
A Survey on Distribution Testing
Your Data is Big. But is it Blue?

Clément L. Canonne1

May 8, 2015

1Columbia University. Email: ccanonne@cs.columbia.edu. Research supported by NSF CCF-1115703 and NSF
CCF-1319788.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 63 (2015)

mailto:ccanonne@cs.columbia.edu

Abstract

The field of property testing originated in work on program checking, and has evolved into an established
and very active research area. In this work, we survey the developments of one of its most recent and prolific
offspring, distribution testing. This subfield, at the junction of property testing and Statistics, is concerned
with studying properties of probability distributions.

We cover the current status of distribution testing in several settings, starting with the traditional sampling
model where the algorithms obtains independent samples from the distribution. We then discuss different
recent models, in which one either grants the testing algorithms more powerful types of queries, or evaluates
their performance against that of an information-theoretical optimal “adversary.” In each setting, we describe
the state-of-the-art for a variety of testing problems.

We hope this survey will serve as a self-contained introduction for those considering research in this field.

Foreword
“Recently there has been a lot of glorious hullabaloo about Big Data and how it is going to revolutionize

the way we work, play, eat and sleep.” (R. A. Servedio)

This is not a comprehensive survey on distribution testing – yet it aims at being one. It emerged as
the author was trying to make sense of what he was doing, and of the myriads of papers read along the
way1 – each with new results, sometimes superseding the previous, sometimes incomparable, sometimes none
of the above.

The field of distribution testing has grown fast these last years, making great strides in Theoretical
Computer Science after being the playground of Statisticians for decades (centuries?). Yet, if pressed to find
any, I would state one downside to this fast progress: it is easy to get lost, confused about what is known,
who proved it, and whether it relates to that other result from this other paper which looks a tad similar.

This will not solve all these questions – yet it aims at doing so.

1More precisely, looked hard at along the way.

Acknowledgements

I wish to thank Rocco Servedio, for being such a great adviser (and producing quotes as the one above);
and my niece and nephew, for being inexplicably silent while I was writing this survey foreword. This never
happens.

Contents

Foreword .

1 Introduction 1
1.1 Testing: what, why, and how? . 1
1.2 Scope and structure of this survey . 2

2 Preliminaries 3

3 Standard Model 5
3.1 The setting . 5
3.2 Testing identity and closeness of general distributions . 6

3.2.1 Testing uniformity . 6
3.2.2 Testing identity . 8
3.2.3 Testing closeness . 9
3.2.4 Tolerant testing and distance estimation . 11

3.3 Testing for structure . 12
3.3.1 Monotonicity . 12
3.3.2 Testing k-histograms . 14
3.3.3 Parameterized classes of distributions . 14
3.3.4 A unified approach . 15
3.3.5 Other domains: testing independence . 17

3.4 Testing with structure . 18
3.4.1 Monotone distributions . 18
3.4.2 Identity, closeness and distance estimation of k-modal distributions 19
3.4.3 Identity: a unified approach . 20

3.5 Estimating symmetric properties . 21
3.6 Tips and tricks . 24

4 Other Models 26
4.1 Conditional Samples . 26

4.1.1 The setting . 26
4.1.2 Testing identity and closeness of general distributions 27
4.1.3 Testing for structure: monotonicity . 31
4.1.4 Estimating symmetric properties . 34
4.1.5 Non-adaptive testing . 36
4.1.6 Tips and tricks . 37

4.2 Evaluation Queries . 38
4.2.1 The setting(s) . 38
4.2.2 Testing identity and closeness of general distributions 39
4.2.3 Testing for structure: monotonicity . 41
4.2.4 Testing (some) symmetric properties, with and without structure 42

4.2.5 Separating the three models . 43
4.2.6 Tips and tricks . 44

4.3 Collections of distributions . 44
4.3.1 The setting . 44
4.3.2 Relation to other models . 45
4.3.3 Testing equivalence and clusterability . 45
4.3.4 Testing for similar means . 46

4.4 Competitive Testing . 47
4.4.1 The setting . 47
4.4.2 Testing closeness of general distributions . 48
4.4.3 Testing with structure . 49

4.5 Cætera desunt . 49

5 Conclusion 51

Bibliography 58

Index 59

A Summary of results 61

B Probabilistic Inequalities 64
B.1 Markov’s and Chebyshev’s Inequalities . 64
B.2 Chernoff and Hoeffding bounds . 64

C Metrics over ∆(Ω) 66
C.1 More on Total Variation . 66
C.2 Hellinger distance . 67
C.3 Kolmogorov distance . 67
C.4 Earthmover’s distance . 68

D A Non-Comprehensive Toolkit 69
D.1 Fundamental results . 69
D.2 On Yao and Non-Adaptive Algorithms . 70
D.3 Poissonization . 71
D.4 Birgé’s decomposition . 72
D.5 Assouad and Le Cam . 74

D.5.1 Learning Lower Bounds: Assouad’s Lemma . 74
D.5.2 Testing Lower Bounds: Le Cam’s Method . 75

E Miscellaneous definitions 77
E.1 Distribution classes . 77

List of Tables

A.1 Comparison between the COND model and the standard SAMP model on a variety of testing
problems. 61

A.2 Comparison between the COND model (both adaptive and non-adaptive) and the standard
SAMP model on several classes of testing problems . 62

A.3 Comparison of EVAL, Dual and Cumulative Dual on a range of testing and tolerant testing
problems. 62

A.4 Comparison between SAMP, Dual and Cumulative Dual on tolerant testing problems. 62
A.5 Comparison of SAMP, EVAL and Dual for multiplicative approximation of entropy. 63

Chapter 1

Introduction

Given data from an experiment, study or population, inferring information from the underlying probability
distribution it defines is a fundamental problem in Statistics and data analysis, and is one that has applications
and ramifications in a myriad of other fields. But this question, extensively studied for decades, has undergone
a significant shift these last years: the amount of data has grown huge, and the corresponding distributions
now are often over a very large domain (see for instance [BFR+00, GR00, Ma81]). So large, in fact, that the
usual methods from Statistics and learning theory are no longer practical; and one has to look for faster,
more sample-efficient techniques and algorithms. In particular, by restricting the goal – when learning the
whole distribution is not necessary, it may be enough to focus on whatever aspect of the data is important to
the application. In doing so, it may be possible to overcome the formidable complexity of the task; most of
the time at the price of a slightly relaxed guarantee on the answer (for a better and more eloquent exposition
of these points, see e.g. [Rub12]1). But if only one phrase and motivation was allowed to vindicate and justify
the whole field of distribution testing, the author would not find more concise and trendy than these two
words: “Big Data.”

1.1 Testing: what, why, and how?
We work in the setting of property testing as originally introduced in [RS96, GGR98], where access to an
unknown “huge object” is presented to an algorithm via the ability to perform local “inspections.” By making
only a small number of such queries to the object, the (possibly randomized) algorithm must decide with
high probability whether it exhibits some prespecified property of interest, or is far from every object with
the property. (For a more detailed presentation and overview of the field of property testing, the reader is
referred to [Fis01, Ron08, Ron10, Gol10].)

In distribution testing, this “huge object” is an unknown probability distribution (or a collection thereof)
over some known domain Ω; and the type of access granted to this distribution can be of several sorts,
depending on the specific model: e.g., in the most common setting the algorithm is provided with independent
samples drawn from the distribution. For these various models, the question now becomes to bound the
number of queries required to test a range of statistical properties – as a function of the domain size and the
“farness parameter.” (In particular, the running time of the algorithm is usually only a secondary concern,
even though obtaining efficient testers is an ancillary goal in many works.)2

1A non-official French translation can also be found in [Can13].
2For a different flavor of results we mention the survey of Goldreich and Vadhan ([GV11]), where the focus is put on the

computational complexity of deciding statistical properties of distributions.

1

1.2 Scope and structure of this survey
The author labours the point that this survey is (alas) not comprehensive; choices have been made, sometimes
even consciously. Our goal is to provide a substantial overview and summary of the results and areas
addressed, as well as describe some useful tools and tricks gleaned along the way. In the first part, Chapter 2,
we provide the main notations and definitions the reader shall need to navigate safely.

In Chapter 3, we focus on the standard model for distribution testing, where the algorithm can only access
the distribution by drawing independent samples from it. We cover a wide range of properties of probability
distributions that have been investigated in this setting, and for which both upper and lower bounds on the
sample complexity have been established. These include testing whetherD is uniform [GR00, BFR+10, Pan08],
whether D is identical to a known distribution D∗ [BFF+01, VV14], and testing whether two unknown
distributions D1, D2 are identical [BFR+00, Val11, CDVV14]: we describe these results in Section 3.2, as
well as the related problems of tolerant testing for these properties [VV11].

We then turn, in Section 3.3, to a slightly different line of research, where one tries to test for structure:
we start by the problem of deciding if D has a monotone (non-increasing) probability mass function [BKR04,
RS09, BFRV11], before tackling the question of testing whether D belongs to some specific parameterized class
of distributions (e.g., is D a Binomial distribution?). We then look at the problem of testing independence,
that is deciding whether a distribution on a domain Ω1 × Ω2 is a product distribution.

In Section 3.4, we follow a slightly different path, and cover testing results assuming structure; that is,
testing for monotonicity assuming that D is k-modal, or testing uniformity or identity when D is guaranteed
to be a histogram (that is, to have a piecewise constant probability mass function).

After this, we discuss in Section 3.5 the status of the whole class of symmetric properties, that is properties
invariant by any permutation of the domain (e.g., “having small support size,” or “having entropy at least
(logn)/2”) [Pan04, VV11]. We conclude the chapter by providing in Section 3.6 some tips and remarks to
keep in mind when working in the sampling model.

The next section, Chapter 4, is dedicated to alternative or new models for testing distributions – whether
it be with stronger type of access as in Section 4.1 and Section 4.2, or with different objectives and settings
altogether (Section 4.3 and Section 4.4). In each case, we attempt to present the state-of-the-art in the
particular setting considered, following the same overall outline as in Chapter 3.

Finally, we give in the appendix a summary of the results covered in this survey, as well as additional
definitions and tools that may prove useful to anyone interested in distribution testing and learning.

Caveat. The keen-eyed reader may have noticed this survey does not promise to – and will not – cover
quantum distribution testing, in any of its aspects (whether it be classical testing of quantum properties,
quantum testing of classical properties or quantum testing of quantum properties). Not that the author
does not deem this area worthy of interest; but, quite sadly, that he does not know the first thing about it,
and prefers pointing the reader to [Md13] (e.g., Section 2.2.6) or [OW15] rather than showing his utter and
complete ignorance.

2

Chapter 2

Preliminaries

All throughout the paper, we denote by [n] the set {1, . . . , n}, and by log the logarithm in base 2. A probability
distribution over a (countable) domain1 Ω is a non-negative function D : Ω→ [0, 1] such that

∑
x∈ΩD(x) = 1.

We denote by ∆(Ω) the (convex) polytope of all such distributions, and by U(Ω) the uniform distribution on
Ω (when well-defined). Given a distribution D over Ω and a set S ⊆ Ω, we write D(S) for the total probability
weight

∑
x∈S D(x) assigned to S by D; and let supp(D) def= { x ∈ Ω : D(x) > 0 } be the (effective) support

of the distribution. Finally, for S ⊆ Ω such that D(S) > 0, we denote by DS the conditional distribution of
D restricted to S, that is DS(x) = D(x)

D(S) for x ∈ S and DS(x) = 0 otherwise.

As is usual in property testing of distributions, throughout this survey the distance between two distribu-
tions D1, D2 ∈ ∆(Ω) will be the total variation distance:

dTV(D1, D2) def= 1
2‖D1 −D2‖1 = 1

2
∑
x∈Ω
|D1(i)−D2(i)| = max

S⊆Ω
(D1(S)−D2(S)) (2.1)

which takes value in [0, 1]. In some cases, it is useful to consider (either as a proxy towards total variation, or
for the sake of the analysis) different metrics, such as `2, Kolmogorov, Earthmover’s or Hellinger distances.
More on these can be found in Appendix C.

A property P of distributions over Ω is a subset of ∆(Ω), consisting of all distributions that have the
property. The distance from D to a property P, denoted dTV(D,P), is then defined as infD′∈P dTV(D,D′).

We recall the standard definition of testing algorithms for properties of distributions over Ω, where n
is the relevant parameter for Ω (i.e., in most cases, its size |Ω|). We chose to phrase it in the most general
setting possible, with regard to how the unknown distribution is “queried”: and will specify this aspect
further in the relevant sections (sampling access, conditional access, etc.).

Definition 2.0.1. Let P be a property of distributions over Ω. Let ORACLED be an oracle providing some
type of access to D. A q-query ORACLE testing algorithm for P is a randomized algorithm T which takes as
input n, ε ∈ (0, 1], as well as access to ORACLED. After making at most q(ε, n) calls to the oracle, T either
outputs ACCEPT or REJECT, such that the following holds:
• if D ∈ P, T outputs ACCEPT with probability at least 2/3;
• if dTV(D,P) ≥ ε, T outputs REJECT with probability at least 2/3.

We sometimes write T ORACLED to indicate that T has access to ORACLED. Additionally, We will also be
interested in tolerant testers – roughly, algorithms robust to a relaxation of the first item above:

1For the sake of this survey, all distributions will be supported on a finite or at least discrete domain; thus, we do not consider
the fully general definitions from measure theory.

3

Definition 2.0.2. Let P and ORACLED be as above. A q-query tolerant testing algorithm for P is a
randomized algorithm T which takes as input n, 0 ≤ ε1 < ε2 ≤ 1, as well as access to ORACLED. After
making at most q(ε1, ε2, n) calls to the oracle, T outputs either ACCEPT or REJECT, such that the following
holds:
• if dTV(D,P) ≤ ε1, T outputs ACCEPT with probability at least 2/3;
• if dTV(D,P) ≥ ε2, T outputs REJECT with probability at least 2/3.

Note that these definitions in particular do not specify the behavior of the algorithms when dTV(D,P) ∈
(0, ε) (resp. dTV(D,P) ∈ (ε1, ε2)): in this case, any answer from the tester is considered valid. Furthermore,
we stress that the two definitions above only deal with the query complexity, and not the running time.
Almost every lower bound will however apply to computationally unbounded algorithms, while most upper
bounds we will cover are achieved by testing algorithms whose running time is polynomial in the number of
queries they make.

The last definition we state here is one of distance estimators; that is, of algorithms which compute an
approximation of the distance of the unknown distribution to a property.

Definition 2.0.3. Let P and ORACLED be as above. A q-query distance estimation algorithm for P is a
randomized algorithm A which takes as input n, ε ∈ (0, 1], as well as access to ORACLED. After making at
most q(ε, n) calls to the oracle, T outputs a value γ ∈ [0, 1] such that, with probability at least 2/3, it holds
that dTV(D,P) ∈ [γ − ε, γ + ε].

Remark 2.0.4 (Tolerant testing and distance approximation). Parnas et al. define and formalize in [PRR06] the
notion of tolerant testing, and show that distance approximation and (fully)2 tolerant testing are equivalent,
up to a logarithmic factor in 1/ε in the sample complexity (Claims 1 and 2, Section 3.1).

Generalization These definitions can easily be extended to cover situations in which there are two
“unknown” distributions D1, D2 that are accessible respectively via ORACLED1 and ORACLED2 oracles. For
instance, we shall consider algorithms for testing whether D1 = D2 versus dTV(D1, D2) in such a setting, the
property now being formally a subset of ∆(Ω)×∆(Ω).

On adaptivity and one-sidedness As usual in property testing, it is possible to specialize these definitions
for some classes of algorithms. In particular, a tester which never errs when D ∈ P (but is only allowed to
be wrong with probability 1/3 when D is far from P) is said to be one-sided; as defined above, testers are
two-sided. More important in this survey is the notion of adaptive testers: if an algorithm’s queries do not
depend on the previous answers made to the oracle(s), it is said to be non-adaptive. However, if the i-th
query can be a function of the j-th answer for j < i, then it is adaptive. (Roughly speaking, a non-adaptive
algorithm is one that can write down all the queries it is going to make “in advance,” only after tossing its
own random coins).

On the domain and parameters Unless specified otherwise, Ω will hereafter by default be the n-element
set [n]. When stating the results, the accuracy parameter ε ∈ [0, 1] is to be understood as taking small values,
either a tiny constant or a quantity arbitrarily close to 0; however, the actual parameter of interest will always
be n, viewed as “going to infinity.” Hence any dependence on n, no matter how mild, shall be considered as
more expensive than any function of ε only.

1Note that, as standard in property testing, the threshold 2/3 is arbitrary: any 1− δ confidence can be achieved at the cost
of a multiplicative factor log(1/δ) in the query complexity, by repeating the test and outputting the majority vote.

2I.e., tolerant testing algorithms as above that accept any inputs 0 ≤ ε1 < ε2 ≤ 1, without further restriction on the range of
authorized values.

4

Chapter 3

Standard Model

3.1 The setting
In this first and most common setting, the testers access the unknown distribution by getting independent
and identically distributed (i.i.d.) samples from it.

Definition 3.1.1 (Standard access model (sampling)). Let D be a fixed distribution over Ω. A sampling
oracle for D is an oracle SAMPD defined as follows: when queried, SAMPD returns an element x ∈ Ω, where
the probability that x is returned is D(x) independently of all previous calls to the oracle.

