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Abstract

We study the relationship between communication and information in 2-party communica-
tion protocols when the information is asymmetric. If IA denotes the number of bits of infor-
mation revealed by the first party, IB denotes the information revealed by the second party,
and C is the number of bits of communication in the protocol, we show that

• one can simulate the protocol using order IA +
4
√
C3 · IB · logC +

√
C · IB · logC bits of

communication,

• one can simulate the protocol using order IA · 2O(IB) bits of communication

The first result gives the best known bound on the complexity of a simulation when IA �
IB , C3/4. The second gives the best known bound when IB � logC. In addition we show
that if a function is computed by a protocol with asymmetric information complexity, then the
inputs must have a large, nearly monochromatic rectangle of the right dimensions, a fact that
is useful for proving lower bounds on lopsided communication problems.

1 Introduction

Can one compress the communication in 2-party communication protocols when the information
revealed by the messages of the protocol is small? This has been a central question in communication
complexity in recent years. Interest in the question is fueled by applications to proving lower bounds
in communication complexity, which in turn yield lower bounds for streaming algorithms and data
structures among other models. In this work, we obtain stronger results when one party reveals
much less information than the other, a case that often arises when studying data structures.

Throughout this discussion we assume that there is a known distribution on inputs to a com-
munication protocol. The question of compressing protocols was posed by Chakrabarti, Shi, Wirth
and Yao [CSWY01] (see also [BYCKO93, Abl93, SS02]), who defined the information cost of the
protocol as the mutual information between the inputs and the messages of the protocol. Barak,
Braverman, Chen and Rao [BBCR10] called this measure the external information cost of a pro-
tocol, and proved that if the protocol π has external information cost Iextπ and communication Cπ,
then one can simulate the protocol with O(Iextπ logCπ) bits of communication, which is optimal
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upto the factor of logCπ. In addition, [BBCR10] identified another measure of information called
the internal information cost of the protocol. This is the amount of information that is revealed by
the parties of the protocol: let IAπ denote the information revealed by the first party, and IBπ denote
the information revealed by the second party. Then the internal information cost is defined to be
Iπ = IAπ + IBπ . Since each of the parties already knows one of the inputs, the internal information
cost is never more than the external information cost, with equality when the inputs to the parties
are independent of each other. This quantity turns out to be the most interesting for applications
to lower bounds. Indeed, Braverman and Rao [BR11] showed that the internal information cost
required to compute a function is exactly equal to the amortized communication complexity of the
function, so this quantity has a very natural interpretation, seemingly independent of information
theory.

[BBCR10] showed that any protocol π can be simulated in O(
√
IπCπ logCπ) bits of communi-

cation. If we wish the simulation to not have a dependence on the communication of the original
protocol, Braverman [Bra11] showed that one can carry out the simulation using communica-
tion complexity 2O(Iπ) (see also [BW12, KLL+12]), a result that was subsequently proven to be
tight by Ganor, Kol and Raz [GKR14]. In addition, Braverman and Weinstein [BW12] (see also
[KLL+12]) showed that if a function is computed by π, then the space of inputs must contain a
nearly monochromatic rectangle of density 2−O(Iπ), a fact that can be used to prove lower bounds
on the information complexity of computing functions.

In the setting of bounded round communication, Braverman and Rao [BR11] showed that a
single message can be compressed to its internal information, giving a protocol that can simulate
any r-round protocol with internal information cost I using I +O(r) bits of communication.

In this work, we generalize and strengthen several of these results, in the case that IB � IA, C.
This case is interesting in part because many lower bounds for data structures involve proving lower
bounds on so called lopsided problems, problems where the optimal lower bound on communication
for one party is much smaller than for the other party(see [MNSW98], [Pǎt11], [AIP06], [Mil99],
[Mil94], [BOR99], [JKKR04], [PT]). Indeed, our techniques allow us to reprove an important
and well known theorem of Patrascu [Pǎt11] giving a tight lower bound on the communication
complexity of lopsided disjointness.

Our first theorem is somewhat analogous to the result of [BBCR10]. We show

Theorem 1. Every protocol π can be ε-simulated by a protocol with expected communication

O
(
IAπ + 4

√
‖π‖3 · IBπ · log(1/ε) + 4

√
‖π‖3 · IBπ · log ‖π‖+

√
‖π‖ · IBπ · log ‖π‖

)
.

We prove Theorem 1 in Section 3. At a high level, we first show that π can be simulated by a
bounded round protocol, and then use the ideas of [BR11] to get the final simulation.

Our second result is an analogue of [Bra11]:

Theorem 2. π can be simulated in communication complexity IAπ · 2O(IBπ ).

Theorem 2 shows that when the information revealed by one of the parties is a constant, the
communication is within a constant factor of the information. We prove Theorem 2 in Section 4.
As a corollary to Theorem 2, we show the following,

Corollary 3. If π computes f(x, y), then there exists a rectangle S × T such that

Pr[x ∈ S] ≥ 2−O(IAπ ), Pr[y ∈ T |x ∈ S] ≥ 2−O(IBπ ),
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and there exists a constant c ∈ {0, 1} such that

Pr[f(x, y) = c|(x, y) ∈ S × T ] ≥ 2/3.

One can view Corollary 3 as defining an asymmetric notion of discrepancy, and showing that
if the information complexity is small, then the discrepancy must be large. Corollary3 is a useful
tool to prove lower bounds on lopsided problems. We illustrate this by using the ideas going into
Corollary 3 to give optimal lower bounds on the communication complexity of lopsided disjointness
(a bound first proved by Patrascu [Pǎt11]).

Table 1 summarizes all of the simulation results discussed in this introduction.

Reference Communication Complexity of the Simulation

[BBCR10] O
(√

(IA + IB)C logC
)

[BBCR10] O
(
(IA + IB) logC

)
(when inputs are independent)

[Bra11] 2O(IA+IB)

[BR11] IA + IB +O
(√

r · (IA + IB) + 1
)

+ r log(1/ε)

Theorem 1 O
(
IAπ + 4

√
‖π‖3 · IBπ · log(1/ε) + 4

√
‖π‖3 · IBπ · log ‖π‖+

√
‖π‖ · IBπ · log ‖π‖

)
Theorem 2 IA · 2O(IB)

Table 1: Known bounds on the complexity of simulating r-round protocols with communication C
and information IA, IB

2 Preliminaries

Unless otherwise stated, logarithms in this text are computed base two. Random variables are
denoted by capital letters and values they attain are denoted by lower-case letters. For example,
A may be a random variable and then a denotes a value A may attain and we may consider the
event A = a. Given a = a1, a2, . . . , an, we write a≤i to denote a1, . . . , ai. We define a>i and a≤i
similarly. [`] denotes the set {1, 2, . . . , `}.

