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Abstract

We study the possibility of computing cryptographic primitives in a fully-black-box arith-
metic model over a finite field F. In this model, the input to a cryptographic primitive (e.g.,
encryption scheme) is given as a sequence of field elements, the honest parties are implemented
by arithmetic circuits which make only a black-box use of the underlying field, and the ad-
versary has a full (non-black-box) access to the field. This model captures many standard
information-theoretic constructions.

We prove several positive and negative results in this model for various cryptographic tasks.
On the positive side, we show that, under coding-related intractability assumptions, compu-
tational primitives like commitment schemes, public-key encryption, oblivious transfer, and
general secure two-party computation can be implemented in this model. On the negative side,
we prove that garbled circuits, additively homomorphic encryption, and secure computation
with low online complexity cannot be achieved in this model. Our results reveal a qualita-
tive difference between the standard Boolean model and the arithmetic model, and explain, in
retrospect, some of the limitations of previous constructions.
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1 Introduction

This paper studies the possibility of solving cryptographic problems in a way which is independent
from the underlying algebraic domain. We start by describing a concrete motivating example.

Consider the problem of computing over encrypted data where Alice wishes to store her private
data x = (x1, . . . , xn) encrypted on a server while allowing the server to run some program f
on the data. Let us assume that each data item xi is taken from some large algebraic domain
F (e.g., finite-precision reals) and, correspondingly, the program f is described as a sequence of
arithmetic operations over F. Naturally, Alice would like to employ a fully homomorphic encryption
(FHE) [Gen09]. However, standard FHE constructions typically assume that the data is represented
as a binary string and the computation f is represented by a Boolean circuit.

One way to solve the problem is to translate x and f to binary form. Unfortunately, this solution
suffers from several limitations. First, such a translation is typically expensive as it introduces a
large overhead (typically much larger than log |F|).1 Secondly, such an emulation is not modular
as it strongly depends on the bit-representation of x. Finally, in some scenarios Boolean emulation
is simply not feasible since the parties do not have an access to the bit-wise representation of the
field elements. For example, the data items (x1, . . . , xn) may be already “encrypted” under some
algebraic scheme (e.g., given at the exponent of some group generator or represented by some
graded encoding scheme [GGH13]).

A better solution would be to have an FHE that supports F-operations. Striving for full
generality, we would like to have an FHE that treats the field or ring F as an oracle which can
be later instantiated with any concrete domain. In this paper we explore the feasibility of such
schemes. More generally, we study the following basic question:

Which cryptographic primitives (if any) can be implemented independently of the un-
derlying algebraic domain?

We formalize the above question via the following notion of arithmetic constructions of crypto-
graphic primitives.

1.1 The Model

Cryptographic constructions. Standard cryptographic constructions can be typically described
by a tuple of efficient (randomized) algorithms P that implement the honest parties. The inputs
to these algorithms consist of a binary string x ∈ {0, 1}∗ (e.g., plaintext/ciphertext) and a security
parameter 1λ which, by default, is taken to be polynomial in the length of the input x. These
algorithms should satisfy some syntactic properties (e.g., “correctness”) as well as some security
definition. We assume that the latter is formulated via a game between an adversary and a chal-
lenger. The construction is secure for a class of adversaries (e.g., polynomial-size Boolean circuits) if
no adversary in the class can win the game with probability larger than some predefined threshold.

Arithmetic constructions. In our arithmetic model, the input x = (x1, . . . , xn) to the honest
parties P is a vector of generic field elements. The honest parties can manipulate field elements by
applying field operations (addition, subtraction, multiplication, division, and zero-testing). There

1For example, for the case of finite fields with n-bit elements, the size of the best known Boolean multiplication
circuits is ω(n logn).
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is no other way to access the field elements. In particular, the honest parties do not have an access
to the bit representation of the inputs or even to the size of F. We also allow the honest parties to
generate the field’s constants 0 and 1, to sample random field elements, and to sample random bits.
Overall, honest parties can be described by efficiently computable randomized arithmetic circuits.
(See Section 3 for a formal definition.)

In contrast to the honest parties, the adversary is non-arithmetic and is captured, as usual,
by some class of probabilistic Boolean circuits (e.g., uniform circuits of polynomial-size). Security
should hold for any (adversarial) realization of F. Formally, the standard security game is aug-
mented with an additional preliminary step in which the adversary is allowed to specify a field by
sending to the challenger a Boolean circuit which implements the field operations with respect to
some (adversarially-chosen) binary representation. The game is continued as usual, where the ad-
versary is now attacking the construction P F. Note that once F is specified, P F can be written as a
standard Boolean circuit. Hence security in the arithmetic setting guarantees that the construction
P F is secure for any concrete field oracle F which is realizable by our class of adversaries.2

Example 1.1 (One-time encryption). To illustrate the model let us define an arithmetic perfectly-
secure one-time encryption scheme. Syntactically, such a scheme consists of a key-generation
algorithm KGen, encryption algorithm Enc, and decryption algorithm Dec which satisfy the perfect
correctness condition:

Pr
k

R←KGenn

[Deck(Enck(m)) = m] = 1, for every message m ∈ Fn.

Perfect security can be defined via the following indistinguishability game: (1) For a security param-
eter 1n, the adversary specifies a field F and a pair of messages m0,m1 ∈ Fn; (2) The challenger

responds with a ciphertext c = Enck(mb) where k
R← KGenn and b

R← {0, 1}; (3) The adversary
outputs a bit b′ and wins the game if b′ = b. The scheme is perfectly-secure if no (computationally-
unbounded) adversary can win the game with more than probability 1

2 .
A simple generalization of the well-known one-time pad gives rise to an arithmetic one-time

encryption scheme. The key generation algorithm samples a random key k
R← Fn, to encrypt a

message m ∈ Fn we output m + k and to decrypt a ciphertext c ∈ Fn we output the message
c − k. All the above operations can be implemented by randomized arithmetic circuits. It is not
hard to see that the scheme is perfectly-secure. Namely, for any field F (or even group) chosen by
a computationally-unbounded adversary, the winning probability cannot exceed 1

2 .

1.2 Our Contribution

Our goal in this paper is to find out which cryptographic primitives admit arithmetic constructions.
We begin by observing that, similarly to the case of one-time pad, typical information-theoretic con-
structions naturally arithmetize. Notable examples include various secret sharing schemes [Sha79,
DF91, CF02], and classical information-theoretic secure multiparty protocols [BOGW88, CCD88].

2Note that the computational complexity of the field representation is limited by the computational power of
the adversary. Specifically, if the primitive is secure against polynomial-size circuits then the underlying field must
be implementable by a polynomial-size circuit. This limitation is inherent (for computationally-secure schemes), as
otherwise, one can use an inefficient field representation to break the scheme (e.g., by embedding an NP-complete
oracle).
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(See Section 1.4 for a detailed account of related works.) This raises the natural question of con-
structing computationally secure primitives in the arithmetic model. We give an affirmative answer
to this question by providing arithmetic constructions of several computational primitives.

Informal Theorem 1.1. There are arithmetic constructions of public-key encryption, commitment
schemes, oblivious linear evaluation (the arithmetic analog of oblivious transfer), and protocols
for general secure multiparty computation without honest majority (e.g., two-party computation),
assuming intractability assumptions related to linear codes.

We emphasize that our focus here is on feasibility rather than efficiency, and so we did not
attempt to optimize the complexity of the constructions. The underlying intractability assumption
essentially assumes the pseudorandomness of a matrix-vector pair (M, ỹ) where M is a random
m× n generating matrix and ỹ ∈ Fm is obtained by choosing a random codeword y ∈ colSpan(M)
and replacing a random p-fraction of y’s coordinates with random field elements.3 This Random-
Linear-Code assumption, which is denoted by RLCF(n,m, p), was previously put forward in [IPS09].
If F is instantiated with the binary field, we get the standard Learning Parity with Noise (LPN)
assumption [GKL88, BFKL93]. Indeed, some of the primitives in the above theorem can be con-
structed by extending various LPN-based schemes from the literature. (See Section 2.2.)

Theorem 1.1 shows that the arithmetic model is rich enough to allow highly non-trivial com-
putational cryptography such as general secure two-party protocols. As a result, one may further
hope to arithmetize all Boolean primitives. Our main results show that this is impossible. That is,
we show that there are several cryptographic tasks which can be achieved in the standard model
but cannot be implemented arithmetically. This include garbled circuits, secure computation pro-
tocols with “low” online communication, and homomorphic encryption schemes which support
multiplication by a scalar or addition. Details follow.

Garbled circuits. Yao’s garbled circuit (GC) construction [Yao86] maps any boolean circuit
C : {0, 1}n → {0, 1}m together with secret randomness into a “garbled circuit” Ĉ along with n
“key” functions Ki : {0, 1} → {0, 1}k such that, for any (unknown) input x, the garbled circuit Ĉ
together with the n keys Kx = (K1(x1), . . . ,Kn(xn)) reveal C(x) but give no additional information
about x. The latter requirement is formalized by requiring the existence of an efficient decoder
which recovers C(x) from (Ĉ,Kx) and an efficient simulator which, given C(x), samples from a
distribution which is computationally indistinguishable from (Ĉ,Kx). The keys are short in the
sense that their length, k, depends only in the security parameter and does not grow with the
input length or the size of C. Yao’s celebrated result shows that such a transformation can be
based on the existence of any pseudorandom generator [BM82, Yao82], or equivalently a one-way
function [HILL99].

The definition of arithmetic garbled circuits naturally generalizes the Boolean setting. The
target function C : Fn → Fm is now a formal polynomial (represented by an arithmetic circuit),
and we would like to encode it into a garbled circuit Ĉ, along with n arithmetic key functions
Ki : F → Fk, such that Ĉ together with the n outputs Ki(xi) reveal C(x) and no additional
information about x. As in the Boolean case, we require the existence of an arithmetic decoder

3This is contrasted with the more standard Learning-With-Errors (LWE) assumption [Reg05] in which each coor-
dinate of y is perturbed with some “small” element from the ring Zp, e.g., drawn from the interval ±α · p. Note that
in the arithmetic setting it is unclear how to sample an element from an interval which grows with p, and so LWE
constructions do not seem to arithmetize. See Section 1.3 for further discussion.
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and simulator. We say that the garbling is short if the key-length depends only in the security
parameter. A more relaxed notion is online efficiency, meaning that the key-length should be
independent of the circuit complexity of C but may grow with the input length. (The latter
requirement is typically viewed as part of the definition of garbling schemes, cf. [BHR12].)

The question of garbling arithmetic circuits has been open for a long time, and only recently
some partial progress has been made [AIK11]. Still, so far there has been no fully arithmetic
construction in which both the encoder and the decoder make a black-box use of F. The next
theorem shows that this is inherently impossible answering an open question from [Ish12].

Informal Theorem 1.2. There are no short arithmetic garbled circuits. Furthermore, assuming
the existence of (standard) one-way functions, even online efficient arithmetic garbled circuits do
not exist.4

Recall that in the Boolean setting short garbled circuits can be constructed based on any one-
way function, hence, Theorem 1.2 “separates” the Arithmetic model from the Boolean model. The
proof of the theorem appears in Section 5.

Secure computation with low online complexity. Generalizing the above result, we prove a
non-trivial lower-bound on the online communication complexity of semi-honest secure computa-
tion protocols. Roughly speaking, we allow the parties to exchange all the messages which solely
depend on internal randomness at an “offline phase”, and then move to an “online phase” in which
the parties receive their inputs and may exchange messages based on their inputs (as well as their
current view). Such an online/offline model was studied in several works [Bea95, IPS08, BDOZ11,
DPSZ12, IKM+13]. In the standard Boolean setting, there are protocols which achieve highly
efficient online communication complexity. For example, for efficient deterministic two-party func-
tionalities f : {0, 1}n × {0, 1}n → {0, 1}m which deliver the output to one of the parties (hereafter
referred to as simple functionalities), one can obtain semi-honest protocols with online commu-
nication of n1+ε based on Yao’s garbled circuit, or even n + o(n) based on the succinct garbled
circuit of [AIKW13]. In contrast, we show that in the arithmetic model the online communication
complexity must grow with the complexity of the function.

Informal Theorem 1.3. Assume that arithmetic pseudorandom generators exist. Then, for every
constant c > 0 there exists a simple arithmetic two-party functionality f : Fn×Fn → Fnc

which can-
not be securely computed by an arithmetic semi-honest protocol with online communication smaller
than Ω(nc) field elements.

The existence of an arithmetic pseudorandom generator follows from the RLC assumption. The the-
orem generalizes to the multiparty setting including the case of honest majority. (See Section 6.)

Homomorphic encryption. A scalar-multiplicative homomorphic encryption scheme is a stan-
dard public-key encryption scheme in which, given only the public key, one can transform a cipher-
text c = Encpk(x) and a scalar a ∈ F (given in the clear) into a fresh encryption c′ of the product
a ·x. Formally, we require an efficient (randomized) transformation T such that, for every messages
x, a ∈ F and almost all public keys pk, the distributions

(c = Encpk(x), c′ = T (pk, c, a)) and (c = Encpk(x), c′′ = Encpk(a · x)) (1)

4The theorem holds even if the simulator is allowed to be non-arithmetic or even inefficient. The latter case
corresponds to an indistinguishability notion of security.
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are statistically close. We refer to this form of homomorphism as statistical. Two well known
examples for such schemes (over different fields) are Goldwasser-Micali cryptosystem [GM84] and
ElGamal cryptosystem [ElG84].

In Section 7 we show that, in the arithmetic setting, it is impossible to get scalar multiplicative
homomorphism in the statistical sense. We also consider a weaker form of homomorphism, known as
multi-hop [GHV10], which does not require (1) and only asserts that correctness is preserved when
T is repeatedly applied. It turns out that in this setting it is impossible to implement arithmetic
encryption which supports scalar multiplication and addition of ciphertexts (aka additive encryption
scheme).5

Informal Theorem 1.4. In the arithmetic setting, there are no encryption schemes which are (1)
statistically homomorphic for scalar multiplication; or (2) multi-hop homomorphic for addition and
scalar multiplication.

The theorem can be strengthen is several ways. For example, the first part holds even when the
distributions in Eq. (1) are within small constant statistical distance (e.g., 1/6), as well as in the
case of one-time secure private-key encryption schemes (and, under some additional conditions, to
non-interactive perfectly binding commitments with multiplicative homomorphism). The second
part of the theorem holds even when the scheme only supports polynomially-many hops or even
if the scheme offers some form of “compactness” with respect to inner-product computations (see
Remark 7.8).

Interestingly, we can construct, in the arithmetic setting, (one-time secure) private-key encryp-
tion schemes which supports scalar-multiplication (and scalar addition) with respect to a weaker
form of homomorphism in which only the marginals c′ and c′′, defined in (1), are identically dis-
tributed. Unfortunately, this form of weak homomorphism seems useless for most applications of
homomorphic encryption.

1.3 Discussion and Open Questions

Taken together, our positive and negative results suggest that the arithmetic model is highly non-
trivial yet significantly weaker from the standard model. Beyond the natural interest in arithmetic
constructions, our negative results explain, in retrospect, some of the limitations of previous results.

For example, [AIK11] show that arithmetic garbled circuits can be constructed based on a
special “key-shrinking” gadget, which can be viewed as a symmetric encryption over F with some
homomorphic properties. They also provide an implementation of this gadget over the integers.
This allows to garble circuits over the ring Zp in a “semi-arithmetic” model, in which the encoder
can treat the inputs as integers and the decoder is non-arithmetic. Theorem 1.2 shows that these
limitations are inherent. Specifically, we can conclude that there are no arithmetic constructions of
the key-shrinking gadget. Similarly, Theorem 1.3 partially explains the high online communication
complexity of arithmetic MPC protocols such as the ones from [BOGW88, CCD88, CFIK03, IPS09].

Moreover, we believe that our results have interesting implications regarding the standard
Boolean model. Inspired by computational complexity theory [BGS75, RR94, AW08], one can
view our negative results as some form of a barrier.

5In the conference version of this paper, we stated a weaker impossibility result which applied only to restricted
forms of arithmetic encryption schemes.
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The Arithmetization Barrier: If your construction “arithmetizes” then it faces the
lower-bounds.

LPN/RLC vs. LWE. As an example, it seems that constructions which are based on the
Learning-Parity-with-Noise assumption typically extend to the arithmetic setting under the RLC
assumption. Therefore, “natural” LPN-based constructions are deemed to face our lower-bounds.
Specifically, Theorem 1.4 suggests that it may be hard to design an LPN-based encryption with
(multi-hop) additive homomorphism. Since such schemes can be easily constructed under Regev’s
Learning-With-Errors (LWE) assumption [Reg05], this exposes a qualitative difference between
the two assumptions. Indeed, this gap between strong LWE-type homomorphism (as in Eq. 1)
which can be applied repeatedly, and weak LPN-type homomorphism which can be applied only
a small number of times, seems to be crucial. This gap may also explain why LWE has so many
powerful applications (e.g., fully homomorphic encryption [BV11]), while LPN is restricted to very
basic primitives. The weak homomorphism supplied by typical LPN-based schemes was probably
noticed by several researchers. The new insight, supplied by our arithmetic lower-bound, is that
the lack of multi-hop homomorphism is not just a limitation of a concrete construction, but it is,
in fact, inherent to all arithmetic constructions. Quoting Pietrzak [Pie12] one may wonder: “. . . is
there a fundamental reason why the more general LWE problem allows for such (rich cryptographic)
objects, but LPN does not?” A simple answer would be: “LPN arithmetize but LWE doesn’t.”

IT constructions. Another example, for which the arithmetization barrier kicks in, is the case
of information-theoretic (IT) constructions. Most of the standard techniques in this domain (e.g.,
polynomial-based error correcting codes) arithmetize, and so these constructions are deemed to be
restricted by our lower-bounds. We mention that proving lower-bounds for information-theoretic
primitives (even non-constructively) is notoriously hard.6 The arithmetic model restricts the honest
parties, and as a result makes lower-bounds more accessible while still capturing most existing
schemes. We therefore view the arithmetic setting as a new promising starting point for proving
lower-bounds for information-theoretic primitives.

From a more constructive perspective, instead of thinking of arithmetic lower-bounds as barriers,
we may view them as road signs saying that in order to achieve some goals (e.g., basing homomorphic
encryption on LPN), one must take a non-arithmetic route.

Open questions. We conclude with some open questions. First, there are several basic primi-
tives whose existence in the arithmetic setting remains wide open. This includes Pseudorandom
Functions, Collision Resistant Hash Functions, Message Authentication Codes, and Signatures. It
will be also interesting to extend our positive results to a more restricted model which does not
allow to sample random bits or to apply zero-testing. In fact, in this model we do not even know
how to construct a one-way function based on a “standard assumption”. On the negative side, one
may ask whether our lower-bounds hold in a more liberal arithmetic model in which the parties are
allowed to learn an upper-bound on the field size or to view a random representation of the field
elements. (Such a model was considered by [IPS09], see Section 1.4.)

6A classical example is the share size of secret-sharing schemes for general access structure. The situation becomes
even more involved when it comes to more complicated objects such as secure multiparty protocols.

9



1.4 Previous Work

As already mentioned many information-theoretic primitives admit an arithmetic implementa-
tion. Notable examples include one-time MACs based on affine functions, Shamir’s secret-sharing
scheme [Sha79], the classical information-theoretic secure multiparty protocols of [BOGW88, CCD88]
and the randomized encodings of [IK00]. Extensions of these results to generic black-box rings were
given in [DF91, CF02, CFIK03].

Much less is known for computationally secure primitives. To the best of our knowledge,
previous works only considered arithmetic models in which the honest parties have richer interface
with the underlying field. (See below.) Therefore the resulting constructions do not satisfy our
arithmetic notion.

The IPS model. Most relevant to our work is the model suggested by Ishai, Prabhakaran and
Sahai [IPS09] (hereafter referred to as the IPS model) in the context of secure multiparty com-
putation. In this model the parties are allowed to access the bit-representation of field elements,
where the field and its representation are chosen by the adversary. This allows the honest parties
to learn an upper-bound on the field size, and to feed field elements into a standard (Boolean)
cryptographic scheme (e.g., encryption, or oblivious transfer). In contrast, such operations cannot
be applied in our model.7 The work of Naor and Pinkas [NP99] yields semi-honest secure two-party
protocols in the IPS model based on the pseudorandomness of noisy Reed-Solomon codewords.
Ishai et al. [IPS09] extend this to the malicious model and to the case of general rings, and improve
the efficiency and the underlying intractability assumptions. Both works rely on the existence of a
Boolean Oblivious Transfer primitive.

Arithmetic reductions. Another line of works provides arithmetic constructions of high-level
primitives P (e.g., secure computation protocol) by making use of a lower-level primitive Q (e.g.,
arithmetic oblivious-transfer) which is defined with respect to the field F. This can be viewed as
an arithmetic reduction from P to Q. Arithmetic reductions from secure multiparty computation
to Threshold Additive Homomorphic Encryption were given by [FH93] for the semi-honest model,
and were extended by [CDN01] to the malicious model (assuming that the underlying encryption
is equipped with special-purpose zero-knowledge protocols). Similarly, the results of [AIK11] can
be viewed as an arithmetic reduction from garbling arithmetic circuits to the design of a special
symmetric encryption over F.

The Generic Group Model. It is instructive to compare our arithmetic model to the Generic
Group Model (GGM) and its extensions [Sho97, MW98, Mau05, AM09]. The generic group model
is an idealized model, where the adversary’s computation is independent of the representation of
the underlying cryptographic group (or ring). In contrast, in our model the honest players are
arithmetic (independent of the field), while the adversary is non-arithmetic and has the power
to specify the field and its representation. Correspondingly, these two models serve very different
purposes: The GGM allows to prove unconditional hardness results against “generic attacks”, while
our model allows to increase the usability of cryptographic constructions by making them “field

7For example, in the IPS model a party can trivially commit to a field element x ∈ F by applying a binary
commitment to the bit-representation of x. This is not possible in our model as x can be manipulated only via the
field operations.
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independent”. Perhaps the best way to demonstrate the difference between the models is to see
what happens when the ideal oracle is instantiated with a concrete field or ring. In our model, the
resulting Boolean construction will remain secure by definition, whereas in the GGM the resulting
scheme may become completely insecure [Den02].

2 Techniques

2.1 Negative Results

At a high level, our main (negative) results are obtained by reducing the task of attacking arithmetic
primitives to the task of “analyzing” arithmetic circuits. We solve the latter problem by making a
novel use of tools (most notably partial derivatives) that were originally developed in the context
of arithmetic complexity theory. Overall, our lower-bounds show that algorithms for arithmetic
circuits can be used to attack arithmetic constructions. Below we give an outline of the proofs of
the main negative results.

For ease of presentation, we sketch (in Section 2.1.1) a version of Theorems 1.2 and 1.3 in
the Private Simultaneous Messages (PSM) model of [FKN94], which is conceptually simpler than
garbled circuits and general secure computation protocols. Section 2.1.2 contains an overview of
the proof of Theorem 1.4.

2.1.1 Communication Lower Bounds in the PSM model

The PSM model. Consider two parties Alice and Bob that have private inputs x and y, respec-
tively, and a shared random string r. Alice and Bob are each allowed to send a single message to a
third party Carol, from which Carol is to learn the value of f(x, y) for some predefined function f ,
but nothing else. The goal is to minimize the communication complexity. In the standard (Boolean)
setting, one can use garbled circuits to obtain a protocol in which Alice’s communication depends
only on her input length and the security parameter k, and is independent of Bob’s input length
or the complexity of f . Specifically, under standard cryptographic assumptions, Alice’s message
A(x; r) can be of length |x| · k [FKN94], or even |x|+ k [AIKW13]. In contrast, we will prove that,
in the arithmetic model, the length of Alice’s message A(x; r) must grow with Bob’s input.

Let Alice’s input x ∈ F be a single field element, let Bob’s input y consist of two column vectors
y1, y2 ∈ Fn, and let f(x, (y1, y2)) = x · y1 + y2 be the target function. We will show that if Alice’s
message is shorter than n, Carol can learn some non-trivial information about Bob’s input. In
patricular, Carol will output a non-zero vector which is orthogonal to y1. (This clearly violates
privacy as it allows Carol to exclude all but a 1/|F| fraction of all possible inputs for Bob.) Let us
assume, for now, that the parties do not use division or zero-testing gates, and so all the parties
are simply polynomials over F.

We begin with a few observations. Fix the shared randomness r, Bob’s input y, and Bob’s
message b = B(y; r), and consider the residual polynomials of Alice and Carol.8 Alice computes
a vector of univariate polynomials Ar(x) : F → Fn−1 which takes her input x ∈ F and outputs a
message a ∈ Fn−1, and Carol computes a vector of multivariate polynomials Cb(a) : Fn−1 → Fn
which maps Alice’s message a ∈ Fn−1 to a vector of field elements z ∈ Fn. By the correctness of

8We use bold fonts for fixed value, and standard fonts for non-fixed values which are treated as formal variables.
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the protocol, we have that

fy1,y2(x) = Cb(Ar(x)), for every x ∈ F, (2)

where fy1,y2(x) = x · y1 + y2. Let us fix a field F whose characteristic is larger than the degree of
the polynomial Cb(Ar(x)).9 Over such a large field, the univariate polynomial in the RHS of (2)
and the univariate polynomial in the LHS are formally equivalent, namely, they represent the same
polynomial in F[X]. As a result, their formal partial derivatives are also equivalent:

∂fy1,y2(x) ≡ ∂Cb(Ar(x)). (3)

By the definition of f , the LHS simplifies to y1, and by applying the chain rule to the RHS we get

y1 ≡ JCb(Ar(x)) · ∂Ar(x). (4)

Syntactically, ∂Ar(x) is a (column) vector of n − 1 univariate polynomials that contains, for each
output of Ar(x) : F → Fn−1, the derivative with respect to the formal variable x. Similarly, the
Jacobian matrix JCb(a) : Fn−1 → Fn×n−1 is a matrix of multivariate polynomials whose (i, j)-th
entry is the partial derivative of the i-th output of Cb(a) : Fn−1 → Fn with respect to the j-th
input (the formal variable aj).

Let us now get back to Carol’s attack. Carol does not know r and therefore she cannot compute
neither Ar(x) nor its derivative ∂Ar(x). However, she knows b and therefore can compute a circuit
for Cb, which, by using standard techniques, can be transformed into a circuit for the Jacobian
JCb. Carol also received from Alice a message a = Ar(x), where x is Alice’s input, and so Carol
can evaluate the circuit JCb at the point a and obtain the matrix M = JCb(a) ∈ Fn×(n−1). Now,
the key observation is that

y1 = M · v, for some (unknown) vector v.

Indeed, this follows by evaluating the RHS of (4) at the point x (and taking v = ∂Ar(x)). Overall,
Carol now holds a matrix M whose columns span Bob’s input y1 ∈ Fn. Since M has only n − 1
columns, Carol can find a non-zero vector which is orthogonal to y1 and break the security of the
protocol.

Handling zero-test gates. If the parties use zero-test gates then the functions computed by
Alice and Carol are not polynomials anymore. As a result, (3) does not hold since the partial
derivative of the function P (x) = Cb(Ar(x)) is not defined. To solve the problem we show that it
is possible to remove the zero-test gates. Assume, for simplicity, that the circuit P (x) contains a
single zero-test gate which is applied to the expression Q(x). Note that Q(x) is a polynomial of
degree d which is much smaller than the field. We distinguish between two cases: If Q is the zero
polynomial we remove the gate and replace its outcome with the constant 0; otherwise, we replace
the gate with the constant 1. This transformation changes the value of P on at most d points (the
roots of Q), and therefore, the resulting polynomial P ′ agrees with the polynomial fy1,y2 on all but
d points. Since both functions are low degree polynomials we conclude that they must be equal.
The above argument easily generalizes to a large number of zero-test gates.