This definition immediately implies that all algorithms in this model are by essence non-adaptive: indeed, any
tester or tolerant tester can be converted into a non-adaptive one, without affecting the sample complexity.
(This is a direct consequence of the fact that all an adaptive algorithm can do when interacting with a SAMP
oracle is deciding to stop asking for samples, based on the ones it already got, or continue.)

A trivial upper bound. It is good to keep in mind that a vast majority of the testing problems studied
in this model does have an O

(
|Ω|/ε2) upper bound on the sample complexity. Indeed, it is known that

any distribution D ∈ ∆(Ω) can be learnt to accuracy ε with this many samples; and once a good enough
approximation D̂ has been obtained, it is in most cases enough to check whether D̂ is close to the property
in order to conclude about D.

On a related matter, one may wonder whether the standard “testing by learning” argument that holds
for Boolean functions also applies to distributions – that is, is testing a property P always at most as
hard as (proper) learning the class P?1 It turns out this is not the case for distributions: for instance, we
shall see in Section 3.2.1 that testing uniformity requires sample complexity Ω(

√
|Ω|), while learning the

uniform distribution trivially costs exactly 0 samples. The reason for this difference stems from the fact that
while estimating the distance between to Boolean functions is easy, approximating the distance between two
distributions even to constant accuracy requires |Ω|1−o(1) samples (Theorem 3.2.12).

Lower bounds. As common in property testing, proving lower bounds in this model usually comes down
to defining two distributions Dyes and Dno over distributions (respectively yes-instances, having the property,
and no-instances being far from it)2. Then, the key is to argue that with high probability over the choice of

1Recall that for Boolean functions, this followed from the simple reduction, as first observed in [GGR98]: one can learn the
unknown function f to distance ε/2 as if it were in P, to obtain an explicit Boolean function f̂ . It only remain to check that
(a) f̂ ∈ P and (b) f and f̂ are (ε/2)-close (as they should from the learning phase) to conclude. The key is that (b) can be
performed with only O

(
1/ε2

)
queries.

5

(Dyes, Dno) ∼ Dyes ×Dno, no q-query algorithm can distinguish between Dyes and Dno with probability more
than, say, 1/4: this in turn proves that any successful tester must have sample complexity greater than q.

In doing so, tools from Section D.2 are commonly employed, often implicitly. The reader unfamiliar
with the notion of indistinguishability of transcripts3 or the use of Yao’s principle may find there a useful
complement.

3.2 Testing identity and closeness of general distributions
In this section, we consider the three following testing problems, each of them a generalization of the previous:

Uniformity testing: given oracle access to D, decide whether D = UΩ (the uniform distribution on Ω) or
is ε-far from it;

Identity testing: given oracle access to D and the full description of a fixed D∗, decide whether D = D∗

or is ε-far from it;
Closeness testing: given independent oracle accesses to D1, D2 (both unknown), decide whether they are

equal or ε-far from each other.

The results below apply to any finite domain Ω; for convenience, we denote |Ω| by n, and write U for UΩ.

3.2.1 Testing uniformity
This problem, arguably the most fundamental and widely studied, asks to distinguish whether the unknown
distribution is uniform on the known domain, or is at a distance at least ε from uniform. Phrased as a
property testing question, it was first considered for the `2 norm by Goldreich and Ron ([GR00]), in the
context of testing whether a bounded-degree graph is an expander (i.e., if the distribution over vertices
obtained after a short random walk on the graph is close to uniform). In this section, we cover the following
result:

Theorem 3.2.1 (Testing uniformity). There exists an algorithm which, given SAMP access to an unknown
distribution D ∈ ∆(Ω), satisfies the following. On input ε ∈ (0, 1], it takes O

(√
n
ε2

)
samples from D, and

• if D = U , the algorithm outputs ACCEPT with probability at least 2/3;
• if dTV(D,U) > ε, the algorithm outputs REJECT with probability at least 2/3.

Furthermore, this sample complexity is tight.

An O
(√
n/ε4) upper bound. [GR00] showed that one could efficiently estimate the `2 norm of an

unknown distribution, and described how this primitive could be used for uniformity testing. We restate
their result, as found later in [BFF+01, Theorem 12] (see also [BFR+00, Lemma 4] for a detailed analysis of
the algorithm):

Theorem 3.2.2 ([GR00], rephrased). Given SAMP access to an unknown distribution D ∈ ∆(Ω), there
exists an algorithm that takes O

(√
n
ε2 log 1

δ

)
samples and outputs a value p such that, with probability at least

1− δ, p ∈ [1− ε, 1 + ε] · ‖D‖22.
2To be even fully general, the distribution over pairs (Dyes, Dno) need not be a product distribution Dyes ×Dno; that is, Dyes

and Dno can depend on each other. The important property for the analysis is that the choice of (Dyes, Dno) is done once and
for all, and is not allowed to change “as the tester makes its queries.”

3The transcript of the interaction between an oracle and a q-query algorithm is the random variable T = (T1, . . . , Tq), where
each Ti is a tuple containing the query and answer at the i-th stage. In the sample model, the transcript is thus the q-tuple of
samples obtained from the oracle.

6

The high-level idea is to count the number of collisions amongst m samples, that is the number of pairs of
samples with the same values. It is not hard to show that the expected number of such collisions is

(
m
2
)
‖D‖22;

the crux is then to bound the variance of this estimator in order to apply Chebyshev’s inequality.
The next step is then to observe that ‖D − U‖22 = ‖D‖22 −

1
n . Combined with the general relation between `1

and `2 metrics, namely
‖D1 −D2‖2 ≤ ‖D1 −D2‖1 ≤

√
n‖D1 −D2‖2 (3.1)

one can show that to ε-test uniformity in `1 distance (and thus in total variation distance, up to constant
factors), it is sufficient to (ε/

√
n-test it in `2 distance. To do so, it is in turn sufficient with the above

observation to get a multiplicative estimate of ‖D‖22 up to (1 + ε2/2), i.e. to separate ‖D‖22 ≥ (1 + ε2) · 1
n

from ‖D‖22 = 1
n ; which, with Theorem 3.2.2 can be done with O

(√
n/ε4) samples.

Remark 3.2.3. This is an example of an important paradigm: using the more convenient `2 as a proxy towards
`1. Albeit non-optimal (in terms of ε), the above tester has an additional feature: it is “weakly tolerant,” in
the sense that is actually allows to test whether dTV(D,U) ≤ ε/(2

√
n) versus dTV(D,U) > ε.

Theorem 3.2.4 ([GR00]). There exists an algorithm which, given SAMP access to an unknown distribution
D ∈ ∆(Ω), satisfies the following. On input ε ∈ (0, 1], it takes O

(√
n
ε4

)
samples from D, and

• if dTV(D,U) ≤ ε
2
√
n
, the algorithm outputs ACCEPT with probability at least 2/3;

• if dTV(D,U) > ε, the algorithm outputs REJECT with probability at least 2/3.

An O
(√
n/ε2) upper bound. Paninski [Pan08] later improved on this bound, reducing the dependence

on ε. The algorithm proposed is very similar in spirit: the high-level idea is to count the number K1
of “non-collisions,” that is the number of elements sampled exactly once; and to reject if this number is
significantly less than the expected number under the uniform distribution. The key in the savings, here, is
to work directly with `1 distance, and to work out the complications to still get a good enough bound on the
variance of K1.

Diakonikolas et al. [DKN15b] recently gave another proof of the O
(√
n/ε2) upper bound, with an approach

based on a modified χ2-test. They describe an optimal `2-tester for uniformity which, by taking this many
samples, is able to distinguish between D = U and ‖D − U‖2 > ε/

√
n: this stronger guarantee immediately

implies a tester in total variation.

An Ω
(√
n/ε2) lower bound. As a foretaste, it is easy to show, by the birthday paradox, that any tester

for uniformity in the standard model must draw Ω(
√
n) samples, even for ε = 1/2. Indeed, taking without

loss of generality the domain to be [n] and n to be even, let the family of “no-distributions” Dno be defined
as follows: for any permutation π ∈ Sn of the domain, Dπ puts weight 2/n on π(1), π(2), . . . , π(n/2) and
weight 0 on π(n/2 + 1), π(2), . . . , π(n) (in other terms, a no-distribution is the uniform distribution on half
of the elements, and the support is then permuted). The set of yes-distributions is obviously the singleton
Dyes = {U}.

It is straightforward to verify that for, any D ∈ Dno, dTV(D,U) = 1/2. However, for D chosen uniformly
at random in Dno, the Birthday Paradox implies that any algorithm taking o(

√
n) samples will not, with

probability 1− o(1), see any collision: that is, all elements drawn will be distinct. Conditioned on this, the
distributions over the transcript from U and the one from a (random) no-distribution D are identical, and
thus no algorithm can distinguish between the two cases.

From the upper bound above, the
√
n dependence is tight. But the status of the ε one remained open

until [Pan08], who in the same paper proved a matching Ω
(√
n/ε2). The construction is, not surprisingly,

very similar to the one above: a no-instance D ∈ Dno is defined by n/2 independent coin tosses, according
to which each consecutive pair of elements 2i − 1, 2i is assigned weight either (1 − 2ε)/n, (1 + 2ε)/n or
(1+2ε)/n, (1−2ε)/n. Each such distribution is thus being exactly ε-far from uniform. The proof then goes by
proving that as long as m = o

(√
n/ε2), dTV

(
U⊗m, D̄(m)) = o(1), where D̄(m) is the “expected no-distribution

7

on a transcript of m samples” ED∼Dno [D⊗m]. (That is, the goal is to show that the distance between the
distributions of a transcript from the uniform distribution and a transcript from a no-distribution is small).

This last part is done by applying techniques from [Pol03, Section 14.4], writing ∆ def= dD̄(m)

dU⊗m =
2−n/2

∑
D∈Dno

dD⊗m

dU⊗m , then ‖D̄(m) − U⊗m‖21 = EU⊗m [|∆− 1|]2 ≤ EU⊗m [(∆ − 1)2]; before expanding the
inner square and massaging the explicit yet discouraging expression of ∆(x1, . . . , xm), to finally obtain an
upper bound of (em2ε4/n − 1)1/2.

3.2.2 Testing identity
In this section, we cover the following result, settling the sample complexity of testing identity to a known
distribution:

Theorem 3.2.5 (Testing identity). There exists an algorithm which, given the full specification of D∗ ∈ ∆(Ω)
and SAMP access to an unknown distribution D, satisfies the following. On input ε ∈ (0, 1], it takes O

(√
n
ε2

)
samples from D, and
• if D = D∗, the algorithm outputs ACCEPT with probability at least 2/3;
• if dTV(D,D∗) > ε, the algorithm outputs REJECT with probability at least 2/3.

Furthermore, this sample complexity is tight.

An Õ
(√
npoly(1

ε)
)
upper bound. This first algorithm, due to Batu et al. [BFF+01], relies on a very

important idea: to reduce identity testing of D to testing uniformity on a small number of distributions.
This is done by using the general technique of bucketing, which consists, given an explicit distribution D∗, in
partitioning the domain into logarithmically many sets (“buckets”) such that D∗ is almost uniform on each
bucket.

Definition 3.2.6 (Bucketing). Let ` def= Θ
(

logn
ε

)
, and defineB0, . . . , B` as follows: B0 =

{
i ∈ [n] : D∗(i) < ε

2n
}
,

and
Bj =

{
i ∈ [n] : ε(1 + ε)j−1

2n ≤ D∗(i) < ε(1 + ε)j

2n

}
, 1 ≤ j ≤ `− 1 .

From this definition, it is not hard to see that D∗(B0) ≤ ε
2 , and that both ‖D∗Bj − UBj‖2 ≤

ε

2
√
|Bj |

and

dTV(D∗Bj ,UBj) ≤
ε
2 hold for all j ≥ 1 (see e.g. [BFF+01, Lemma 8]).

The algorithm from [BFF+01] then works as follows: after bucketing the domain according to the known
distributions D∗, it takes O

(√
n logn/ε6) samples from D. For each bucket Bj such that D∗(Bj) ≥ ε/`, it

checks whether Ω
(√
n/ε4) samples fell in Bj and rejects otherwise. If enough samples hit the bucket, it uses

them to estimate ‖DBj‖
2
2 to a multiplicative (1 + ε2), and rejects if this reveals a deviation from uniform. The

last step, assuming no rejection occurred, is to see whether the two distributions induced on B0, . . . , B` by
D∗ and D are (ε/2)-close or ε-far from each other, and reject in the latter case. (As these distributions have
now domain of size logarithmic in n, the sample complexity is not an issue.) If all tests passed, properties
of the bucketing ensure D and D∗ must be close; and it is not hard to see that if D = D∗ the tester will
not reject. What Batu et al. proved is actually slightly stronger: their tester – again, at a very high-level,
because of the use of the `2 norm as an intermediary step – has some weak tolerance:

Theorem 3.2.7 ([BFF+01, Theorem 24]). There exists an algorithm which, given the full specification of
D∗ ∈ ∆(Ω) and SAMP access to an unknown distribution D, satisfies the following. On input ε ∈ (0, 1], it
takes O

(√
n
ε6 logn

)
samples from D, and

• if dTV(D,D∗) ≤ ε3

300
√
n logn , the algorithm outputs ACCEPT with probability at least 2/3;

• if dTV(D,D∗) > ε, the algorithm outputs REJECT with probability at least 2/3.

8

A tight O
(√
n/ε2) upper bound. We first note that, as identity testing is at least as hard as uniformity

testing, the Ω
(√
n/ε2) lower bound on the sample complexity for the latter still applies. Thus, the question

is now whether the actual sample complexity is closer to the upper bound from the previous section, or to
this lower bound. The answer is due to Valiant and Valiant [VV14];4 and, as we will shortly see, so is the
lower bound.

To understand their result, we first have to take a small detour and define what it means for an algorithm
to be instance optimal. Recall that from our definition, the sample complexity of an algorithm for identity
testing is taken to be the worst-case over all cases of “known distribution” D∗, and in particular is not allowed
to depend on D∗. What [VV14] argue is that, for many D∗, identity testing may be significantly easier (e.g.,
consider the case of a distribution all its weight on a single element). They model this by allowing the sample
complexity of the algorithm to depends on D∗, in addition to the usual parameters; and an instance-optimal
tester is a tester whose sample complexity for testing any D∗ is optimal even compared to an algorithm
specifically designed for this D∗.

Before stating their main theorem, we need a couple last notations. Given a distribution D ∈ ∆(Ω) (seen
as a n-dimensional vector of probabilities), define D−max

−η to be the vector where the biggest entry has been
zeroed out, as well as the set of smallest entries summing to η5. Although D−max

−η is no longer a probability
distribution, its 2/3-(quasi)norm as vector is still defined: ‖D−max

−η ‖2/3 = (
∑
ω∈Ω(D−max

−η (ω)2/3))3/2. Strange
as it may seem,6 this quantity exactly characterizes the complexity of testing identity:

Theorem 3.2.8 ([VV14, Theorem 1]). There exists an algorithm which, given the full specification of
D∗ ∈ ∆(Ω) and SAMP access to an unknown distribution D, satisfies the following. On input ε ∈ (0, 1], it

takes O
(
‖D−max
−ε/16‖2/3
ε2

)
samples from D, and

• if D = D∗, the algorithm outputs ACCEPT with probability at least 2/3;
• if dTV(D,D∗) > ε, the algorithm outputs REJECT with probability at least 2/3.

Furthermore, this sample complexity is tight: no algorithm taking o
(
‖D−max
−ε ‖2/3
ε2

)
samples can correctly

perform this task with probability at least 2/3.

(Without going into more details, we note their upper bound is achieved by a modified version of Pearson’s
χ2-test; as will be one of the upper bounds from the next subsection.) To see why the above theorem implies
the claimed O

(√
n/ε2) upper bound on testing identity, it is enough to observe that, for all D∗ ∈ ∆(Ω),

‖D∗−max
−ε ‖2/3 ≤ ‖D

∗‖2/3 ≤ ‖U‖2/3 .

It is worth pointing out the implications for other distributions: for instance, the same argument along with
a simple computation of its 2/3-norm shows an Ω

(
n1/4/ε2) lower bound for testing identity to the Binomial

distribution Bin(n, 1/2).

3.2.3 Testing closeness
In this section, we cover the following result, which completely characterizes the sample complexity of the
last of the three problems:

Theorem 3.2.9 (Testing closeness). There exists an algorithm which, given SAMP access to two unknown
distributions D1, D2 ∈ ∆(Ω), satisfies the following. On input ε ∈ (0, 1], it takes O

(
max

(
n2/3

ε4/3 ,
√
n
ε2

))
samples

from D1 and D2, and
4We note that independently of [VV14], the work of Diakonikolas and al. [DKN15b] mentioned in the previous section also

implies this O
(√

n/ε2
)
upper bound. See Section 3.4.3 for a more detailed description of their results.

5That is, the largest probability element and ε weight of the smallest ones have been removed.
6It does seem, to the author at least.

9

• if D1 = D2, the algorithm outputs ACCEPT with probability at least 2/3;
• if dTV(D1, D2) > ε, the algorithm outputs REJECT with probability at least 2/3.

