Proof. Let ∆′ = m+log(1/ε). We say that x ∈ {0, 1}n is sufficiently heavy if Pr[X ′ = x] ≥ 2−(n+∆′)

and let H be the set of x′’s that are sufficiently heavy. Note that for every x ∈ H and every
i ∈ {0, 1}n′ we have that:

Pr[I ′ = i|X ′ = x] =
Pr[I ′ = i and X ′ = x]

Pr[X ′ = x]
≤ 2−(n+n′−∆)

2−(n+∆′)
= 2−(n′−(∆+∆′)). (7.12)

which means that for every x ∈ H,

H∞(I ′|X ′ = x) ≥ n′ − (∆ + ∆′) ≥ 0.9 · n′

where the last inequality follows for appropriately chosen constant α, ν > 0. More specifically,

∆ + ∆′ = α · n+m+ log(1/ε) = 2α · n+ c log n.

We have that n′ = ν · n and and so by choosing α > 0 to be a sufficiently small constant smaller
than ν > 0 we can make ∆ + ∆′ ≤ 0.1 · n′ = 0.1 · νn, for sufficiently large n.

This means that every sufficiently heavy x satisfies the second item of Def. 7.10. Note that
Pr[X ′ 6∈ H] ≤ 2n · 2−(n+∆′) = 2−∆′ ≤ ε

2m . It follows that:

Pr[E(X ′, I ′) = a and X ′ ∈ H] ≥ Pr[E(X ′, I ′) = a]− Pr[X ′ 6∈ H]

≥ (1 + 9ε) · 2−m − ε · 2−m = (1 + 8ε) · 2−m. (7.13)

37

We also have that:

Pr[E(X ′, I ′) = a and X ′ ∈ H] =
∑
x∈H

Pr[X ′ = x] · Pr[E(x, I ′) = a|X ′ = x] (7.14)

Let G be the set of all x ∈ H that satisfy the first item and let B be the set of all x ∈ H that don’t
satisfy the first item. We can divide the sum according to these sets yielding an upper-bound of:

7.14 ≤
∑
x∈B

Pr[X ′ = x] · Pr[E(x, I ′) = a|X ′ = x] + Pr[X ′ ∈ G] < (1 + 2ε) · 2−m + Pr[X ′ ∈ G].

(7.15)

Every x ∈ G satisfies the two items of Def. 7.10, and overall we have that:

Pr[X ′ ∈ G] ≥ (1 + 8ε) · 2−m − (1 + 2ε) · 2−m ≥ ε · 2−m.

The lemma follows.

We would like to get an estimate on the probability of useful inputs, according to the uniform
distribution.

Lemma 7.16. Prx←Un [x is useful] ≥ 2−∆ · ε · 2−m.

Proof. Let G denote the set of useful x. We have that H∞(Z ′) ≥ n̄−∆ and therefore H∞(X ′) ≥
n −∆. Thus, for every x ∈ {0, 1}n, Pr[X ′ = x] ≤ 2−(n−∆). By Lemma 7.11, Pr[X ′ ∈ G] ≥ ρ for
ρ = ε · 2−m. This means that |G| ≥ ρ/2−(n−∆) = ρ · 2n/2∆ which means that Prx←Un [x ∈ G] ≥
ρ/2∆.

We now present a Σ2-circuit A such that Prx←Un [A(x) = f(x)] is not small, and this will give a
contradiction. We will present a probabilistic Σ2-circuit A. By averaging over the random coins of
the circuits, the random coins of A can be later hardwired, to produce the same success probability
with a circuit that is not probabilistic.

A good intuition to keep in mind is that we want A to succeed with not too small probability
on every useful input. It is simpler and instructive to first consider the case where Z ′ is recognized
by C. We will later explain how to modify the proof if Z ′ is only weakly recognized by C.
When given x ∈ {0, 1}n, A acts as follows:

1. Let ε′ = ε/10. Let Ax(y) be an NP-circuit such that given y ∈ {0, 1}n′ , Ax uses it’s NP-oracle
to compute:

• an ε′-approximation W ′x,y to the integer
Wx,y = | {i : C(x, i) = 1 ∧ T (y, i) = a} |, and

• an ε′-approximation V ′x to the integer
Vx = | {i : C(x, i) = 1} |.