We use the notation p(a) to denote both the distribution on the variable a, and the number
Prp[A = a]. The meaning will be clear from context. We write p(a|b) to denote either the distribu-
tion of A conditioned on the event B = b, or the number Pr[A = a|B = b]. Again, the meaning will
be clear from context. Given a distribution p(a, b, c, d), we write p(a, b, c) to denote the marginal
distribution on the variables a, b, c (or the corresponding probability). We often write p(ab) instead
of p(a, b) for conciseness of notation. If W is an event, we write p(W ) to denote its probability
according to p. We denote by Ep(a) [g(a)] the expected value of g(a) with respect to a distributed
according to p.

For two distributions p, q, we write |p(a) − q(a)| to denote the `1 distance between the distri-

butions p and q. We write p
ε
≈ q if |p− q| ≤ ε.

Proposition 4. Let p(x), q(x) be two distributions and F be an event such that p(x|F )
ε
≈ q(x).

Then if p(F ) ≥ 1− γ, we have p(x)
ε+2γ
≈ q(x).
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Proof. The `1 distance between p, q can be expressed as 2 maxT (p(T )− q(T )), where the maximum
is taken over all subsets of the support of p(x). Let T be the maximizer. Then

|p(x)− q(x)| = 2(p(T )− q(T ))

= (2(p(T |F )p(F ) + p(¬F )p(T |¬F ))− q(T ))

≤ 2(p(T |F )− q(T )) + 2p(¬F )

≤ ε+ 2γ,

as required.

Proposition 5. Let p(x), q(x) be two distributions and F be an event such that p(x)
ε
≈ q(x). Then

if p(F ) ≥ 1− γ ≥ 3/4, we have p(x|F )
ε+4γ
≈ q(x).

Proof. The `1 distance between p(x|F ), q(x) can be expressed as 2 maxT p(T |F )− q(T ), where the
maximum is taken over all subsets of the support of p(x). Let T be the maximizer. Then

|p(x|F )− q(x)| = 2(p(T |F )− q(T ))

= 2(p(T, F )/p(F )− q(T ))

≤ 2(p(T )/p(F )− q(T ))

≤ 2(p(T )/(1− γ)− q(T ))

≤ 2(p(T )(1 + 2γ)− q(T ))

≤ ε+ 4γ,

as required.

The entropy of a random variable A, conditioned on B is defined to be

Hp(A|B) =
∑
a,b

p(ab) log
1

p(a|b)

For a binary random variable A, we denote the entropy of A to be

h(p(0)) = − [p(0) log p(0) + (1− p(0)) log(1− p(0))]

The divergence between two distributions is defined to be

D

(
p

q

)
=
∑
a

p(a) log
p(a)

q(a)

The mutual information between two random variables A,B, conditioned on C is defined to be

Ip(A;B|C) =
∑
a,b,c

p(abc) log
p(abc)

p(a|c)p(b|c)
.

This is always a non-negative quantity, and is at most log |Supp(A)|. When the underlying distribu-
tion p is clear from the context, we sometimes omit it from the notation. The mutual information
satisfies the chain rule:
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Proposition 6 (Chain Rule). I(A1A2;B|C) = I(A1;B|C) + I(A2;B|A1C).

Pinsker’s inequality bounds the `1 distance in terms of the divergence:

Proposition 7 (Pinsker). D

(
p

q

)
≥ ·|p− q|2.

An alternate formulation is as follows:

Proposition 8 (Alternate Pinsker). Ep(bc) [|p(a|bc)− p(a|c)|] ≤
√
I(A;B|C).

The chain rule easily gives the following inequality:

Proposition 9 (Data Processing Inequality). If the random variable A determines B, then I(A;C) ≥
I(B;C).

Proposition 10 ([GKR14]). Let p(ab) be a distribution and q(a) be another. Then

E
p(b)

[
D

(
p(a|b)
p(a)

)]
≤ E

p(b)

[
D

(
p(a|b)
q(a)

)]
.

We shall sometimes deal with distribution on strings of variable length. We have the following
proposition, which follows from Shannon’s source coding theorem:

Proposition 11. Suppose A is a random variable supported on binary strings of length up to n,
such that no string in the support of A is a prefix of another string in the support of A. Then
I(A;B|C) ≤ E [|A|] .

2.1 Communication Complexity

For a more involved introduction to communication complexity, we refer the reader to the book
[KN97]. Given a protocol π that operates on inputs x, y drawn from a distribution µ using public
randomness1 r and messages m, we write π(xymr) to denote the joint distribution of these variables.
We write ‖π‖ to denote the communication complexity of π, namely the maximum number of bits
that may be exchanged by the protocol in any execution. The maximum number of alternations
between messages sent by Alice and those sent by Bob is called the number of rounds of the protocol.

Let q(x, y, a) be an arbitrary distribution. We say that a protocol π δ-simulates q, if there is a
function g and a function h such that

π(x, y, g(x, r,m), h(y, r,m))
δ
≈ q(x, y, a, a),

where q(x, y, a, a) is the distribution on 4-tuples (x, y, a, a) where (x, y, a) are distributed according
to q. Thus if π δ-simulates q, the protocol allows the parties to sample a according to q(a|xy).

1In our paper we define protocols where the public randomness is sampled from a continuous (i.e. non-discrete)
set. Nevertheless, we often treat the randomness as if it were supported on a discrete set, for example by taking
the sum over the set rather than the integral. This simplifies notation throughout our proofs, and does not affect
correctness in any way, since all of our public randomness can be approximated to arbitrary accuracy by sufficiently
dense finite sets.
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If λ is a protocol with inputs x, y, public randomness r′ and messages m′, we say that π δ-
simulates λ if π δ-simulates λ(x, y, (r′,m′)). We say that π simulates λ if π 0-simulates λ. We say
that π computes a function f(x, y) with success probability 1− δ, if π δ-simulates π(x, y, f(x, y)).

We shall sometimes refer to the expected communication, or expected number of rounds of a
protocol π. We note here that one can always use a bound on the expected communication or
number of rounds to get a bound on the worst case communication, via the following proposition:

Proposition 12. If π has expected communication c, then it can be γ-simulated by a protocol with
communication c/γ.

Our work relies on ways to measure the information complexity of a protocol (see [BBCR10,
Bra12] and references within for a more detailed overview). The internal information cost [BBCR10]
of π is defined to be Iπ(X;M |Y R) + Iπ(Y ;M |XR). This quantity is the sum of the information
learnt by Alice about Bob’s input, IBπ = Iπ(Y ;M |XR), and the information learnt by Bob about
Alice’s input, IAπ = Iπ(X;M |Y R). We will sometimes say that the internal information is (IA, IB)
when we want to consider the values of both quantities instead of the sum.