Furthermore, this sample complexity is tight.

An Õ
(
n2/3 poly(1

ε)
)
upper bound. The first algorithm we describe here is due to Batu et al. [BFR+00],

and again uses testing in `2 as a first step. (We reproduce here the (later) version of this result by Chan et
al., which improves quadratically on the dependence on ε.)

Theorem 3.2.10 ([CDVV14, Theorem 1.2]). There exists an algorithm which, given SAMP access to two
unknown distributions D1, D2 ∈ ∆(Ω), satisfies the following. On input ε ∈ (0, 1] and b ∈ [0, 1], it takes
O
(√

b
ε2

)
samples from D1 and D2, and, provided ‖D1‖22, ‖D2‖22 ≤ b,

• if ‖D1 −D2‖22 ≤ ε, the algorithm outputs ACCEPT with probability at least 2/3;
• if ‖D1 −D2‖22 > 2ε, the algorithm outputs REJECT with probability at least 2/3.

Furthermore, this sample complexity is tight.

The main observation here is that the sample complexity depends on an upper bound b of the norm of
the distributions (a similar theorem can be obtained with B being an upper bound on the `∞ norms instead
of the `2 norms; [BFR+00, Lemma 6] then proves a sample complexity of O

(
(B2 + ε2

√
B)/ε4

)
). As, by

Equation 3.1, `2 testing has to be done with errors parameter ε′ = O(ε/
√
n), leveraging this dependence

is crucial to get anything non-trivial. Thus, the tester from [BFR+00] proceeds in two steps, after taking
O
(
n2/3 logn

)
poly(1

ε samples from both distributions: first, it filters out “big” elements, i.e. those that have
either D1(x) ≥ 1/n2/3 or D2(x) ≥ 1/n2/3; and checks whether each of these appear roughly the same number
of times under both distributions. Then, it applies the `2-tester from above to the “filtered distributions” D′1
and D′2, which now have `∞ norm at most B = 1/n2/3, with parameter ε′ = ε/2

√
n. The resulting sample

complexity is, from the two steps,

O

(
n2/3

ε2 logn
)

+O

(
B2 + ε′

2√
B

ε′4

)
= O

(
n2/3

ε2 logn
)

+O

(
n2n−4/3 + ε2n−1/3n

ε4

)
= O

(
n2/3 logn

ε4

)
proving our first upper bound.
Remark 3.2.11. Chan et al. [CDVV14] later observe that, by (a) applying directly Theorem 3.2.10 instead
of the original `2 tester of [BFR+00], and (b) improving the filtering approach to remove the logn factor
(as conjectured by Batu et al.), the overall sample complexity of this two-stage approach can be reduced to
O
(
n2/3/ε2), both steps being optimal. However, even then, the combined sample complexity still is not, as

we shall momentarily see.

An O
(

max
(
n2/3

ε4/3 ,
√
n
ε2

))
upper bound. Although the testing algorithm of [CDVV14] is algorithmically

very simple (being again a suitably modified variant of Pearson’s χ2-test), the main challenge in their work is
in the analysis, and more particularly in bounding the variance of the statistic they propose.

An Ω
(

max
(
n2/3

ε4/3 ,
√
n
ε2

))
lower bound. As before, we first observe that the Ω

(√
n/ε2) lower bound on the

sample complexity of uniformity and identity testing still holds, closeness testing being at least as hard as
these. For the second part of the lower bound, [CDVV14] use a similar construction as in [BFR+10, Val11]
(which already gives an Ω

(
n2/3) lower bound). The idea is there to “hide” the distance between the two

distributions of a no-instance (D1, D2). This is done by choosing Ω(n) light elements with either D1(i) = 4/n
and D2(i) = 0 or the converse; while making the distributions coincide on Ω

(
n2/3) heavy elements with

weight D1(i) = D2(i) = ε4/3/n2/3. The non-zero light elements of D1 and D2 are disjoint, and thus would
give away the difference; yet with high probability the heavy ones are the only elements that appear when
sampling from the distributions, unless enough samples are taken.

10

3.2.4 Tolerant testing and distance estimation
As a general rule, asking for the testing algorithms to allow some “slack” around the property (i.e., to also
accept distributions that are only close to satisfying it) most of the time makes the task much harder.

P P

Figure 3.1: Testing vs. tolerant testing. It is like eggs, only harder.

At a very high-level, the reason is that now, seeing a “violation” (that is, a statistically significant deviation
from the property) is no longer sufficient to reject the distribution: one piece of evidence is not enough, the
tester must get quantitative bounds on the amount of violation.

An Ω
(

n
logn

)
lower bound. To see how bad this can be, we start by the following lower bound on testing

uniformity (and hence on identity and closeness),7 due to [VV11, VV10a]:

Theorem 3.2.12. There exists an absolute constant ε0 > 0 such that the following holds. Any algorithm
which, given SAMP access to an unknown distribution D ∈ ∆(Ω), distinguishes with probability at least 2/3
between (a) dTV(D,U) ≤ ε0 and (b) dTV(D,U) ≥ 1/2− ε0, must have sample complexity Ω

(
n

logn

)
.

This theorem derives from [VV10a, Theorem 1], which shows for any φ < 1/4 the existence of pairs of
instances (D1, D2) such that D1 (resp. D2) is φ log(1/φ)-close8 to the uniform distribution on n elements
(resp. on a subset of n/2 elements); yet D1 and D2 are indistinguishable with less than Ω

(
φ n

logn

)
samples.

(These distributions are explicitly constructed using properties of Laguerre polynomials, before arguing that
the expected fingerprints of the two distributions (roughly speaking, “number of k-way collisions for all k’s”)
are very similar – applying for this a new Central Limit Theorem proven along the way.)

Remark 3.2.13. Following an observation from [VV10a], we note that it it possible to get an Ω
(

1
ε

n
logn

)
lower bound on the sample complexity of distinguishing dTV(D,U) ≤ ε from dTV(D,U) ≥ cε, for any
ε ∈ (0, ε0) and c = c(ε0) > 1. This is done by replacing D1, D2 as above by the corresponding mixtures
D′i = ε

ε0
Di + (1− ε

ε0
)U : distinguishing D′1 from D′2 requires a factor 1/ε more samples than distinguishing

between D1 and D2.

An O
(

n
logn

)
upper bound. As we just saw, tolerant testing of uniformity, identity, and closeness of

distributions with less than n1−o(1) samples in the standard model is hopeless. The good news, on the other
hand, is that these tasks can be performed with o(n) samples: more precisely, the odd-looking n

logn lower
bound is tight. We only state below the result for tolerant closeness testing; it obviously also applies to
uniformity and identity.

7Note that prior to this, Paul Valiant showed a (slightly weaker) n(1− o(1) lower bound for tolerant closeness testing, using
related techniques [Val11, Theorem 1.2].

8Actually, they prove a slightly stronger statement, using instead the relative Earthmover’s distance.

11

Theorem 3.2.14 ([VV11, Theorem 3 and 4]). There exists an algorithm which, given SAMP access to two un-
known distributions D1, D2 ∈ ∆(Ω), satisfies the following. On input ε1, ε2 ∈ (0, 1], it takes O

(
1

(ε2−ε1)2
n

logn

)
samples from D1 and D2, and
• if dTV(D1, D2) ≤ ε1, the algorithm outputs ACCEPT with probability at least 2/3;
• if dTV(D1, D2) ≥ ε2, the algorithm outputs REJECT with probability at least 2/3.

A final remark. While the dependence on n of these three problems is completely resolved, the exact
dependence on (ε2−ε1) remains open – or, at least, ajar. We also note that (as exemplified in Theorem 3.2.10),
tolerant testing in `2 norm does not suffer from the same fate as in total variation: the sample complexity is,
in the former setting, left unchanged when going from testing to tolerant testing.

Finally, getting a bit ahead, we point out that the ideas and machinery developed in proving the tolerant
testing results above have had other significant applications – in particular as seen in Section 3.5.

3.3 Testing for structure
In this part of the survey, we focus on properties related to the structure of the unknown distribution –
for instance, on its shape (is the probability mass function non-increasing?), its class (is it, for instance, a
Binomial distribution? A Zipf distribution?) or some other structural characteristic (is a distribution on
Ω1×Ω2 a product distribution?). Answering this type of questions can be useful for model selection (deciding
which specialized algorithm to apply to the data), or crucial for specific applications. One may e.g. think
of health or risk analysis (is the probability to get cancer decreasing with the distance to Fukushima?), or
market applications (detecting whether a trend or shopping pattern is correlated with some particular feature,
say geographic location). We start by covering specific properties known to be efficiently testable, such as
monotonicity, testing for k-histograms and parameterized classes; before turning in Section 3.3.4 to a recent
result of [CDGR15], which generalizes many of these specific cases into one general testing framework.

Importantly, this section deals with arbitrary distributions, that one must test for such structural
properties; the question of leveraging known structure of the distribution to test for an additional property it
may have will be the focus of Section 3.4.

3.3.1 Monotonicity
In this section,9 we cover the problem of testing monotonicity of a distribution over [n]. Recall that D ∈ ∆([n])
is said to be monotone (non-increasing), denoted D ∈M, if D(1) ≥ · · · ≥ D(n), i.e. if its probability mass
function is non-increasing. We stress that the definition of the property assumes a total order on the domain;
hence the choice of Ω = [n] in this section. (The next subsection will briefly cover the case where the domain
is a partially ordered set (poset), setting for which different algorithms and techniques are required.)

The following result, due to Batu et al. [BKR04] (and later slightly improved in [CDGR15]),10 almost
completely settles – up to polylog(n) factors and the exact dependence on ε – the complexity of testing
whether a distribution is monotone.

Theorem 3.3.1 (Testing monotonicity). There exists an algorithm which, given SAMP access to an unknown
distribution D ∈ ∆([n]), satisfies the following. On input ε ∈ (0, 1], it takes Õ

(√
n
ε4

)
samples from D, and

• if D ∈M, the algorithm outputs ACCEPT with probability at least 2/3;
• if dTV(D,M) > ε, the algorithm outputs REJECT with probability at least 2/3.

Furthermore, no algorithm taking o
(√

n
ε2

)
samples can correctly perform this task with probability at least 2/3.

9Part of the following is adapted from [Can15].
10[BKR04] originally claims an Õ

(√
n/ε4

)
sample complexity, but their argument seems to only result in an Õ

(√
n/ε6

)
bound.

Subsequent work building on their techniques (and described in Section 3.3.4) obtains the ε4 dependence.

12

An O
(√

n
ε4 polylogn

)
upper bound. The algorithm of Batu et al. works by taking this many samples

from D, and then using them to recursively split the domain [n] in half, as long as the conditional distribution
on the current interval is not close enough to uniform (or not enough samples fall into it). If the binary tree
created during this recursive process exceeds O

(
log2 n/ε

)
nodes, the tester rejects. They then show that

this succeeds with high probability, the leaves of the recursion yielding a partition of [n] in ` = O
(
log2 n/ε

)
intervals I1, . . . , I`, such that either

(a) the conditional distribution DIj is O(ε)-close to uniform on this interval; or
(b) Ij is “light,” i.e. has weight at most O(ε/`) under D.

(the first item relying on Theorem 3.2.2, relating distance to uniformity and collision count via the `2 norm).
This implies this partition defines an `-flat distribution D̄ which is ε/2-close to D, and can be easily learnt
from another batch of samples. Once this is done, it only remains to test (e.g., via linear programming, which
can be done efficiently) whether this D̄ is itself ε/2-close to monotone, and accept if and only this is the case.

An Ω
(√

n
ε2

)
lower bound. The lower bound ([BKR04, Theorem 11]) works by reducing the problem of

uniformity testing to monotonicity testing. More specifically, assume for the sake of simplicity n to be even,
and let D ∈ ∆([n]) the distribution to be tested for uniformity. One can run a monotonicity tester (with
parameter ε′ def= ε/3) on both D and D, where the latter is defined as D(i) def= D(n− i), i ∈ [n]; and accept if
and only if both tests pass. If D is uniform, clearly D = Dis monotone; conversely, one can show that if
both D and its “mirrored version” Dpass the test (are ε′-close to monotone), then it must be the case that
D is ε–close to uniform. The result then follows11 from the Ω

(√
n/ε2) lower bound of Theorem 3.2.1.

Question 3.3.2. At a (very) high-level, the above results can be interpreted as “relating monotonicity to
uniformity.” That is, the upper bound is essentially established by proving that monotonicity reduces from
testing uniformity on polylogarithmically many intervals, while the lower bound follows from showing that it
reduces to testing uniformity on a constant number of them. Thus, an interesting remaining open question
is whether, qualitatively, the former or the latter is tight in terms of n. Are uniformity and monotonicity
strictly as hard, or is there an intrinsic gap, even if only polylogarithmic, between the two?

Monotonicity over other posets

As aforementioned, the question of whether a distribution is monotone presupposes its domain be endowed
with an order relation �. In the previous subsection, we covered the case of [n], where the order is total;
however, the question was also considered for other partially ordered sets in [BKR04]. In this work, they
address monotonicity testing of distributions over the hypergrid Ω = [n]d and the corresponding obvious
order. (Note that the parameter of interest is still n, and d is to be thought of as a possibly big constant.)

Batu and al. then give an algorithm for testing monotonicity in this setting, with sample complexity
Õ
(
nd−1/2); and provide a lower bound of Õ

(
nd/2

)
by the same reduction from uniform as in the univariate

case. Their upper bound – detailed for the case d = 2 – is in the same spirit as before, partitioning adaptively
the domain and checking uniformity on each of the resulting parts. In more detail, this is performed by
recursively splitting [n] × [n] in 4 quadrants, stopping the recursion on a quadrant K = I × J if (i) the
distribution on it is close to uniform, or (ii) K has very small weight, or finally (iii) the quadrant is far enough
from the origin (1, 1). Otherwise, the quadrant is further split. In the two latter cases, K is marked as
“light” (discarded), and at the end the total weight of all faraway quadrants is checked to be small enough
(as if D ∈ ∆([n]× [n]) were monotone, all these faraway sets’ weights would have to be very small). In the
first case, the univariate monotonicity test is used as a subroutine on a small number of (randomly chosen)
univariate distributions D{i}×J , to detect violations. (The third criterion, (iii), ensures that the recursion
tree does not have too many nodes, which is required to keep the sample complexity under control).

11[BKR04] actually only shows a Ω
(√

n
)
lower bound, as they invoke in the last step the (previously best known) lower bound

of [GR00] for uniformity testing; however, their argument straightforwardly extends to the result of [Pan08].

13

3.3.2 Testing k-histograms
Another very common class of distributions is the set Hk of k-histograms (or k-flat distributions). A
distribution D belongs to Hk – where k is a parameter, possibly function of n – if there exists a partition
of [n] in k intervals I1, . . . , Ik such that D is constant on each I`. Indyk, Levi and Rubinfeld study this
property in [ILR12], giving a learning algorithm in `2 norm as well as property testers for Hk in both `2
and total variation distances. Their two testers follow the same overall structure, which is reminiscent of
the monotonicity tester of Section 3.3.1: they iteratively partition the support [n] in at most k pieces in a
greedy fashion, trying at each stage to find, with some sort of binary search, the largest leftmost interval of
the remaining support on which D either has very little weight, or is very close to uniform (in `2 norm). If it
succeeds in identifying such a partition within k stages, then the tester accepts, having effectively learned a
k-histogram to which D is close; otherwise, it rejects.

This approach leads to a O
(
log2 n/ε4)-query tester in `2 norm, and a Õ

(√
kn/ε5

)
-query one in total

variation. A Ω
(√
n/ε2) lower bound immediately follows from uniformity testing; [ILR12] also prove a

Ω
(√

kn
)
dependence is necessary as long as ε < 1/k.

Remark 3.3.3. Observe that the testing problem as defined above assumes the partition I1, . . . , Ik is unknown.
In the case where one is provided with this partition in advance, it is easy to design a tester with sample
complexity O

(
n2/3/ε4/3), independent of k: indeed, it is easy, given oracle access to D, to sample from the

corresponding distribution D̄ defined by D̄(x) = D(I`)/|I`| (where I` 3 x). It then suffices to test closeness
of D and D̄, as in Theorem 3.2.9, to conclude.

3.3.3 Parameterized classes of distributions
We now turn to a related kind of question: instead of testing whether the unknown distribution has some
“shape” (as in the case of monotonicity), we are interested instead in knowing if it belongs to a set of
parameterized distributions C = {Dθ}θ, each (succinctly) characterized by a vector of parameters θ. Examples
of such classes of distributions are the set of all Binomials with support n, where each distribution is then
defined by a unique parameter p ∈ [0, 1]; the class of Gaussian distributions, where the parameters are a
couple of values (µ, σ) ∈ R× R+; or the class of Poisson distributions, of parameter λ ∈ R+.

In the following, we focus on the class of Poisson Binomial Distributions (PBD),12 a generalization of
of Binomial distributions. A random variable follows a Poisson Binomial distribution if it is the sum of n
independent Bernoulli random variables X1, . . . , Xn, each of them with its own parameter pi ∈ [0, 1]: thus, a
PBD over {0, . . . , n} is parameterized by the n values p1, . . . , pn.

