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Abstract

We continue the study of welfare maximization in unit-demand (matching) markets, in a distributed
information model where agent’s valuations are unknown to the central planner, and therefore commu-
nication is required to determine an efficient allocation. Dobzinski, Nisan and Oren (STOC’14) showed
that if the market size is n, then r rounds of interaction (with logarithmic bandwidth) suffice to obtain
an n1/(r+1)-approximation to the optimal social welfare. In particular, this implies that such markets
converge to a stable state (constant approximation) in time logarithmic in the market size.

We obtain the first multi-round lower bound for this setup. We show that even if the allowable per-
round bandwidth of each agent is nε(r), the approximation ratio of any r-round (randomized) protocol

is no better than Ω(n1/5r+1

), implying an Ω(log logn) lower bound on the rate of convergence of the
market to equilibrium.

Our construction and technique may be of interest to round-communication tradeoffs in the more
general setting of combinatorial auctions, for which the only known lower bound is for simultaneous
(r = 1) protocols [DNO14].
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1 Introduction

This paper studies the tradeoff between the amount of communication and the number of rounds of inter-
action required to find an (approximately) optimal matching in a bipartite graph. In our model there are n
“players” and m “items”. Each player initially knows a subset of the items to which it may be matched (i.e.
m bits of information). The players communicate in rounds: in each round each player writes a message on
a shared blackboard. The message can only depend on what the player knows at that stage: his initial input
and all the messages by all other players that were written on the blackboard in previous rounds.

This problem was recently introduced by [DNO14] as a simple market scenario: the players are unit-
demand bidders and our goal is to find an (approximately) welfare-maximizing allocation of the items to
players. The classic auction of [DGS86] – that may be viewed as a simple Walrasian-like market process
for this setting – can be implemented as to find an approximately optimal allocation where each player
needs only send O(log n) bits of communication (on the average). The question considered by [DNO14] was
whether such a low communication burden suffices without using multiple rounds of interaction. As a lower
bound, they proved that a non-interactive protocol, i.e. one that uses a single round of communication,
cannot get a n1/2−ε-factor approximation (for any fixed ε > 0) with no(1) bits of communication per player.
As upper bounds they exhibited (I) an O(log n)-round protocol, where each player sends O(log n) bits per
round, that gets a 1

1−δ -factor approximation (for any fixed δ > 0) and (II) for any fixed r ≥ 1, an r-round

protocol, where each player sends O(log n) bits per round, that gets an O(n1/(r+1))-approximation.
The natural question at this point is whether there are r-round protocols with better approximation

factors that still use no(1) bits of communication per player. This question was left open in [DNO14], where
it was pointed out that it was even open whether the exactly optimal matching can be found by 2-round
protocols that use O(log n) bits of communication per player. We answer this open problem by proving lower
bounds for any fixed number of rounds.

Theorem: For every r ≥ 1 there exists ε(r) = exp(−r), such that every (deterministic or randomized)
r-round protocol requires nε(r) bits of communication per player in order to find a matching whose size is at
least n−ε(r) fraction of the optimal matching.

Our Techniques. We construct a recursive family of hard distributions for every fixed number of com-
munication rounds, and use information theoretic machinery to analyze it. Our proof uses a type of direct-
sum based round-reduction argument for multiparty communication complexity. Unlike standard round-
elimination arguments in the two-party model, our instance size (and thus the number of players) scales
with the number of allowable rounds, and therefore eliminating a communication round essentially requires
embedding a “low dimensional” instance (with fewer players) into a “higher dimensional” protocol (oper-
ating over a larger input), from its second round onwards. In order to carry out such an embedding, we
need a way of sampling the rest of the inputs to the higher dimensional protocol (including the remaining
players) conditioned on the first message of the protocol, with no extra communication. The main obstacle
is that conditioning on the first message of the “high dimensional” protocol correlates the private inputs of
the players (i.e., the inputs to the “lower dimensional” protocol) with the “missing” inputs, and it is not
hard to see that, in general, such sampling cannot be done without communication! Circumventing this
major obstacle calls for a subtle construction and analysis, which ensures the aforementioned correlations
remain “local” and therefore allows to perform the embedding using a combination of private and public
randomness. Our constructed family of distributions is designed to facilitate such embedding (using certain
conditional independence properties) on one hand, and yet retain a “marginal indistinguishability” property
which is essential to keep the information argument above valid (we discuss this further in Section 4).

1.1 More context and related models

The bipartite matching problem is clearly a very basic one and obviously models a host of situations beyond
the economic one that was the direct motivation of [DNO14] and of this paper. Despite having been widely
studied, even its algorithmic status is not well understood, and it is not clear whether a nearly-linear time
algorithm exists for it. (The best known running time (for the dense case) is the 40-year old O(n2.5)



algorithm of [HK73], but for special cases like regular or near-regular graphs nearly linear times are known
(e.g. [Alo03, Yus13])). In parallel computation, a major open problem is whether bipartite matching can be
solved in deterministic parallel poly-logarithmic time with a polynomial number of processors (Randomized
parallel algorithms for the problem [MVV87, KUW85] have been known for over 25 years). It was suggested
in [DNO14] that studying the problem in the communication complexity model is an approach that might
lead to algorithmic insights as well.

The bipartite matching problem has been studied in various other multi-party models that focus on
communication as well. In particular, strong and tight bounds for approximate matching are known in the
weaker “message passing” or “private channels” models [HRVZ13] that have implications to models of parallel
and distributed computation . Related work has also been done in networked distributed computing models,
e.g., [LPSP08]. “One-way” communication models are used to analyze streaming or semi-streaming models
and some upper bounds (e.g., [Kap12]) as well as weak lower bounds [GKK12] are known for approximate
matchings in these models. For “r-way” protocols, a super-linear communication lower bound was recently
shown by [GO13] for exact matchings, in an incomparable model1. A somewhat more detailed survey of
these related models can be found in the appendix of [DNO14].