The circuit Ax then computes p′ = W ′x,y/V
′
x and it answers one iff p′ ≥ (1 + 1.5 · ε) · 2−m.

Note that p′ is a 2ε′-approximation to p = Wx,y/Vx = Pr[T (y, I ′) = a|X ′ = x]. In particular,
Ax answers one if p ≥ (1 + 2ε) · 2m and Ax answers zero if p ≤ (1 + ε) · 2−m.

2. A samples a uniform y from the set {y : Ax(y) = 1}, and outputs y.

38

Using Theorems 3.2 and 3.3 it follows that:

Lemma 7.17. For a sufficiently small constant β > 0, A can be implemented by a (probabilistic)
Σ2-circuit of size poly(nβc/ε′) = nc.

We observe that algorithm A indeed succeeds with not too small probability on “useful inputs”.

Lemma 7.18. If x ∈ {0, 1}n is useful, then Pr[A(x) = f(x)] ≥ 2−0.2n′ where the probability is over
the random choices of A.

Proof. Let x ∈ {0, 1}n be useful. By the second item of Def. 7.10, we have that the distribution
R2 = (I ′|X ′ = x) has H∞(R2) ≥ 0.9n′. Therefore, by Lemma 7.7 the set S of strings y ∈ {0, 1}n′
such that Pr[T (y,R2) = a] ≥ (1 + ε)2−m satisfies |S| ≤ 20.2n′ . The circuit Ax samples a uniform y
from some subset of S′ ⊆ S, and note that S′ contains f(x) because Pr[T (f(x), I ′) = a|X ′ = x] ≥
(1 + 2ε) · 2−m. It follows that the probability that A hits f(x) is at least 2−0.2·n′ .

This implies that

Pr
x←Un

[A(x) = f(x)] ≥ Pr
x←Un

[x is useful] · 2−0.2n′ ≥ 2−∆ · ε · 2−m · 2−0.2n′ = 2−2αn−0.2n′ ·O(n−c)

The latter quantity can be made at least 2−n
′/3 by choosing α > 0 to be a sufficiently small constant

much smaller than µ so that 2αn ≤ 0.1n′ = 0.1νn. This gives the required contradiction in the
case the distribution Z is recognized by C.

We now consider the case that Z ′ is weakly recognizable by C. The only place where we used
the fact that Z is recognizable, rather than weakly recognizable, is in step 1 of the algorithm A.
More specifically, we need to show that in this case we can also get an NP-circuit Ax(y) that can
compute an ε′-approximation p′ to p = Pr[T (y, I ′) = a|X ′ = x]. For this purpose we observe that:

Lemma 7.19. If a distribution Z on {0, 1}n is weakly recognizable by circuits of size s, and C1, C2 :
{0, 1}n → {0, 1} are some size s circuits, then there exists an NP-circuit of size poly(s/ε) that
computes an ε-approximation of Pr[C1(Z) = 1|C2(Z) = 1].

Proof. Let C : {0, 1}n → N be the circuit that weakly recognizes Z, and note that the integer that
it outputs are between 0 and 2s − 1. Consider, the circuit C ′ : {0, 1}n × {0, 1}s → {0, 1}, defined
by C ′(z, y) = 1 iff C(z) ≤ y where here we interpret y as a number between 0 and 2s − 1. Note
that for any z ∈ {0, 1}n, C(z) = | {y : C ′(z, y) = 1} |. This means that

Pr[C1(Z) = 1|C2(Z) = 1] =
Pr[C1(Z) = 1 ∧ C2(Z) = 1]

Pr[C2(Z) = 1]
=

∑
z:C1(z)=1∧C2(z)=1C(z)∑

z:C2(z)=1C(z)
(7.20)

We can compute an approximation of the denominator by considering the circuit C ′2(z, y) which
outputs C ′(z, y) if C2(z) = 1 and 0 otherwise. Note that approximately counting the accepting
inputs of C ′2 gives an approximation for the denominator. The same reasoning can be applied to
the numerator.

