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Abstract

We give an example of a boolean function whose information complexity is exponentially
smaller than its communication complexity. Our result simplifies recent work of Ganor, Kol and
Raz [GKR14a, GKR14b].

1 Introduction

A fundamental question in the study of communication complexity is whether the information com-
plexity of a communication problem is the same as its communication complexity. If the messages
in a protocol reveal a small amount of information, does that mean that the protocol can be simu-
lated using few bits of communication? When the protocol is deterministic and one-way, a precise
answer was given by Shannon [Sha48]. He defined the notion of the entropy, H(M), to measure
the information content of a message M , and showed that the number of bits of communication
can always be made at most H(M) + 1 in expectation, which is tight.

For randomized and interactive (multi-round) protocols, this question was made explicit in a
sequence of works. Chakrabarti, Shi, Wirth and Yao [CSWY01] defined what we now call the
external information cost of a protocol, which measures the information learned about the inputs
by an external observer of the messages. If M denotes the messages, R denotes the shared random-
ness and X,Y the inputs, the external information cost is defined to be the mutual information
I (XY : M |R). Barak, Braverman, Chen and Rao [BBCR13] defined the internal information cost
of a protocol as I (X : M |Y R) + I (Y : M |XR), the information learned by the parties about each
others’ inputs. The internal information cost is never larger than the external information cost.

For bounded-round protocols, Harsha, Jain, McAllester and Radhakrishnan [HJMR10] (see also
[BG14]) showed how to give optimal simulations in terms of their external information cost, and
Braverman and Rao [BR11] gave near optimal simulations in terms of internal information cost
(upto a 1 +o(1) factor). However, many of the best known simulations for interactive protocols are
not known to be optimal. We know how to simulate any interactive protocol with external infor-
mation cost I and communication C using a protocol with communication O(I log2C) [BBCR13].

∗Computer Science and Engineering, University of Washington, anuprao@cs.washington.edu. Supported by an
Alfred P. Sloan Fellowship, the National Science Foundation under agreement CCF-1016565, an NSF Career award,
and by the Binational Science Foundation under agreement 2010089.
†Computer Science and Engineering, University of Washington, makrand@cs.washington.edu. Supported by

the National Science Foundation under agreement CCF-1016565, and by the Binational Science Foundation under
agreement 2010089.

1

 

ISSN 1433-8092 

Electronic Colloquium on Computational Complexity, Report No. 57 (2015)



We also know how to simulate a protocol with internal information I and communication C us-
ing a protocol with communication O(

√
IC logC) [BBCR13]. Braverman [Bra12] showed how to

simulate any protocol with internal information cost I using communication 2O(I). Very recently,
Ramamoorthy and Rao [RR15] gave better simulations when one party learns much less than the
other.

These results are closely tied to communication lower bounds. Information theory based meth-
ods for proving lower bounds on the communication complexity of disjointness [KS92, Raz92,
BYJKS02] can be seen as precursors to some of them. They have been used to give answers
to longstanding questions like the direct sum [BBCR13] and direct product [BRWY13] questions
in communication complexity.

Braverman and Weinstein [BW12] (see also [KLL+12]) showed that any boolean function f(x, y)
that can be computed with internal information cost I must have a (nearly) monochromatic rect-
angle (namely a subset R = S × T of the inputs where the function is essentially constant), and so
large discrepancy. This means that upper bounds on the size of monochromatic rectangles cannot
be used to prove lower bounds on information complexity1. So for a long time, all known methods
for proving lower bounds for communication failed to prove lower bounds on functions that have
large (0 and 1) monochromatic rectangles. This pointed to a significant weakness in our ability
to prove new lower bounds in communication complexity, since there are certainly functions with
high communication complexity that do have large monochromatic rectangles. One can plant large
monochromatic rectangles into a random function to obtain such an example with high probability.

In a remarkable sequence of papers, Ganor, Kol and Raz [GKR14a, GKR14b] showed that
there is a function with internal information cost I that requires 2Ω(I) communication. This proved
that Braverman’s simulation [Bra12] is tight. Their proof gives a method to prove communication
lower bounds on functions that have many large monochromatic rectangles, potentially leading to
fundamentally different methods to prove lower bounds on communication problems. Subsequently,
Fontes et. al. [FJK+15] showed that the techniques used in [GKR14b] can not be used to separate
information and communication in the non-distributional setting as defined in [Bra12].

