
Black-Box Garbled RAM

Sanjam Garg∗ Steve Lu† Rafail Ostrovsky‡

Abstract

Garbled RAM, introduced by Lu and Ostrovsky, enables the task of garbling a RAM (Random Access
Machine) program directly, there by avoiding the inefficient process of first converting it into a circuit.
Garbled RAM can be seen as a RAM analogue of Yao’s garbled circuit construction, except that known
realizations of Garbled RAM make non-black-box use of the underlying cryptographic primitives.

In this paper we remove this limitation and provide the first black-box construction of Garbled RAM
with polylogarithmic overhead. Our scheme allows for garbling multiple RAM programs being executed
on a persistent database and its security is based only on the existence of one-way functions. We also
obtain the first secure RAM computation protocol that is both constant round and makes only black-box
use of one-way functions in the OT-hybrid model.

∗University of California, Berkeley. Computer Science Division. sanjamg@berkeley.edu
†University of California, Los Angeles. Department of Computer Science. stevelu@cs.ucla.edu
‡University of California, Los Angeles. Department of Computer Science and Mathematics. rafail@cs.ucla.edu

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 56 (2015)

sanjamg@berkeley.edu
stevelu@cs.ucla.edu
rafail@cs.ucla.edu

1 Introduction
Alice wants to store a large private database D on the cloud in an encrypted form. Subsequently, Alice
wants the cloud to be able to compute and learn the output of arbitrary dynamically chosen private pro-
grams P1, P2, . . . on private inputs x1, x2, . . . and the previously stored dataset, which gets updated as these
programs are executed. Can we do this?

The above problem is a special case of the general problem of secure computation [Yao82, GMW87].
In the past three decades of work, both theoretical and practical improvements have been pushing the limits
of the overall efficiency of such schemes. However most of these constructions work only for circuits and
securely computing a RAM program involves the inefficient process of first converting it into a circuit. For
example, Yao’s approach requires that the program be first converted to a circuit — the size of which will
need to grow at least with the size of the input. Hence, in the example above, for each program that Alice
wants the cloud to compute, it will need to send a message that grows with the size of the database. Using
fully homomorphic encryption [Gen09] we can reduce the size of Alice’s message, but the cloud still needs
to compute on the entire encrypted database. Consequently the work of the cloud still grows with the size of
the database. These solutions can be prohibitive for various applications. For example, in the case of binary
search the size of the database can be exponentially larger than execution path of the insecure solution. In
other words security comes at the cost of a exponential overhead. We note that additionally even in settings
where the size of the database is small, generic transformations from RAM programs with running time T
result in a circuit of size O(T 3 log T) [CR73, PF79], which can be prohibitively inefficient.

Secure computation for RAM programs. Motivated by the above considerations, various secure com-
putation techniques that work directly for RAM programs have been developed. However all known results
have interesting theoretical bottlenecks that influences efficiency, either in terms of round complexity or in
their non-black-box use of cryptographic primitives.

- For instance, Ostrovsky and Shoup [OS97] show how general secure RAM computation can be done
using oblivious RAM techniques [Gol87, Ost90, GO96]. Subsequently, Gordon et al. [GKK+12]
demonstrated an efficient realization based on specialized number-theoretic protocols. In follow up
works, significant asymptotic and practical efficiency improvements have been obtained by Lu and
Ostrovsky [LO13a] and by Wang et al. [WHC+14]). However, all these works require round com-
plexity on the order of the running time of the program.

- In another recent line of work [LO13b, GHL+14, GLOS14], positive results on round efficient secure
computation for RAM programs have been achieved. However all these constructions are inherently
non-black-box in their use of cryptographic primitives.1 These improvements are obtained by realiz-
ing the notion of garbled random-access machines (garbled RAMs) [LO13b] as a method to garble
RAM programs directly, a RAM analogue of Yao’s garbled circuits [Yao82].

In particular, we use the notation PD(x) to denote the execution of some RAM program P on input
x with initial memory D. A garbled RAM scheme should provide a mechanism to garble the data
D into garbled data D̃, the program P into garbled program P̃ and the input x into garbled input x̃
such that given D̃, P̃ and x̃ allows for computing PD(x) and nothing more. Furthermore, up to only
poly-logarithmic factors in the running time of the RAM PD(x) and the size of D, we require that
the size of garbled data D̃ is proportional only to the size of data D, the size of the garbled input
x̃ is proportional only to that of x and the size and the evaluation time of the garbled program P̃ is
proportional only to the running time of the RAM PD(x).

1We note that several other cutting-edge results [GKP+13, GHRW14, CHJV14, BGT14, LP14] have been obtained in non-
interactive secure computation over RAM programs but they all need to make non-black-box use of cryptographic primitives.
Additionally some of these construction are based on strong computational assumptions such as [Reg05, GGH+13b, GGH13a].
We skip discussing this further and refer the reader to [GLOS14, Appendix A] for more details.

1

Starting with Impagliazzo-Rudich [IR90, IR89], researchers have been very interested in realizing cryp-
tographic goals making just black-box use of underlying primitive. It has been the topic of many impor-
tant recent works in cryptography [IKLP06, PW09, Wee10, GLOV12]. On the other hand, the problem
of realizing black-box construction for various primitive is still open, e.g. multi-statement non-interactive
zero-knowledge [BFM88, FLS99, GOS06] and oblivious transfer extension [Bea96].2 From a complex-
ity perspective, black-box constructions are very appealing as they often lead to conceptually simpler and
qualitatively more efficient constructions.3

Motivated by low round complexity and black-box constructions, in this work, we ask if we can achieve
the best of both worlds. In particular:

Can we construct garbled RAM programs with only polylogarithmic overhead making only
black-box use of cryptographic primitives?

1.1 Our Results
In this paper, we provide the first construction of a fully black-box garbled RAM, i.e. both the construction
and the security reduction make only black-box use of underlying cryptograhpic primitives (one-way func-
tions). The security of our construction is based on the existence of one-way functions alone. We state this
as our main theorem:

Main Theorem (Informal). Assuming only the existence of one-way functions, there exists a secure black-
box garbled RAM scheme, where the size of the garbled database is Õ(|D|), size of the garbled input is
Õ(|x|) and the size of the garbled program and its evaluation time is Õ(T) where T is the running time of
program P . Here Õ(·) ignores poly(log T, log |D|, κ) factors where κ is the security parameter 4. Since
garbled RAM implies one-way functions, this can be stated as an equivalence of primitives.

Just as in previous works on garbled RAM [LO13b, GHL+14, GLOS14], our construction allows for
maintaining persistent database across execution of multiple programs on the garbled memory. Also as
in [GKP+13, LO13b, GHL+14, GLOS14], if one is willing to disclose the exact running time of a specific
execution, then the running time of a garbled RAM computation can be made input specific which could be
much faster than the worst-case running time.

Secure RAM computation. We also obtain the first one-round secure computation protocol for RAM
programs that makes only black-box use cryptography in the OT-hybrid model. A very unique feature of
this construction is that it allows for asymmetric load in terms of storage costs, i.e., only one party stores the
encrypted database. To the best of our knowledge no previous solutions allowed for an encrypted database
based of private information of both parties to be stored on just one party, and yet allow secure RAM
computation on it using black-box methods alone. This makes our constructions particularly relevant in the
context of secure outsourced computation. Our garbled circuit generation algorithms all simply rely on a
key for a pseudo-random function, and therefore can be also outsourced and generated by an external party
holding the key in a manner similar to the work of Ananth et al. [ACG+14].

2 Our Techniques
We start by recalling briefly the high level idea behind the previous garbled RAM constructions [LO13b,
GHL+14, GLOS14] and its follow up works. This serves as a good starting point in explaining the technical
challenges that come up in realizing grabled RAM making only black-box use of cryptographic primitives.

2Interestingly for oblivious transfer extension we do know black-box construction based on stronger assumptions [IKNP03].
3Additionally, black-box constructions enable implementations agnostic to the implementation of the underlying primitives.

This offers greater flexibility allowing for many optimizations, scalability, and choice of implementation.
4Although it is typically assumed that κ is polynomially related to M , one can redefine the security parameter to be as small as

ω(1) log2M and still efficiently achieve correctness and security that is all but negligible in M directly.

2

What makes black-box grabled RAM hard? We view the program P , to be garbled, as a sequence of
T CPU steps. Each of these CPU steps is represented as a circuit. Each CPU step reads or writes one bit
of the RAM, which stores some dataset D (that can grow dynamically at run-time though for simplicity we
consider a D with M data elements). At a high level, known garbled RAM construction proceed in two
steps. First a garbled RAM scheme is constructed under the weaker security requirement of unprotected
memory access (UMA) in which we do not try to hide the database being stored or the memory locations
being accessed (only the program and input is hidden). Next this weaker security guarantee is amplified to
get full security by using oblivious RAM. Both these steps introduce a non-black-box use of cryptographic
primitives. Besides some technical details, the second step can actually be made black-box just by using
statistical oblivious RAM [Ajt10, DMN11, SCSL11, SvDS+13, CLP14], though these statistical schemes
do not protect the memory contents which will need to be addressed. Next we describe the challenges we
need to overcome in realizing a black-box construction with UMA security.

At a very high level, known garbled RAM constructions with UMA security construct the garbled mem-
ory in the following way. For each memory location i, containing value bi the value Fs(i, bi) is stored in the
“garbled” memory, where s is a secret key for the PRF F . Let’s consider that a CPU step that wants to read
memory location i that needs to be fed into the next CPU step. Note that both these CPU step circuits will
be independently garbled using Yao’s garbled circuit technique. Let label0 and label1 be the garbled input
wire labels corresponding to the wire for the read bit of the second circuit. In order to enable evaluation
of the second garbled circuit, we need to reveal exactly one of these two labels, corresponding to bi, to the
evaluator. Note that the first garbled circuit needs to do this without knowing i and bi at the time of gar-
bling. The idea for enabling the read is for the first garbled circuit to produce a translation gadget: the first
garbled circuit outputs encryptions of labels label0 and label1 under keys Fs(i, 0) and Fs(i, 1) respectively.
Since the evaluator holding the garbled memory only has one of the two values Fs(i, 0) or Fs(i, 1) at his
disposal, he can only obtain either label0 or label1. This enables the evaluator to feed the proper bit into
the next CPU step and continue the evaluation. Since the location to be read, i, is generated dynamically at
run time the values Fs(i, 0) and Fs(i, 1) must be computed inside the garbled circuit. This is exactly where
non-black-box use of the PRF is made.

More generally, there appears to be a fundamental barrier in this technique. Note that the data in the
memory has to be stored in some encrypted form. In the above case it was stored as the output of a PRF
evaluation. Whenever a bit is to be read from memory, it will need to be internally decrypted to recover
what the value being read is, this makes the need for non-black-box use of cryptography essential. In fact, if
we limit ourselves to black-box constructions then we do not know any garbled RAM solutions that are any
better than the trivial solution of converting the RAM program to a circuit.

Our starting idea: dynamic memory. Our starting idea to recover from the above problem is to replace
“static” memory made of various ciphertexts, as has been done in previous works; with a “dynamic” memory
consisting of various garbled circuits. More specifically, in our new solution, we envision reading from
“memory” in a new way. Unlike previous work, we envision reads from memory are achieved by passing
the control flow of the program itself to the memory. We explain how garbled memory is activated: a small
number of garbled circuits in the garbled memory are evaluated in sequence. These garbled circuits are
connected in the sense that one garbled circuit will output a valid garbled input for the next garbled circuit
by having both the zero and one labels hardwired within it. Eventually the control reaches back to the main
program and additionally carries the read bit along with. Note that the actual garbled circuits that are fired
inside the garbled memory are dynamically decided based on the location being read. Looking ahead, in our
final construction they will also depend on the previous state of the garbled memory. We describe this later.

Next, we describe a plausible arrangement of garbled circuits in the garbled memory for realizing the
above intuition. Let M be the size of memory. Imagine a tree of garbled circuits where the root garbled
circuit has hardcoded in it the input labels for both its children. Similarly the left child garbled circuit has

3

the input labels of its two children and so on. Finally the leaf garbled circuits, which are M in number, area
such that each contains a bit of the database hardcoded in them. Our root garbled circuit takes as input two
labels label0 and label1 and a location to be read. The root garbled circuit based on the location that needs
to be read can activate its left or its right child garbled circuit, ultimately leading to the activation of a leaf
garbled circuit which outputs either label0 or label1 based on whether the stored bit in it is 0 or 1. This
enables a black-box way of reading a bit from memory.

However, the key challenge in realizing the above setup is that after only one read a sequence of garbled
circuits from the root to a leaf in the garbled memory have been consumed/destroyed. Hence if we are
to continue using the garbled memory further then we must provide “replacements” for the used garbled
circuits. To get better insight into the issues involved, we start by describing a very natural dynamic replace-
ment solution for this problem which actually fails because of rather subtle reasons. We believe that this
solution highlights the technical issues involved.

Providing “replacements” dynamically. Our first attempted solution for overcoming the above challenge
is to provide “generic” garbled circuits that can replace the specific garbled circuits that are used during a
read. As mentioned earlier, during a read, garbled circuits corresponding to a path from the root to a leaf
are fired and in the process consumed. It is exactly these circuits that we need to replace. So corresponding
to every read we could provide a sequence of garbled circuits to exactly replace these consumed garbled
circuits. These replacement garbled circuits could be prepared to have the input labels of their new child
already hardcoded in them, though some information needs to be provided at run-time.

