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Abstract

We show that it is quasi-NP-hard to color 2-colorable 8-uniform hypergraphs

with 2(logN)1/4−o(1)

colors, where N is the number of vertices. There has been
much focus on hardness of hypergraph coloring recently. In [15], Guruswami,
H̊astad, Harsha, Srinivasan and Varma showed that it is quasi-NP-hard to color

2-colorable 8-uniform hypergraphs with 22Ω(
√

log log N)

colors. Their result is ob-
tained by composing standard Label-Cover with an inner-verifier based on
Low-Degree-Long-Code, using Reed-Muller code testing results by Dinur and
Guruswami [10]. Using a different approach in [27], Khot and Saket constructed a
new variant of Label-Cover, and composed it with Quadratic-Code to show
quasi-NP-hardness of coloring 2-colorable 12-uniform hypergraphs with 2(logN)c

colors, for some c around 1/20. Their construction of Label-Cover is based
on a new notion of superposition complexity for CSP instances. The composi-
tion with inner-verifier was subsequently improved by Varma, giving the same
hardness result for 8-uniform hypergraphs [33].

Our construction uses both Quadratic-Code and Low-Degree-Long-Code,
and builds upon the work by Khot and Saket. We present a different approach to
construct CSP instances with superposition hardness by observing that when the
number of assignments is odd, satisfying a constraint in superposition is the same
as odd-covering a constraint. We employ Low-Degree-Long-Code in order to
keep the construction efficient. In the analysis, we also adapt and generalize one
of the key theorems by Dinur and Guruswami [10] in the context of analyzing
probabilistically checkable proof systems.

1 Introduction

For an integer k ≥ 2, a k-uniform hypergraph H = (V, F ) consists of vertex set V and
edge set F ⊆

(
V
k

)
. A set of vertices S ⊆ V is an independent set if for all f ∈ F ,

f 6⊆ S, i.e., no edge is completely inside S. A hypergraph is q-colorable if its vertices
can be partitioned into q disjoint independent sets.

Coloring a graph or a hypergraph using few colors is a classical combinatorial
optimization problem, and is one of the most well-studied problems in theoretical
computer science. It is also closely related to other problems such as finding maximum
independent sets, PCPs with certain special properties, and also inapproximability
of constraint satisfaction problems. In addition to being an important theoretical
challenge, graph coloring also has a number of applications such as scheduling and
register allocation.
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We use α(H) to denote the fractional size of the maximum cardinality independent
set of H, also known as the fractional independence number, and we use χ(H) to
denote the minimum q such that H is q-colorable. It is easy to verify that we have
χ(H)α(H) ≥ 1 for any H.

In the ordinary graph case, corresponding to k = 2, deciding whether a graph
G has a 2-coloring is the same as deciding whether it is a bipartite graph, and can
be easily solved in polynomial time. In general, however, determining the chromatic
number of a graph exactly is NP-hard [14]. In fact, even coloring 3-colorable graphs
with 4 colors is NP-hard. For general q-colorable graphs, it is NP-hard to color with
q + 2b q3c − 1 colors [24, 17]. For sufficiently large q, it was shown that it is NP-hard

to color a q-colorable graph with 2Ω(q1/3) colors [20], improving on an earlier lower-

bound of q
1
25 log q by Khot [25]. Assuming a variant of Khot’s 2-to-1 Conjecture, Dinur,

Mossel and Regev [11] proved that it is NP-hard to q′-color a q-colorable graph for
any 3 ≤ q < q′. The dependency between the hardness of graph coloring and the
parameters of 2-to-1 Label-Cover was made explicit and improved by Dinur and
Shinkar [13], who showed that it is NP-hard to (log n)c-color a 4-colorable graph for
some constant c > 0 assuming the 2-to-1 Conjecture. As for algorithms, there have
been many results as well [34, 6, 21, 7]. For 3-colorable graphs, the best algorithm
is by Kawarabayashi and Thorup [23] which uses O(n0.19996) colors, based on results
by Arora and Chlamtac [2] Chlamtac [9] and the earlier work of Kawarabayashi and
Thorup [22]. As we can see, there is still a huge gap between the best approximation
guarantee and the best hardness result.

For k ≥ 3, even determining whether a k-uniform hypergraph has a 2-coloring is
NP-hard. In terms of approximation algorithms, the best algorithm for 2-colorable
3-uniform hypergraphs still requires nΩ(1) colors [29, 1, 8].

From the hardness side, the first super-constant hardness result was proved in
[16]. The main result there is that for 2-colorable 4-uniform hypergraphs, finding a
coloring with any constant number of colors is NP-hard, and finding a coloring with
O(log log n/ log log log n) colors is quasi-NP-hard. For 2-colorable 3-uniform hyper-
graphs, a similar hardness result was proved in [12]. Khot [26] proved that coloring
3-colorable 3-uniform hypergraphs with any constant number of colors is hard, and for
q-colorable 4-uniform hypergraphs, coloring with (log n)Ω(q) colors is quasi-NP-hard
for q ≥ 7. The analysis in [16] was improved by Holmerin, who proved that even
finding an independent set of fractional size Ω(log log log n/ log log n) is quasi-NP-hard
[19]. The construction was further improved recently by Saket [32], who proved that it
is quasi-NP-hard to find independent set of size n/(log n)Ω(1) in 2-colorable 4-uniform
hypergraphs [32]. There has also been work on the hardness of finding independent
sets in almost 2-colorable hypergraphs — hypergraphs that becomes 2-colorable after
removing a small fraction of vertices. Much stronger result is known, albeit at the cost
of imperfect completeness. We refer to [28] for more details.

Recently, in [15], Guruswami, Harsha, H̊astad, Srinivasan and Varma proved the
first super-polylogarithmic hardness result for hypergraph coloring, showing hardness

for coloring 2-colorable 8-uniform hypergraphs with 22Ω(
√

log log n)

colors. Their reduc-
tion uses the Low-Degree-Long-Code proposed in [5], based on techniques for
testing Reed-Muller codes developed in [10].

Using a very different approach, Khot and Saket gave another exponential im-
provement in [27], showing a quasi-NP-hardness for coloring 2-colorable 12-uniform
hypergraphs with exp((log n)Ω(1)) colors, where the constant in Ω(1) is around 1/20,
although it might be improved with a more careful analysis of their reduction. Part
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of their analysis was subsequently simplified by Varma in [33] using ideas from [15].
In this work, we give another improvement for hardness of hypergraph coloring.

Our main result is as follows.

Theorem 1.1. It is quasi-NP-hard to color a 2-colorable 8-uniform hypergraph of size

N with 2(logN)1/4−o(1)

colors.

1.1 Proof Overview

We start by describing the PCP reduction of proving hypergraph coloring hardness
used in many previous works. Most of these results show hardness of finding an
independent set of large fractional size. We can view the output of these reductions
as NotAllEqualk CSP instances. The variables correspond to the vertices of a
hypergraph, and the NotAllEqualk constraints correspond to the hyperedges. Note
that for hypergraph coloring results, all variables appear positively in such instances
and no negations are allowed. An assignment that satisfies all the NotAllEqualk
constraints thus gives a perfect 2-coloring for the hypergraph. In the other direction,
a set of vertices in the hypergraph naturally corresponds to a {0, 1} assignment to the
variables in the NotAllEqualk instance, and the vertices form an independent set
if for all constraints in the NotAllEqualk instances, there is at least 1 variable that
is assigned 0.

The starting point of the reduction is usually some Label-Cover hardness. We
then encode the supposed labeling for the Label-Cover instance with some coding
scheme, and design a PCP to test the consistency of the labeling.

One classical choice of encoding is the Long-Code, which encodes m bits of infor-
mation with 22m

bits. This huge blowup makes it impossible to prove hardness results
better than polylog n via the Label-Cover plus Long-Code approach.