Building on the work of [GKR14b], we give a new proof of their main result. Our proofs are
shorter, and we find them more intuitive. We use the notion of a fooling distribution to prove the
communication lower bounds. We define a distribution on inputs p(x, y), two disjoint equi-probable
events E0, E1, and a boolean function h(x, y), such that h(x, y) = b when the inputs are sampled
conditioned on Eb. The inputs to the communication protocol are sampled conditioned on the
event E = E0 ∨ E1. We show that there is a protocol with internal information cost O(log k) that
computes h on this distribution, yet no protocol with communication significantly smaller than k
can compute the same function. The communication lower bound is proved by showing that if
the length of the messages m computed by a protocol operating on these inputs is much less than
k, then p(m|E0) ≈ p(m) ≈ p(m|E1), where ≈ denotes closeness of the distributions in statistical
distance. This proves that the communication complexity of h is close to k, since if the protocol
computes h, the support of p(m|E0) must be nearly disjoint from the support of p(m|E1). The key
concept introduced in [GKR14b] to prove lower bounds is the notion of the relative discrepancy.
Low relative discrepancy does imply the existence of a fooling distribution, but the converse does
not appear to be true (more details in Appendix C).

Next we define the function for which we give a separation on information and communication,

1The information based methods for proving lower bounds on disjointness also prove that disjointness does not
have large 1-monochromatic rectangles.
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Probability space: J ∈ [n] is uniformly random. X,Y : [k]<n → [k] are sampled uniformly at
random subject to the constraint that for any z ∈ [k]<n, X(z) = Y (z) if |z| < J or if z is
consistent. F,G : [k]n → {0, 1} are uniformly random.

Events E0, E1, E: Let E0 denote the event that for all consistent z, X(z) = Y (z) and F (z) = G(z)
(when |z| = n). Let E1 denote the event that for all consistent z, X(Z) = Y (Z) and
F (z) 6= G(z) (when |z| = n). Note that E0 and E1 are disjoint, and are equally likely. Let
E = E0 ∨ E1.

Input distribution: J,X, Y, F,G are sampled conditioned on the event E .

Figure 1: Distribution p(j, x, y, f, g) for the k-ary pointer jumping problem

and give a high level sketch of the proof of the communication lower bound.

2 k-ary Pointer Jumping

For a parameter k, we work with the alphabet [k] = {1, 2, . . . , k}. Let X,Y : [k]<n → [k] be
functions mapping strings of length less than n to a single character, and let J ∈ [n] be a number.
Let z<j denote the prefix of z of length j − 1. We say a string z ∈ [k]<n is consistent with X,Y, J ,
if |z| ≥ J , and X(z<J) + Y (z<J) = zJ mod k. Let F,G : [k]n → {0, 1} be boolean functions.

In the k-ary pointer jumping problem, two parties are given (X,F ) and (Y,G) and need to
communicate to compute F (z) + G(z) mod 2 at any consistent z. The distribution on inputs,
described in Figure 1, ensures that F (z) +G(z) mod 2 is the same for every consistent z.

There is a trivial protocol for this problem that has communication O(n log k): in each step
Alice and Bob send each other X(z<r), Y (z<r) and set zr so that zr = X(z<r) + Y (z<r) mod k.
Even though neither party knows the value of J , they compute a consistent z, and so can compute
F (z)+G(z) mod 2 with two more bits of communication. We prove that there is a low information
solution for this task, but no low communication solution. Setting n = 2k, we exhibit a correct
protocol with information cost O(log k) (Theorem 1), even though no protocol with communication
Ω(k) can succeed (Theorem 2).

The low information protocol for the problem is quite similar to the trivial protocol. In each
step, the parties send each other the value X(z<r), Y (z<r) with probability 1 − 1

logn and send

a uniformly random value otherwise. The parties abort the protocol if they experience logn
log logn

rounds where the messages they sent were not the same. The distribution on inputs ensures that
they will sample a consistent z with high probability. When the parties sample a consistent z, the
messages sent are almost always sampled from a distribution that the receiving party knows, while
if they sample a z that is not consistent, the protocol aborts shortly after the inconsistency. These
properties can be used to show that the information cost of the protocol is small. In Section 5, we
show:

Theorem 1. The internal information cost of the k-ary pointer jumping problem is at most

O(log(k log n) · 2
2 logn
k ).

To prove the communication lower bound, consider any protocol with ` bits of communication
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that solves the k-ary pointer jumping problem. Without loss of generality, we may assume that
the protocol is deterministic, since any randomness can always be fixed to obtain a deterministic
protocol that succeeds with high probability. Let M denote the messages of the protocol. If the
protocol solved the k-ary pointer jumping problem, then the statistical distance between p(m|E0)
and p(m|E1) would be close to 1, since these distributions would have nearly disjoint supports. We
prove a lower bound on the communication by showing that if ` is small, then the distance between
these distributions is close to 0. It will be convenient to state our results in terms of the function
η : [0,∞)→ [0, 1] defined as

η(α) =


0 if α = 0,

α log(1/α) if α ∈ (0, 1/e),
log e
e if α ≥ 1/e.