Unfortunately this attempted approach has a very subtle bug — relating to a circularity in the parameter
sizes. The problem is that the size of the additional inputs of the “replacements” provides the input labels
for the “regular” input wires, but this information must be passed by the “regular” wires. In other words, if
this scheme is to work, then we need to have the “replacement” garbled circuits be smaller than the garbled
circuit that are being consumed which will leads to a blow up in the size of the first circuit. This appears to
be a fundamental problem with this approach. We believe that black-box techniques cannot be used to fix
this problem if only dynamic “replacements” are provided.

Providing “replacements” statically. Our second stab at the problem is to include for each node of the
tree not just one garbled circuit but instead a sequence of garbled circuits. Of course we still need to respect
the relationship that each garbled circuits needs to have the ability to activate its left and right child garbled
circuits. Now that we have a sequence of garbled circuits for every node it is not clear which garbled circuits
in its children sequences should a garbled circuit be connected with. A very simple strategy would be to
have T garbled circuits in each sequence corresponding to each node, where T is the number of reads the
garbled memory is designed for. We can connect the ith garbled circuit in each sequence with the ith garbled
circuit in its children sequences. However, this leads to a garbled memory of size T ·M , something that is
much larger than what we want, and defeating the purpose of this approach.

It is clear that if we want to have T reads then we must have at least T garbled circuits at the root node
but we can hope to have fewer garbled circuits in the children sequences, finally having much fewer garbled
circuits in any sequence at the leaf nodes. We will next describe a strategy for generating and connecting
these garbled circuits such that the overall number of garbled circuits needed grows only linearly in T +M .
The key insight is to notice that if the access pattern were uniformly random, each node will be visited half
as often as the parent, in expectation. For now, we make this simplifying assumption of uniformity and it
later turns out that when we apply statistical Oblivious RAM, we almost get this property for free.

Consider the following attempt, the root node will have a sequence of T garbled circuits and its children
sequences will have T/2 garbled circuits with the leaf nodes sequences containing T/M garbled circuits.
Since the reads in memory are uniform, at least in expectation we can expect that having these many garbled
circuits should suffice. Here we will connect the ith garbled circuit in any sequence with the i/2th garbled
circuits in its left and right children sequences. The key technical problem in this solution is that even with

4

uniform access, there is no strong guarantee of “balance” between the nodes. During the execution, the
garbled circuits in a parent node would need to know exactly which child circuit to activate, but this is not
known in advance and will depend on the read patterns. So instead of having just one left and one right child
key hardcoded in a garbled circuit we will have hardwire keys for a window of garbled circuits in its left and
right child sequences. Unfortunately the windows sizes needed for this solution is too large. In particular, if
we have a total of T reads happen at the root node then with a constant probability we expect a discrepancy
of
√
T between the minimum number and maximum number of reads that go left. Similarly, the right child

has the same issue. This means that we now need a window of size
√
T which is, which is still prohibitively

large.

Defeating imbalances — having more circuits and fast-forwarding. Our main idea for dealing with
the imbalances (which causes large window size) is to have more circuits in every sequence for each node.
Indeed, these extra circuits serve two purposes. First, these extra circuits serve as a buffer in case we go
beyond expectation. Secondly, when we are too far behind expectation, these extra circuits will be consumed
faster to enforce that we are always within the window of keys that the parent node has. The key insight is
that instead of having a fixed additive factor, the child pointers dynamically moves beyond the expectation
(and enough standard deviations to achieve exopnentially small probability of failure) relative to the current
location. As such, in earlier time steps there is less of a “stretch”, whereas in later time steps there is more
stretch. This resolves the tension between having too many stretch circuits yet still having enough to make
sure you do not run out.

More specifically, our goal is to shrink the key window size down from
√
T to a value that grows only

with the security parameter. We shrink the window size using the following strategy: keep the window
always well ahead of number of garbled circuits that could possibly be consumed (by the Chernoff bound),
and provide a method to move into the window when lagging behind. In order to achieve this we introduce
two new ideas, which when combined accomplish this strategy. First, each circuit has the option to “fast
forward” or “burn” by passing on data to its successor circuit in the same node, specifically the next garbled
circuit in the sequence. This “fast forwarding” is enough to ensure that the children garbled circuits always
remain in the appropriate window. The second idea allows a parent garbled circuit to be able to evaluate old
circuits that have fallen out of this window. Note that we only need the parent to be able to evaluate a single
old circuit since whenever the child node is activated it will burn garbled circuits within its own sequence
pushing it back into the window. Thus, we pass from circuit to circuit the keys to the first unused left and
right child garbled circuits (and when consumed, will be replaced by the next key inside the window).

Complications arise as this argument is needed for each node of the tree. We need to give more circuits
than the expectation of a half to each child, but this causes a chain reaction as now each of them need to give
their children another push beyond expectation and so forth. In particular, we need to provide a larger and
larger ratio of extra garbled circuits away from expectation as we go down the tree. This causes a tension in
the parameters: even though the number of circuits is roughly halving each time we go down, the factor by
which we must push it back up by is also growing geometrically. Setting this growth rate to be even constant,
say c > 1, is problematic. We run into difficulties since there will be T 1

2

i
ci circuits per node, and 2i nodes

per level, all the way up to logM — resulting in TM log c circuits, which is polynomial overhead in the size
of the dataset. It turns out that even a very slow growth rate suffices and allows up to get desired efficiency
properties. With a careful analysis, it turns out this is both efficient and will only run out of garbled circuits
with negligible probability. The exact details will become apparent in the construction and proof.

Getting provable security. Although the previous techniques achieve correctness and efficiency, it is not
immediately obvious why it should be secure. Indeed, inputs keys for one garbled circuits are actually
hardwired at multiple places, and if we do not carefully account for all of these locations, we could be
running into circularity issues in our solution when using security of garbled circuits. To accommodate
this, we will have a key hardwired only at the first place it was expected to be hardwired and “passed”

5

dynamically to later circuits. Each garbled circuit will still maintain the same window of keys as were
available to it earlier but now they are dynamically passed by it to its successor (the next garbled circuit
in a sequence). Moving forward, new keys are collected and the old keys will be dropped so that the total
number of keys being passed remains small. Using this mechanism we can ensure that a garbled circuit can
dynamically “drop” keys that correspond to a child garbled circuit whose security needs to be relied on in
the proof. Based on this, in the hybrid argument, we argue that whenever a garbled circuit is replaced by a
simulated version, we have all instances of its keys have been “dropped.”

A technical issue also arises with the fact at the end some of the unevaluated garbled circuits remain.
The problem lies in the fact that some of their input keys have also been revealed. We handle this issue by
providing a generic transformation that ensures that garbled circuits are indistinguishable from noise as long
as input keys for even one wire are not disclosed.

Final touches. In explaining the technical ideas above made several simplifying assumptions. We now
provides some ideas on how to remove these limitations.

• Arbitrary Memory Access. As mentioned above, we can achieve a GRAM solution for programs
with arbitrary access pattern by first compiling it with an ORAM that has uniform access pattern.
Programs compiled with statistical ORAM do not actually have uniform memory access, but rather
a leveled uniform access pattern, where the accesses in each level is uniformly distributed. We deal
with this technicality by breaking our memory down into levels where access in each separate memory
is uniform. Alternatively, we can bias the distribution where a leveled ORAM structure is flattened
into memory: for example, we know that the a memory location corresponding to some tree node is
accessed twice as often as its children, thus when we build our circuits we can incorporate and absorb
this distribution into our scheme.

• Replenishing. Since we generate a fixed amount of garbled circuits for the garbled memory, this
places a bound on the number of reads the memory can be used for. We observe that is we sent the
number of reads to be equal the size of memory then this give us enough reads in parallel to with
the entire memory can be replenished to allow for anther size of memory number of reads and so
on. In our construction the garbled circuits are generated in a highly independent fashion and so
more garbled circuits can be provided on the fly. Furthermore, this can be seamlessly amortized (the
amortized overhead can be absorbed into the polylog factors) where the garbling algorithm for a T -
time program can generate enough garbled circuits to support T more steps in the future. Finally, this
strategy can also be used to accommodate memory that is dynamically growing.

• Writing. Writing in our construction is achieved in a way very similar to the reading. Reading in our
scheme involves having a leaf garbled circuit pass on the value to the main circuit and simultaneously
pass on the stored data value in it to its successor, so that it could be read again. During writing a
garbled circuits passes the value to be written to its successor instead of the value previously stored.

2.1 Roadmap
We now lay out a roadmap for the remainder of the paper. In Section 3, we give necessary background
and definitions for the RAM model, garbled circuits, and garbled RAM. In Section 4 we give the warmup
heuristic construction of our result. We analyze the cost and correctness of the solution in Section 5. We
extend our construction to a secure one in Section 6 and prove the security in Section 7 (with the full proof
in Section 8).

3 Background
In this section we fix notation for RAM computation and provide formal definitions for Garbled Circuits
and Garbled RAM Programs. Parts of this section have been taken verbatim from [GHL+14].

6

3.1 RAM Model
Notation for RAM Computation. We start by fixing the notation for describing standard RAM compu-
tation. For a program P with memory of size M we denote the initial contents of the memory data by
D ∈ {0, 1}M . Additionally, the program gets a “short” input x ∈ {0, 1}n, which we alternatively think of
as the initial state of the program. We use the notation PD(x) to denote the execution of program P with
initial memory contents D and input x. The program can P read from and and write to various locations in
memory D throughout its execution.5

We will also consider the case where several different programs are executed sequentially and the mem-
ory persists between executions. We denote this process as (y1, . . . , y`) = (P1(x1), . . . , P`(x`))

D to indi-
cate that first PD1 (x1) is executed, resulting in some memory contents D1 and output y1, then PD1

2 (x2) is
executed resulting in some memory contents D2 and output y2 etc. As an example, imagine that D is a huge
database and the programs Pi are database queries that can read and possibly write to the database and are
parameterized by some values xi.

CPU-Step Circuit. Consider a RAM program who execution involves at most T CPU steps. We represent
a RAM program P via a sequence of T small CPU-Step Circuit where each of them executes a single CPU
step. In this work we will denote one CPU step by:

CPCPU(state, data) = (state′,R/W, L, z)

This circuit takes as input the current CPU state state and a block “data”. Looking ahead this block will
be read from the memory location that was requested for a memory location requested for in the previous
CPU step. The CPU step outputs an updated state state′, a read or write bit R/W, the next location to
read/write L ∈ [M], and a block z to write into the location (z = ⊥ when reading). The sequence of
locations and read/write values collectively form what is known as the access pattern, namely MemAccess =
{(Lτ ,R/Wτ , zτ , dataτ) : τ = 1, . . . , t}, and we can consider the weak access pattern MemAccess2 = {Lτ :
τ = 1, . . . , t} of just the memory locations accessed.

Note that in the description above without loss of generality we have made some simplifying assump-
tions. First, we assume that the output zwrite is written into the same location zread was read from. Note
that this is sufficient to both read from and write to arbitrary memory locations. Secondly we note that we
assume that each CPU-step circuit always reads from and write some location in memory. This is easy to
implement via a dummy read and write step. Finally, we assume that the instructions of the program itself
is hardwired into the CPU-step circuits, and the program can first load itself into memory before execution.
In cases where the size of the program vastly differs from its running time, one can suitably partition the
program into two pieces.

Representing RAM computation by CPU-Step Circuits. The computation PD(x) starts with the initial
state set as state0 = x and initial read location L0 = 0 as a dummy read operation. In each step τ ∈
{0, . . . T − 1}, the computation proceeds by first reading memory location Lτ , that is by setting bread,τ :=
D[Lτ] if τ ∈ {1, . . . T−1} and as 0 if τ = 0. Next it executes the CPU-Step CircuitCPCPU(state

τ , bread,τ) =
(stateτ+1, Lτ+1, bwrite,τ+1). Finally we write to the location Lτ by settingD[Lτ] := bwrite,τ+1. If τ = T−1
then we set state to be the output of the program P and ignore the value Lτ+1. Note here that we have
without loss of generality assumed that in one step the CPU-Step the same location in memory is read from
and written to. This has been done for the sake of simplifying exposition.

5In general, the distinction between what to include in the program P , the memory dataD and the short input x can be somewhat
arbitrary. However as motivated by our applications we will typically be interested in a setting where that data D is large while the
size of the program |P | and input length n is small.

7

3.2 Garbled Circuits
Garbled circuits was first constructed by Yao [Yao82] (see e.g. Lindell and Pinkas [LP09] and Bellare et
al. [BHR12] for a detailed proof and further discussion). A circuit garbling scheme is a tuple of PPT algo-
rithms (GCircuit,Eval). Very roughly GCircuit is the circuit garbling procedure and Eval the corresponding
evaluation procedure. Looking ahead, each individual wire w of the circuit will be associated with two
labels, namely labw0 , lab

w
1 . Finally, since one can apply a generic transformation (see, e.g. [AIK10]) to blind

the output, we allow output wires to also have arbitrary labels associated with them. Indeed, we can classify
the output values into two categories — plain outputs and labeled outputs. The difference in the two cate-
gories stems from how they will be treated when garbled during garbling and evaluation. The plain output
values do not require labels provided for them and evaluate to cleartext values. On the other hand labeled
output values will require that additional output labels be provided to GCircuit at the time of garbling, and
Eval will only return these output labels and not the underlying cleartext. We also define a well-formedness
test for labels which we call Test.

•
(
C̃
)
← GCircuit

(
1κ, C, {(w, b, labwb)}w∈inp(C),b∈{0,1}

)
: GCircuit takes as input a security parameter

κ, a circuit C, and a set of labels labwb for all the input wires w ∈ inp(C) and b ∈ {0, 1}. This
procedure outputs a garbled circuit C̃.