It should be noted that the open problems mentioned above remain so even in the standard two-party
setting where each of the two players holds all the information of n/2 of our players. We do not know any
better upper bounds than what is possible in the multi-player model, and certainly, as the model is stronger,
no better lower bounds are known. We also do not know whether our lower bound (or the single round one
of [DNO14]) applies also in this stronger two-player model.

1.2 Open problems

There are many open problems related to our work. Let us mention a few of the most natural ones. Our first
open problem is closing the gap between our lower bound and the upper bound: We show that r = Ω(log log n)
rounds of communication are required to achieve constant approximation ratio using poly-logarithmic bits
per player, while the upper bound is r = O(log n). We believe that the upper bound is in fact tight, and
improving the lower bound is left as our first and direct open problem.

Another interesting direction is trying to extend our lower bound technique to obtain similar-in-spirit
round-communication tradeoffs for the more general setup of combinatorial auctions, also studied by [DNO14].
From a communication complexity perspective, lower bounds in this setup are more compelling, since player
valuations require exponentially many bits to encode, hence interaction has the potential to reduce the over-
all communication (required to obtain efficient allocations) from exponential to polynomial. Indeed, it is
shown in [DNO14] that, in the case of sub-additive bidders, there is an r-round randomized protocol that
obtains an Õ(r · m1/(r+1))-approximation to the optimal social welfare, where in each round each player
sends poly(m,n) bits. Once again, an (exponential in m) lower bound on the communication was given only
for the case of simultaneous protocols (r = 1) and the natural question is to extend it to multiple rounds as
well.

A more general open problem advocated by [DNO14] is to analyze the communication complexity of
finding an exact optimal matching. One may naturally conjecture that nΩ(1) rounds of interaction are
required for this if each player only sends no(1) bits in each round, but no super-logarithmic bound is known.
The communication complexity of the problem without any limitation on the number of rounds is also open:
no significantly super linear, ω(n log n), bound is known, while the best upper bound known is Õ(n3/2).

1Besides of the fact that the lower bound in [GO13] applies only for testing exact matchings and not approximate matchings,
their model consists of a small number of parties (constant or logarithmic in n) who are communicating in some fixed number
of sequential rounds (not simultaneous). The input itself of each player is therefore super-linear in the number of nodes of the
input graph (n), and indeed they prove a super-linear communication lower bound, which is clearly impossible in our model.
The [GO13] model was motivated by streaming lower bounds and does not seem to capture the economic scenario we attempt
to model in this paper (i.e., that of private-valuations) and therefore this result is incomparable to ours, as also evidenced by
the distinct proof-techniques.

2



2 preliminaries

We reserve capital letters for random variables, and calligraphic letters for sets. The `1 (statistical) distance
between two distributions in the same probability space is denoted |µ− ν| := 1

2 ·
∑
a |µ(a)− ν(a)|. We write

X ⊥ Y | Z to denote that X and Y are statistically independent conditioned on the random variable Z.
For a vector random variable X = X1X2 . . . Xs, we sometimes use the shorthands X≤i and X−i to denote
X1X2 . . . Xi and X1X2 . . . Xi−1, Xi+1, . . . . . . Xs respectively (similarly, X−i := X1X2 . . . Xi−1Xi+1 . . . Xs).
We write A ∈R U to denote a uniformly distributed random variable over the set U . We use the terms
“bidders” and “players” interchangeably throughout the paper.

2.1 Communication Model

Our framework is the number-in-hand (NIH) multiparty communication complexity model with shared black-
board. In this model, n players receive inputs (x1, x2, . . . , xn) ∈ X1×X2× . . .Xn respectively. In our context,
each of the n players (bidders) is associated with a node u ∈ U = [n] of some bipartite graph G = (U, V,E),
and her input is the set of incident edges on her node (her demand set of items in V = [m]). The players’
goal is to compute a maximum set of disjoint connected pairs (u, v) ∈ E(G), i.e., a maximum matching in
G (we define this formally below).

The players communicate in some fixed number of rounds r, where in each communication round, players
simultaneously write (at most) ` bits each on a shared blackboard which is viewable to all parties. We
sometimes refer to the parameter ` as the bandwidth of the protocol. In a deterministic protocol, each
player’s message should be completely determined by the content of the blackboard and her own private
input xi. In a randomized protocol, the message of each player may further depend on both public and
private random coins. When player’s inputs are distributional ((x1, x2, . . . , xn) ∼ µ) which is the setting in
this paper, we may assume without loss of generality that the protocol is deterministic, since the averaging
principle asserts that there is always some fixing of the randomness that will achieve the same performance
with respect to µ. We remark that by the averaging principle, our main result applies to the randomized
setting as well2.

The transcript of a protocol π (namely, the content of the blackboard) when executed on an input graph
G is denoted by Π(G), or simply Π when clear from context. At the end of the r’th communication round, a
referee (the “central planner” in our context) computes a matching M̂(Π), which is completely determined
by Π. We call this the output of the protocol.

We will be interested in protocols that compute approximate matchings. To make this more formal, let
G(n,m) denote the family of bipartite graphs on (n,m)-vertex sets respectively, and denote by F(n,m) the
family of all matchings in G(n,m) (not necessarily maximum matchings). Denote by |M(G)| the size of a
maximum matching in the input graph G. We require that the output of any protocol satisfies M̂(Π) ∈
F(n,m). The following definition is central to this work.

Definition 2.1 (Approximate Matchings). We say that a protocol π computes an α-approximate matching
(α ≥ 1) if |M̂(Π)∩E(G)| is at least 1

α · |M(G)|, i.e., if the number of matched pairs (u, v) ∈ E(G) is at least
a (1/α)-fraction of the maximum matching in G. Similarly, when the input graph G is distributed according
to some distribution µ (i.e., (x1, x2, . . . , xn) ∼ µ), we say that the approximation ratio of π is α if

E
G∼µ

[|M̂(Π) ∩ E(G)|] ≥ 1

α
· E
G∼µ

[|M(G)|].

The expected matching size of π is Eµ[|M̂(Π) ∩ E(G)|] (we remark that the “hard” distribution we con-
struct in the next section will satisfy |M(G)| ≡ n for all G in the support of µ, so the quantity EG∼µ[|M(G)|]
will always be n). Note that these definitions in particular allow the protocol to be erroneous, i.e., the referee
is allowed to output “illegal” pairs (u, v) /∈ E(G), but we only count the correctly matched pairs. Our lower
bound holds even with respect to this more permissive model.