(1)

One can check that η is non-decreasing, continuous, and concave. We prove:

Theorem 2. If the protocol has communication complexity `, then p(m|E0)
γ
≈ p(m)

γ
≈ p(m|E1),

with γ = 4(2e`/k + 2`
√

2`/n+ η(
√

2`/n))1/3.

Theorem 2 implies that ` = Ω(min{k, log n}) for any protocol that solves the k-ary pointer
jumping problem for the given distribution, which implies that ` = Ω(k), if we choose n = 2k.

2.1 High-level Proof Sketch for Theorem 2

The low information protocol, described above, works by computing a consistent string with high
probability. The first step of the lower bound proof is to show that neither player can can learn
much information about which strings are consistent, when the inputs are sampled from p. Let S
be the set of consistent strings z ∈ [k]≤n, and let X≤J , Y≤J denote the restriction of X,Y to inputs
of length at most J . Let XJ , YJ denote the restriction of X,Y to inputs of length J . Then we
prove:

Lemma 3.
I (M : S|Y≤JJ) ≤ I (M : XJ |Y≤JJ)

I (M : S|X≤JJ) ≤ I (M : YJ |X≤JJ)

}
≤ 2`

n
.

These equations bound the information learned by each party about S. Lemma 3 is proved
via a somewhat subtle application of the chain rule. The proof is delicate because J is essentially
determined by X,Y . The bound we obtain here is more or less tight. The parties can use O(`)
bits of communication and hashing to compute a set of size n/2` that contains J . If the parties
then reveal one bit of information about a random coordinate in this set, the information revealed
about XJ will be Ω(2`/n). Lemma 3 does not yet complete the proof, because the protocol may
learn a lot of information when the inputs are conditioned on the event E = E0 ∨ E1.

Next, we show that the parties do not learn much information about the values of X,F, Y,G
restricted to S (denoted XS , FS , YS , GS). Since for every z, p(z ∈ S|x≤jj) ≤ 1/k, one might hope
that I (M : XSFS) can be bounded by I (M : XF ) /k ≤ `/k. In fact, if S was independent of
M,X,F , such a bound would be easy to prove using the chain rule for information. We prove a
generalization of Shearer’s Lemma [CGFS86, Rad03], which allows us to make such a claim even
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when M and S are dependent. This lemma may be of independent interest. Below US denotes the
restriction of U to the coordinates in S. We show2:

Lemma 4. Suppose U = U1, . . . , Ut are mutually independent, C ∈ {0, 1}`, S ⊆ [t], and V are such
that U is independent of SV , U − C − SV and for all i ∈ [t], p(i ∈ S) ≤ 1/k. Then

I (C : US |V S) ≤ ` ·
(

2e

k
+ 2
√
I (C : S)

)
+ η

(√
I (C : S)

)
.

Conditioned on any fixing of X≤JY≤JJ , we have that XF and Y G are independent, and since
M are the messages in a communication protocol, XF −M −Y G holds (see Proposition 16). Thus
Lemmas 3, 4, and convexity can be used to show:

I (M : XSFS |X≤JY≤JJ)

I (M : YSGS |X≤JY≤JJ)

}
≤ 2e`/k + 2`

√
2`/n+ η

(√
2`/n

)
. (2)

The events E0 and E1 both assert that two random variables are equal — E0 is the event that
XSFS = YSGS , and E1 is the event that XSFS = YS , GS , where G is the function 1 − G. To
complete the proof, we show:

Lemma 5. If A,B are uniform and independent, and A − C − B, then p(c)
ε
≈ p(c|a = b), with

ε = 2I (C : A)1/3 + 2I (C : B)1/3.

Lemma 5 together with (2) and another convexity argument completes the proof of Theorem 2.

2.2 Organization

Following the preliminaries, we give a detailed proof of Theorem 2 in Section 4, assuming the 3
lemmas described in the proof overview. In Section 4.1 we prove the three lemmas. In Section 5,
we bound the information complexity of the k-ary pointer jumping problem.

3 Preliminaries

3.1 Probability Spaces and Variables

Unless otherwise stated, logarithms in this text are computed base two. Random variables are
denoted by capital letters (e.g. A) and values they attain are denoted by lower-case letters (e.g.
a). Events in a probability space will be denoted by calligraphic letters (e.g. E). Given a =
a1, a2, . . . , an, we write a≤i to denote a1, . . . , ai. We define a<i similarly. We write aS to denote the
projection of a to the coordinates specified in the set S ⊆ [n]. [k] to denotes the set {1, 2, . . . , k},
and [k]<n denotes the set of all strings of length less than n over the alphabet [k], including the
empty string. |z| denotes the length of the string z.