A much more efficient encoding is the Hadamard code, which only uses 2m bits
to encode m bits of information. However, the disadvantage of the Hadamard code is
that one can only enforce linear constraints on the codewords, which means that we
can only start from hard problems involving only linear constraints, and as a result,
we lose perfect completeness and can only prove results about almost coloring.

The Low-Degree-Long-Code proposed in [5] lies somewhere between Long-
Code and Hadamard code. We can view Hadamard code as encoding m bits by
writing down the evaluation of all m-variable functions of degree at most 1 on these
m bits, and Long-Code as writing down the evaluation of all possible m-variable
functions — that is, degree up to m — on these m bits. Low-Degree-Long-Code
has a parameter d, the degree, and the encoding writes down the evaluation of all
polynomials of degree at most d. Dinur and Guruswami [10] obtained hardness result
for a variant of hypergraph coloring based on Low-Degree-Long-Code, and the

techniques were soon adapted in [15] to get a hardness result of 22Ω(
√

log log n)

.
The aforementioned result by Khot and Saket [27] uses Quadratic Code, which is

the same as Low-Degree-Long-Code with d = 2. Their construction, however, is
completely different from that in [15].

One can view the Quadratic Code used in [27] as the Hadamard encoding of matrix
M that is symmetric and has rank 1, that is, there exists some u ∈ Fm2 such that
M = u ⊗ u. Khot and Saket described a 6-query test such that if some encoding
function f : Fm×m2 → F2 passes the test with non-trivial probability, then we can
decode it into a low rank matrix.
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In order to use this encoding, it seems natural that one would like to construct
some variant of Label-Cover where the labels are now matrices, with some lin-
ear constraints on the entries of the matrices (since as discussed above we are using
Hadamard code to encode the matrices). In the completeness case, we would like to
have some matrix labelings of rank 1 that satisfies all linear constraints on the vertices
as well as projection constraints on the edges, and in the soundness case, not even
labelings with low rank matrices can satisfy more than a small fraction of them.

Such Label-Cover hardness result is not readily available. Khot and Saket pro-
posed the notion of superposition complexity for quadratic equations. Briefly speaking,
let q(x) = c +

∑m
i=1 cixi +

∑
1≤i<j≤m cijxixj = 0 be a quadratic equation on m F2-

variables. We say that t assignments a(1), · · · , a(t) ∈ Fm2 satisfy the equation q(x) = 0
in superposition if

c+

m∑
i=1

ci

(
t∑
l=1

a
(l)
i

)
+

∑
1≤i<j≤m

cij

(
t∑
l=1

a
(l)
i a

(l)
j

)
= 0 .

If we have a system of quadratic equations, then we say that t assignments satisfy the
system of quadratic equations in superposition if each quadratic equation is satisfied in
superposition. Having a small number of assignments satisfying quadratic constraints
in superposition is exactly the same as having a symmetric low-rank matrix satisfying
the linearized version of the constraints, as we discuss in more detail in Section 2.

Through a remarkable chain of reductions, Khot and Saket established the inap-
proximability of quadratic equations with superposition complexity, as well as the
actual construction of the Label-Cover with matrix labels. They started with su-
perposition hardness for E3-Sat with gap of 1/n, and use low-degree testing and
sum-check protocol like in the original proof of the PCP theorem [3, 4] to achieve a
superposition hardness result for systems of quadratic equations with good soundness
and moderate blowup. This is then followed by a Point versus Surface test which
produces the actual Label-Cover instance.

The focus of this work is also the construction of such Label-Cover instances.
Let t be some odd natural number. A set of t assignments odd-covers an equation (or
more generally, a constraint) if the number of assignments that satisfy the equation is
odd. We show in Section 2 that the notion of odd-covering is equivalent to satisfaction
in superposition when the number of assignments is odd. This viewpoint enables us
to construct the kind of Label-Cover instance used in [27] very easily. In fact, the
reduction in Section 3 looks very much like a classical CSP inapproximability proof.

Although simpler, the above observation alone is not sufficient to give us a hardness
result better than [27]. The issue here is that for the reduction in Section 3 to work
for our choice of parameters, the soundness of the Label-Cover that we start with
needs to be sub-constant, and a typical Long-Code reduction will again blow up the
size of the instance by too much. Hence, for this step, we employ Low-Degree-
Long-Code. Our technical contribution here is Theorem 2.27, a generalization of the
Reed-Muller code testing result of [10].

2 Preliminaries

Before we discuss the relation between superposition, odd-covering and low rank ma-
trices, we define an operation on vectors and matrices that we will use frequently.
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Definition 2.1. Define D1 : Fm+1
2 → Fm2 as the operator that removes the first

coordinate of a vector. Define D1 similarly for matrices as the operator that removes
the first row and column of a given matrix.

2.1 Superposition and Odd-Covering

Khot and Saket [27] defined the notion of satisfying in superposition as follows.

Definition 2.2 (Superposition). Let a(1), · · · , a(t) ∈ Fm2 be t assignments and q(x) = 0
be a quadratic equation in m F2-variables with

q(x) = c+

m∑
i=1

cixi +
∑

1≤i<j≤m

cijxixj .

We say that the t assignments satisfy the equation q(x) = 0 in superposition if

c+

m∑
i=1

ci

(
t∑
l=1

a
(l)
i

)
+

∑
1≤i<j≤m

cij

(
t∑
l=1

a
(l)
i a

(l)
j

)
= 0 .

Definition 2.3. Given a system of quadratic equations {qi(x) = 0}Li=1 on variables
x1, · · · , xm, its superposition complexity is the minimum number t, if it exists, such
that there are t assignments a(1), · · · , a(t) ∈ Fm2 that satisfy each equation qi(x) = 0 in
superposition.

We define the odd superposition complexity (or even superposition complexity)
to be the minimum odd integer t (or even integer t, respectively) such that there are t
assignments that satisfy all equations in superposition.

Note that by simply adding all 0 assignments, we can argue that the above three
notions of superposition complexity differ by at most 1.

We now explain the relation between superposition complexity of quadratic equa-
tions and low rank matrices. Assume for simplicity of exposition that the quadratic
equation q(x) = 0 as defined above is homogeneous, that is, the constant term c and
the linear coefficients ci are all 0.

We can express a homogeneous quadratic equation q(x) = 0 with a matrix by
defining C ∈ Fm×m2 , where Cij = cij for 1 ≤ i < j ≤ m, and Cij = 0 otherwise. Let
x = (x1 x2 · · · xm). Then q(x) = 0 is the same as 〈C, x⊗ x〉 = xTCx = 0, where 〈·, ·〉
denotes the entry-wise dot product of two matrices. Note that x ⊗ x is a symmetric
rank-1 matrix.

Suppose now that we have a symmetric matrix A such that 〈C,A〉 = 0. For a fixed
C, this is a linear constraint on the entries of A. If in addition A has rank 1, then
there exists xa, such that A = xa ⊗ xa, and by the above, we have that xa satisfies
q(xa) = 0. Therefore, if A is a symmetric rank 1 matrix and 〈C,A〉 = 0, then A
encodes an assignment that satisfies the quadratic equation q(x) = 0.

The following decomposition lemma from [27] illustrates the situation when A has
low rank.

Lemma 2.4. Let A ∈ Fm×m2 be a symmetric matrix of rank k over F2. Then
there exists l ≤ 3k/2 and vectors v1, · · · , vl in the column space of A, such that

A =
∑l
i=1 vi ⊗ vi.
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Let A be a low rank matrix and v1, · · · , vl be l ≤ 3k/2 assignments given by Lemma
2.4. Then

0 = 〈C,A〉 =

l∑
t=1

〈C, vt ⊗ vt〉

=

l∑
t=1

∑
1≤i<j≤m

cijvtivtj

=
∑

1≤i<j≤m

cij

l∑
t=1

vtivtj .