9Since the polynomial Cb(Ar(x)) can be computed by a circuit of size s = poly(n), its degree is at most 2s and
so we can just use the field GF(p) where p is a prime of bit length 2s = poly(n).

12



Some technicality arises due to the fact that the attacker Carol does not have access to P , and
can only compute its “outer part” Cb. To see the problem, imagine that Cb contains a zero-check
gate which is applied to a non-zero polynomial Q which vanishes over the image of Ar. In this
case, the above procedure (applied to Cb alone) will fail miserably. We solve this issue by showing
that, given a random point in the image of Ar, one can remove the zero-test gates from Cb in a
way which is consistent with the “inner part” Ar. Since Carol can get such a point a = Ar(x) from
Alice the attack goes through. The more general setting in which the parties may also use division
gates is handled similarly (except for some minor technicalities).

Extensions. The above argument shows that Alice’s communication grows with the length of
Bob’s input. A stronger result would say that Alice’s communication grows with the complexity
of the function (even if Bob’s input is also short). We can prove such a result via the use of a
pseudorandom generator (PRG). Roughly speaking, we embed a PRG in the function f such that
a low communication protocol allows to break the pseudorandomness of the PRG. This approach
extends to the setting of arithmetic garbled circuits and general secure multiparty protocols yielding
Theorems 1.2 and 1.3.

2.1.2 Impossibility of Homomorphic Encryption

Theorem 1.4 strongly relies on the existence of efficient algorithm for the following promise problem,
denoted Arithmetic Predictability (AP): Given a pair of arithmetic circuits P : Fn → Fm and
T : Fn → F distinguish between the case where

• (Predictable) For a randomly chosen x
R← Fn, the random variable T (x) is predictable given

P (x), i.e., there exits an efficient10 predictor which given P (x) can guess, with high proba-
bility, the value of T (x); and

• (Unpredictable) For a randomly chosen x
R← Fn, the random variable T (x) is (information-

theoretically) unpredictable given P (x), i.e., any (computationally unbounded) predictor
which gets to see P (x), fails, with high probability, to guess the value of T (x).

To prove Theorem 1.4 we show that attacking homomorphic encryption reduces to solving AP. We
focus here, for simplicity, in the case of scalar-multiplicative statistical homomorphism (the first
part of Theorem 1.4). Given a public-key pk and a ciphertext c = Encpk(b) of an unknown plaintext
b ∈ {0, 1}, we use the multiplicative homomorphism to construct the circuit P (a) = fc,pk(a) which
maps a plaintext a ∈ F into a fresh encryption of a · b. Consider the probability distribution of

P (a) induced by a uniform choice of a
R← F and the internal randomness of the homomorphic

evaluator (here c and pk are viewed as fixed constants). If c is an encryption of 0 then P (a)
is simply a fresh encryption of the zero element, and P loses all information regarding a. As a
result, a is unpredictable given P (a). In contrast, if c is an encryption of 1 then P (a) is a fresh
encryption of a, and so, a can be predicted given P (a) (e.g., by using the decryption algorithm).
Hence, an efficient algorithm for predictability allows us to break the security of the multiplicative
homomorphic encryption.

Building on the techniques of Dvir et al. [DGW09], we design an algorithm that solves AP in the
case where the underlying field F is sufficiently large and the circuits (P, T ) compute polynomials

10In fact, only the degree of P should be upper-bounded (by 2poly(n)), while its circuit size may be arbitrary.
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(i.e., do not use division gates, zero-testing gates, and random bits). In fact, the algorithm in this

case is surprisingly simple: Choose a random point x
R← Fn and check if the rows of the Jacobian

JP (x) ∈ Fm×n span the gradient ∂T (x) ∈ Fn of the target polynomial T (x). We further show that
the case of a generalized arithmetic circuit P with division gates, zero-testing gates, and random
bits, reduces to the case where the circuit P : Fn → Fm computes polynomials. (The reduction
introduces some “error terms” which force us to consider a more robust form of AP. Fortunately,
the above algorithm generalizes to this setting as well. See Section 7.)

2.2 Positive Results

Our positive results (Theorem 1.1) are based on three different approaches – outlined below.

2.2.1 Arithmetic/Binary Symmetric Encryption

One main approach is based on a new abstract notion of arithmetic/binary symmetric encryption
(ABE). An ABE is an arithmetic symmetric encryption scheme which allows to encrypt a field
element using a binary key. That is, while the scheme works in the arithmetic model, the key is
essentially a string of bits given as a sequence of 0-1 field elements. Such an encryption scheme
allows us to import binary constructions to the arithmetic setting, and can be therefore viewed as
a bridge between the binary world to the arithmetic world.

Given, for example, a standard binary public-key encryption scheme we obtain a new arithmetic
public-key encryption by working in a hybrid mode. Namely, to encrypt a message x ∈ F, encrypt
x via the ABE under a fresh private binary key k, and then use the binary public-key encryption to
encrypt the binary message k. Conveniently, for this purpose it suffices to have a one-time secure
ABE.11

Similarly to the case of public-key encryption, ABE can be used to obtain arithmetic con-
structions of CPA-secure symmetric-key encryption, and commitment schemes. In order to achieve
arithmetic secure computation protocols, we will need an additional “weak homomorphism prop-
erty”: Given a ciphertext Ek(x) and field elements a, b ∈ F, it should be possible to generate a new
ciphertext c′ which decrypts to ax + b. (The new ciphertext c′ does not have to look like a fresh
ciphertext – hence the term “weak homomorphism” – and so this does not contradict our negative
results.) For technical reasons, we also require a “simple” decryption algorithm (e.g., one that can
be implemented by a polynomial-size arithmetic formula or branching program).

ABE based on RLC. We show that such a one-time secure ABE can be obtained under the
(generalized) Random Linear Code assumption RLCF(n,m, p). To encrypt a message x, sample

a random generating matrix A
R← Fm×n together with a random p-noisy codeword y, encode the

message x via a repetition code, and use the noisy codeword y to mask the encoded message x ·1m.
The resulting ciphertext consists of the pair (A, y + x · 1m). The private-key is the set of all noisy
coordinates, described as a binary vector. Decryption can be implemented by ignoring the noisy
coordinates and solving a set of linear equations over F. For properly chosen constants m/n and
p, the system will have a unique solution, with all but negligible probability.

11Although only one-time security is required, ABE cannot be achieved unconditionally as the message space (the
size of F) is larger than the key space which depends only on the security parameter and cannot grow with F.
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From ABE to secure computation. Let us explain how to construct secure arithmetic two-
party computation from an ABE with weak homomorphism. The construction can be viewed as
a variant of the construction of [IPS09]. Recall that a (binary) one-out-of-two oblivious transfer
(
(

2
1

)
-OT) is a two-party functionality which takes two inputs a0, a1 ∈ {0, 1}n from a sender, and a

selection bit x ∈ {0, 1} from the receiver and delivers to the receiver the value ax.
We begin by converting a maliciously-secure binary

(
2
1

)
-OT into a maliciously-secure

(
2
1

)
arith-

metic oblivious transfer (
(

2
1

)
-AOT) in which the sender’s inputs a0, a1 ∈ F are two field elements.

The transformation uses an ABE in the natural way: The sender encrypts the arithmetic messages
a0 and a1 under binary keys k0, k1, and sends the ciphertexts to the receiver; then the receiver uses
the binary

(
2
1

)
-OT to select one of two keys k0, k1.

Next, we convert
(

2
1

)
-AOT to Oblivious Linear Evaluation (OLE). The latter functionality takes

two field elements a, b ∈ F from a sender, and another field element x ∈ F from the receiver and
delivers to the receiver the value ax+ b. The construction makes use of the ABE again, this time
exploiting the weak homomorphism. Specifically, the receiver sends the ciphertext c = Ek(x), and
the sender uses the homomorphism to generate a ciphertext c′ which decrypts to ax + b. This
ciphertext cannot be sent back to the receiver as it leaks information on a and b. Instead, a secure
two-party computation protocol for decrypting c′ is invoked. Since the input of the receiver is
binary (and decryption has low-complexity), such a protocol can be implemented efficiently via a(

2
1

)
-AOT (e.g., via the protocols of [CFIK03]).12 This gives a semi-honest OLE.
At this point, we can use the semi-honest OLE together with an arithmetic variant of the

classical GMW protocol [GMW87] to obtain an arithmetic secure computation protocol for general
arithmetic functions in the semi-honest model. This protocol can be transformed to the malicious
setting using the IPS compiler [IPS08]. To make the compiler work in our arithmetic setting,
we need two additional tools: arithmetic multiparty protocol with security against a constant
fraction of malicious parties (which can be constructed based on [BOGW88] or [CFIK03]), and a
maliciously-secure

(
2
1

)
-AOT (which we already constructed).

2.2.2 Alternative approaches

Let us briefly mention two alternative approaches that can be used to derive arithmetic construc-
tions for some of the primitives mentioned in Theorem 1.1.

Arithmetizing LPN-based scheme. As already mentioned, existing LPN-based schemes easily
extend to the arithmetic setting under the (generalized) Random Linear Code assumption. This
gives alternative arithmetic constructions for primitives like symmetric encryption [GRS08], com-
mitments [AIK10, KPC+11], and even public-key encryption [Ale03] and

(
2
1

)
-AOT. This “direct

approach” is inferior to the first (ABE-based) approach in terms of the strength of the underlying
assumption. For example, using the direct approach, in order to obtain an arithmetic public-key en-
cryption, we have to assume RLC(n,m, p) for constant-rate code m = O(n) and sub-constant noise
rate p = O(1/

√
n). In the case of CPA-secure symmetric encryption, the direct approach requires

hardness for any polynomial m = m(n) and constant noise p. In contrast, for both primitives, the
ABE-based approach requires only hardness for constant rate codes m = O(n) and constant noise
rate p. While all three assumptions are consistent with our knowledge, the third assumption is
formally weaker than (i.e., implied by) the first two. Nevertheless, we also provide proofs based on

12For our concrete ABE, one can directly use
(

2
1

)
-AOT to securely deliver a re-randomized version of c′.
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the direct approach, as it is beneficial to demonstrate that known LPN-based schemes generalize
to the arithmetic setting. (See discussion in Section 1.3.)

Arithmetizing Cryptographic Transformations. Another way to construct arithmetic prim-
itives is to start with some concrete construction of a simple primitive P , and then use a standard
(binary) cryptographic transformation from P to a more complex primitive Q. For this, we have
to translate the binary transformation to the arithmetic setting. Indeed, in some cases, existing bi-
nary transformations have a straightforward arithmetic analog. For example, we already mentioned
that the classical GMW construction [GMW87] of semi-honest secure computation from oblivious
transfer (OT) naturally extends to the arithmetic setting [IPS09]. Similarly, we show that Naor’s
transform from PRGs to commitments has an arithmetic analog. This provides another arithmetic
construction of commitments whose security can be reduced to the RLC assumption.

Interestingly, some binary cryptographic transforms do not seem to arithmetize. This typi-
cally happens if the construction inspects some input xi ∈ {0, 1} and applies different operations
depending on whether xi equals to zero or xi equals to one. This kind of arbitrary conditioning
cannot be implemented in the arithmetic setting as xi varies over a huge (possibly exponential size)
domain. As a typical example, consider the classical GGM construction [GGM86] of pseudorandom
functions (PRFs) from pseudorandom generators (PRGs). In the GGM construction, the value of
the PRF Fk on a point x ∈ {0, 1}n is computed by walking on an exponential size tree of length-
doubling PRGs, where the i-th step is chosen based on the i-th bit of the input. It is not clear how
to meaningfully adopt such a walk to the arithmetic case in which xi ∈ F. Similar “conditioning
structure” appears in the Goldreich-Levin construction of hardcore predicates [GL89], and Yao’s
construction of garbled circuits from one-way functions. In fact, in the latter case our negative
results show that finding an arithmetic analog of the binary construction is provably impossible.
The problem of proving a similar negative result for the case of PRF, or, better yet, coming up
with an arithmetic construction of a PRF, is left open for future research.

Organization. Following some preliminaries (Section 3) and definitions of arithmetic crypto-
graphic primitives (Section 4), the main body of this work is divided into two parts. Part I is
dedicated to lower bounds, and includes a section for each primitive: Garbled Circuits (Section 5),
Secure Computation (Section 6) and Homomorphic Encryption (Section 7). The positive results
appear in Part II, beginning with a presentation of the Random Linear Code intractability as-
sumption (Section 8), and proceeding with a section for each primitive: Pseudorandom Generators
(Section 9), Encryption Schemes (Section 10), Commitments (Section 11) and Secure Computation
Protocols (Section 12).

3 Preliminaries

In this section we provide some general preliminaries. We begin with standard background on
probabilistic notations such as indistinguishability, entropy and hashing (Section 3.1), and basic
facts about polynomials, rational functions and their derivatives (Section 3.2), and proceed with
somewhat non-standard definitions of efficient field representations (Section 3.3), and generalized
arithmetic circuits (Section 3.4).
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3.1 Probabilistic Notions

Statistical distance and indistinguishability. A real-valued function µ(n) is negligible if for
any constant c > 0, µ(n) < n−c for all sufficiently large n’s. We use neg(·) to denote an unspecified
negligible function. We say that a sequence of events En holds with overwhelming probability
if Pr[En] > 1 − neg(n). Let P and Q be two distributions over the finite domain U , we denote
the statistical distance between P and Q by ∆(P,Q) := 1

2

∑
x∈U |Pr[P (x)]− Pr[Q(x)]|. When

∆(P,Q) = 0 we say the distributions are identically distributed and denote this by P
i≡ Q. We say

that two distribution ensembles {Pn} and {Qn} are statistically indistinguishable (denoted by Pn
s
≈

Qn) if ∆(Pn, Qn) = neg(n). The ensembles {Pn} and {Qn} are computationally indistinguishable

(denoted by Pn
c
≈ Qn) if for every polynomial-size family of circuits13 A = {An}, it holds that∣∣∣∣∣ Pr

x
R←Pn

[An(1n, x) = 1]− Pr
x

R←Qn

[An(1n, x) = 1]

∣∣∣∣∣ = neg(n).

Entropy. For p ∈ (0, 1) and an integer q > 1 we denote by Hq(p) be the q-ary entropy function
defined as Hq(p) := −p logq(p)− (1−p) logq(1−p). The min-entropy H∞(X) of a random variable

X distributed over a finite domain, is defined as minx∈Supp(X) log( 1
Pr[X=x]). For jointly distributed

random variables (X,Y ), we define the predictability [DORS08] of Y given X, by Pred(Y |X) =
maxA Pr[A(X) = Y ], where the maximum ranges over all possible (inefficient) algorithms A. It is
not hard to verify that the best guessing strategy for A(x) is to output the heaviest element y in
the conditional distribution (Y |X = x), hence,

Pred(Y |X)
def
= E

x
R←X

[
max
y

Pr[Y = y|X = x]

]
= E

x
R←X

[
2−H∞(Y |X=x)

]
.

A logarithmic version of predictability is captured by Average Min-Entropy [DORS08]:

H̃∞(Y |X)
def
= − log(Pred(Y |X)).

We will need the following useful facts, which include (1) a variant of Markov’s inequality for
average min-entropy, (2) the fact that applying a function to a random variable can only loose
information, as well as (3) that conditioning on a random variable with λ bits of output can only
reduce the average min-entropy by λ.

Fact 3.1. Let W,X, Y be (possibly correlated) random variables. Then:

1. For any δ > 0, it holds that

Pr
w

R←W

[
H̃∞(YW=w|XW=w) ≥ H̃∞(Y |X,W )− log(1/δ)

]
≥ 1− δ,

where YW=w, XW=w denote the joint distribution of (X,Y ) conditioned on the event W = w.
In particular, Pr

x
R←X

[H∞(Y |X = x) > H̃∞(Y |X)− log(1/δ)] > 1− δ.

13We could use a uniform variant of indistinguishability, however, for our positive results (especially for secure
computation) the non-uniform version is more natural and simplifies the treatment of auxiliary inputs. (The latter
are necessary for composition theorems, cf. [Gol04, Chapter 7].)

17



2. For every function g it holds that H̃∞(Y |g(X)) ≥ H̃∞(Y |X). Furthermore, this holds even
if g is a randomized function whose internal random coins are statistically independent of Y .

3. If W has at most 2λ possible values, then

H̃∞(Y |W,X) ≥ H̃∞((Y,W )|X)− λ ≥ H̃∞(Y |X)− λ.

Proof. (1) By definition,

2−H̃∞(Y |(X,W )) = E
w

R←W
[2−H∞(YW=w|XW=w)],

hence, by Markov’s inequality,

Pr
w

R←W
[2−H∞(YW=w|XW=w) ≥ 2−H̃∞(Y |(X,W ))/δ] ≤ δ,

and the first item follows by taking logarithms.
To prove the second part note that if A predicts Y given g(X) with probability p, then we can

define A′ which predicts Y given X with probability p′ ≥ p by letting A(x) = A(g(x)). Hence,
Pred(Y |g(X)) ≤ Pred(Y |X). Finally, the third item is proved in [DORS08, Lemma 2.2.b].

Hashing. A family of keyed functions {hk : X → Y}k∈K is pairwise independent hash functions
if for every x 6= x′ ∈ X and y, y′ ∈ Y it holds that Pr

K
R←K

[hK(x) = y ∧ hK(x′) = y′] = 1/|Y|2.

The following generalization of the well-known leftover hashing lemma ([HILL99]) shows that any
family of pairwise independent hash functions can extract randomness from sources with high
average min-entropy:

Fact 3.2 (Lemma 2.4 of [DORS08]). Let {hk : X → Y}k∈K be a family of pairwise independent
hash functions, and let X, I be jointly distributed random variables where X is distributed over X
and log |Y| ≤ H̃∞(X|I)− 2 log(1/ε) + 2. Then,

∆((K, I, hK(X)), (K, I, Y )) ≤ ε,

where K
R← K and Y

R← Y.

3.2 Polynomials and Rational Functions

Notation. We let F denote a finite field. For a vector x ∈ Fn, we use the notation |x| to denote
the number of elements in the vector x. By w(x) we denote the number of non-zero elements in x.
For a vector in Fn where all coordinates have the same value x we use the notation xn. We denote
the inner product of two vectors x and y by x · y :=

∑n
i=1 xiyi. If x ∈ F is a scalar and y ∈ Fn is

a vector then x · y stands for scalar multiplication.
We will use bold fonts to emphasize the distinction between a formal variable x and its assign-

ment on a point x ∈ F. A multivariate monomial M(x) in variables x = (x1, . . . , xn) over a finite
field F is defined as M(x) = axc11 · · ·xcnn , where a ∈ F and ci are positive integers. A multivariate
polynomial P (x) is a sum of monomials. Any formal polynomial P (x1, . . . , xn) naturally induces
a function P : Fn → F. A pair of polynomials P (x) and Q(x) are formally equivalent (denoted by
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P ≡ Q) if they compute the same formal polynomial, i.e., each monomial M(x) appears in P and
Q with the same coefficient. Clearly, if P ≡ Q then the corresponding functions are also equal.
The converse direction also holds as long as the degrees are smaller than the characteristic of the
field. We will often use the following standard upper-bound on the number of roots of a degree d
polynomial.

Lemma 3.3 (Schwartz-Zippel [Sch80, Zip79]). Let f(x1, . . . , xn) be a non-zero polynomial of degree
at most d over a field F then the number of roots of f is at most d·|F|n−1 and therefore the probability
that f(x1, . . . ,xn) = 0 for random x1, . . . ,xn is smaller than d

|F| .

A rational function f is a quotient v(x)/u(x) of two polynomials v(x) and u(x) where u(x) is
not the zero polynomial. The degree of a rational function is the maximum of the degrees of its
constituent polynomials v and u. Note that f is a partial function that is undefined at points x
where u(x) = 0. We say that a pair of rational functions f(x) = f1(x)/f2(x) and g(x) = g1(x)/g2(x)
are equal (denoted f = g) if they agree on all inputs for which they are both defined. The functions
f and g are formally equivalent (denoted by f ≡ g) if the polynomials f1(x)g2(x) and f2(x)g1(x)
are formally equivalent. Clearly, if f ≡ g then the corresponding functions are also equal. The
converse direction also holds as long as the degrees are smaller than |F|/3 (as follows by a simple
application of the Schwartz-Zippel lemma).

Derivatives. We proceed with standard definitions of formal derivatives of multivariate poly-
nomials and rational functions over finite fields together with some basic useful facts. (For a
comprehensive treatment of derivatives over finite fields, see [SY10].) As opposed to a Euclidean
space such as R, in finite fields, there is no distance measure and thus, there is no notion of “limit”
and “infinitely small numbers”. Hence, instead of defining partial derivatives via limits as done for
Euclidean spaces, over finite fields, derivative for polynomials and rational functions are a formal
notion, that is, the derivative of xn is defined to be equal to nxn−1 and this definition is extended
to polynomials by additivity and to rational functions by using the quotient rule for derivatives.
Throughout the paper, we will use formal derivatives only over sufficiently large fields whose char-
acteristic is strictly larger than the degree of the underlying polynomial. It turns out that in this
setting, formal derivatives inherit many of the properties of “standard derivatives”.14

Definition 3.4 (Partial Derivative). For a finite field F and monomial M(x) = axc11 · · ·xcnn with
a ∈ F and for all 1 ≤ i ≤ n, the (formal) partial derivative with respect to xi is defined as the
monomial

∂xiM(x) := cia · xc11 · · ·x
ci−1
i · · ·xcnn .

The partial derivative of a polynomial is defined as the sum of the derivatives of its monomials.
The partial derivative of a rational function v(x)

u(x) is defined by

∂xi

(
v(x)

u(x)

)
:=

u(x)∂xiv(x)− v(x)∂xiu(x)

(u(x))2
.

14For example, in this case, a polynomial is constant if and only if its derivative is the all-zero function. This rule
does not apply when the degree exceeds the field’s characteristic, as demonstrated by the non-zero polynomial x|F|

whose formal derivative |F|x|F|−1 is the zero function.
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Notice that the partial derivative of a polynomial (respectively rational function) is also a
polynomial (respectively rational function). It can be verified that the derivatives of two equivalent
rational functions are also equivalent. For f(x) a vector of ` rational functions in n variables
(f1(x), . . . , f`(x)) we denote by ∂xif(x) the column vector (∂xif1(x), . . . , ∂xif`(x))T . In line with
using normal font x for variables and bold font x for a specific point, the notation ∂xif(x) refers
to the partial derivative of f(x) with respect to xi evaluated at the point x.

Definition 3.5 (Formal Jacobian). For f(x) = (f1(x), . . . , f`(x)) a vector of ` rational functions in
n variables over a finite field F, the Jacobian matrix J f(x) is the `×n matrix of formal derivatives
[∂x1f(x), ..., ∂xnf(x)], that is, the (i, j)-th entry of J f(x) is ∂xjfi(x).

By J f(x) we denote all partial derivatives when evaluated at the same point x. For a subset
s ⊂ {x1, . . . , xn} of input variables, we let Jsf(x) denote the sub-matrix of Jf(x) that contains
only the columns that correspond to the variables in s.

The standard product rule and chain rule also apply for formal derivative of rational functions
over finite fields.

Fact 3.6 (Product Rule for Rational Functions). Let f(x) and g(x) be two rational functions in n
variables over a finite field F. Then, for all 1 ≤ i ≤ n, it holds that

∂xi(f(x) · g(x)) ≡ g(x)∂xif(x) + f(x)∂xig(x).

Fact 3.7 (Chain Rule). Let g(x) = (g1(x), ..., g`(x)) be a vector of rational functions in n variables
over a finite field F, and let f(y) = (f1(y), . . . , fm(y)) be a vector of rational functions in ` variables
over F. Then,

J (f ◦ g)(x) ≡ J f(g(x)) · J g(x).

3.3 Efficient Field Families

Throughout the paper, we consider finite fields whose elements have an efficient representation and
whose field operations are efficiently computable. We begin by defining what it means for a Boolean
circuit to implement a field.

Definition 3.8 (Circuit implementation of a field). Let F be a Boolean circuit which takes as
an input, an operation op ∈ {add, subtract,multiply, divide, constant, zerocheck, sample, bitsample}
(using an appropriate encoding) and up to two binary strings of length `. F is said to be a valid
implementation of the finite field F, if there is an injective mapping label : F → {0, 1}` such that
the following holds:

• For every operation op ∈ {add, subtract,multiply, divide} and any x, y ∈ F it holds that
F (op, label(x), label(y)) = label(x ∗F y) where ∗F is the corresponding field operation.

• F (constant, 0`) = label(0), and F (constant, 1`) = label(1).

• If a = label(0), then F (zerocheck, a) = label(1).

• If a = label(x) for x ∈ F, x 6= 0, then F (zerocheck, a) = label(0).

• F (sample) implements the uniform distribution over {label(x) : x ∈ F}.
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• F (bitsample) implements the uniform distribution over {label(x) : x ∈ {0, 1}}.

Definition 3.9 (Efficient field family). A polynomial-size Boolean circuit family F = {Fn} imple-
ments a family of fields {Fn} if each circuit Fn implements Fn. In the uniform setting, we say that
a PPT F implements a field if F (1n) outputs, with all but negligible probability, a circuit Fn which
implements some field (as per Definition 3.8). That is, F (1n) defines a probability distribution
over finite fields.

We often speak of the family of (distributions over) fields {Fn} and its efficient implementation
F interchangeably. Moreover, we omit the subscript n when it is clear from context. As an example
of an efficient field family, for each sequence of n-bit primes {pn}n∈N, we can implement the field
family {Fn = GF(pn)} by a (non-uniform) Boolean circuit family {Fn}. The uniform definition
captures, for example, a PPT adversary which chooses a random n-bit prime p and outputs a
circuit which implements the field GF(p). These variants correspond to the standard distinction
between uniform and non-uniform adversaries. We remark that all our results are not sensitive to
uniformity issues. Specifically, our negative results hold even if the adversary is uniform, while our
positive results hold both in the uniform and non-uniform adversarial model (depending on the
underlying assumptions).

3.4 Arithmetic Circuits

An arithmetic circuit is a circuit whose wires carry field elements, and whose gates perform arith-
metic operations. The circuit is black-box with respect to the field representation, i.e., it does not
have access to the bit representation of the elements carried by its wires. In addition to the stan-
dard arithmetic operations, we allow “checking for zero”. Although not an arithmetic operation,
we find it hard to design meaningful schemes when even equality cannot be recognized and so we
allow for this operation in our model.

Randomized arithmetic circuits also have two special, randomized gates: The sample gate
drawns elements from the underlying field F uniformly at random, and the bitsample gate draws
a uniformly random element from the set {0, 1} which contains the zero and one elements of the
field.

Definition 3.10 (Arithmetic Circuit). An arithmetic circuit is a directed acyclic graph. Each input
gate (source) is labeled by an input variable xi, a constant 1 or 0, or a randomized gate sample or
bitsample. Internal Gates are labeled by:

{add, subtract,multiply, divide, zerocheck}

For an arithmetic circuit C(x) with n input variables and m output variables any field F induces
in the natural way a (randomized) mapping CF(x) : Fn → Fm. Furthermore a field implementa-
tion F naturally induces a Boolean circuit CF (x) which implements the mapping CF(x) with the
representation F . We use CF (x), CF(x) and C(x) interchangeably, when F and F are clear from
context.