• It can be efficiently tested if a set of labels is meant for a garbled circuit.

• y = Eval(C̃, {(w, labwxw)}w∈inp(C)): Given a garbled circuit C̃ and a garbled input represented as a
sequence of input labels {(w, labwxw)}w∈inp(C), Eval outputs an output y in the clear.

Correctness. For correctness, we require that for any circuit C and input x ∈ {0, 1}n (here n is the input
length to C) we have that that:

Pr
[
C(x) = Eval(C̃, {(w, labwxw)}w∈inp(C))

]
= 1

where
(
C̃
)
← GCircuit

(
1κ, C, {(w, b, labwb)}w∈inp(C),b∈{0,1}

)
.

Security. For security, we require that there is a PPT simulator CircSim such that for any C, x, and uni-
formly random labels

(
{(w, b, labwb)}w∈inp(C),b∈{0,1}

)
, we have that:(

C̃, {(w, labwxw)}w∈inp(C)

)
comp
≈ CircSim (1κ, C, C(x))

where
(
C̃
)
← GCircuit

(
1κ, C, {(w, labwb)}w∈out(C),b∈{0,1}

)
and y = C(x).

3.3 Garbled RAM
Next we consider an extension of garbled circuits to the setting of RAM programs. In this setting the
memory data D is garbled once and then many different garbled programs can be executed sequentially
with the memory changes persisting from one execution to the next. We define both full security and a
weaker variant known as Unprotected Memory Access 2 (UMA2) (similar to UMA security that appeared
in [GHL+14]), and we show how UMA2-secure Garbled RAM can be compiled with statistical Oblivious
RAM to achieve full security.

Definition 3.1. A (UMA2) secure single-program garbled RAM scheme consists of four procedures (GData,
GProg, GInput, GEval) with the following syntax:

• (D̃, s) ← GData(1κ, D): Given a security parameter 1κ and memory D ∈ {0, 1}M as input GData
outputs the garbled memory D̃.

8

• (P̃ , sin)← GProg(1κ, 1logM , 1t, P, s,m) : Takes the description of a RAM program P with memory-
size M as input. It also requires a key s and current time m. It then outputs a garbled program P̃ and
an input-garbling-key sin.

• x̃ ← GInput(1κ, x, sin): Takes as input x ∈ {0, 1}n and and an input-garbling-key sin, a garbled
“tree root” key s and outputs a garbled-input x̃.

• y = GEvalD̃(P̃ , x̃): Takes a garbled program P̃ , garbled input x̃ and garbled memory data D̃ and
output a value y. We model GEval itself as a RAM program that can read and write to arbitrary
locations of its memory initially containing D̃.

Efficiency. We require the run-time of GProg and GEval to be t · poly(logM, log T, κ), which also serves
as the bound on the size of the garbled program P̃ . Moreover, we require that the run-time of GData should
be M · poly(logM, log T, κ), which also serves as an upper bound on the size of D̃. Finally the running
time of GInput is required to be n · poly(κ).
Correctness. For correctness, we require that for any program P , initial memory data D ∈ {0, 1}M and
input x we have that:

Pr[GEvalD̃(P̃ , x̃) = PD(x)] = 1

where (D̃, s)← GData(1κ, D), (P̃ , sin)← GProg(1κ, 1logM , 1t, P, s,m), x̃← GInput(1κ, x, sin).

Security with Unprotected Memory Access (Full vs UMA2). For full or UMA2-security, we require
that there exists a PPT simulator Sim such that for any program P , initial memory data D ∈ {0, 1}M and
input x, which induces access pattern MemAccess we have that:

(D̃, P̃ , x̃)
comp
≈ Sim(1κ, 1M , 1t, y,MemAccess)

where (D̃, s) ← GData(1κ, D), (P̃ , sin) ← GProg(1κ, 1logM , 1t, P, s,m) and x̃ ← GInput(1κ, x, sin),
and y = PD(x). Note that unlike UMA security, the simulator does not have access to D. For full security,
the simulator Sim does not get MemAccess as input.

4 The Construction
In this section we describe our construction for garbled RAM formally, namely the procedures (GData,
GProg, GInput, GEval). In order to make the exposition simpler, in this section we will describe our con-
struction making four simplifying assumptions, which will be all removed in our final construction.

1. UMA2-security: Here we will restrict ourselves to achieving UMA2-security alone Definition 3.1
(UMA2). We note that this construction can then be amplified to get full security satisfying Defini-
tion 3.1 (full) using Lemma A.1 in Appendix A. This is essentially the transformation from previ-
ous works [LO13b, GHL+14, GLOS14] except that we need to restrict ourselves to using statistical
ORAMs [DMN11, SCSL11, SvDS+13]. Note that this transformation is information theoretic and
preserves the black-box nature of our construction.

2. Uniform memory accesses: We assume that the distribution of memory accesses of the programs
being garbled are uniform. Then in Section 8 we will describe how this restriction can be removed
and construction achieved even give any arbitrary probability distribution on memory reads. This will
be essential for using Lemma A.1.

3. First Step: Heuristic proof: The construction described in this section is “heuristic” in the sense that
we do not know how to prove its security. However we do not know of any concrete attacks against it.
At a high level it suffers from a sort of a circular security problem. However this issue is rather easy
to solve in our context. We describe the issue and the fix in Section 6 to obtain a full security proof.

9

4. Bounded reads: We will describe our construction assuming that the total number of memory ac-
cesses (both read and write) made to the garbled memory is bounded by M , the size of the memory.
In Section 8, we explain how this restriction can be removed. In particular we will describe a memory
replenishing mechanism for refilling the garbled memory as it used. This replenishing will involve
some additional communication for each garbled program, while ensuring that the overhead of this
replenishing information sent with each garbled program is small.

Notation. We use the notation [n] to denote the set {0, . . . , n− 1}. For any string L, we use Li to denote
the ith bit of L where i ∈ [|x|] with the 0th bit being the highest order bit. We let L0...j−1 denote the j high
order bits of L. We will be using multiple garbled circuits and will need notation to represent bundles of
input labels for garbled circuits succinctly. In particular, if lab = {labi,b}i∈|x|,b∈{0,1} describes the labels
for input wires of a garbled circuit, then we let labx denote the labels corresponding to setting the input
to x, i.e. the subset of labels {labi,xi}i∈|x|. Similarly we will sometimes consider a collection of garbled
circuits and denote the collection of labels for input wires of these garbled circuits with lab. Let i be an
index of a garbled circuit in this collection then we let lab[i]x denote the labels corresponding to setting the
input to x of the ith garbled circuit. Looking ahead, throughout our construction the inputs to the circuits
we consider with be partitioned in into two parts, the red and the blue. We will use the colors red and blue
to stress whether an input label corresponds to a red input wire or a blue input wire. We extend this coloring
to collections of labels of the same color. We believe that this makes it much easier to read our paper and
recommend reading it on a coloured screen or a colored printout.

4.1 Data Garbling: (D̃, s)← GData(1κ, D)

We start by providing an informal description of the data garbling procedure, which turns out to be the most
involved part of the construction. The formal description of GData is provided in Figure 4. Our garbled
memory consists of two parts.

1. Garbled Circuits: Intuitively our garbled memory will be organized as a binary tree and each node
of this tree will correspond to a sequence of garbled circuits. For any garbled circuit its successor
is defined as the next garbled circuit in the sequence of garbled circuits corresponding to that node.
Similarly we define predecessor as the previous garbled circuit in the sequence. For a garbled circuit
all the garbled circuits in its parent node are referred to as its parents. Analogously we define children.
These garbled circuits are obtained by fresh garblings of two separate circuits, one corresponding to
the leaf nodes and the other corresponding to non-leaf nodes.

For each of these garbled circuits, we will divide its input wires (and corresponding keys/lables) into
two categories, the red input wires and the blue input wires.

Each garbled circuit will contain all input keys for its successor. Specifically this includes both the
red and the blue input keys of its successor. Additionally each garbled circuit will contain a subset of
input wires for a subset of its left and right children. Specifically, it will contain the blue input keys
for a consecutive κ garbled circuits among its left children and a consecutive κ garbled circuits among
its right children.

2. Tabled garbled Information: Additionally for each node in the tree as described above, the garbled
memory consists of a table of information Tab(i, j), where (i, j) denotes a node in the tree.

Looking ahead, as the memory is read from or written to these garbled circuits that constitute the
garbled memory will actually be used. Furthermore if a garbled circuits corresponding to a node is
being consumed then its predecessor must have previously already been consumed. The tabulated
information will be the red input keys for the first unused garbled circuit for each node.

10

ERROR

outrKey

outqKey

rec

q Cnode

[i, k, tKey, rKey, qKey]

ERROR

outdKey

outqKey or cpuDKey

data

q C leaf

[i, k, dKey, qKey]

Figure 1: Memory circuits.

Circuits needed. Next we describe the two circuits, garblings of which will be used to generate the garbled
memory. The circuits are described formally in Figures 2 and 3. The non-leaf node circuit takes as input
some recorded info rec and a query q. Garbled labels for rec will be red and denoted as rKey and garbled
labels for q will be blue and denoted as qKey. Although every single circuit will have its own unique rKey
and qKey, when we refer to these in the context of some particular circuit, it will always refer to the keys
of its successor and these values will be hard-coded in it. Additionally the circuit has hardcoded inside it
its level i in the tree, its own position k within the sequence of garbled circuits at that node, garbled labels
rKey, qKey for its successor, and a collection of labels for the left and right child garbled circuits which we
denote as tKey. Each tKey is a vector of exactly 2κ qKeys, the first κ correspond to qKeys for a contiguous
block of κ of left child circuits (exactly which ones, we will describe later), and the last κ respectively
correspond to labels for circuits in the right child.

The inputs are straightforward, rec contains indices to the first unused left and right child circuits as well
as their qKeys. This allows us to either go left or right, although we will need to update the index and key as
soon as we consume it, and we will replace it with something inside of tKey. The query q is simply a CPU
query with one additional “goto” field goto that informs where the first unused circuit in a node should be
at to in order to fall inside the window of its parents tKey. If the current circuit k < goto− 1, we “burn” the
circuit and pass our inputs onto our successor until it is precisely goto− 1, so that the first unused circuit is
now indeed located at goto. In summary, we write Cnode[i, k, tKey, rKey, qKey](rec, q) for non-leaf circuits.

Similarly, leaf circuits takes as input some memory data data and a query q. Here, the red key is dKey
which corresponds to the garbled labels of data. A leaf circuit will have hardcoded inside it the current
level i = d in the tree, its own position k within the sequence of garbled circuits at that leaf, garbled labels
dKey, qKey for its successor. Since a leaf node has no further children, there is no need for tKey. We write
Cleaf [i, k, dKey, qKey](data, q) for these circuits.

11

Cnode[i, k, tKey, rKey, qKey]
System parameters: ε (Will be set to 1

logM as we will see later.)
Hardcoded parameters: [i, k, tKey, rKey, qKey]
Input: (rec = (lidx, ridx, oldLKey, oldRKey), q = (goto,R/W, L, z, cpuDKey)).

Set p := goto and p′ :=
⌊(

1
2 + ε

)
k
⌋
. Set lidx′ := lidx and ridx′ := ridx. Set oldLKey′ := oldLKey and

oldRKey′ := oldRKey. We now have three cases:

1. If k < p − 1 then we output (outrKey, outqKey) := (rKeyrec′ , qKeyq), where rec′ :=
(lidx′, ridx′, oldLKey′, oldRKey′).

2. If k ≥ p+ κ then abort with output OVERCONSUMPTION-ERROR-I.

3. If p− 1 ≤ k < p+ κ then:

(a) If Li = 0 then,

i. If lidx < p′ then set lidx′ := p′, goto′ := p′ and oldLKey′ := tKey[0]. Else set lidx′ :=
lidx+1, goto′ := lidx′ and if lidx′ < p′+ κ then set oldLKey′ := tKey[lidx′− p′] else abort
with OVERCONSUMPTION-ERROR-II.

ii. Set outqKey := oldLKeyq′ , where q′ := q but with goto′ replacing goto.

else

i. If ridx < p′ then set ridx′ := p′, goto′ := p′ and oldRKey′ := tKey[κ]. Else set ridx′ :=
ridx+1, goto′ := ridx′ and if ridx′ < p′+ κ then set oldRKey′ := tKey[κ+ ridx′− p′] else
abort with OVERCONSUMPTION-ERROR-II.

ii. Set outqKey := oldRKeyq′ , where q′ := q but with goto′ replacing goto.

(b) Set outrKey := rKeyrec′ where rec′ := (lidx′, ridx′, oldLKey′, oldRKey′) and output
(outrKey, outqKey).

Figure 2: Formal description of the nonleaf Memory Circuit.

Cleaf [i, k, dKey, qKey]
System parameters: ε (Will be set to 1

logM as we will see later.)
Hardcoded parameters: [i, k, dKey, qKey]
Input: (data, q = (goto,R/W, L, z, cpuDKey)).

Set p := goto and p′ :=
⌊(

1
2 + ε

)
k
⌋
. We now have three cases:

1. If k < p− 1 then we output (outdKey, outqKey) := (dKeydata, qKeyq).

2. If k ≥ p+ κ then abort with output OVERCONSUMPTION-ERROR-I.

3. If p− 1 ≤ k < p+ κ then:

(a) If R/W = read then output (dKeydata, cpuDKeydata), else if R/W = write then output
(dKeyz, cpuDKeyz).

Figure 3: Formal description of the leaf Memory Circuit.