Testing Poisson Binomial Distributions

In recent work, [DDS12b] showed that the class of PBDs can be learned with Õ
(
1/ε2) samples, independent

of n: that is, knowing a distribution has this specific structure enables one to learn it very efficiently. However,
the game is fundamentally different in the testing setting, where the distribution is allowed to be arbitrary:
in this case, Acharya and Daskalakis [AD14] prove that while Õ

(
n1/4/ε2 + 1/ε6) samples suffice, Ω

(
n1/4/ε2)

are also necessary.

A Õ
(
n1/4/ε6) upper bound. As argued in [AD14], one could think of two natural ways for testing PBDs;

each of them leading, unfortunately, to a sample complexity of Õ(
√
n). The first one would be to proper learn

the distribution D as if it were a PBD (which only costs Õ
(
1/ε3) samples), yielding a candidate PBD D̂; and

then to check if this D̂ is indeed close to D with tolerant testing (which can be generically performed with
O(m/ logm) on a domain of size m with Theorem 3.2.14. Luckily enough, due to the fact that PBDs have
most of their probability weight concentrated on a small fraction of the domain, here taking m =

√
n log(1/ε)

12Which, interestingly enough, have nothing to do with Poisson distributions whatsoever, besides having been studied by the
same mathematician [Poi37].

14

suffices to get a good accuracy). It is not difficult to argue that this indeed constitutes a bona fide tester: if
D is indeed a PBD, the learning phase will output a PBD D̂ close to D; while by contrapositive if the test
passes, then D is close to the hypothesis D̂, which itself belongs to the class.

The second naive approach is very similar: it starts with a learning phase, but avoids the cost of tolerant
testing in the second step by performing instead regular testing, leveraging the fact that the identity tester of
Theorem 3.2.7 does provide a very small amount of tolerance. The drawback is that it becomes necessary
to run the learning algorithm with very good accuracy in order to accommodate this limited tolerance.
When working out the parameters carefully, the second stage indeed only requires O

(
n1/4) samples; but the

bottleneck is now the learning stage, which uses Õ(
√
n) of them.

To circumvent this seemingly hopeless tradeoff, the main insight of Acharya and Daskalakis is to observe
that there is some useful information to be exploited in this second testing stage. Namely, the question is not
to test whether an arbitrary distribution D is close to the known D̂, or is far from it: it is to distinguish
between D is (a) a Poisson Binomial Distribution that is close to D̂, versus (b) an arbitrary distribution that
is far from it. While this distinction may seem at first glance innocuous, it allows them to exploit specific
results on PBDs, and (modulo several case distinctions and many technical details) reduce the problem in
this particular case to an `2 testing problem, which itself can be performed efficiently. Overall, this results in
a testing algorithm with sample complexity

O

(
n1/4

√
log 1/ε
ε2 + log5/2(1/ε)

ε6

)
and illustrates an interesting paradigm: “testing for structure, exploiting this very purported structure in the
distribution.”

An Ω
(
n1/4/ε2) lower bound. [AD14] then proceed in showing that the above sample complexity is optimal,

up to polylogarithmic dependence on ε (for n sufficiently big with relation to ε). Specifically, they describe a
class of distributions Qε, comprised of “randomly perturbed Binomials,” for which the following hold:
• with high probability, a random Q ∈ Qε is ε-far from unimodal;
• unless it takes at least Ω

(
n1/4/ε2) samples, no algorithm can distinguish between a randomly chosen

Q ∈ Qε and the Bin(n, 1/2) distribution.
(The latter being shown using techniques similar as in [Pan08, ADJ+12].) As a consequence, and since all
Poisson Binomials Distributions are log-concave (and therefore unimodal), this implies that testing PBDs
indeed requires that many samples.13

3.3.4 A unified approach
A very simple observation is that many of the usual structured classes of distributions one would want to test
are somehow related: monotone distributions are in particular unimodal, as are log-concave distributions.
Monotone Hazard Rate (MHR) distributions are themselves a superset of both log-concave and monotone
distributions; and the list goes on. Even when no such direct relation holds, there still are common
structural aspects. This can lead to efficient and general learning algorithms, as demonstrated by Chan
et al. [CDSS13, CDSS14]; and, more germane to this survey, also has applications to testing. Indeed,
Canonne et al. [CDGR15] show how to generalize the “partition-and-test” approach of [BKR04] to any
class of distributions enjoying some particular structural property – namely, any class that admits succinct
approximations by flat (in a specific, `2 sense) distributions. They then give one efficient “meta-algorithm”
that works for any such class of distributions, and whose sample complexity only depends on the parameters
of these approximations:14

13Slightly stronger, this establishes the same Ω
(
n1/4/ε2

)
lower bound on testing the classes respectively of Binomial

distributions, log-concave distributions and unimodal distributions. Note that comparable or tighter lower bounds can be
obtained by the techniques of Section 3.3.4.

14They also show how to improve this algorithm for classes (such as PBDs) which have small effective support, i.e. whose
probability weight is concentrated on a small fraction of the domain.

15

Theorem 3.3.4. There exists a single algorithm which, given SAMP access to an unknown distribution
D ∈ ∆([n]), satisfies the following. On input ε ∈ (0, 1], it takes q(ε, n,P) samples from D, and
• if D ∈ C, the algorithm outputs ACCEPT with probability at least 2/3;
• if dTV(D, C) > ε, the algorithm outputs REJECT with probability at least 2/3;

for any property P that satisfies a “natural structural criterion.” Moreover, for many such properties this
algorithm is efficient, and its sample complexity q(·, ·,P) is optimal (up to logarithmic factors and the exact
dependence on ε).

Instantiating this result, they are able to derive “out-of-the-box” efficient testers for several classes of
distributions, merely by showing that they satisfy the premise of the theorem: (the formal definition of these
classes is given in Section E.1):

Corollary 3.3.5. The classes of monotone, unimodal, log-concave, concave, convex and monotone hazard
rate (MHR) distributions can all be tested with Õ

(√
n/ε4) samples.

Corollary 3.3.6. The class of t-modal distributions can be tested with Õ
(
t
√
n/ε4) samples.

Corollary 3.3.7. The classes of Binomial and Poisson Binomial Distributions can be tested with Õ
(
n1/4/ε4)

samples.

(These results also extend to testing of classes of mixtures of “nicely structured” distributions.) As a
counterpart to this generic, “one-fits-all” testing algorithm, [CDGR15] also describe a framework to derive
lower bounds for such classes. More specifically, they show that (under a relatively mild assumption) testing
a class of distributions is at least as hard as testing identity to the worst distribution in the class:

Theorem 3.3.8. Let C be a class of distributions over [n] for which the following holds:
(i) there exists a semi-agnostic learner L for C, with sample complexity qL(n, ε, δ);
(ii) there exists a subclass CHard ⊆ C such that testing CHard requires qH(n, ε) samples.

Suppose further that qL = o(qH). Then, any tester for C must use Ω(qH) samples.

The idea in this reduction is quite simple: assuming a tester for the class C, one can first test whether D
is far from the class (if so, then it cannot possibly belong to CHard). Otherwise, then it becomes possible
to efficiently learn D using the agnostic learner; before checking – without any further sample – if the
hypothesis obtained is indeed close to CHard. Taking CHard to be the singleton consisting of either the
uniform or Bin(n, 1/2) distribution (along with the testing lower bound of [VV14]), and leveraging the
existence of semi-agnostic learners from [CDSS13, CDSS14] (each with query complexity either poly(1/ε) or
poly(logn, 1/ε)), they are able to obtain or rederive the following:

Corollary 3.3.9. Testing log-concavity, convexity, concavity, MHR, unimodality and t-modality each require
Ω
(√
n/ε2) samples (the last one as long as t = o(

√
n)).

Corollary 3.3.10. Testing the classes of Poisson Binomial and Binomial distributions each require Ω
(
n1/4/ε2)

samples.

Finally, by proving a lower bound on testing one specific “simple” k-SIIRV distribution and invoking the
agnostic learner of [DDO+13] they also get this last corollary:

Corollary 3.3.11. There exists an absolute constant c > 0 such that testing the class of k-SIIRV distributions
each requires Ω

(
k1/2n1/4) samples, for any k = o(nc).

To conclude this section, we briefly mention that an analogue of Theorem 3.3.8 can easily be seen to apply
to tolerant testing.

16

3.3.5 Other domains: testing independence
While this section has been so far dedicated to properties over [n], some other structural properties that have
been studied bring the focus on different domains. An important example is independence [BFF+01, AAK+07],
that apply to distributions over product spaces. Recall that a distribution D over Ω1 × · · · × Ωd is said to
be independent if it is equal to the product of its marginals, i.e. D = π1D ⊗ · · · ⊗ πdD (or equivalently if
for any random variable X = (X1, . . . , Xd) distributed according to D the Xi’s are independent). Batu et
al. [BFF+01] and Levi et al. [LRR13] consider the task of testing independence of distributions over [n]× [m],
and give a Õ

(
n2/3m1/3) poly(1/ε) as well as an Ω

(
n2/3m1/3) upper and lower bounds (assuming without loss

of generality n ≥ m).15

Their upper bound relies on the result below, which asserts that if a distribution is close to independent,
then in particular it is close to the independent distribution defined by its own marginals:

Lemma 3.3.12 ([BFF+01, Proposition 1]). Let P,Q ∈ ∆(Ω1 × Ω2), and assume Q is independent. If
dTV(P,Q) ≤ ε, then dTV(P, π1P ⊗ π2P) ≤ 3ε.

From there, their algorithm works roughly by dividing [n] into two sets, the heavy prefixes H (i.e., the
elements i ∈ [n] for which π1D(i) ≥ n−α, where α = α(n,m)) and the light prefixes L. It then tests the
independence of D separately on H × [m] and L× [m]; before finally checking that both induced distributions
are consistent by testing equivalence of π2DH×[m] and π2DL×[m]. Their two tests performed in the second
stage crucially leverage the “heaviness” or “lightness” of H and L: in the first case, since |H| cannot be too
large, making it possible to learn π1DH×[m]. In the second case, the upper bound on ‖π1DL×[m]‖∞ makes it
advantageous to apply in one of the steps an `2-based identity tester of [LRR13].

We note that in both cases, Batu et al. perform a bucketing of at least one of the πiD’s, before testing
individually D for independence on logarithmically many subdomains. Moreover, for the heavy prefix case
they introduce a very elegant subroutine they refer to as (D,D′)-sieve, which acts as follow. Given SAMP
access to a distribution D whose projections are only close to uniform, the sieve provides access to another
oracle SAMPD′ , where D′ is close to D, and has roughly the same independence properties. Moreover, if D
was independent then D′ is uniform, and if D was far from independent then D′ is far from uniform (see
[BFF+01, Section 2.4] for the precise statements).

k-wise and non-uniform k-wise independence. Results also exist for the related properties of k-wise,
almost-k-wise and non-uniform k-wise independence16 on high-dimensional domains, typically the hypercube
{0, 1}n [AAK+07] or generalized product spaces Σ1 × . . .Σn [RX10]. We only briefly mention some of the
results; the interested reader is encouraged to consult the above references.

Recall that a distribution on {0, 1}n is k-wise independent if the marginal distribution it induces on any
subset of k variables is uniform. Alon et al. give a Õ

(
nk/ε2)-query algorithm for testing k-wise independence

in the standard sampling model (as well as a lower bound within a quadratic gap). Their algorithm relies on
a structural result relating the distance to Pk-wi (the property of being k-wise independent) to the bias of the
distribution on subsets of at most k variables. One can indeed characterize Pk-wi as follows:

Fact 3.3.13. For a distribution D over {0, 1}n and a non-empty T ⊆ [n], let the bias of D over T be defined
as biasD(T) def= Prx∼D[χT (x) = 0]−Prx∼D[χT (x) = 1]. Then D ∈ Pk-wi if and only if biasD(T) = 0 for all
1 ≤ |T | ≤ k.

The aforementioned structural result is a robust version of this fact:

15While [BFF+01] originally claimed a Õ
(
(n2/3m1/3) poly(1/ε)

)
upper bound, there was a flaw in one of the lemmas their

analysis relied on [BFF+01, Theorem 15]. To fix this issue, [LRR13] later proved an alternative to this lemma, establishing the
Õ
(
n2/3m1/3

)
poly(1/ε) upper bound. The lower bound itself follows from a construction of [BFF+01], but the full and rigorous

proof is due to [LRR13]; and requires n = Ω(m logm).

17

Theorem 3.3.14 ([AAK+07, Theorem 3.1]). For a distribution D over {0, 1}n,

dTV(D,Pk-wi) ≤ Ck · logk/2 n
√√√√ ∑

T⊆[n]
1≤|T |≤k

biasD(T)2

where Ck is a constant only depending on k. In particular, dTV(D,Pk-wi) ≤ Ck (n logn)k/2 max
1≤|T |≤k

|biasD(T)|.

3.4 Testing with structure
The focus of this section is in some sense the counterpart of the previous one: instead of trying to decide if a
completely arbitrary distribution D possesses some structural features, we are now promised D exhibits these
features, and are asked to take advantage of this knowledge in order to test something else about D. This
sort of question may arise in situations where a priori information is known about the data, either as a direct
consequence of its origin or the application, or because of the modeling assumptions made to explain a given
phenomenon [Reb05, Wal09].

The hope is that these additional guarantees on the distribution to be tested would allow one to circumvent
the lower bounds that hold in the general case, and to obtain much more efficient testing algorithms. As the
next subsections will show, this hope is not ill-funded: many problems indeed become significantly easier
when restricted to monotone distributions (Section 3.4.1), and identity and closeness testing can be performed
with only polylogn samples as long as the unknown distributions are k-modal (Section 3.4.2). Finally, in
Section 3.4.3 we cover a recent result of Diakonikolas et al. [DKN15b] that applies to a wide range of classes of
distributions, and yields a (very) efficient algorithm for identity testing within these classes. (Unless specified
otherwise, all results covered in this section apply to distributions over [n].)

3.4.1 Monotone distributions
We consider here the case where the unknown distribution D ∈ Ω[n] is known to be monotone. As a first
example, we give the following folklore result on testing uniformity:

Proposition 3.4.1 (Testing uniformity). There exists an algorithm which, given SAMP access to an unknown
monotone distribution D ∈ ∆([n]), satisfies the following. On input ε ∈ (0, 1], it takes O

(1
ε2

)
samples from

D, and
• if D = U , the algorithm outputs ACCEPT with probability at least 2/3;
• if dTV(D,U) > ε, the algorithm outputs REJECT with probability at least 2/3.

Furthermore, this sample complexity is tight.

The proof of this proposition is very simple, and boils down to the fact that if a monotone distribution is
ε-far from monotone it has to put weight at least 1+ε

2 on {1, . . . , n2 } (see e.g. [BKR04, Lemma 4]). Moreover,
this easily generalizes to distributions only assumed to be α-close to monotone, as long as α > 3ε (with a
sample complexity O

(
1/(α− 3ε)2)).

Another example of property whose testing complexity changes drastically under the monotonicity
assumption is that of closeness testing. Specifically, Batu et al. show in [BKR04, Section 6.1] how to obtain
a O

(
log3 n/ε3)-sample tester for closeness in this setting, in stark contrast to the Ω

(
n2/3) general lower

bound. This is, at a high-level, done by first partitioning the domain into consecutive intervals on which one
of the distributions D1 is roughly uniform (using an algorithm of [BDKR05] for monotone distributions),
before checking if D1 and D2 are close on each of these intervals. Moreover, this sample complexity can
be further improved:17 Diakonikolas et al. [DDS+13] later gave Õ

(√
logn

)
and Õ

(
log2/3 n

)
-sample testing

17We note that by from a result of [Bir87], learning a monotone distribution can be performed with O
(
logn/ε3

)
samples; this

implies the same upper bound on testing identity or closeness of monotone distributions, as one can always learn the unknown
distribution(s) to sufficient accuracy, before checking closeness of the hypotheses obtained.

18

algorithms for testing respectively identity and closeness of monotone distributions. We cover these results in
Section 3.4.2, as part as a general technique they introduce for k-modal distributions.

Finally, we briefly mention two related results, due respectively to [BDKR05] and [DDS12a]. The first
one states that for the task of getting a multiplicative estimate of the entropy of a distribution, assuming
monotonicity enables exponential savings in sample complexity – O

(
log6 n

)
, instead of Ω(nc) for the general

case. The second describes how to test if an unknown k-modal distribution is in fact monotone, using only
O
(
k/ε2) samples.18

Monotonicity over other posets

As in Section 3.3.1, similar questions were also studied for other partially ordered sets. On the hypergrid
Ω = [n]d, [BKR04] use a “partition-and-test” approach to give an O(log2d/3+1 n) upper bound on the sample
complexity of testing independence of monotone distributions. As for monotone distributions over the Boolean
hypercube {0, 1}n, Rubinfeld and Servedio [RS09] analyze a Õ

(
n/ε2)-sample tester for uniformity, and

develop a lower bound technique (of “subcube decomposition”) that allows them to derive several interesting
results. In particular, they prove that their uniformity tester is essentially optimal, by giving an Ω̃(n) lower
bound; and also provide an exponential lower bound of 2Ω(n) for the sample complexities of testing identity
and independence (as well as for multiplicative approximation of entropy). This highlights an important
difference between the integer and the Boolean hypercube settings: in the latter, uniformity and identity
testing are no longer equivalent.