Therefore we have that v1, · · · , vl satisfy q(x) = 0 in superposition.
The notion we will now consider is the following, which we call odd-covering.

Definition 2.5 (Odd-covering). Let a(1), · · · , a(t) ∈ Fm2 be t assignments and q(x) =
0 be a quadratic equation in m F2-variables as defined above. We say that the t
assignments odd-cover the equation q(x) = 0 if the number of assignments a(l) that
satisfies q(a(l)) = 0 is odd.

The key observation is that odd-covering and satisfying in superposition are equiv-
alent when the number of assignments involved is odd.

Lemma 2.6. Let t be an odd integer and a(1), · · · , a(t) ∈ Fm2 be t assignments, and
q(x) = 0 be a quadratic equation in m F2-variables as defined above. Then the t
assignments satisfy q(x) = 0 in superposition if and only if the t assignments odd-
cover q(x) = 0.

Proof. Using the fact that t is odd, we have the following

t∑
l=1

q(a(l)) =

t∑
l=1

c+

m∑
i=1

cia
(l)
i +

∑
1≤i<j≤m

cija
(l)
i a

(l)
j


= t · c+

t∑
l=1

m∑
i=1

cia
(l)
i +

t∑
l=1

∑
1≤i<j≤m

cija
(l)
i a

(l)
j

= c+

m∑
i=1

ci

(
t∑
l=1

a
(l)
i

)
+

∑
1≤i<j≤m

cij

(
t∑
l=1

a
(l)
i a

(l)
j

)
.

Now observe that the t assignments odd-cover q(x) = 0 if and only if the number of
assignments that does not satisfy q(x) = 0 is even, which is equivalent to saying that
the left hand side of the above equation is 0, and that by definition means that the t
assignments satisfy q(x) = 0 in superposition.

In the description above, we assumed that the quadratic equation q(x) = 0 is
homogeneous, which allows us to encode it with a matrix C ∈ Fm×m2 and express the
whole equation as 〈C,A〉 = 0, where A = x⊗ x. For quadratic equations that are not
homogeneous, we encode them with a (m + 1) × (m + 1) matrix. In particular, for
q(x) = c+

∑
cixi +

∑
cijxixj = 0, we have matrix C, where C11 = c, C1i = ci−1 for

i = 2, · · · ,m+ 1, and Cij = ci−1,j−1 for 2 ≤ i < j ≤ m+ 1. As for the variable vector,
we add to x an entry that is always 1.
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Definition 2.7. Given a matrix A ∈ F(m+1)×(m+1)
2 . We say that A is pseudo-

quadratic if the following holds:

• A is symmetric.

• A1,1 = 1.

• For all i = 2, · · · ,m+ 1, A1,i = Ai,1 = Ai,i.

Note that for vector v ∈ Fm+1
2 such that v1 = 1, v⊗ v is a pseudo-quadratic rank-1

matrix.
We prove a stronger form of Lemma 2.4 for pseudo-quadratic matrices where we

decode a low rank pseudo-quadratic matrix into an odd number of assignments.

Lemma 2.8. Let A ∈ F(m+1)×(m+1)
2 be a pseudo-quadratic matrix of rank k over F2.

Then there exists an odd integer k0 < 3k/2 + 1, and vectors v1, · · · , vk0 ∈ Fm+1
2 , such

that for all i ∈ [k0], vi,1 = 1, and A =
∑k0

i=1 vi ⊗ vi. Moreover, for all i ∈ [k0], D1(vi)
is in the column space of D1(A).

Proof. Let A′ = D1(A). Note that A′ is symmetric and has rank at most k. Therefore

by Lemma 2.4, there exists l < 3k/2 vectors u1, · · · , ul ∈ Fm2 , such that A′ =
∑l
i=1 ui⊗

ui. Now consider vectors v1, · · · , vl ∈ Fm+1
2 , where for each i, vi,1 = 1 and vi,j =

ui,j−1 for j = 2, · · · ,m + 1. Let A′′ =
∑l
i=1 vi ⊗ vi, and B = A − A′′. For j, j′ ∈

{2, · · · ,m+ 1}, we have

A′′j,j′ =

l∑
i=1

vi,jvi,j′ =

l∑
i=1

ui,j−1ui,j′−1 = A′j−1,j′−1 = Aj,j′ .

Moreover, we have

A′′1,j =

l∑
i=1

vi,1vi,j =

l∑
i=1

vi,jvi,j = A′′j,j = Aj,j = A1,j .

We conclude that for all (i, j) 6= (1, 1), Ai,j = A′′i,j . Note that A′′1,1 = (l mod 2).

Therefore if A′′1,1 = 1 = A1,1, then we have l is odd and A =
∑l
i=1 vi⊗ vi as promised.

Otherwise l is even. Let e = (1 0 · · · 0) ∈ Fm+1
2 . Then A =

∑l
i=1 vi ⊗ vi + e⊗ e gives

the desired decomposition.

The following lemma summarizes the discussion at the beginning of this section
and relates odd superposition complexity with low-rank pseudo-quadratic matrices.

Lemma 2.9. Let q1(x) = 0, · · · , qs(x) = 0 be a set of s quadratic equations on variable

x1, · · · , xm, and let Q1, · · · , Qs ∈ F(m+1)×(m+1)
2 be their corresponding matrix forms.

Suppose there is a pseudo-quadratic matrix A ∈ F(m+1)×(m+1)
2 such that rank(A) ≤ k

and for all i ∈ [s], 〈Qi, A〉 = 0, then there exists l < 3k/2 + 1 vectors a(1), · · · , a(l) ∈
Fm+1

2 in the column space of A, for some odd integer l, such that A =
∑l
i=1 a

(i)⊗a(i).
This implies that the assignments D1(a(1)), · · · , D1(a(l)) satisfy all equations q1(x) =
0, · · · , qs(x) = 0 in superposition.
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Proof. Apply Lemma 2.8 to A, and let v1, · · · , vl be the vectors we get, with vi1 = 1
for i ∈ [l], and A =

∑
i∈[l] vi ⊗ vi. We now verify that D1(v1), · · · , D1(vl) satisfy all

equations in superposition.
Consider equation i for i ∈ [s]. We have

0 = 〈Qi, A〉 =

l∑
i=1

〈Qi, vi ⊗ vi〉

=

l∑
i=1

qi(vi) .

By definition, we have that v1, · · · , vl satisfy qi in superposition.

2.2 Label-Cover

The starting point of our reduction is the Label-Cover hardness obtained from
E3-Sat instances. We use Label-Cover instances obtained by applying the PCP
Theorem [3, 4] and the Parallel Repetition Theorem [31]. The exact formulation
below is from [15].

Definition 2.10. Let φ be a E3-Sat instance with X as the set of variables and C
the set of clauses. The r-repeated Label-Cover instance L(r, φ) is specified by:

• A bipartite graph G = (U, V,E), where V := Cr and U := Xr.

• Label set for U , denote by L := {0, 1}r, and label set for V , denote by R :=

{0, 1}3r.

• There is an edge {u, v} ∈ E if for each i ∈ [r], ui is a variable appearing in
clause vi.

• For edge {u, v}, the constraint πuv : {0, 1}3r → {0, 1}r is the projection of the
assignment of the 3r clause variables in v to the assignment of the r variables in
u.

• For each v ∈ V , there is a set of r functions {fvi : {0, 1}3r → {0, 1}r}i∈[r], such
that fvi (a) = 0 if and only if the assignment a satisfies the clause vi. Note that
each fvi depends only on 3 entries of a.