Throughout this work when discussing a family of circuits C = {Cn} we assume by default
polynomial time uniformity. That is, there exist a PPT Turing machine that on input 1n outputs
a description of Cn.
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We will occasionally consider restricted forms of arithmetic circuits that use only a subset of the
types of gates. Most notably, we will consider deterministic arithmetic circuits (which do not use
sample, bitsample gates), deterministic arithmetic circuits without zerocheck gates (which compute
rational functions) and deterministic arithmetic circuits without zerocheck, divide gates (which com-
pute polynomials). We refer to the latter (most restricted) type of circuits as strictly arithmetic
circuits. The following fact states that one can efficiently compute derivatives for deterministic
arithmetic circuits without zerocheck gates.

Fact 3.11 (Efficient Differentiation [BS83]). Let C(x) be a deterministic arithmetic circuit of size
s in n variables without zerocheck gates, and let f(x) be the corresponding rational function. Then
for all 1 ≤ i ≤ n, we can construct a circuit C ′(x) which evaluates the partial derivative ∂xif(x) in
time O(s), and constructing C ′(x) from C(x) is a polynomial-time operation.

The derivative of a circuits with zerocheck gates is not well defined. (In fact, such a circuit
may not compute a rational function). Still, it turns out that, over large fields, such circuits can
be “approximated” well by arithmetic circuits without zerocheck gates. Specifically, the following
fact will be useful for our lower-bounds.

Proposition 3.12 (Removing zerocheck gates). Let C : Fn → Fm be deterministic arithmetic
circuit with zerocheck gates of size s which never divides by zero, and let F = GF(p) be a prime-
order field of cardinality larger than (s + 1)2s+1. Then, there exists a deterministic arithmetic
circuit D : Fn → Fm without zerocheck gates of size s and a strictly arithmetic circuit G : Fn → F
of size at most s2 that computes a polynomial of degree at most s2s+1 which satisfy the following
properties:

1. For every x ∈ Fn which is not a root of G it holds that C(x) = D(x).

2. D is obtained from C be replacing the i-th zerocheck gate with some constant gate bi ∈ {0, 1}.
Furthermore, the i-th zerocheck gate of D evaluates to bi on all the inputs x ∈ Fn which are
not roots of G.

3. If C computes a polynomial f of degree at most 2s then D computes a rational function which
is formally equivalent to f .

4. There exists a probabilistic algorithm that given (C, p) outputs with probability 1−β the circuits
D and G in time poly(s, log p, log(1/β)).

Proof. The circuit D is defined by repeatedly applying the following subroutine: Choose the first
zerocheck gate (according to some topological order) and consider the function g computed by its
incoming wire. If g is the zero function replace the gate by the constant 1 (“the zero-test passes”);
otherwise, replace the gate with the constant 0 (“the zero-test fails”).

Observe that the function gi considered in the i-th iteration, is computed by a zerocheck-free
circuit of size at most s, and therefore it is a rational function of the form ui/vi where the degrees
of the numerator ui and the denominator vi are bounded by 2s. Furthermore, observe that none
of the vi is identically zero, since otherwise, the original circuit C tries to divide by zero (when
it is applied to some inputs). Using standard techniques (cf. [SY10, Proof of Thm. 2.11]) we can
extract a strictly arithmetic circuit of size s that computes ui (resp., vi).

Call a point x ∈ Fn bad if it is a root of some non-zero ui or some (non-zero) vi, and call it good
otherwise. Observe that D and C agree on all the good points. Moreover, the sequence of values
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that a good point x induces on the zerocheck gates of the original circuit C, corresponds exactly
to the constants used by D to replace these gates. Letting G be the product of all the ui and vi
we derive the first two items. Furthermore, the forth item follows by checking if each of the ui’s is
identically zero via the standard Polynomial Identity Testing algorithm. (E.g., by evaluating ui on
poly(log(s/β)) random points and accepting if and only if all the outcomes equal to zero.)

It is left to prove the third item. Since the ui’s and vi’s are low-degree polynomials, we have, by
the Schwartz-Zippel Lemma and by a union bound, that all but a s2s+1/|F| fraction of the inputs
are good. By assumption, C computes a polynomial f of degree at most 2s. Recall that D and C
can be computed by a circuit of size s, and therefore the degrees of the numerator and denominator
of D = p/q are also upper-bounded by 2s. It is not hard to show that such low-degree functions D
and f which agree on so many (good) points must be formally equivalent. Indeed, if this is not the
case, then the polynomial f(x)q(x)−p(x) is a non-zero polynomial of degree 2s+1 with a fraction of
1− (s2s+1/|F|) roots. Since our field is large |F| > (s+ 1)2s+1, this contradicts the Schwartz-Zippel
Lemma.

For some of our attacks, we will need the following variant of the zerocheck removal procedure.

Definition 3.13 (The algorithm T ). The algorithm T takes as input an arithmetic circuit C :
Fn → Fm defined over a prime field F, and a point x ∈ Fn. The algorithm T evaluates the circuit
C on the point x, and replaces each zerocheck gate g with the constant 1 or the constant 0 depending
on the value that x induces on g. At the end, it outputs the resulting zerocheck-free circuit C ′(x).

Imagine that the circuit C = B ◦ A consists of a composition of two arithmetic circuits an
inner part A and an outer part B. Further, assume that T is applied separately to A and B, i.e.,
A′ = T (A,x) and B′ = T (B,A(x)). The following key lemma shows that, for a random x and
sufficiently large F, the composed circuit B′◦A′ computes f , and, more importantly for our attacks,
the chain rule applies to the corresponding derivatives.

Lemma 3.14. Let f(x) be a strictly arithmetic circuit and let A(x) and B(y) be two deterministic
arithmetic circuits such that B(A(x)) agrees with the function f(x) on every input x ∈ Fn where
F is a field of prime order p > 22s+1 and s = max size{f,B ◦A}. Then, for every 1 ≤ i ≤ n

Pr
x

R←Fn

[
∂xif(x) = JB′(A(x)) · ∂xiA′(x)

]
≥ 1− 2s2s

|F|
, (5)

where A′ := T (A,x), and B′ := T (B,A(x)).

Proof. Let C(x) = B(A(x)) be the circuit obtained by composing B on A. By Proposition 3.12 it
holds that

Pr
x

R←Fn

[f ≡ T (C,x)] ≥ 1− 2s2s

|F|
. (6)

Fix some x for which the function C ′ = T (C,x) is formally equivalent to f , and let A′ = T (A,x)
and B′(B,A(x)). Observe that, by the definition of T , the circuit C ′ can be written as B′ ◦ A′.
Now, taking derivatives in Eq. (6) and applying the chain rule yields that for all 1 ≤ i ≤ n

∂xif(x) ≡ JB′(A′(x)) · ∂xiA′(x). (7)

Fix some 1 ≤ i ≤ n. Denote by g(x) the polynomial which is computed by the LHS, and by h(x)
the rational function computed in the RHS. Our goal is to show that g(x) = h(x) for our fixed x.
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This boils down to showing that h(x) is well-defined, i.e., the denominator of h does not vanish
in the point x. To prove this note that: (1) B′ ◦ A′ is well defined on x (since T guarantees that
B′(A′(x)) = f(x)); (2) h is the derivative of B′ ◦A′; and (3) If a rational function H is well-defined
on a point x then its derivative h is also well-defined on x.

4 Cryptographic Primitives in the Arithmetic Setting

We define the arithmetic versions of the main cryptographic primitives studied in the work. The
reader may want to skip this section for now and refer to it later when appropriate. In the following,
we will let n denote the security parameter.

4.1 Pseudorandom Generators

We begin with a definition of an arithmetic pseudorandom generator (APRG). Our definition of
APRG requires the output to be pseudorandom over F` but allows the input (the seed) to contain
both random field elements and random bits as long their total number is n. We discuss this choice
later in Section 9.

Definition 4.1 (Arithmetic Pseudorandom Generator). Let APRG = {APRGn} be a sequence of
polynomial sized arithmetic circuits where APRGn outputs a vector of `(n) field elements and uses
at most n random gates (some of them may be for random field elements and some maybe be
for sampling random bits) and no deterministic input gates. We say that APRG is an arithmetic
pseudorandom generator (APRG) if it satisfies the following two properties:

1. Expansion: ` > n. We refer to the ratio `
n as the expansion factor and to the difference `−n

as the additive expansion.

2. Pseudorandomness: The winning probability of every efficient adversary A in the following
pseudorandomness game is at most 1/2 + neg(n):

(a) Given a security parameter 1n, the adversary A picks a field implementation F and sends
it to the challenger.

(b) The challenger samples b
R← {0, 1}.

i. If b = 0: the challenger sends to the adversary a sample y
R← APRGn.

ii. If b = 1: the challenger sends to the adversary a sample u
R← F`.

(c) The adversary outputs b′ and wins if b′ = b.

An APRG is simple if it does not contain division or zerocheck gates (but may use random bits).
We will sometimes view the APRG as a mapping from the seed s, i.e., randomness sampled by the
random gates, to the output, denoted by APRG(s). Note that the total length of s is n and it may
consist random field elements and random bits.

4.2 Encryption Schemes

We define the arithmetic version of an encryption scheme. Following Goldreich [Gol04, Chapter 5],
we treat the public-key setting and the symmetric-key setting in a unified way.
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Definition 4.2 (Arithmetic Encryption Scheme). Let KGen = {KGenn}, Enc = {Encn} and Dec =
{Decn} be a uniform sequence of poly(n) sized arithmetic circuits. (KGen,Enc,Dec) is an arithmetic
public-key encryption scheme if:

1. Correctness: for every field F, and for every message x ∈ F

Pr
(sk,pk)

R←KGenn

[
DecFn(EncFn(x, pk), sk) = x

]
≥ 1− neg(n)

where the probability is taken over the choice of keys and the randomness of the circuits
EncFn,Dec

F
n.

2. Computational Security: For every efficient adversary A the wining probability in the following
IND-CPA game is at most 1/2 + neg(n):

IND-CPA-Game(1n):

• The adversary receives 1n, chooses a field F and sends F to challenger.

• The challenger samples (pk, sk)
R← KGenFn and passes pk to the adversary.

• (Chosen Plaintext queries:) Repeatedly do as long as adversary requests:

– The adversary sends some x ∈ F.

– The challenger responds with EncFn(x, pk).

• The adversary sends some pair x0, x1 ∈ F.

• The challenger samples b
R← {0, 1} and responds with c

R← EncFn(xb, pk).

• The adversary outputs b′ and wins if b′ = b.

The symmetric-key setting corresponds to the case where pk = sk and the challenger does not pass
pk to the adversary. The scheme is one-time secure if it is secure against adversaries which make
no chosen plaintext queries. An arithmetic symmetric encryption scheme with one-time security is
called arithmetic/binary encryption (ABE) if all the elements of the secret key sk are taken from
the subset {0, 1} ⊂ F. That is, the key is essentially a string of bits given as a sequence of 0-1 Field
elements.

Remark 4.3 (Encrypting long messages). The above definition assumes that the message contains
a single field element. One could naturally extend the definition to support longer vectors (either
with fixed block-length ` or with unbounded block length). We note that, as in the binary setting, a
CPA-secure construction that supports a single message can be easily extended to encrypt a sequence
of field elements by encrypting each element separately each time with fresh randomness (cf.[KL08,
Section 3.4]).

4.3 Commitments

We consider non-interactive commitments. Such schemes are parameterized by a public key pk
which is chosen by some trusted party or given as part of a Common Reference String (CRS).

Definition 4.4 (Statistically Binding Commitment Scheme). Let KGen = {KGenn}, Com =
{Comn} and Ver = {Vern} be a uniform sequence of polynomial sized arithmetic circuits. We
denote the output of the circuit Comn by (c, d), where c is the commitment and d the decommit-
ment. We say (KGen,Com,Ver) are a statistically binding commitment scheme if:
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1. Correctness: For every field F and for every message x ∈ F it holds:

Pr
pk

R←KGenFn

[
VerFn(pk, x,ComF

n(x, pk))
]
≥ 1− neg(n)

where the probability is also taken over the randomness of the circuits ComF
n and VerFn.

2. Statistically Binding: For every field F, with overwhelming probability over the choice of

pk
R← KGenFn, no commitment c can be opened in two different ways, i.e.,

∀x, x′, c, d, d′, (VerFn(pk, x, c, d) = 1) ∧ (VerFn(pk, x′, c, d′) = 1)⇒ x = x′

3. Computationally Hiding: No efficient adversary A can win the following game with probability
greater than 1/2 + neg(n).

IND-CPA Game(1n):

• A receives 1n, chooses a field F and sends F to the challenger.

• The challenger samples pk
R← KGenFn and passes pk to the adversary.

• The adversary chooses x0, x1 ∈ F.

• The challenger samples b ∈ {0, 1}, computes (c, d)
R← ComF

n(xb, pk) and sends c.

• The adversary outputs b′ and wins if b′ = b.

Without loss of generality, we assume that the de-committment string d consists of the internal
randomness of the committer (which is a sequence of field elements and zero-one values). Under
this convention, we let the output of ComF

n denote only the commitment string c.

Remark 4.5 (CRS-free variant). We will also consider a CRS-free variant of commitments. Syn-
tactically, we still consider a non-interactive commitment function parameterized by a public-key
which is generated by a key-generation algorithm. However, the hiding property should hold for
every (adversarially chosen) public-key. This gives rise to a two-message commitment protocol in
the standard model (no CRS) in which the receiver chooses the public-key pk.

4.4 Randomized Encoding of Functions

We formalize arithmetic garbled circuits via the framework of randomized encoding of functions [IK00,
AIK04]. Roughly speaking, a deterministic function f is encoded by a randomized arithmetic func-
tion f̂ if for every input x the distribution f̂(x), induced by the internal randomness of f̂ , reveals
the value of f(x) and nothing else.

Definition 4.6 (Arithmetic Randomized Encoding). Let f = {fn} be a family of polynomial-
sized strictly arithmetic circuits where fn has n inputs. A family of polynomial-sized randomized
arithmetic circuits f̂ = {f̂n} and a family of polynomial-sized deterministic arithmetic circuits
Dec = {Decn} form a Randomized Encoding of f if:

1. Perfect Correctness: for every field F, for every n ∈ N and every x ∈ Fn

Pr
[
DecFn(f̂Fn (x)) = fFn (x)

]
= 1,

where the probability is taken over the randomness of the encoding circuit f̂Fn .

26



2. Computational Security (Indistinguishability):
For any PPT A(1n) the winning probability in the following game is at most 1/2 + neg(n):

• The adversary A chooses an implementation of a field F and x0,x1 ∈ Fn s.t. fFn (x0) =
fFn (x1) and sends to the challenger F,x0,x1 .

• The challenger samples b
R← {0, 1} and c = f̂Fn (xb) and sends c to A.

• The adversary A outputs a bit b′ and wins if b′ = b.

Remark 4.7. We mention that security is typically formalized via a stronger simulation-based defi-
nition. However, since we will be proving lower-bounds, a weaker security definition only makes our
results stronger. Also, note that we restrict the encoded function f to be computed by a strictly arith-
metic circuit (i.e., by an arithmetic circuit over addition and multiplication gates only), whereas the
encoding f̂ is allowed to be an arbitrary arithmetic circuit. Again, this only makes our lower-bounds
stronger.

Without any efficiency restriction on the encoder f̂ , the notion of randomized encoding becomes
trivial (simply take f̂ = f). Below we present several common syntactic and efficiency requirements
which are motivated by different RE applications.

Decomposable encoding. For many applications it makes sense to distinguish between the
online part, the part of the output of f̂ that depends on the input vector x, and the offline part, the
part of the output that depends only on the randomness r of the encoding. We will emphasize this
distinction by splitting f̂(x; r) into the functions x̂(x; r) and r̂(r), where r denotes the outcome of
the random gates. A randomized encoding (f̂ ,Dec) is fully decomposable if each of the outputs of
the encoder f̂(x; r) depends on at most a single element in the input vector x. In such a case we
will write x̂(x; r) as (x̂1(x1; r), ..., x̂n(xn; r)) to emphasize which part of the encoding depends on
which input. One may define a weaker form of decomposability. Suppose that the encoded function
f is defined over two input vectors x and y, then an encoding (f̂ ,Dec) is 2-decomposable if each
output of f̂(x, y; r) depends either on x or on y but not on both (but may depend arbitrarily on
r). In this case we will usually denote f̂(x, y; r) = (x̂(x; r), ŷ(y; r), r̂(r)), to clarify which part of
the encoding depends on which input. This notion corresponds to the PSM model described at the
introduction.15 An illustration of 2-decomposable encoding is depicted in Figure 1.

4.5 Secure Computation

Arithmetic functionalities. A two party arithmetic functionality f : F∗ × F∗ → F∗ × F∗ is
described by a sequence of polynomial-size arithmetic circuits {fn} where each input and output
gate is labeled by A (for Alice) or by B (for Bob). For simplicity, we will consider only deterministic
functionalities and always assume that in fn both Alice and Bob have exactly n inputs. Both
assumptions hold without loss of generality. (See [Gol04] Proposition 7.3.4. and Section 7.2.1.1.)
For a field implementation F and pair of inputs x, y ∈ Fn for Alice and Bob, we let fF1 (x, y) (resp.,
fF2 (x, y)) denote the outputs of Alice (resp., Bob).

15To see this, let r be the randomness shared between Alice and Bob, and let Alice (resp., Bob) send x̂(x; r) (resp.,
ŷ(y; r)) to Carol. In addition, the value r̂(r) can be sent to Carol in an offline phase or by one of the parties. Given
all these values, Carol can learns f(x, y) (using the decoder) without learning anything else.
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Figure 1: 2-Decomposable Randomized Encoding

Arithmetic Protocols. A two-party arithmetic protocol Π is a pair of (uniform) polynomial size
arithmetic circuits A = {An} and B = {Bn}, indexed by input length n. The circuits An and Bn
interact via special “interaction gates” Send and Receive. Send gates have unbounded fan-in and
no fan-out and Receive gates have an unbounded fan-out and zero fan-in. These gates are assumed
to be topologically ordered. We assume that the gates are aligned so that in An, odd-numbered
interaction gates are all Send gates and even-numbered interaction gates are Receive gates, and,
vise versa for Bn. Semantically, we assume that the i-th Send gate of a party (say A) corresponds
to the i-th Receive gate of the other party, i.e., if x ∈ F∗ is the input to Send then Receive = x.
For every field implementation Fn, the protocol naturally defines a joint computation which maps
a pair of inputs (x, y) ∈ Fnn × Fnn, to a pair of outputs OutputΠ,Fn(x, y) = (Output1,Output2) where
Output1 is the output of An and Output2 is the output of Bn. The view of A during an execution
of Π over Fn on inputs x, y ∈ Fn, denoted by ViewΠ,F

1 (x, y), is the random variable which consists
of the deterministic and random inputs of An and all the messages sent by Bn. The view of B is
defined similarly, and is denoted by ViewΠ,F

2 (x, y).

4.5.1 The Semihonest Model

Definition 4.8 (Semi-Honest Secure Computation (Deterministic Functionalities)). We say that a
two party arithmetic protocol Π = ({An} , {Bn}) privately computes a (deterministic) functionality
f : F∗ × F∗ → F∗ × F∗ if the following hold for every efficient field family {Fn}:

• Correctness: For every x, y ∈ Fnn,

Pr[OutputΠ,Fn(x, y) 6= fFn(x, y)] ≤ neg(n).

• Privacy: There exist probabilistic polynomial time algorithms Sim1 and Sim2 such that{
ViewΠ,Fn

1 (x, y)
}
x,y∈Fn

n

c
≈
{
Sim1(x, fFn

1 (x, y))
}
x,y∈Fn

n
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and {
ViewΠ,Fn

2 (x, y)
}
x,y∈Fn

n

c
≈
{
Sim2(y, fFn

2 (x, y))
}
x,y∈Fn

n

.

Note that the definition allows the simulators to depend on the field family {Fn} in a non-black-
box way. Nevertheless, in all our constructions the simulators will also be defined by arithmetic
circuits and will access the underlying field F only in a black-box way. For our lower-bounds, we
will consider a weaker version of One-Sided Semi-Honest Security (see Section 6 for details).

Partial functionalities, finite functionalities, and different input lengths. We sometimes
consider partial functionalities (e.g., when some of the inputs are binary strings) in this case the
above requirements should be adopted by indexing the ensembles by appropriate inputs. Further-
more, we will use finite functionalities (e.g., oblivious transfer) and in this case incorporate the
security parameter 1n as part of the parties input. We will also consider functionalities in which
the input length of Alice may be different from the input length of Bob, with the implicit convention
that we can always guarantee equal input length by padding.

Privacy reductions. To define secure reductions, consider the following hybrid model. A two-
party protocol augmented with an oracle to the two-party arithmetic functionality g is a standard
protocol in which the parties are allowed to invoke g, i.e., a trusted party to which they can securely
send inputs and receive the corresponding outputs. Formally, the circuits An and Bn are equipped
with an equal number of special g gates, where the i-th g-gate takes an input ai from A and an
input bi from B, and returns an output g1(a, b) to A and g2(a, b) to B. When An and Bn are
instantiated with a field F, the functionality g is instantiated with the same field F as well. The
notion of private computation (Definition 4.8) generalizes to protocols augmented with an oracle
in the natural way.

A private reduction from an arithmetic two-party functionality f to an arithmetic two-party
functionality g is a two party protocol that given an oracle access to the functionality g, privately
realizes the functionality f . Appropriate composition theorems, (e.g. [Gol04, Thms. 7.3.3, 7.4.3]),
guarantee that the call to g can be replaced by any private protocol realizing g, without violating
the privacy of the high-level protocol for f .

4.5.2 The Malicious Model

We define arithmetic secure two party computation in the malicious setting using the Real-Ideal
paradigm. Following our general convention, an honest party in this model is an arithmetic circuit,
while a malicious party is allowed to be any polynomial size binary circuit. Formally, we say
that an arithmetic protocol (A,B) securely realizes an arithmetic (possibly randomized) two-party
functionality f in the malicious setting (in short, (A,B) securely realizes f) if for any efficient field
family F = {Fn} the binary protocol (A,B)F securely realizes the binary two-party functionality fF.
For completeness, we briefly review the standard definitions of maliciously secure two-computation
in the binary model. (See [Gol04, Chapter 7] for more detailed and concrete definitions.)

Let f(x, y) be a two-party functionality, i.e., a (possibly randomized) mapping from a pair
of inputs of equal length into a pair of outputs. Let π be an two-party protocol. We formulate
the requirement that π securely computes f by comparing the following “real process” and “ideal
process”.
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The real process. An adversary A∗ attacking Alice in the real process is a family of probabilistic
polynomial-size circuits, who observe all the internal data of Alice, and in addition, has full control
over the messages sent by Alice. At the end of the interaction, the adversary may output an
arbitrary function of its view, which consists of the inputs, the random coin tosses, and the incoming
messages of the corrupted parties. Given a pair of inputs (x, y) ∈ ({0, 1}n)2 and an auxiliary
input for the adversary aux ∈ {0, 1}∗, the output of the real process is defined as the random
variable containing the concatenation of the adversary’s output with the outputs and identities of
the uncorrupted party. We denote this output by Realπ,A∗(aux)(x, y). The case of an adversary B∗

that attacks Bob is defined similarly and in this case we let Realπ,B∗(aux)(x, y) denote the output of
the real process.

The ideal process. In the ideal process, an incorruptible trusted party is employed for computing
the given functionality. That is, the “protocol” in the ideal process instructs each party to send its
input to the trusted party, who computes the functionality f and sends to each party its output.
The interaction of an adversary SimA, which attacks Alice, (resp., SimB which attacks B) with the
ideal process and the output of the ideal process are defined analogously to the above definitions for
the real process. Except that we allow the adversary to send a special “abort” message (possibly
after receiving his output), and, in this case the trusted party sends an abort message to the
honest party who halts with a special abort symbol. The adversary attacking the ideal process
will also be referred to as a simulator. We denote the output of the ideal process on the inputs
(x, y) ∈ ({0, 1}n)2 and auxiliary input aux by Idealf,SimA(aux)(x, y) (resp., Idealf,SimB(aux)(x, y)).

Definition 4.9 (Maliciously Secure Two-Party Computation). The protocol π is said to securely
realize the given functionality f if for any probabilistic polynomial-size circuit A∗ attacking Alice
(resp., B∗ attacking Bob) in the real process there exists a probabilistic polynomial-size circuit
simulator SimA attacking Alice (resp., SimB attacking Bob) in the ideal process, such that{

Realπ,A∗(aux)(x, y)
}
x,y∈{0,1}n,aux∈{0,1}poly(n)

c≡
{
Idealf,SimA(aux)(x, y)

}
x,y∈{0,1}n,aux∈{0,1}poly(n) ,

and similarly for Bob:{
Realπ,B∗(aux)(x, y)

}
x,y∈{0,1}n,aux∈{0,1}poly(n)

c≡
{
Idealf,SimB(aux)(x, y)

}
x,y∈{0,1}n,aux∈{0,1}poly(n) .

An arithmetic protocol (A,B) securely realizes an arithmetic (possibly randomized) two-party func-
tionality f if for any efficient field family F = {Fn} the binary protocol (A,B)F securely realizes the
binary two-party functionality fF

Secure reductions (in the malicious model) are defined analogously to private reductions (in the
semi-honest model).

Part I

Lower Bounds

In the following sections we will show that some cryptographic primitives cannot be realized in the
arithmetic setting. Section 5 is dedicated to Garbed Circuits (formalized under the framework of
Randomized Encodings), Section 6 discusses communication lower-bounds for Secure Computation
protocols, and Section 7 is devoted to Homomorphic Encryption.
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5 Garbled Circuits and Randomized Encoding

Recall that a deterministic function f(x, y) is encoded by a two-decomposable randomized arith-
metic function f̂(x, y; r) = (x̂(x; r), ŷ(y; r), r̂(r)) if for every input (x, y) the distribution f̂(x, y; r),
induced by a random choice of the internal randomness r of f̂ , reveals the value of f(x, y) and
nothing else. (See Section 4.4 for relevant definitions.)

We show that an arithmetic 2-decomposable encoding must have large communication. In
particular, we prove (in Section 5.1) that the encoding |x̂| of x needs to be as long as the output
|f(x, y)|.

Theorem 5.1. There exists an arithmetic function fn(x, y) which maps x ∈ F and y ∈ F2n to
an output in Fn for which in any 2-decomposable arithmetic randomized encoding f̂n(x, y; r) =
(x̂(x; r), ŷ(y; r), r̂(r)) of f the function x̂ consists of at least n field elements.

In contrast, in the binary setting, Yao’s garbled circuit construction [Yao86] provides, for any ef-
ficiently computable function f(x, y), a 2-decomposable encoding f̂n(x, y; r) = (x̂(x; r), ŷ(y; r), r̂(r))
with |x̂| = |x| · κ where κ is the security parameter which can be taken to nε for arbitrary small
constant ε > 0.

For fully decomposable encoding, we prove (in Section 5.2) that the total online complexity |x̂|
needs to be roughly as long as the product of the input length and the output length.