2.1.1 Results from prior work

Theorem 13 ([BR11]). For every ε > 0, if π is an a protocol with internal information cost I and
r rounds in expectation, then π can be ε-simulated with expected communication I+O(

√
r · I+1)+

r log(1/ε).

Theorem 14 ([BR11]). For any f, µ, ε, let π be the protocol computing f on n independent pairs
of inputs, each drawn from the distribution µ and probability of error is at most ε on each pair,
then there exists a protocol τ computing f on a single input pair with communication ||τ || = ||π||
and information IAτ ≤

IAπ
n , IBτ ≤

IBπ
n

3 Compresing Protocols with Asymmetric Information - I

In this section, we show how to compress protocols to take advantage of situations where the
information learnt by one party is significantly larger than the information revealed by the other
party. We shall prove Theorem 1.

We compress the given protocol in two steps. In the first step, we convert the protocol into
a bounded round protocol, while controlling its internal information cost. In the second step, we
apply Theorem 13 to conclude the proof. The first step is captured by the following theorem:

Theorem 15 (Bounded round simulation). Given any protocol π and a parameter k, there exists
a protocol that simulates π with

√
IBπ · ‖π‖+ ‖π‖/k number of rounds in expectation, and internal

information at most ‖π‖ log ‖π‖
k + k

√
IBπ · ‖π‖+ IAπ + 2 log ‖π‖

√
‖π‖ · IBπ + 3.

We use the protocol τ given in figure 12 to simulate π.
Let M denote the output of τ . Then we claim that the distribution of m is correct:

Lemma 16. τ(xyrm) = π(xyrm).

2Here we do not bother optimizing the communication of τ , since the communication will be eventually optimized
via Theorem 13.

6



Input: x, y, the inputs to π. A parameter k.
Output: m, r distributed according to π(mr|xy).
Public Randomness: The public randomness r of π, as well as an additional sequence of

uniformly random numbers r′ = ρ1, . . . , ρ‖π‖ ∈ [0, 1].

Let m be the empty string;
while |m| < ‖π‖ do

Set t = |m|;
for i = t+ 1, . . . ,min{k + t, ‖π‖} do

if mi is sent by Bob in π then Alice checks if ρi < π(mi = 1|xrm<i), and sets
mi = 1 if this is the case. Otherwise she sets mi = 0;
else Alice samples mi privately according to the distribution π(mi|xrm<i);

end
Alice sends the current transcript m to Bob;
Bob computes the smallest index j ∈ [min{k + t, ‖π‖}] such that mj would have been
sent by Bob in π and ρj lies in the interval between π(mj = 1|xrm<j) and
π(mj = 1|yrm<j). Bob can check this using ρj ,m, y, r;
Bob sends j to Alice, or reports that there is no such j;
Alice corrects m if such j is found, by flipping the bit mj , and truncating m = m≤j ;

end
return m;

Figure 1: Protocol τ simulating π

Proof. It is clear that τ(xyr) = π(xyr). For each i ∈ [‖π‖], if mi is to be sent by Alice in π, then
mi = 1 exactly when ρi < π(mi|xrm<i), and if mi is to be sent by Bob in π, then mi = 1
exactly when ρi < π(mi|yrm<i). Thus, if mi is to be sent by Alice in π, τ(mi|xyrm<i) =
π(mi|xrm≤i) = π(mi|xyrm≤i). On the other hand, if mi is to be sent by Bob in π, then
τ(mi|xyrm<i) = π(mi|yrm<i) = π(mi|xyrm<i). Thus

τ(xyrm) = τ(xyr) ·
‖π‖∏
i=1

τ(mi|xyrm<i) = π(xyr) ·
‖π‖∏
i=1

π(mi|xyrm<i) = π(xyrm).

Let L denote the number of mistake indices j reported to Alice by Bob in τ . Then we have:

Lemma 17. The number of rounds in τ is at most ‖π‖/k + L = 4
√
‖π‖3 · IBπ + L.

Proof. There are L rounds where Alice needs to truncate m. In every other round, at least k
new bits of the messages of π are sampled, so there can be at most ‖π‖/k additional rounds of
communication.

Given the last lemma, we can bound the number of rounds in the protocol by bounding L:

Lemma 18. E [L] ≤
√
IBπ · ‖π‖.
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Proof. Let Li denote the indicator random variable for the event that the i’th index of the message

is corrected by Bob in τ , so L =
∑‖π‖

i=1 Li. If the i’th message is sent by Alice, then Li = 0. On the
other hand, if it is sent by Bob, by Proposition 8, we get

τ(Li = 1) = E
xyrm<i

[|π(mi|xrm<i)− π(mi|yrm<i)|]

= E
xyrm<i

[|π(mi|xrm<i)− π(mi|xyrm<i)|]

≤
√
I(Mi;Y |XRM<i).

The penultimate inequality is true since mi is sampled by Bob in π, hence is independent of x
conditioned on y, r,m<i.

Thus by linearity of expectation and the Cauchy Schwartz inequality, we get

E [L] ≤
‖π‖∑
i=1

√
I(Mi;Y |XRM<i)

≤

√√√√‖π‖ · ‖π‖∑
i=1

I(Mi;Y |XRM<i)

=
√
‖π‖ · I(M ;Y |XR),

where here we used the chain rule (Proposition 6) in the last step.

Lemma 18 and Lemma 17 together imply that the expected number of rounds in τ is at most√
IBπ · ‖π‖+ ‖π‖/k. It only remains to bound the internal information of τ :

Lemma 19. The internal information of τ is at most

‖π‖ log ‖π‖
k

+ k
√
IBπ · ‖π‖+ IAπ + 2 log ‖π‖

√
‖π‖ · IBπ + 3

Proof. Recall that R′ denotes the sequence of numbers ρ1, . . . , ρ‖π‖. The public randomness of τ
consists of R,R′. Let Z denote the messages exchanged in the protocol τ . Let ZA denote the bits
sent by Alice, and ZB denote the bits sent by Bob. Then the information learnt by Alice can be
expressed as

Iτ (ZAZB;Y |XRR′) = Iτ (ZB;Y |XRR′) + Iτ (ZA;Y |XRR′ZB), (1)

by the chain rule. The the second term of (1) is 0, since Alice’s messages are independent of
Y , given Bob’s messages and Alice’s inputs. For the first term, we use Proposition 11 to bound
it by E [|ZB|]. The total number of rounds of the protocol is at most L + ‖π‖/k, since every
round where there is no mistake must simulate at least k messages from the protocol. Thus