2More formally, if there is a distribution µ on players inputs such that the approximation ratio of any r-round deterministic
protocol with respect to µ is at most α in expectation, then fixing the randomness of the protocol would yield a deterministic
protocol with the same performance, thus the former lower bound applies to randomized r-round protocols as well.
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2.2 Information theory

Our proof relies on basic concepts from information theory. For a broader introduction to the field, and
proofs of the claims below, we refer the reader to the excellent monograph of [CT91].

For two distributions µ and ν in the same probability space, the Kullback-Leiber divergence between µ
and ν is defined as

D (µ(a)‖ν(a)) := Ea∼µ
[
log

µ(a)

ν(a)

]
. (1)

The following well known inequality upper bounds the statistical distance between two distributions in
terms of their KL Divergence:

Lemma 2.2 (Pinsker’s inequality). For any two distributions µ and ν,

|µ(a)− ν(a)|2 ≤ 1

2
· D (µ(a)‖ν(a)) .

A related measure which is central to this paper is that of mutual information, which captures correlation
between random variables.

Definition 2.3 (Conditional Mutual Information). Let A,B,C be jointly distributed random variables. The
Mutual Information between A and B conditioned on C is

I(A;B|C) := E
µ(cb)

D (µ(a|bc)‖µ(a|c)) = E
µ(ca)

D (µ(b|ac)‖µ(b|c)) =
∑
a,b,c

µ(abc) log
µ(a|bc)
µ(a|c)

.

The above definition can be interpreted as follows: I(A;B|C) is large if the distribution (A|B = b, C = c)
is “far” from (A|C = c) for typical values of b, c, which means that B provides a lot of information about A
conditioned on C. We note that an equivalent, more intuitive definition of (conditional) mutual information
is I(A;B|C) = H(A|C) − H(A|BC), where H(A|C) is the (expected) Shannon Entropy of the random
variable A conditioned on C. Thus A and B have large mutual information conditioned on C, if further
conditioning on B significantly reduces the entropy of A. We prefer Definition 2.3 as it is more appropriate
for our proof, but we note that the latter one immediately implies

Fact 2.4. I(A;C|D) ≤ H(A|D) ≤ H(A) ≤ |A|,

where the last term denotes the cardinality of log |Supp(A)| of the random variable A, and the second
transition follows since conditioning never increases entropy.

The most important property of mutual information is that it satisfies the following chain rule:

Fact 2.5 (Chain rule for mutual information). Let A,B,C,D be jointly distributed random variables. Then
I(AB;C|D) = I(A;C|D) + I(B;C|AD).

Lemma 2.6 (Conditioning on independent variables increases information). Let A,B,C,D be jointly dis-
tributed random variables. If I(A;D|C) = 0, then it holds that I(A;B|C) ≤ I(A;B|CD).

Proof. We apply the chain rule twice. On one hand, we have I(A;BD|C) = I(A;B|C) + I(A;D|CB) ≥
I(A;B|C), since mutual information is nonnegative. On the other hand, I(A;BD|C) = I(A;D|C) +
I(A;B|CD) = I(A;B|CD), since I(A;D|C) = 0 by assumption. Combining both equations completes
the proof.

On the other hand, the following lemma asserts a condition under which conditioning decreases informa-
tion:

Lemma 2.7. Let A,B,C,D be jointly distributed random variables such that I(B;D|AC) = 0. Then it
holds that I(A;B|C) ≥ I(A;B|CD).

Proof. Once again, we apply the chain rule twice. We have I(A;B|CD) = I(AD;B|C) − I(D;B|C) =
I(A;B|C) + I(D;B|AC)− I(D;B|C) = I(A;B|C)− I(D;B|C) ≤ I(A;B|C).
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Fact 2.8 (Data processing inequality, general case). Let X → Y → Z be a Markov chain (I(X;Z|Y ) = 0).
Then I(X;Z) ≤ I(X;Y ).

Fact 2.9 (Data processing inequality, special case). Let A,B,C be three jointly distributed random variables,
where the domain of B is Ω, and let f : Ω −→ U be any deterministic function. Then I(A;B|C) ≥
I(A; f(B)|C).

Fact 2.10. Let µ and ν be two probability distributions over a non-negative random variable X, whose value
is bounded by Xmax. Then Eν [X] ≤ Eµ[X] + |µ− ν| ·Xmax.

3 A hard distribution for r-round protocols

We begin by defining a family of hard distributions for protocols with r rounds. Recall that G(n,m) is
the family of bipartite graphs on (n,m) vertex-sets. For any given number of rounds r, we define a hard
distribution µr on bipartite graphs in G(nr,mr). µr is recursively defined in Figure 1.

A recursive definition of the hard distribution µr

In what follows, ` is a parameter (denoting the bandwidth of the communication channel).

1. For r = 0, G0 = (U0, V 0, E0) consists of a set of n0 bidders U0 = {b1, . . . , bn0
} and a set of m0

items V 0 = {j1 . . . , jm0
}, such that n0 = m0 = `5. E0 is then obtained by selecting a random

permutation σ ∈R S`5 and connecting (bi, jσ(i)) by an edge. This specifies µ0.

2. For any r ≥ 0, the distribution µr+1 over Gr+1 = (Ur+1, V r+1, Er+1) is defined as follows:
Vertices:

• The set of bidders is Ur+1 :=
⋃n4

r
i=1Bi where |Bi| = nr. Thus, nr+1 = n5

r .

• The set of items is V r+1 :=
⋃n4

r+`·n2
r

j=1 Tj where |Tj | = mr. Thus, mr+1 = (n4
r + ` · n2

r) ·mr.