A labeling σ : U → L, V → R satisfies an edge {u, v} iff πuv(σ(V )) = σ(U), and σ(V )
satisfies all clauses in v. The value of L(r, φ) is the maximum fraction of edges that
can be simultaneously satisfied by any labeling.

We have the following hardness result for Label-Cover.

Theorem 2.11. Given a E3-Sat instance φ on n variables and r ∈ N, there is an
algorithm that constructs L(r, φ) in time nO(r), and that the output Label-Cover
instance has the following properties:

• If φ is satisfiable, then the value of L(r, φ) is 1.

• If φ is unsatisfiable, then the value of L(r, φ) is at most 2−ε0r, for some universal
constant ε0 ∈ (0, 1).
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In our construction of Label-Cover instance with matrix labels, we need to use
the following Parallel Repetition theorem from Rao [30], which applies to projection
games (Label-Cover), with the advantage that the rate at which the soundness
decreases is independent of the label size of the original instance.

Theorem 2.12 (Parallel Repetition [30]). There is a universal constant α > 0, such
that for a Label-Cover instance Ψ, if Opt(Ψ) ≤ 1−ε, then Opt(Ψn) ≤ (1−ε/2)αεn.

2.3 Low-Degree-Long-Code

In this section, we review the basics of Low-Degree-Long-Code. The formulation
here is from [10] and [15]. Towards the end of this section, we prove a key lemma that
we will use for proving our superposition hardness results.

For a positive integer m, denote by Pm the vector space of m-variable functions
Fm2 → F2. For f, g ∈ Pm, let ∆(f, g) be the Hamming distance between f and
g. For a subset of functions F ⊆ Pm, the distance between g and F is defined as
∆(g,F) = minf∈F ∆(f, g).

We define the following dot product on Pm.

Definition 2.13 (Dot Product). For f, g ∈ Pm, the dot product is defined as 〈f, g〉 =∑
x∈Fm

2
f(x)g(x).

Denote by Pm,d be the space of functions with degree at most d. For a subspace
A ⊆ Pm,d, denote its dual by A⊥ = {g ∈ Pm | ∀f ∈ A, 〈f, g〉 = 0}. It is well known

that P⊥m,d = Pm,m−d−1.
For β ∈ Pm, denote by supp(β) the support of β, that is supp(β) = {x | β(x) = 1}.

Define wt(β) = |supp(β)|.

Definition 2.14 (Low-Degree-Long-Code). The Low-Degree-Long-Code en-
coding for an m-bit string a ∈ Fm2 is a function Aa : Pm,d → F2, defined as Aa(g) =
g(a), for all g ∈ Pm,d.

Definition 2.15 (Character Set). For β ∈ Pm, define the corresponding character
function χβ : Pm,d → R as χβ(f) = (−1)〈β,f〉.

Define the character set Λm,d to be the set of functions β ∈ Pm which are minimum

weight functions in the cosets of Pm/P
⊥
m,d, where ties are broken arbitrarily.

We have the following result about the character set and the “Fourier decomposi-
tion” for functions Pm,d → R from [10].

Lemma 2.16. • For any β, β′ ∈ Pm, χβ = χβ′ if and only if β − β′ ∈ P⊥m,d.

• For β ∈ P⊥m,d, χβ is the constant 1 function.

• For any β, there exists β′, such that β−β′ ∈ P⊥m,d, and |supp(β′)| = ∆(β,P⊥m,d).

We call such β′ the minimum support function for the coset β + P⊥m,d.

• The characters in the character set Λm,d form an orthonormal basis under the
inner product 〈A,B〉 = Ef∈Pm,d

[A(f)B(f)].

• Any function A : Pm,d → R can be uniquely decomposed as

A(g) =
∑

β∈Λm,d

Âβχβ(g) .
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• Parseval’s identity: For any A : Pm,d → R,
∑
β∈Λm,d

Â2
β = Ef∼Pm,d

[A(f)2].

The following lemma relates characters from different domains related by coordi-
nate projections and is from [10].

Lemma 2.17. Let n ≤ m, and S ⊆ [m] with |S| = n, and let π : Fm2 → Fn2 be a
projection, mapping x ∈ Fm2 to x|S ∈ Fn2 . Then for f ∈ Pn,d and β ∈ Pm, we have

χβ(f ◦ π) = χπ2(β)(f) ,

where π2(β)(y) =
∑
x∈π−1(y) β(x).

Like in the classical Long-Code reductions, we enforce special structures on the
tables. This is a technique known as folding. The following properties of the Fourier
coefficients of folded functions were also studied in [10].

Definition 2.18. A table A : Pm,d → R is folded over constant if for any f ∈ Pm,d,
we have A(f + 1) = −A(f).

Lemma 2.19. If A : Pm,d → R is folded over constant, then for any α such that

Âα 6= 0, we have
∑
x∈Fm

2
α(x) = 1. In particular, we have supp(α) 6= ∅.

Definition 2.20. Let q1, · · · , qk ∈ Pm,3, and let

J(q1, · · · , qk) :=

{∑
i

riqi | ri ∈ Pm,d−3

}
.

We say that a function A : Pm,d → R is folded over J if A is constant over cosets of
J in Pm,d.

The following lemma shows that a function folded over J does not have weight on
small support characters that are non-zero on J .

Lemma 2.21. Let β ∈ Pm be such that wt(β) < 2d−3, and there exists some i ∈ [k]

and x ∈ supp(β) with qi(x) 6= 0. Then if A : Pm,d → R is folded over J , then Âβ = 0.

In the actual reduction, q1, · · · , qk will be the set of functions associated with
vertices in the Label-Cover instance, as described in Definition 2.10.

In [10], Dinur and Guruswami proved the following theorem about Reed-Muller
codes over F2.

Theorem 2.22. Let d be a multiple of 4. If β ∈ Pm is such that ∆(β,Pm,d) ≥ 2d/2,
then

E
g∼Pm,d/4

[∣∣∣∣∣ E
h∼Pm,3d/4

[χβ(gh)]

∣∣∣∣∣
]
≤ 2−4·2d/4

.

Note that χβ(gh) = (−1)〈βg,βh〉. The key lemma we will now prove is a general-
ization of the above theorem. The setting is that we have an additional t functions
A1, · · · , At : Pm,d → F2. We show that as long as t is small compared to 2d/2, the

expectation Eg,h[(−1)〈βg,βh〉+
∑t

i=1 Ai(g)Ai(h)] is still close to 0 for arbitrary A1, · · · , At.
We use some of the key steps in [10].
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Definition 2.23. For β and k ≤ d, define

B
(m)
d,k := {g ∈ Pm,k | βg ∈ Pm,m−d−1+k} .

Note that B
(m)
d,k is a subspace of Pm,k.

For positive integers d, k, define Φd,k : N → N as follows: if d < k, then Φd,k is
identically 0, otherwise

Φd,k(D) = min
m>d

β∈Pm:∆(β,P (m,m−d−1))≥D

{
dim(P (m, k))− dim(B

(m)
d,k (β))

}
.

The following two claims are from [10], which serve as the basis step and induction
step for their lower-bound for Φd,k(D).

Claim 2.24. For d ≥ k and D ≥ 1, Φd,k(D) ≥ 1.

Claim 2.25. For all d ≥ k and 40 < D < 2d, Φd,k(D) ≥ Φd−1,k(D/4)+φd−1,k−1(D/4).

For D = 2d−4 = 4d/2−2 and k = d/2, applying the above for a depth of d/2 − 4,
reducing D from 4d/2−2 to 16, we have Φd,d/2(2d−4) ≥ 2d/2−4. This gives the following
theorem.

Theorem 2.26. For all integers m, d such that m > d > 0 and 4|d, if β : Fm2 → F2 has

distance more than 2d−4 from Pm,m−d−1, then the subspace B
(m)
d,d/2(β) (as a subspace

of Pm,d/2) has codimension at least 2d/2−4.