We use the notation p(a) to denote both the distribution on the variable a, and the number
Prp[A = a]. The meaning will be clear from context. We write p(a|b) to denote either the distri-
bution of A conditioned on the event B = b, or the number Pr[A = a|B = b]. Given a distribution
p(a, b, c, d), we write p(a, b, c) to denote the marginal distribution on the variables a, b, c (or the
corresponding probability). We often write p(ab) instead of p(a, b) for conciseness of notation. If
W is an event, we write p(W) to denote its probability according to p. We denote by Ep(a) [g(a)]
the expected value of g(a) in p. We write A−M −B to assert that p(amb) = p(m) ·p(a|m) ·p(b|m).

2Recall that A−C−B means that p(acb) = p(c) ·p(a|c) ·p(b|c); in words, after fixing C, A and B are independent.
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3.2 Statistical Distance

For two distributions p, q, the statistical distance |p(a) − q(a)| between them is defined to be
|p(a) − q(a)| = maxQ (p(a ∈ Q)− q(a ∈ Q)). We say p and q are ε-close if |p − q| ≤ ε and write

p
ε
≈ q.

Proposition 6. If p(ab), q(ab) are such that p(a) = q(a), then |p(b)−q(b)| = Ep(a) [|p(b|a)− q(b|a)|].

3.3 Divergence and Mutual Information

The divergence between p, q is defined to be
p(A)

q(A)
=
∑

a p(a) log p(a)
q(a) . For three random variables

A,B,C with underlying probability distribution p(a, b, c), and an event E in the same probability

space, we will use the shorthand
A|bcE
A|c

=
p(A|bcE)

p(A|c)
, when p is clear from context. The mutual

information between A,B conditioned on C is defined as

I (A : B|C) = E
c,b

[
A|bc
A|c

]
= E

c,a

[
B|ac
B|c

]
=
∑
a,b,c

p(abc) log
p(a|bc)
p(a|c)

.

3.4 Basic Divergence Facts

The proofs of the following basic facts can be found in [CT06]:

Proposition 7. If A ∈ {0, 1}`, then I (A : B) ≤ `.

Proposition 8 (Chain Rule). If a = a1, . . . , as, then
p(A)

q(A)
=
∑s

i=1 Ep(a)

[
p(Ai|a<i)
q(Ai|a<i)

]
.

Proposition 9 (Pinsker’s Inequality). |p(a)− q(a)|2 ≤
p(A)

q(A)
.

Proposition 10.
p(A)

q(A)
≥ 0.

3.5 Divergence Inequalities

The following propositions bound the change in divergence when extra conditioning is involved.
These were proved in [BRWY13, GKR14b]. For completeness, we give full proofs of all of them in
Appendix A.

Proposition 11. For an eventW and variables A,M , Em|W

[
A|mW
A

]
≤ log 1

p(W) +I (A : M |W).

Proposition 12. Ep(b)

[
p(A|b)
q(A)

]
≥

p(A)

q(A)
.
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Proposition 13. Ep(b)

[
p(A|b)
p(A)

]
≤ Ep(b)

[
p(A|b)
q(A)

]
.

Proposition 14. Let p, q be distributions on bits. Then
p

q
≥ p(1) log p(1)

e·q(1) .

3.6 Communication Complexity

We briefly describe basic properties of communication protocols that we need. For more details
see the book by Kushilevitz and Nisan [KN97]. The communication complexity of a protocol is the
maximum number of bits that may be exchanged by the protocol. For a deterministic protocol π,
let π(x, y) denote the messages of the protocol on inputs x, y and define events,

Sm = {x|∃y such that π(x, y) = m}, Tm = {y|∃x such that π(x, y) = m}.

Proposition 15 (Messages Correspond to Rectangles). π(x, y) = m ⇐⇒ x ∈ Sm and y ∈ Tm.

Proposition 15 implies:

Proposition 16 (Markov Property of Protocols). Let X and Y be inputs to a deterministic com-
munication protocol with messages M . If X and Y are independent then X −M − Y .