3.4.2 Identity, closeness and distance estimation of k-modal distributions
As mentioned in the previous subsection, Daskalakis et al. described in [DDS+13] a general support reduction
technique that enables them to treat in a unified way the problems of identity and closeness testing (as
well as their tolerant testing counterpart) for monotone and k-modal distributions. At the core of their
upper bounds is a way to reduce the testing of these structured distributions on domain [n] to the same
problem, but for arbitrary distributions on a much smaller domain [`] – where ` is O(logn/ε) for monotone
distributions, and O

(
k logn/ε2) for k-modal. Applying as black-box the algorithms from Section 3.2 to the

reduced distributions on [`], they obtain:19

Monotone distributions:

• an O
(√

logn
ε5/2

)
-sample tester for identity;

• an O
(

log2/3 n
ε2

)
-sample tester for closeness;

• an O
(

logn
ε3 log logn

)
-sample tolerant tester for identity and closeness.

k-modal distributions:

• an O
(
k2

ε4 +
√
k logn
ε3

)
-sample tester for identity;

• an O
(
k2

ε4 + (k logn)2/3

ε8/3

)
-sample tester for closeness;

• an O
(
k2

ε4 + k logn
ε4 log(k logn)

)
-sample tolerant tester for identity and closeness.

The support reduction for monotone distributions relies on Birgé’s oblivious decomposition (see Section D.4);
for the k-modal case, however, more work is necessary in order to identity a similar (no longer oblivious)

18The authors then use this as a subroutine in a learning algorithm for k-modal distributions.
18Subsequent work by [ACS10] generalizes their uniformity testing results to the continuous case [0, 1]n and the hypergrid [k]n.
19The original results from [DDS+13] invoked the identity and closeness testers from [BFF+01, BFR+00], incurring a additional

logn factor. Plugging instead the (more recent) testing algorithms of [VV14, CDVV14] yields the results listed below.

19

decomposition. This leads in particular to the O
(
k2/ε4) overhead, incurred from the call to a subroutine

Construct-Flat-Decomposition. This procedure roughly works by partitioning the unknown distribution
in O(k/ε) monotone parts after learning (a crude approximation of) it, and applying Birgé’s result on each of
these parts.

Lower bounds. As a pendant to the above reduction technique, Daskalakis et al. also describe a reduction
in the other direction, enabling one to carry general testing instances on support [n] to k-modal testing
instances on an exponentially bigger support [N]. More precisely, they show how to map an arbitrary pair of
distributions (D1, D2) on [n] to a pair (D1,k, D2,k) of O(k)-modal distributions on [N], such that the following
holds. (a) dTV(D1, D2) = dTV(D1,k, D2,k); (b) SAMP access to the D(k)

i ’s can be efficiently simulated given
SAMP access to the Di’s; and (c) N = Θ

(
ke8n(1+lnα)/k), where α is the ratio between the maximum and

minimum probabilities of D1 and D2. By applying this to the hard instances constructions for testing identity
and closeness of general distributions (cf. Section 3.2), they derive optimal or near-optimal lower bounds:
Monotone distributions:

• an Ω
(√

logn
)
lower bound for identity;

• an Ω
((

logn
log logn

)2/3
)

lower bound for closeness;

• an Ω
(

logn
log logn·log log logn

)
lower bound for tolerant testing of identity and closeness.

k-modal distributions: (for k = O(logn))

• an Ω
(√
k logn

)
lower bound for identity;

• an Ω
((

k logn
log(k logn)

)2/3
)

lower bound for closeness;

• an Ω
(

k logn
log(k logn)·log log(k logn)

)
lower bound for tolerant testing of identity and closeness.

3.4.3 Identity: a unified approach
In this last subsection, we describe a recent work of Diakonikolas, Kane and Nikishkin [DKN15b]. While the
previous subsection focused on a particular class of distributions and leveraged its structure to get better
algorithms for several testing problems, this paper deals solely with identity testing,20 but gives a general
algorithm that applies to a broad range of distribution classes. Roughly, their main result could be stated as
follows:
Theorem 3.4.2 (Informal). Let C ⊆ ∆([n]) be a distribution class such that the probability mass functions
of any two D,D′ ∈ C cross (essentially) at most k times. Then, given any explicit D∗ and SAMP access to
an unknown distribution D ∈ C, one can test identity of D to D∗ with O(

√
k/ε2) samples.

In the above, k “essential” crossings means that while the pmfs can cross an arbitrary number of times,
most of the total variation distance between D and D′ comes from at most k different intervals, one each
of which one has either D > D∗ or D < D∗. As a direct application of this and invoking approximation
results from [Bir87, CDSS13, CDSS14], they obtain identity testers for distributions guaranteed to be21

t-piecewise constant (sample complexity O(
√
t/ε2)), t-piecewise degree-d polynomial (O(

√
t(d+ 1)/ε2)),

k-mixtures of log-concave (
√
k · Õ(1/ε9/4)), k-mixtures of t-modal (O(

√
kt logn/ε5/2)) and k-mixtures of

MHR (O(
√
k log(n/ε)/ε5/2)). In each case, these bounds improve on the previously state-of-the-art, either

from [CDSS14] (bounds based on agnostic learning of the corresponding class) or [DDS+13] (cf. Section 3.4.2).
In more detail, the main insight in the proof of Theorem 3.4.2 is to part with the total variation distance,

and consider instead the Ak-distance, one of its generalizations:
20Subsequent work by the same authors obtains analogous results for closeness testing, using entirely different tech-

niques. [DKN15a]
21See Section E.1 for the formal definition of these classes.

20

Definition 3.4.3 (Ak-distance). Fix any integer k ≥ 1. For D1, D2 ∈ ∆([n]), the Ak-distance ‖D1−D2‖Ak
is defined as

‖D1 −D2‖Ak = max
S∈Sk

(D1(S)−D2(S)) ∈ [0, 1]

where Sk is defined as the family of all subsets of [n] that are the union of at most k intervals.22 In particular,
‖D1 −D2‖An = dTV(D1, D2), while ‖D1 −D2‖A2

is within a factor 2 of dK(D1, D2).

The reason to turn to this new distance is the observation that as long as two distributions have at most
k crossings, their Ak and total variation distances coincide. The authors then describe an optimal algorithm
testing identity in the Ak-distance with sample complexity only depending on k (and not on the support size
n), which implies the result above. In order to do so, [DKN15b] proceed in two steps: first, they show how to
reduce general identity testing in the Ak-distance (over [n]) to uniformity testing in the Ak-distance (over a
possibly much bigger support [N]). Then, they give a O(

√
k/ε2)-sample tester – independent of the support

size – for the latter problem, by designing and using as a subroutine a new (optimal) `2-tester for uniformity
(see Section 3.2.1). The last ingredient in their approach is a carefully designed way to consider many possible
partitions of the support, each time with a different number of intervals (namely, k, 2k, 4k, . . . , k/ε); before
calling their `2-tester on the reduced distributions these partitions induce (with appropriate parameters).
They show that if the original distribution is indeed far from uniform, at least one of the reduced distributions
will be far from uniform in `2 norm – guaranteeing the tester will detect the discrepancy.

3.5 Estimating symmetric properties
For the task of getting an additive estimate of a distribution D over Ω, given SAMP access to it, Paninski shows
in [Pan04] that achieving a sublinear sample complexity is possible, proving the existence of a (non-explicit)
estimation algorithm using o(n) samples. (Note that [BDKR05, GMV06] study the different question of
obtaining a multiplicative estimate: see Table A.5 for a summary of these results.)

The question of approximating the support size of a distribution has been studied in [RRSS09], where
the authors proved an almost linear lower bound on additive support size estimation: namely, that
n

1−O
(√

log logn/ logn
)
samples are required to guarantee additive error εn, for any constant ε < 1/2.

In this section, we cover subsequent work by Valiant and Valiant that addresses – among other – these two
questions and establishes matching upper and lower bounds on a whole family of testing problems. Namely,
across three successive works ([VV10a, VV10b], culminating with [VV11]) they build a framework which
applies (under some mild restrictions) to any symmetric property of distributions. As a corollary, they obtain
a tight Θ(n/ logn) sample complexity for (additive) approximation of entropy and support size, and for
tolerant testing of uniformity.23

Symmetric properties, histograms and fingerprints. In order to describe the results, we need to
introduce a few concepts. A property P of distributions over Ω is said to be symmetric if it is “invariant by
relabeling”: for any permutation π of the domain, D ∈ P if and only if D ◦ π ∈ P . This includes, for instance,
uniformity, “having support size at least 5,” or for properties of of pairs of distributions “being equal.”

By a slight abuse of notation, we also refer to functions ϕ : ∆(Ω)k → R as k-ary (scalar) properties. These
capture quantities that reflect some statistic of one of several distributions: for instance, distance to uniformity
and support size are both unary properties, and the total variation distance between two distributions is a
binary property. As in the previous paragraph, an k-ary scalar property ϕ is said to be symmetric if for every
permutation π and distributions D1, . . . , Dk, it holds that ϕ(D1, . . . , Dk) = ϕ(D1 ◦π, . . . ,Dk ◦π). (Hereafter,
we only require the domain Ω to be finite.)

22We follow here the usual definition, as in e.g. [DL01, CDSS14]. For technical reasons, [DKN15b] define the Ak-distance in a
slightly different, but essentially equivalent way (up to constant factors).

23The reader may remember this work was also mentioned in Section 3.2.4, in the context of tolerant testing of uniformity.

21

Definition 3.5.1. Fix any distribution D ∈ ∆(Ω). The histogram of D is the function h : (0, 1]→ N which
“counts” the number of elements with a given probability weight:

h(α) = |{ x ∈ Ω : D(x) = α }| =
∣∣D−1{α}

∣∣.
For any sequence s of m independent samples drawn D, the fingerprint of s is a vector F = (F1, . . . , Fm) ∈ Nm,
where Fj is the number of elements x ∈ Ω that appear exactly j times: Fj =

∣∣{ x ∈ Ω :
∑m
i=1 1{si=x} = j

}∣∣.
Note that F is a random variable whose norm satisfies ‖F‖1 = n (in particular, the Fj ’s are not independent).

The fingerprint can be seen as an empirical version of the histogram: indeed, Fj counts the number of
elements whose empirical probability is j/m, so that “intuitively” one should expect Fj ' h(j/m). Moreover,
it is not hard to see that symmetric properties are completely characterized by histograms and fingerprints:
that is, one can assume without loss of generality that a tester for a symmetric property (or scalar property)
is only given the fingerprint of the samples (see e.g. [BFR+00, Section 3.3]).

Valiant and Valiant then proceed to define a symmetric linear property as a symmetric scalar property
that can be expressed as

ϕ(D) =
∑

α∈D−1(0,1]

hD(α)fϕ(α)

where hD is the histogram of D, and fϕ : [0, 1]→ R is a function of ϕ alone. Similarly, they define a linear
estimator for a symmetric scalar property as a sequence of coefficients a ∈ RN which, given m samples from a
distribution D, outputs

ϕ̂(D) =
m∑
j=1

ajFj = 〈a,F〉

where F is the fingerprint induced by the samples. The last piece missing is a notion of distance between
histograms: for this, they consider the relative Earthmover distance R. Roughly, R(h1, h2) is the cost of
reassigning probability weight in D1 (which has histogram h1) to obtain a distribution with histogram h2;
where moving a unit of weight from probability α to probability α′ costs

∣∣log α
α′

∣∣.
Linear programming and estimators: upper and lower bounds. After setting up these concepts,
the authors proceed to build on them, using tools from linear programming and polynomial approximation
theory. The overall flavor of their framework is as follows: given any linear symmetric property ϕ whose
function fϕ behaves well with regard to relative Earthmover distance, it is possible to set up two linear
programs, (?)U and (?)L, such that:
• If ϕ can be estimated to within an additive ε with m samples, solving (?)U will give the coefficients of

a linear estimator that uses O(m) samples and estimates ϕ to within O(ε).
• Solving (?)L with parameter m will result in two distributions D1, D2 that are indistinguishable to any
algorithm taking less than m samples, and such that ϕ(D1)− ϕ(D2) is maximized;

• (?)U and (?)L are (for the appropriate parameters) dual of each other.
At a very high-level, what the above means is that for a broad family of symmetric properties, it is possible to
derive in a unified way tight upper and lower bounds via linear programming; and furthermore that – quite
counter-intuitively – the (simple) class of linear estimators is as powerful as any other type of estimators, no
matter how complex.

Techniques. Very briefly (and inaccurately), the key ingredients in proving these results are
• Poissonization, to restore independence between the number of occurrences between any two x, y ∈ Ω
(see Section D.3 for more details on this technique), and be able to write the expectation of the
fingerprint entries, EFj , as the inner product of the histogram hD with some convenient “Poisson
functions” poij ;

22

• Polynomial approximation theory: in order to approximate fϕ by a linear combination of these Poisson
functions that can be used in their linear programs, the authors develop an approximation scheme based
on Chebyshev polynomials. To see why this is indeed useful, observe that if fϕ '

∑
j βjpoij , then

ϕ(D) '
∑

α∈D−1(0,1]

hD(α)
(∑

j

βjpoij(α)
)

=
∑
j

βj
∑
α

hD(α)poij(α) =
∑
j

βjEFj

and thus the linear programs can enforce or capture constraints on the fingerprint expectation;
• An insightful use of linear programming duality, which allows them to prove optimality of their linear

estimators by relating (?)U and (?)L;
• Polynomial approximation theory, bis: to build lower bound instances in [VV10a], the authors need to
define a (family of) pair of distributions which, while far from each other in total variation distance,
give rise to fingerprints that are very hard to distinguish. They describe these distributions explicitly
based on Laguerre and Hermite polynomials, and leverage properties of these polynomials (combined
with the CLT mentioned below) to argue the resulting distributions have histograms that are very close
in relative Earthmover distance.

• a new multivariate Central Limit Theorem (CLT) for total variation distance,24 which allows them to
show indistinguishability of the fingerprints obtained from these lower bound instances;

We stress that the above sweeps under the rug most of the details, difficulties and subtleties of the argument;
the interested reader is encouraged to consult the original papers for further details.

Consequences: tolerant testing of entropy, support size, uniformity and closeness. Leveraging
their scalar property machinery, Valiant and Valiant are able to obtain tight or near-tight bounds on four
tolerant testing problems, resulting in a somewhat unexpected (by the author) characterization of their
sample complexity:

Theorem 3.5.2 ([VV11, Theorem 2], [VV10a, Corollary 10]). There exists an algorithm which, given SAMP
access to an unknown distribution D ∈ ∆(Ω), satisfies the following. On input ε1, ε2 ∈ (0, 1], it takes
O
(

1
ε2−ε1

n
logn

)
samples from D, and

• if H(D) ≤ ε1, the algorithm outputs ACCEPT with probability at least 2/3;
• if H(D) ≥ ε2, the algorithm outputs REJECT with probability at least 2/3;

where H(D) = −
∑
x∈ΩD(x) logD(x) denotes the (Shannon) entropy of the distribution. Furthermore, this

sample complexity is tight: no algorithm taking o
(

1
ε2−ε1

n
logn

)
samples can correctly perform this task with

probability at least 2/3.

Theorem 3.5.3 ([VV10b, Corollary 1], [VV10a, Corollary 9]). There exists an algorithm which, given SAMP
access to an unknown distribution D ∈ ∆(Ω) with the guarantee that D(x) ≥ 1/n for all x ∈ supp(D), satisfies
the following. On input ε1, ε2 ∈ (0, 1], it takes O

(
1

(ε2−ε1)2
n

logn

)
samples from D, and

• if |supp(D)| ≤ ε1n, the algorithm outputs ACCEPT with probability at least 2/3;
• if |supp(D)| ≥ ε2n, the algorithm outputs REJECT with probability at least 2/3;

Furthermore, this sample complexity is tight (for constant ε1, ε2): no algorithm taking o
(

n
logn

)
samples can

correctly perform this task with probability at least 2/3.

We also restate the corresponding results from Section 3.2.4:
24In [VV10a], the authors actually also prove and use a slightly weaker but more general CLT, for the Earthmover (Wasserstein)

metric.

23

Theorem 3.2.14 ([VV11, Theorem 3 and 4]). There exists an algorithm which, given SAMP access to two un-
known distributions D1, D2 ∈ ∆(Ω), satisfies the following. On input ε1, ε2 ∈ (0, 1], it takes O

(
1

(ε2−ε1)2
n

logn

)
samples from D1 and D2, and
• if dTV(D1, D2) ≤ ε1, the algorithm outputs ACCEPT with probability at least 2/3;
• if dTV(D1, D2) ≥ ε2, the algorithm outputs REJECT with probability at least 2/3.

Theorem 3.2.12. There exists an absolute constant ε0 > 0 such that the following holds. Any algorithm
which, given SAMP access to an unknown distribution D ∈ ∆(Ω), distinguishes with probability at least 2/3
between (a) dTV(D,U) ≤ ε0 and (b) dTV(D,U) ≥ 1/2− ε0, must have sample complexity Ω

(
n

logn

)
.