We remark that Dinur and Guruswami used different degree parameters in [10] for
their application. Otherwise, the above theorem is the same as in [10].

We are now ready to prove the main theorem of this section.

Theorem 2.27. Let β : Fm2 → F2 be a polynomial with distance more than 2d−4 from
Pm,m−d−1. Let t ∈ N and A1, · · · , At : Pm,d/2 → F2 be some arbitrary t functions. Let
µ be the uniform distribution on Pm,d/2. Then

E
g,h∼µ

[
χβ(gh) · (−1)

∑t
i=1 Ai(g)Ai(h)

]
= E

g,h∼µ

[
(−1)〈βg,βh〉+

∑t
i=1 Ai(g)Ai(h)

]
≤ 2−(2d/2−4−t)/2 .

Proof. Denote by W the quotient space Pm,d/2/B
(m)
d,d/2(β). By Theorem 2.26, we have

w := dim(W) = codim(B
(m)
d,d/2(β)) ≥ 2d/2−4.

The expectation we are considering can be written as

E
g0,h0∼W

E
g:g−g0∈B(m)

d,d/2
(β)

h:h−h0∈B(m)

d,d/2
(β)

[
(−1)〈βg,βh〉+

∑t
i=1 Ai(g)Ai(h)

]
. (1)

Consider f ∈ Pm,d/2 and g ∈ B(m)
d,d/2(β). We have 〈βf, βg〉 = 〈βg, f〉 = 0, because

f ∈ Pm,d/2 and βg ∈ Pm,m−d/2−1 = P⊥m,d/2. This allows us to define “dot product”
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between elements inW. In particular, for any f, f ′, g, g′ ∈ Pm,d/2 such that f −f ′, g−
g′ ∈ B(m)

d,d/2(β), we have

〈βf ′, βg′〉
= 〈βf ′, βg′〉+ 〈β(f − f ′), βg′〉+ 〈βf ′, β(g − g′)〉+ 〈β(f − f ′), β(g − g′)〉
= 〈βf, βg〉 .

This means that taking any representative from W will give the same result for this
“dot product”.

We can thus further rewrite the expectation as

(1) = E
g0,h0∼W

(−1)〈βg0,βh0〉 E
g:g−g0∈B(m)

d,d/2
(β)

h:h−h0∈B(m)

d,d/2
(β)

[
(−1)

∑t
i=1 Ai(g)Ai(h)

]
 . (2)

Consider the matrix M ∈ R2w+t×2w+t

, where the rows and columns are indexed by
a pair (f0, a) where f0 ∈ W and a ∈ Ft2, and the entries are

M(f0,a),(g0,b) = (−1)〈βf0,βg0〉+
∑t

i=1 aibi .

Define vector u ∈ R2w+t

as

uf0,a = Pr
g∼Pm,d/2

[
g − f0 ∈ B(m)

d,d/2(β) ∧ ∀i ∈ [t], Ai((g)) = ai

]
.

Since in (2), g and h are sampled independently, we can verify that the expectation in
(2) is exactly uTMu. Moreover, since g is chosen uniformly random from Pm,d/2, the

probability that g − f0 ∈ B(m)
d,d/2(β) is exactly 2−w, thus all entries in u have value at

most 2−w, and therefore ‖u‖2 ≤ 2−w/2.
We finish the proof by studying the spectrum of M . Observe that M can be

written as the tensor product of a 2w × 2w matrix and a 2t × 2t matrix as follows.
Define W ∈ R2w×2w

as
Wf0,g0

= (−1)〈βf0,βg0〉 ,

for f0, g0 ∈ W. Define H ∈ R2t×2t

as

Ha,b = (−1)
∑t

i=1 aibi .

We can easily verify that M = W ⊗H.
The matrix H satisfies HHT = 2t · I, where I is the identity matrix, therefore we

have that the eigenvalues of H all have absolute value exactly 2t/2. For the spectrum
of W , let f0, g0 ∈ W be two rows of W . Consider the dot product of row f0 and g0 of
matrix W

WT
f0
Wg0

=
∑
h0∈W

(−1)〈β(f0+g0),βh0〉 =
∑
h0∈W

(−1)〈β(f0+g0),h0〉 .

The above sum is 2w if β(f0 +g0) ∈ Pm,m−d/2−1, or in other words f0 and g0 belong to
the same coset in W, and otherwise the sum is 0. Hence we have WWT = 2w · I, and
thus the eigenvalues of W all have absolute value 2w/2. We conclude that the tensor
product matrix M = W ⊗H has eigenvalues with absolute value 2(w+t)/2.

We can now upper-bound the absolute value of the expectation by |uTMu| ≤
2(w+t)/2 · ‖u‖22 = 2−(w−t)/2.
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3 Superposition Hardness for Gap TSA

Let b be some large integer parameter. The Tri-Sum-And (TSA) predicate is a predi-
cate on 5 F2-variables defined as follows

TSA(x1, · · · , x5) = 1 + x1 + x2 + x3 + x4x5 .

From the definition, we can see that TSA instances are systems of quadratic equations,
each involving exactly 5 F2-variables.

The predicate was studied in [18] as a starting point of an efficient PCP con-
struction. For the predicate itself, H̊astad and Khot proved that it is approximation
resistant on satisfiable instances.

In this section, we prove a superposition hardness result for TSA.

Theorem 3.1. There is a reduction that takes as input a E3-Sat instance of size n,
and outputs a TSA instance of size nO(b log logn) with the following properties:

• If the E3-Sat instance is satisfiable, then there is an assignment that satisfies
all TSA constraints.

• If the E3-Sat instance is unsatisfiable, then for any odd integer t < (log n)b, and
any t assignments, at most a 15/16 fraction of the TSA constraints are satisfied
in superposition.

The reduction runs in time nO(b log logn).

Proof. The reduction follows a similar approach as a typical inapproximability hard-
ness reduction.

Given a E3-Sat instance, we apply Theorem 2.11 with soundness 1/(1000(log n)2b)
to get a Label-Cover instance. This gives the parameter r = (2b log log n+O(1))/ε0,
where ε0 is some universal constant. The vertex set of the bipartite graph has size
nO(b log logn), and the label sets are L = {0, 1}r and R = {0, 1}3r. Let d = Θ(b log log n)
be such that 2d/2−4 ≈ (log n)b + 3. This implies also that 2d ≈ 256(log n)2b.

For each u ∈ U and v ∈ V , we expect functions fu : Pr,d → {−1, 1} and gv :
P3r,d → {−1, 1}. We assume that all functions are folded over constant. The entries
of the functions correspond to variables of some TSA instance. Therefore the number
of variables in the output instance is nO(b log logn) · (3r)(1+o(1))d = nO(b log logn), and
the number of constraints is polynomial in the number of variables.

Consider the following test:

1. Sample random edge e = {u1, u2} ∼ E. Let π be the projection on the edge,
and let f and g be the functions associated with u1 and u2.

2. Sample uniformly random query x ∼ Pr,d, y ∼ P3r,d, and v, w ∼ P3r,d/2.

3. Construct query z := x ◦ π + y + vw ∈ P3r,d.

4. Accept iff f(x)g(y)g(z)(g(v)∧ g(w)) = 1, where ∧ here denotes the binary oper-
ator that evaluates to −1 when both operands are −1, and 1 otherwise.

The completeness is straightforward. In this case, the Label-Cover instance has a
perfect labeling. Setting the functions to be the Low-Degree-Long-Code encoding
of the labels gives an assignment that satisfies all TSA constraints.