4 Communication lower bound

We shall prove that p(m)
γ
≈ p(m|E0). The bound for the event E1 is analogous. We first give the

proof assuming Lemmas 5, 3, and 4. Then we prove the lemmas.
By Lemma 3, I (M : YJS|X≤JJ) = I (M : YJ |X≤JJ) ≤ 2`/n. After fixing x≤j , j, S is deter-

mined by YJ . For any such fixing, we have p(z ∈ S|x≤jj) ≤ 1/k, XF is independent of Y G and
(by Proposition 16), XF −M − SYJ . Thus we can apply Lemma 4 to conclude that

I (M : XSFS |SYJx≤jj) ≤ 2e`/k + 2`
√

I (M : YJS|x≤jj) + η

(√
I (M : YJS|x≤jj)

)
.

Taking the expectation over the choice of x≤jj, and using the concavity of the square-root and η:

I (M : XSFS |Y≤JX≤jJ) ≤ 2e`/k + 2`
√
I (M : YJS|X≤JJ) + η

(√
I (M : YJS|X≤JJ)

)
≤ 2e`/k + 2`

√
2`/n+ η

(√
2`/n

)
.

The same bound applies to I (M : YSGS |Y≤JX≤JJ). For each fixing of x≤jy≤jj, we have XSFS −
M − YSGS . Thus we can apply Lemma 5 to conclude that

|p(m|x≤jy≤jj)−p(m|x≤jy≤jj, xsfs = ysgs)| ≤ 2 3

√
I (M : XSFS |x≤jy≤jj)+2 3

√
I (M : YSGS |x≤jy≤jj).
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Since p(x≤jy≤jj) = p(x≤jy≤jj|xsfs = ysgs), we can use Proposition 6 to bound

|p(m)− p(m|E0)| = |p(m)− p(m|xsfs = ysgs)|
≤ E

p(x≤jy≤jj)
[|p(m|x≤jy≤jj)− p(m|x≤jy≤jj, xsfs = ysgs)|]

≤ E
p(x≤jy≤jj)

[
2 3

√
I (M : XSFS |x≤jy≤jj) + 2 3

√
I (M : YSGS |x≤jy≤jj)

]
≤ 2 3

√
I (M : XSFS |X≤jY≤JJ) + 2 3

√
I (M : YSGS |X≤JY≤JJ)

≤ 4 3

√
2e`/k + 2`

√
2`/n+ η

(√
2`/n

)
,

where the second last inequality follows from the concavity of 3rd-root over non-negative reals.

4.1 Proofs of the Lemmas

4.1.1 Proof of Lemma 3

Once Y<JJ are fixed, S is determined by XJ . Thus I(M ;S|Y≤JJ) ≤ I(M ;XJ |Y≤JJ), and similarly
I(M ;S|X≤JJ) ≤ I(M ;YJ |X≤JJ). Since X<J = Y<J , we have

I (M : XJ |Y≤JJ) = I (M : XJ |YJX<JJ) =
∑
m

p(m) E
yxj|m

[
Xj |myjx<jj
Xj |yjx<jj

]
. (3)

Recall that M = m is equivalent to the events Sm ∧ Tm, where Sm, Tm are as in Proposition
15. After fixing x<jj, Xj is independent of Yj (and hence Tm). So by Proposition 16, (3) can be
rewritten

∑
m

p(Sm)p(Tm|Sm) E
xj|SmTm

[
Xj |Smx<jj
Xj |x<jj

]
≤
∑
m

p(Sm) E
xj|Sm

[
Xj |Smx<jj
Xj |x<jj

]
,

where the inequality follows from the fact that Ea [h(a)] ≥ p(W)Ea|W [h(a)], for any non-negative
function h. Since J is independent of X (and hence Sm), we can use the chain rule to write the
inner expectation as

1

n

∑
m

p(Sm)
X|Sm
X

≤ 1

n

∑
m

p(Sm) log
1

p(Sm)
≤ 2`

n
,

where the second inequality follows from Proposition 11 and the third from the fact that for
0 ≤ γ ≤ 1, it holds that γ log(1/γ) ≤ log e

e < 1.

4.1.2 Proof of Lemma 4

We shall prove:

Claim 17. I (C : US |V S) ≤
∑t

i=1 Ecu

[
p(i ∈ S|c) ·

Ui|cu<i
Ui|u<i

]
.
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Let W denote the event that p(i ∈ S|c) ≥ 2e/k +
√
I (C : S) for some i ∈ [t]. W is determined

by C. We show:

Claim 18. p(W) ≤
√

I (C : S).

Using the Claims 17 and 18:

I (C : US |V S) ≤ p(W)

t∑
i=1

E
cu|W

[
Ui|cu<i
Ui|u<i

]
+ (2e/k +

√
I (C : S)) ·

t∑
i=1

E
cu

[
Ui|cu<i
Ui|u<i

]
.