12

The algorithm GData(1κ, D) proceeds as follows. Without loss of generality we assume that M = 2d

(where M = |D|) where d is a positive integer. We calculate ε = 1
logM . We set K0 = M , and for each

i ∈ [d+ 1] and set Ki =
⌊(

1
2 + ε

)
Ki−1

⌋
+ κ.

1. Let s← {0, 1}κ.

2. Any dKeyd,j,k needed in the computation below is obtained as Fs(data||d||j||k). Similarly for any
i, j, k, rKeyi,j,k := Fs(rec||i||j||k) and qKeyi,j,k := Fs(query||i||j||k). Finally,

tKeyi,j,k :=

{
qKeyi+1,2j,b(1

2
+ε)kc+l

}
l∈[κ]︸ ︷︷ ︸

left

,
{
qKeyi+1,2j+1,b(1

2
+ε)kc+l

}
l∈[κ]︸ ︷︷ ︸

right

 .

3. For all j ∈ [2d], k ∈ [Kd],
C̃d,j,k ← GCircuit

(
1κ,Cleaf [d, k, dKeyd,j,k+1, qKeyd,j,k+1

]
, dKeyd,j,k, qKeyd,j,k

)
.

4. For all i ∈ [d], j ∈ [2i], k ∈ [Ki],
C̃i,j,k ← GCircuit

(
1κ,Cnode [i, k, tKeyi,j,k, rKeyi,j,k+1, qKeyi,j,k+1

]
, rKeyi,j,k, qKeyi,j,k

)
.

5. For all j ∈ [2d], set Tab(d, j) = dKeyd,j,0D[j] .

6. For all i ∈ [d], j ∈ [2i], set Tab(i, j) := rKeyi,j,0
reci,j,0

, where reci,j,0 :=
(0, 0, qKeyi+1,2j,0, qKeyi+1,2j+1,0)

7. Output D̃ :=

({
C̃i,j,k

}
i∈[d+1],j∈[2i],k∈[Ki]

, {Tab(i, j)}i∈[d+1],j∈[2i]

)
and s.

Figure 4: Formal description of GData.

Actual data garbing. At a high level, we generate our garbled memory by garbling multiple instances
of circuits described in Figures 2 and 3. The formal construction is provided in Figure 4. As men-
tioned earlier, these garbled circuits actually correspond to the nodes of a tree. Specifically, if the size
of the database is M = 2d, then the root node will contain roughly Mκ circuits, each nodes in sub-
sequent level will contain roughly half that amount. More specifically, any node at level i contains at
most Ki =

⌊(
1
2 + ε

)i
(M + iκ)

⌋
+ κ garbled circuits. In total, the garbled memory will consist of∑d

i=0 (1 + 2ε)i (M + iκ) + κ garbled circuits. Looking ahead ε will be set to 1
d so that the this num-

ber is linear in M +dκ. In order to simplify generation of garbled circuits, we generate all the labels needed
for generation of these garbled circuits as the outputs of a PRF on appropriate input values under a fixed
seed s. Looking ahead, this will be crucial in extending our construction to allow for generating memory
replenishing information. This is elaborated upon in Section 8.

4.2 Program Garbling: (P̃ , sin)← GProg(1κ, 1logM , 1t, P, s,m)

We start by defining a sub-circuit that will be needed in describing the program garbling in Figure 5. This
circuit basically performs one step of the CPU and provides input lables for a root garbled circuit in the
garbled memory. The formal description of program garbling itself in provided in Figure 6. The garbled
program is obtained by garbling multiple CPU step circuits where very rough each circuit provides the input
labels for the next CPU step and for the root circuit of the garbled memory, which then enables reading data

13

from memory.

Cstep[t, rootqKey, cpuSKey, cpuDKey]
Hardcoded parameters: [t, rootqKey, cpuSKey, cpuDKey]
Input: (state, data).

Compute (state′,R/W, L, z) := CPCPU(state, data). Set q := (goto = t + 1,R/W, L, z, cpuDKey) and
output rootqKeyq and cpuSKeystate′ , unless we are halting in which case only output state′ in the clear.

Figure 5: Formal description of the step circuit.

The GProg(1κ, 1logM , 1t, P, s,m) procedure proceeds as follows.

1. Any cpuSKeyτ needed in the computation below is obtained as Fs(CPUstate||τ), and any
cpuDKeyτ is obtained as Fs(CPUdata||τ).

2. For τ = m, . . . ,m+ t− 1 do:

(a) Set qKey0,0,τ := Fs(query||0||0||τ).
(b) C̃τ ← GCircuit

(
1κ, Cstep [τ, qKey0,0,τ , cpuSKeyτ+1, cpuDKeyτ+1

]
, cpuSKeyτ , cpuDKeyτ

)
3. Output P̃ :=

(
m, {C̃τ}τ∈{m,...,m+t−1}, cpuDKey

m
0

)
, sin = cpuSKeym

Figure 6: Formal description of GProg.

4.3 Input Garbling: x̃← GInput(1κ, x, sin)

Informally, the GInput algorithm uses x as selection bits for the labels provided by sin and outputs x̃, which
is just the selected labels. A formal description of GProg is provided in Figure 7.

The algorithm GInput(1κ, x, sin) proceeds as follows.

1. Parse sin as cpuSKey and output x̃ := cpuSKeyx.

Figure 7: Formal description of GInput.

4.4 Garbled Evaluation: y ← GEvalD̃(P̃ , x̃)

The GEval procedure gets as input the garbled program P̃ =
(
m, {C̃τ}τ∈{m,...,m+t−1}, cpuDKey

)
, the

garbled input x̃ = cpuSKey and random access into the garbled database D̃ = ({C̃i,j,k}i∈[d+1],j∈[2i],k∈[Ki],
{Tab(i, j)}i∈[d+1],j∈[2i]). Intuitively the GEval is very simple. It proceeds by executing a subset of the
garbled circuits from the garbled program and the garbled memory in a specific order which is decided
dynamically based on the computation. The labels needed to evaluate the first garbled circuit are provided
as part of the garbled input and each evaluation of a garbled circuit reveals the labels for at most two distinct
circuits. Among these two circuits, only one is such that all its input labels have been provided, and this
circuit is executed next. The unused input labels are stored in memory table Tab to be used at a later point.
Next we provide the formal description of GEval in Figure 8.

14

The algorithm GEvalD̃(P̃ , x̃) proceeds as follows.

1. Parse P̃ as
(
m, {C̃τ}τ∈{m,...,m+t−1}, cpuDKey

)
, x̃ as cpuSKey and

D̃ as
({

C̃i,j,k
}
i∈[d+1],j∈[2i],k∈[Ki]

, {Tab(i, j)}i∈[d+1],j∈[2i]

)
.

2. For τ ∈ {m, . . . ,m+ t− 1} do:

(a) Evaluate (cpuSKey, qKey) := Eval(C̃τ , (cpuSKey, cpuDKey)). If an output y is produced by
Eval instead, then output y and halt.

(b) Set i = 0, j = 0, k = τ .

(c) Evaluate outputKey := Eval(C̃i,j,k, (Tab(i, j), qKey)).

i. If outputKey is parsed as (rKey, qKeyi
′,j′,k′) for some i′, j′, k′, then set Tab(i, j) :=

rKey, qKey := qKeyi
′,j′,k′ , (i, j, k) = (i′, j′, k′) and go to Step 2c.

ii. Otherwise, set (dKey, cpuDKey) := outputKey,and Tab(i, j) := dKey and τ := τ + 1.

Figure 8: Formal description of GEval.

5 Cost and Correctness Analysis
5.1 Overall Cost
Before we analyze the cost of the main algorithms, we first calculate the sizes of all the constituent variables
and circuits. The database D has size |D| = M elements, and each data element is of |data| = B bits.
Garbled labels for each bit of an input wire are λ bits long. The complete garbled labels for n input bits
takes up 2λn bits. Furthermore, the current time step m or τ we upper bound by the total combined running
time T . Of course, B, λ, T are all poly(κ), and for the two former values we simply absorb them into the
poly(κ) term, whereas we keep T as a separate parameter for later use.

From this, we can compute |cpuSKey| = 2λ|state| and |cpuDKey| = 2λB. A query q has size |goto|+
|R/W|+ |L|+ |z|+ |cpuDKey| ≤ log T +1+ logM +B+2λB, and |qKey| = 2λ|q|. Since dKey are just
the labels for memory data, |dKey| = 2λB. Next, we compute the size of rec. Observe that oldLKey and
oldRKey are simply qKeys, so we have |rec| = |lidx|+ |ridx|+ |oldLKey|+ |oldRKey| ≤ 2(log T + |qKey|).
Finally, tKey consist of 2κ qKeys and therefore have size |tKey| = 2κ|qKey|.

Now we calcluate |Cnode|. Observe that the calculations within the circuit are primarily comparisons,
and overall is at most polynomial in the size of the input and hardwired values. Thus |Cnode| = poly(|i| +
|k|+ |tKey|+ |rKey|+ |qKey|+ |rec|+ |q|) = poly(logM, log T, κ) and so is its garbled version.

Next, we calcluate |C leaf|. We have |Cleaf [i, k, dKey, qKey](data, q)| = poly(|i|+|k|+|dKey|+|qKey|+
|data|+ |q|) = poly(logM, log T, κ) and so is its garbled version.

Finally, we calcluate |Cstep|. We assume that the plain CPU has size poly(logM, log T, κ). Since the
step circuit simply computes the CPU circuit and does a few selections, we have: |Cstep| = poly(log T +
|qKey|+ |cpuSKey|+ |cpuDKey|+ |state|+ |data|+ |CPU |) = poly(logM, log T, κ).

We can now calculate the cost of the individual algorithms.

5.1.1 Cost of GData

The algorithm GData(1κ, D) first computesO(M) dKey, rKey, qKey values, takingM ·poly(logM, log T, κ)
steps. For each node at level i < d, it computes Ki garbled Cnode circuits and tabulates an an rKey for each
of the 2i nodes. At level i = d, it computes Kd garbled C leaf circuits and tabulates M = 2d dKeys. The
output is of size equal to all the garbled circuits plus the size of the tabulated values plus one PRF key. Let

15

c = e2 and let ε = 1
logM .

First, we show how to bound bound Ki ≤
(
1
2 + ε

)i
M +

∑i−1
j=0

(
1
2 + ε

)j
κ. This can be shown by

induction: K0 = M , and by induction, Ki+1 =
⌊(

1
2 + ε

)
Ki

⌋
+ κ ≤

(
1
2 + ε

)
Ki + κ ≤

(
1
2 + ε

)
·[(

1
2 + ε

)i
M +

∑i−1
j=0

(
1
2 + ε

)j
κ
]
+ κ ≤

(
1
2 + ε

)i+1
M +

∑i+1−1
j=0

(
1
2 + ε

)j
κ.

This bound can then be simplified to Ki ≤
(
1
2 + ε

)i
(M + iκ).

Thus, overall, we calculate the number of garblings of Cnode as

d−1∑
i=0

2i ·Ki ≤
d−1∑
i=0

2i ·
(
1

2
+ ε

)i
(M + iκ)

≤
d−1∑
i=0

(1 + 2ε)i (M + dκ)

≤ (1 + 2ε)d − 1

(1 + 2ε)− 1
(M + dκ)

≤ e2εd − 1

2ε
(M + dκ)

Since ε = 1/d, and garbling such circuits takes poly(logM, log T, κ) time, this overall takes M ·
poly(logM, log T, κ) time and space. At the leaf level, it performs at most 2d · (12 + ε)d(M + dκ) gar-
blings of C leaf. Again, this takes poly(logM, log T, κ) ·M time and space. Finally, there are O(M) of rKey
and dKey values stored in Tab(i, j), which is again poly(logM, log T, κ) ·M .

5.1.2 Cost of GProg

The algorithm GProg(1κ, 1logM , 1t, P, s,m) computes t cpuSKeys,cpuDKeys, and qKeys. It also gar-
bles t Cstep circuits and outputs them, along with a single cpuSKey. Since each individual operation is
poly(logM, log T, κ), the overall time and space cost is poly(logM, log T, κ) · t.
5.1.3 Cost of GInput

The algorithm GInput(1κ, x, sin) selects labels of the state key based on the state as input. As such, the time
and space cost is |cpuSKey|.
5.1.4 Cost of GEval

We first assume that an error does not occur in GEval. As we shall see in Section 5.2 that this occurs with
all but negligible probability. We analyze how many circuits were consumed after T steps in order to obtain
the amortized cost of GEval. We let ki denote the maximum number of circuits consumed in some node at
level i. At the root, exactly T circuits were consumed so k0 = T , and in order for level i to not overflow,
it must not have consumed more than

⌊(
1
2 + ε

)
ki−1

⌋
+ κ circuits. By the same analysis of the bound of

Ki, it must be the case that ki ≤
(
1
2 + ε

)i
(T + iκ). Then no more than

∑d
i=0 2

iki circuits could have
been consumed, each of which has evaluation cost at most poly(logM, log T, κ). It turns out this bound is
slightly insufficient, and this is due to the case when T < M , the 2i term is an overestimate. Indeed, if there
are only T accesses, then there can be at most T nodes that were ever touched at a level. Using min(2i, T)

16

as the bound on the number of nodes ever touched per level suffices:

d∑
i=0

min(2i, T)ki ≤
d∑
i=0

min(2i, T)

(
1

2
+ ε

)i
(T + iκ)

≤ T

(
d∑
i=0

min(2i, T)

(
1

2
+ ε

)i
+
min(2i, T)iκ

T

)

≤ T

(
d∑
i=0

(2i)(

(
1

2
+ ε

)i
) +

(T)iκ

T

)
≤ T

(
d((1 + 2ε)d + dκ)

)
≤ T

(
d(e2 + dκ)

)
.