13



In the soundness case, there exists some t < (log n)b assignments that satisfy in
superposition a 15/16 fraction of the constraints. That is, for each u1 ∈ U and u2 ∈ V ,
there are t functions that are folded over constant, f (1), · · · , f (t) : Pr,d → {−1, 1} and
g(1), · · · , g(t) : P3r,d → {−1, 1} such that over random sample of edges {u1, u2} and
queries x, y, z, v, w, with probability at least 15/16, the number of i ∈ [t] such that
f (i)(x)g(i)(y)g(i)(z)(g(i)(v) ∧ g(i)(w)) = 1 is odd. By an averaging argument, we have
that for at least 3/4 of the edges, over random sample of queries, the above holds with
probability at least 3/4. Call such an edge good.

We assume that the functions are folded in the same way. Recall that when applying
folding, we partition the domain of the functions into equivalence classes, define the
function value in one of the equivalence classes, and then extend to the full domain
by adding appropriate constants. For our reduction, we identify one equivalence class
for each vertex, and the t functions associated with it supply value only for that
equivalence class. This is to make sure f (1), · · · , f (t) and g(1), · · · , g(t) corresponds
exactly to t assignments in superposition.

Fix a good edge for now, and we drop the subscripts u1 and u2. Then we have the
following

1

2
+

1

2
E

x,y,z,v,w

[
t∏
i=1

(
f (i)(x)g(i)(y)g(i)(z)(g(i)(v) ∧ g(i)(w))

)]
≥ 3

4
,

or

E
x,y,z,v,w

[
t∏
i=1

(
f (i)(x)g(i)(y)g(i)(z)(g(i)(v) ∧ g(i)(w))

)]
≥ 1

2
.

Let f ′ =
∏t
i=1 f

(i), and g′ =
∏t
i=1 g

(i). Since t is odd, we have that f ′ and g′ are
both folded over constant. Taking the Fourier expansion of f ′ and g′, we have the
following

1

2
≤ E

x,y,z,v,w

[
t∏
i=1

(
f (i)(x)g(i)(y)g(i)(z)(g(i)(v) ∧ g(i)(w))

)]

= E

[
f ′(x)g′(y)g′(z)

t∏
i=1

(g(i)(v) ∧ g(i)(w))

]
=

∑
α∈Λr,d

β1,β2∈Λ3r,d

f̂ ′αĝ
′
β1
ĝ′β2

E
x,y,z,v,w

[
χα(x)χβ1

(y)χβ2
(x ◦ π + y + vw)

t∏
i=1

(g(i)(v) ∧ g(i)(w))

]

=
∑

β∈Λ3r,d

f̂ ′π2(β)ĝ
′2
β E
vw

[
χβ(vw)

t∏
i=1

(g(i)(v) ∧ g(i)(w))

]
.
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Applying Cauchy-Schwarz and using Parseval, we have

1

4
≤

 ∑
β∈Λ3r,d

ĝ′
2

β

 ∑
β∈Λ3r,d

f̂ ′
2

π2(β)ĝ
′2
β E
vw

[
χβ(vw)

t∏
i=1

(g(i)(v) ∧ g(i)(w))

]2


=
∑

β∈Λ3r,d:wt(β)≤2d−4

f̂ ′
2

π2(β)ĝ
′2
β E
vw

[
χβ(vw)

t∏
i=1

(g(i)(v) ∧ g(i)(w))

]2

+

∑
β∈Λ3r,d:wt(β)>2d−4

f̂ ′
2

π2(β)ĝ
′2
β E
vw

[
χβ(vw)

t∏
i=1

(g(i)(v) ∧ g(i)(w))

]2

.

For the terms where wt(β) > 2d−4, we apply Theorem 2.27 to get∣∣∣∣∣Evw
[
χβ(vw)

t∏
i=1

(g(i)(v) ∧ g(i)(w))

]∣∣∣∣∣ ≤ 2−(2d/2−4−t)/2 ,

and therefore ∑
β∈Λ3r,d:wt(β)>2d−4

f̂ ′
2

π2(β)ĝ
′2
β

E
vw

[
χβ(vw)

t∏
i=1

(g(i)(v) ∧ g(i)(w))

]2

≤ 2−(2d/2−4−t) <
1

8
.

This gives us ∑
β∈Λ3r,d:wt(β)≤2d−4

f̂ ′
2

π2(β)ĝ
′2
β

≥
∑

β∈Λ3r,d:wt(β)≤2d−4

f̂ ′
2

π2(β)ĝ
′2
β E
vw

[
χβ(vw)

t∏
i=1

(g(i)(v) ∧ g(i)(w))

]2

≥ 1

8
.

Let {u1, u2} be a good edge. Consider the following labeling strategy: for u1, pick

α with probability f̂ ′
2

α and pick a random label from supp(α), and for u2, pick β

with probability ĝ′
2

β and pick a random label from supp(β). The procedure is well de-
fined because f ′ and g′ are all folded, and thus by Lemma 2.19, supp(α) and supp(β)
are nonempty. Also, for β such that wt(β) ≤ 2d−4 < 2d−3, by Lemma 2.21, the
assignments in supp(β) all satisfy the clauses in u2. Then the probability that the
labeling of u1 and u2 satisfies the projection constraint on a good edge {u1, u2} is

at least 1
2d−4

∑
β:wt(β)≤2d−4 f̂ ′

2

π2(β)ĝ
′2
β ≥ 1/(8 · 2d−4) > 1/(100(log n)2b). Since there

are at least a 3/4 fraction of good edges, overall the labeling satisfies more than
(3/4) · (1/(100(log n)2b)) > 1/(1000(log n)2b), contradicting the fact that in the sound-
ness case the Label-Cover instance does not have labeling with value larger than
1/(1000(log n)2b). This completes the proof.

4 Label Cover with Matrix Labels

We now use Theorem 3.1 to construct a Label-Cover instance with properties similar
to that in [27].
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Let b be some large integer parameter, and t ≈ (log n)b be an odd integer. Given a
TSA instance with t-superposition hardness gap of 15/16 from Theorem 3.1, consider
the following 2-Prover-1-Round projection game:

1. The referee picks a TSA constraint, which we denote as C(x1, x2, x3, x4, x5), and
then picks randomly i ∈ [5].

2. The referee sends xi to Alice and C to Bob.

3. Alice replies with a ∈ Ft2, and Bob replies with b ∈ (Ft2)5.

4. The referee accepts iff b, interpreted as t F2 assignments, satisfies C in superpo-
sition, and bi = a.

This is a projection game with perfect completeness and soundness 79/80.
Using Theorem 2.12, we get the following Label-Cover construction. Note that

it is important that we use Theorem 2.12 by [30] instead of [31], because the answer
size is non-constant and it is important that the rate at which soundness decreases is
independent of that.

Theorem 4.1. There exists a reduction that takes a E3-Sat instance of size n, and
outputs a Label-Cover instance (U, V,E, L,R,Π,Γ) with the following property:

• The bipartite graph (U, V,E) has size exp((log n)(2+o(1))b), and the reduction runs
in time exp((log n)(2+o(1))b).

• The label set R = Fmr
2 , L = Fml

2 , where ml,mr = (log n)(2+o(1))b.

• For each v ∈ V , there is a set of quadratic F2 equations, each involving 5 of the
mr coordinates of the labeling of v. The set of valid labelings Γ(v) are those that
satisfy all quadratic equations.

• For each edge e ∈ E, there is a set Se ⊆ [mr], such that πe : Fmr
2 → Fml

2 is
defined as πe(r) = rSe .

• If the E3-Sat instance is satisfiable, then there is a labeling that satisfies all
quadratic equation constraints for all vertices v ∈ V , and all projection con-
straints for all edges.

• If the E3-Sat instance is unsatisfiable, then for any odd integer l < (log n)b, any
labeling σ(1), · · · , σ(l) for the vertices in U and V , the following does not hold
simultaneously:

– For each v ∈ V , and for each equation q associated with v, the assignment
given by σ(1)(v), · · · , σ(l)(v) satisfy q in superposition.