Since W is determined by c, we have p(ui|cu<iW) = p(ui|cu<i). Thus the chain rule gives:

I (C : US |V S) ≤ p(W)
t∑
i=1

E
cu|W

[
Ui|cu<iW
Ui|u<i

]
+ (2e/k +

√
I (C : S))

t∑
i=1

E
cu

[
Ui|cu<i
Ui|u<i

]

= p(W) E
c|W

[
U |cW
U

]
+ (2e/k +

√
I (C : S))E

c

[
U |c
U

]
By Proposition 11 and Claim 18,

I (C : US |V S) ≤ p(W)(log(1/p(W)) + I (U : C|W)) + (2e/k +
√

I (C : S)) · I (U : C)

≤ η(p(W)) + p(W) · I (U : C|W) +
√
I (C : S) · I (U : C) + 2eI (U : C) /k

≤ η(
√

I (C : S)) + 2
√

I (C : S)`+ 2e`/k,

where we used the fact that η (see (1)) is a non-decreasing function. It only remains to prove the
claims:

Proof of Claim 17. For i ∈ [t], set U ′i = Ui if i ∈ S and set U ′i =⊥ otherwise. We have that
I (C : US |V S) = I (C : U ′1U

′
2 . . . U

′
t |V S), so by the chain rule, we get

I (C : US |V S) = E
cuvs

[
t∑
i=1

U ′i |cu′<ivs
U ′i |u′<ivs

]
= E

cuvs

[∑
i∈s

Ui|cu′<ivs
Ui|u′<ivs

]
,

since when i /∈ S, U ′i =⊥ (and so the divergence is 0) and when i ∈ S, U ′i = Ui. By assumption, U
is independent of V S and U − C − V S, so we can write:

=
t∑
i=1

E
cu

[
p(i ∈ S|c) ·

Ui|cu′<i
Ui|u′<i

]
≤

t∑
i=1

E
cu

[
p(i ∈ S|c) ·

Ui|cu<i
Ui|u<i

]
, (4)

by Proposition 12, and the fact that p(ui|u′<i) = p(ui) = p(ui|u<i).

Proof of Claim 18. Define Si = 1 if i ∈ S and 0 otherwise. By Proposition 14, whenever c is bad,

S|c
S
≥

Si|c
Si

≥ p(i ∈ S|c)
(

log
k · p(i ∈ S|c)

e

)
≥
√
I (C : S).

Since I (C : S) = Ec

[
S|c
S

]
, the claim follows from Markov’s inequality.

9



4.1.3 Proof of Lemma 5

We assume I (C : A) , I (C : B) ≤ 1, since otherwise the Lemma is trivially true. For brevity, set

α3 = I (C : A) = E
c

[
A|c
A

]
and β3 = I (C : B) = E

c

[
B|c
B

]
.

Call c bad if
A|c
A

≥ α2 or
B|c
B

≥ β2, and good otherwise. By Markov’s inequality, the

probability that C is bad is at most α+β. To prove Lemma 5, we need the following Claim proved
in [GKR14b]. For completeness, we include the short proof in Appendix B:

Claim 19. If A,B ∈ [T ] are independent, A is γ1-close to uniform and B is γ2-close to uniform.
Then, p(a = b) ≥ 1−γ1−γ2

T .

When c is good, Pinsker’s inequality (Proposition 9) and Claim 19 imply that

p(c|a = b) =
p(c) · p(a = b|c)

p(a = b)
≥ (1− α− β) · p(c). (5)

For any set Q, (5) implies that

p(c ∈ Q)− p(c ∈ Q|a = b) ≤
∑

c∈Q,c bad

p(c) +
∑

c∈Q,c good

(p(c)− p(c|a = b))

≤ α+ β +
∑
c

p(c)(α+ β) ≤ 2α+ 2β,

as required.

5 Information upper bound

The low information protocol is given in Figure 2. The protocol is parameterized by ε.

Lemma 20. The protocol outputs the correct answer with probability at least 1− 4ε.

Proof. Since whether a sample z with |z| ≥ J is consistent or not is determined solely by the J th

step, the probability that the parties sample a z with |z| ≥ J and z inconsistent is at most 2ε.
Given that this event does not happen, the probability that the parties abort in a particular step
is at most (2ε)r−1, since to abort one of them must choose to send uniform values in at least r− 1
steps where their inputs are equal. By the union bound, the probability that the parties abort in
any step is at most n(2ε)r−1. If neither of these bad events happens, the protocol computes the
correct answer. Thus the probability of making an error is at most 2ε + n(2ε)r−1 = 4ε, by the
choice of r.

The following theorem proves that the information cost of the protocol is small.

Theorem 21. If M denotes the messages in the protocol of Figure 2,

I (M : XF |Y GE)

I (M : Y G|XFE)

}
≤ 2 log(k/ε) · (1 + 2ε · log n · 2

2 logn
k log(1/2ε) ).