E [|ZB|] ≤ (E [L] + ‖π‖/k) log ‖π‖ ≤
√
IBπ · ‖π‖ log ‖π‖+ ‖π‖ log ‖π‖

k , by Lemma 18.
Next we bound the information learnt by Bob in τ . This can be written

Iτ (Z;X|Y RR′) =

|Z|∑
i=1

Iτ (Zi;X|Z<iY RR′) = E
xyrr′z

 |z|∑
i=1

D

(
zi|xyrr′z<i
zi|yrr′z<i

) (2)

by the chain rule.
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Claim 20. For x ∈ [0, 1/2] log(1/(1− x)) ≤ 3x

Proof. Let T = ln(1/(1− x)). The Taylor expansion of ln(1/(1− x)) gives,

T = ln(1/(1− x)) = x+ x2/2 + x3/3 + · · ·
= x+ x(x/2 + x2/3 + x3/4 + · · · )
≤ x+ x · T.

This implies, T ≤ x/(1− x). Since, x ≤ 1/2, T ≤ 2x. Now,

log(1/(1− x)) = ln(1/(1− x))/ln(2) ≤ 1.5ln(1/(1− x)) ≤ 3x,

which follows from the fact that 1/ln(2) ≤ 1.5

Claim 21. If m<j represents the messages of π sampled by the simulation τ at the point the
messages z<i were sent, then

E
r′|xyrz<i

[
D

(
τ(zi|xyrr′z<i)
τ(zi|yrr′z<i)

)]


= 0 if Bob sends zi,

≤ 1 if zi is discarded,

≤ D

(
π(mj |xyrm<j)

π(mj |yrm<j)

)
if Alice sends mj,

≤

√√√√D

(
π(mj |xyrm<j)

π(mj |xrm<j)

)
log ‖π‖+ 3

‖π‖ if Bob sends mj

Proof. When zi is sent by Bob, both distributions are the same, so the divergence is 0.
To prove the remaining cases, we apply Proposition 10. When zi is to be discarded, set

q(zi|yrr′z<i) to be the uniform distribution on bits. When q is the uniform distribution on the

bits, D

(
p

q

)
= 1 − h(p(0)) ≤ 1. Since D

(
p

q

)
≤ 1 for any p, the bound follows using Proposi-

tion 10. When mj is sent by Alice in π, observe that the distribution of τ(zi|xyrr′z<i) is exactly the
same as the distribution of π(mj |xyrm<j). Set q(zi|yrr′z<i) = π(mj |yrm<j). The bound follows
by Proposition 10. For the last case, observe that in τ , zi is determined by xyrr′m<j , since zi = 1
exactly when ρi < π(mj = 1|xrm<j). Set

b(ρi, y, r, r
′,m<j) =

{
1 if ρi < π(mj = 1|yrm<j),

0 otherwise

and

q(zi|yrr′z<i) =

{
1− 1/‖π‖ if b(ρi, y, r, r

′,m<j) = zi,

1/‖π‖ otherwise.

When ρi is in between π(mj = 1|yrm<j) and π(mj = 1|xrm<j),

D

(
τ(zi|xyrr′z<i)
q(zi|yrr′z<i))

)
= log(1/(1/‖π‖)) = log ‖π‖,
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for all zi with positive probability. When ρi is not in between those two quantities,

D

(
τ(zi|xyrr′z<i)
q(zi|yrr′z<i))

)
≤ log

1

1− 1/‖π‖
≤ 3/‖π‖.

which follows from Claim 20 and the assumption that ‖π‖ > 2. It is safe to assume that ‖π‖ > 2,
as the compression is trivial for protocols with communication at most 2.

The probability of the first case is at most

√√√√D

(
π(mj |xyrm<j)

π(mj |yrm<j)

)
, by Proposition 7.

Now given Z, call i good if the message Zi does not correspond to a mistake and is not discarded
by the simulation. Let G denote the set of good indices. We have,

E
xyrr′z

 |z|∑
i=1

D

(
τ(zi|xyrr′z<i)
τ(zi|yrr′z<i)

)
= E

xyrz

 |z|∑
i=1

E
r′|xyrz<i

[
D

(
τ(zi|xyrr′z<i)
τ(zi|yrr′z<i)

)]
= E

xyrz

[∑
i∈G

E
r′|xyrz<i

[
D

(
τ(zi|xyrr′z<i)
τ(zi|yrr′z<i)

)]]
+ E
xyrz

[∑
i/∈G

E
r′|xyrz<i

[
D

(
τ(zi|xyrr′z<i)
τ(zi|yrr′z<i)

)]]
For every Z, at most k · L indices are discarded. This is because, at most k indices are discarded
for every round with a mistake. Then by Claim 21,

E
xyrz

[∑
i/∈G

E
r′|xyrz<i

[
D

(
τ(zi|xyrr′z<i)
τ(zi|yrr′z<i)

)]]
≤ kE [L]

For every index i ∈ G, by Claim 21

E
xyrz

[∑
i∈G

E
r′|xyrz<i

[
D

(
τ(zi|xyrr′z<i)
τ(zi|yrr′z<i)

)]]

≤ E
π(mxyr)

[
D

(
π(mj |xyrm<j)

π(mj |yrm<j)

)]
+ E
π(mxyr)

‖π‖∑
j=1

√√√√D

(
π(mj |xyrm<j)

π(mj |xrm<j)

)
log ‖π‖+

3

‖π‖


= E

π(mxyr)

[
D

(
π(mj |xyrm<j)

π(mj |yrm<j)

)]
+ log ‖π‖ E

π(mxyr)

‖π‖∑
j=1

√√√√D

(
π(mj |xyr)
π(mj |xr)

)+ 3

≤ E
π(mxyr)

[
D

(
π(mj |xyrm<j)

π(mj |yrm<j)

)]
+ log ‖π‖

√√√√√‖π‖ · E
π(mxyr)

‖π‖∑
j=1

D

(
π(mj |xyr)
π(mj |xr)

)+ 3

= IAπ + log ‖π‖
√
‖π‖ · IBπ + 3,

where the penultimate inequality follows from an application of Cauchy Schwartz inequality, and
the last inequality follows from the definition of IAπ , I

B
π .

10



Corollary 22. Given any protocol π, there exists a protocol that simulates π with 2 · 4
√
‖π‖3 · IBπ

number of rounds in expectation, and internal information at most IAπ + 4
√
‖π‖3 · IBπ + 4

√
‖π‖3 · IBπ ·

log ‖π‖+ 2 ·
√
‖π‖ · IBπ · log ‖π‖+ 3.