– For at least 2−(logn)(2+o(1))b

fraction of the edges e = {u, v}, we have πe(σ
(j)(v)) =

σ(j)(u), ∀j ∈ [l].

We now convert the above into a Label-Cover instance with matrix label and
rank soundness constraint.

Theorem 4.2. There exists a reduction that takes a E3-Sat instance of size n, and
outputs a Label-Cover instance (U, V,E, L,R,Π,Γ) with the following property:

• The bipartite graph (U, V,E) has size exp((log n)(2+o(1))b), and the reduction runs
in time exp((log n)(2+o(1))b).
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• The label sets are matrices R = F(mr+1)×(mr+1)
2 , L = F(ml+1)×(ml+1)

2 , where
ml,mr = (log n)(2+o(1))b.

• For each v ∈ V , there is a set of homogeneous linear F2 equations involving
entries of the labeling of v. The set of valid labelings Γ(v) consists of matrices
that satisfy all the associated linear equations.

• For each edge e ∈ E, there is a set Se ⊆ [mr + 1], 1 ∈ Se, such that πe :

F(mr+1)×(mr+1)
2 → F(ml+1)×(ml+1)

2 is defined as πe(r) = rSe
.

• If the E3-Sat instance is satisfiable, then for each u ∈ U , there is a labeling
Mu = xu ⊗ xu where xu,1 = 1, and for each v ∈ V , there is a labeling Mv =
xv ⊗ xv where xv,1 = 1, such that for all v ∈ V , Mv ∈ Γ(v), and for all e ∈ E,
πe(Mv) = Mv|Se

= Mu.

• If the E3-Sat instance is unsatisfiable, then for any labeling σ for the vertices
in U and V , the following does not hold simultaneously:

– For each v ∈ V , the matrix σ(v) is pseudo-quadratic, has rank(σ(v)) ≤
(log n)b/2, and is valid σ(v) ∈ Γ(v).

– For at least 2−(logn)b fraction of the edges e = {u, v}, we have πe(σ(v)) =
σ(u).

Proof. We start with the Label-Cover instance from the previous theorem.
The underlying bipartite graph of the new instance is exactly the same. The

parameters mr and ml are the same as before. The labels for u ∈ U in the new

instance are now matrices from F(ml+1)×(ml+1)
2 , and the labels for v ∈ V are from

F(mr+1)×(mr+1)
2 . The constraints for labelings for vertices in v ∈ V are the following:

1. The matrix label M is symmetric, and for i = 2, · · · ,mr + 1, we have Mi,i =
M1,i = Mi,1. These are all homogeneous linear constraints. Note that if in
addition we have M1,1 = 1, then we get that M is pseudo-quadratic. Here,
however, we do not include the latter constraint as it is not homogeneous. In
fact, this will be handled by the inner verifier.

2. For each quadratic constraint in the previous instance, we include the linearized
version of it in the new instance. That is, term xixj is replaced by entry (i +
1, j + 1) of the matrix, term xi is replaced by entry (1, i+ 1), and constant 1 is
replaced by entry (1, 1).

For edge e, let Se be the set associated with its projection in the old instance, then in
the new instance is defined by the set S′e = {1} ∪ {i+ 1 | i ∈ Se}.

The completeness case is straightforward. For the soundness case, suppose that
there are pseudo-quadratic matrices Mu and Mv for each u ∈ U and v ∈ V , such that
Mv satisfies homogeneous linear constraints associated with v, rank(Mv) ≤ k, and

that for 2−(logn)b fraction of the edges e, (Mv)|Se
= Mu.

For such an edge e = {u, v}, by Lemma 2.9, there exists odd integer l < 3/2 ·
(log n)b/2 < (log n)b vectors v1, · · · , vl ∈ Fmr+1

q , where vi,1 = 1 for i ∈ [l], such that

Mv =
∑l
i=1 vi ⊗ vi, and the assignments D1(v1), · · · , D1(vl) satisfy in superposition

the quadratic constraints of the old Label-Cover instance. For vertex u, we have
that rank(Mu) = rank((Mv)|S) ≤ rank(Mv). Also, Mu =

∑l
i=1 vi|S ⊗ vi|S , and that

D1(vi)|S−{1} are in the column space of D1(Mu). Therefore, for any i ∈ [l], if we take
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a uniformly random vector in the column space of D1(Mu), then with probability at

least 2−(logn)b/2, it will be equal to (v′i)|S . Repeat this for all i ∈ [l], and we have
that these labelings of u all satisfy the projection constraint with probability at least

2−(logn)2b

.
Overall, this labeling satisfies 2−(logn)b2−(logn)2b

= 2−(logn)(2+o(1))b

fraction of the
edges in the old instance.

5 Hypergraph Coloring Hardness

We now compose the Label-Cover from Theorem 4.2 with Quadratic Code inner-
verifier to get inapproximability result for hypergraph coloring.

Theorem 5.1. There is a reduction that takes as input a E3-Sat instance of size n,
outputs a 8-uniform hypergraph H with the following properties:

• The size H and the running time of the reduction are both upper-bounded by
exp((log n)(4+o(1))b).

• If the E3-Sat instance is satisfiable, then H is 2-colorable.

• If the E3-Sat instance is unsatisfiable, then H does not have independent set of

fractional size larger than 2−O((logn)b).

In other words, it is quasi-NP-hard to color a 2-colorable 8-uniform hypergraph of size

N with less than 2(logN)1/4−o(1)

colors.

The following proof is based on a note by Girish Varma [33].
Given the Label-Cover instance from Theorem 4.2, we expect for each vertex

v ∈ V a function fv : F(mr+1)×(mr+1)
2 → F2. The expected encoding for matrix label

σ(v) = av ⊗ av is fv(A) = 〈av ⊗ av, A〉 = aTv Aav. Let Hv ⊆ F(mr+1)×(mr+1)
2 be the

dual of the subspace of the set of pseudo-quadratic matrices that satisfies the linear

constraints associated with v. The function fv is folded over F(mr+1)×(mr+1)
2 /Hv.

Consider the following Boolean 8-uniform test:

• Choose u ∈ U uniformly at random, and v, w ∈ V uniformly and independently

at random from the neighbors of u. Let π, σ : F(mr+1)×(mr+1)
2 → F(ml+1)×(ml+1)

2

be the projections corresponding to the edges (u, v) and (u,w) respectively, and
let Sπ and Sσ be the index set associated with them.

• Uniformly and independently sample X1, X2, Y1, Y2 ∈ F(mr+1)×(mr+1)
2 , F ∈

F(ml+1)×(ml+1)
2 , and x, y, z, x′, y′, z′ ∈ Fmr+1

2 . Let e ∈ Fmr+1
2 be the vector

with only the 1-st entry 1 and the rest 0.