Edges: Let dr be the degree of each vertex (bidder) in the graph Gr (this is well defined as, by
induction, it holds that the degree of any vertex is fixed for every graph in the support of µr).
The distribution on edges is obtained by first choosing ` · n2

r random indices {a1, a2, . . . a`·n2
r
} from

[n4
r + ` · n2

r], and a random invertible map σ : [n4
r] −→ [n4

r + ` · n2
r] \ {a1, a2, . . . a`·n2

r
}. Each

bidder u ∈ Bi is connected to dr random items in each one of the blocks Ta1 , Ta2 , . . . , Ta`·n2
r
, using

independent randomness for each of the blocks and for each bidder. The entire block Bi is further
connected to the entire block Tσ(i) using an independent copy of the distribution µr. Note that this
is well defined, as |Bi| = nr, |Tσ(i)| = mr and µr is indeed a distribution on bipartite graphs from
G(nr,mr).

Figure 1: A hard distribution for r-round protocols.

Remark 3.1. A few remarks are in order:

(i) As standard, the input of each bidder u ∈ Ur+1 is the set of incident edges on the vertex u (defined by
µr+1). Note that every graph in the support of µr+1 has a perfect matching (|M(Gr+1)| = nr+1).

(ii) It is easy to see by induction that : (a) nr = `5
r+1

; and (b) mr ≤ n2
r.

(Proof of (b): By induction on r, mr+1 := (n4
r + ` · n2

r) ·mr ≤ (n4
r + ` · n2

r) · n2
r ≤ 2n6

r < n2
r+1).
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(iii) Note that in µr+1, each block of bidders Bi is connected to its “hidden item block” Tσ(i) using a copy
of the joint distribution µr, and to each of the “fooling item blocks” Taj , using the product of the
marginals of µr, i.e., according to ×u∈nr

(µr|u). This property will be crucial.

(iv) Throughout the paper, we assume the bandwidth parameter ` is larger than some large enough absolute
constant (note that by (ii) above, in fact ` = ωr(1)).

Notation. To facilitate our analysis, the following notation will be useful. Notice that each block Bi of
players is connected to exactly ` · n2

r + 1 blocks of items whose indices we denote by

Ii := {σ(i), a1, a2, . . . a`·n2
r
}.

For each Bi, let τi : Ii −→ [` · n2
r + 1] be the bijection that maps any index in Ii to its location in the sorted

list of Ii (i.e., τ−1
i (1) is the smallest index in Ii, τ−1

i (2) is the second smallest index in Ii and so forth). We
henceforth denote by Gij the (induced) subgraph of G = Gr+1 on the sets (Bi, Tτ−1

i (j)), for each j ∈ [`·n2
r+1].

By a slight abuse of notation, we will sometimes write Gij = (Bi, Tτ−1
i (j)) to denote the specific set of edges

of Gij . Similarly, for a bidder u ∈ Bi, let Guj = (u, Tτ−1
i (j)) denote the (induced) subgraph of G on the sets

(u, Tτ−1
i (j)). In this notation, the entire input of a player u ∈ Bi is Γu := {Gu1 , Gu2 , . . . , Gu`·n2

r+1}. Let

Ji := τi(σ(i))

denote the index of the “hidden graph” GiJi = (Bi, Tσ(i)). To avoid confusion (with the other indices j), we
henceforth write

G(Ji) := GiJi .

Note that by symmetry of our construction, the index Ji is uniformly distributed in [` ·n2
r+1]. The following

fact will be crucial to our analysis:

Fact 3.2 (Marginal Indistinguishability). For any bidder u ∈ Bi, it holds that I(Γu; Ji | Ii) = 0.

Proof. Recall that Γu = {Gu1 , Gu2 , . . . , Gu`·n2
r+1} is the input of bidder u. The claim follows directly from

property (iii) in Remark 3.1, since by definition of our construction, the distribution of edges of Guj =

(u, Tτ−1
i (j)) is (µr|u) for all j ∈ [` ·n2

r + 1]. We remark that the above fact implies that, up to a permutation

on the names of the items in V r+1, Guj ∼ Guk for any bidder u ∈ Bi and any j 6= k ∈ [` · n2
r + 1].

Finally, Let B denote the partition of bidders in U := Ur+1 into the blocks Bi, and T denote the partition
of items in V := V r+1 into the blocks Tj . Throughout the proof, we think of T and B as fixed, while we
think of the names of the bidders in each block of B and items in each block of T as random. Since T and
B are fixed (publicly known) in the distribution µr+1, our entire analysis is performed under the implicit
conditioning on T ,B. Note that T does not reveal the identity of the “fooling blocks” Taj , but only the
items belonging to each block.

4 The lower bound

In this section we prove our main result. Recall that the expected matching size of π (with respect to µ) is
Eµ[|M̂(Π) ∩ E(G)|]. We shall prove the following theorem.

Theorem 4.1 (Main Result). The expected matching size of any r-round protocol under µr is at most

5n
1−1/5r+1

r . This holds as long as the number of bits sent by each player at any round is at most ` = n
1/5r+1

r .
In particular, since µr has a perfect matching, the approximation ratio of any r-round protocol is no better

than Ω
(
n1/5r+1

)
.
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The intuition behind the proof is as follows. Consider some (r+ 1)-round protocol π (with bandwidth `),
and let MBi = M1

Bi
M2
Bi
, . . . ,Mnr

Bi
denote the (concatenated) messages sent by all of the bidders in a block

Bi in the first round of π. From this point on, we will assume that π is a deterministic protocol (since by
the averaging principle we may fix its randomness without harming the performance). Informally speaking,
the distribution µr+1 is designed so that messages of bidders in Bi (Mu

Bi
) convey little information about

the “hidden” graph G(Ji). Intuitively, this will be true since the marginal distribution of the hidden graph
GuJi for any bidder u ∈ Bi is indistinguishable from the rest of the “fooling graphs” (Fact 3.2) and therefore

a bidder in Bi will not be able to distinguish between vertices (items) in
⋃`·n2

r
j=1 Taj and in Tσ(i). Using the

conditional independence properties of the distribution µr+1 and the simultaneity of the protocol, we will
show that the latter condition also implies that the total information conveyed by MBi

on G(Ji) is small. In
order to make this information � 1 bit, the parameters are chosen so that nr grows doubly-exponentially in
r (nr = `5

r+1

), and this choice is the cause for the approximation ratio we eventually obtain. Intuitively, the
fact that little information is conveyed by each block on the “hidden graph” implies that the distribution of
edges in the graph G(Ji) is still close to µr even conditioned on the first message of the i’th block MBi

. Now
suppose an (r + 1)-round protocol finds a large matching with respect to the original distribution µr+1 (in
expectation). Then the expected induced matching size on G(Ji) must be large on average as well. Hence,
“ignoring” the first round of the protocol, we would like to argue that the original protocol essentially induces
an r-round protocol for finding a large matching with respect to the distribution µr, up to some error term
(indeed, some information about G(Ji) may have already been discovered in the first round of the protocol,
but the argument above ensures that this information is small). Doing so essentially reduced the problem
to finding a large matching under µr using only r rounds, so we may use an inductive approach to upper
bound the latter expected matching size.