Proof. Set k = 4
√
‖π‖/IBπ . By Theorem 15, we get that the expected number of rounds of the

simulation is at most
√
IBπ · ‖π‖ + 4

√
‖π‖3 · IBπ ≤ 2 4

√
‖π‖3 · IBπ ( since IBπ ≤ ‖π‖) and the internal

information is at most IAπ + 4
√
‖π‖3 · IBπ + 4

√
‖π‖3 · IBπ · log ‖π‖+ 2 ·

√
‖π‖ · IBπ · log ‖π‖+ 3

Applying Theorem 13 to the simulation guaranteed by Corollary 22, gives a simulation with
communication bounded by

O

(
IAπ + 4

√
‖π‖3 · IBπ · log(1/ε) + 4

√
‖π‖3 · IBπ · log ‖π‖+

√
‖π‖ · IBπ · log ‖π‖

)
,

as required in Theorem 1.

4 Compresing Protocols with Asymmetric Information - II

In this section, we prove Theorem 2, (i.e) we show how to simulate π with communication IAπ ·2O(IBπ ).

Theorem 23. Let U be a finite set. Let pA, pB, qA, qB : U → [0, 1] be such that ∀z ∈ U , µ(z) =
pA(z)qB(z), p(z) = pA(z)pB(z) and q(z) = qA(z)qB(z) are distributions. There exists a randomized
protocol with inputs pA, pB to Alice and qA, qB to Bob, such that

• Both Alice and Bob either accept and compute (possibly different) samples z ∈ U , or abort
the protocol.

• Pr[Both parties accept] ≥ 2

−O

D

 µ

q

+1


.

• Given that both parties accept, the distribution of their samples is 0.35-close in `1 distance to
the distribution where both parties sample the same sample from µ(z).

Let IB = D

(
µ

p

)
and IA = D

(
µ

q

)
. Figure 2 describes the randomized protocol promised

by the lemma. Let

G =
{
z
∣∣∣220(IB+1) · p(z) ≥ µ(z), 220(IA+1) · q(z) ≥ µ(z)

}
.

We need the following simple claim, which was proved in [Bra11].

Claim 24. µ(G) ≥ 9
10 .

We proceed with the analysis of the simulation.

Lemma 25. Pr[i∗is defined] ≥ 1− e−11.

11



Simulation π

Public randomness: A sequence of L = 10·|U |·220(IA+1) tuples (zi, ai, bi) ∈ U×
[
0, 220(IA+1)

]
×[

0, 220(IB+1)
]
, for i = 1, 2, . . . , L, and a random function h : [L]→

[
240(IA+1)

]
.

1. Alice computes the set A =
{
i
∣∣∣ai ≤ pA(zi), bi ≤ pB(zi) · 220(IB+1)

}
, and Bob computes the

set B =
{
i
∣∣∣ai ≤ qA(zi) · 220(IA+1), bi ≤ qB(zi)

}
.

2. Alice computes i∗, the the smallest element of A.

3. Alice sends h(i∗) to Bob.

4. If there is a unique i ∈ B such that h(i) = h(i∗), Bob accepts and assumes that the outcome
of the protocol is zi. Otherwise Bob aborts.

Figure 2: The sampling procedure

Proof. For each i, we have

Pr[i ∈ A] =
∑
z∈U

pA(z)pB(z)

|U | · 220(IA+1)

=
1

|U | · 220(IA+1)

∑
z∈U

pA(z)pB(z)

=
1

|U | · 220(IA+1)
. (since p is a distribution)

The probability that i∗ is not defined is exactly equal to the probability that i /∈ A for all 1 ≤ i ≤ L.
Thus,

Pr[i∗ not defined] =

(
1− 1

|U | · 220(IA+1)

)L
≤ e−L/|U |·220(I

A+1)
. (using (1− x)n ≤ e−xn, x ≥ 0)

≤ e−10.

Lemma 26. For z ∈ U ,

Pr[zi∗ = z & i∗ ∈ B|i∗ is defined] ≤ µ(z)

220(IB+1)
,

with equality when z ∈ G.

12



Proof.

Pr[zi∗ = z & i∗ ∈ B|i∗ is defined] = Pr[zi∗ = z|i∗ is defined] · Pr[i∗ ∈ B|zi∗ = z]. (3)

We have

Pr[zi∗ = z|i∗ is defined] =
pA(z)pB(z)2−20(IA+1)∑
z∈U pA(z)pB(z)2−20(IA+1)

= pA(z)pB(z). (4)

Let us now analyze Pr[i∗ ∈ B|zi∗ = z]. If zi∗ = z, we have ai∗ ≤ pA(z), bi∗ ≤ pB(z)220(IB+1). Thus
Pr[i∗ ∈ B|zi∗ = z] is exactly

Pr[i∗ ∈ B|z∗i = z] = min

{
qB(z)

220(IB+1)pB(z)
, 1

}
·min

{
220(IA+1)qA(z)

pA(z)
, 1

}

≤ qB(z)

220(IB+1)pB(z)
. (5)

Equality holds in (5) when z ∈ G, since for such z, qB(z)

220(I
B+1)pB(z)

≤ 1 and 220(I
A+1)qA(z)
pA(z) ≥ 1.

Therefore, using (4),(5),(3)

Pr[zi∗ = z & i∗ ∈ B] ≤ pA(z)pB(z) · qB(z)

220(IB+1)pB(z)
= µ(z)/220(IB+1),

with equality for z ∈ G.

When i∗ is defined, let E denote the event that i∗ is the only possible index that is in B and
consistent with the message Bob receives, namely: ∀i 6= i∗, i ∈ B ⇒ h(i) 6= h(i∗). Then we have

Lemma 27. Pr[¬E|i∗ is defined] ≤ L2−40(IA+1)−20(IB+1)

|U |Pr[i∗ is defined] .

Proof. Given that i∗ is defined, probability that i ∈ B and h(i) = h(i∗) is at most Pr[i∈B]·2−40(IA+1)

Pr[i∗ is defined] .
Thus,

Pr[i ∈ B] · 2−40(IA+1)

Pr[i∗ is defined]
=

1

|U | · Pr[i∗ is defined]
·
∑
z∈U

qA(z) · 2−20(IB+1)qB(z)2−40(IA+1)

≤ 2−40(IA+1)−20(IB+1)

|U | · Pr[i∗ is defined]
.

Thus, by the union bound, the probability than any such i is accepted by Bob is at most L2−40(IA+1)−20(IB+1)

|U |Pr[i∗ is defined]

Lemma 28. Pr[i∗ ∈ B|i∗ is defined] ≥ µ(G) · 2−20(IB+1)

13



Proof.