When accounting for the cost of each of these circuits being evaluated, this means that the amortized
cost is T · poly(logM, log T, κ) overall.

5.2 Correctness
Observe that as long as the memory data is correctly stored and passed on to the CPU step circuits, the
scheme is correct. The only way this can fail to happen is if a query q fails to make it from the root
to the leaf. In order to demonstrate this, we need to analyze two things. We must show that a parent
ciruit will always output the proper qKey for the first unused child circuit, and we also must show that the
errors OVERCONSUMPTION-ERROR-I and OVERCONSUMPTION-ERROR-II do not occur except with
a negligible probability.

Lemma 5.1. Within Cnode, lidx always points to the first unused left child circuit which has qKey equal to
oldLKey, and ridx always opint to the first unused right child circuit which has qKey equal to oldRKey.

Proof. WLOG we show this for the left child. We prove this by induction on the current CPU step. In
the base case, this is true due to the way GData set up the keys. Now suppose we are consuming some
parent circuit and it was true for the previous circuit, i.e. lidx and oldLKey correctly point to the first unused
left child circuit. Then it remains to show that lidx′ points to what will be the first unused left child circuit
during the next CPU step, and that the updated old key oldLKey′ points to it. Recall p′ = b(12 + ε)kc, and
by definition of GData, this is precisely the child circuit that tKey[0] is the qKey of. If lidx < p′ then the
child circuit will burn until the goto′ circuit, which is exactly what lidx′ is set to be, and oldLKey′ is set to
tKey[0] which is precisely what lidx′ = goto′ is set to. On the other hand, if lidx > goto′ then by definition,
goto′ = lidx′ = lidx + 1 and oldLKey′ holds the key for precisely the next circuit past lidx. But we know
that the child node will consume exactly one circuit since goto′ is precisely one past lidx which by induction
is the current child index, so lidx′ will point to the first unused child circuit and oldLKey′ is its key.

Lemma 5.2. The errors OVERCONSUMPTION-ERROR-I and OVERCONSUMPTION-ERROR-II do not
occur except with a negligible probability.

Proof. Again, WLOG we show this for the left child. Note that an error can never occur at the root, and
OVERCONSUMPTION-ERROR-I would occur if and only if an OVERCONSUMPTION-ERROR-II would
have occured just before it. Thus, we bound the probability that an OVERCONSUMPTION-ERROR-I could
occur. Suppose an error first occurs at some node (i, j) at the m1-th circuit in this node. Then this means
that the child lidx′ has become greater than p′ + κ = b(12 + ε)m1c + κ. Since each time the left child
is visited, many child circuits may be consumed due to burning, it might be difficult to figure out exactly
how many child circuits were consumed if m1 parent circuits were consumed. However, we can define a

17

synchronize event, which is namely that the parent is on circuit k and the child is on circuit b(12 + ε)kc, or
more precisely, when goto′ = b(12 + ε)kc. We let m0 < m1 be the latest point for the parent for which this
synchronize occured. We know that such an m0 exists, since time m0 = 0 is a valid solution.

Because there have been no more burns since that time, each time the left child was visited, exactly one
circuit was also consumed. At m0, exactly b(12 + ε)m0c child circuits were consumed, and at m1, more than
b(12 + ε)m1c+ κ child circuits would have been consumed (if we did not break on error). During this time,
m1−m0 parent circuits were consumed, so the parent node was visited at most m1−m0 times (it could be
less due to burning), and we expect the child node to be visited µ = m1−m0

2 times. For t = 0, . . . ,m1−m0,
let Xt denote the 0/1 random variable indicating that on time step m0 + t the left node was visited, and let
X =

∑m1−m0
t=0 Xt. We calculate the probability that Pr[X > b(12 + ε)m1c + κ − b(12 + ε)m0c] which is

the probability that this error would have occurred. This becomes Pr[X >
((

1
2 + ε

)
(m1 −m0)

)
+ κ− 1].

Note that we can trivially condition on the case where m1 − m0 > κ, because otherwise X < κ with
probability 1, so we can conclude µ > κ/2.

Substituting δ = 2ε + κ−1
µ , this becomes Pr[X > (1 + δ)µ]. Then by the Chernoff bound for δ > 0,

Pr[X > (1 + δ)µ] ≤ exp((δ − (1 + δ) ln(1 + δ))µ).
Then reorganizing terms and using a second-order log approximation:

Pr[X > (1 + δ)µ] ≤ exp

[(
δ + (1 + δ) log

(
1− δ

1 + δ

))
µ

]
≤ exp

[(
δ + (1 + δ)

(
− δ

1 + δ
− δ2

(1 + δ)2

))
µ

]
≤ exp

[
− δ2µ

1 + δ

]
≤ exp

[
−δµ

(
δ

1 + δ

)]
≤ exp

[
−(2εµ+ κ− 1)

(
2ε+ (κ− 1)/µ

1 + 2ε+ (κ− 1)/µ

)]
≤ exp

[
−(2εµ+ κ− 1)

(
2ε

1 + 2ε

)]
≤ exp

[
−(2εµ+ κ− 1)

(
2ε

1 + 1

)]
≤ exp

[
−(2ε2µ+ ε(κ− 1))

]
Since ε = 1

logM , this is negligible.

6 Secure Main Construction
We state the theorem that we attempt to prove and show where there is a barrier and how we work around it
by modifying our solution.

We first provide the intuition of how we would like the proof would go through. Our goal is to construct
a simulator Sim such that only given the access pattern and output (and not the database contents) it can
simulate the view of the evaluator. The first observation is that the only point of the PRF F was to allow
GProg to efficiently be able to compute the root keys and to replenish new circuits in nodes without having
to remember all the existing labels. Since Sim can run in time propotional to the size of the database, it can

18

simply remember all these values internally, and therefore the first step is to replace F with a truly random
table that Sim keeps track of.

Next, we must simulate the garbled circuits one at a time. In order to do so, we order the circuits by
the order in which they were evaluated, and then define a series of hybrids where hybrid i has the first i
garbled circuits simulated. The hybrids are constructed so that the circuits are simulated in reverse order,
such that the i-th circuit is simulated first, and so on, until the first circuit C̃0 is simulated. At first glance,
this appears to work, but there is actually a subtle issue. Each qKey of a circuit in a node circuit resides in
several locations: the predecessor circuit in the same node, and inside several tKey, oldLKey, oldRKey of
circuits in its parent node. Indeed, if a full qKey appears anywhere (whether as a passed or hardwired value)
in the current hybrid, then this causes a “circularity” issue. In order to overcome this barrier, we pass tKey
from circuit to circuit instead of hardwiring them as seen in Figures 9 and 10.

Cnode[i, k, newLtKey, newRtKey, rKey, qKey]
System parameters: ε (Will be set to 1

logM as we will see later.)
Hardcoded parameters: [i, k, newLtKey, newRtKey, rKey, qKey]
Input: (rec = (lidx, ridx, oldLKey, oldRKey, tKey), q = (goto,R/W, L, z, cpuDKey)).

Set p := goto and p′ :=
⌊(

1
2 + ε

)
k
⌋
.

Set lidx′ := lidx and ridx′ := ridx. Set oldLKey′ := oldLKey and oldRKey′ := oldRKey.
Define ins(tKey, newLtKey, newRtKey) to be the function that outputs tKey with a possible shift: if⌊(

1
2 + ε

)
(k + 1)

⌋
>
⌊(

1
2 + ε

)
k
⌋
, shift tKey to the left by 1 and set tKey[κ − 1] = newLtKey, tKey[2κ −

1] = newRtKey.
We now have three cases:

1. If k < p − 1 then we output (outrKey, outqKey) := (rKeyrec′ , qKeyq), where rec′ :=
(lidx′, ridx′, oldLKey′, oldRKey′, tKey′) where tKey′ = ins(tKey, newLtKey, newRtKey).

2. If k ≥ p+ κ then abort with output OVERCONSUMPTION-ERROR-I.

3. If p− 1 ≤ k < p+ κ then:

(a) If Li = 0 then,

i. If lidx < p′ then set lidx′ := p′, goto′ := p′ and oldLKey′ := tKey[0]. Else set lidx′ :=
lidx+1, goto′ := lidx′ and if lidx′ < p′+ κ then set oldLKey′ := tKey[lidx′− p′] else abort
with OVERCONSUMPTION-ERROR-II.

ii. Set tKey[v] := ⊥ for all v < lidx′ − p′. Set tKey′ = ins(tKey, newLtKey, newRtKey).
iii. Set outqKey := oldLKeyq′ , where q′ := q but with goto′ replacing goto.

else

i. If ridx < p′ then set ridx′ := p′, goto′ := p′ and oldRKey′ := tKey[κ]. Else set ridx′ :=
ridx+1, goto′ := ridx′ and if ridx′ < p′+ κ then set oldRKey′ := tKey[κ+ ridx′− p′] else
abort with OVERCONSUMPTION-ERROR-II.

ii. Set tKey[κ+ v] := ⊥ for all v < ridx′− p′. Set tKey′ = ins(tKey, newLtKey, newRtKey).
iii. Set outqKey := oldRKeyq′ , where q′ := q but with goto′ replacing goto.

(b) Set outrKey := rKeyrec′ where rec′ := (lidx′, ridx′, oldLKey′, oldRKey′, tKey′) and output
(outrKey, outqKey).

Figure 9: Formal description of the nonleaf Memory Circuit with key passing.

19

The algorithm GData(1κ, D) proceeds as follows. Without loss of generality we assume that M = 2d

(where M = |D|) where d is a positive integer. We calculate ε = 1
logM .We set K0 = M , and for each

0 < i ∈ [d+ 1] and set Ki =
⌊(

1
2 + ε

)
Ki−1

⌋
+ κ.

1. Let s← {0, 1}κ.

2. Any dKeyd,j,k needed in the computation below is obtained as Fs(data||d||j||k). Similarly for any
i, j, k, rKeyi,j,k := Fs(rec||i||j||k) and qKeyi,j,k := Fs(query||i||j||k).
Set

tKeyi,j,0 :=

{
qKeyi+1,2j,l

}
l∈[κ]︸ ︷︷ ︸

left

,
{
qKeyi+1,2j+1,l

}
l∈[κ]︸ ︷︷ ︸

right

 .

and if
⌊(

1
2 + ε

)
(k + 1)

⌋
>
⌊(

1
2 + ε

)
(k)
⌋
, then set

newLtKeyi,j,k = qKeyi+1,2j,b(1
2
+ε)(k+1)c+κ−1

newRtKeyi,j,k = qKeyi+1,2j+1,b(1
2
+ε)(k+1)c+κ−1

, otherwise set newLtKeyi,j,k = newRtKeyi,j,k = ⊥.

3. For all j ∈ [2d], k ∈ [Kd],
C̃d,j,k ← GCircuit

(
1κ,Cleaf [d, k, dKeyd,j,k+1, qKeyd,j,k+1

]
, dKeyd,j,k, qKeyd,j,k

)
.

4. For all i ∈ [d], j ∈ [2i], k ∈ [Ki],
C̃i,j,k ← GCircuit(1κ,Cnode [i, k, newLtKeyi,j,k, newRtKeyi,j,k, rKeyi,j,k+1, qKeyi,j,k+1

]
, rKeyi,j,k,

qKeyi,j,k).

5. For all j ∈ [2d], set Tab(d, j) = dKeyd,j,0D[j] .

6. For all i ∈ [d], j ∈ [2i], set Tab(i, j) := rKeyi,j,0
reci,j,0

, where reci,j,0 :=

(0, 0, qKeyi+1,2j,0, qKeyi+1,2j+1,0, tKeyi,j,0).

7. Output D̃ :=

({
C̃i,j,k

}
i∈[d+1],j∈[2i],k∈[Ki]

, {Tab(i, j)}i∈[d+1],j∈[2i]

)
and s.

Figure 10: Formal description of GData with passed keys.

This way, we can control which keys are present in a circuit. In particular, we drop consumed qKeys
so that no future unevaluated circuit has them. However, we still need to hardwire new qKeys, but we
only do so as needed as part of two new hardwired variables newLtKey and newRtKey. Then, whenever
a circuit outputs some qKey for a child circuit, it also drops all qKeys inside tKey that are older than or
equal to qKey. Note that we still maintain the exact same tKey size of 2κ keys, so this passing method will
never accumulate too many keys. We formalize this construction by modifying how GData and Cnode work
in Figures 9 and 10, and the remainder of the construction is unchanged. It is straightforward to see that
this neither affects correctness (only keys corresponding to consumed or soon-to-be-burned circuits will be

20

dropped) nor asymptotic cost. We argue correctness as follows: within a node, the sequence of oldLKey and
oldRKey within the circuits is an increasing sequence, and oldLKey strictly increases if we are going left,
and oldRKey strictly increases if we are going right. Note that the tKey shifting corresponds precisely to
the previous windows with the only difference being now there could be some keys set to ⊥. Thus, the only
way this scheme could be incorrect is if we attempt to assign a ⊥ to oldLKey or oldRKey. But all the ⊥
values correspond to indexes that are strictly less than the current oldLKey or oldRKey index, and therefore
cannot be the new index.

We demonstrate a series of lemmas that ensures that when some circuit needs to be simulated, all ap-
pearances of its keys will have been in already been simulated or dropped. This strategy then allows the full
simulation proof goes through as we will see in Section 7.