Making the latter intuition precise is complicated by the fact that, unlike standard “round-elimination”
arguments in the two-party setting, in our setup one cannot simply “project” an r-round nr+1-party protocol
(with inputs ∼ µr+1) directly to the distribution µr, since a protocol for the latter distribution has only
nr players (inputs). To remedy this, we crucially rely on the conditional independence properties of our
construction (Lemma 4.6 below) together with an embedding argument to obtain the desired lower bound.

The embedding part of the proof (Claim 4.7) is subtle, since in general, conditioning on the first message
M1 correlates the (private) inputs of the players with the “missing” inputs to the “higher-dimensional”
protocol (the “fooling item blocks” of µr+1), so it is not clear how the players can sample these “missing”
inputs without communicating. Luckily and crucially, the edges to the “fooling blocks” Taj in µr+1 were
chosen independently for each bidder u ∈ U (unlike the hidden graphs G(Ji) in which players have correlated
edges). This independence is what allows to embed a lower-dimensional graph H ∼ µr and “complete” the
rest of the graph (using a combination of public and private randomness) according to the conditional
distribution (G|M1, H) without any communication, thus “saving” one round of communication.

We now turn to formalize the above intuition. From this point on, let us use the shorthands

J := J1, . . . , Jn4
r
, I := I1, I2, . . . , In4

r
.

Also, for the remainder of the proof, let us define for simplicity

∆r :=
1

nr
.

Let π be an (r + 1)-round deterministic protocol. For a given message mBi
:= m1

Bi
m2
Bi
, . . . ,mnr

Bi
sent in π

by the bidders in block Bi in the first round of π, a fixing of the index Ji = ji of the “hidden” block of items,
and of the partition Ii, let

ψir := (G(Ji) |MBi = mBi , Ji = ji, Ii)

denote the distribution of the “hidden graph” G(Ji) conditioned on MBi , Ii and Ji. The following lemma
asserts that, in expectation over the first communication round of π, the marginal distribution of G(Ji) is
very close to its original distribution µr.

Lemma 4.2. For every i ∈ [n4
r],

E
mBi

,Ii,ji

[
|ψir − µr|

]
≤ ∆1/2

r .
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Proof. We begin by showing that the local message Mu
Bi

of any bidder u ∈ Bi conveys little information on
G(Ji). Note that Fact 3.2 (and the Data Processing inequality (Fact 2.9)) together imply that, for any block
Bi of bidders and any u ∈ Bi,

I(Mu
Bi

; Ji | Ii) = 0. (2)

(Note that in contrast, I(MBi
; Ji | Ii) 6= 0. In fact, Ji may be almost determined by the entire message of

the i’th block (let alone by the entire message M1 of π), as the induced distribution of G(Ji) is different
than that of Gij , j 6= Ji. This is where we crucially use the simultaneaty of bidder’s messages). We will also
need the following proposition:

Proposition 4.3. For any bidder u ∈ Bi and any j ∈ [` · n2
r + 1], it holds that

I(Mu
Bi

;Gij |Ii, Ji = j) ≤ I(Mu
Bi

;Guj |Ii).

Proof. Recall that Γu = {Gu1 , Gu2 , . . . , Gu`·n2
r+1} is the input of bidder u, and notice that for any j ∈ [` ·n2

r+1],

(Mu
Bi
|Ii, Ji = j)→ (Γu|Ii, Ji = j)→ (Guj |Ii, Ji = j)→ (Gij |Ii, Ji = j)

is a Markov chain where the left chain holds since, conditioned on (Γu, Ii, Ji = j), Mu
Bi

is completely

determined and therefore independent of Gij and Guj , and the right chain holds since conditioned on Ii, Ji = j

and the graph Guj , the rest of the edges of the graph Gij are independent of Γu by construction. Therefore,
by the (general) Data Processing inequality (Fact 2.8), we have

I(Mu
Bi

;Gij |Ii, Ji = j) ≤ I(Mu
Bi

;Guj |Ii, Ji = j). (3)

Now, by Fact 3.2, we know that the distribution of (Γu|Ii) is independent of the event “Ji = j”. Since Mu
Bi

and Guj are deterministic functions of Γu (conditioned on Ii), this also implies that the joint distribution of
(Mu

Bi
, Guj |Ii) is independent of the event “Ji = j”. Therefore, we conclude by (3) that

I(Mu
Bi

;Gij |Ii, Ji = j) ≤ I(Mu
Bi

;Guj |Ii, Ji = j) = I(Mu
Bi

;Guj |Ii).