Pr[i∗ ∈ B|i∗ is defined] =
∑
z∈|U |

Pr[zi∗ = z, i∗ ∈ B|i∗ is defined]

≥
∑
z∈G

µ(z)/220(IB+1) (by Lemma 26)

= µ(G) · 2−20(IB+1). (by Lemma 25)

Lemma 29. Pr[Both parties accept|i∗is defined] ≥ 8
10 · 2

−20(IB+1)

Proof.

Pr[Both parties accept|i∗is defined]

≥ Pr[i∗ ∈ B|i∗ is defined]− Pr[¬E|i∗is defined]

≥ µ(G)/220(IB+1) − Pr[¬E|i∗is defined] (by Lemma 28)

≥ 9

10
· 2−20(IB+1) − 10

1− e−10
· 2−20(IA+1)−20(IB+1) (by Lemma 27, Claim 24)

>
8

10
· 2−20(IB+1).

where the last inequality follows from IA ≥ 0.

Lemma 30. Pr[Both parties accept] ≥ 7
10 · 2

−20(IB+1).

Proof.

Pr[Both parties accept] = Pr[i∗is defined] Pr[Both parties accept|i∗is defined]

≥ 8(1− e−10)

10 · 220(IB+1)
>

7

10
· 2−20(IB+1),

which follows from Lemma 29 and Lemma 25.

Lemma 31. |π(zi∗ = z|i∗ ∈ B)− µ(z)| ≤ 2(1− µ(G))/µ(G).

Proof. By Lemma 26,

Pr[i∗ ∈ B|i∗ is defined] · Pr[zi∗ = z|i∗ ∈ B] ≤ µ(z) · 2−20(IB+1).

Combining the above inequality and Lemma 28,

Pr[zi∗ = z|i∗ ∈ B] ≤ µ(z)/µ(G).

For any set T ⊆ U ,∑
z∈T

π(zi∗ = z|i∗ ∈ B)− µ(z) ≤
∑
z∈T

µ(z)/µ(G)− µ(z) ≤ (1− µ(G))/µ(G),

where the last inequality follows from µ being a distribution. Therefore,

|π(zi∗ = z|i∗ ∈ B)− µ(z)| = 2 max
T

(∑
z∈T

π(zi∗ = z|i∗ ∈ B)− µ(z)

)
≤ 2(1− µ(G))/µ(G).
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Lemma 32.
Pr[¬E|i∗ ∈ B] < 0.01, Pr[¬E|Both parties accept] < 0.01

Proof. We have,

Pr[¬E|i∗ ∈ B]

Pr[¬E|i∗ ∈ B, i∗ is defined]

=
Pr[¬E & i∗ ∈ B|i∗ is defined]

Pr[i∗ ∈ B|i∗ is defined]

≤ Pr[¬E|i∗is defined]

Pr[i∗ ∈ B|i∗ is defined]

≤ 10

µ(G)(1− e−10)
· 2−20(IA+1)

< 0.01.

The penultimate inequality follows from Lemmas
27, 28.

Simultaneously,

Pr[¬E|Both parties accept]

= Pr[¬E|Both parties accept, i∗ is defined]

=
Pr[¬E & Both parties accept|i∗is defined]

Pr[Both parties accept|i∗is defined]

≤ Pr[¬E|i∗is defined]

Pr[Both parties accept|i∗is defined]

≤ 100

8(1− e−10)
· 2−20(IA+1)

< 0.01.

The penultimate inequality follows from Lemmas
27, 29.

Lemma 33. |µ(z)− π(z|Both parties accept)| < 0.35

Proof. Applying Proposition 5 twice gives,

|µ(z)− π(z|Both parties accept)|
≤ |π(zi∗ = z|i∗ ∈ B, E)− µ(z)|+ 4 Pr[¬E|Both parties accept]

≤ |π(zi∗ = z|i∗ ∈ B)− µ(z)|+ 4 Pr[¬E|i∗ ∈ B] + 4 Pr[¬E|Both parties accept].

Applying Lemmas 31, 32 give,

|µ(z)− π(z|Both parties accept)| < 2(1− µ(G))/µ(G) + 0.04 + 0.04 < 0.35,

as required.

In Theorem 23, property 2 is guaranteed by Lemma 30 and property 3 is guaranteed by Lemma
33.

4.1 Proof of Theorem 2

Define U to be the set of all transcripts of protocol π. For every m ∈ U , define πx(m) = π(m|x),
πy(m) = π(m|y), πxy(m) = π(m|xy). We have,

Iπ(X;M |Y R) = Exyr

[
D

(
πxy(m|r)
πy(m|r)

)]
.

15



Define Γ =

{
(x, y, r)

∣∣∣∣∣D
(
πxy(m|r)
πy(m|r)

)
≤ 50 · IAπ ,D

(
πxy(m|r)
πx(m|r)

)
≤ 50 · IBπ

}
. By an union

bound and Markov’s inequality,

Pr[(x, y, r) ∈ Γ] ≥ 24

25
(6)

By Theorem 23, with µ(m) = πxy(m|r), p(m) = πx(m|r), q(m) = πy(m|r), implies that for
every (x, y, r) ∈ Γ, there exists a constant c and a randomized protocol τ with communication
O(IAπ ) that samples a a transcript m such that

|π(m)− τ(m|Both parties accept)| < 0.35 Pr[Both parties accept in τ ] ≥ 2−c(I
B
π +1) (7)

Lemma 34. Eπ(xyr)|π(m|xyr)− τ(m|xyr,Both parties accept)| < 1
25 + 0.35

Proof. τ guarantees that for (x, y, r) ∈ Γ, |π(m|xyr) − τ(m|xyr,Both parties accept)| < 0.35.
Therefore,

Eπ(xyr)|π(m|xyr)− τ(m|xyr,Both parties accept)|
≤ Pr[(x, y, r) ∈ Γ] · max

(x,y,r)∈Γ
|π(z|xyr)− τ(z|xyr,Both parties accept)|+ Pr[(x, y, r) /∈ Γ]

< 0.35 +
1

25
, (by (6))

Input: x, y, the inputs to π. A parameter t.
Public Randomness: Sequence of strings L1, · · · , Lt, r. A random transcript m′.
i=1;
while i ≤ t do

Run protocol τ with Li as the public random tape;
if τ Accepts then return the output of τ ;
else i=i+1;

end
return m′;

Figure 3: Protocol Σ simulating π

We now show a simulation of π. Run Σ shown in Figure 3 with parameter t = 10 · 2c(IB+1). We
have,

CC(Σ) ≤ t · CC(τ) = 10 · IA2c(I
B+1).

Let J be the value of i at the time of termination of Σ.