7 Security Proof
In this section we prove the UMA2-security of the black-box garbled RAM (GData,GProg,GInput,GEval).

Theorem 7.1 (UMA2-security). Let F be a PRF and (GCircuit,Eval,CircSim) be a circuit garbling scheme,
both of which can be built from any one-way function in black-box manner. Then our construction is a
UMA2-secure garbled RAM scheme for uniform access programs running in total time T < M making only
black-box access to the underlying OWF.

Proof. We first prove a lemma (Lemma 7.3) before proving our main theorem. For the lemma, we consider
ourselves during the course of GEval, where we are about to evaluate some non-root node C̃i,j,k. Our
eventual goal is to show that all instances of qKeyi,j,k are in previously evaluated (hence, will be simulated)
circuits, and is not being passed as part of any tKey.

Fact 7.2. The rKeyrec to be consumed by C̃i,j,k was output by C̃i,j,k−1, or initially stored in Tab(i, j) in the
case where k = 0. The qKeyq used to evaluate C̃i,j,k was either output by (Case 1) C̃i,j,k−1 or (Case 2)
C̃i−1,bj/2c,k

′
for some k′.

To further pinpoint where qKeys are stored, we group the circuits in the parent node into three groups.
We let k′min be the smallest value such that b(12 + ε)k′minc+ κ− 1 = k, and k′max be the largest value such
that b(12 + ε)k′maxc = k. For a parent circuit C̃i−1,bj/2c,k

′
, we call it a past circuit if k′ < k′min, a future

circuit if k′ > k′max, and a present circuit if k′min ≤ k′ ≤ k′max.
We now state our main lemma.

Lemma 7.3. Suppose during the execution of GEval, we are about to evaluate garbled circuit C̃i,j,k. Let
qKey denote qKeyi,j,k. Then all instances of qKey exist only in previously evaluated circuits.

Proof. We let k? denote the index of the last parent circuit that evaluated prior to our current circuit, i.e.
C̃? = C̃i−1,bj/2c,k

?
was the last circuit to be evalauted at level i− 1. WLOG assume that the current circuit

is the left child of the parent. Observe that qKey only occurs in the following locations: the predecessor
circuit, inside newLtKey of the final “past” parent, or inside some “current” or “future” parent’s oldLKey or
tKey. Since the predecessor circuit must be evaluated already, we only need to check the existence of qKey
inside one or more of my parent circuits.

Let lidx be the left index (implicitly) passed into C̃?, and let lidx′ be the left index (implicitly) output by
it.

Observe that by definition, qKey is not in the tKey of any past or future parent. In particular, it can only
be included inside tKey when being inserted as a newLtKey, and once it is removed it can never be present
again in any future parent’s tKey. Note that qKey may still be inside newLtKey of a past parent or oldLKey
of a future parent. Furthermore, all parent circuits with index k′ ≤ k? have been evaluated, and thus we

21

only need to argue that no (unevaluated) parent circuit k′ > k? contains qKey as either tKey, newLtKey, or
oldLKey.

We analyse the following six cases:

[Case 1A] The predecessor circuit C̃i,j,k−1 output my qKeyq, and k? belongs to a past parent.

[Case 1B] The predecessor circuit C̃i,j,k−1 output my qKeyq, and k? belongs to a present parent.

[Case 1C] The predecessor circuit C̃i,j,k−1 output my qKeyq, and k? belongs to a future parent.

[Case 2A] The parent circuit C̃i−1,bj/2c,k
?

output my qKeyq, and k? belongs to a past parent.

[Case 2B] The parent circuit C̃i−1,bj/2c,k
?

output my qKeyq, and k? belongs to a present parent.

[Case 2C] The parent circuit C̃i−1,bj/2c,k
?

output my qKeyq, and k? belongs to a future parent.

CASE 1A. This case cannot occur. Since C̃? was a past parent, by definition we must have b(12 + ε)k?c +
κ − 1 < k. Since qKey was passed from the predecessor circuit, it must have taken the branch where
k − 1 < goto′ − 1 = b(12 + ε)k?c − 1. Combining these two inequalities yields κ < 2 which is a
contradiction.

CASE 1B,1C. Note that k−1 < goto′−1 still holds. We know that lidx′ ≥ goto′, so we have that lidx′ > k.
Since oldLKey′ is the key for circuit lidx′, it cannot be the qKey for k. Furthermore, all keys inside tKey
with index less than lidx′ have been set to ⊥ by C̃? so no unevaluated parent circuit can have the current
qKey as part of tKey or oldLKey. Finally, qKey appearing as newLtKey can only occur in a past parent,
which has already been evaluated in this case.

CASE 2A. This case cannot occur. By the definition of Cnode, the only way the parent circuit could output
my qKeyq directly is if it is held as oldLKey. However, the oldLKey is only assigned due to the value
contained in an older tKey in some parent circuit k′ ≤ k?. The indices k of any parent k′ ≤ k? parents is at
most b(12 + ε)k′c + κ − 1 ≤ b(12 + ε)k?c + κ − 1 < k by definition of k? being a past parent. Therefore,
qKey could not have been output by any past parent circuit.

CASE 2B. In this case, k? belongs to a present circuit that was evaluated. Note that C̃? replaced its
oldLKey = qKey with some new oldLKey′ which corresponds to the lidx′-th circuit at level i. Since
k = lidx < lidx′ and all tKey[v] is set to ⊥ for v < lidx′ − p′, the current qKey was removed from
tKey by C̃? and hence all successor parent circuits’ tKey do not contain qKey. Furthermore, oldLKey can
only be updated by tKey and C̃? does not set the updated oldLKey′ to qKey, and no parent circuit k′ > k?

can set oldLKey to qKey since it is no longer contained in any of their tKey values. Finally, qKey appearing
as newLtKey can only occur in a past parent, which has already been evaluated in this case.

CASE 2C. Because k? belongs to a future parent that was evaluated, it must be the case that all past
and present parents have already been evaluated. We check that qKey does not exist in any unevaluated
parent circuit’s tKey or oldLKey: all parent circuits k′ ≤ k? have been evaluated, C̃? was evaluated and it
output and replaced the qKey sitting in oldLKey with some tKey. Since C̃? and all its successors are future
parents, none of them have qKey inside its tKey and thus oldLKey would never contain qKey. Finally, qKey
appearing as newLtKey can only occur in a past parent, which has already been evaluated in this case.

We now proceed to prove the theorem. Let CircSim be the garbled circuit simulator. Suppose in the real
execution, a total of w circuits are evaluated by GEval. We construct Sim and then give a series of hybrids
Ĥ0, H0, . . . ,Hw, Ĥw such that the first hybrid outputs the (D̃, P̃ , x̃) of the is the real execution and the last
hybrid is the output of Sim, which we will define. H0 is the real execution with the PRF F replaced with a

22

uniform random function (where previously evaluated values are tabulated). Since the PRF key is not used
in evaluation, we immediately obtain Ĥ0

comp
≈ H0.

Our goal is to build a garbled memory, program, and input that is indistinguishable from the real one.
Since we know exactly the size and running time and memory access, we can allocate the exact correct
amount of placeholder garbled circuits, initially set to ⊥. The simulator considers the sequence of circuits
(starting from 1) that would have been evaluated given MemAccess. This sequence is entirely deterministic
and therefore we let S1, . . . , Sw be this sequence of circuits, e.g. S1 = C̃0(the first CPU circuit), S2 =
C̃0,0,0(the first root circuit), The idea is to have Hu simulate the first u of these circuits, and generate
all other circuits as in the real execution.
Hybrid Definition: (D̃, P̃ , x̃)← Hu

The hybrid Hu proceeds as follows: For each circuit not in S1, . . . , Su, generate it as you would in the
real execution, and for each circuit Su, . . . , S1 (in that order) we simulate the circuit using CircSim by giving
it as output what it would have generated in the real execution or what was provided as the simulated input
labels. Note that this may use information about the database D and the input x, and our goal is to show that
at the very end, Sim will not need this information.

We now show Hu−1 comp
≈ Hu. There are several cases: when Su is a non-root node, when Su is a root

node, and when Su is a CPU step circuit. In the first case, we must argue that one can replace Su from a real
distribution to one output by CircSim. In order to do so, we must show that its input keys are independent
of the rest of the output. Its garbled inputs are rKeyrec and qKeyq. rKey only existed in its predecessor
circuit, which was simulated since it was executed in some hybrid u′ < u. Furthermore, by Lemma 7.3, all
instances of qKey only exist in previously evaluated circuits, hence they were also simulated out in some
earlier hybrid. Therefore, any distinguisher of Hu−1 and Hu can be used to distinguish between the output
of CircSim and a real garbling.

When Su is a root node, the only circuit that has its rKey was its predecessor, and the only circuits
that have its qKey are its predecessor or the CPU step circuit that invoked it. Both of these circuits were
simulated in a earlier hybrid, and so once again any distinguisher ofHu−1 andHu can be used to distinguish
between the output of CircSim and a real garbling.

Finally, if Su is a CPU step circuit, the only circuit that has its cpuSKey was its predecessor (or the
initial garbled input), but its cpuDKey was passed around across the entire tree starting from its predecessor.
However, again, these were all simulated in an earlier hybrid, so again, any distinguisher of Hu−1 and Hu

can be used to distinguish between the output of CircSim and a real garbling.
Finally, we mention how to handle unevaluated circuits in hybrid Ĥw. Note that the security definition of

CircSim does not deal with partial inputs, though this can be handled generically as follows. We encrypt each
circuit using a semantically secure symmetric key-encryption scheme with a fresh key for each circuit and
secret share the key into two portions. We augment each rKey/dKey by giving it one share (in the clear), and
the qKey will have the other share. In unevaluated circuits, the qKey never appears, so the secret encryption
key is information theoretically hidden, and thus by the semantic security of the encryption scheme, we can
replace all unevaluated circuits with encryptions of zero. This is formally stated and proven as Lemma B.1
in Appendix B, and this is precisely what Ĥw utilizes to convert unused circuits into encryptions of zero.

Then our simulator Sim(1κ, 1M , 1t, y, 1D,MemAccess = {Lτ , zread,τ , zwrite,τ}τ=0,...,t−1) can output
the distribution Ĥw without access to D or x. We see this as follows: the simulator, given MemAccess can
determine the sequence S1, . . . , Sw. The simulator starts by simulating all unevaluted circuits by replacing
them with encryptions of zero. It then simulates the Su in reverse order, starting with simulating Sw using
the output y, and then working backwards simulates further ones ensuring that their output is set to the
appropriate inputs.

23

8 Full Security and Replenishing
In this section, we prove the full security by showing how to compile any UMA2-secure GRAM scheme
with statistical ORAM. First, we show how to extend our construction to running times beyond M by
replenishing.

8.1 Circuit Replenishing
Although we observed that “dynamic” circuit replenishing is potentially problematic, here we give a method
of allowing GProg to replenish circuits. Note that in GData there was no need to generate some fixed amount
of circuits at the root, but it was bounded to be proportional toM in order for it to not run too long. However,
using the exact same template, an exponential amount of circuits could be generated: as long as the domain
of the PRF is not exhausted, one can always generate more circuit labels that follow this exact pattern.

Using this observation, we can then view our circuit replenishing as a way to amortize this process
rather than making dynamic replacements on the fly. That is to say, when we make new circuits, they will
be concatenated on to the end of the sequence of circuits of each node. In order to replenish, we give a
replenishment strategy so that GProg will be augmented to perform the following functionality. A program
at time m running for t steps will replenish some t · poly(logM, log T, κ) number of circuits in such a way
that afterM steps, a total of S =

∑d
i=0(2

iKi) circuits will be replenished, whereKi is as defined in GData,
thus providing us with a number of new circuits that is as large as the original number of original circuits
provided.

Given a program that starts at time m (which now could be larger than M) and runs for t steps, we
know exactly where we are going to replenish because the locations are relative only to m,m+1, . . . ,m+
t − 1. For ease of exposition, we assume that these values do not cross a multiple boundary of M and
there exists some c such that they are all in the range cM, . . . , (c + 1)M − 1. Specifically, we want to
provide roughly S·t

M = t · poly(logM, log T, κ) circuits, and so we consider the following array A of values⌈
S·(m mod M)

M

⌉
, . . . ,

⌈
S·((m+t−1) mod M)

M

⌉
. This index tells us which node and circuit we should replicate

as follows. Order the nodes from left to right, starting from the root down, then we know that the (i, j)-th
node has n(i, j) = j · Ki +

∑i−1
i′=0(2

i′Ki′) circuits prior to it. Then GProg performs the following: for
l = 0, . . . , |A| − 1, we will replenish node (i, j) for the maximal node such that n(i, j) ≤ A[l]. It will set
k = (c+ 1) ·M +A[l]− n(i, j), and create a C̃i,j,k as in GData, generating the keys using the PRF key s.

Thus, after M steps, there will be K ′i = 2Ki circuits at each node in level i, and in general after nM
steps, there will be K ′i = (n+ 1)Ki circuits.

Two facts follow from this replacement strategy. First, the cost of GProg is not asymptotically impacted
since there are only S

M is only poly(logM, log T, κ) and hence for t steps, the number of new circuits re-
plenished is t · poly(logM, log T, κ). Overall, this only adds tpoly(logM, log T, κ) additional work for
GProg. Secondly, we will never run out of circuits using this strategy. Observe that although partial replace-
ments only appear sequentially down the tree whereas the accesses could consume circuits anywhere in the
tree, those yet-to-be-replenished leaves would have not run out in any case since the base scheme without
replenishing does not run out of circuits. After M time steps, each node is now replenished with as many
circuits as a fresh GData would have generated, which allows us to proceed indefinitely.