This means that we can indeed get an NP-circuit Ax that computes an ε′-approximation of
p = Pr[T (y, I ′) = a|X ′ = x], and this suffices for the proof.

39

Acknowledgements

We thank to Yuval Ishai for helpful discussions and to anonymous referees for helpful comments
and corrections.

The first author was supported by ERC starting grant 639813 ERC-CLC, ISF grant 1155/11,
Israel Ministry of Science and Technology (grant 3-9094), GIF grant 1152/2011, and the Check
Point Institute for Information Security. The second author was supported by ERC starting grant
279559. The third author was supported by BSF grant 2010120, ISF grant 864/11, and ERC
starting grant 279559. The work of the forth author was done while visiting the first author in
Tel-Aviv University.

A preliminary version of this paper appears in Proceedings of the 30th Computational Com-
plexity Conference (CCC’15).

References

Miklós Ajtai. Σ1
1-formulae on finite structures. Annals of Pure and Applied Logic, 24(1):1 – 48,

1983.

Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. From secrecy to soundness: Efficient ver-
ification via secure computation. In ICALP (1), volume 6198 of Lecture Notes in Computer
Science, pages 152–163. Springer, 2010.

Benny Applebaum, Yuval Ishai, Eyal Kushilevitz, and Brent Waters. Encoding functions with
constant online rate, or how to compress garbled circuit keys. SIAM J. Comput., 44(2):433–466,
2015.

Sergei Artemenko and Ronen Shaltiel. Lower bounds on the query complexity of non-uniform and
adaptive reductions showing hardness amplification. Computational Complexity, 23(1):43–83,
2014a.

Sergei Artemenko and Ronen Shaltiel. Pseudorandom generators with optimal seed length for
non-boolean poly-size circuits. In STOC, pages 99–108. ACM, 2014b.

Sergei Artemenko, Russell Impagliazzo, Valentine Kabanets, and Ronen Shaltiel. Pseudorandom-
ness when the odds are against you. In Conference on Computational Complexity, 2016.

László Babai and Shlomo Moran. Arthur-merlin games: A randomized proof system, and a hierar-
chy of complexity classes. J. Comput. Syst. Sci., 36(2):254–276, 1988.

László Babai, Lance Fortnow, Noam Nisan, and Avi Wigderson. BPP has subexponential time
simulations unless EXPTIME has publishable proofs. Computational Complexity, 3:307–318,
1993.

Boaz Barak, Shien Jin Ong, and Salil P. Vadhan. Derandomization in cryptography. SIAM J.
Comput., 37(2):380–400, 2007.

Mihir Bellare and John Rompel. Randomness-efficient oblivious sampling. In FOCS, pages 276–287.
IEEE Computer Society, 1994.

40

Mihir Bellare, Oded Goldreich, and Erez Petrank. Uniform generation of np-witnesses using an
np-oracle. Inf. Comput., 163(2):510–526, 2000.

Hans L. Bodlaender, Rodney G. Downey, Michael R. Fellows, and Danny Hermelin. On problems
without polynomial kernels. J. Comput. Syst. Sci., 75(8):423–434, 2009.

Arkadev Chattopadhyay and Rahul Santhanam. Lower bounds on interactive compressibility by
constant-depth circuits. In FOCS, pages 619–628. IEEE Computer Society, 2012.

Benny Chor and Oded Goldreich. Unbiased bits from sources of weak randomness and probabilistic
communication complexity. SIAM J. Comput., 17(2):230–261, 1988.

Kai-Min Chung, Yael Tauman Kalai, and Salil P. Vadhan. Improved delegation of computation
using fully homomorphic encryption. In CRYPTO, volume 6223 of Lecture Notes in Computer
Science, pages 483–501. Springer, 2010.

Francesco Dav̀ı, Stefan Dziembowski, and Daniele Venturi. Leakage-resilient storage. In SCN,
volume 6280 of Lecture Notes in Computer Science, pages 121–137. Springer, 2010.