To obtain these corollaries, the first step is to observe that the scalar properties above are indeed symmetric
linear properties, and furthermore are continuous with regard to relative Earthmover distance – making it
possible to apply their general framework.

Related work. Following the work described above, Wu and Yang give in [WY14] another, self-contained
proof of the Θ

(
1

ε2−ε1
n

logn

)
sample complexity of entropy estimation in the SAMP setting. They do so by

analyzing the minimax quadratic risk: as in [VV11], both their upper and lower bound rely on polynomial
approximation of the function fϕ : x 7→ −x log x. For the latter, Wu and Yang bypass the need for Valiant
and Valiant’s CLT by “introducing independence” among the fingerprints entries, constructing instances
whose probabilities D(1), . . . , D(n) are themselves chosen independently at random. (This elegant idea comes
at a cost, however: the instances obtained are not exactly probability distributions anymore, as they do
not necessarily sum to one. Thus, the authors have to argue that they are “close enough” to probability
distributions for the proof to go through.)

Similar techniques were also used in [JVW14], where the authors obtain similar results for estimating
Shannon entropy and quantities of the form

∑
x∈ΩD(x)α. Related to this last quantity is the Rényi entropy

Hα, whose estimation is studied in [AOST15].

3.6 Tips and tricks
Sanity checks for lower bounds. When trying to prove a lower bound, always make sure it does not
contradict a known upper bound. In particular, if the argument boils down to testing identity to a single and
fixed hard instance D∗, the best one can hope for is Ω(

√
n).

Uniformity testing as a primitive. While this may (sometimes) incur to sample complexities suboptimal
by poly logn factors, reducing a testing problem to one or several instances of uniformity testing – either in
total variation or `2 distance – is a powerful technique.

Bucketing helps. Often in conjunction with the above item – bucketing is a very common and useful
technique to break down a problem into several parts, each of them being “nicer” (as the distribution in each
bucket is either uniform, or nearly uniform).

`2 as proxy. Whenever total variation (`1) is too stringent or global (does not give enough local information
about the distribution), testing in `2 can prove useful. Usually together with one or both items above.

As a standalone lemma, we recall the following relation between `2 norm of a distribution D and its
distance from uniformity [BFR+00, BFF+01, BKR04]:

Lemma 3.6.1 ([BKR04, Lemma 1]). Let D ∈ ∆(Ω) and ε ∈ [0, 1]. (i) If maxx∈ΩD(x) ≤ (1+ε)·minx∈ΩD(x),
then ‖D‖22 ≤ (1 + ε2)/n. (ii) If ‖D‖22 ≤ (1 + ε2)/n, then dTV(D,U) ≤ ε/2.

24

Independence is treacherous. Be careful of claims of independence – many things are not independent,
even when they “obviously are.” Poissonization (Section D.3) is your friend.

Hellinger is tighter, better for transcripts. In the sampling model, working with the Hellinger distance
between yes- and no-instances often enables one to show better lower bounds on the sample complexity of
property testing algorithms. For instance, the following theorem provides a very good bound on the number
of samples needed to distinguish two distributions:

Theorem 3.6.2 ([BY02, Theorem 4.7]). Let D1, D2 ∈ ∆(Ω). For every δ ∈ (0, 1/4), any randomized
algorithm distinguishing between D1 and D2 with probability at least 1− δ must have sample complexity at
least

1
4dH(D1, D2)2 ln 1

4δ

provided dH(D1, D2) ≤ 1/
√

2.

(Note that phrased in terms of total variation distance, one only gets the lower bound 1−2δ
dTV(D1,D2) , which –

albeit sometimes easier to work with – can be by Theorem C.2.2 looser by as much as a quadratic factor.)
Roughly speaking, the reason for this potential quadratic improvement comes from the properties of

Hellinger distance with relation to product distributions (independent samples), while the total variation
distance’s behaviour in that regard is very poor (see Equation C.1 and C.4).

Think of DKW. Performing a coarse learning of the distribution often helps, to approximately identify the
problematic portions of the distribution or to decide which subroutine apply to which part. See Theorem D.1.1.

Symmetric properties. Fingerprints and histograms are all that matters for symmetric properties.
[VV10a, VV10b] and [VV11] are a very good source for lemmas, ideas and techniques that apply to them.

Insight from Statistics. There is an insane amount of literature on statistical tools such as the χ2-test.
Albeit seldom optimal when used out-of-the-box, custom-tailored variants of these have proven very powerful.

25

Chapter 4

Other Models

While the sampling model covered in the previous chapter is arguably the most natural and widely considered,
it fails to fully capture certain scenarios and situations that arise both in practice and theory. Moreover, as
we saw earlier algorithms in the SAMP model must in most cases incur a sample complexity that – albeit
sublinear – is polynomial on the support size. Whenever the domain becomes too large, this is a cost one
cannot reasonably afford.

For these reasons – among others, there has been recent work on studying probability distributions
under alternative models: this includes other types of access to the distribution (either more powerful or
incomparable to the sampling one) as well as different objectives or performance measures. The former is the
focus of Section 4.1 and 4.2, with respectively the conditional and extended access models; while examples of
the latter can be found in Section 4.3 and 4.4.

4.1 Conditional Samples
In this section, we focus on the conditional access model, a generalization of the sampling model introduced
independently by Chakraborty et al. [CFGM13] and Canonne et al. [CRS14]. In this setting, the algorithms
are granted sampling access to any conditional distribution of their choosing; that is, they are able to condition
the outcome on arbitrary subsets of the domain Ω.

4.1.1 The setting
Definition 4.1.1 (Conditional access model [CFGM13, CRS14]). Fix a distribution D over Ω. A COND
oracle for D, denoted CONDD, is defined as follows: the oracle takes as input a query set S ⊆ Ω, chosen by
the algorithm, that has D(S) > 0. The oracle returns an element i ∈ S, where the probability that element i
is returned is DS(i) = D(i)/D(S), independently of all previous calls to the oracle.

Note that as described above the behavior of CONDD(S) is undefined if D(S) = 0, i.e., the set S has
zero probability under D. Various definitional choices could be made to deal with this: e.g., Canonne et al.
assume that in such a case the oracle (and hence the algorithm) outputs “failure” and terminates, while
Chakraborty et al. define the oracle to return in this case a sample uniformly distributed in S. In most
situations, this distinction does not make any difference, as most algorithms can always include in their next
queries a sample previously obtained;1 however, the former choice does rule out the possibility of non-adaptive
testers taking advantage of the additional power COND provides over SAMP; while such testers are part of
the focus of [CFGM13] (and are discussed in Section 4.1.5).

1Conversely, for any lower bound relying on a specific instance of distribution one can always consider instead a mixture of
the original instance and the uniform distribution – the latter with, say, exponentially small weight.

26

Testing algorithms can often only be assumed to have the ability to query sets S that have some sort of
“structure,” or are in some way “simple.” To capture this, one can define specific restrictions of the general
COND model, which do not allow arbitrary sets to be queried but instead enforce some constraints on the
queries: [CRS14] introduces and studies two such restrictions, “PAIRCOND” and “INTCOND.”

Definition 4.1.2 (Restricted conditional oracles). A PAIRCOND (“pair-cond”) oracle for D is a restricted
version of CONDD that only accepts input sets S which are either S = Ω (thus providing the power of a
SAMPD oracle) or S = {x, y} for some x, y ∈ Ω, i.e. sets of size two.

In the specific case of Ω = [n], an INTCOND (“interval-cond”) oracle for D is a restricted version of
CONDD that only accepts input sets S which are intervals S = [a, b] = {a, a+ 1, . . . , b} for some a ≤ b ∈ [n]
(note that taking a = 1, b = n this provides the power of a SAMPD oracle).

4.1.2 Testing identity and closeness of general distributions
Testing uniformity

The first result we describe shows that in stark contrast to what holds in the SAMP model, testing uniformity
with conditional samples can be done with a constant number of queries. We cover here the result of [CRS14],
which derive essentially matching upper and lower bounds: note that a poly(1/ε)-query tester was also
obtained in [CFGM13].

Theorem 4.1.3 (Testing uniformity). There exists an algorithm which, given PAIRCOND access to an
unknown distribution D ∈ ∆(Ω), satisfies the following. On input ε ∈ (0, 1], it makes Õ

(1
ε2

)
queries to D,

and
• if D = U , the algorithm outputs ACCEPT with probability at least 2/3;
• if dTV(D,U) > ε, the algorithm outputs REJECT with probability at least 2/3.

Furthermore, this is nearly tight: no COND algorithm making o
(1
ε2

)
queries can correctly perform this task

with probability at least 2/3.

At a very high-level, the algorithm works by considering 3 sets of samples: a reference set R of constantly
many points drawn uniformly from [n], a set H of “possibly heavy points” drawn from D, and a set L
of “possibly light points” drawn uniformly from [n]. Then, it goes over every pair (h, r) ∈ H × R and
(`, r) ∈ L×R, calling the PAIRCOND oracle on them to try and detect a discrepancy between D(h) and D(r)
(resp. D(`) and D(r). Intuitively, if D was far from uniform, then there would be many light points with
weight significantly smaller than 1/n, and enough weight put by D on heavy points (with weight significantly
bigger than 1/n). Thus, with high probability L would contain light points, and H heavy points: comparing
both to the reference points that can be either heavy or light, at least one of the comparisons will give away
the difference.

The lower bound, on the other hand, works by a reduction to a known “hard problem,” that of distinguishing
a fair from a biased coin (Fact D.1.3). Specifically, the argument goes by showing how, given access to
independent coin tosses which are either (a) fair or (b) ε-biased, one can simulate COND access to a distribution
D that is respectively (a) uniform or (b) Ω(ε)-far from uniform. Thus, any COND algorithm for uniformity
can be used for distinguishing fair from ε-biased coins, and must therefore make Ω

(1
ε2

)
queries.

Note that the above upper bound holds even for the restricted “pair-cond” oracle. It is natural to ask
if this is also the case with the “interval-cond”: [CRS14] show that significant savings are possible in this
setting as well, giving a poly(logn, 1/ε)-query tester for uniformity:

Theorem 4.1.4 (Testing uniformity with INTCOND). There exists an algorithm which, given INTCOND
access to an unknown distribution D ∈ ∆([n]), satisfies the following. On input ε ∈ (0, 1], it makes Õ

(
log3 n
ε3

)
queries to D, and
• if D = U , the algorithm outputs ACCEPT with probability at least 2/3;
• if dTV(D,U) > ε, the algorithm outputs REJECT with probability at least 2/3.

27

Maybe surprisingly, this logΩ(1) n dependence for testing uniformity with INTCOND queries turns out
to be necessary, showing a strict separation between INTCOND and PAIRCOND (and a fortiori between
INTCOND and COND) for this problem:
Theorem 4.1.5 ([CRS15, Theorem 16]). There exists an absolute constant ε0 > 0 such that the following
holds. Any algorithm which, given INTCOND access to an unknown distribution D ∈ ∆([n]), distinguishes with
probability at least 2/3 between (a) D = U and (b) dTV(D,U) ≥ ε0, must have query complexity Ω

(logn
log logn

)
.

The upper bound is conceptually simple, and amounts to some sort of “binary descent” performed on
O(1/ε) points randomly drawn from D, in order to check their probability weight is close to 1/n. For each
such point sj , the algorithm recursively estimates the logn ratios D(Ii)/D(Ii−1)) (where I0 = [n], and the
interval Ii is the half of Ii−1 which contains sj). To pass the test, each of these ratios should be very close to
1/2; and as multiplying these ratios together gives a good multiplicative estimate of D(sj), checking if any of
the resulting estimates deviates too much from 1/n allows one to detect distributions far from uniform.

The lower bound, however, proves to be (a lot) trickier: the difficulty lying in bounding the quantity of
information an INTCOND (or COND, for that matter) algorithm can “learn” from its queries. To analyze
their family of hard instances Dno, [CRS15] follow an hybridization argument, where they introduce many
intermediate stages. Each stage corresponds to an algorithm “faking” more of its queries to the oracle for
D ∈ Dno, instead of actually making them; so that the first stage is the actual algorithm interacting with
INTCONDD, and the last stage is an algorithm that answers all its own queries as if it interacted with
the uniform distribution (and thus is exactly what would happen if the tester had been given access to
INTCONDU). The authors then proceed to bound the variation distance between the transcripts obtained in
any two such consecutive stages: summing all these distances allows them to upper bound the total variation
distance between transcripts in a uniform and no-instance case, and derive their lower bound.

Testing identity

Recalling that in the SAMP model uniformity and identity testing turn out to be equivalent in terms of
sample complexity, one may wonder if this is still the case with the more powerful queries a COND oracle
allows. As we shall see below, this is indeed the case for in general COND setting; but not in its restricted
PAIRCOND variant.
Theorem 4.1.6 (Testing identity). There exists an algorithm which, given the full specification of D∗ ∈ ∆(Ω)
and COND access to an unknown distribution D, satisfies the following. On input ε ∈ (0, 1], it makes Õ

(1
ε2

)
queries to D, and
• if D = D∗, the algorithm outputs ACCEPT with probability at least 2/3;
• if dTV(D,D∗) > ε, the algorithm outputs REJECT with probability at least 2/3.

Furthermore, this is nearly tight.
The lower bound is implied by Theorem 4.1.3. The upper bound is due to [FJO+15], where the authors

apply a χ2-test to the conditional distributions induced by D and D∗ on adaptively chosen subsets of the
domain. The high-level idea is to find a “distinguishing element” i (for D∗), and a small number t of
“distinguishing sets” Gj ’s (with regard to x and D∗), such that (a) D∗(x) is within constant factors of each
D∗(Gj) and (b) D∗(G1), . . . , D∗(Gt) are roughly equal. Their algorithm then uses this χ2-test to check
consistency between D and D∗ on {x,Gj} for a randomly chosen Gj , and on {G1, . . . , Gt} (where each set
Gj is seen as a single element). This, along with a third check meant to verify both D and D∗ put the same
overall weight on

⋃
j Gj , guarantees that with high probability at least one of the tests performed will catch

a discrepancy between D and D∗.
Note that prior to this work, a poly(log∗ n, 1/ε)-query tester for identity had been obtained by [CFGM13];

and a constant-query Õ
(1
ε4

)
-query tester was analyzed in [CRS14]. The latter also worked by comparing the

weight (under D) of suitably chosen (with relation to D∗) element j and subsets Si ⊆ Ω. In all three cases,
the tester crucially use for its comparisons the ability to condition on arbitrary subsets of the domain. As the
following theorems show, this is not by coincidence: in the restricted pair-cond oracle a dependence on n is
both necessary and sufficient.

28

Theorem 4.1.7 (Testing identity with PAIRCOND ([CRS15, Theorem 7])). There exists an algorithm which,
given the full specification of D∗ ∈ ∆(Ω) and PAIRCOND access to an unknown distribution D, satisfies the
following. On input ε ∈ (0, 1], it makes Õ

(
log4 n
ε4

)
queries to D, and

• if D = D∗, the algorithm outputs ACCEPT with probability at least 2/3;
• if dTV(D,D∗) > ε, the algorithm outputs REJECT with probability at least 2/3.

Theorem 4.1.8 ([CRS15, Theorem 8]). There exists an absolute constant ε0 > 0 such that the following
holds. Any algorithm which, given the full specification of D∗ ∈ ∆(Ω) and PAIRCOND access to an unknown
distribution D ∈ ∆([n]), distinguishes with probability at least 2/3 between (a) D = D∗ and (b) dTV(D,D∗) ≥
ε0, must have query complexity Ω

(√
logn

log logn

)
.

The upper bound, at its core, follows the same idea as in the uniformity case (where D∗ = U): trying to
compare the ratios D∗(x)/D∗(y) and D(x)/D(y) for x ∼ D∗ and y ∼ D, and reject if a significant difference is
found at any step. However, this natural approach does no longer work here, as if for instance D∗(x)� D∗(y)
and D(x) � D(y), then the points are not “comparable” unless one makes ω(1) queries. That is, calling
CONDD on {x, y} will never return x: and the ratio D(x)/D(y) will be estimated as zero no matter whether
it is actually 1/ log∗ n or n−100. To circumvent this, the tester first buckets the points according to D∗, and
then checks that D∗ assigns approximately the right amount of weight to every bucket. Then, it follows the
natural approach above, but on each of the logarithmically many buckets: since in all of them D∗ is nearly
uniform, all points should have comparable weight and the above difficulty no longer arises.

The lower bound leverage this insight of comparable vs. incomparable points, by building as hard instance
a distribution on logarithmically many buckets with size growing exponentially, which puts the same total
weight on each of them. The corresponding no-instance is a perturbed version of this distribution: buckets
are grouped in pairs, and in each pair one random bucket has weight multiplied by 1/2 and the other by
3/2. This does preserve the incomparability: in both the yes- and no-cases, two elements x, y from different
buckets have weights D(x), D(y) so multiplicatively far apart that a constant number of queries cannot help
estimating the ratio, while two points x, y from the same bucket have exactly the same weight D(x) = D(y).
Thus, intuitively the only way to tell yes- and no-instances apart is to estimate the total weight of a particular
bucket: but again, unless many queries are performed the tester cannot even obtain two samples from the
same bucket – let alone a number sufficient to estimate its total weight. To make this intuition formal, the
analysis proceeds with the same sort of hybridization technique as for Theorem 4.1.5: by bounding the
difference between transcripts obtained by algorithms that “fake” k versus k + 1 of their queries (i.e., that
“guess” the samples returned from their first k or k + 1 adaptive queries, instead of actually making these
queries to the PAIRCOND oracle). Since algorithms faking all their adaptive queries cannot distinguish
between a yes- and no- instance, by the triangle inequality one gets that algorithms faking none of them still
only have negligible advantage in doing so, and thus cannot be bona fide testers.