Lemma 35. Pr[J = t+ 1] ≤ 1/25 + e−10
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Proof. Conditioned on (x, y) ∈ Γ, the probability that τ does not accept in iteration i equals
1− Pr[Both parties accepts]. Therefore,

Pr[J = t+ 1|(x, y, r) ∈ Γ]

= (1− Pr[Both party accepts in τ ])t

≤
(

1− 2−c(I
B+1)

)t
(by (7))

≤ e−10 ((1− x)n ≤ e−xn, x > 0). (8)

Now,

Pr[J = t+ 1]

= Pr[(x, y, r) ∈ Γ] · Pr[J = t+ 1|(x, y, r) ∈ Γ] + Pr[(x, y, r) /∈ Γ] · Pr[J = t+ 1|(x, y, r) /∈ Γ]

≤ e−10 + 1/25,

where the last inequality follows from (6), (8).

Let us now analyze the `1 distance between Σ and π.

Lemma 36. |Σ− π| < 3/25 + 2e−10 + 0.35

Proof. Conditioning on J ≤ t, we know that Σ’s output corresponds to the output of τ . Therefore,

|π(m)− Σ(m|J ≤ t)| = Eπ(xyr)|π(m|xyr)− τ(m|xyr,Both parties accept)|

By Proposition 4 and Lemma 35,

|Σ− π| ≤ 2 Pr[J = t+ 1] + |π(z)− Σ(z|J ≤ t)|
= 2 Pr[J = t+ 1] + Eπ(xyr)|π(m|xyr)− τ(m|xyr,Both parties accept)

< 2/25 + 2e−10 + 1/25 + 0.35,

where the last inequality follows from Lemma 35 and Lemma 34.

This concludes the proof of the theorem.

4.2 A Rectangle Lower Bound

In this subsection, we show a corollary to Theorem 2. The simulation of Theorem 2 shows the
existence of almost monochromatic rectangles of the right dimension.

Corollary 37. Given a protocol π with internal information (IA, IB) and inputs drawn from µ,
there exists a zero communication protocol for sampling a message m such that,

• µ(Alice Accepts) = 2−O(IA)

• µ(Bob Accepts|Alice Accepts) ≥ 2−O(IB)

Moreover, given that both parties accept, the distribution of their samples is δ−close in `1 distance
to the distribution where both parties sample consistently from π(m).
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Proof. First we wish to fix the public randomness of π, such that the internal information and the
error bound are within limit. We have,

IA = E
r

[I(M ;X|Y r)] , IB = E
r

[I(M ;Y |Xr)] , E
r

[µ(π(x, y) 6= f(x, y)|r)] ≤ ε

By Markov’s inequality,

Pr
r

[I(M ;X|Y r) > 3IA] < 1/3

Pr
r

[I(M ;Y |Xr) > 3IB] < 1/3

Pr
r

[µ(π(x, y) 6= f(x, y)|r) > 3ε] < 1/3.

Therefore, by an union bound, there exits an r such that

I(M ;X|Y r) ≤ 3IA, I(M ;Y |Xr) ≤ 3IB, µ(π(x, y) 6= f(x, y)|r) ≤ 3ε

After fixing r, we now have a protocol with internal information at most (3IA, 3IB) and error at
most 3ε and no public randomness.

The following observations are useful.

π(m|xy) =
∏

i:mi sent by Alice

π(mi|xym<i) ·
∏

i:mi sent by Bob

π(mi|xym<i)

=
∏

i:mi sent by Alice

π(mi|xm<i) ·
∏

i:mi sent by Bob

π(mi|ym<i),

where the last inequality follows from the fact that Alice’s messages depend only on x, the public
randomness and the previous messages and Bob’s messages depend only on y, public randomness
and the previous messages.

Define,

πA(m|x) =
∏

i:mi sent by Alice

π(mi|xm<i); πB(m|y) =
∏

i:mi sent by Bob

π(mi|ym<i)

In a similar fashion define,

π′A(m|x) =
∏

i:mi sent by Bob

π(mi|ym<i); π′B(m|y) =
∏

i:mi sent by Alice

π(mi|ym<i)

We are now in a position to describe the simulation. Consider the simulation τ in Figure 4(take c
to be a large constant):

Let L denote the sequence of L tuples in the public tape. Theorem 2 implies,

• EL,h [µ(Alice Accepts)] ≥ 2−O(IA) (this follows from h being a random hash function)

• EL,h [µ(Bob Accepts|Alice Accepts)] ≥ 2−O(IB)

• Given both parties accept, the distribution of the samples is δ/3−close in `1 distance to the
distribution where both parties sample the same from π(x, y), for all constant δ > 0.
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Simulation

Public randomness: A sequence of L = 10·|U |·2c(IA+1) tuples (zi, ai, bi) ∈M×
[
0, 2c(I

A+1)
]
×[

0, 2c(I
B+1)

]
, for i = 1, 2, . . . , L, r and a random function h : [L]→

[
22c(IA+1)

]
, where M is the

set of all transcripts of π.

1. Alice computes the set A =
{
i
∣∣∣ai ≤ πA(zi|xr), bi ≤ π′A(zi|xr) · 2c(I

B+1)
}

, and Bob com-

putes the set B =
{
i
∣∣∣ai ≤ π′B(zi|yr) · 2c(I

A+1), bi ≤ πB(zi|yr)
}

.

2. Alice computes i∗, the the smallest element of A.

3. Alice accepts if h(i∗) = 02c(IA+1).

4. If there is a unique i ∈ B such that h(i) = 02c(IA+1), Bob accepts and assumes that the
outcome of the protocol is zi. Otherwise Bob aborts.

Figure 4: The sampling procedure

The third condition translates to, EL,h [|π(m|xy)− τ(m|xy,Both parties accept)|] ≤ δ/3. This
implies that there exists a fixing of L, h such that

µ(Alice Accepts) ≥ 2−O(IA), µ(Bob Accepts|Alice Accepts) ≥ 2−O(IB)

|π(m|xy)− τ(m|xy,Both parties accept)| ≤ δ.

(the argument is similar to the one used for fixing of public randomness of π. One applies 3 Markov
inequalities followed by an union bound) This completes the proof of the corollary.

Corollary 38 (Restated). Given any randomized protocol π with internal information (IA, IB),
there exists sets S, T and z ∈ {0, 1} such that

µ(x ∈ S) ≥ 2−O(IA), µ(y ∈ T |x ∈ S) ≥ 2−O(IB)

µ(f(x, y) 6= z|S × T ) ≤ 3ε+ δ,

where ε is the error incurred by π under µ and δ > 0, a constant.