Theorem 5.2. Assuming the existence of a binary PRG, there exists an arithmetic function f :
F3n → Fn for which any fully decomposable arithmetic randomized encoding

f̂(x; r) = (x̂1(x1; r), ..., x̂3n(x3n; r), r̂(r))

has online complexity
∑

i |x̂i| of at least n2.

Again, in the binary setting, Yao’s garbled circuit construction provides, for any efficiently
computable function f(x), a fully-decomposable encoding f̂(x; r) = (x̂1(x1; r), ..., x̂n(x3n; r), r̂(r))
with online complexity

∑
i |x̂i| = |x| · nε for arbitrary small constant ε > 0.

5.1 Proof of Theorem 5.1

Overview. We follow the outline sketched in the introduction. Roughly speaking, we will exploit
the correctness property f(x) = Dec(f̂(x; r)) to argue that, over sufficiently large field F, for every
fixing of the randomness r the circuits f and Dec ◦ f̂(·; r) compute the same rational functions.
Therefore, by the chain rule, we have that for any input variable xi

∂xif(x) ≡ JDec(f̂(x; r)) · ∂xi f̂(x; r).

Hence, given Dec and an encoding f̂(x; r) of some point x, we can deduce that ∂xif(x) is spanned
by the columns of JDec(f̂(x; r)). We will show that if the communication is small, this information
violates privacy (for a properly chosen function f). This argument assumes that f̂ and Dec compute
rational functions and so their derivatives are well defined. This is not the case when the encoder
f̂ or decoder Dec use zerocheck gates. To cope with this, we apply the robust zerocheck-removal
algorithm T from Definition 3.13.

We proceed with a formal proof of Theorem 5.1.
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Proof of Theorem 5.1. Consider the function f : F× (Fn×Fn)→ Fn that maps (x, (y, z)) to xy+ z
where x ∈ F is a scalar and y and z are vectors of length n. Assume towards contradiction that
f̂(x, (y, z); r) = (x̂, ŷ, r̂) and Dec form a 2-decomposable arithmetic RE with |x̂| = m < n. (Note
that ŷ depends on (y, z) and r.) We will show how to break the security of the RE via the following
adversary. (From now on, we will often omit the underlying field F and the security parameter n,
when clear from the context, i.e. f(x) := fFn (x).)

Adversary A(1n):

• Choose a prime p > 22s+1 for s = max size{fn,Decn ◦ f̂n}.
• Let F = GF(p) and send some standard implementation of F to the challenger.

• Sample x0
R← F, together with y0, z0

R← Fn.

• Sample x1
R← F together with y1

R← Fn and compute z1 = x0y0 + z0 − x1y1.
• Send (x0,y0, z0) and (x1,y1, z1) to the challenger.
• Given an encoding c = (x̂, ŷ, r̂), define the circuit B(x̂) = Decn(x̂, ŷ, r̂).
• Compute the zerocheck-free arithmetic circuit B′ = T (B, x̂).
• Output 1 if y1 is spanned by the columns of JB′(x̂); Otherwise output 0.

Observe that this is a valid adversary as f(x0,y0, z0) = f(x1,y1, z1). The following claims
show that A distinguishes between the two cases with advantage of at least 3

4 − neg(n).

Claim 5.3. If the challenge bit b = 1, i.e., the challenger sends a sample c = f̂(x1,y1, z1; r) for
randomly chosen r, then the adversary accepts with probability 1− neg(n).

Proof. Fix the randomness of the challenger to some value r and fix the values y1, z1. Let
fy1,z1(x) = fn(x,y1, z1), let A(x) denote the circuit f̂n(x,y1, z1; r), and let B(x̂) = Decn(x̂, ŷ1, r̂1),

where ŷ1 and r̂ are the outcome of f̂ when applied to y1, z1 and r. (Due to the decomposability
these values are independent of x̂.) Syntactically,

fy1,z1 : F→ Fn, A : F→ Fm, B : Fm → Fn.

By the perfect correctness and the decomposability property, it holds that B(A(x)) = fy1,z1(x) for
every x. Hence, by Lemma 3.14, we have

Pr
x1

R←F

[
∂xfy1,z1(x1) = JB′(A(x1)) · ∂xA′(x1)

]
≥ 1− neg(n),

where A′ = T (A,x1) and B′ = T (B, x̂1). Since y1 = ∂xfy1,z1(x1) and c = A(x1), we conclude
that

Pr
x1

R←F

[
y1 ∈ colSpan(JB′(c))

]
≥ 1− neg(n),

and the claim follows.

We move on to the case where b = 0.

Claim 5.4. If the challenge bit b = 0, i.e., the challenger sends a sample c = f̂(x0,y0, z0; r) for
randomly chosen r, then the adversary accepts with probability at most 1/4.
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Proof. Fix x0,y0, z0 as well as the randomness of the challenger and note that y1 is still uniformly
distributed. Let M denote the matrix JB′(f̂r(x0,y0, z0)). Since the input x̂ of B′ is of length
m < n, the matrix M is of dimensions n×m, and its columns span at most |F|m vectors in Fn. It
follows that

Pr
y1

R←Fn

[y1 is spanned by the columns of M ] ≤ |F|m−n,

and so A outputs 1 with probability at most |F|m−n which is upper-bounded by 1/4 for m < n.

Overall, A wins the game with probability greater than 1− neg(n)− 1/4 > 3/4− neg(n), and
the theorem follows.

5.2 Proof of Theorem 5.2

Let PRG = {PRGn} with PRGn : {0, 1}n → {0, 1}n2
be a pseudorandom generator over the binary

field. We can transform the boolean circuit that computes it into an arithmetic circuit by substi-
tuting AND(w1, w2) gates with w1×w2, and NOT(w) gates by 1−w. By abuse of notation, we let
PRGn : Fn → Fn2

also denote the transformed circuit. Observe that when the input to the circuit
consists of 0 − 1 values, the functionality is preserved. Specifically, for a random x ∈ {0, 1}n, the
vector PRG(x) consists of a pseudorandom sequence of 0− 1 elements.

To prove Theorem 5.2, we will consider the function f : Fn×Fn×Fn → Fn that maps (x, y, z) to
Y x+ z, where Y is the n×n matrix which consists of the elements generated by PRG(y). Assume,
towards a contradiction, that f is encoded by a fully decomposable arithmetic randomized encoding

f̂(x, y, z; r) = (x̂, ŷ, ẑ, r̂),

with decoder Dec where |x̂| is shorter than n2. Since f̂ is fully decomposable we can write x̂ =
(x̂1, . . . , x̂n), and conclude, by an averaging argument, that at least some x̂i is shorter than n. We
will exploit this to property to break the original binary PRG. Specifically, we define the following
adversary A.
Adversary A(1n, Y ∈ {0, 1}n2

):

• Choose a prime p > 22s+1 for s = max size{fn,Decn ◦ f̂n} and let F = GF(p).

• Parse the challenge Y ∈ {0, 1}n2
into columns (Y1, ..., Yn).

• Sample a point x, z
R← Fn at random and fix y to some default value, e.g., 0n. Sample

randomness r for the encoding f̂n and let (x̂, ŷ, ẑ, r̂) = f̂(x,y, z; r).

• Compute Dec′ := T (Dec, (x̂, ŷ, ẑ, r̂)).

• Output 1 if Yi ∈ colSpan(Jx̂iDec′((x̂, ŷ, ẑ, r̂))), for all i = 1, . . . , n; Otherwise, output 0.

Analysis of the Adversary. We will show that the adversary A accepts, with probability

1 − neg(n), a pseudorandom string Y = PRG(y) where y
R← {0, 1}n. We will prove this in two

steps. First, we will show that this is the case if the adversary sets y to be the seed of Y (Claim 5.5),
and then we show (by relying on the security of the encoding) that this is the case even when y is
set to an arbitrary value (Claim 5.6). We will later show (Claim 5.7) that a random Y ∈ {0, 1}n2

is accepted with probability of at most 1
2 , and conclude that A breaks the PRG.
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Claim 5.5. For any fixed r,y, z, it holds, with overwhelming probability over x, that for every i:

Yi ∈ colSpan
(
Jx̂iDec

′(f̂(x,y, z; r))
)
,

where Y = PRG(y), Dec′ := T (Dec, f̂(x,y, z; r)).

Proof. Let A(x) = f̂y,z,r(x). By perfect correctness, fy,z(x) = Dec(A(x)) for every x. Hence, by
Lemma 3.14, with overwhelming probability over x, for every i we have

∂xify,z(x) = JDec′(A(x)) · ∂xiA′(x),

where A′ is the circuit outputted by T (A,x) and Dec′ is the circuit outputted by T (Dec,x). (The
circuit A′ is unknown to the attacker, who does not know r, yet such a circuit exists.)

Fix some i ∈ {1, . . . , n}. Observe that A(x1, . . . , xn) = (x̂1, . . . , x̂n, ŷ, ẑ, r̂) and the only output
that depends on xi is x̂i (since the encoding is decomposable). Hence, when deriving A′ with
respect to xi, all the entries that do not correspond to the outputs x̂i vanish. The above equation
therefore simplifies to

∂xify,z(x) = Jx̂iDec
′(A(x)) · ∂xiA′′(x),

where A′′ is the restriction of A′ to the outputs that depend on x̂i. Recalling that Yi = ∂xify,z(x),
completes the proof.

We move on to analyze the probability that A accepts a pseudorandom Y .

Claim 5.6. It holds that
Pr

y1
R←{0,1}n

[A(Y 1) = 1] = 1− neg(n),

where Y 1 = PRGn(y1).

Proof. Assume, towards a contradiction, that the claim does not hold and, for y1
R← {0, 1}n, the

adversary A accepts Y 1 = PRG(y1) with probability 1− ε(n) for some non-negligible ε. Consider
the following adversary B(1n) that attacks the computational privacy of randomized encodings:
Adversary B(1n):

• Choose a prime p > 22s+1 for s = max size{fn,Decn ◦ f̂n}.

• Let F = GF(p) and send some standard implementation of F to the challenger.

• Sample x0, z0
R← Fn, let y0 = 0n and Y 0 = PRG(y0).

• Sample x1
R← Fn, y1

R← {0, 1}n, let Y 1 = PRG(y1) and z1 = Y 0x0 + z0 − Y 1x1.

• Send (x0,y0, z0) and (x1,y1, z1) to the challenger.

• On input challenge c, let Dec′ := T (Dec, c).

• Output 1 if Y 1
i ∈ colSpan(Jx̂iDec′(c)) for all i = 1, . . . , n. Otherwise, output 0.
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Observe that f agrees on the 0-inputs (x0,y0, z0) and on the 1-inputs (x1,y1, z1), and so B
is a valid adversary. When b = 1, by Claim 5.5, B outputs 1 with overwhelming probability.
When b = 0, the probability that B returns 1 is exactly 1− ε(n), since this is the probability that

A accepts Y1 = PRG(y1) for y1
R← {0, 1}n. (Indeed, observe that in both A and B the values

x1, z1 are uniform over Fn.) Overall the advantage of B is ε(n), which, under our assumption, is
non-negligible, contradicting the computational privacy of the randomized encoding.

We move on to show that if the encoding x̂ is shorter than n2, a random binary string Y ∈
{0, 1}n2

is unlikely to be accepted by A. As in the previous section, the proof uses a dimension
argument.

Claim 5.7. It holds that Pr
Y

R←{0,1}n2 [A(Y ) = 1] ≤ 1
2 .

Proof. Since x̂ is shorter than n2, there must be some i ∈ {1, . . . , n} for which x̂i is shorter than
n. We will focus on this i and show that for every fixed randomness r and for every x,y, z ∈ Fn
it holds that:

Pr
Y

R←{0,1}n2

[
Yi ∈ colSpan

(
Jx̂iDec

′(f̂(x,y, z; r))
)]
≤ 1

2
. (8)

Indeed, Dec has n outputs, and so M := Jx̂iDec′(f̂(x,y, z; r)) is a n × |x̂i| matrix of elements in
F. Since |x̂i| < n, there exists a non-trivial vector u ∈ Fn in the Kernel of M , i.e., M · u = 0|x̂i|.
Let j denote some non-zero coordinate of u, namely, uj 6= 0. For every vector v ∈ colSpan(M), it
holds that uT · v = 0. We will establish Eq. (8) by showing that

Pr
Yi

R←{0,1}n
[uT · Yi = 0] ≤ 1

2
.

To see this observe that for any w ∈ {0, 1}n which is orthogonal to u, one can find a unique vector
w′ which is not orthogonal to u by letting w′ = w⊕ej . (Here ej denotes the j-th unit vector, whose
j-th coordinate equals to 1, and whose other coordinates are equal to 0.) Indeed, if uT ·w = 0 then
uT · w′ ∈ {±uj}. The claim follows.

Overall, A accepts random bitstrings with probability less than 1/2, and pseudorandom strings
with probability 1− neg(n), and so it breaks the security of the PRG.

6 Arithmetic Multiparty Computation

In this section we prove lower-bounds on the online communication of secure two-party computation
in the arithmetic model.

6.1 Definitions

Secure computation with one-sided privacy. We consider a minimal form of Secure Compu-
tation with one-sided privacy. (This restriction only makes our lower bounds stronger.) Specifically,
we will consider two-party functionalities in which only one party receives the output. Namely, Al-
ice holds input x, Bob holds input y, and we want Alice to learn the functionality f(x, y) without
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learning anything else. We require only one-sided security, and so Bob may learn everything. This
notion of security is formalized below.

Recall that a two-party arithmetic protocol Π is a pair of (uniform) polynomial size arithmetic
circuits A = {An} and B = {Bn}, which communicate with each other via special Send and Receive
gates. Further recall that, for a field F and inputs x, y ∈ Fn, the output of A is denoted by
OutputΠ,Fn(x, y) and the view of A is denoted by ViewΠ,F

A (x, y). The latter is the random variable
which consists of the deterministic and random inputs of An and all the messages sent by Bn. (See
Section 4.5 for formal definitions.)

Definition 6.1 (Arithmetic Two-Party Computation with One-Sided Semi-Honest Security). We
say that a two party arithmetic protocol Π = ({Alicen} , {Bobn}) realizes a (deterministic) function-
ality f : F∗ × F∗ → F∗ with one-sided privacy if the following hold:

• Correctness: For every field F and inputs x, y ∈ Fn,

Pr[OutputΠ,F(x, y) 6= fF(x, y)] = 0.

• One-sided Privacy (against a semi-honest Alice): For each polynomial-time Turing machine
adversary A, there exist a probabilistic polynomial-time Turing machine Sim such that the
adversary A(1n) can win the following game with probability at most 1/2 + neg(n):

– Given 1n, the adversary A picks a field implementation F, inputs x,y ∈ Fpoly(n), and
outputs F,x,y.

– The challenger samples b
R← {0, 1} and returns a view z where z

R← ViewΠ,F
A (x,y) if

b = 0; and z
R← Sim(x, f(x,y),F) if b = 1.

– The adversary A outputs a bit b′ and wins if b′ = b.

Note that the above definition is uniform in the sense that the inputs x, y are chosen by a
uniform adversary. Again, this only makes our lower-bound stronger.

Clearly, there is a trivial protocol that achieves one-sided privacy: Alice sends her input x to
Bob, who computes the function f(x, y), and returns the result to Alice. In this protocol Alice
receives m field elements, where m is the output length of f . We will show that this is necessary
even if the parties are allowed to exchange an arbitrary number of messages at an offline phase.

Online/Offline MPC. Without loss of generality, we assume that a protocol Π = (Alice,Bob)
has the following format. The parties Alice and Bob use the randomness ra, rb respectively. They
first run the offline phase of the MPC protocol. We denote by r̂(ra, rb) the transcript of all the
messages that Alice gets during the offline phase. After the offline phase, Alice receives an input
x and Bob receives an input y. They exchange some further messages. We denote the messages
sent by Bob as t̂ = t̂(ra, rb, x, y) and let |t̂| denote the incoming online communication complexity
of Alice. (For simplicity, we assume that this amount depends only on the security parameter and
not on the messages themselves.) At the end of the protocol, Alice runs a final algorithm on her
view (x, ra, r̂(ra, rb), t̂(ra, rb, x, y)) to get the output of the protocol. We refer to this final algorithm
as the decoder, Dec(x, ra, r̂, t̂).
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6.2 Main Result

We will prove that the online communication from Bob to Alice is as long as the output length of
f . This lower-bound applies even to the case where f is strictly arithmetic, i.e., it does not contain
division, zerocheck gates or bitsample gates and simply computes a polynomial over F.

Our lower-bound relies on the existence of an arithmetic pseudorandom generator (APRG) (see
Definition 4.1). Recall that the output of an APRG is pseudorandom over F` and its input (the
seed) may contain both random field elements and random bits as long their total number is n < `.
We will later (Section 9) show that APRG with polynomial stretch can be constructed based on the
RLC assumption (with constant rate and constant noise rate). Furthermore, this APRG is simple,
i.e., it does not contain division or zerocheck gates (but uses random bits).

Theorem 6.2. Assume the existence of a simple arithmetic PRG. Then, for any arbitrary constant
c > 1, there is a strictly arithmetic function f : F × Fn → Fnc

that cannot be realized with one-
sided semi-honest security by an arithmetic two-party protocol Π for which the incoming online
communication complexity of Alice is shorter than nc − 1 field elements.

Remark 6.3 (The multiparty case). A similar bound on the communication applies in the mul-
tiparty setting even in the case of honest majority. Indeed, any t-party protocol Π for f in which
the first two parties play the roles of Alice and Bob and all the other parties act as “servers”’ with
no input or output, immediately yields a two party protocol Π′ with one-sided semi-honest security
even if Π is only semi-honest secure for coalitions of size 1.

Proof of Theorem 6.2. Let m = nc. We will later show (Lemma 9.2) that the existence of any
(simple) APRG implies the existence of a (simple) APRG with seed of length n and output length
of m. We view APRG as an arithmetic function APRG : Fn → Fm by thinking of the random gates
as inputs. This is done even for gates that sample random bits. We follow the convention that
whenever a random seed y is chosen, it is chosen from the “right” distribution, i.e., binary inputs
are chosen as random 0 − 1 values. As a result, Y = APRG(y) is pseudorandom over F2m. (Note
however, that the pseudorandomness of the function APRGn is not guaranteed for a y sampled from
other distributions.)

We consider the function f(x, y) = Y0x + Y1 where (Y0, Y1) = APRG(y). Alice’s input to the
function is x, while Bob holds y. Our proof shows that if APRG is a strictly arithmetic PRG, then
we can break the computational privacy of any MPC protocol where the online communication `
from Bob to Alice is (strictly) shorter than m − 1. We define the following adversary against the
computational privacy of the MPC protocol. As in the previous section, we use subscripts to denote
fixed inputs (e.g., fy(x) = f(x,y)).

Distinguisher A:

• Let F = GF(p) for a prime p > 2 · 22s where s is an upper bound on the accumulated
size of all the circuits in Alice, Bob and Dec, and the circuit which computes f .

• Sample x
R← F.

• Sample a random seed y for the APRG and compute (Y0, Y1) := APRG(y).

• Send to the challenger an implementation of F and the inputs (x,y).

• Given a challenge
(
x, ra, r̂, t̂

)
, call the procedure SpanCheck(Y0,

(
x, ra, r̂, t̂

)
) defined as

follows:
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– Let B(x, t̂) denote the computation of the decoder with the values ra and r̂ fixed,
i.e., Decra,r̂(x, t̂).

– Compute B′ = T
(
B,
(
x, t̂
))

, where T is the zero-check removal procedure defined
in Definition 3.13.

– If Y0 ∈ colSpanJB′(x, t̂) return 0; Otherwise, return 1.

In the following, we will show that if
(
x, ra, r̂, t̂

)
is sampled according to Alice’s view (i.e., the

challenge bit b is zero), then A returns 0 with overwhelming probability (Claim 6.4). On the other

hand, we will show (Claim 6.6) that if
(
x, ra, r̂, t̂

) R← Sim(x, Y0x + Y1,F) (i.e., the challenge bit b
is one), A errs (outputs 0) with probability at most 1/2 + neg(n).

Claim 6.4. For every fixed y ∈ Fn and fixed randomness ra and rb, it holds that

Pr
x∈F

[
Y0 ∈ colSpanJB′(x, t̂)

]
≥ 1− neg(n),

where Y0 is the first half of the output of APRG(y), r̂ = r̂(ra, rb), t̂ = t̂(ra, rb,x,y) and B′ is
defined as in A, i.e., B′ = T

(
Decra,r̂,

(
x, t̂
))

.

Proof. Fix ra, rb and y, and consider the arithmetic circuit A(x) that outputs (x, t̂) where t̂ denotes
Bob’s online messages that correspond to the inputs (ra, rb, x,y). The circuit A can be obtained
by composing the subcircuits of Alice and Bob, and therefore, A is of size is smaller than s. From
perfect correctness we know that

fy(x) = B(A(x)),

where fy(x) = f(x,y). Since the mapping APRG is strictly arithmetic, so is fy(x). Therefore, we
can apply Lemma 3.14, for the field F, and get that

Pr
x

R←F

[
∂xfy(x) = JB′(A(x)) · ∂xA′(x)

]
≥ 1− neg(n)

where A′ := T (A,x). (Note that, by definition, B′ := T (B,A(x)).)
Plugging in the definitions of A and f yields that, with overwhelming probability over x,

Y0 = JB′(x, t̂) · ∂xA′(x),

and the claim follows.

We showed that when b = 0, the adversary returns 0 and wins with overwhelming probability.
Next, we prove that if b = 1, the adversary returns 0 with probability at most 1

2 + neg(n). For this
we focus on the SpanCheck subroutine of A. We analyze the acceptance probability of SpanCheck
on three different (hybrid) distributions, where the first distribution corresponds to the distribution
used by A when b = 1. The hybrid distributions are defined in Table 1.

Claim 6.5. For (Y0,x, ra, r̂, t̂)
R← D3 it holds that:

Pr
[
Y0 ∈ colSpanJB′(x, t̂)

]
≤ 1

2
,

where B′ = T
(
Decra,r̂,

(
x, t̂
))

.
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D1 D2 D3

Sample random seed y

(Y0, Y1) = APRG(y) (Y0, Y1)
R← F2m (Y0, Z)

R← F2m

x
R← F

(x, ra, r̂, t̂)
R← Sim(x, Y0x + Y1,F) (x, ra, r̂, t̂)

R← Sim(x, Z,F)

Output:
(
Y0, (x, ra, r̂, t̂)

)
Table 1: The hybrid distributions over

(
Y0, (x, ra, r̂, t̂)

)
. In order to avoid cluttering, we only write

modifications with respect to the previous distribution. For example, x in D2 is sampled as in D1,
also all three distributions output the tuple

(
Y0, (x, ra, r̂, t̂)

)
.

Proof. Fix x, Z and the coins of the simulator to some arbitrary values. Then, M = JB′(x, t̂) is
an m×(`+1) matrix over F, and therefore its columns span a set S of at most |F|`+1 vectors in Fm.
Since Y0 is distributed uniformly over Fm and independently of M , it falls in S with probability at

most |F|
`+1

|F|m which is upper-bounded by 1/2 when `+ 1 < m.

Claim 6.6. It holds that D1
c
≈ D3.

Proof. The proof proceeds via a hybrid argument. First, we claim that D1
c
≈ D2. Indeed, let C be

a distinguisher between the two distributions, we construct an adversary B against the APRG. On

input (Y0, Y1), the adversary B samples x
R← F and returns C(Y0,Sim(x, Y0x + Y1)). If B receives

as input a sample (Y0, Y1) from the APRG then it passes C a random sample from D1. In turn, if

(Y0, Y1)
R← F2m, then it passes C a random sample from D2. Hence, B breaks the APRG with the

same advantage as C distinguishes between the two distributions.
Next, it is not hard to verify that D2 is identically distributed to D3 as both Z and Y0x + Y1

are uniformly distributed in Fm.

By combining Claims 6.5 and 6.6, we conclude that for (Y0,x, ra, r̂, t̂)
R← D1 it holds that:

Pr
[
Y0 ∈ colSpanJB′(x, t̂)

]
≤ 1

2
+ neg(n),

where B′ = T
(
Decra,r̂,

(
x, t̂
))

. This means that, when the challenge bit b equals to 1, the adversary
A outputs 1 with probability larger than 1/2 − neg(n). Recall that, by Claim 6.4, if b = 0 the
adversary A outputs 0 with probability 1 − neg(n). Overall, it follows that A wins the game
with a probability of at least 1/2 − neg(n), thus breaking the computational privacy of the MPC
protocol.

7 Homomorphic Encryption

In this section we show that there are no homomorphic encryption schemes in the arithmetic model
even for relatively simple operations like scalar multiplication and ciphertext addition. As explained
in the introduction, our attacks rely on a reduction to the Arithmetic Predictability Problem. In
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Section 7.1, we will define this problem, and show that it can be efficiently solved. (Some of the
proofs will be deferred to Sections 7.4 and 7.5). Homomorphic encryption will be defined and
attacked in Sections 7.2 and 7.3.

7.1 Main Tool: Algorithm for the Arithmetic Predictability Problem

We define the Arithmetic Predictability Problem, denoted by APd,ε,∆,p, which is parameterized by
a degree bound d ∈ N, proximity parameter ε ∈ (0, 1), entropy gap ∆ > 0, and some prime p which
defines the field F = GF(p).

Definition 7.1 (The Arithmetic Predictability Problem APd,ε,∆,p). Given an arithmetic circuit
P = (P1, . . . , Pm) with m outputs and n inputs x = (x1, . . . , xn), and an additional target poly-
nomial T (x1, . . . , xm) (represented by an arithmetic circuit) distinguish between the following two
cases:

• (Yes case:) There exists a (possibly inefficient) rational function Q(z) = A(z)/B(z), where
A : Fm → F and B : Fm → F are non-zero polynomials of degree at most d, such that

Pr
x

R←Fn

[Q(P (x)) = T (x)|B(P (x)) 6= 0] = 1. (9)

• (No case:) There exists a probability distribution (P′,T′) over Fm × F such that:

(P′,T′) is ε-close to (P, T )(x) where x
R← Fn (10)

and
H̃∞(T′|P′) ≥ log p−∆. (11)

Recall that the average min-entropy H̃∞(Y |X) of a random variable Y given a random variable X
measures (in logarithmic scale) the probability of guessing Y given X. (See Section 3.1).

About the parameters. We briefly explain the role of the parameters. Consider, for starters,
the case where Q is a polynomial (i.e., the denominator B is taken to be some non-zero scalar),
and let us focus on a Yes instance. In this case, Q guesses T (x) given P (x), with probability 1 over

x
R← Fn. So T (Un) is perfectly predictable given P (Un) where Un denotes the uniform distribution

over Fn. In the more general case, where the denominator of Q is a degree d polynomial, the
predictor is allowed to “ignore” some of the inputs x (the ones which zero B). Hence, larger d
weakens the predictability of Yes instances and allows to consider richer predictors.

The parameters ε and ∆ control the unpredictability of No instances. In the extreme case of
ε = ∆ = 0, the random variable T (Un) is completely unpredictable given P (Un) and it cannot be
guessed with probability better than 1/p. Larger ε,∆ > 0 weaken this condition and make No
instances more predictable.16

A binary-version of the above problem (denoted by the Gap-Learning Problem) was studied
by [ABX08] in the context of proving lower-bounds for PAC-learning. Indeed, thinking of (P, T )(x)

16We remark that the use of two parameters for unpredictability (i.e., ε and ∆), as opposed to a single unpre-
dictability parameter, makes the notion more robust in a way which is crucial for our results.
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as a joint distribution over m-dimensional points p ∈ Fm and their label t ∈ F, Yes instances are
learnable (by a possibly inefficient learner), while No instances are information-theoretic unlearn-
able. The AP problem is also closely related to the problem of estimating the entropy of a given
distribution (represented by a sampling circuit) which was studied by [GV99] for binary circuits
and by [DGRV11] for arithmetic circuits. These binary variants are known to be complete for the
class SZK of languages that admit a statistical-zero knowledge proofs [GV99, ABX08], and so they
are believed to be intractable.