• Accept if and only if the following 8 values are not all equal:

fv(X1) fv(X3) where X3 := X1 + x⊗ y + F ◦ π
fv(X2) fv(X4) where X4 := X2 + (x+ e)⊗ z + F ◦ π
fw(Y1) fw(Y3) where Y3 := Y1 + x′ ⊗ y′ + F ◦ σ + e⊗ e
fw(Y2) fw(Y4) where Y4 := Y2 + (x′ + e)⊗ z′ + F ◦ σ + e⊗ e

We denote by T the test distribution.
The vertex set of the hypergraph has size

exp((log n)(2+o(1))b)) · 2(logn)2(2+o(1))b

= exp((log n)(4+o(1))b)) =: N .
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5.1 Completeness

Let yv ⊗ yv for v ∈ V and xu ⊗ xu for u ∈ U be a perfect labeling for the Label Cover
instance, with yv,1 = xu,1 = 1 and for each edge e = {u, v} ∈ E, we have (yv)|Se

= xu.
Consider the 2-coloring where for each v ∈ V , fv(X) = yTv Xyv = 〈X, yv ⊗ yv〉. Such
a function is constant over cosets of Hv. Let x1 := 〈X1, yv ⊗ yv〉, x2 := 〈X2, yv ⊗ yv〉,
y1 := 〈Y1, yw⊗yw〉, y2 := 〈Y2, yw⊗yw〉, and f := 〈F, xu⊗xu〉. Note that 〈F, xu⊗xu〉 =
〈F, πu,v(yv ⊗ yv)〉 = 〈F ◦ πuv, yv ⊗ yv〉. Also, 〈e⊗ e, yv ⊗ yv〉 = 〈e, yv〉 = 1. Therefore,
the value of the 8 queries are

x1 x1 + 〈yv, x〉〈yv, y〉+ f
x2 x2 + (〈yv, x〉+ 1)〈yv, z〉+ f
y1 y1 + 〈yw, x′〉〈yw, y′〉+ f + 1
y2 y2 + (〈yw, x′〉+ 1)〈yw, z′〉+ f + 1

We finish the proof of the completeness case by a case analysis.
If 〈yv, y〉 = 〈yw, y′〉 = 0, then the sum of entries in the first and third row is 1,

which means that there are different values. Similarly, we conclude that if 〈yv, z〉 =
〈yw, z′〉 = 0, then using similar argument as above, there are different values in the
second and the fourth row. The same applies to the case when 〈yv, x〉 = 〈y2, x

′〉 = 1,
and the case when 〈yv, x〉 = 〈yw, x′〉 = 0.

Suppose now that 〈yv, x〉 = 1 and all entries are equal. Then from the second row,
we have that f = 0, and from the first row, we get 〈yv, y〉 = 0. By the discussion
above, we have that 〈yw, y′〉 = 1, and the third row gives us 〈yw, x′〉 = 1, but then the
two entries on the last row are different.

Suppose otherwise that 〈yv, x〉 = 0 and all entries are equal. Then from the first
row, we have f = 0, and the second row implies 〈yv, z〉 = 0. By the discussion above,
we must have 〈yw, z′〉 = 1, and the last row gives 〈yw, x′〉 = 0, leaving two different
entries in the third row.

Hence fv gives a valid 2-coloring of G.

5.2 Soundness

Let δ = 2−(logn)b be the soundness parameter from Theorem 4.2 and k = (log n)b/2
be the rank upper-bound from Theorem 4.2.

Lemma 5.2. If there is an independent set in G of relative size s, then

s8 ≤ δ +
1

2k/2+1
.

Proof. Consider any set A ⊆ V(G) of fractional size s. For every v ∈ V , let fv :

F(mr+1)×(mr+1)
2 → [0, 1] be the indicator function of A, extended such that it is con-

stant over cosets of Hv. The fractional size of A is given by

E
v∼V

X∼F(mr+1)×(mr+1)
2

[fv(X)] = E
v∼V

[
f̂v,0

]
.

The set A is an independent set if and only if

Θ := E
u,v,w

E
Xi,Yi∼T

4∏
i=1

fv(Xi)fw(Yi) = 0 . (3)

19



Taking Fourier expansion and considering expectations over X1, X2, Y1, Y2, we get the
following:

Θ = E
u,v,w

∑
α1,α2,β1,β2∈F(mr+1)×(mr+1)

2

E
F,x,x′

[

f̂2
v,α1

E
y

[χα1
(x⊗ y)]χα1

(F ◦ π)

f̂2
v,α2

E
z

[χα2
((x+ e)⊗ z)]χα2

(F ◦ π)

f̂2
w,β1

E
y′

[χβ1
(x′ ⊗ y′)]χβ1

(F ◦ σ)χβ1
(e⊗ e)

f̂2
w,β2

E
z′

[χβ2
((x′ + e)⊗ z′)]χβ2

(F ◦ σ)χβ2
(e⊗ e)

]
.

Denote the term inside EF,x,x′ [·] as Termu,v,w(α1, α2, β1, β2).
For the characters involving F , we have

E
F

[χα1
(F ◦ π)χα2

(F ◦ π)χβ1
(F ◦ σ)χβ2

(F ◦ σ)]

= E
F

[
(−1)〈π(α1+α2),F 〉+〈σ(β1+β2),F 〉

]
,

and since F ∈ F(ml+1)×(ml+1)
2 is chosen uniformly at random, the above is 0 unless

π(α1 + α2) = σ(β1 + β2).
Let ν(α) := 〈α, e⊗e〉. Taking expectations over x, y, z, x′, y′, z′, we have that when

π(α1 + α2) 6= σ(β1 + β2), Termu,v,w(α1, α2, β1, β2) = 0, and otherwise

Termu,v,w(α1, α2, β1, β2)

= (−1)ν(β1+β2)f̂2
v,α1

f̂2
v,α2

f̂2
w,β1

f̂2
w,β2

Pr
x

[α1x = 0 ∧ α2x = α2e] Pr
x′

[β1x = 0 ∧ β2x
′ = β2e] .

The terms that are potentially non-zero can now be partitioned into three parts:

Θ0 = E
u,v,w

∑
rank(α1+α2),rank(β1+β2)≤k

π(α1+α2)=σ(β1+β2)
ν(β1+β2)=0

Termu,v,w(α1, α2, β1, β2)

Θ1 = E
u,v,w

∑
rank(α1+α2),rank(β1+β2)≤k

π(α1+α2)=σ(β1+β2)
ν(β1+β2)=1

Termu,v,w(α1, α2, β1, β2)

Θ0 = E
u,v,w

∑
max{rank(α1+α2),rank(β1+β2)}>k

π(α1+α2)=σ(β1+β2)

Termu,v,w(α1, α2, β1, β2) .

We first lower-bound Θ0. Note that all terms in Θ0 are positive. Consider the term
corresponding to α1 = α2 = β1 = β2 = 0. We have

E
u,v,w

f̂4
v,0f̂

4
w,0 = E

u

(
E
v
f̂4
v,0

)2

≥
(

E
u,v
f̂v,0

)8

≥ s8 .
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Therefore Θ0 ≥ s8.
For Θ1, we have the following upper-bound

|Θ1| ≤ E
u,v,w

∑
rank(α1+α2),rank(β1+β2)≤k

π(α1+α2)=σ(β1+β2)
ν(β1+β2)=1

f̂2
v,α1

f̂2
v,α2

f̂2
w,β1

f̂2
w,β2

. (4)

Consider the following randomized labeling strategy for vertices in u ∈ U and v ∈ V :
for v ∈ V , pick (β1, β2) with probability f̂2

v,β1
f̂2
v,β2

and set its label to β1 + β2; for

u ∈ U , pick a random neighbor v, and choose (α1, α2) with probability f̂2
v,α1

f̂2
v,α2

and
set its label to π(α1 + α2). Due to folding, we have that β1 and β2 both satisfies the
homogeneous linear constraints associated with v, and so does β1 + β2. Therefore the
right hand side of (4) gives the probability that a random edge of the Label Cover is
satisfied by this labeling. Thus |Θ1| ≤ δ.

For Θ2, note that if rank(α) > k, then for any fixed b, Prx[αx = b] ≤ 1/2k+1.
Therefore, for any fixed choice of u, v, w, all terms in Θ2 have absolute value at most
1/2k/2+1. Combined with Parseval’s identity, we conclude that |Θ2| ≤ 1/2k/2+1.

We conclude that any independent set in G has fractional size at most 2− logb n/32,

and therefore the chromatic number of G is at least 2logb n/32 = exp((logN)1/(4−o(1))).
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