We proceed to prove the Lemma. We may now write for any u ∈ Bi

I(Mu
Bi

;G(Ji) |Ji, Ii) =
1

` · n2
r + 1

·
`·n2

r+1∑
j=1

I(Mu
Bi

;Gij |Ii, Ji = j)

(By definition of conditional mutual information and since Ji ∈R [` · n2
r + 1] and by (2))

≤ 1

` · n2
r + 1

·
`·n2

r+1∑
j=1

I(Mu
Bi

;Guj |Ii) (By Proposition 4.3)

≤ 1

` · n2
r + 1

·
`·n2

r+1∑
j=1

I(Mu
Bi

;Guj |Gu1 , Gu2 , . . . , Guj−1, Ii) (4)

=
1

` · n2
r + 1

· I(Mu
Bi

;Gu1 , G
u
2 , . . . , G

u
`·n2

r+1|Ii) (by the chain rule)

≤
H(Mu

Bi
)

` · n2
r + 1

(by Fact 2.4)

≤
|Mu

Bi
|

` · n2
r + 1

≤ `

` · n2
r + 1

<
1

n2
r

= ∆2
r (5)

where the inequality in (4) follows from Lemma 2.6 taken with A = Guj , B = Mu
Bi
, C = Ii, D = Gu<j , since

Guj is independent of Gu<j for all j, conditioned on Ii.
Now, we claim that, for each bidder u ∈ Bi, conditioning on the previous messages of the bidders

(M<u
Bi

:= M1
Bi
M2
Bi
. . .Mu−1

Bi
) can only decrease the information Mu

Bi
reveals on the hidden graph G(Ji):
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Claim 4.4. I(Mu
Bi

;G(Ji) |M<u
Bi
, Ji, Ii) ≤ I(Mu

Bi
;G(Ji) |Ji, Ii).

Proof. By construction of µr+1, conditioned on G(Ji), Ii and Ji, the inputs of bidders u and Bi \ {u} are
independent. In particular, this fact and the data processing inequality (Fact 2.9) together imply that

I(Mu
Bi

;M<u
Bi
|G(Ji), Ji, Ii) = 0,

since π was assumed to be a deterministic protocol. By non-negativity of information and the chain rule,

I(Mu
Bi

;G(Ji) |M<u
Bi
, Ji, Ii) ≤ I(Mu

Bi
;G(Ji),M

<u
Bi
|Ji, Ii)

= I(Mu
Bi

;G(Ji) |Ji, Ii) + I(Mu
Bi

;M<u
Bi
|G(Ji), Ji, Ii)

= I(Mu
Bi

;G(Ji) |Ji, Ii).

We conclude that

E
mBi

,ji,Ii

[
D
(
ψir‖µr

)]
= I(MBi

;G(Ji) |Ji, Ii) (by Definition 2.3 of conditional mutual information)

=
∑
u∈Bi

I(Mu
Bi

;G(Ji) |M<u
Bi
, Ji, Ii) (by the chain rule)

≤
∑
u∈Bi

I(Mu
Bi

;G(Ji) |Ji, Ii) (by Claim 4.4)

≤ |Bi| ·∆2
r (by (5))

= nr ·∆2
r = ∆r. (6)

Combining (6), Pinsker’s inequality (Lemma 2.2) and convexity of
√
· completes the entire proof of the

lemma.

We are now ready to prove Theorem 4.1. To this end, for any r-round protocol π, input graph G, and
induced subgraph H ⊆ G, let

Nπ(G,H) := |M̂(Π(G)) ∩ E(H)|
denote the size of the matching computed from π’s transcript with respect to the subgraph H (note that
Nπ(G,H) is a random variable depending on G). For notational convenience, we use the shorthand Nπ(G) :=
Nπ(G,G). Theorem 4.1 will follow directly from the following theorem:

Theorem 4.5. Let π be an r-round (deterministic) communication protocol with bandwidth `. Then

E
G∼µr

[Nπ(G)] ≤ 5nr ·

(
r−1∑
k=0

∆
1/2
k

)
+ 1.

Proof. We prove the theorem by induction on r. Let us denote

t(r) := 5nr ·

(
r−1∑
k=0

∆
1/2
k

)
+ 1.

For r = 0 (namely, with no communication at all), the expected number of edges the referee guesses correctly
under µ0 is at most n0 · 1

n0
= 1 = t(0) (as G0 ∼ µ0 is a random permutation on [n0]).

Suppose the theorem statement holds for all integers up to r. Thus, the expected matching produced by
any r-round protocol θ (with bandwidth ≤ `) under µr satisfies

E
G∼µr

[Nθ(G)] ≤ t(r). (7)
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We need to show that the expected matching produced by any (r + 1)-round protocol π (with bandwidth
≤ `) under µr+1 satisfies

E
G∼µr+1

[Nπ(G)] ≤ t(r + 1). (8)

Let π be an (r + 1)-round protocol. Recall that G ∼ µr+1 consists of n4
r “blocks” Bi of bidders, each of

which is connected to exactly |Ii| = ` ·n2
r+1 item blocks. Let M1 := MB1

MB2
. . .MBn4

r
denote the messages

sent by each block of bidders in the first round of π (where MBi = M1
Bi
,M2

Bi
, . . . ,Mnr

Bi
is the concatenated

message of all bidders u ∈ Bi). Recall that for every i ∈ [n4
r], G(Ji) denotes the induced subgraph of G on

(Bi, Tτ−1
i (Ji)

), and that for every bidder u ∈ Bi, GuJi = (u, Tτ−1
i (Ji)

) denotes the induced subgraph between

bidder u and the “hidden graph” of the i’th block to which u belongs. In the same spirit, for every block Bi
and every bidder u ∈ Bi, let

G(Ti) :=

Bi, `·n2
r⋃

j=1

Taj

 , GuT :=

u, `·n2
r⋃

j=1

Taj


denote the induced subgraph on the block Bi (on the bidder u ∈ Bi) and all “fooling blocks” respectively. As

usual, for any subset S ⊆ [n4
r], we write G(TS) :=

(⋃
i∈S Bi,

⋃`·n2
r

j=1 Taj

)
and use the convention T := T[n4

r].

In what follows, G(J) := G(J1)G(J2) . . . G(Jn4
r
) denotes the (concatenation of the) “hidden” graphs. The

following proposition will be essential for the rest of our argument:

Lemma 4.6 (Conditional Subgraph Decomposition). The following conditions hold:

1. ((G1
T , G

2
T , . . . , G

nr

T ) |M1, G(J1),J, I) ∼ ×u∈B1
(GuT |M1, G

u
J1
,J, I),

where {1, 2, . . . , nr} are the bidders of the first block B1.

2. (G(J), G(T) |M1,J, I) ∼×i∈[n4
r](G(Ji)G(Ti) |MBi

,J, I).