In some previous GRAM schemes [LO14, GHL+14], memory refreshes were also done after M reads
and writes were done in memory. Unlike the previous constructions, our circuit replenishing works in an
amortized way that smoothly adds more circuits rather than having to refresh the entire database at once.

8.2 Compiling with Statistical ORAM to get full security
In order to achieve this, we show how to compile our UMA2-secure GRAM scheme with a statistical ORAM
that has uniform access pattern to achieve a secure GRAM scheme. However, schemes such as [SvDS+13]
are tree-based and have uniform access pattern only on each level of their tree. That is to say, on each level,

24

the access pattern is uniform, though not necessarily on the entire tree.

Leveled Memory. In order to combat this issue, we make several independent copies of memory, each
corresponding to a level in the ORAM tree. Then each CPU step will have the key corresponding to the
memory block of one level of the ORAM tree. Indeed, this is a generic method of handling leveled memory,
though one possible avenue of concrete benefits is “marrying” together the underlying ORAM tree with our
GRAM tree. We give a more formal description as follows.

Suppose instead of a single dataset D, there are now datasets D0, . . . , DN−1 that are accessed in order
such that at CPU step m, a random location in dataset Dm mod N is accessed. The GData algorithm now
generates a tree for each dataset and the PRF evaluations now also take the dataset into account, namely we
can generate s0, . . . , sN−1 using si = PRFs(i), and then generating the keys in dataset Di using si . The
one additional change we need to make to GProg is to ensure each CPU step points to a different dataset, and
will be consuming circuits at a 1/N rate due to the first N steps all referring to the first root circuit of each
of the respective N memory trees. Specifically, it sets qKey for time step τ to be Fsi(query||0||0||bτ/Nc).

The last step is to combine ORAM with UMA2-secure GRAM to obtain fully secure GRAM. The proof
is nearly identical to extending UMA-secure GRAM to fully secure GRAM, so we paraphrase previous
works [LO13b, GHL+14, GLOS14] and defer this to Appendix A.

Putting it all together, we obtain our main theorem.

Theorem 8.1 (Full security). Assuming only the existence of one-way functions, there exists a secure black-
box garbled RAM scheme for arbitrary RAM programs. The size of the garbled database is Õ(|D|), size of
the garbled input is Õ(|x|) and the size of the garbled program and its evaluation time is Õ(T) where T
is the running time of program P . Here Õ(·) ignores poly(log T, log |D|, κ) factors where κ is the security
parameter. Furthermore, because garbled RAM trivially implies one-way functions, there is a black-box
equivalence of the existence of one-way functions and garbled RAM.

Additional observations. Instead of storing data only at the leaves, we can store the data at all levels of
the tree and pull an entire path of values from the tree down into the CPU step. This is conducive to certain
ORAM schemes (e.g. Path ORAM [SvDS+13]) which also follow this nature and can be used to obtain
additional savings. Furthermore, in our construction, one can consider handling a non-uniform distribution
of memory accesses. As long as the distribution of leaf accesses are data-independent and known in advance,
we can assign to each leaf a probability it is accessed. Then each parent inherits a probability that is the
sum of its two childrens’ probabilities. Based on this new distribution, one can provide a different number
of circuits per node as according to this distribution. This would lead to a concrete efficiency improvement
for GRAM in the case of certain oblvious algorithms with simple CPU steps and access patterns that are
distributed in some known fashion.

Acknowledgments
We thank Alessandra Scafuro for her contribution during the initial stages of the project. Work supported
in part by NSF grants 09165174, 1065276, 1118126 and 1136174, US-Israel BSF grant 2008411, OKAWA
Foundation Research Award, IBM Faculty Research Award, Xerox Faculty Research Award, B. John Garrick
Foundation Award, Teradata Research Award, and Lockheed-Martin Corporation Research Award. This
material is based upon work supported by the Defense Advanced Research Projects Agency through the
U.S. Office of Naval Research under Contract N00014 -11 -1-0392. The views expressed are those of the
author and do not reflect the official policy or position of the Department of Defense or the U.S. Government.

References
[ACG+14] Prabhanjan Ananth, Nishanth Chandran, Vipul Goyal, Bhavana Kanukurthi, and Rafail Ostro-

vsky. Achieving privacy in verifiable computation with multiple servers - without FHE and

25

without pre-processing. In Hugo Krawczyk, editor, PKC 2014: 17th International Workshop
on Theory and Practice in Public Key Cryptography, volume 8383 of Lecture Notes in Com-
puter Science, pages 149–166, Buenos Aires, Argentina, March 26–28, 2014. Springer, Berlin,
Germany.

[AIK10] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. From secrecy to soundness: Efficient
verification via secure computation. In Samson Abramsky, Cyril Gavoille, Claude Kirchner,
Friedhelm Meyer auf der Heide, and Paul G. Spirakis, editors, ICALP (1), volume 6198 of
Lecture Notes in Computer Science, pages 152–163. Springer, 2010.

[Ajt10] Miklós Ajtai. Oblivious RAMs without cryptogrpahic assumptions. In Leonard J. Schulman,
editor, 42nd Annual ACM Symposium on Theory of Computing, pages 181–190, Cambridge,
Massachusetts, USA, June 5–8, 2010. ACM Press.

[Bea96] Donald Beaver. Correlated pseudorandomness and the complexity of private computations. In
28th Annual ACM Symposium on Theory of Computing, pages 479–488, Philadephia, Penn-
sylvania, USA, May 22–24, 1996. ACM Press.

[BFM88] Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-knowledge and its ap-
plications. In STOC, pages 103–112, 1988.

[BGT14] Nir Bitansky, Sanjam Garg, and Sidharth Telang. Succinct randomized encodings and their
applications. Cryptology ePrint Archive, Report 2014/771, 2014. http://eprint.iacr.
org/2014/771.

[BHR12] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Foundations of garbled circuits. In
Ting Yu, George Danezis, and Virgil D. Gligor, editors, ACM Conference on Computer and
Communications Security, pages 784–796. ACM, 2012.

[CHJV14] Ran Canetti, Justin Holmgren, Abhishek Jain, and Vinod Vaikuntanathan. Indistinguishabil-
ity obfuscation of iterated circuits and RAM programs. Cryptology ePrint Archive, Report
2014/769, 2014. http://eprint.iacr.org/2014/769.

[CLP14] Kai-Min Chung, Zhenming Liu, and Rafael Pass. Statistically-secure ORAM with Õ(log2 n)
overhead. In Palash Sarkar and Tetsu Iwata, editors, Advances in Cryptology – ASI-
ACRYPT 2014, Part II, volume 8874 of Lecture Notes in Computer Science, pages 62–81,
Kaoshiung, Taiwan, R.O.C., December 7–11, 2014. Springer, Berlin, Germany.

[CR73] Stephen A. Cook and Robert A. Reckhow. Time bounded random access machines. J. Comput.
Syst. Sci., 7(4):354–375, 1973.

[DMN11] Ivan Damgård, Sigurd Meldgaard, and Jesper Buus Nielsen. Perfectly secure oblivious RAM
without random oracles. In Yuval Ishai, editor, TCC 2011: 8th Theory of Cryptography Con-
ference, volume 6597 of Lecture Notes in Computer Science, pages 144–163, Providence, RI,
USA, March 28–30, 2011. Springer, Berlin, Germany.

[FLS99] Uriel Feige, Dror Lapidot, and Adi Shamir. Multiple non-interactive zero knowledge proofs
under general assumptions. SIAM Journal of Computing, 29(1):1–28, 1999.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Michael Mitzenmacher,
editor, 41st Annual ACM Symposium on Theory of Computing, pages 169–178, Bethesda,
Maryland, USA, May 31 – June 2, 2009. ACM Press.

26

http://eprint.iacr.org/2014/771
http://eprint.iacr.org/2014/771
http://eprint.iacr.org/2014/769

[GGH13a] Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate multilinear maps from ideal lat-
tices. In Thomas Johansson and Phong Q. Nguyen, editors, Advances in Cryptology – EU-
ROCRYPT 2013, volume 7881 of Lecture Notes in Computer Science, pages 1–17, Athens,
Greece, May 26–30, 2013. Springer, Berlin, Germany.

[GGH+13b] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent Waters.
Candidate indistinguishability obfuscation and functional encryption for all circuits. In 54th
Annual Symposium on Foundations of Computer Science, pages 40–49, Berkeley, CA, USA,
October 26–29, 2013. IEEE Computer Society Press.

[GHL+14] Craig Gentry, Shai Halevi, Steve Lu, Rafail Ostrovsky, Mariana Raykova, and Daniel Wichs.
Garbled RAM revisited. In Phong Q. Nguyen and Elisabeth Oswald, editors, Advances in
Cryptology – EUROCRYPT 2014, volume 8441 of Lecture Notes in Computer Science, pages
405–422, Copenhagen, Denmark, May 11–15, 2014. Springer, Berlin, Germany.

[GHRW14] Craig Gentry, Shai Halevi, Mariana Raykova, and Daniel Wichs. Outsourcing private RAM
computation. In 55th Annual Symposium on Foundations of Computer Science, pages 404–
413, Philadelphia, PA, USA, October 18–21, 2014. IEEE Computer Society Press.

[GKK+12] S. Dov Gordon, Jonathan Katz, Vladimir Kolesnikov, Fernando Krell, Tal Malkin, Mariana
Raykova, and Yevgeniy Vahlis. Secure two-party computation in sublinear (amortized) time.
In CCS, 2012.

[GKP+13] Shafi Goldwasser, Yael Tauman Kalai, Raluca A. Popa, Vinod Vaikuntanathan, and Nickolai
Zeldovich. How to run turing machines on encrypted data. In Ran Canetti and Juan A. Garay,
editors, Advances in Cryptology – CRYPTO 2013, Part II, volume 8043 of Lecture Notes in
Computer Science, pages 536–553, Santa Barbara, CA, USA, August 18–22, 2013. Springer,
Berlin, Germany.

[GLOS14] Sanjam Garg, Steve Lu, Rafail Ostrovsky, and Alessandra Scafuro. Garbled RAM from one-
way functions. Cryptology ePrint Archive, Report 2014/941, 2014. http://eprint.
iacr.org/2014/941.

[GLOV12] Vipul Goyal, Chen-Kuei Lee, Rafail Ostrovsky, and Ivan Visconti. Constructing non-malleable
commitments: A black-box approach. In 53rd Annual Symposium on Foundations of Com-
puter Science, pages 51–60, New Brunswick, NJ, USA, October 20–23, 2012. IEEE Computer
Society Press.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or A
completeness theorem for protocols with honest majority. In Alfred Aho, editor, 19th Annual
ACM Symposium on Theory of Computing, pages 218–229, New York City„ New York, USA,
May 25–27, 1987. ACM Press.

[GO96] Oded Goldreich and Rafail Ostrovsky. Software protection and simulation on oblivious RAMs.
J. ACM, 43(3):431–473, 1996.

[Gol87] Oded Goldreich. Towards a theory of software protection and simulation by oblivious RAMs.
In Alfred Aho, editor, 19th Annual ACM Symposium on Theory of Computing, pages 182–194,
New York City„ New York, USA, May 25–27, 1987. ACM Press.

[GOS06] Jens Groth, Rafail Ostrovsky, and Amit Sahai. Perfect non-interactive zero knowledge for np.
In Proceedings of Eurocrypt 2006, volume 4004 of LNCS, pages 339–358. Springer, 2006.

27

http://eprint.iacr.org/2014/941
http://eprint.iacr.org/2014/941

[IKLP06] Yuval Ishai, Eyal Kushilevitz, Yehuda Lindell, and Erez Petrank. Black-box constructions for
secure computation. In Jon M. Kleinberg, editor, 38th Annual ACM Symposium on Theory of
Computing, pages 99–108, Seattle, Washington, USA, May 21–23, 2006. ACM Press.

[IKNP03] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending oblivious transfers ef-
ficiently. In Dan Boneh, editor, Advances in Cryptology – CRYPTO 2003, volume 2729 of
Lecture Notes in Computer Science, pages 145–161, Santa Barbara, CA, USA, August 17–21,
2003. Springer, Berlin, Germany.

[IR89] Russell Impagliazzo and Steven Rudich. Limits on the provable consequences of one-way
permutations. In 21st Annual ACM Symposium on Theory of Computing, pages 44–61, Seattle,
Washington, USA, May 15–17, 1989. ACM Press.

[IR90] Russell Impagliazzo and Steven Rudich. Limits on the provable consequences of one-way
permutations. In Shafi Goldwasser, editor, Advances in Cryptology – CRYPTO’88, volume
403 of Lecture Notes in Computer Science, pages 8–26, Santa Barbara, CA, USA, August 21–
25, 1990. Springer, Berlin, Germany.

[LO13a] Steve Lu and Rafail Ostrovsky. Distributed oblivious RAM for secure two-party computation.
In Amit Sahai, editor, TCC 2013: 10th Theory of Cryptography Conference, volume 7785 of
Lecture Notes in Computer Science, pages 377–396, Tokyo, Japan, March 3–6, 2013. Springer,
Berlin, Germany.

[LO13b] Steve Lu and Rafail Ostrovsky. How to garble RAM programs. In Thomas Johansson and
Phong Q. Nguyen, editors, Advances in Cryptology – EUROCRYPT 2013, volume 7881 of
Lecture Notes in Computer Science, pages 719–734, Athens, Greece, May 26–30, 2013.
Springer, Berlin, Germany.