Holger Dell and Dieter van Melkebeek. Satisfiability allows no nontrivial sparsification unless the
polynomial-time hierarchy collapses. J. ACM, 61(4):23:1–23:27, 2014.

Yevgeniy Dodis, Ariel Elbaz, Roberto Oliveira, and Ran Raz. Improved randomness extraction from
two independent sources. In APPROX-RANDOM, volume 3122 of Lecture Notes in Computer
Science, pages 334–344. Springer, 2004.

Andrew Drucker. Nondeterministic direct product reductions and the success probability of SAT
solvers. In FOCS, pages 736–745. IEEE Computer Society, 2013.

Bella Dubrov and Yuval Ishai. On the randomness complexity of efficient sampling. In STOC,
pages 711–720. ACM, 2006.

Sebastian Faust, Tal Rabin, Leonid Reyzin, Eran Tromer, and Vinod Vaikuntanathan. Protecting
circuits from computationally bounded and noisy leakage. SIAM J. Comput., 43(5):1564–1614,
2014.

Uriel Feige and Carsten Lund. On the hardness of computing the permanent of random matrices.
Computational Complexity, 6(2):101–132, 1997.

Lance Fortnow and Rahul Santhanam. Infeasibility of instance compression and succinct pcps for
NP. J. Comput. Syst. Sci., 77(1):91–106, 2011.

Merrick L. Furst, James B. Saxe, and Michael Sipser. Parity, circuits, and the polynomial-time
hierarchy. Mathematical Systems Theory, 17(1):13–27, 1984.

Rosario Gennaro, Craig Gentry, and Bryan Parno. Non-interactive verifiable computing: Outsourc-
ing computation to untrusted workers. In CRYPTO, volume 6223 of Lecture Notes in Computer
Science, pages 465–482. Springer, 2010.

Oded Goldreich and Leonid A. Levin. A hard-core predicate for all one-way functions. In STOC,
pages 25–32. ACM, 1989.

41

Oded Goldreich and Avi Wigderson. Derandomization that is rarely wrong from short advice that is
typically good. In RANDOM, volume 2483 of Lecture Notes in Computer Science, pages 209–223.
Springer, 2002.

Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing but their validity for
all languages in NP have zero-knowledge proof systems. J. ACM, 38(3):691–729, 1991.

Shafi Goldwasser and Michael Sipser. Private coins versus public coins in interactive proof systems.
In STOC, pages 59–68. ACM, 1986.

Dan Gutfreund and Guy N. Rothblum. The complexity of local list decoding. In APPROX-
RANDOM, volume 5171 of Lecture Notes in Computer Science, pages 455–468. Springer, 2008.

Dan Gutfreund and Amnon Ta-Shma. Worst-case to average-case reductions revisited. In
APPROX-RANDOM, volume 4627 of Lecture Notes in Computer Science, pages 569–583.
Springer, 2007.

Dan Gutfreund, Ronen Shaltiel, and Amnon Ta-Shma. Uniform hardness versus randomness trade-
offs for arthur-merlin games. Computational Complexity, 12(3-4):85–130, 2003.

Dan Gutfreund, Ronen Shaltiel, and Amnon Ta-Shma. If NP languages are hard on the worst-case,
then it is easy to find their hard instances. Computational Complexity, 16(4):412–441, 2007.

Danny Harnik and Moni Naor. On the compressibility of NP instances and cryptographic applica-
tions. SIAM J. Comput., 39(5):1667–1713, 2010.

Russell Impagliazzo and Avi Wigderson. P = BPP if E requires exponential circuits: Derandom-
izing the XOR lemma. In STOC, pages 220–229. ACM, 1997.

Russell Impagliazzo and Avi Wigderson. Randomness vs time: Derandomization under a uniform
assumption. J. Comput. Syst. Sci., 63(4):672–688, 2001.

Mark Jerrum, Leslie G. Valiant, and Vijay V. Vazirani. Random generation of combinatorial
structures from a uniform distribution. Theor. Comput. Sci., 43:169–188, 1986.