That is, the joint distribution of the “fooling subgraphs” GuT of each bidder u ∈ B1 conditioned on the entire
message M1 and the “hidden graph” G(J1) of the first block, is a product of the marginal distributions GuT
conditioned only on the “local hidden part” GuJ1 of each bidder and M1.

Furthermore, the joint distribution of the subgraphs induced on each block (G(Ji)G(Ti)) conditioned on
the entire message M1 is a product distribution of the marginal distributions of the i’th block, conditioned
only on the “local” message of the respective block MBi (In particular, these graphs remain independent even
conditioned on M1).

The intuition behind the second proposition is clear: Since in the original distribution µr+1, the graphs
of each block are independent by construction, this remains true even when conditioned on the first (de-
terministic) message of each block. The first proposition is more subtle, since within the same block (say
B1), the inputs of the bidders u ∈ B1 are correlated (via the hidden graph G(J1)). However, conditioned on
knowing the hidden block (J, I), the marginal distribution of the fooling graph GuT is independent for each
u by construction, and therefore the only correlation between G(J1) and GuT created by conditioning on the
message M1, is correlation between the “local hidden graph” of bidder u (GuJ1) and GuT . We remark that this
fact will be used crucially in the embedding argument below (Claim 4.7). We proceed to the formal proof.

Proof of Lemma 4.6. We repeatedly use Lemma 2.7.

Proof of (1) It suffices to show that for every u ∈ B1, I(GuT ;G−uT G−uJ1 |M1,J, I, GuJ1) = 0. To this end,
observe that

I(GuT ;M−u1 |Mu
1 , G(J1), G−uT ,J, I) ≤ H(M−u1 |G(J1), G−uT ,J, I) = 0, (9)

since the message M−u1 of all bidders in B1 except bidder u is fully determined by the inputs (G(J1), G−uT ).
For the same reason,

I(G−uT G−uJ1 ;Mu
1 |GuJ1 , G

u
T ,J, I) ≤ H(Mu

1 |GuJ1 , G
u
T ,J, I) = 0. (10)
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Therefore,

I(GuT ;G−uT G−uJ1 |M1,J, I, GuJ1) = I(GuT ;G−uT G−uJ1 |M
u
1 ,M

−u
1 ,J, I, GuJ1)

≤ I(GuT ;G−uT G−uJ1 |M
u
1 ,J, I, GuJ1) (By Lemma 2.7 with D = M−u1 , and (9))

≤ I(GuT ;G−uT G−uJ1 |J, I, G
u
J1) (By Lemma 2.7 with D = Mu

1 , and (10))

= 0, as desired.

Proof of (2) It suffices to show I(G(Ji)G(Ti);G(J−i)G(T−i)MB−i
|MBi

,J, I) = 0. Once again, applying
Lemma 2.7 with D = MBi , we have

I(G(Ji)G(Ti);G(J−i)G(T−i)|MBi
,J, I) ≤ I(G(Ji)G(Ti);G(J−i)G(T−i)|J, I) (11)

since I(MBi
;G(J−i)G(T−i)|G(Ji), G(Ti),J, I) ≤ H(MBi

|G(Ji), G(Ti),J, I) = 0 where the last equality is
because MBi

is determined by the input of block Bi. The same argument implies

I(G(Ji)G(Ti);MB−i
|MBi

,J, I, G(J−i)G(T−i)) ≤ I(G(Ji)G(Ti);MB−i
|J, I, G(J−i)G(T−i)) (12)

since once again, I(MBi
;MB−i

|G(J), G(T),J, I) ≤ H(MBi
|G(J), G(T),J, I) = 0. Combining equations (11)

and (12), we conclude by the chain rule that

I(G(Ji)G(Ti);G(J−i)G(T−i)MB−i
|MBi

,J, I)

= I(G(Ji)G(Ti);G(J−i)G(T−i)|MBi
,J, I) + I(G(Ji)G(Ti);MB−i

|MBi
,J, I, G(J−i)G(T−i))

≤ I(G(Ji)G(Ti);G(J−i)G(T−i)|J, I) + I(G(Ji)G(Ti);MB−i
|J, I, G(J−i)G(T−i))

= 0, (13)

where the last transition follows from the definition of µr+1, and since MB−i is a deterministic function of
G(J−i)G(T−i) conditioned on J, I.

We now proceed to prove (8), the inductive step of the proof. Recall that π is assumed to be deterministic,
but M1 is still a random variable (under the input distribution µr+1). Hence, we may equivalently draw
G ∼ µr+1 by first sampling the first message m1 ∼M1, and then sampling G ∼ µr+1|m1. Let us denote by
π|m1 the protocol which is the subtree of π conditioned on the first message being m1. Note that π|m1 has
only r rounds of communication. We therefore have

E
G∼µr+1

[Nπ(G)] ≤ E
m1
J,I

E
G|m1,J,I

` · n2
r ·mr +

n4
r∑

i=1

Nπ|m1
(G,G(Ji))

 (14)

since any matching in G can at most match all of the items in
⋃`·n2

r
j=1 Taj and each block Taj contains mr

edges by definition of µr+1, and the rest of the matched edges are contained in G(J1), G(J2), . . . , G(Jn4
r
).

Recall that by definition of µr+1, G(Ji) ∼ µr. Hence by linearity of expectation and the second proposition
of Lemma 4.6, we may equivalently write the above as

= ` · n2
r ·mr +

n4
r∑

i=1

E
m1
J,I

E
G(Ji)|(mBi

,J,I)

G| (G(Ji),m1,J,I)

[
Nπ|m1

(G,G(Ji))
]

= ` · n2
r ·mr +

n4
r∑

i=1

E
m1
J,I

E
G(Ji)∼ψi

r

G| (G(Ji),m1,J,I)

[
Nπ|m1

(G,G(Ji))
]
, (15)
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by definition of ψir (actually, ψir is defined conditioned only on Ji, Ii but conditioning on all indices J, I
clearly doesn’t change the distribution). By symmetry of the distribution µr+1, it suffices to upper bound
the first term in the above summation

E
m1
J,I

E
G(J1)∼ψ1

r

G| (G(J1),m1,J,I)

[
Nπ|m1

(G,G(J1))
]
.