[LO14] Steve Lu and Rafail Ostrovsky. Garbled RAM revisited, part II. Cryptology ePrint Archive,
Report 2014/083, 2014. http://eprint.iacr.org/2014/083.

[LP09] Yehuda Lindell and Benny Pinkas. A proof of security of Yao’s protocol for two-party com-
putation. Journal of Cryptology, 22(2):161–188, April 2009.

[LP14] Huijia Lin and Rafael Pass. Succinct garbling schemes and applications. Cryptology ePrint
Archive, Report 2014/766, 2014. http://eprint.iacr.org/2014/766.

[OS97] Rafail Ostrovsky and Victor Shoup. Private information storage (extended abstract). In 29th
Annual ACM Symposium on Theory of Computing, pages 294–303, El Paso, Texas, USA,
May 4–6, 1997. ACM Press.

[Ost90] Rafail Ostrovsky. Efficient computation on oblivious RAMs. In 22nd Annual ACM Symposium
on Theory of Computing, pages 514–523, Baltimore, Maryland, USA, May 14–16, 1990. ACM
Press.

[PF79] Nicholas Pippenger and Michael J. Fischer. Relations among complexity measures. J. ACM,
26(2):361–381, 1979.

[PW09] Rafael Pass and Hoeteck Wee. Black-box constructions of two-party protocols from one-way
functions. In Omer Reingold, editor, TCC 2009: 6th Theory of Cryptography Conference, vol-
ume 5444 of Lecture Notes in Computer Science, pages 403–418. Springer, Berlin, Germany,
March 15–17, 2009.

28

http://eprint.iacr.org/2014/083
http://eprint.iacr.org/2014/766

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. In
Harold N. Gabow and Ronald Fagin, editors, 37th Annual ACM Symposium on Theory of
Computing, pages 84–93, Baltimore, Maryland, USA, May 22–24, 2005. ACM Press.

[SCSL11] Elaine Shi, T.-H. Hubert Chan, Emil Stefanov, and Mingfei Li. Oblivious RAM with
o((log n)3) worst-case cost. In Dong Hoon Lee and Xiaoyun Wang, editors, Advances in
Cryptology – ASIACRYPT 2011, volume 7073 of Lecture Notes in Computer Science, pages
197–214, Seoul, South Korea, December 4–8, 2011. Springer, Berlin, Germany.

[SvDS+13] Emil Stefanov, Marten van Dijk, Elaine Shi, Christopher W. Fletcher, Ling Ren, Xiangyao Yu,
and Srinivas Devadas. Path ORAM: an extremely simple oblivious RAM protocol. In Ahmad-
Reza Sadeghi, Virgil D. Gligor, and Moti Yung, editors, ACM CCS 13: 20th Conference on
Computer and Communications Security, pages 299–310, Berlin, Germany, November 4–8,
2013. ACM Press.

[Wee10] Hoeteck Wee. Black-box, round-efficient secure computation via non-malleability amplifica-
tion. In 51st Annual Symposium on Foundations of Computer Science, pages 531–540, Las
Vegas, Nevada, USA, October 23–26, 2010. IEEE Computer Society Press.

[WHC+14] Xiao Shaun Wang, Yan Huang, T.-H. Hubert Chan, Abhi Shelat, and Elaine Shi. SCORAM:
Oblivious RAM for secure computation. In Gail-Joon Ahn, Moti Yung, and Ninghui Li, edi-
tors, ACM CCS 14: 21st Conference on Computer and Communications Security, pages 191–
202, Scottsdale, AZ, USA, November 3–7, 2014. ACM Press.

[Yao82] Andrew Chi-Chih Yao. Protocols for secure computations (extended abstract). In 23rd Annual
Symposium on Foundations of Computer Science, pages 160–164, Chicago, Illinois, Novem-
ber 3–5, 1982. IEEE Computer Society Press.

A UMA2 to Full Security
Lemma A.1. Assume there exists a UMA2-secure GRAM scheme for programs with (leveled) uniform mem-
ory access, and a statistically secure ORAM scheme with (leveled) uniform memory access that protects the
access pattern but not the memory contents. Then there exists a fully secure GRAM scheme.

Proof. We prove the theorem in the case of a single memory D with uniform access to it, and the proof
naturally extends to the leveled case. We construct the new GRAM scheme in a black-box manner as
follows. Let (GData, GProg, GInput, GEval) be a UMA2-secure GRAM and let (OData,OProg) be an
ORAM scheme. We construct a new GRAM scheme (ĜData, ĜProg, ĜInput, ĜEval) as follows:

• ĜData(1κ, D): Execute (D∗) ← OData(1κ, D) followed by (D̃, s) ← GData(1κ, D∗). Output
D̂ = D̃ and ŝ = s. Note that OData does not require a key as it is a statistical scheme.

• ĜProg(1κ, 1logM , 1t, P, ŝ,m): Execute P ∗ ← OProg(1κ, 1logM , 1t, P) followed by (P̃ , sin) ←
GProg(1κ, 1logM

′
, 1t
′
, P ∗, ŝ,m) . Output P̂ = P̃ , ŝin = sin.

• ĜInput(1κ, x, ŝin): Note that x is valid input for P ∗. Execute x̃ ← GInput(1κ, x, ŝin), and output
x̂ = x̃.

• ĜEval
D̂
(P̂ , x̂): Execute y ← GEvalD̂(P̂ , x̂) and output y.

We show that the construction above given by (ĜData, ĜProg, ĜInput, ĜEval) is a fully secure GRAM
scheme. For the remainder of the proof, we consider the following notation. Let P1, . . . , P` be any sequence

29

of programs with polynomially-bounded run-times t1, . . . , t`, and let mj denote the sum of the running
times of the first j − 1 programs. Let D ∈ {0, 1}M be any initial memory data, let x1, . . . , x` be inputs and
(y1, . . . , y`) = (P1(x1), . . . , P`(x`))

D be the outputs given by the sequential execution of the programs on
D. Let (D̂0, ŝ) ← ĜData(1κ, D), and for i = 1 . . . `: (P̂i, ŝini) ← ĜProg(1κ, 1logM , 1ti , Pi, ŝ,mi), x̂i ←
ĜInput(1κ, xi, ŝini). Finally, we consider the sequential execution of the garbled programs for i = 1 . . . `:

y′i ← ĜEval
D̂i−1

(P̂i, x̂i) which updates the garbled database to D̂i.

Correctness. Our goal is to demonstrate that

Pr[(y′1, . . . , y
′
`) = (y1, . . . , y`)] = 1.

Since ĜEval in our construction directly calls the underlying GRAM scheme for evaluation, the cor-
rectness of the underlying scheme guarantees that (y′1, . . . , y

′
`) = (P ∗1 (x1), . . . , P

∗
` (x`))

D∗ . Then by the
correctness of the ORAM scheme, (P ∗1 (x1), . . . , P

∗
` (x`))

D∗ = (P1(x1), . . . , P`(x`))
D = (y1, . . . , y`).

Security. For any programs P1, . . . , P`, database D, and inputs x1, . . . , x`, let

REALD,{Pi,xi} = (D̂0, P̂i, x̂i
`

i=1)

Our goal is to construct a simulator Sim such that for all D, {Pi, xi}, we have that REALD,{Pi,xi} comp
≈

Sim(1κ, 1M , {1ti , yi}). We let OSim be the ORAM simulator, and USim be the simulator for the UMA2-
secure GRAM scheme. The procedure Sim proceeds as follows.

1. Compute (M ′,MemAccess) ← OSim(1κ, 1M , {1ti , yi}`i=1). Note that the statistical simulator can
only simulate the MemAccess and not D∗ (only its size). However, this is fine as USim does not need
D∗ to simulate since it is a UMA2-simulator.

2. Compute (D̃, {P̃i, x̃i}`i=1)← USim(1κ, 1M
′
, {1t′i , yi}`i=1,MemAccess), where t′i is the running time

of the oblivious program i.

3. Output (D̂0, P̂i, x̂i
`

i=1) = (D̃, {P̃i, x̃i}`i=1).

We now prove the output of the simulator is computationally indistinguishable from the real distribu-
tion. For any D, {Pi, xi}, we define a series of hybrid distributions Hyb0,Hyb1,Hyb2 with Hyb0 =

REALD,{Pi,xi}, and Hyb2 = Sim(1κ, 1M , {1ti , yi}`i=1), and argue that for j = 0, 1 we have Hybj
comp
≈

Hybj+1.

• Hyb0: This is the real distribution REALD,{Pi,xi}.

• Hyb1: Use the correctly generated (D∗) from ĜData and P ∗i from ĜProg and execute (P ∗1 (x1), . . .
, P ∗` (x`))

D∗ to obtain {yi} and a sequence of memory accesses MemAccess. Run (D̃, {P̃i, x̃i}`i=1)←
USim(1κ, 1M

′
, {1t′i , yi}`i=1,MemAccess) and output (D̂0, P̂i, x̂i

`

i=1) = (D̃, {P̃i, x̃i}`i=1).

• Hyb2: This is the simulated distribution Sim(1κ, 1M , {1ti , yi}`i=1).

We now show that adjacent hybrid distributions are computationally indistinguishable.

Hyb0

comp
≈ Hyb1 : LetA be a PPT distinguisher between these two distributions for someD, {Pi, xi}. We

construct an algorithm B that breaks the UMA2-security of the underlying GRAM scheme that proceeds as
follows. First, B runs (D∗)← OData(1κ, D), P ∗i ← OProg(1κ, 1logM , 1ti , Pi) and declares D∗, {P ∗i , xi)}

30

as the challenge database, programs and inputs for the UMA2-security GRAM game. The UMA2-security
challenger then outputs (D̃′, {P̃ ′i , x̃′i}`i=1) and B must output a guess whether it is real or simulated. In order
to do so, B sets (D̂′, {P̂ ′i , x̂′i}`i=1) = (D̃′, {P̃ ′i , x̃′i}`i=1) and forwards this as the challenge to A. B then
outputs the same guess as A.

Observe that if the UMA challenger outputs the real values, then (D̂′, {P̂ ′i , x̂′i}`i=1) is distributed iden-
tically as if it were generated from Hyb0, and if the UMA challenger outputs simulated values, then
(D̂′, {P̂ ′i , x̂′i}`i=1) is distributed identically as if it were generated from Hyb1. Therefore, A distinguishes
with the same probability as B, which is negligible by the UMA2-security of the underlying GRAM scheme.

Hyb1

comp
≈ Hyb2 : Let A be a PPT distinguisher between these two distributions for some D, {Pi, xi}.

We construct an algorithm B that breaks the security of the underlying ORAM scheme that proceeds as
follows. First, B announces D, {Pi, xi} as the challenge database, programs, and inputs for the ORAM
security game. The ORAM challenger then outputs (MemAccess′) which is either real or simulated. Then,
B computes (y1, . . . , y`) = (P1(x1), . . . , P`(x`))

D and runs the UMA2 simulator (D̃′, {P̃ ′i , x̃′i}`i=1) ←
USim(1κ, 1M

′
, {1t′i , yi},MemAccess′). Next, B sets (D̂′, {P̂ ′i , x̂′i}`i=1) = (D̃′, {P̃ ′i , x̃′i}`i=1) and forwards

this to A. B then outputs the same guess as A.
Observe that if the ORAM challenger outputs the real values, then (D̂′, {P̂ ′i , x̂′i}`i=1) is distributed iden-

tically as if it were generated from Hyb1, and if the ORAM challenger outputs simulated values, then
(D̂′, {P̂ ′i , x̂′i}`i=1) is distributed identically as if it were generated from Hyb2. Therefore, A distinguishes
with the same probability as B, which is negligible by the security of the underlying ORAM scheme.

B Simulating Garbled Circuits With Partial Garbled Inputs
Lemma B.1. Suppose there exists a garbling scheme (GCircuit,Eval) with the property that input wire
labels are generated independently and uniformly at random, and a semantically-secure symmetric-key en-
cryption scheme (G, E ,D). There exists a generic transformation into a garbling scheme (GCircuit′,Eval′)
with the additional feature that if C̃ ′ is a garbled circuit and x̃′ is a strict subset of input wire labels, then
(x̃′, C̃ ′)

comp
≈ (r, E(0)) where r is uniformly random.

Proof. We construct GCircuit′ as follows. First, sample a secret key sk ← G(1κ) and samples random
values ri it for each input bit i of the circuit subject to sk =

⊕
ri. The algorithm then calls C̃ ← GCircuit

and encrypts C̃ ′ := Esk(C̃) and outputs C̃ ′, and attaches ri to each zero and one label of lab (note that
this slightly changes the definition that labels must be independently uniform, though does not impact the
overall solution). Garbling an input bit remains the same. To evaluate a circuit, Eval′ takes each ri from each
garbled input label x̃′i and computes sk =

⊕
ri. It then decrypts C̃ := Dsk(C̃ ′) and then runs Eval(C̃, x̃)

where x̃ is x̃′ with the additional ri removed.
Clearly, this does not impact correctness. The simulator is also straightforward: CircSim′ runs the

underlying simulator CircSim and encrypts the resulting simulated circuit by itself. Finally, we show that
this additional property holds. Suppose we have (x̃′, C̃ ′), where x̃′ is now a strict subset of input labels for
0/1. Then each label is just a label of the underlying scheme which we assumed to be uniformly random
along with ri. However, without even a single rj , the remaining ri are uniformly random and independent
of sk. Hence, x̃′ is indeed uniformly random and independent of anything else, and by semantic security of
the encryption scheme, C̃ ′ = Esk(C̃)

comp
≈ Esk(0).

31

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