Solving AP. We say that APd,ε,p,∆ is efficiently solvable if given an input (P, T ) of circuit size s
it is possible to determine in time poly(s, log p) whether (P, T ) is a Yes instance or a No instance
with error probability of 1/3. We will show that, when F is sufficiently large, the problem can be
solved efficiently. Recall that A is a strictly arithmetic circuit if it does not contains any bitsample
gates, sample gates, zerocheck gates, or divide gates. (Recall that a generalized arithmetic circuit
may use such gates.) We will always assume that the target polynomial T is a strictly arithmetic
circuit as this will be the case in our attacks.

Theorem 7.2. The problem APd,ε,p,∆ can be efficiently solved in the following cases.

1. The inputs P : Fn → Fm and T : Fn → F are strictly arithmetic circuits which compute degree

d polynomials, ε < 1
2 and p > (n+1)dn+1(1+2∆)

(1/2−ε)2 .

2. The input P is an s-size (generalized) arithmetic circuit, the input T is an s-size strictly
arithmetic circuit ε ≤ 0.199 and p ≥ (d+ s)2s · 23s+∆.17

In the second part P is allowed to use internal random gates (which sample bits or field ele-
ments). In such a case, we assume that the probability distributions of Equations (9) and (10) are

defined over the internal randomness of P , in addition to the random choice of x
R← Fn.

Proof outline. The first part is proved via the following simple algorithm: Choose a random

point x
R← Fn and check if the rows of the Jacobian JP (x) ∈ Fm×n span the gradient ∂T (x) ∈ Fn

of the target polynomial T (x). The analysis follows the techniques of [DGW09] and is deferred to
Section 7.4. For the second part (which will be useful for our attack) we show how to map the input
(P, T ) into a strictly arithmetic circuit (P ′, T ) via a sequence of (randomized) Karp reductions. The
proof then follows by applying the first part of the theorem. (See Section 7.5.) We note that the
second part of the theorem extends to the case where ε ≤ 1/5− α for any inverse polynomial α at

the expense of letting p = Ω( exp(2s3+s log(d+1)+∆)
α2 ).

Remark 7.3. As we will later see in order to attack arithmetic homomorphic encryption, it suffices
to solve a very special case of APd,ε,p,∆ where ∆ = 0, ε is negligible (or even taken to be zero),
d = 2poly(s) and p is a huge (exponentially large) prime. However, this should be done with respect
to a generalized arithmetic circuit P which may use division gates, zero-testing gates and bit-sample
gates. The only way we know how to solve this problem is via a reduction to the strictly arithmetic
case with a more general setting of parameters d,∆, ε > 0.

17Note that s implicitly upper-bounds the input and output lengths (n and m) and therefore we can state the
result without putting an explicit bound on n and m.
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7.2 Attacking Statsitical Scalar-Multiplicative Homomorphic Encryption

Recall that an arithmetic encryption scheme is defined by a triple (KGen,Enc,Dec) where KGen =
{KGenn}, Enc = {Encn} and Dec = {Decn} are uniform sequences of polynomial sized arithmetic
circuits. (See Definition 4.2.) We assume that KGenn outputs an additional evaluation key ek and
that security holds even when the adversary is given ek at the first step of the security game. We
further assume that the scheme satisfies the following notion of homomorphic evaluation (related
notions have appeared in [IKO05, Gen09, BL13]).

Definition 7.4 (Scalar-Multiplicative Homomorphic Evaluator). An ε-statistical scalar-multiplicative
homomorphic evaluator for an encryption scheme (KGen,Enc,Dec) is a uniform sequence of poly-
nomial sized (randomized) arithmetic circuits sMul = {sMuln} that takes as input a ciphertext c, a
message (scalar) y and an evaluation-key ek. It should satisfy the following conditions for all fields

F and for all but a negligible fraction of the keys (pk, sk, ek)
R← KGenFn:

• (Correctness) For every pair of messages (x, y) ∈ F2, the ciphertext c = sMulFn(EncFn(x, pk), y, ek)
decrypts correctly (with probability 1) to x · y, i.e.,

Pr[DecFn(c, sk) = xy] = 1.

• (Statistical homomorphism) For every pair of messages x ∈ F and y ∈ F, the random variables

(c, sMulFn(c, y, ek)) and (c,EncFn(x · y, pk)), where c
R← EncFn(x, pk),

are ε(n)-close in statistical distance.

We say that sMul is ε-weak scalar-multiplicative homomorphic evaluator if statistical homomor-
phism is replaced with the following property

• (Weak homomorphism) For every pair of messages x ∈ F and y ∈ F, the random variables

sMulFn(EncFn(x, pk), y, ek) and EncFn((x · y), pk),

are ε(n)-close in statistical distance.

We rule out arithmetic encryption with statistical scalar-multiplicative homomorphism even
in the weakest setting of symmetric encryption with one-time security. In this setting, we may
assume, without loss of generality, that the scheme is perfectly correct.18 In contrast, we will later
show (Section 10) that weak multiplicative homomorphism can be achieved in the arithmetic model
based on the RLC assumption.

Theorem 7.5. For every constant ε ≤ 0.199, there is no one-time secure symmetric encryption
scheme which is ε-statistical scalar-multiplicative in the arithmetic model.

18First, observe that without loss of generality the decryption algorithm is deterministic (e.g., by letting the
encryption output the randomness needed for decryption as part of the ciphertext). Next, note that any scheme with
negligible decryption error of ε(n) can be turned into a perfectly correct scheme. This is done by letting the encryption
algorithm check if the resulting ciphertext decrypts correctly, and, in case of an error, replace the ciphertext with the
un-encrypted message (together with a special “no encryption” flag). It is not hard to see that this transformation
incurs only a negligible loss (of ε) in the security.
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Proof. Let s(n) be an upper-bound on the circuit size of the homomorphic evaluator sMuln and
on the circuit size of the decryption algorithm. We will show that in order to attack the scheme
it suffices to solve the APd,ε,p,∆ for d = (s + 1) · 2s,∆ = 0, ε = 0.199 and sufficiently large p.
Specifically, the attacker A does the following:

• A receives 1n, chooses a prime p ∈ (27s2 , 2 · 27s2) and sends some implementation of the field
F = GF(p) to the challenger.

• Given an evaluation key ek
R← KGenFn, the adversary chooses a pair of messages (x0 = 0, x1 =

1) and sends them to the challenger.

• Given a ciphertext c (which encrypts either x0 or x1), the adversary defines a random-
ized arithmetic circuit Pek,c(x) = sMulFn(c, x, ek) and a strictly arithmetic circuit T (x) = x.
Then, it uses part 2 of Theorem 7.2 to classify (P, T ) as a Yes instance or a No instance of
APd=(s+1)·2s,ε,p,∆=0. If the answer is “Yes”, A outputs 1; otherwise, it outputs 0.

Fix the keys (sk, pk, ek) that were chosen by KGenFn and let us condition on the event that
these keys are “good” in the sense that they satisfy the correctness and statistical homomorphism
properties of Definition 7.4. (Recall that this event happens with all but negligible probability.) To
analyze the success probability it suffices to show that if c is an encryption of 1 then (Pek,c, T ) is a
Yes instance and if c is an encryption of 0 then (Pek,c, T ) is a No instance.

We begin with the case where c is an encryption of 1, and, correspondingly, Pek,c(x) outputs
an encryption of x · 1 = x. By perfect correctness, the decryption algorithm Decsk(z) = Dec(z, sk)
satisfies Decsk((Pek,c(x)) = T (x) for every x. By applying Proposition 3.12 to Decsk, there exist
a rational function A

B which is computed by a zerocheck-free circuit of size s, and a degree s2s-
polynomial G such that

A

B
(z) = Decsk(z), ∀z s.t G(z) 6= 0.

Consider the rational function Q(z) = A(z)G(z)
B(z)G(z) . This function certifies that (Pek,c, T ) is a Yes

instance, since Q(Pek,c(x)) = T (x) for every x which satisfies B(P (x))G(P (x)) 6= 0. Finally,
observe that the degree of the denominator and nominator of Q is upper-bounded by (s+ 1) · 2s.

Next, we claim that if c is an encryption of 0 then (Pek,c, T ) is a No instance. Indeed, in this
case Pek,c(x) outputs the ciphertext x · 0 = 0, and, since the homomorphism is statistical, we have
that for every good keys pk and ek, and every message x, the random variables

(c, sMulFn(c,x, ek)) and (c,EncFn(0, pk))

are ε(n)-close. Letting (P′,T′) = (EncFn(0, pk), T (x)) where x
R← F, we conclude that

(Pek,c(x), T (x)) is ε-close to (P′,T′).

Since T′ = T (x) is uniform and statistically independent of P′ = EncFn(0, pk), it follows that
H̃∞(T′|P′) = log p, and so (Pek,c, T ) is a No instance. The theorem follows.

Remarks on Theorem 7.5.

• For positive applications, one would typically strive for statistical homomorphic encryption
with negligible error parameter ε. Theorem 7.5 therefore provides a strong negative result as
it applies even to a constant ε ≤ 0.199. (Similarly to Theorem 7.2, the lower-bound holds for
any value of ε = 1

5 − δ(n) where δ is an arbitrary inverse polynomial.)
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• In the public-key setting, it is possible to extend the theorem to the case where the statistical
homomorphism property (as defined in Definition 7.4) applies only to a noticeable fraction
of the evaluation/public-keys (ek, pk). Indeed, in this case the attack A described in the
proof of Theorem 7.5 succeeds over a noticeable fraction of the keys. The scheme can now
be broken by applying A over “vulnerable” keys and using a random guess over all other
keys (for which the statistical homomorphism does not hold). This strategy can be efficiently
implemented since one can efficiently test (with high probability) whether the keys chosen
by the challenger are vulnerable to A or not. (Just run the attack several times on a pair of
“dummy ciphertexts” whose decryption is known and check whether the attack succeeds.) A
similar extension holds for the case of CPA-secure symmetric encryption as in this case the
encryption oracle can be used to test if the given evaluation-key ek is vulnerable.

• Finally, we note that the attack generalizes to the case where the decryption algorithm can
be written as a possibly-inefficient polynomial of degree 2poly(n). This extension can be used
to handle restricted forms of arithmetic commitment schemes with statistical multiplicative
homomorphism which support inefficient low-degree decryption.

7.3 Attacking Additive Homomorphic Encryption

Theorem 7.5 requires statistical homomorphism (for scalar multiplication), i.e., it assumes that
the homomorphic evaluator generates fresh ciphertexts which are statistically close to ciphertexts
which were generated via the encryption algorithm. We move on to consider a weaker form of
homomorphism (referred to as multi-hop) which only requires that repeated applications of the ho-
momorphic evaluator preserve correctness. We extend our result to this more general setting at the
expense of considering a more powerful family of homomorphic operations. Specifically, we consider
encryptions which support homomorphic additions of ciphertexts, in addition to multiplications by
(un-encrypted) scalars.

Definition 7.6 (Multi-hop Additive Homomorphic Encryption (AHE)). An encryption scheme
(KGen,Enc,Dec) is multi-hop additively homomorphic if there exists a uniform sequence of polyno-
mial sized (randomized) arithmetic circuits sMul = {sMuln} and Add = {Addn} such that for all

fields F and for all but a negligible fraction of the keys (pk, sk, ek)
R← KGenFn the following property

holds:

• (Multi-hop) For every ciphertexts c1, c2 which decrypt under DecFn(·, sk) to x1, x2 ∈ F and for
any scalar y ∈ F, with probability 1, it holds that

DecFn(AddFn(c1, c2, ek), sk) = x1 + x2 and DecFn(sMulFn(c1, y, ek), sk) = x1 · y.

Observe that we allow only multiplication by a pubic scalar and so AHE is far less powerful
than fully homomorphic encryption. Moreover, we make no requirement regarding the distribution
of homomorphically generated ciphertexts.

Theorem 7.7. There is no semantically-secure multi-hop additively homomorphic symmetric en-
cryption scheme in the arithmetic model.
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Proof. Let `(n) be an upper-bound on the circuit size of the homomorphic addition and multi-
plication and on the circuit size of the decryption algorithm. The latter means that `(n) also
upper-bounds the length of a ciphertext. Let s(n) = 3`2(n). We will show that in order to attack
the scheme it suffices to solve the APd,ε,p,∆ for d = (s+ 1) · 2s,∆ = 0, ε = neg(n) and p = O(27s2).
It will be convenient to describe an attack against a multiple-message variant of the IND-CPA
game where the challenge consists of two polynomially-long vectors of messages. It is well known
(cf. [KL08, Chapter 3.4]) that this notion is equivalent to the single-message variant of IND-CPA
(Definition 4.2), and it is not hard to verify that this equivalence carry over to the arithmetic
setting.

We move on to describe the attacker A. In the following we use � to denote homomorphic
addition and � to denote homomorphic multiplication of a ciphertext by an un-encrypted scalar
(and omit for readability the dependency in the security parameter, in the field and in the evaluation
key).

• A receives 1n, chooses a prime p ∈ (27s2 , 2 · 27s2) and sends some implementation of the field
F = GF(p) to the challenger.

• Given an evaluation key ek
R← KGenFn, the adversary sends to the challenger a pair (y, w) of

message vectors, where y
R← Ft+1 consists of t+ 1 random messages (y0, . . . , yt) and w = 0t+1

is the all zero vector where t = `+ 2.

• Given a vector of ciphertexts c = (c0, . . . , ct) (which encrypts either y or w), the adversary de-
fines a (generalized) arithmetic circuit Pek,c : Ft → F` over the (formal) inputs x = (x1, . . . , xt)
as follows

Pek,c(x) = c0 � (c1 � x1) � · · ·� (ct � xt),

that is, P homomorphically computes an “inner product” between (the plaintexts that cor-
respond to) c and the plaintext vector (1, x). The adversary also defines a strictly arithmetic
single-output circuit

Ty(x) = y0 + (y1x1) + · · ·+ (ytxt).

Since both circuits are of size at most s, the adversary can use part 2 of Theorem 7.2 to
classify (P, T ) as a Yes instance or a No instance of APd,ε,p,∆. If the answer is “Yes”, A
outputs 1; otherwise, it outputs 0.

As in the proof of Theorem 7.5, we fix the keys (sk, pk, ek) that were chosen by KGenFn and
condition on the event that these keys are “good” in the sense that they satisfy the Correctness
property of Definition 7.6. Observe that when c is an encryption of the vector y, the circuit Pek,c(x)
outputs an encryption of the plaintext outputted by the target circuit Ty(x). Using the same
argument as in Theorem 7.5, it follows that, in this case, (Pek,c, Ty) is a Yes instance. To conclude
the proof it suffices to show that if c is an encryption of 0t+1 then (Pek,c, Ty) is, with probability
1− o(1) over the choice of y, a No instance.

Consider the jointly distributed random variables

(y, Pek,c(x), Ty(x)), where y
R← Ft+1,x

R← Ft. (12)

First observe that Pek,c(x) consists of only `(n) entries. Hence, by Fact 3.1 item 3, the unpre-
dictability of x conditioned on Pek,c(x), is at least

H̃∞(x|Pek,c(x)) ≥ (t− `) log p = 2 log p.
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Next, observe that since c is an encryption of zeroes, Pek,c(x) is statistically independent of y.
Finally, note that Ty(x) computes a pairwise independent hash function from Ft to F. We can

therefore think of Eq. (12), as composed of a key y
R← Ft+1, some “leakage” I = Pek,c(x) on the

source x
R← Ft, and the value of the hash function Ty applied to the source x. By the generalized

hashing lemma (Fact 3.2), the triple (12) is 1
2
√
p -close in statistical distance to the triple

(y, Pek,c(x),T′), where T′
R← F. (13)

By Markov’s inequality, it follows that, for all but 1/n fraction of possible y’s, it holds that

∆((Pek,c(x), Ty(x)), (Pek,c(x),T′)) ≤ n

2
√
p
≤ neg(n).

This shows that (Pek,c, Ty) is a No instance, and the theorem follows.

Remark 7.8. It is not hard to verify that the proof of Theorem 7.7 rules out the existence of any
homomorphic encryption which allows to compactly evaluate inner products. The latter means
that for some polynomial t = t(n) the homomorphic evaluator can map a vector of plaintexts y =
(y1, . . . , yt) ∈ Ft and a vector of ciphertexts (c1, . . . , ct) which encrypts the plaintexts (x1, . . . , xt) ∈
Ft, to a new ciphertext c∗ that decrypts to

∑
xiyi and consists of less than t− 3 field elements.19

7.4 Proof of Theorem 7.2: part 1

The idea is to output Yes if the rows of the Jacobian JP : Fn → Fm×n span the gradient ∂T (x) :
Fn → Fn of the target polynomial T (x), where the underlying field is the field of rational functions
F(x) and ∂T (x) is viewed as a row vector. As observed by [DGW09] (see also [Kay09, Corollary 3])
this can checked efficiently (with small error) via the following randomized algorithm.

The algorithm A: Choose a random vector x
R← Fn and output “Yes” if and only if the rows of

the matrix JP (x) ∈ Fm×n span (over F) the row vector ∂T (x) ∈ Fn.

Let us analyze the algorithm A beginning with the case of a Yes instance.

Claim 7.9. If the input is a Yes instance then the algorithm outputs Yes with probability 1− 2d2

p > 2
3 .

Proof. Assume that the input is a Yes instance. Namely, for some rational function Q(z1, . . . , zm) =
A((z1, . . . , zm))/B((z1, . . . , zm)) it holds that

Q(P (x)) = T (x),

for every x which does not zero B(P (x)). Note that the degrees of the denominator and nominator
of the LHS are upper-bounded by d2 and the degree of the polynomial of the RHS is upper-
bounded by d. Since F is sufficiently large, it follows (by the Schwartz-Zippel lemma) that the
rational functions Q(P (x)) and T (x) are equivalent. Therefore, by the chain rule (Lemma 3.7), we
have that

∂zQ(P (x)) · JxP (x) ≡ ∂xT (x),

19Note that without any compactness constraint, homomorphism becomes trivial (and useless) as the “homomorphic
evaluator” can simply output the given ciphertexts and leave the actual computation to the decryptor.
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where ∂zQ(P (x)) and ∂xT (x) are treated as row vectors. Hence, if the vector x ∈ Fn does not zero
the denominator of ∂zQ(P (x)), the test will pass and the algorithm will output “Yes”.

We show that the denominator of ∂zQ(P (x)) is zeroed with probability at most 2d2/|F|. Recall
that Q(z) = A(z)/B(z) and so the denominator of ∂zQ(P (x)) is B2(P (x)) which is a polynomial
of degree at most 2d2. (Since d upper-bounds the degree of B and the degree of the polynomials

P .) Hence, by the Schwartz-Zippel lemma, a random x
R← Fn will zero ∂zQ(P (x)) with probability

at most 2d2/|F| which, for our choice of parameters, is (much) smaller than 1/3.

We move on to the case of a No instance. We will need the following fact from [DGW09],
originally proved over the field of rational numbers by [ER93].

Fact 7.10 (Theorems 3.1 and 3.3 in [DGW09]). Let F = GF(p) and let M = (M1, . . . ,Mm) be an

m-tuple of degree d polynomials in F[x1, . . . , xn] where p is a prime larger than D
def
= (n + 1)dn.

Then, the rows of the Jacobian JM are linearly dependent (over the field of rational functions)
if and only if there exists a polynomial Z ∈ F[z1, . . . , zm] such that Z(M1(x), . . . ,Mm(x)) ≡ 0.
Furthermore, in the “only if” direction Z is guaranteed to be of degree at most D.

We remark that the “if” direction holds even if p is small. The polynomial Z is referred to as
the annihilating polynomial of M and its existence corresponds to the classical notion of algebraic
dependence.

We begin by showing that, in the case of No instance, the Jacobian JP does not span the
gradient ∂T of the target polynomial over the field of rational functions F(x).

Claim 7.11. If the input is a No instance, then ∂T /∈ span(JP ).

Proof. Assume towards a contradiction that ∂T ∈ span(JP ). Without loss of generality, we assume
that the rows of JP are linearly independent. (Otherwise, take some minimal subset P ′ of the
polynomials in P whose jacobian spans JP ; Observe that if (P, T ) is a No instance then so is
(P ′, T ) for any subset of the polynomials P ′ ⊆ P .)

By Fact 7.10, there exists an annealing polynomial Z(z1, . . . , zm, t) of degree D = (n + 1)dn

such that Z(T, P ) ≡ 0. Furthermore, since the rows of JP are linearly independent, by Fact 7.10,
the polynomials P have no annealing polynomial. It follows that Z can be written as

Z(z, t) =

D∑
i=1

ti · Zi(z), where the polynomial Zi(P (x)) 6≡ 0 for some i. (14)

Since (P, T ) is assumed to be a No instance, there exists a distribution (P′,T′) such that
(1) (P′,T′) is ε-close to (P, T )(Un) and (2) H̃∞(T′|P′) ≥ log p − ∆. We will use (2) to derive a
contradiction to (1). That is, we describe an (inefficient) distinguisherA for (P′,T′) and (P, T )(Un).

Given a vector (z = (z1, . . . , zm), t) ∈ Fm+1, our distinguisher A accepts the input if and only
if Z((z1, . . . , zm), t) = 0. By definition, the test accepts every value (z, t) in the image of (P, T )(x),
therefore,

Pr
x

[A(P (x), T (x)) = 1] = 1.

We analyze the acceptance probability of (P′,T′). For a fixed z ∈ Fm, let Lz denote the set of
t ∈ F for which the distinguisher accepts the value (z, t). Namely,

Lz
def
= {t ∈ F : Z(z, t) = 1} .
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First observe that

Pr
z

R←P (Un)

[|Lz| ≤ Dd] > 1− Dd

p
. (15)

Indeed, let i be the maximal integer for which Zi(P (x)) is a non-zero polynomial, as promised by
Equation (14). As a polynomial in x, the degree of Zi(P (x)) is at most (D− i) · d < Dd, hence, by
the Schwartz-Zippel lemma, Prx[Zi(P (x)) = 0] < Dd/|F|. For any fixed x for which Zi(P (x)) 6= 0,
the residual polynomial Zx(t) = Z(P (x), t) is a non-zero polynomial of degree at most i · d < Dd
and so it has at most Dd roots and Eq. (15) follows.

Since the marginals P′ and P (Un) are ε-close, Eq. (15) implies that

Pr
z

R←P′
[|Lz| ≤ Dd] > 1− Dd

p
− ε. (16)

Recall that H̃∞(T′|P′) ≥ log p−∆, and so by Markov’s inequality (Fact 3.1, item 1), we have that
for every δ > 0

Pr
z

R←P′
[H∞(T′|P′ = z) ≥ log p−∆− log(1/δ)] ≥ 1− δ. (17)

Call z good if both |Lz| ≤ Dd and H∞(T′|P′ = z) ≥ log p−∆−log(1/δ). Combining Equations (16)

and (17), and applying a union-bound, it follows that a random z
R← P′ is good with probability

1− δ − ε− Dd
p . Finally, observe that for a good z we have that

Pr[T′ ∈ Lz|P′ = z] ≤ Dd · 2− log p+∆+log(1/δ) ≤ Dd2∆

δp
.

Hence, the distinguisher A accepts (P′,T′) with probability at most (δ+ Dd
p + ε) + Dd2∆

δp . Overall,

the distinguishing advantage is 1 − (δ + Dd
p + ε + Dd2∆

δp ). Taking δ = (1 − 2ε)/2 and plugging in

p > Dd(1+2∆)
(1/2−ε)2 we obtain a distinguishing advantage larger than ε.

Finally, it remains to show that if ∂T /∈ span(JP ) then for a random x
R← Fn, the matrix

∂T (x) /∈ span(JP )(x). This follows from the following standard claim.

Claim 7.12. Let M be an m × n matrix of degree d polynomials in F[x1, . . . , xn] and let v be a
vector of n polynomials of degree d over F[x1, . . . , xn]. Then, if the rows of the Jacobian M do not
span v over the field of rational functions F(x), then Prx[v(x) ∈ span(M(x))] ≤ dn/|F|.

Proof. Let M ′ be the matrix obtained by taking a subset of the rows of M that forms a basis for M .
Since the matrix M ′ has full rank and since it does not span v, the number of rows m′ ≤ m of M ′ is
strictly smaller than the number of columns n. We define an m′× (m′+ 1) matrix M ′′ by removing
an arbitrary set of n−m′−1 columns from M ′, and define v′ be removing the corresponding entries
of v. Observe that

Pr
x

[v(x) ∈ span(M(x))] = Pr
x

[v(x) ∈ span(M ′(x))] ≤ Pr
x

[v′(x) ∈ span(M ′′(x))].

Hence, it suffices to show that the square matrix T =
(
M ′′
v

)
of polynomials is likely to be nonde-

generate when evaluated on a random point x. Indeed,

Pr
x

[det(T (x)) = 0] = Pr
x

[det(T )(x) = 0] ≤ dn/|F|,
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where det(T ) is the polynomial P (x) that corresponds to the determinant of T computed over the
the field of rational functions. The last inequality follows by Schwartz-Zippel, noting that P is a
non-zero polynomial (since T is non-degenerate over F(x)) of degree at most nd.

Combining the last two claim, we conclude that No instances are accepted with probability at
most 1/3. This completes the proof of Theorem 7.2.

7.5 Proof of Theorem 7.2: part 2

The proof follows by a sequence of Karp reductions from generalized Arithmetic Circuits to strictly
arithmetic circuits.

7.5.1 Removing random gates

We begin by describing how to remove sample gates (which sample uniform field elements) and
bitsample gates (which sample a uniform 0-1 values). Handling the first type is easy: Just view
the sample gates as additional input gates. Formally, let ` ≤ s denote the number of sample gates,
and for x ∈ Fn and R ∈ F`, let P (x;R) denote the outcome of P (x) when the sample gates are
fixed to the value R. Then, the circuit P ′(x,R) = P (x;R) has no sample gates. Furthermore, it
is not hard to verify that if (P, T ) is a Yes instance (resp., No instance) then so is (P ′, T ′) where
T ′(x,R) = T (x).

The case of bitsample gates is slightly more complicated. Let T : Fn → F be an s-size strictly
arithmetic circuit and let P : Fn → Fm be an s-size arithmetic circuit that uses ` < s bitsample
gates. For a string ρ ∈ {0, 1}` let Pρ denote the arithmetic circuit obtained by fixing the value of
the bitsample gates of P to ρ.

Lemma 7.13 (Removing bitsample gates). For every α > 0 the following hold:

• If (P, T ) is a Yes instance of APd,ε,p,∆ then, for every ρ, (Pρ, T ) is a Yes instance of APd,ε′,p,∆′.

• If (P, T ) is a No instance of APd,ε,p,∆, then with probability α over ρ
R← {0, 1}`, the pair

(Pρ, T ) is a No instance of APd,ε′,p,∆′

where ε′ = 2ε
1−ε−3α/2 and ∆′ = ∆ + s+ log(1/α) + 1.