Testing closeness

We now cover two theorems which yield a good characterization (if not completely tight) of the sample
complexity of closeness testing in the conditional setting:

Theorem 4.1.9 (Testing closeness). There exists an algorithm which, given COND access to two unknown
distributions D1, D2 ∈ ∆(Ω), satisfies the following. On input ε ∈ (0, 1], it makes Õ

(
log logn
ε5

)
queries to D1

and D2, and
• if D1 = D2, the algorithm outputs ACCEPT with probability at least 2/3;
• if dTV(D1, D2) > ε, the algorithm outputs REJECT with probability at least 2/3.

This upper bound is due to [FJO+15], and essentially works by generalizing their ideas for identity testing
(Theorem 4.1.6) to the case where both distributions are unknown. In order to do so, the “distinguishing sets”
G1, . . . , Gt are now defined with regard to both D1 and D2; the key difficulty now being that the algorithm

29

has no direct way to compute them (which would require to explicitly know D1 and D2). It thus attempts to
get a handle one these sets by sampling them, that is including independently each element in a set Ŝ with
some guessed probability r. To find an (approximately) good value of r for which this works, the algorithm
then iterates over possible values of r by some double binary search – resulting in the log logn dependence.

Note that in previous work, [CRS15] analyzed a Õ
(
log5 n/ε4)-query algorithm for this task which worked

by simulating (approximate) evaluation query access to D1, D2 and applying techniques similar as in the
“evaluation query” model of Section 4.2. (The overall cost coming from the calls to this (approximate) EVAL
oracle, each using polylog(n) conditional queries.)

This doubly logarithmic dependence on the support size may seem unnatural, especially given the
constant-query complexity of both uniformity and identity testing in the conditional query setting. One may
therefore ask whether this is can be reduced further, down to poly(1/ε): quite surprisingly, this turns out
to be impossible. Indeed, [ACK14] show that a (log logn)Ω(1) query complexity is necessary: in contrast to
what happens in the SAMP setting, identity and closeness testing with conditional queries are inherently
different.2

Theorem 4.1.10. There exists an absolute constant ε0 > 0 such that the following holds. Any algorithm
which, given COND access to two unknown distributions D1, D2 ∈ ∆(Ω), distinguishes with probability at
least 2/3 between (a) D1 = D2 and (b) dTV(D1, D2) ≥ ε0, must have query complexity Ω

(√
log logn

)
.

The proof of this lower bound is very intricate, as it has to capture and “beat” all possible adaptive
ways a COND testing algorithm could query the distributions and derive some information about them. At
a very high-level, it relies on a technique introduced by Chakraborty et al. [CFGM13] for lower bounds
against label-invariant properties: namely, the notion of core adaptive testers, a class of conceptually simpler
testing algorithms against which it is sufficient to compete. The argument then works by designing yes- and
no-instances that are intuitively impossible distinguish without the knowledge of their support size. These
instances are obtained by embedding (a variant of) the construction of Theorem 4.1.8 into a much larger
domain by scaling it by a random factor. (This amounts to hiding the relevant part of the distribution in a
negligible and unknown portion of the domain, effectively “blindfolding” the testing algorithm.)

As in the previous subsection, one can ask if similar upper bounds hold in the more restricted setting of
pair-cond queries. As the lower bound of Theorem 4.1.8 clearly conveys to this more general question, the
best one can hope for is a polylog(n)-query upper bound. As it so happens, this hope is justified:

Theorem 4.1.11 (Testing closeness with PAIRCOND ([CRS15, Theorem 11])). There exists an algorithm
which, given PAIRCOND access to two unknown distributions D1, D2 ∈ ∆(Ω), satisfies the following. On
input ε ∈ (0, 1], it makes Õ

(
log6 n
ε21

)
queries to D1 and D2, and

• if D1 = D2, the algorithm outputs ACCEPT with probability at least 2/3;
• if dTV(D1, D2) > ε, the algorithm outputs REJECT with probability at least 2/3.

Here is a sketch of how this tester works: in a first stage, it obtains a small “cover” of D1. This is a
set R of logarithmically many representatives, in the following sense: for almost all x ∈ Ω, there exists a
r ∈ R such that D1(x) is multiplicatively close to D1(r) (such x is said to be in the neighborhood of r). These
neighborhoods {U1(r)}r∈R can be seen as a succinct cover of the support of D1 into (not necessarily disjoint)
sets, where within each set the points have roughly equal weight – reminiscent of some approximate bucketing.

The algorithm then checks two things: to begin with, it gets an estimate of D2(U1(r)) for each r in order
to make sure D2 puts the same weight as D1 on these neighborhoods. Then, it takes samples from both D1
and D2, and verifies all of them have the “same representative” r ∈ R under both distributions (i.e., that for
each x sampled from either distribution, if D1(x) ' D1(r) for some r then D2(x) ' D2(r) as well). As the
authors argue, if D2 is far from D1 then at least one of these two tests must fail with high probability: that
is the two distributions cannot agree on both the weights of the neighborhoods and the actual elements each
neighborhood contains.

2A (small) chasm, if you will.

30

4.1.3 Testing for structure: monotonicity
As in Section 3.3, the analogue for SAMP, we now discuss the task of testing whether an a priori arbitrary
distribution meets some structural condition, such as being log-concave, monotone or – say – a Binomial
distribution. In this section, we shall specifically focus on testing monotonicity over [n] – in good part because,
to the best of the author’s knowledge, other structural properties have yet to be studied in the context of
conditional queries. (Unless specified otherwise, the following is from [Can15]; also, recall that all throughout
this survey “monotone” is meant as monotone non-increasing, following the notations of Section 3.3.1.)

Theorem 4.1.12 (Testing monotonicity). There exists an algorithm which, given COND access to an
unknown distribution D ∈ ∆([n]), satisfies the following. On input ε ∈ (0, 1], it makes Õ

(1
ε22

)
queries to D,

and
• if D ∈M, the algorithm outputs ACCEPT with probability at least 2/3;
• if dTV(D,M) > ε, the algorithm outputs REJECT with probability at least 2/3.

Furthermore, no algorithm taking o
(1
ε2

)
samples can correctly perform this task with probability at least 2/3.

As the type of queries an INTCOND oracle allows seems very natural in the context of monotonicity, one
may wonder whether it allows more efficient testing than in the regular SAMP setting: the following result
shows that this is indeed the case.

Theorem 4.1.13 (Testing monotonicity with INTCOND). There exists an algorithm which, given INTCOND
access to an unknown distribution D ∈ ∆([n]), satisfies the following. On input ε ∈ (0, 1], it makes Õ

(
log5 n
ε4

)
queries to D, and
• if D ∈M, the algorithm outputs ACCEPT with probability at least 2/3;
• if dTV(D,M) > ε, the algorithm outputs REJECT with probability at least 2/3.

Furthermore, no algorithm taking o
(√

logn
log logn

)
samples can correctly perform this task with probability at

least 2/3.

We also show that – perhaps surprisingly – the ability to condition on intervals is not necessary to obtain
such improvements over SAMP algorithms. Namely, even allowing PAIRCOND queries only (although they
have no direct connection nor relation to the ordering of the domain) is enough to bring down the sample
complexity to polylog(n):

Theorem 4.1.14 (Testing monotonicity with PAIRCOND). There exists an algorithm which, given PAIRCOND
access to an unknown distribution D ∈ ∆([n]), satisfies the following. On input ε ∈ (0, 1], it makes
Õ
(

log2 n
ε3 + logn

ε4

)
queries to D, and

• if D ∈M, the algorithm outputs ACCEPT with probability at least 2/3;
• if dTV(D,M) > ε, the algorithm outputs REJECT with probability at least 2/3.

Furthermore, no algorithm taking o
(1
ε2

)
samples can correctly perform this task with probability at least 2/3.

Before giving an outline of how the first two algorithm works (and a proof for the third), we observe
than in all cases the lower bound comes directly from the corresponding lower bound on testing uniformity.
Indeed, the reduction of Batu et al. described in Section 3.3.1 applies indifferently of the model itself, so that
“monotonicity is always at least as hard as uniformity.”

A poly(logn, 1/ε) upper bound for INTCOND. The natural idea here is to see if the known algorithm
for monotonicity testing in the SAMP model (covered in Section 3.3.1) cannot directly be adapted to take
advantage of these additional queries. The key part here is how improve the expensive step in the recursive
splitting of the domain, where the algorithm checks if on the current interval the distribution is close enough
to uniform in `2 distance. While it would be sufficient to perform a similar test in total variation distance, this

31

is in principle much harder: indeed, in this step the algorithm is not checking if the conditional distribution
is uniform (or far from it), but if it is close to uniform – that is, it has to perform tolerant testing.

Yet it is not clear whether the INTCOND queries would give us improved testers or tolerant testers
in `2 distance. To circumvent this issue, [Can15] observes that what the tester of Batu et al. requires is
slightly weaker: namely, to distinguish distributions on an interval I that (a) are Ω(ε)-far from uniform
from those that are (b) O(ε/|I|)-close to uniform in `∞ distance. But this sort of weak tolerance is exactly
what (a straightforward modification of) the INTCOND uniformity tester of [CRS14] provides. Indeed, (b) is
equivalent to asking that the ratio D(x)/D(y) of any two points in I be in [1 − ε, 1 + ε], which is exactly
what this tester checks.

An Oε(1) upper bound for COND. While the above approach obviously also holds when granted general
COND queries, it would still incur a polylogarithmic dependence on n. Indeed, even after plugging in the
Oε(1)-query algorithm of [CRS15] for estimating distance to uniformity,3 the whole recursive binary splitting
approach inherently brings a logn factor in the cost, from the number of recursion steps and intervals to
consider.

Instead, the algorithm of Theorem 4.1.12 takes another route, by reducing testing monotonicity of D
to testing another property on another distribution (on another domain). In more detail, it considers the
Birgé flattening of D, Φε(D), which is a histogram on only ` = O(logn/ε) intervals (see Section D.4 for more
details on this transformation). Now, D is monotone if and only if the “reduced distribution” D̄ε on [`]
induced by Φε(D) satisfies some new “exponential property” Pε ⊆ ∆([`]) (defined as the set of distributions
Q for which Q(k + 1) ≤ (1 + ε)Q(k) for all k < `). Not only does the above equivalence hold, it is actually
robust: that is, dTV(D,M) = dTV

(
D̄ε,Pε

)
.

Given this, the tester works in two stages: first, it checks that D̄ε ∈ Pε, using the fact that COND access
to D̄ε can be simulated from COND access to D. Then, it also verifies that Φε(D) is close to D, as it should
be if D were monotone (as guaranteed by Theorem D.4.2). These two conditions can easily be seen to hold
for any monotone D; and conversely, one can show that if they are both satisfied then D cannot be far
from monotone. The remaining part of the argument then amounts to proving that both these stages can
be carried out with Oε(1) queries. (Note that the overall 1/ε22 dependence emerges from the second stage,
which uses as subroutine the aforementioned distance-to-uniformity-estimation procedure of [CRS15].)

A Õ
(
log2 n/ε4) upper bound for PAIRCOND. The following is based on private communication with

Dana Ron and Rocco Servedio [CRS13], and appears for the first time in this survey. Before proving the
theorem, we outline the argument and give its high-level ingredients. While “testing by learning” is usually
not efficient for distributions (due to the hardness of tolerant testing), in the particular case of monotonicity
such an approach is possible. Somewhat similar to the ideas of Batu et al. for their SAMP algorithm, we
start by by partitioning the domain [n] into roughly logn consecutive intervals, such that D is (or should
be) almost constant on each of them. (This can be done by performing logn binary searches, where the
comparisons between two points are simulated via PAIRCOND queries.)

Then, we draw O(1/ε) samples from D, and for each of them compare their probability weight to that of
the leftmost point of the interval they fall in. This again can be done with pairwise comparisons, and ensures
that indeed the distribution is almost constant on each interval.

Proof of Theorem 4.1.14. Let t def= Θ
(

logn
ε

)
, and 1 < c′ < c be two constants to be determined in the course

of the analysis. The algorithm works as follows:

Algorithm 1 TestMonPairCond
1: (preliminary step, to ensure D(1) > 0 – needed to make sure all subsequent queries are on sets with

non-zero weight, especially in the second step.) Draw one element s from D, and if s > 1 make O(1)
PAIRCOND queries on {1, s}. If each query returns s, then output REJECT (if D were monotone, then
one would have D(1) ≥ D(s): but the above shows that with very high probability D(1)� D(s)).

3See Section 4.1.6 for more on this subroutine.

32

2: By running t binary searches, iteratively find points i1 = 1 < i2 < · · · < it ≤ n such that

D(ij) <
1

1 + ε
c

D(ij−1), but D(ij − 1) ≥ 1
1 + ε

c′
D(ij−1) (4.1)

(each comparison is done with O
(1
ε2 log(t logn)

)
= Õ

(
log logn/ε2) PAIRCOND queries, to ensure sufficient

accuracy and guarantee overall correctness with probability at least 9/10 by a union bound.)
3: If any monotonicity violation is detected during the course of these binary searches (i.e. for some i < j,

the estimate of the ratio D(i)/D(j) is less than 1− Ω(ε)), output REJECT. Otherwise, let B1, . . . , Bt be
the resulting buckets , where Bj = {ij , . . . , ij+1 − 1} (and it+1 = n+ 1).

4: Take O
(
1/ε2) samples from D to get a estimate b̂t of D(Bt) within an additive ε

16 (with probability
9/10); if b̂t > ε

8 , output REJECT.
5: Take Θ

(1
ε

)
samples from D, and Θ

(1
ε

)
points uniformly from each of B1, . . . , Bt−1. For each element s

in the union S of these two sample sets, let Bjs = {ijs , . . . , ijs+1 − 1} be the corresponding bucket.
• For all s ∈ S such that s /∈ Bt, get an estimate ρ̂s of D(s)/D(ijs) within a multiplicative (1 + ε/c′)
(with probability 1−O(1/tε)), by making O

(
log(tε)/ε2) PAIRCOND queries.

• If for any s above we have ρ̂s /∈ [1
1+3ε/c′ , 1 + 3ε/c′], output REJECT.

6: return ACCEPT

To argue correctness, note first that all pairwise queries made are on sets with non-zero weight (the preliminary
step guarantees D(1) > 0, and afterwards all queries either contain 1 or a point previously returned by the
oracle). Moreover, by a union bound all estimates computed via sampling and pairwise queries are within
the desired accuracy with probability at least 7/10, and in particular the ij ’s meet the specifications of
Equation 4.1. From now on, we condition on this.

Define a point k ∈ [n] to be good if k ∈ B` for some ` < t and D(k) ∈ [1 − 4ε
c′ , 1 + 4ε

c′] ·D(i`), and bad
otherwise. Furthermore, let Bad+ (resp. Bad−) be the set of bad points k for which D(k) > D(i`) (resp.
D(k) < D(i`)), where k ∈ B`.

Completeness. If D is monotone, then the binary searches work as expected and the algorithm does not
reject in Step 3. Moreover, as D(it) <

(
1 + ε

c

)−t ≤ ε
16n (for a suitable choice of the constant c), the

leftover bucket Bt has weight at most ε
16 and Step 4 does not reject either. Finally, for any 1 ≤ ` ≤ t any

point s ∈ B` satisfies by monotonicity D(s)
D(i`) ∈ [1

1+ε/c′ , 1], and from accuracy of the estimates guarantees
that ρ̂s ∈ [1

1+3ε/c′ , 1 + 3ε/c′] for any s considered in Step 5. Therefore, the algorithm reaches Step 6
and outputs ACCEPT.

Soundness. By contrapositive, suppose that the algorithm returns ACCEPT (we will show that in this case
D is ε-close to monotone). This means that (a) D(Bt) < 3ε

16 ; (b) D(Bad+) ≤ ε
8 and (c) for all ` < t,

|Bad+ ∩B`| ≤ ε
8 |B`| (the last two from Step 5 and the choice of constants in the Θ(1/ε)).