10



Input: Alice is given (x, f), Bob is given (y, g). Both know a parameter ε ∈ (0, 1).
Output: f(z) + g(z) mod 2 for some consistent z.

Set z to be the empty string;

Set r = d logn
log(1/2ε) + 2e ;

for i = 1, 2, . . . , n do

Alice sets ai =

{
x(z<i) with probability 1− ε
uniform element of [k] with probability ε

,

Bob sets bi =

{
y(z<i) with probability 1− ε
uniform element of [k] with probability ε

;

Send mi = ai, bi to each other;
Set w ∈ [k] so that w = ai + bi mod k, and append w to the string z;
if i ≥ r and ai′ 6= bi′ for all i′ with i− r + 1 ≤ i′ ≤ i then

Terminate the protocol;
end

end
Send f(z), g(z);

Figure 2: Protocol πε

Setting ε = 1/ log n gives Theorem 1. To prove the Theorem 21, we bound I (M : XF |Y GE).
The second term is bounded in the same way. By the chain rule, we can write

I (M : XF |Y GE) = E
xfyg|E

[
M |xfygE
M |ygE

]
= E

mxfyg|E

 |m|∑
i=1

Mi|m<ixfygE
Mi|m<iygE

 .
We prove the following claim, which bounds the contribution to the divergence of each possible

message:

Claim 22.

Mi|m<ixfygE
Mi|m<iygE


= 0 if i ≤ n and x(z<i) = y(z<i),

≤ log(k/ε) if i ≤ n and x(z<i) 6= y(z<i),

= 1 if i = n+ 1.

Before proving Claim 22, we show how to use it to bound the information. Set Qi = 1 if
|M | ≥ i and X(Z<i) 6= Y (Z<i), and 0 otherwise. Claim 22 implies that I (M : FX|Y GE) ≤
1 + log(k/ε) · E

[∑n
i=1Qi

∣∣∣E], so it only remains to bound E
[∑n

i=1Qi

∣∣∣E].
Claim 23.

E

[
n∑
i=1

Qi

∣∣∣E] ≤ 1 +
2rε

(1− 1/k)r
≤ 1 + 2ε · log n · 2

2 logn
k log(1/2ε) .

Claims 22 and 23 complete the proof of Theorem 21. We prove them next.
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Proof of Claim 22. When i = n+ 1, a direct calculation shows

Mn+1|m≤nxfygE
Mn+1|m≤nygE

= 1 · log(1/2) = 1.

For the other two cases, we use Proposition 13 to bound the terms corresponding to each i. Set
q(myg|E) = p(m|yE , x = y). By Proposition 13, when i ≤ n we have

Mi|m<ixfygE
Mi|m<iygE

≤
p(Mi|m<ixfygE)

q(Mi|m<iygE)
.

If x(z<i) = y(z<i), q(mi|m<iygE) = p(mi|m<ixfygE), proving the first bound. If x(z<i) 6=
y(z<i), then p(Ai = a|m<ixfygE) = q(Ai = a|m<iygE), except when a = x(z<i) or a = y(z<i).
Thus the divergence can be bounded by the contribution of these two values:

p(Mi|m<ixfygE)

q(Mi|m<iygE)
= (1− ε+ ε/k) log

1− ε+ ε/k

ε/k
+ (ε/k) log

ε/k

1− ε+ ε/k

≤ log
1− ε+ ε/k

ε/k
≤ log(k/ε),

as required.

Proof of Claim 23. Let T be such that MT is the last message sent in the protocol. Let W be
the event that T ≥ J and Z sampled by the protocol is not consistent. Since p(W|E) ≤ 2ε, and

E
[∑n

i=1Qi

∣∣∣¬WE] ≤ 1,

E

[
n∑
i=1

Qi

∣∣∣E] ≤ 2ε · E

[
n∑
i=1

Qi

∣∣∣WE]+ 1.

If T ≥ J ,
∑n

i=1Qi =
∑T

i=J Qi ≤ T − J , so we get E
[∑n

i=1Qi

∣∣∣WE] ≤ 2ε · E [T − J |WE ]. Note

that T − J roughly behaves like a geometric random variable. We have

E [T − J |WE ] ≤ p(T − J ≤ r|WE)r + p(T − J > r|WE)(r + E [T − J |WE ])

≤ (1− 1/k)rr + (1− (1− 1/k)r)(r + E [T − J |WE ])

⇒ E [T − J |WE ] ≤ r

(1− 1/k)r
,

as required. The second inequality follows from the fact that 1/(1− 1/k) ≤ 22/k, for k ≥ 2, and by
the choice of r.
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A Proofs of Basic Divergence Inequalities

Proof of Proposition 11.