Proof. The first item holds by definition. (Indeed, (Pρ, T ) is a Yes instance of APd,ε,p,∆, and
therefore also a Yes instance of APd,ε′,p,∆′ .) We will prove that, with high probability, a No instance
is mapped to a No instance. Let R be the uniform distribution over {0, 1}` strings. Since (P, T )
is a No instance, there exists a distribution (P′,T′) which is ε-close to (P (Un, R), T (Un)) and for
which H̃∞(T′|P′) > log p − ∆. Consider the joint distribution (P (Un, R), T (Un), R) and observe
that we can define a new random variable R′ which is jointly distributed with (T′,P′) such that
the distributions

(P (Un, R), T (Un), R) and (P′,T′,R′) are ε-close. (18)

Specifically, let R′ = f(P′,T′) where f(p, t) is the randomized mapping that given (p, t) ∈ Fm × F
uniformly samples (r, x) subject to P (x, r) = p and T (x) = t, and outputs r. Observe that

(P (Un, R), T (Un), R)
i≡ (P (Un, R), T (Un), f(P (Un, R), T (Un))),
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(recall that X
i≡ Y means that X and Y are identically distributed). Also, by definition,

(T′,P′,R′)
i≡ (T′,P′, f(P′,T′)).

Hence, Eq. 18 follows from the fact that (P,T) and (P (Un, R), T (Un)) are ε-close.
We will use the following notation. For a jointly distributed (X,Y ), let XY=y denote the

distribution of X conditioned on the event Y = y. Let α1, α2 > 0. Call ρ ∈ {0, 1}` good if it
satisfies the following conditions (Equations (19) and (20)):

(P (Un, R), T (Un))R=ρ and (T′,P′)R′=ρ are (2ε/α1)− close, (19)

and
H̃∞(T′R′=ρ|P′R′=ρ) > log p−∆− s− log(1/α2). (20)

Note that if ρ is good then (Pρ, T ) is indeed a No instance of APd,ε′,p,∆′ . We begin by showing that
a large fraction of ρ ∈ {0, 1}` satisfy Eq. (19). We will need the following simple fact.

Fact 7.14. If (X,Y ) is ε-close to (X ′, Y ′) then Pr
y
R←Y

[∆(Xy, X
′
y) > 2ε/α] < α, where Xy (resp.,

X ′y) denote the distribution of X (resp. X ′) conditioned on the event Y = y (resp., Y ′ = y).

Proof. By Markov’s inequality, it suffices to prove that

E
y
R←Y

[∆(Xy, X
′
y)] ≤ 2ε.

For every y and distinguisher A, let α(y,A) = Pr[A(Xy)]−Pr[A(X ′y)], where Pr[A(x)] abbreviates
Pr[A(x) = 1]. Let Ay be a distinguisher that maximizes, over all distinguishers A, the quantity
α(y,A) and let αy = α(y,A). Note that αy is the statistical distance between Xy and X ′y. We can
write

E
y
R←Y

[Pr[Ay(Xy)]− Pr[Ay(X
′
y)]] = E

y
R←Y

[Pr[Ay(Xy)]]− E
y
R←Y

[Pr[Ay(X
′
y)]]

= E
y
R←Y

[Pr[Ay(Xy)]]−

(
E

y
R←Y ′

[Pr[Ay(X
′
y)]]− E

y
R←Y ′

[Pr[Ay(X
′
y)]]

)
− E
y
R←Y

[Pr[Ay(X
′
y)]]

=

(
E

y
R←Y

[Pr[Ay(Xy)]]− E
y
R←Y ′

[Pr[Ay(X
′
y)]]

)

+

(
E

y
R←Y ′

[Pr[Ay(X
′
y)]]− E

y
R←Y

[Pr[Ay(X
′
y)]]

)
Letting A(x, y) = Ay(x), we can rewrite the first difference as Pr[A(X,Y )]− [Pr[A(X ′, Y ′)] and so
it is upper-bounded by ε. The second difference can be written as

Pr[B(Y ′)]− Pr[B(Y )],

where B(y) is the randomized function which samples x
R← X ′y and outputs Ay(x). Since the

marginals Y and Y ′ are also ε-close, it follows that the second difference is also upper-bounded by
ε, which completes the proof.
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By Fact 7.14 and Eq. 18, a random ρ
R← R satisfies Eq. (19) with probability 1− α1. We show

that a random ρ
R← R satisfies Eq. (20) with probability 1− α2.

Since R′ is of bit-length ` < s, we have, by Fact 3.1 ([DORS08, Lemma 2.2b]),

H̃∞(T′|P′,R′) > H̃∞(T′|P′)− s > log p−∆− s,

it follows (by the second part of Fact 3.1) that

Pr
ρ
R←R′

[H̃∞(T′R′=ρ|P′R′=ρ) > log p−∆− s− log(1/α2)] > 1− α2.

Since R′ is ε-close to R, we conclude that a random ρ
R← R satisfies Eq. (20) with probability

1 − α2 − ε. Overall, by a union bound, a random ρ
R← R is likely to be good with probability

1− α1 − α2 − ε. By letting α1 = 1− ε− 3α/2 and α2 = α/2, we establish the lemma.

7.5.2 Removing zerocheck gates

We move on to take care of zerocheck gates.

Lemma 7.15 (Removing zerocheck gates). Let p > (s + 1) · 2s+1. For every β > 0, there exists
a poly(s, log p, log(1/β))-time computable probabilistic mapping f that maps an s-size arithmetic
circuit P : Fn → Fm over {zerocheck, add, subtract,multiply, divide, 0, 1} into an (s+ s2)-size arith-
metic circuit f(P ) : Fn+1 → Fm+1 over {add, subtract,multiply, divide, 0, 1} such that the following
hold for every s-size strictly arithmetic circuit T :

• If (P, T ) is a Yes instance of APd,ε,p,∆ then, with probability 1 − β, the pair (f(P ), T ) is a
Yes instance of APd′,ε′,p,∆.

• If (P, T ) is a No instance of APd,ε,p,∆, then with probability 1− β, the pair (f(P ), T ) is a No
instance of APd′,ε′,p,∆.

where d′ = d+ 1 and ε′ = ε+ s2s+1

p .

Note that after the removal of zerocheck gates the mapping P may contain a division by zero. As
usual, in this case the output may be arbitrary. We will show that our reduction works regardless
of the behavior of the circuit in this case.

Proof. We will use a zerocheck-removal procedure defined in Proposition 3.12. Recall that this
procedure outputs, with probability 1− β, a zerocheck-free circuit P̂ : Fn → Fm of size s together
with a strictly arithmetic circuit G : Fn → F of size s2 that computes a degree s2s+1 polynomial
such that P and P̂ agree on all inputs x which are not roots of G. Based on P̂ and G, we define a
new zerocheck-free circuit with n+1 inputs and m+1 outputs. The first m outputs are computed by
P̂ (x1, . . . , xn). The last (m+1)-th output is the polynomial Ĝ(x1, . . . , xn+1) = G(x1, . . . , xn) ·xn+1

where xn+1 is a new input variable. (Intuitively, when xn+1 is random, Ĝ contains a single bit of
information that signals whether P̂ equals to P .)

We analyze the effect of the above procedure for Yes instances (assuming that the algorithm
from Proposition 3.12 succeeds).

Claim 7.16. If (P, T ) is a Yes instance of APd,ε,p,∆, then ((P̂ , Ĝ), T ) is a Yes instance of APd′,ε′,p,∆.
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Proof. Since (P, T ) is a Yes instance there exists a pair of degree d non-zero polynomials A,B :

Fm → F, such that A(P (x))
B(P (x)) = T (x) for every x for which B(P (x)) 6= 0.

Note that A and B are defined over m input variables z = (z1, . . . , zm). We extend these
polynomials with an additional input variable zm+1 via

A′(z, zm+1) = A(z) · zm+1, and B′(z, zm+1) = B(z) · zm+1.

Observe that

A′(P̂ (x), Ĝ(x))

B′(P̂ (x), Ĝ(x))
=
A(P̂ (x)) · Ĝ(x)

B(P̂ (x) · Ĝ(x)

=
A(P̂ (x))

B(P̂ (x))

=
A(P (x))

B(P (x))
= T (x),

where the second equality holds for every x which is not a root of Ĝ, the third equality holds for
every x which is not a root of G (since P and P̂ agree on all these points), and the last equality
holds for every x for which B(P (x)) 6= 0 (by our assumption). Overall, equality holds for every x
which does not zero the denominator B′(P̂ (x), Ĝ(x)), as required. Finally, A′ and B′ are of degree
at most d+ 1 and so the claim follows.

We move on to analyze No instances.

Claim 7.17. If (P, T ) is a No instance of APd,ε,p,∆, then ((P̂ , Ĝ), T ) is a No instance of APd′,ε′,p,∆.

Proof. Since (P, T ) is a No-instance, the distribution (P, T )(Un) is ε-close to some distribution
(P′,T′) with H̃∞(T′|P′) > log p−∆. Consider the distribution ((P′,G′),T′) obtained from (P′,T′)

by concatenating an independent uniform element G′
R← F. Since G′ is independent of T′, it still

holds that H̃∞(T′|P′,G) > log p −∆ (see Fact 3.1 item 2). We will show that ((P̂ , Ĝ), T )(Un) is

(ε+ s2s+1

p )-close to ((P′,G′),T′).

Consider the “hybrid” random variable ((P, xn+1), T )(Un+1) which for x
R← Fn+1 outputs

the tuple (P (x1, . . . ,xn),xn+1, T (x1, . . . ,xn)). This random variable is distributed identically
to ((P̂ , Ĝ), T )(x), conditioned on the event G(x1, . . . ,xn) 6= 0. By Schwartz-Zippel, this event

happens with probability at most s2s+1

p , and therefore the two distributions are s2s+1

p -close.
In addition, it is not hard to verify that ((P, xn+1), T )(Un+1) is ε-close to the distribution

((P′,G′),T′). (Indeed, ((P, xn+1), T )(Un+1) is obtained from (P, T )(Un) via the same randomized
mapping that derives ((P′,G′),T′) from (P′,T′).) It follows, by the transitivity of statistical

distance, that ((P̂ , Ĝ), T )(Un) is ε+ s2s+1

p -close to ((P′,G′),T′), and the claim follows.

This completes the proof of Lemma 7.15
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7.5.3 Removing Division Gates

Lemma 7.18 (Removing divide gates). There exists an efficiently computable (deterministic) map-
ping f that maps an s-size arithmetic circuit P : Fn → Fm over {add, subtract,multiply, divide, 0, 1}
into an 4s-size arithmetic circuit f(P ) : Fn+m → F2m over {add, subtract,multiply, 0, 1} such that
the following hold for every s-size strictly arithmetic circuit T :

• If (P, T ) is a Yes instance of APd,ε,p,∆ then the pair (f(P ), T ) is a Yes instance of APd′,ε,p,∆.

• If (P, T ) is a No instance of APd,ε,p,∆ then the pair (f(P ), T ) is a No instance of APd′,ε,p,∆.

where d′ = 2d+m.

Proof. We assume that Pi, the i-th output of P , is described by a circuit of the form Ai/Bi where
Ai and Bi are arithmetic circuits of size s′ ≤ 4s over {add, subtract,multiply, 0, 1} that compute
polynomials of degree at most 2s. This is without loss of generality, since any arithmetic circuit
Pi over {add, subtract,multiply, divide, 0, 1} can be transformed into this form at the expense of
increasing its size by a factor of 4, cf. [SY10, Proof of Thm. 2.11]. We define a new instance to the
problem by keeping the same target polynomial T and modifying P to f(P ) = (A′i, B

′
i)
m
i=1 where

A′i(x1, . . . , xn, ri) = Ai(x) · ri, B′i(x1, . . . , xn, ri) = Bi(x) · ri,

and r = (r1, . . . , rm) are new input variables. (Formally, we redefine T as T (x, r) = T (x)).
We claim that if the original instance was a Yes instance then the new instance is also a

Yes instance. Assume that there exists Q = A/B such that Q(P (x)) = T (x) for all x ∈ Fn
which are not roots of B. Define the rational function Q′(A′1, B

′
1, . . . , A

′
m, B

′
m) which outputs

Q(A′1/B
′
1, . . . , A

′
m/B

′
m) · (

∏
iB
′
i)/(

∏
iB
′
i). For every x, r which are not roots of

∏
iB
′
i, we have

that Q′(f(P )(x, r)) = Q(P (x)). Observe that x, r which are roots of
∏
iB
′
i are, by construction,

roots of the denominator of Q′. It follows that (f(P ), T ) is indeed a Yes instance of APd′,ε′,p,∆′

where the degree d′ of the nominator and denominator of Q (viewed as polynomials in 2m variables)
are at most d′ = 2d+m.

We move on to analyze the case of a No instance. Assume that the distribution (P, T )(Un) is ε-
close to some distribution (P′,T′) with H̃∞(T′|P′) > log p−∆. Consider the randomized mapping

g which given a vector p ∈ Fm samples r
R← Fm and outputs the vector (p1r1, r1, . . . , pmrm, rm) ∈

F2m. It is not hard to verify that the distribution (g(P (Un)), T (Un)) is distributed identically to
(f(P )(Un), T (Un)). It follows that (f(P )(Un), T (Un)) is ε-close to (g(P′),T′). Finally, by Fact 3.1
(item 2), H̃∞(T′|g(P′)) > H̃∞(T′|P′) > log p−∆. Hence, (f(P ), T ) is a No instance of APd′,ε,p,∆.
The Lemma follows.

7.5.4 Putting It All Together (Proving Theorem 7.2, Part 2)

We employ Lemmas 7.13, 7.15 and 7.18 to reduce an instance (P, T ) of APd,ε,p,∆ to a strictly
arithmetic instance of APd′,ε′,∆′,p, and then apply the first part of Theorem 7.2. Details follow.

Given an s-size arithmetic circuit P : Fn → Fm and an s-size strictly arithmetic circuit T :
Fn → F, we transform P into a strictly arithmetic circuit P ′ as follows: (1) change the sample gates
to be input gates; (2) remove the bitsample gates by applying Lemma 7.13 with α = 2

3(1
5 − ε); (3)

remove the zerocheck gates by applying Lemma 7.15 with β = 2−s; and (4) remove the divide gates
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by applying Lemma 7.18. The resulting circuit P ′ has n′ = n+m+2 ≤ 2s inputs, m′ = 2m+2 ≤ 2s
outputs, and size s′ = 4(s+ s2) ≤ 5s2. Let

d′ = 2d+m+ 3, ε′ =
2ε

1− ε− 3α/2
+
s2s+1

p
, ∆′ = ∆ + s+ 1 + log(1/α).

If (P, T ) is a Yes instance then, with probability 1 − β, the pair (P ′, T ) is a Yes instance of
APd′,ε′,∆′,p. If (P, T ) is a No instance then, with probability α−β, the pair (P ′, T ) is a Yes instance
of APd′,ε′,∆′,p.

For α = 2
3(1

5 − ε) and p ≥ (d+ s)2s · 23s+∆, it holds that ε′ < 1
2 and p > (n′+1)d′n

′+1(1+2∆′ )
(1/2−ε′)2 (for

all sufficiently large s). Therefore, the first part of Theorem 7.2 guarantees an algorithm A that
decides whether (P ′, T ) is Yes instance or a No instance of APd′,ε′,∆′,p with an error of β in time
poly(s′, log(1/β), log(p)). (The low error can be obtained via standard amplification techniques.)
We output the value A(P ′, T ).

Overall, if (P, T ) is a Yes instance then we answer correctly with probability 1−2β, and if (P, T )
is a No instance, we answer correctly with probability α′ = α−2β. We repeat the above procedure
t = ln(1/β)/α′ = poly(s) times (with independent randomness) and output “No” if at least one of
the iterations outputs “No”. We will err on a No instance with probability (1−α′)t < β = 2−s and
err on a Yes instance with probability 3tβ = 2−Ω(s). This completes the proof of the second part
of Theorem 7.2.

Part II

Positive Results

In the following sections we give constructions of cryptographic primitives in the arithmetic model.
We start by introducing the RLC assumption on which we base our constructions (Section 8),
and then provide constructions for arithmetic pseudorandom generator (Section 9), symmetric and
public key encryption (Section 10), commitments (Section 11) and protocols for secure computation
(Section 12).

As explained in the introduction, we present several alternative constructions based on three
different approaches: (1) an abstract primitive (Arithmetic/Binary one-time encryption) that allows
to import binary constructions to the arithmetic setting; (2) direct approach which adopt known
LPN-based construction to the arithmetic setting; and (3) a reduction-based approach that exploits
the fact that some classical cryptographic transformations have a simple arithmetic variant.

Remark 7.19 (Adversarial model). From now on, we move to a non-uniform model and use the
term efficient adversary to denote a probabilistic polynomial-time (binary) circuit family. This
choice is taken to simplify the presentation, and all our results can be easily adopted to the uniform
model.

8 The RLC Assumption

We present the RLC assumption of [IPS09] which asserts that a noisy codeword of a random linear
code is pseudorandom.

54



Notation. For a field F, integer ` and real number p ∈ (0, 1), let χ`p(F) denote the probability

distribution over F` where each coordinate takes the value zero with probability 1−p and a random
element in F with probability p. When the field is clear from the context, we omit it, and write
χ`p. We let D`×nF,p denote the probability distribution over pairs (M, v) ∈ F`(n)×n × F`(n) in which

M
R← F`(n)×n and c = M ·s+e where s

R← Fn and e
R← χ`p. When the parameters ` = `(n), p = p(n)

and F = {Fn} are inedxed by n, we let D`×nF,p denote the corresponding distribution ensemble.

Assumption 8.1 (RLC(n, `, p)). For security parameter n, length parameter `(n), noise parameter
p(n) ∈ (0, 1) the RLC(n, `, p) assumption asserts that for every efficient adversary A the probability
of winning the following game is at most 1

2 + neg(n):

IND-Game(1n):

• A receives 1n, chooses a field’s implementation F and sends F to the challenger.

• The challenger samples a challenge bit b
R← {0, 1}. If b = 0 the challenger sends to A a

uniformly chosen matrix-vector pair (M, c)
R← (F`×n,F`); If b = 1 the challenger sends

the pair (M, c)
R← D`×nF,p where ` = `(n) and p = p(n).

• A outputs b′ and wins if b = b′.

Remarks:

1. Observe that the RLC(n, `, p) assumption is equivalent to the assumption that for every effi-

cient field family F = {Fn} it holds that D`×nF,p
c
≈ (M

R← F`×nn , v
R← F`n).

2. The error distribution χ`p can be efficiently sampled up to negligible statistical distance by an
arithmetic circuit that receives as input (H2(p)+ε) · ` random bits and (p+ε) · ` random field
elements. The circuit first chooses the subset of noisy coordinates b = (b1, . . . , b`) ∈ {0, 1}`
by sampling ` independent Bernoulli random variables with mean p. (This step can be imple-
mented by a binary circuit that uses H2(p) + ε random input bits, and so it can be emulated
by an arithmetic circuit that takes as input only random bits.) Once the noisy coordinates are
selected, a random noise from F is assigned to each of them, with overwhelming probability
there will be less than (p+ ε) · ` noisy coordinates and so this step can be implemented using
only (p+ ε) · ` random field elements.

3. It is not hard to see that RLC can only become harder when the noise p increases and the
length ` decreases (See Proposition 8.2 below). Hence, it is desirable to use the assumption
with high noise and short matrices.

We put forward the following simple proposition for future reference.

Proposition 8.2. Assume that the RLC(n, `, p) assumption holds for polynomially-bounded `(n)
and efficiently computable noise rate p(n) < 1/2. Then,

1. RLC(n, `, P ) holds for any efficiently computable P (n) ≥ p(n).

2. RLC(n,L, p) holds for any L(n) ≤ `(n).

3. RLC(N(n), `(n), p(n)) holds for any n ≤ N(n) ≤ nc where c is an arbitrary constant.
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Proof. (1) Observe that a vector from χ`p′ can be sampled by adding a vector from χ`p to a vector

from χ`α where α = (p′ − p)/(1 − 2p). Consider the mapping T1 which maps (M, c) ∈ (F`×n × F`)
to the pair (M, c+ e′) where e′ ∈ F` is sampled from χ`α. Note that T1 takes the distribution D`×nF,p
to D`×nF,p′ and takes the uniform distribution (over F`×n × F`) to itself. Since T1 is computable in
polynomial-time (in n), a distinguisher for RLC(n, `, P ) implies a distinguisher for RLC(n, `, p).

(2) Consider the mapping T2 which, given an input (M, c) ∈ (F`×n × F`), outputs the matrix
M ′ which consists of the first L rows of M , and the vector c′ which consists of the first L entries of
c. Then T2 takes the distribution D`×nF,p to DL×nF,p and takes the uniform distribution over F`×n× F`

to the uniform distribution over FL×n × FL. Since T2 is computable in polynomial-time (in n), a
distinguisher for RLC(n,L, p) implies a distinguisher for RLC(n, `, p).

(3) Consider the mapping T3 which, given an input (M, c) ∈ (F`×n × F`), samples s′
R← FN−n

and M ′
R← F`×(N−n), and returns ((M |M ′), c+M ′s′). It can be seen that T3 takes the distribution

D`×nF,p to D`×NF,p and takes the uniform distribution over F`×n × F` to the uniform distribution

over F`×N × FN . Therefore a poly(N)-time distinguisher for RLC(N, `, p) implies a poly(N)-time
distinguisher for RLC(n, `, p). Since N is polynomial in n, the proposition follows.

9 Arithmetic Pseudorandom Generator

In this section, we construct an arithmetic PRG (APRG) with arbitrary polynomial stretch based
on the RLC assumption.

9.1 Basic Observations

Recall that APRG = {APRGn} is viewed as a randomized circuit which samples a pseudorandom
distribution over F`(n) using n randomized gates (See Definition 4.1). Following our general con-
vention, we allow the PRG to use both sample gates and bitsample gates. (This is also motivated
by our applications that can tolerate the use of such gates.) In the following we observe that the
number of bitsample gates can be always reduced via the use of a binary PRG.

Observation 9.1. Assume that APRG = {APRGn} outputs `(n) pseudorandom field elements (as
per the second item of the above definition) and uses n < `(n) gates that sample random field
elements (sample), and k(n) gates that sample random bits (bitsample), where k(n) may be larger
than `(n). Then, for every constant ε > 0, there exists an arithmetic PRG APRG′ = {APRG′n}
that samples `(n) pseudorandom field elements and uses n sample gates and nε bitsample gates.
Furthermore, if APRG is simple (i.e., does not contain division or zerocheck gates) then so is
APRG′.

Proof. We use a binary pseudorandom generator (PRG) which stretches nε bits to k(n) pseudo-
random bits. The new APRG samples nε bits, feeds them to the PRG, and uses the k(n) outputs
instead of the original bitsample gates. It is not hard to show that the outcome is pseudorandom
(otherwise one can break the PRG). Furthermore, the PRG can be written in arithmetic form by
arithmetizing the boolean logic (i.e., replace AND with multiplication and NOT(w) with 1 − w).
Finally, the existence of a binary PRG follows from the hypothesis of the theorem. Indeed, a binary
PRG can be derived directly by instantiating an APRG with a sufficiently large field |F| > 22` and
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by using a proper implementation of the field (i.e., that guarantees that a random field elements is
represented by a uniform, or close-to-uniform, string).

We do not know whether it is possible to completely eliminate bitsample gates. The existence
of an arithmetic PRG that does not use random bits at all is left as an interesting open problem.

Length Expansion. We continue by showing that given a minimal APRG which expands n inputs
to n+ 1 outputs, one can construct an APRG′ with polynomial expansion nc. The transformation
is similar to the standard transformation from the binary setting [Gol01, Chapter 3.3].

Lemma 9.2 (APRG Expansion). Suppose that there exists an Arithmetic PRG APRG with an
additive expansion of 1. Then, for any polynomial q(n) = poly(n), there exists an Arithmetic PRG
APRG′ with an output length of q(n) where n denotes the seed length. Furthermore, if APRG is
simple, then so is APRG′.

Sketch. In the following, we assume, WLOG, that the underlying APRG G uses n1 sample gates
and n2 bitsample gates, where n1 + n2 = n. Furthermore, we view the random gates of the APRG
as input gates, and accordingly view the APRG as a function G : Fn1 × {0, 1}n2 → Fn+1. We will
construct a new function APRG′ : Fn1 × {0, 1}q(n)·n2 → Fq(n) whose output is pseudorandom when
evaluated on a random input. Then, we use Observation 9.1 to reduce the number of binary inputs
to n2. The function APRG′ is defined iteratively.

• Given a seed a0 ∈ Fn1 and b = (b0, . . . , bq−1) where bi ∈ {0, 1}n2 .

• For i = 0 to q − 1: Compute G(ai, bi) ∈ Fn+1 and parse the result as (ai+1, yi+1) ∈ Fn1 ×
F(n+1)−n1 .

• Output y1, . . . , yq.

The proof of security follows from a standard hybrid argument. For j = 0, . . . , q define the hybrid

Hj in which for every i ≤ j the values (ai, yi)
R← Fn1 × F(n+1)−n1 are uniformly chosen, and the

other iterations remain unchanged. The hybrid H0 corresponds to the real construction, while
the outcome of the last hybrid Hq is clearly uniform. We show that H0 is indistinguishable from
Hq, by showing that a distinguisher A that ε-distinguishes these distributions can be used to
violate the pseudorandomness of G. Given a challenge z ∈ Fn+1 we sample a random location
j ∈ {0, . . . , q − 1}, sample the first j − 1 values (ai, yi)i<j uniformly, let (aj , bj) = z, and continue
for the other iterations as in the real constructions. The output is given to the distinguisher A. It
is not hard to show that the distinguishing advantage of the new distinguisher is ε/q, and so the
lemma follows.

9.2 Construction based on RLC

We continue with an arithmetic construction of an APRG based on the RLC assumption. Recall that

the RLC(n, `, p) assumption asserts that for a random matrix M
R← F`×n, a random vector s

R← Fn

and an error vector e
R← χ`p(F), the output (M,Ms + e) is pseudorandom (see Assumption 8.1).

This gives an immediate construction of an APRG.
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Theorem 9.3. Assuming RLC(n, ` = n
1−p−ε , p) holds for some constants p ∈ (0, 1), ε > 0, there

exists a simple APRG with an arbitrary polynomial output length.

Proof. The circuit samples a random matrix M
R← F`×n, a random vector s

R← Fn, and computes
y = Ms. The noise is sampled as described in Section 8. First, we use a polynomial number
of bitsample gates to sample a binary vector of ` independent Bernoulli random variables α =
(α1, . . . , α`) each with a probability of success p. If the number of ones, t, is smaller than (p+ ε)`,
we sample t random field elements and place them in the 1’s locations of α, the resulting noise
vector e is then added to y and the output is (M,Ms+ e). If t ≥ (p+ ε)`, we let e be the all-zero
vector. By Chernoff bound, the latter event happens with probability 2−Ω(`), and so the resulting
distribution is statistically close to the RLC distribution, which is pseudorandom by assumption. It
follows that the output of the generator is also pseudorandom. Since the number of random field
elements in the seed is strictly smaller than `n+n+(p+ε)` which is upper-bounded by the output
length `n+ `, we can apply Observation 9.1 and Lemma 9.2, and get an APRG with an arbitrary
polynomial output length.