Yael Tauman Kalai, Ran Raz, and Ron D. Rothblum. How to delegate computations: the power
of no-signaling proofs. In STOC, pages 485–494. ACM, 2014.

Adam Klivans and Dieter van Melkebeek. Graph nonisomorphism has subexponential size proofs
unless the polynomial-time hierarchy collapses. SIAM J. Comput., 31(5):1501–1526, 2002.

Richard J. Lipton. New directions in testing. In Distributed Computing And Cryptography, volume 2
of DIMACS Series in Discrete Mathematics and Theoretical Computer Science, pages 191–202.
DIMACS/AMS, 1989.

Chi-Jen Lu, Shi-Chun Tsai, and Hsin-Lung Wu. Impossibility results on weakly black-box hardness
amplification. In FCT, volume 4639 of Lecture Notes in Computer Science, pages 400–411.
Springer, 2007.

Chi-Jen Lu, Shi-Chun Tsai, and Hsin-Lung Wu. On the complexity of hardness amplification.
IEEE Transactions on Information Theory, 54(10):4575–4586, 2008.

42

Peter Bro Miltersen and N. V. Vinodchandran. Derandomizing arthur-merlin games using hitting
sets. Computational Complexity, 14(3):256–279, 2005.

Noam Nisan and Avi Wigderson. Hardness vs randomness. J. Comput. Syst. Sci., 49(2):149–167,
1994.

Igor Carboni Oliveira and Rahul Santhanam. Majority is incompressible by acˆ0[p] circuits. In
Conference on Computational Complexity, volume 33 of LIPIcs, pages 124–157. Schloss Dagstuhl
- Leibniz-Zentrum fuer Informatik, 2015.

Ronen Shaltiel. Recent developments in explicit constructions of extractors. Bulletin of the EATCS,
77:67–95, 2002.

Ronen Shaltiel. Weak derandomization of weak algorithms: Explicit versions of yao’s lemma.
Computational Complexity, 20(1):87–143, 2011a.

Ronen Shaltiel. An introduction to randomness extractors. In ICALP (2), volume 6756 of Lecture
Notes in Computer Science, pages 21–41. Springer, 2011b.

Ronen Shaltiel and Christopher Umans. Simple extractors for all min-entropies and a new pseudo-
random generator. J. ACM, 52(2):172–216, 2005.

Ronen Shaltiel and Christopher Umans. Pseudorandomness for approximate counting and sampling.
Computational Complexity, 15(4):298–341, 2006.

Ronen Shaltiel and Christopher Umans. Low-end uniform hardness versus randomness tradeoffs
for AM. SIAM J. Comput., 39(3):1006–1037, 2009.

Ronen Shaltiel and Emanuele Viola. Hardness amplification proofs require majority. SIAM J.
Comput., 39(7):3122–3154, 2010.

Michael Sipser. A complexity theoretic approach to randomness. In STOC, pages 330–335. ACM,
1983.

Larry J. Stockmeyer. The complexity of approximate counting (preliminary version). In STOC,
pages 118–126. ACM, 1983.

Madhu Sudan, Luca Trevisan, and Salil P. Vadhan. Pseudorandom generators without the XOR
lemma. J. Comput. Syst. Sci., 62(2):236–266, 2001.

Amnon Ta-Shma and David Zuckerman. Extractor codes. IEEE Transactions on Information
Theory, 50(12):3015–3025, 2004.

Luca Trevisan and Salil P. Vadhan. Extracting randomness from samplable distributions. In FOCS,
pages 32–42. IEEE Computer Society, 2000.

Luca Trevisan and Salil P. Vadhan. Pseudorandomness and average-case complexity via uniform
reductions. Computational Complexity, 16(4):331–364, 2007.

Umesh V. Vazirani. Strong communication complexity or generating quasirandom sequences form
two communicating semi-random sources. Combinatorica, 7(4):375–392, 1987.

43

Emanuele Viola. The complexity of constructing pseudorandom generators from hard functions.
Computational Complexity, 13(3-4):147–188, 2005.

Emanuele Viola. The Complexity of Hardness Amplification and Derandomization. PhD thesis,
Harvard University, 2006.

44

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