To this end, we have

E
m1
J,I

E
G(J1)∼ψ1

r

G| (G(J1),m1,J,I)

[
Nπ|m1

(G,G(J1))
]

≤ E
m1
J,I

[
|ψ1
r − µr|

]
· nr + E

m1
J,I

E
G(J1)∼µr

G| (G(J1),m1,J,I)

[
Nπ|m1

(G,G(J1))
]

(16)

≤ ∆1/2
r · nr + E

m1
J,I

E
G(J1)∼µr

G| (G(J1),m1,J,I)

[
Nπ|m1

(G,G(J1))
]

(17)

where (16) follows from fact 2.10, since trivially Nπ|m1
(G,G(J1) ≤ |Ur| = nr for any G(J1), and the last

transition (17) follows from Lemma 4.2. We now wish to use the inductive hypothesis to argue that the
rightmost term of (17) cannot exceed the expected matching size of an r-round protocol over µr. We do so
using an embedding argument, which is the heart of the proof.

Claim 4.7 (r-round Embedding).

E
m1
J,I

E
G(J1)∼µr

G| (G(J1),m1,J,I)

[
Nπ|m1

(G,G(J1))
]
≤ t(r).

Proof. Notice that the protocol π|m1 is defined over inputs from µr+1 and not µr, so we cannot apply the
inductive hypothesis directly to obtain our desired upper bound. Instead, we will “embed” H ∼ µr into
π|m1 by simulating the rest of the players using public randomness (and then fix the public coins to obtain
a deterministic protocol). To this end, for every bidder u ∈ Ur, denote by Hu the induced subgraph of H
on the vertex u (i.e., the input of bidder u in µr).

Consider the following r-round randomized protocol τ for H ∼ µr: The nr players use the shared random
tape to sample (M1,J, I) (according to the probability space of π). Then, they “embed” their inputs (the
graph H) to the first block B1 and each bidder u ∈ B1 “completes” his missing edges to the “fooling
graph” GuT according to (GuT |M1, Hu,J, I) using private randomness. Note that this is possible due to the
first proposition of Lemma 4.6, since it asserts that (GuT |M1, H,J, I) ∼ (GuT |M1, Hu,J, I). The players
now use the second proposition of Lemma 4.6 to sample the graphs of the rest of the blocks according to

×n4
r
i=2(G(Ji)G(Ti) |MBi ,J, I), as the proposition asserts that these subgraphs remain independent after the

conditioning.
This process specifies a graph G such that H ∼ µr and G ∼ µr+1 conditioned on G(J1) = H,M1,J, I.

Notice that so far the players have not communicated at all. The players now run the r-round protocol π|m1

and outputs its induced matching on H. Notice that this protocol is well defined, as the messages of bidders
outside block B1 in π|m1 in every round (r ∈ {2, 3, . . . , r+1}) are completely determined by their respective
inputs on the random tape and the content of the blackboard, since π was assumed to be a deterministic
protocol. Call the resulting protocol τ .

By construction, the expected matching size of τ (over the private and public randomness M1,J, I, G)
with respect to H is

E
m1
J,I

E
H∼µr

G| (G(J1)=H,m1,J,I)

[
Nπ|m1

(G,H)
]

= E
m1
J,I

E
G(J1)∼µr

G| (G(J1),m1,J,I)

[
Nπ|m1

(G,G(J1))
]
.

By the averaging principle, there is some fixing of the randomness of τ that obtains (at least) the same
expectation as above with respect to H ∼ µr. Call this deterministic protocol τ ′. But τ ′ is a deterministic
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r-round protocol over µr, hence the inductive hypothesis asserts that

E
m1
J,I

E
G(J1)∼µr

G| (G(J1),m1,J,I)

[
Nπ|m1

(G,G(J1))
]
≤ E
H∼µr

[Nτ ′(H)] ≤ t(r),

as claimed.

We are now in shape to complete the entire proof of Theorem 4.5. Plugging in the bounds of (17) and
Claim 4.7 into equation (15), we have

E
G∼µr+1

[Nπ(G)] ≤ ` · n2
r ·mr + n4

r ·
[
∆1/2
r · nr + t(r)

]
= ` · n2

r ·mr + n4
r ·

[
∆1/2
r · nr + 5nr ·

(
r−1∑
k=0

∆
1/2
k

)
+ 1

]

≤ n4
r ·

[
5nr ·∆1/2

r + 5nr ·

(
r−1∑
k=0

∆
1/2
k

)]
(since ` · n2

r ·mr + n4
r < 4n5

r∆
1/2
r )

= 5n5
r ·

(
r∑

k=0

∆
1/2
k

)
= 5nr+1 ·

(
r∑

k=0

∆
1/2
k

)
(since by definition, nr+1 = n5

r)

= t(r + 1)− 1

< t(r + 1). (18)

This proves the induction step (8), and therefore concludes the entire proof of Theorem 4.5.

Theorem 4.5 immediately implies our desired lower bound:

Proof of Theorem 4.1. By Theorem 4.5, the expected matching size of any r-round protocol π under µr is
at most

E
G∼µr

[Nπ(G)] ≤ t(r) = 5nr ·

(
r−1∑
k=0

∆
1/2
k

)
+ 1

= 1 + 5nr ·
r−1∑
k=0

(
1

nk

)1/2

= 1 + 5nr ·
r−1∑
k=0

(
1

`5k+1

)1/2

,

since by definition of µr, nr = n5
r−1, and n0 := `5, hence nr = `5

r+1

. Since this is a doubly-exponential
decaying series (and as long as ` is large enough than some absolute constant), we can upper bound the sum
by, say,

≤ 5nr ·∆1/5
0 = 5nr ·

(
1

`5

)1/5

=
5

`
· nr = 5 · nr

n
1/5r+1

r

= 5 · n1−1/5r+1

r ,

since, by property (4) in Remark 3.1, nr = `5
r+1 ⇐⇒ ` = n

1/5r+1

r .
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