10 Encryption

In this section, we construct arithmetic encryption schemes in the public-key and symmetric-key
setting based on an RLC assumption. We begin with a construction of a one-time secure symmetric
encryption scheme which encrypts field elements using binary keys. We use this arithmetic/binary
encryption (ABE) scheme to obtain CPA-secure arithmetic encryption schemes in the symmetric-
key and public-key settings (Section 10.2). Finally, we show that known LPN-based constructions
arithmetize and yield arithmetic symmetric encryption schemes (Section 10.3) and public-key en-
cryption schemes (Section 10.4).

10.1 One-Time Secure Arithmetic/Binary Encryption

Recall that arithmetic/binary encryption (ABE) is an arithmetic symmetric encryption scheme
with one-time security with the additional property that all the elements of the secret key sk are
taken from the subset {0, 1} ⊂ F. That is, the key is essentially a string of bits given as a sequence
of 0-1 Field elements. (See Definition 4.2.) As we will see this special property can be used as a
bridge from the binary model to the arithmetic model. We begin with a simple construction of
ABE based on the RLC assumption.

Notation. For an integer ` and a real number p ∈ (0, 1), let B`p denote the probability distribution

over {0, 1}` where each coordinate takes the value one with probability p.

Construction 10.1 (Arithmetic/Binary Encryption). We parameterize our construction by a con-
stant p ∈ (0, 1) and a constant ε > 0. For a security parameter n, we set the length parameter

` := (1+ε)n
1−p . The scheme consists of the following circuits:

• KGenn: Sample a binary20 noise vector e
R← B`p.

20The reader should note that in this subsection e denotes a binary vector and not a vector of field elements (as in
other sections).
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• EncFn(e, x): Sample A
R← F`×n, s

R← Fn, and u
R← F`. Output (A, c := As+ u⊗ e+ x`), where

x` denotes the ` long (column) vector (x, . . . , x) and ⊗ stands for entry-wise product..

• DecFn(e, (A, c)): Find an assignment to the variables y, z = (z1, . . . , zn) which satisfies the
linear system A′z+y`

′
= c′ where A′ and c′ are the restrictions of A and c to the `′ non-noisy

coordinates of e, and output the value that is assigned to y.

We notice that the decryption can be implemented arithmetically by solving the system of linear
equations (I − E)c = (I − E)(Az + y`), where E is the diagonal matrix with Eii = ei.

The following two lemmas establish the correctness and the security of the scheme.

Lemma 10.2 (correctness). For every field F, and for all x ∈ F it holds that

Pr
e
R←KGenn

[
DecFn

(
e,EncFn(e, x)

)
= x

]
≥ 1− neg(n)

Proof. Consider the set of linear equations solved at decryption

c′ = A′z + y`
′
. (21)

Clearly z = s and y = x is a valid solution for Eq. (21). Next, we claim that (1) If there exists a
vector v ∈ F`′ in the left nullspace of A′ whose entries do not sum to zero (

∑
i vi 6= 0), then any

solution (z, y) to (21) satisfies y = x and so decryption succeeds; and (2) Such a vector v exists
with all but exponentially small probability.

Indeed, to see (1) observe that any solution to (21) also satisfies the equation

vc′ = v(A′z + y`
′
) = y

`′∑
i=1

vi.

and so y is determined uniquely via vc′/
∑`′

i=1 vi. To prove (2) observe that if v of the required
form does not exist, then the all-one vector 1`

′
is spanned by the columns of A′. Let us condition

on the event that `′, the number of non-noisy coordinates in e, is at least (1 + ε/2)n. By a
Chernoff-bound, this event happens with all but exponentially small probability. Recalling that
A′ is uniformly distributed over F`′×n, we conclude that the probability that A′ spans the all-one
vector is at most |F|n−`′ which is negligible when `′ > (1 + ε/2)n. The lemma follows.

Lemma 10.3 (Security). Let p ∈ (0, 1) and ε > 0 be some constants. Suppose that the RLC(n, ` =
(1+ε)n

1−p , p) assumption holds, then Construction 10.1 (instantiated with the same p and ε) is one-time
computationally secure.

Proof. Assume towards a contradiction that an efficient adversary A wins the One-Time IND game
with probability 1/2+δ(n) for some non-negligible function δ. We define a new adversary A′ against
the RLC assumption in the following way:

Adversary A′:
• Initialize A and get a field F from it. Send the same F to the challenger.

• Receive from the challenger (A, v) ∈ (F`×n,F`)
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• Receive from A a pair x0, x1 ∈ F.

• Sample b ∈ {0, 1}, and send to A the challenge C = (A, v + x`i).

• If A wins, return 0, else return 1.

If A′ receives (A, v)
R← D`×nF,p , then C is distributed as a random cyphertext and so by assumption

A wins with the probability 1
2 + δ(n), and A′ outputs 0. On the other hand, if (A, v)

R← (F`×n,F`),
then by the security of the one-time pad A outputs 0 with probability exactly 1/2. Overall, A′

distinguishes D`×nF,p from (F`×n,F`) with the non-negligible advantage δ(n)
2 .

Corollary 10.4. If, for some constants p ∈ (0, 1), ε > 0, the assumption RLC(n, ` = (1+ε)n
1−p , p)

holds, then there exists an ABE scheme.

Remark 10.5 (Non-triviality). The Learning Parity with Noise assumption is trivially hard (in
an information-theoretic sense) when the noise rate is 1

2 . In contrast, the RLC(n, `, p) assumption
is non-trivial (i.e., implies the existence of a one-way function) for any constant value of p ∈ (0, 1)
as it should hold over fields of size larger than 1/p. Indeed, when F is sufficiently large, the entropy
needed to sample an RLC(n, `, p) instance (roughly log |F| · (`n+n+ p`) + ` ·H2(p)) is smaller than
the entropy of the output (` log |F|) and so the assumption immediately implies the existence of a
pseudorandom generator.

Remark 10.6 (Weak homomorphism). Interestingly, Construction 10.1 is (weakly) homomorphic

under addition and multiplication. Given a ciphertext (A, c)
R← EncFn(e, x), one can create, for

every message y ∈ F and every scalar a ∈ F, a ciphertext (A, c′)
R← EncFn(e, a · x+ y) by computing

c′ = a · c+ y`. This homomorphism is weak in the sense that the joint distribution (A, c), (A, c′) is
statistically far from a fresh pair of ciphertexts (EncFn(e, x),EncFn(e, a · x+ y). For this reason, our
impossibility results (Section 7) do not apply here.

10.2 From ABE to Symmetric and Public-Key Encryption

Next, we show how to employ ABE (which offers only one-time security) in order to obtain CPA-
secure arithmetic encryption scheme either in the public or in the symmetric setting. The idea is
to combine ABE and standard binary encryption via a hybrid mode.

Construction 10.7. Let (BGen,BEnc,BDec) be any binary CPA-secure encryption scheme (either
in the symmetric setting or in the public-key setting) and let (ABGen,ABEnc,ABDec) be any ABE.
Consider the following Arithmetic Encryption Scheme:

• KGenn: output (sk, pk)
R← BGenn.

• EncFn(pk, x): sample e
R← ABGenn output (c1

R← BEncn(pk, e), c2
R← ABEncFn(e, x)).

• DecFn(sk, c1, c2): Compute e′ = BDecn(sk, c1) and output x′ = ABDecFn(e′, c2).

Correctness follows directly from the correctness of the underlying binary encryption scheme
and ABE scheme.
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Lemma 10.8 (Security). Suppose that (BGen,BEnc,BDec) is a CPA-secure public-key encryption
scheme (resp., symmetric encryption scheme) and (ABGen,ABEnc,ABDec) is a one-time secure
ABE, then Construction 10.7 is CPA-secure public-key (resp., symmetric key) arithmetic encryption
scheme.

Proof. Let A be an adversary that attempts to win the standard IND-CPA game. To analyze A’s
success probability, we define (in Table 2) several variants of the original game.

Game 1 Game 2 Game 3 Game 4

(sk, pk)
R← BGenn

Query stage
Challenge stage for (x0, x1):

e
R← ABGenn

c1
R← BEncn(pk, e) c1

R← BEncn(pk, 0`) c1
R← BEncn(pk, e)

c2
R← ABEncFn(e, x0) c2

R← ABEncFn(e, x1)
Send A the challenge (c1, c2)

Table 2: Hybrid games. In each game only the changes from the previous game are written. In the
public-key setting the key pk is given to the adversary at the beginning of the query stage, and in
the private-key setting, we let pk = sk and keep it hidden from the adversary. Recall that sk, pk, e
and c1 are binary vectors, c2 is a vector of field elements and x0 and x1 are field scalars.

Let Pr[〈A, Gi〉 = 1] be the probability that A returns 1 when interacting with the i’th game,
then the following holds:

1. |Pr[〈A, G1〉 = 1] − Pr[〈A, G2〉 = 1]| = neg(n), else one could break the CPA security of the
binary encryption scheme on the challenge (e, 0`).

2. |Pr[〈A, G2〉 = 1] − Pr[〈A, G3〉 = 1]| = neg(n), else one could break the one-time security of
the Arithmetic/Binary Encryption scheme on the challenge (x0, x1).

3. |Pr[〈A, G3〉 = 1] − Pr[〈A, G4〉 = 1]| = neg(n), else one could break the CPA security of the
binary encryption scheme on the challenge (0`, e).

It follows, by a hybrid argument, that |Pr[〈A, G1〉 = 1] − Pr[〈A, G4〉 = 1]| = neg(n), and so A’s
wining probability in the original IND-CPA game is at most 1/2 + neg(n).

Remark 10.9 (Encrypting long messages). Construction 10.7 allows to encrypt a single field
element. However, since we proved that the scheme is CPA-secure, it can be extended to encrypt a
sequence of field elements via standard concatenation as explained in Remark 4.3.

By combining the above with Corollary 10.4, we derive a construction of CPA-secure public-key
arithmetic encryption scheme based on the RLC assumption and on a standard binary public-
key encryption scheme. A similar result holds in the symmetric setting, except that in this case
the existence of binary CPA-secure encryption scheme already follows from the existence of (stan-
dard) one-way functions [GGM86, HILL99] which in turn follows from the RLC assumption (see
Remark 10.5). Overall, we obtain the following corollary.
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Corollary 10.10. Assuming RLC(n, ` = (1+ε)n
1−p , p) holds for some constant p ∈ (0, 1) and constant

ε > 0, there exists a CPA-secure arithmetic symmetric encryption. Furthermore, if we additionally
assume the existence of standard public-key encryption scheme, then there exists a CPA-secure
arithmetic public-key encryption scheme.

10.3 Direct Construction of Symmetric Encryption

We proceed with a direct construction of symmetric encryption which generalizes the LPN-based
construction of [GRS08] (see also [ACPS09]). Although the underlying assumption is worse than
the one used in Corollary 10.10, the scheme demonstrates our claim that LPN-based encryption
arithmetize.

Construction 10.11 (CPA-Secure Symmetric Encryption Scheme). We parameterize our con-
struction by the constants p ∈ (0, 1

2) and ε ∈ (0, 1
2 − p). For a security parameter n, we set the

length parameter ` := dnp
ε2
e. The scheme consists of the following circuits:

• KGenn: Sample s
R← Fn, and let sk = s.

• Enc(s, x) : M
R← Fn×n , e R← χnp (F), output (M, c := Ms + e + xn) where xn denotes the

n-long column vector (x, . . . , x).

• Dec(s, (M, c)): Output the majority among the entries of the vector c−Ms.

Note that the majority operation can be computed arithmetically via the use of zerocheck gates
and by describing logical majority via arithmetic gates (e.g., by going through the standard AND,
NOT Boolean basis and then replacing it with multiplication and subtraction). Also, as explained
in Section 8, there exists an arithmetic circuit that samples from χ`p, and so the construction is
realizable in the arithmetic model.

Remark. As we require correctness to hold for all fields, we need to choose p + ε < 1/2 as
otherwise, correctness would not hold over GF(2). Note that in settings where we are only interested
in correctness for large fields we can replace the restriction p < 1/2 with p < 1 and use a Reed-
Solomon (RS) error-correcting code instead of the repetition code. (RS codes can be encoded and
decoded arithmetically.) This modification allows to base the construction on a seemingly more
secure assumption (with larger noise level). One can also improve the rate and efficiency of the
scheme by using RS codes and by standard amortization techniques similar to the ones described
in [ACPS09].

Lemma 10.12 (Security). Suppose that the RLC(n, `, p) assumption holds for every polynomial
`(n) and for some constant p ∈ (0, 1/2). Then Construction 10.11 (instantiated with the same p)
is computationally secure.

Proof. Assume towards a contradiction that an efficient adversary A wins the IND-CPA game with
probability 1/2 + δ(n) for some non-negligible function δ. Let t = poly(n) be an upper bound on
the running-time of A. We define a new adversary B against the RLC assumption in the following
way:

Adversary B:
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• Initiate A and get F from it. Send the same F to the challenger.

• Receive from the challenger (M,v) ∈ (Ft·n×n,Ft·n)

• Parse M = (M1, ...,Mt) and v = (v1, ..., vt) where Mi ∈ Fn×n and vi ∈ Fn.

• For the i-th chosen-plaintext query x of A:

– Send to A the pair (Mi, vi + xn).

• For the challenge x0, x1:

– Sample b ∈ {0, 1}.
– Send to A the challenge (Mt, vt + xnb ).

• If A wins, return 0, else return 1.

If the input (M, v) is sampled from the RLC distribution Dtn×nF,p , then, by assumption, A wins

with the probability 1
2 +δ(n), and B outputs 0. However, if (M,v)

R← (Ftn×n,Ftn), then the message
is information-theoretically hidden from the adversary, and so A outputs 0 with probability exactly
1/2. Therefore, B distinguishes Dtn×nF,p from the uniform distribution over (Ftn×n,Ftn), contradicting
our assumption.

Lemma 10.13 (Correctness). For the parameters as defined in Construction 10.11, for every field
F, it holds that

Pr
[
DecFn

(
EncFn(x, s), s

)
= x

]
≥ 1− neg(n)

Proof. Decryption fails only if the fraction of noisy coordinates in the vector e
R← χ`p is larger than

1
2 . Since the constant p is strictly smaller than 1

2 , by a Chernoff bound, the latter event happens

with probability at most 2−Ω(n).

Corollary 10.14. Let p ∈ (0, 1
2) be a constant, and assume RLC(n, `, p) holds for every polynomial

`(n), then there exists an IND-CPA secure symmetric encryption scheme in the arithmetic model.

10.4 Direct Construction of Public Key Encryption

In this section, we present a direct construction of an arithmetic public-key encryption scheme
based on a variant of Alekhnovich’s (binary) cryptosystem [Ale03]. Again, the underlying RLC
assumption is worse than the one used in Corollary 10.10, and the scheme is given in order to show
that LPN-based encryption arithmetize. We begin with a scheme which only offers a weak form of
correctness and later amplify it to a full fledged scheme via standard techniques.

Construction 10.15 (CPA-Secure Public Key Encryption Scheme). For a security parameter n,
let p = 1

2
√
n
, ` = 2n.

• KGenn:

– Sample A
R← F`×n, s R← Fn and a vector of field elements e

R← χ`p(F).

– Compute b = As+ e. Let M = (b|A) where | denotes column concatenation.

– Sample a random ` × (` − n − 1) matrix B which spans ker(MT ),21 that is, MB =
0(n+1)×(`−n−1).

21Such a B can be sampled by first finding any matrix that spans ker(MT ) and then multiplying it by a random
invertible matrix.
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– Let: pk = B ∈ F`×(n−1), sk = e ∈ F`

• Enc(pk, x) : Sample s′
R← Fn−1, e′

R← χ`p. Output: c = Bs′+ x` + e′, recall that x` is an ` long
vector whose entries are all equal to x.

• Dec(sk, c): If
∑`

i=1 ei = 0 output Fail. Else, compute: x′ = eT ·c∑`
i=1 ei

and output x′.

Lemma 10.16 (Correctness). For every field F, and for all x ∈ F and all sufficiently large n’s:

Pr
(pk,sk)

R←KGenn

[Dec (sk,Enc(pk, x)) = Fail] ≤ 1
|F| + neg(n). (22)

Conditioned on not failing, the probability of successful decryption is

Pr
(pk,sk)

R←KGenn

[Dec (sk,Enc(pk, x)) = x] > 0.51, (23)

for all sufficiently large n’s.

Proof. We condition on the event that the Hamming weight of e is larger than 1 and smaller than
1.1p`, which, by a multiplicative Chernoff bound, happens with probability 1− 2−Ω(p`) = neg(n).

Equation (22) now follows by noting that
∑
ei is uniformly distributed over F and so it equals

to zero with probability at most 1/|F|.
We now turn to show (23). Observe that the output of the decrption algorithm x′ can be written

as
eT ·Bs′ + x

∑
ei + eT e∑

ei
= x+

eT e∑
ei
,

where the equality follows from the fact that eT ∈ Im(MT ) and therefore eTB = 0n−1. We conclude
that decryption is correct if eT e′ = 0. Let us fix some vector e. Denoting the Hamming weight of
e by |e|, it holds that

Pr
e′

[eT e′ = 0] > (1− p)|e| > (1− p)1.1p` > exp(−1.1/2)− o(1) > 0.51,

for all sufficiently large n’s.

Denote the above scheme as PKE. In order to prove security we define a variant of PKE, denoted

PKE′, in which the public key B
R← F`×(n−1), and Enc is defined as in PKE. Although we did not

define a decryption algorithm for PKE′, its CPA-security is still well-defined. Our proof will now
proceed as follows. Under the RLC assumption, we will first prove that PKE′ is semantically secure
(Claim 10.17). We will then show that for every efficient field family F = {Fn} it holds that

pk
R← KGenFn is computationally indistinguishable from pk

R← F`×(n−1) (Claim 10.18), and conclude
that Construction 10.15 is semmantically secure (Lemma 10.19).

Claim 10.17. Suppose that RLC(n−1, `, p) holds for ` = 2n and p = 1
2
√
n

, then PKE′ is semantically
secure.

Proof. Assume towards a contradiction that an efficient adversary A wins the IND-CPA-game
against the security of PKE′ with probability 1/2 + δ(n) for some non-negligible function δ. Since
we are in the public-key setting, we may assume, without loss of generality, that the adversary
does not issue encryption queries. We define a new adversary B against the RLC(n − 1, 2n, 1

2
√
n

)

assumption in the following way:
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Adversary B:

• Initiate A and get F from it. Send the same F to the challenger.

• Receive from the challenger (B, v) ∈ (F`×(n−1),F`)
• Send the public key B to A.

• When A sends the challenge x0, x1:

– Sample b ∈ {0, 1}.
– Send (v + x`i) to A.

• Let b′ denote A’s output. If b′ = b (i.e., A wins) return 1, else return 0.

When (B, v)
R← (F`×(n−1),F`), then the message xb is information-theoretically hidden and so

A’s winning probability is exactly 1/2 and

Pr[B outputs 0| The challenger uses uniform samples ] =
1

2
.

On the other hand, when (B, v)
R← D`×(n−1)

F,p the vector v+x`i is identically distributed as Enc(B, xi),
and so A guesses b with probability 1/2 + δ(n). It follows that

Pr[B outputs 1| The challenger uses RLC-samples ] =
1

2
+ δ(n).

Overall B wins the distinguishing game of the RLC assumption (defined in Assumption 8.1) with

probability 1
2 + δ(n)

2 , which contradicts the RLC(n− 1, 2n, 1
2
√
n

) assumption.

We next show that the public-keys of PKE and PKE′ are computationally indistinguishable.

Claim 10.18 (PKE
c
≈ PKE′). Suppose that RLC(n, ` = 2n, p = 1

2
√
n

) holds, then for every efficient

adversary A the probability of winning the following game is at most 1
2 + neg(n):

IND-Game(1n):

• A receives 1n, chooses a field F and sends F to the challenger.

• Challenger samples (B0, e)
R← KGenFn as defined in Construction 10.15, and B1

R←
F`×(n−1).

• Challenger samples b ∈ {0, 1} and sends Bb to A.

• A outputs b′ and wins if b = b′.

Proof. Let A be an efficient distinguisher and let F = {Fn} be the efficient field family it outputs.
We use a hybrid argument to show that A wins the game with probability no more than 1

2 +neg(n).

Let U `×nrk=n denote the uniform distribution over the set of all matrices in F`×n with full rank. In
Table 3 we define three variants of the key-generation algorithm, where the first hybrid corresponds
to the real KGen and the last hybrid corresponds to the case where the key is random. We show
that each pair of neighboring hybrids are indistinguishable.

• KGenn
c
≈ H1: A distinguisher between the two distributions immediately implies an adver-

sary that wins the IND-game of RLC(n, 2n, 1
2
√
n

) over the same field family with the same

advantage.
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KGenn H1 H2 F`×(n−1)

A
R← F`×n, s R← Fn, e R← χ`p, b = As+ e b

R← F`

M = (b|A) M
R← U `×n+1

rk=n+1

B
R← a random matrix that spans ker(MT ) B

R← F`×(n−1)

output: B

Table 3: The hybrid distributions. F is the field family chosen by A(1n). For readability, only the
modifications with respect to the previous hybrid distribution appear.

• H1
s
≈ H2: In H1, we have that M

R← F`×(n+1). It is not hard to see that such a random
matrix has full rank except with probability n|F|−`+n ≤ neg(n).

• H2
s
≈ F`×(n−1): Clearly the kernel of M

R← U `×n+1
rk=n+1 is a random subspace of F` of dimension

` − n − 1 = n − 1. A random matrix that spans it is uniformly distributed full-rank matrix
in F`×(n−1), and so, by the previous argument, is statistically close to a uniform matrix over
F`×(n−1).

It follows that for the field family F, the ensemble KGenn is computationally indistinguishable from

the uniform distribution over F`×(n−1)
n , hence A can win the distinguishing game with probability

no more than 1
2 + neg(n).

We can now prove the security of Construction 10.15.

Lemma 10.19 (Security). Suppose that RLC(n − 1, `, p) holds for ` = 2n and p = 1
2
√
n

, then

Construction 10.15 is CPA-secure.

Proof. Assume towards contradiction that adversary A wins the IND-CPA-game against Construc-
tion 10.15 with probability 1

2 + δ(n) for a non negligible δ. Consider the following adversary B
which distinguishes a random Alekhnovich pk from a random matrix.

Adversary B:

• Initiate A and get F from it. Send the same F to the challenger.

• Receive from the challenger B ∈ F`×(n−1)

• Send the public key B to A.

• When A requests an encryption of m:

– Send Enc(B, x) to A.

• For the challenge x0, x1:

– Sample b ∈ {0, 1}.
– Send Enc(B, xb) to A.

• If A wins return 0, else return 1.

By Claim 10.17 if B
R← F`×(n−1), then A wins (and B looses) with probability no more than

1
2 + neg(n). By assumption when B

R← KGenFn the adversary A wins (and B wins) wins with
probability 1

2 +δ(n) for a non-negligible δ. Hence overall B wins the IND-game of Claim 10.18 with
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probability 1
2 + δ(n)−neg(n)

2 , a non-negligible advantage. To prove the lemma (via Claim 10.18) it
suffices to show that RLC(n, ` = 2n, p = 1

2
√
n

) is hard.

Recall that we only assumed the hardness of RLC(n − 1, 2n, 1
2
√
n

) and not RLC(n, 2n, 1
2
√
n

),

however this is not a real issue since RLC(n−1, `, p) implies RLC(n, `, p) as argued in Proposition 8.2.

Building on Lemma 10.16 and Lemma 10.19, we can use amplification to create a PKE scheme
with overwhelming success probability in the following way. We repeat the above construction,
each time with fresh keys, polynomially many times. To decrypt we decrypt (via the erroneous
decryption algorithm) each copy of the ciphertext, and take the majority. Since Fail occurs over any
field with probability no more than 1/2, with overwhelming probability, there will be polynomially
many non-failed decryptions, among which, again by Chernoff’s inequality, with overwhelming
probability a majority of the decryptions will output the correct value. Security will not be harmed
as each execution uses fresh randomness.

Corollary 10.20. Assuming RLC(n − 1, `, p) holds for ` = 2n and p = 1
2
√
n

then there exists a

CPA-secure public key encryption scheme in the arithmetic model.

Again, we emphasize that Corollary 10.10 provides arithmetic PKE under a weaker (and there-
fore better) assumption.

11 Commitments

In this section we describe two constructions for statistically binding string commitment schemes
under RLC assumptions.In Section 11.1, we present a non-interactive construction in the Common
Reference String model where we assume that a trusted party honestly generates the keys by
invoking the key-generation algorithm. The advantage of this construction is that it carries some
homomorphic properties. In Section 11.2 we give a construction in the standard model by showing
that the PRG-based construction of Naor [Nao91] arithmetize, and by plugging-in an arithmetic
PRG based on the RLC assumption.

11.1 Non-Interactive Statistically Binding String Commitment

Non-interactive statistically-binding string commitment schemes based on the hardness of learning
parity with noise were given in [AIK10, JKPT12]. Using the RLC assumption, we generalize their
schemes to the arithmetic setting and build a commitment scheme for tuples of field elements.

Our construction is in the CRS model where we assume that KGen is executed by some trusted
party. For the definition of a commitment scheme see Definition 4.4.

Construction 11.1 (Statistically Binding String Commitment). The commitment scheme is pa-
rameterized by the security parameter n ∈ N, a noise parameter p ∈ (0, 1/8), a length parameter

` = cn where c =
⌈

2
1−H2(4p)−ε

⌉
, and ε ∈ (0, 1 − H2(4p)) is an arbitrarily small constant. Set

w = b`pc. The algorithms of the commitment scheme are as follows:

• KGenFn: The public commitment key consists of the matrix A = (A′|A′′) ∈ F`×(2n), where

A′
R← F`×n and A′′

R← F`×n.
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• ComF
n(A, x): To commit to a message x ∈ Fn using the public key A, the Sender samples

r
R← Fn and e

R← χ`p, and computes the commitment c = A · (r|x) + e. The decommitment of
the commitment is the pair (x, r).

• VerFn(A, c, (x′, r′)): Given a public key A, a commitment c and a decommitment (x′, r′), the
Receiver computes e′ = c−A · (r′|x′) and outputs 1 iff w(e′) ≤ 2w.

The constant c was chosen to satisfy the following inequality for every integer q ≥ 2:

c =

⌈
2

1−H2(4p)− ε

⌉
≥
⌈

2

1−Hq(4p)− ε

⌉
> 2, (24)

where Hq(α) := −α logq(α) − (1 − α) logq(1 − α) denotes the q-ary entropy function. To see that
Eq. 24 holds, recall that p ∈ (0, 1/8), and so 4p ∈ (0, 1/2). Since for every α ∈ (0, 1/2) we have
that H2(α) ≥ Hq(α) > 0 the equation follows.

We turn now to establishing correctness, that is, that in an honest execution, the verifier accepts

with overwhelming probability. Indeed, if the sampled vector e
R← χ`p is such that w(e) ≤ 2w, then

the verification succeeds with probability 1. By Chernoff’s inequality for p ∈ (0, 1/8) and ` = cn
(for any constant c)) the probability that the weight of e exceeds 2w is negligible in n. We now
turn to security.

Lemma 11.2. Suppose that the RLC(n, `, p) assumption holds for some constant p ∈ (0, 1/8), and

for ` =
⌈

2n
1−H2(4p)−ε

⌉
. Then Construction 11.1 is a statistically binding and computationally hiding

commitment scheme.