Proof. The protocol in Corollary 37 is deterministic. Any transcript in a deterministic protocol
corresponds to a rectangle. Therefore, the state of both parties accepting, corresponds to a rectangle
S × T with

µ(x ∈ S) ≥ 2−O(IA), µ(y ∈ T |x ∈ S) ≥ 2−O(IB).

In addition, conditioning on the event that both parties accept, the output z ∈ {0, 1} of the protocol
(the value of the function that both parties agree on) has the property that µ(f(x, y) 6= z) ≤ 3(ε+δ),
where ε is the error incurred by the the protocol π under µ.
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4.2.1 Application - Lower Bounds for Lopsided Set Disjointness

In this subsection, we use the rectangle lower bound to reprove the well known lower bound for
lopsided set disjointness by Pǎtraşcu in [Pǎt11]. The problem of lopsided set disjointness is defined
as follows,

Definition 39. The set disjointness function on sets x, y ⊆ [NB] is

SD(x, y) =

{
1 if x ∩ y = ∅,
0 otherwise.

Lopsided set disjointness(LSD) is a restricted version of the problem where we are promised
that x, y ⊆ [NB] and |x| = N . The following bound proved by Patrascu [Pǎt11] has found many
applications to proving data structure lower bounds. The bound was shown to be tight by Saglam
[Sag14].

Theorem 40 ([Pǎt11]). For any protocol computing LSD with error probability ε, one of the fol-
lowing holds,

• Alice communicates at least γN logB bits.

• Bob communicates at least NB1−cγ bits.

where c = c1 + 1 + 1
γ logB (log 2c1 − log (1− h(12ε+ δ))), for a constant c1 and B = Ω(1).

Here we give a slightly different proof of Theorem 40, using Corollary 37. The universe is taken

to be
(
2[B]

)N
, the cartesian product of N power sets of [B]. (x, y) ∈

(
2[B], 2[B]

)
is restricted tuples

with |x| = 1 and y takes exactly one element from the pair (2k, 2k+ 1), for all 2k, 2k+ 1 ∈ [B]. We
define two distributions ψ and µ on (x, y) as follows,

• ψ is a uniform distribution on all such pairs (x, y), with LSD(x, y) = 1.

• µ is a uniform distribution on all such pairs (x, y).

The hard distribution for disjointness µh is one where i ∈ [N ] chosen at random, with (xi, yi) drawn
from distribution µ and rest of the coordinates (xj , yj), for j ∈ [N ] \ {i} is drawn i.i.d from ψ.

Having described the hard distribution, we are all set to describe the proof of Theorem 40.

Proof. We assume the contrary that there exists a protocol π computing LSD(x, y) on the dis-
tribution µh with Alice communicating a < γN logB bits and Bob communicating b < NB1−cγ

bits.
We now use protocol π to compute LSD on a single block. Consider the case when the inputs

(x, y) is drawn according to the distribution ψ. We know that protocol π computes LSD on inputs
drawn i.i.d in ψ with information

(
IA, IB

)
<
(
γN logB,NB1−cγ). By Theorem 14, there exist a

protocol τ computing LSD(x, y) on ψ with information
(
IAτ , I

B
τ

)
≤
(
γ logB,B1−cγ).

Define M = {m|µ(LSD(x, y) 6= τ(x, y)|m) ≤ 4ε}, a subset of all transcripts of τ . Note that
µ(M) ≥ 1− 1

4 = 3
4 , using the fact that µ(LSD(x, y) 6= τ(x, y)) ≤ ε. Therefore, ψ(M) ≥ 1− 2

4 = 1
2 ,

since density of Supp(ψ) under µ is one half.
First observe that Corollary 37 holds when the transcripts are restricted to the set M. Now,

Corollary 38 shows the existence of constant c1 and sets S, T such that ψ(x ∈ S) ≥ 2−c1(IA) ≥
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2−c1(γ logB) and ψ(y ∈ T |x ∈ S) ≥ 2−c1(IB) ≥ 2−c1(B1−4γ) We used with upper bounds on informa-
tion (IA, IB) under ψ.

Since restricted to m ∈ M, µ(LSD(x, y) 6= 1|S × T ) ≤ 3 × 4ε + δ, where the factor 3 is an
outcome of an averaging argument(see Corollary 38) and δ corresponds to the `1 distance between
the simulation in Corollary 37 and the actual protocol.

The marginal distribution in x being the same on µ and ψ imply,

µ(x ∈ S) ≥ 2−c1(γ logB)

Also, µ(y) ≥ 1
2 · ψ(y) since ψ(x, y) = µ(x, y|x ∩ y = ∅) and µ(x ∩ y = ∅) = 1

2 . Therefore,

µ(y ∈ T ) ≥ 1

2
· ψ(y ∈ T ) ≥ 2−c1(γ logB+B1−cγ)−1.

From here on, we work only with the distribution µ. The bounds on probabilities imply the
following bounds on the corresponding entropy,

H(X|S) ≥ (1− c1γ) logB (9)

H(Y |T ) ≥ B

2
− c1γ logB − c1B

1−cγ − 1. (10)

The error bound implies,

∀x ∈ S, µ(Yx = 1|T ) ≤ µ(π(x, y) 6= 1|S × T ) ≤ 12ε+ δ. (11)

Note that Yx is the projection of the vector Y (the indicator random variable for the subset in
{0, 1}B) onto the coordinate indexed by x. This implies, ∀x ∈ S H(Yx|T ) ≤ h(12ε+ δ).

Using subadditivity of entropy, we upper bound H(Y |T ) by H(YS |T ) +H(YS̄ |T ), where S̄ is the
complement of the set S. YS , YS̄ are projections of vector Y onto coordinates indexed by elements
of sets S and S̄ The first term in the expression can be simplified(using subadditivity of entropy)
as follows,

H(YS |T ) ≤ h (12ε+ δ) · |S|

where the inequality follows from subadditivity of entropy and (11).
The second term yields,

H(YS̄ |T ) ≤ B

2
− |S|,

by an application of subadditivity of entropy and upper bounding binary entropy by 1.
(9) implies |S| ≥ B1−c1γ . Therefore

H(Y |T ) ≤ B

2
− (1− [h(12ε+ δ)])B1−c1γ .

Equation (10) implies,

H(Y |T ) ≥ B

2
− c1γ logB − c1B

1−cγ − 1

This yields a contradiction, as c > c1 + 1
γ logB (log 2c1 − log (1− h(12ε+ δ))) and B = Ω(1) imply,

B

2
− (1− [h(12ε+ δ)])B1−c1γ <

B

2
− c1γ logB − c1B

1−cγ − 1.

This concludes the proof of the theorem.
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