E
m|W

[
A|mW
a

]
− I (A : M |W) =

∑
am

p(am|W) log
p(a|mW) · p(a|W)

p(a) · p(a|mW)

=
∑
a

p(a|W) log
p(a|W)

p(a)

≤
∑
a

p(a|W) log
p(W|a)

p(W)
≤ log

1

p(W)
.

Proof of Proposition 12.

E
p(b)

[
p(A|b)
q(A)

]
−

p(A)

q(A)
=
∑
a,b

p(ab) log
p(a|b) · q(a)

q(a) · p(a)

= E
p(b)

[
p(A|b)
p(A)

]
≥ 0,

by Proposition 10.

Proof of Proposition 13.

E
p(b)

[
p(A|b)
q(A)

]
− E
p(b)

[
p(A|b)
p(A)

]
=
∑
a,b

p(ab)

(
log

p(a|b)
q(a)

− log
p(a|b)
p(a)

)

=
∑
a,b

p(ab) log
p(a)

q(a)
=

p(A)

q(A)
≥ 0,

by Proposition 10.

Proof of Proposition 14. Let p(1) = γ, q(1) = ε. Then

p

q
= γ log(γ/ε) + (1− γ) log(1− γ)/(1− ε)

≥ γ log(γ/ε) + (1− γ)(−γ log e)

≥ γ(log(γ/ε)− log e) = γ log
γ

eε
,

where we used the fact that log(1− γ)/ log e = ln(1− γ) ≥ −γ.
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B Proof of Claim 19

For each i, let p(A = i) = 1/T + αi and p(B = i) = 1/T + βi. Then
∑

i αi =
∑

i βi = 0, and
αi, βi ≥ −1/T . Using these facts,

p(a = b) =
∑
i

(1/T + αi)(1/T + βi)

= 1/T +

∑
i αi
T

+

∑
i βi
T

+
∑
i

αiβi = 1/T +
∑
i

αiβi.

To lower bound the above, we will only consider the negative terms in the summation:

p(a = b) ≥ 1/T +
∑

i:αi>0,βi<0

αiβi +
∑

i:αi<0,βi>0

αiβi ≥ 1/T − (1/T )
∑
i:αi>0

αi − (1/T )
∑
i:βi>0

βi.

∑
i:αi>0 αi is the statistical distance between A and uniform and likewise for B. So, we get,

p(a = b) ≥ 1− γ1 − γ2

T
.

C Relative Discrepancy and Fooling Distributions

Let f(x, y) be a boolean function and q(x, y) be a distribution such that the events f = 0 and
f = 1 are equi-probable under q. Then, f has (ε, δ) relative discrepancy under q if there exists a
distribution u(x, y) such that for every rectangle S × T ,

q(x ∈ S, y ∈ T |f = 0)

q(x ∈ S, y ∈ T |f = 1)

}
≥ (1− ε)u(x ∈ S, y ∈ T ) if u(x ∈ S, y ∈ T ) ≥ δ. (6)

[GKR14b] proved:

Lemma 24 ([GKR14b]). If f has (ε = 1/3, δ) relative discrepancy under q, then any protocol that
computes f has communication Ω(log 1/δ).

Here we show that low relative discrepancy implies the existence of a fooling distribution.

Claim 25 (Relative Discepancy implies Fooling Distribution). If f has relative discrepancy (ε, 2−2`)
then there exists a distribution u such that if m ∈ {0, 1}` denote the messages of a protocol, then

q(m|f = 0)
γ
≈ u(m)

γ
≈ q(m|f = 1) where γ = 2−` + ε.

Proof. Let u be the distribution that satisfies (6) with δ = 2−2`. We will show that u(m) ≈ q(m|f =
0). The proof for u(m) ≈ q(m|f = 1) is similar. Define B = {m|u(m) < 2−2`} and note that
u(m ∈ B) < 2`2−2` < 2−`. Also observe that when m /∈ B, then by (6), u(m)−q(m|f = 0) ≤ εu(m).
Now for any set Q, we have

u(m ∈ Q)− u(m ∈ Q|f = 0) ≤
∑

m∈Q∩B
u(m) +

∑
m∈Q∩B̄

(u(m)− u(m|f = 0))

≤ u(B) + εu(B̄) ≤ 2−` + ε.

Hence, |u(m)− q(m|f = 0)| ≤ 2−` + ε.

We remark that the existence of fooling distributions implies that the adaptive relative discrep-
ancy (as defined in [GKR14b]) is small.
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