Proof. Let us call A good if it generates a code whose distance is larger than 4`p. It is well known

(cf. [VGS14, Chapter 4]) that a randomly chosen generating matrix M
R← F`×n spans an error

correcting code with distance of at least δ` with probability of at least |F|−ε` for any δ ∈ (0, 1− 1
|F|)

and ` ≥ n
1−H|F|(δ)−ε

. Plugging in δ = 4p and and ` = cn for c which satisfies (24), we conclude that

A is good with overwhelming probability.
Let us prove that, conditioned on A being good, the protocol is statistically binding. Assume

towards contradiction that xi, ri, i = 1, 2 are two different decommitments for the same commitment
c. Then ei = c−A(ri|xi) has a weight of no more than 2w, and so e1 − e2 = A(r1 − r2|x1 − x2) is
a codeword of weight less than 4w, in contradiction to our hypothesis regarding the distance of A.

Finally, we prove that the commitment scheme is computationally hiding. Assume that an
adversary A breaks the hiding property and wins the indistinguishability game with some non-
negligible advantage δ. Consider the following adversary against the RLC assumption:

Adversary B(1n):

• Initiate A(1n) and get F from it. Send the same F to the challenger.

• Receive from the challenger (A′, u) ∈ (F`×n,F`).

• Sample A′′
R← F`×n and send pk = (A′|A′′) to the adversary A.

• Receive from A a pair (x0, x1) ∈ (Fn,Fn).

• Sample b ∈ {0, 1}, compute c = u+A′′ · xb, and send c to A.

• Return 0 if A wins (i.e., A returns b′ = b), and return 1 otherwise.
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Observe that if (A′, u)
R← (F`×n,F`) then c

R← F` and A wins with probability exactly 1/2,

hence B wins with probability exactly 1/2. On the other hand, when (A′, u)
R← D`×nF,p then (pk, c)

i≡
(pk,ComF

pk(xb)), and by assumption A wins (hence B wins) with probability 1/2+δ. Overall, B wins
the IND-game against the RLC assumption with the non-negligible advantage δ/2, in contradiction
to our hypothesis.

Corollary 11.3. Assuming the RLC(n, `, p) assumption holds for some constant p ∈ (0, 1/8), and

for ` =
⌈

2n
1−H2(4p)−ε

⌉
, there exists an arithmetic commitment scheme in CRS model.

11.2 CRS Free Commitment Protocol

Our next commitment scheme is an arithmetic analog of Naor’s commitments [Nao91] and does not
require a common reference string. Syntactically, we still consider a non-interactive commitment
function parameterized by a public-key which is generated by a key-generation algorithm. However,
the hiding property should hold for every (adversarially chosen) public-key. This gives rise to a
two-message commitment protocol in the standard model (no CRS) in which the receiver chooses
the public-key pk. The construction is based on an arithmetic pseudorandom generator (APRG)
APRGn which stretches n inputs to 3n outputs. In the following, we will write APRGn(s) to denote
explicitly the output of APRGn(s) on a seed s. Note that the total length of s is n and it may
consists of both random field elements and random bits.

Construction 11.4 (CRS Free Statistically Binding Commitment Protocol). The commitment
scheme is parameterized by a security parameter n ∈ N. Let APRG be any arithmetic PRG with
expansion factor 3. Define the protocol as follows:

• KGenFn: The Receiver publishes the public key r
R← F3n.

• ComF
n(r, x): To commit to a message x ∈ F using the public key r, the Sender samples a seed

s for the APRG and computes c = APRGn(s) + x · r where · stands for scalar multiplication.
The decommitment is the pair (s, x).

• VerFn(r, c, (s′, x′)): Given a commitment c, a public key r, and a decommitment (s′, x′), the
Receiver outputs 1 iff c = APRG(s′) + x′ · r.

We now prove that this protocol indeed realizes a commitment scheme.

Lemma 11.5. Assuming the pseudorandomness of APRG, the scheme is computationally hiding.
Furthermore, this holds even if the public-key is chosen adversarially.

Proof. Assume that an efficient malicious receiver R can break the hiding property of the scheme.
R chooses the field F, and a public key r for which it wins the distinguishing game in Definition 4.4
with probability 1

2 + δ(n) for some non-negligible δ. Consider the following adversary against the
security of the APRG:

Adversary A:

1. Invoke R and get F form it.

2. Get r ∈ F3n and x0, x1 ∈ F from R.
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3. Initialize the distinguishing game against the APRG with the field F:

(a) Get u ∈ F3n from challenger.

(b) Sample b
R← {0, 1} and send R the commitment c = u+ xb · r.

(c) If R returns b′ = b output 1. Else output 0.

By assumption when u is a random output of the APRG, c is distributed identically to an honestly
generated commitment and R must win with probability 1

2 + δ(n) for some non-negligible δ. Hence

in this case, A returns 1 and wins also with the probability of 1
2 + δ(n). However when u

R← Fn, c
hides b information theoretically, and therefore R wins with probability exactly 1/2, and A returns

0 and wins with probability exactly 1/2. Overall A wins with probability 1
2 + δ(n)

2 in contradiction
to the security of the APRG.

Lemma 11.6. With overwhelming probability over r
R← F3n, the scheme is statistically binding.

Proof. Call a public-key r ∈ F3n ambiguous if there exist a pair of messages x0 6= x1, and a pair
of seeds s0 and s1 for which APRG(s0) + x0r = APRG(s1) + x1r. This happens if and only if

r = PRG(s0)−APRG(s1)
x1−x0

, however the right hand side consists of no more than |F|2n+1 possible vectors,

and so the probability that a random r is ambiguous is no more than |F|2n+1/|F|3n = |F|−n+1,
which is negligible.

Since an arithmetic PRG with expansion factor of three can be based on any APRG (Lemma 9.2),
and since the latter can be based on the RLC assumption (Theorem 9.3), we obtain the following
corollary.

Corollary 11.7. Assuming an arithmetic PRG, there exists an arithmetic commitment protocol
that does not require a common reference string. Specifically, if RLC(n, ` = n

1−p−ε , p) holds for
some constants p ∈ (0, 1), ε > 0, then there exists an arithmetic commitment protocol that does not
require a common reference string.

12 Secure Computation

In this section we show how to securely compute any two-party arithmetic functionality. We start
with simple arithmetic functionalities such as

(
2
1

)
-Arithmetic Oblivious Transfer (Section 12.1), and

Oblivious Linear Evaluation (Section 12.2), and eventually (Section 12.3) show how to privately
compute any two party functionality that is described by an arithmetic circuit over addition and
multiplication gates only. (The results extend to the multiparty setting in a straight forward way.)
We will mostly focus in the semi-honest setting. An adaptation to the malicious model is sketched
in Section 12.4.

12.1
(

2
1

)
-Arithmetic Oblivious Transfer

We define
(

2
1

)
Arithmetic Oblivious Transfer via the following partial functionality: the Receiver’s

input is a selection bit x ∈ {0, 1} and security parameter 1n and the sender’s input is a pair of
field elements z0, z1 ∈ F and security parameter 1n. The functionality delivers to the receiver
the value zx (which can be written arithmetically as x · z1 + (1 − x)z2). The sender receives no
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output (an empty string). The more standard binary variant of this functionality (denoted
(

2
1

)
-OT)

corresponds to the case where the sender’s inputs z0, z1 are binary strings (of poly(n) length).
We begin by showing how to use ABE to privately reduce

(
2
1

)
-AOT to standard binary

(
2
1

)
-OT.

The construction is similar to the standard transformation from OT over short strings to OT over
long strings.

Construction 12.1. Let OT be any binary (string) oblivious transfer protocol, and let E =
(ABGen,ABEnc,ABDec) be any Arithmetic/Binary Encryption scheme. Let z0, z1 ∈ F be the input
of the sender and x ∈ {0, 1} the input of the receiver. Consider the following scheme:

• Sender samples binary keys sk0, sk1
R← ABGenn.

• Both parties run the binary OT protocol with the input (x, (sk0, sk1)) (recall that ski is a binary
string).

• Sender sends to the receiver the vector (over F) ci
R← ABEncFn(ski, zi) for i ∈ {0, 1}.

• Receiver outputs zx = ABDecFn(skx, cx). In case decryption fails, outputs 1.

Theorem 12.2. Assuming that E is an ABE, Construction 12.1 privately reduces
(

2
1

)
-AOT to

standard binary
(

2
1

)
-OT.

In fact, it can be shown that, if the underlying binary OT is secure in the malicious setting,
then so is the resulting

(
2
1

)
-AOT. (See Section 12.4.1.)

Proof. The correctness of Construction 12.1 follows immediately from the correctness of the binary
OT and the correctness of the ABE. The simulator for the sender is trivial, as it gets no message.
The simulator Sim2(x, zx) for the receiver generates a view which corresponds to messages sent
by a Sender whose x-th input is zx and its other input z1−x is set to zero. Formally, Sim2(x, zx)

samples sk0, sk1
R← ABGenn, computes the ciphertexts ci

R← ABEncFn(ski, zi) where z1−x = 0 and
outputs the tuple (x, skx, c0, c1). The security of the ABE guarantees that the simulated view is
indistinguishable from the real view.

Combining the construction with Corollary 10.4, we derive the following corollary.

Corollary 12.3. Assume that for some constant p ∈ (0, 1) and constant ε > 0 the RLC(n, ` =
(1+ε)n

1−p , p) assumption holds. Then, assuming the existence of binary Oblivious Transfer protocol,

there exist an arithmetic
(

2
1

)
-AOT protocol.

The latter assumption (existence of binary Oblivious Transfer protocol) is necessary as an
arithmetic

(
2
1

)
-AOT protocol immediately implies the existence of binary Oblivious Transfer.

12.1.1 Alternative Construction based Alekhnovich’s PKE

An alternative construction of
(

2
1

)
-AOT can be established by observing that the public-key in

Alekhnovich’s encryption scheme is pseudorandom.

Construction 12.4. The protocol is described in Figure 2. Gen,Dec,Enc are the arithmetic circuits
of the Alekhnovich PKE scheme, as defined in Construction 10.15.
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Receiver
Input: x ∈ {0, 1}

Sender
Input: z0, z1 ∈ F

(Mx, e)
R← KGenn

M1−x
R← F`×n−1

c0
R← Encn(M0, z0)

c1
R← Encn(M1, z1)

M0,M1

c0, c1

zx = Decn(cx, e)

Figure 2:
(

2
1

)
-AOT from Alekhnovich

Correctness of the scheme follows from the correctness of the underlying PKE scheme.

Lemma 12.5 (Privacy). Suppose that the RLC(n − 1, 2n, 1
2
√
n

) assumption holds, then Construc-

tion 12.4 privately realizes the
(

2
1

)
-AOT functionality.

Proof. Correctness follows from the correctness of Alekhnovich’s PKE (Lemma 10.16). The sim-

ulator of the Sender Sim1(z0, z1) simply outputs a pair of random matrices M0,M1
R← F`×n−1

(together with its inputs and its internal randomness). The pseudorandomness of public-keys (as
established in Claim 10.18) shows that the simulated view is indistinguishable from the real view.
The simulator of the Receiver Sim2(x) essentially replaces c1−x with an encryption of zero. For-

mally, Sim2(x, zx) samples (Mx, e)
R← KGenn and M1−x

R← F`×n−1 computes cx = Encn(Mx, zx) and
c1−x = Encn(M1−x, 0) and outputs (x,M0,M1, e, c0, c1). The semantic security of Alekhnovich’s
encryption over random keys (Claim 10.17) implies that the simulated view is indistinguishable
from the real view.

Corollary 12.6. Assuming RLC(n − 1, 2n, 1
2
√
n

), there exist a computationally secure
(

2
1

)
-AOT

protocol in the semi-honest model.

12.2 From
(

2
1

)
-AOT to Oblivious Linear Evaluation

The Oblivious Linear Evaluation (OLE) functionality takes a single field element x ∈ F from the
receiver and a pair of field elements a, b ∈ F from the sender and delivers to the receiver the value
ax+b (and nothing to the sender). As before, we assume that both parties are also given a common
security parameter 1n.

OLE via (weakly) homomorphic encryption. A natural way to obtain OLE is via the use of
a (weak) homomorphic encryption. Specifically, let the receiver encrypt x ∈ F, and let the sender
homomorphically modify the ciphertext c = Ek(x) to c′ = Ek(ax+b). Since the new ciphertext may
leak information on a and b (as is the case in our RLC-based OLE) we will refresh the ciphertext c′

via the use of a sub-protocol based on
(

2
1

)
-AOT. Below we instantiate this approach with the ABE

from Construction 10.1. (See also Remark 12.9 for a generalization.)
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Receiver
Input: x ∈ F

Sender
Input: a, b ∈ F

M
R← F`×n, s R← Fn

e
R← B`p , u

R← F`
c = Ms+ x` + e

⊗
u

r
R← Fn, u′ R← F`

c′ = ac+ b` +Mr

(M, c)

For each 1 ≤ i ≤ ` do:

(
2
1

)
-AOT

u′i ei

c′i c′′i = (ei · u′i + (1− ei)c′i)

Apply the ABE decryption
algorithm to (e,M, c′′)
and output the result.

The notation
⊗

stands for entry-wise product. Recall that B`p samples a binary vector which
consists of ` independent Bernoulli random variables with mean p.

Figure 3: OLE from
(

2
1

)
-AOT

Concretely, recall that we encrypted a message x ∈ F by sampling (M,v) from some RLC
distribution (v = Ms + e) and used v to pad the (encoded) message x`. Notice that such an
encryption has weak homomorphic properties. Namely, given a ciphertext (M, c) = Enc(x) and
scalars a, b ∈ F we can compute a new ciphertexts (M, c′ = a · c+ b`) which form a valid encryption
of ax + b. While it is easy to re-randomize the vector s (by adding M · s′ for some random s′),
the noisy coordinates remain correlated with the original noise vector. We remove this correlation
by letting the receiver learn only the non-noisy coordinate using the

(
2
1

)
-AOT. The construction is

given in Figure 3. A similar approach (under a different abstraction) appears in [IPS09].

Theorem 12.7. Assuming RLC(n, ` := (1+ε)n
1−p , p) for some constant p ∈ (0, 1) and constant ε > 0,

the construction in Figure 3 privately reduces OLE to
(

2
1

)
-AOT.

Proof. First observe that the i-th coordinate of c′′ satisfies the equality

c′′i = (ac+ b` +Mr)i = (M(as+ r) + (ax+ b)`)i for i : ei = 0,

and c′′i = u′i for i : ei = 1. Hence, (M, c′′) is distributed as a fresh encryption of (ax+ b) under the
private-key e. Furthermore, this ciphertext is statistically independent of s and e. Correctness now
follows from the correctness of the ABE, and the view of the Receiver can be perfectly simulated
(in the

(
2
1

)
-AOT hybrid model) by outputting (x,M, s, e, u, c′′) where M, s, e, u are sampled as in

the real protocol and c′′ is a fresh encryption of z = ax+ b (under the key e and the matrix M).
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The view of the Sender can be simulated by (a, b, r, u′,M, c) where r, u′ are sampled as in the
real protocol and (M, c) is a fresh encryption of zero (under a uniform private key). The security
of the ABE implies that the simulated view is indistinguishable from the real view.

Combined with Corollary 12.3 we derive the following corollary.

Corollary 12.8. Suppose that for some constants p ∈ (0, 1) and ε > 0, the RLC(n, ` := (1+ε)n
1−p , p)

Assumption holds and that (standard)
(

2
1

)
-OT exists. Then, there exists an arithmetic OLE protocol

in the semi-honest model.

Remark 12.9 (Abstraction). The above construction can be abstracted by relying on any ABE
which is (1) (weakly homomorphic) Given a fresh ciphertext Ence(x) and scalars a, b ∈ F it is
possible to obtain a ciphertext c′ which decrypts to ax+b; (2) (Secure Decryption) The “decryption”
functionality fDec privately reduces to

(
2
1

)
-AOT, where fDec is the two-party functionality which

takes a ciphertext c′ from a sender and a private-key e from a receiver and delivers the value of
Dece(c

′) to the receiver. The construction in Figure 3 follows this outline by designing a private
realization for fDec, which is tailored to our concrete ABE. An alternative, more generic, approach
can be based on information-theoretic arithmetic randomized encoding. Specifically, assume that
fDec admits a fully-decomposable randomized encoding (as per definition 4.6) f̂ with a decoder B.
Then, fDec privately reduces to

(
2
1

)
-AOT via the following protocol. The ciphertext holder will choose

randomness for the encoding, will send the part of the encoding f̂(c′, e) that depends only on the
ciphertext c′ in the clear and, for the i-th bit of the private-key, use

(
2
1

)
-AOT to let the secret-key

holder learn the part of the encoding that depends on ei ∈ {0, 1}. (See [IK00, AIK06] for a security
proof of this protocol.) It is shown in [CFIK03] that any function computed by arithmetic branching
program admits (information-theoretic) fully-decomposable arithmetic randomized encoding. Hence,
the above approach can be applied to any weakly homomorphic ABE whose decryption algorithm
can be implemented by a polynomial-size branching program.

12.3 General Functionalities

In this section we describe a protocol for privately22 computing any two party functionality that
is described by an arithmetic circuit over addition and multiplication gates only. We refer to
such functionalities as strictly arithmetic functionalities. The protocol is an arithmetic version
of the well-known (binary) construction of [GMW87] (see also [Gol04, Chapter 7.3]). Recall the
high level structure of [GMW87]. To compute f(x, y) the parties first secret share their inputs,
then they propagate through the circuit that computes f , at each gate running a sub-procedure
to compute secret shares of the output of the gate. When reaching the output wires the parties
reveal the relevant secrets so that reconstruction will be possible. The main difficulty is to create
a sub-procedure for computing the shares of an output of a multiplication gate. We will start by
presenting such a protocol.

The two party functionality MULT takes a pair of share (a1, b1) ∈ F2 from the sender and a
pair of shares (a2, b2) ∈ F2 from the receiver. (These shares correspond to the secrets a = a1 + a2

and b = b1 + b2.) In addition, the functionality takes a “target” share c1 ∈ F from the sender. The
receiver should get a value c2 ∈ F that corresponds, together with c1 to a sharing of the product

22Recall that the term private computation refers to the semi-honest model, while secure computation refers to
the malicious model.
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ab. Formally, the relation c1 + c2 = (a1 + a2) · (b1 + b2) should hold.23 It is not hard to privately
reduce the MULT functionality to OLE.

Construction 12.10 (MULT((a1, b1), (a2, b2))). Consider the following 2 party protocol:

1. Inputs: Sender holds (a1, b1, c1) ∈ F3, Receiver holds (a2, b2) ∈ F2.

2. Sender samples r
R← F.

3. The parties engage in an OLE protocol. The Sender plays the sender with inputs (a1, r) and
the Receiver plays the receiver with the input b2. Denote the output of the Receiver by v1.

4. The parties engage in an OLE protocol. The Sender plays the sender with the values (b1, a1b1−
c1−r) and the Receiver plays the receiver with the value a2. Denote the output of the Receiver
by v2 ∈ F.

5. The Receiver outputs the field element c2 = v1 + v2 + a2 · b2.

Lemma 12.11. Construction 12.10 privately reduces MULT to OLE.

Proof. We first observe the correctness of the protocol. Assuming the correctness of the underlying
OLE, v1 = a1 · b2 + r and v2 = a2 · b1 + a1 · b1 − c1 − r and so c2 = (a1 + a2) · (b1 + b2) − c1, as
required.

We now present the privacy reduction from Construction 12.10 to OLE. For this end we need
to show a simulator for each of the parties’ views when the OLE is replaced by an oracle. Such a
simulation is straightforward. The Sender receives no message so the simulation is trivial. For the
Receiver, the simulator gets ((a2, b2), c2 = (a1 +a2) · (b1 + b2)− c1), and outputs its inputs together

with v1
R← F and v2 = c2−v1−a2 · b2. It is not hard to verify that the simulated view is distributed

identically to the Receiver’s real view.

We now use Construction 12.10 to securely evaluate general circuits.

Construction 12.12 (Private Circuit Evaluation). Let C be an arithmetic circuit that contains
only addition and multiplication gates, some of its input wires are associated with party 1 and the
others with party 2. The parties execute the following protocol:

1. Secret sharing the inputs: Party 1 secret shares each its input wires in the following way:

for an input wire x, it samples x2
R← F and sets x1 = x − x2. It then sends x2 to Party 2.

Party 2 does the same for its input wires.

2. Emulating the circuit: Following the circuit evaluation order, the parties use their shares
of the wires to compute at each gate a share of the output wire. Specifically, if party i holds
shares ai ∈ F and bi ∈ F of two wires that enter some gate then the share ci ∈ F of the
outgoing wire is computed as follows.

(a) Addition gate: Party i locally computes ci = ai + bi

23This somewhat non-standard formulation allows us to work with a deterministic functionality.
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(b) Multiplication gate: The parties run the multiplication sharing protocol of Construc-

tion 12.10 with the inputs (a1, b1, c1) and (a2, b2) where c1
R← F and c2 is the output of

the protocol.

3. Recovering the outputs: Once the shares of the output wires are computed, each party
sends its share of each output wire to the party with which the output wire is associated. Each
party recovers its wires by adding the two shares for the wire.

Correctness of addition gates is straightforward, correctness of multiplication gates follows the
correctness of Construction 12.10, and so the correctness of the entire protocol can be inferred by
an inductive argument. We now turn to prove that the privacy of Construction 12.12 reduces to
that of Construction 12.10.

Proof sketch. Without loss of generality we describe the simulator for party 1. The simulator’s
inputs are all party 1’s inputs: denote them by x1, ..., xn, and all party 1’s outputs: y1, ..., yn. The
simulator works in 3 steps:

1. Secret sharing step: Create the secret shares of party 1 as honest party 1. For the shares sent
by party 2 - sample them uniformly at random.

2. Circuit evaluation step: Evaluate addition gates as honest party 1. For multiplication gates
sample the output uniformly at random.

3. Output recovery: For every output wire of party 1, the simulator was given as input the
correct output value y. It also has a secret share of the same wire, denoted by a1, that was
computed by it in the previous steps. It outputs the second secret share for this wire as
a2 = y − a1.

We claim that the output of the simulation is distributed identically as the view of party 1. The
output of step 1 is identically distributed to the view of party 1 in the true execution. Conditioned
on the output of step 1, the output of step 2 is also distributed exactly as the view of party 1. To
see this note that the output c1 of a multiplication gate is a uniformly random output when c2

is excluded from the view. Finally, the output generated in step 3 is a deterministic function of
the previous distributions, hence does not affect the distance between the simulation and the real
execution.

Theorem 12.13. Any two party functionality f that can be efficiently described by an arithmetic
circuit with only addition and multiplication gates privately reduces to arithmetic OLE. In partic-
ular, Construction 12.12 provides such a reduction.

Combined with Corollary 12.8, we derive the following Corollary.

Corollary 12.14. Suppose that for some constants p ∈ (0, 1) and ε > 0, the RLC(n, ` := (1+ε)n
1−p , p)

Assumption holds and that (standard)
(

2
1

)
-OT exist. Then, any strictly arithmetic two-party func-

tionality can be privately computed in the arithmetic model.

The Corollary can be easily extended to the multiparty setting by using the standard multiparty
variant of Construction 12.12.
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12.4 The Malicious Model

In this section we briefly sketch the extension of the previous section to the malicious model.
The following theorem is implicit in [IPS09] and is based on the IPS compiler [IPS08] and

the arithmetic protocol for secure multiparty-computation (with information-theoretic security)
of [CFIK03].

Theorem 12.15. Assuming the existence of semi-honest secure computation for any strictly arith-
metic two-party functionality, and the existence of

(
2
1

)
-AOT with malicious security, any strictly

arithmetic two-party functionality can be securely computed (with security against malicious parties)
in the arithmetic model.

In Section 12.4.1 we will show that that Construction 12.1 generalizes to the malicious setting.

Theorem 12.16. Assuming that E is an ABE, Construction 12.1 securely reduces (in the malicious
setting)

(
2
1

)
-AOT to standard binary

(
2
1

)
-OT.

Combining Theorem 12.16 with Corollary 12.14 and Corollary 10.4 we derive the following
corollary.

Corollary 12.17. Assuming RLC(n, ` := (1+ε)n
1−p , p) for some constants p ∈ (0, 1) and ε > 0, and

assuming the existence of (standard)
(

2
1

)
-OT, any strictly arithmetic two-party functionality can be

securely computed (with security against malicious parties) in the arithmetic model.

As before this can be extended to the multiparty setting using standard techniques.

12.4.1 Proof of Theorem 12.16

We reduce the malicious security of the
(

2
1

)
-AOT to the security of an Ideal

(
2
1

)
-OT functionality.

Honest Receiver. Let A∗ be any (malicious) polynomial time algorithm equipped with auxiliary
input aux that plays the role of the sender in the real model. We define a corresponding adversary
SimA∗ in the ideal model. Consider the following implementation of SimA∗ (when instantiated with
the field F and the security parameter n):

SimA∗(aux, z0, z1):

1. Invoke A∗(aux, z0, z1).

(a) Get sk′0, sk
′
1 that A∗ sends to the OT oracle.

(b) Get c0, c1 that A∗ sends to the receiver.

2. For i ∈ {0, 1} compute z′i = ABDecFn(sk′i, ci). If decryption fails, set z′i = 1.

3. Send (z′0, z
′
1) to the trusted party and receive the empty string φ as an answer.

4. Output A∗(aux, z0, z1, φ)

It is now straightforward that for every field F, for every input x ∈ {0, 1},z0, z1 ∈ F and auxiliary
input aux, the real and ideal distributions are identically distributed.
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Honest Sender. Let B∗ be any (malicious) polynomial time algorithm for the receiver in the
real model and let aux be his auxilary input. We now construct an ideal-world adversary SimB∗

(for the field F and security parameter n):

SimB∗(aux, x):

1. Sample sk0, sk1
R← ABGenFn

2. Invoke B∗(aux, x) and let x′ be the request that B∗ sends to the Binary OT oracle.

3. Send x′ to the trusted party and let zx′ denote its answer.

4. Sample c′x′
R← ABEncFn(skx′ , zx′) and c′1−x′

R← ABEncFn(sk1−x′ , 0).

5. Forward (skx′ , c
′
0, c
′
1) to B∗ and output its output.

We will show that the simulated view is indistinguishable from the real view. Below we let
B∗1(aux, x) denote the first message generated by B∗ and let B∗2(aux, x, x′, sk′x, c

′
0, c
′
1) denote the

final output of B∗. For every field F, and for every sequence of inputs x ∈ {0, 1}, z0, z1 ∈ F,
auxiliary input aux we have

{RealΠ,(A,B∗(aux))(x, (z0, z1))}n,x,z0,z1,aux
= {(B∗2(aux, x, x′, sk′x, c

′
0, c
′
1), φ), where x′ ← B∗1(aux, x)}n,x,z0,z1,aux.

c
≈ {(B∗2(aux, x, x′, sk′x, c0, c1), φ), where x′ ← B∗1(aux, x)}n,x,z0,z1,aux

= {Idealf,(A,SimB∗ (aux))(x, (z0, z1))}n,x,z0,z1,aux

where c0 = ABEncFn(sk0, z0), c1 = ABEncFn(sk1, z1) and φ denotes the empty string. Computational
indistinguishabilty follows from the security of ABE scheme, since any adversary that distinguishes
the two distribution immediately translates to an adversary that distinguishes an encryption of 0
from an encryption of z1−x′ .
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