Now, define D̃ to be the (non-negative) function such that D′(k) = D(i`) for k ∈ B`, 1 ≤ ` ≤ t; and
D′ = D̃/‖D̃‖1 to be its normalized version. Clearly, both D̃ and D′ are monotone: it remains to
prove that dTV(D,D′) ≤ ε, by first considering the `1 distance between D and D̃. Observe that the
contribution of good points to this distance is by definition at most 4ε/c′. As for the leftover bucket Bt,
it costs at most ε/4. The sum of D(k)− D̃(k) taken over Bad+ is at most the same sum over D(k),
which is upper bounded by ε

8 . Finally, as in each bucket B` there are at most ε
8 |B`| points from Bad−,

the sum of D̃(k)−D(k) ≤ D̃(k) taken over all such points in the buckets is at most an ε
8 fraction of the

weight of these buckets according to D̃. Combining the above, for a suitable choice of c′ ≥ 32, leads to

‖D − D̃‖1 ≤
4ε
c′

+ ε

4 + ε

8 + ε

8 · ‖D̃‖1 ≤
ε

2 + ε

8 · ‖D̃‖1

From the above and the fact that ‖D − D̃‖1 ≥
∣∣‖D‖1 − ‖D̃‖1∣∣ =

∣∣1− ‖D̃‖1∣∣, we also get ‖D̃‖1 ∈
[1 − 3ε

4 , 1 + 3ε
4]. As ‖D −D′‖1 ≤ ‖D − D̃‖1 + ‖D̃ −D′‖1 = ‖D − D̃‖1 +

∣∣‖D̃‖1 − 1
∣∣, we eventually

obtain ‖D −D′‖1 < 2ε, i.e. dTV(D,D′) ≤ ε.

33

Overall, the query complexity is Õ
(
t logn · log logn

ε2

)
+O

(1
ε2

)
+O

(
t
ε ·

log(tε)
ε2

)
= Õ

(
log2 n
ε3 + logn

ε4

)
.

4.1.4 Estimating symmetric properties
From Section 3.5, we know that many symmetric properties are “hard” to (additively) estimate in the SAMP
model, with tight and common sample complexity Θ(n/ logn). This is in particular the case of support size
and entropy estimation, as well as distance to uniformity or between unknown distributions.4

In this section, we consider the analogue questions in the COND model. In a nutshell, the conclusion is that
the landscape is much more disparate in this setting: while all “nice” symmetric properties can now be tested
and estimated with only polylog(n) queries, this is not necessarily tight: surprisingly, distance to uniformity
can be estimated with constantly many queries. Even though, one cannot hope for such drastic improvements
in every case: as we shall see, both entropy and support size estimation do require (log logn)Ω(1). We first
state the results, before giving an outline of their proofs.
Theorem 4.1.15 ([CFGM13, Theorem 6.0.1] (Restated informally)). Every “nice” symmetric scalar property
of distributions can be tested and estimated by an algorithm making at most poly(logn, 1/ε) conditional
queries. Moreover, this only requires (a subset of) INTCOND queries.

As we shall see, these “nice” properties include entropy, support size, or distance between distributions.
However, in the specific case of distance to uniformity, it turns out that one can get rid of the dependence on
the domain size altogether: distance estimation
Theorem 4.1.16 ([CRS15, Theorem 14]). There exists an algorithm which, given PAIRCOND access to an
unknown distribution D ∈ ∆(Ω), satisfies the following. On input ε ∈ (0, 1] and δ ∈ (0, 1], it makes Õ

(
1/ε20)

queries to D and outputs a value τ̂ which, with probability at least 1− δ, satisfies |τ̂ − dTV(D,U)| ≤ ε.
Combined with following next lower bound, this shows that neither poly(logn, 1/ε) nor Oε(1) is the

general answer for estimating or even testing symmetric properties:
Theorem 4.1.17 ([CFGM13, Theorem 7.3.1]). There exists a symmetric property P ⊆ ∆(Ω) and an absolute
constant ε0 > 0 such that the following holds. Any algorithm which, given COND access to an unknown
distribution D ∈ ∆(Ω), distinguishes with probability at least 2/3 between (a) D ∈ P and (b) dTV(D,P) ≥ ε0,
must have query complexity Ω

(√
log logn

)
.

Quite notably, the proof of this last theorem directly implies the same Ω
(√

log logn
)
-query lower bound for

support size estimation (both additive and multiplicative)5 and entropy estimation (additive).

A general poly(logn, 1/ε) upper bound. The argument relies at its core on a primitive introduced by
Chakraborty et al., namely of (explicit) persistent sampler. Somewhat similar to the “approximate EVAL
oracle” mentioned in Section 4.1.2, this primitive allows one to simulate from INTCONDD queries both
evaluation and sampling oracles for a distribution D̃ that is ε-close to D, with only a poly(logn, 1/ε)-factor
overhead.6 Building on this, they obtain an algorithm which learns a distribution in total variation distance
“up to a permutation,” with only poly(logn, 1/ε) queries:
Theorem 4.1.18 ([CFGM13, Theorem 6.0.2]). There exists an algorithm which, given INTCOND access to
an unknown distribution D ∈ ∆([m]), satisfies the following. On input ε, δ ∈ (0, 1], it takes Õ

(log7 n
ε8 log2 1

δ

)
samples from D, and outputs a distribution D̂ ∈ ∆([m]) such that the following holds. With probability at
least 1− δ, there exists a permutation σ of [m] for which dTV

(
D̂ ◦ σ,D

)
≤ ε.

4Note that lower bounds are also known for multiplicative approximation; in particular, the support size estimation lower
bound of Valiant and Valiant ([VV10a]) still applies to this problem.

5We briefly mention that [ACK14] subsequently gave a Õ(log logn/ε3)-query COND algorithm for multiplicative (and additive)
estimation of support size to within an (1 + ε) factor, showing that (log logn)Θ(1) is indeed the right query complexity for this
problem.

6The “explicit” refers to the fact that the probability values are explicitly returned by the oracle, as in the case of an actual
EVAL oracle; while the “persistent” emphasizes that, on input m, all (at most m) answers simulated by the algorithm will be
consistent with the same D̃.

34

As the scalar property to estimate considered is invariant by permutation, the rest is relatively straight-
forward: after calling this algorithm with a suitable parameter ε′, it suffices to compute the value of the
property on the (explicit) distribution it outputs. The only caveat with this approach is that this “suitable
parameter” has to be chosen as a function of the property itself, to guarantee the computed estimate be close
to the target value. That is, it is only practical for scalar properties ϕ that are “weakly continuous” with
regard to total variation distance – specifically, those for which there exists a small enough function γ(n, ε)
such that |ϕ(D1)− ϕ(D1)| ≤ γ(n, ε) whenever dTV(D1, D2) ≤ ε.
Remark 4.1.19. As described for instance in [Val11], a simple calculation shows that both entropy and support
size are weakly continuous in that sense, for γ(n, ε) respectively Θ(ε logn) and εn (recall that in the support
size estimation problem, it is assumed all non-zero probabilities are at least 1

n).

Tolerant uniformity testing. The first idea underlying the distance estimation procedure of [CRS15] is
to rewrite the total variation distance between D and U as

dTV(D,U) =
∑

x : D(x)< 1
n

(
1
n
−D(x)

)
= 1
n

∑
x∈Ω

ψD(x) = Ex∼U [ψD(x)]

where ψD(x) = 1− nD(x) if D(x) < 1/n and 0 otherwise takes values in [0, 1] (as we shall see in Section 4.2,
this technique is extensively used in the Dual setting, where one has access to an evaluation (EVAL) oracle).
From this, if one was able to approximate efficiently and accurately enough ψD(x) for a uniformly random x,
it would be straightforward to estimate the expected value within an additive ε via sampling.

As the contribution of ψD(x) is negligible when D(x) is too small or too big, the algorithm can moreover
restrict itself to get good (multiplicative) approximations only for those elements satisfying D(x) ∈ [εn ,

1
εn].

But now, if it had even in hand one such “reference” element r with D(r) ∈ [εn ,
1
εn], the task would become

very easy: making Oε(1) PAIRCOND queries on {x, r} would automatically yield such estimates for the x’s
that matter, and reveal those whose probability weight is too large or too big to be considered. Having
reduced the original question to that of finding such a reference element, Canonne et al. proceed to the core
of the proof, i.e. to describe and analyze a subroutine Find-Reference for this specific task (whose cost
overall dominates the query complexity of the algorithm). If this subroutine succeeds in finding a suitable
r ∈ Ω, it returns it along with an estimate of its weight D(r); otherwise, it must be the case that there is
no or very few good reference point to be found, meaning that the distance to uniformity is very close to 1
anyway.

A specific Ω
(√

log logn
)
lower bound. After establishing a general polylog(n)-query upper bound for

symmetric properties, [CFGM13] show that no such approach can ever yield constant query complexity, by
describing a particular symmetric property, that of being an “even uniblock distribution,” that cannot be
tested by any o

(√
log logn

)
-query COND algorithm. The property in question is the set of all distributions

D ∈ ∆(Ω) that are uniform on a subset of size 22k for some 1
8 logn ≤ k ≤ 3

8 logn. Using a technique they
introduce (and already briefly mention in Section 4.1.2), they are able to restrict the argument against
a specific class of testing algorithms, the core adaptive testers, and show that no such algorithm is able
to distinguish between an even uniblock distribution D (with parameter k) and another randomly chosen
distribution D′, also uniform but on a subset of size 22k+1.

The key idea of core adaptive testers is to reduce (without loss of generality) the possible actions the
tester can take, to get a more manageable adversary to argue against. This in particular hinges on the fact
that the property of interest in symmetric, in a way that is somewhat reminiscent of an analogue restriction
to histograms and fingerprints in the SAMP model (very roughly, instead of the actual samples the algorithm
only sees the relations between these samples and the sets queried so far). By doing so, one can eventually
reduce dealing with a general, adversary COND tester to proving lower bounds against a “deterministic”7

7We put here the word determistic between quotes, as core adaptive algorithms still include a probabilistic component –
unlike the corresponding definition for non-adaptive algorithms. That is, their behavior does involve some random coin tosses,
but of a very limited and fully defined type. (See [CFGM13, Definition 7.1.6].)

35

decision-tree-like tester. (Even after doing so the remaining steps of the proof are very intricate, and proceed
by induction on the height of this tree in order to rule out with high probability some “bad events” – that is,
events that would cause the testing algorithm to learn too much from the samples it got.)
Remark 4.1.20. The fact that the lower bounds of Theorem 4.1.10 and Theorem 4.1.18 are similar is not a
coincidence, but rather inherent to the technique used. Indeed, the core adaptive tester approach both proofs
rely on cannot get past this

√
log logn barrier, which derives from the size of the decision tree representing

the tester (namely, q22q2 for a q-query tester).

4.1.5 Non-adaptive testing
In this section, we turn to the question of non-adaptive testing in the conditional oracle model, restricting
ourselves to algorithms that must be able to specify all the queries they will perform before interacting
with the oracle. (In doing so, we set aside the issue of zero-weight query sets, discussed in Section 4.1.1, as
definitional choice of the model.)

This specifically has been one of the focuses of [CFGM13], where upper and lower bounds on uniformity
and identity testing are shown. Subsequent work of Acharya, Canonne, and Kamath [ACK14] improved
their lower bound of Ω(log logn) on non-adaptive uniformity testing to Ω(logn), effectively settling the
query complexity of this question as logΘ(1) n. Quite interestingly, this demonstrates that even removing the
flexibility and power coming from adaptivity, COND testing algorithms still provide exponential improvements
over their SAMP counterparts.

Theorem 4.1.21 (Testing uniformity non-adaptively). There exists an algorithm which, given COND access
to an unknown distribution D ∈ ∆(Ω), satisfies the following. On input ε ∈ (0, 1], it makes O

(
log25/2 n
ε19

)
non-adaptive queries to D, and
• if D = U , the algorithm outputs ACCEPT with probability at least 2/3;
• if dTV(D,U) > ε, the algorithm outputs REJECT with probability at least 2/3.

Furthermore, no COND algorithm making o(logn) queries can correctly perform this task with probability at
least 2/3, even for ε = Ω(1).

Moreover, it is worth noting that, similarly to its adaptive counterparts from Section 4.1.2, this non-
adaptive tester enjoys some weak tolerance; in the sense that it also accepts distributions that are close to
uniform in `∞ distance (see [CFGM13, Theorem 4.1.2] for a formal statement). This turns to be particularly
useful: indeed, Chakraborty et al. then employ standard bucketing techniques (as in Section 3.2.2) to reduce
identity testing to O(logn/ε) instances of “weakly tolerant uniformity testing,” for which their uniformity
tester can be used:

Theorem 4.1.22 (Testing identity non-adaptively). There exists an algorithm which, given the full speci-
fication of D∗ ∈ ∆(Ω) and COND access to an unknown distribution D, satisfies the following. On input
ε ∈ (0, 1], it makes Õ

(
log27/2 n
ε20

)
non-adaptive queries to D, and

• if D = D∗, the algorithm outputs ACCEPT with probability at least 2/3;
• if dTV(D,D∗) > ε, the algorithm outputs REJECT with probability at least 2/3.

(Note that, as usual, the lower bound for uniformity testing also applies to identity testing.)

A poly(logn, 1/ε) upper bound. We here give an high-level description of the near-uniformity tester
of Theorem 4.1.21. The algorithm works in two stages: in the first one, it tries to “catch” and detect, by
choosing uniformly random subsets of Ω with varying sizes, an element a which has much higher probability
weight than the others elements of this random subset. In the second stage, it takes another uniformly
random subset of polylogarithmic size, and applies a standard uniformity tester (with very small accuracy
parameter) to verify that D is indeed uniform on this subset.

36

More specifically, the proof relies on the observation that if D is far from uniform one of the following must
hold. In the first case, there is at least one particular size s of the form s = 2j with log logn ≤ j ≤ logn such
that a “typical” uniformly random subset S of size s will contain a heavy element for the distribution DS (i.e.,
one with probability much greater than 1/|S|). If so, by performing log2 n queries on this set the algorithm
will then observe some (draw the same element at least twice), which by the setting of the parameters would
not happen if D were uniform (for any of the sizes s considered).

If this does not happen, then it must be the case that, on a uniformly random subset U of size
poly(log(n), 1/ε), DU has with high probability non-negligible distance from uniform namely, at least
ε′

def= ε/|U |. But then, invoking the (SAMP) identity tester of Theorem 3.2.5 on DU with accuracy parameter
ε′ ensures the tester will detect this discrepancy.

A brief glance at the lower bounds. The original Ω(log logn) lower bound of Chakraborty et al. relies
on their notion of core adaptive tester, suitably modified to the non-adaptive case, against which they analyze
a lower bound construction. In this construction, the yes-instance is the uniform distribution, while in the
no-instance case it is a randomly chosen “even uniblock distribution” (as defined in the proof of the symmetric
property testing lower bound, Theorem 4.1.17). While the core non-adaptive tester argument is simpler here
than in the adaptive case (in particular, it is not longer necessary to see and analyze the tester as a decision
tree), the bound it yields is not tight. Later work by [ACK14] improves this bound to Ω(logn), using more
elementary arguments.

4.1.6 Tips and tricks
As in the corresponding section for the standard sampling model, we give here a non-exhaustive list of useful
things to consider when working in the conditional query setting.

Sanity checks for lower bounds. As before, when trying to prove a lower bound always make sure first
it would not violate a known upper bound. Specifically, check that the distance to uniformity of your yes-
and no-instances is the same: otherwise, Oε(1) (PAIRCOND) queries will suffice to distinguish them.

Use known low-level primitives. Either because they encapsulate pesky details and allow you to focus on
the high-level ideas (e.g., the Compare subroutine of [CRS15] to estimate ratios of the form D(X)/D(Y)), or
because they may provide features you need without having reinventing the wheel (Estimate-Neighborhood,
Find-Reference (ibid.))

Use known high-level primitives. The Oε(1)-query PAIRCOND algorithm for estimating distance to
uniformity, the Approx-Eval (COND) and Explicit Persistent Sampler (INTCOND) procedures of [CRS15]
and [CFGM13, Section 5.2] are powerful tools – the last two effectively providing (almost) the power of an
EVAL oracle.

`∞ as feature. Many known testers provide some weak tolerance with regard to `∞, e.g. because they work
by estimating ratios: this sometimes turn out to be very handy, as shown in the proofs of Theorem 4.1.13
and Theorem 4.1.22.

Adaptivity is treacherous. Be careful when proving lower bounds – adaptivity is something quite difficult
to get a grip on. To deal with them, only a few techniques are available so far, and are worth thinking
of: reductions to easier problems (see Theorem 4.1.3), hybridization (4.1.5), and core adaptive testers
(Theorem 4.1.10 and 4.1.17).

Symmetric properties. For many of them, a good upper bound can be derived from the INTCOND
“learner-up-to-permutation” of [CFGM13] (Theorem 4.1.18).

37

4.2 Evaluation Queries
This section covers results pertaining to three related models, where the algorithms are granted query access
to the distribution, possibly in addition to the usual sampling access. While this type of access gives to
distribution testing a stronger resemblance to – say – testing of Boolean functions, it is useful to keep in
mind that the underlying distance measure remains total variation (while the functional setting is usually
concerned with Hamming distance).

4.2.1 The setting(s)
The first type of oracle is an evaluation oracle, similar to the one commonly assumed for testing Boolean and
real-valued functions: that is, on query i ∈ Ω it provides the value of the probability density function (pdf) of
the underlying distribution D at i.

Definition 4.2.1 (Evaluation model [RS09]). Let D be a fixed distribution over Ω. An evaluation oracle for
D is an oracle EVALD defined as follows: the oracle takes as input a query element x ∈ Ω, and returns the
probability weight D(x) that the distribution puts on x.

The second is a dual oracle, which combines the standard model for distributions and the evaluation
oracle defined above. In more detail, the testing algorithm is granted access to the unknown distribution D
through two independent oracles, one providing samples of the distribution and the other query access to the
probability density function.

Definition 4.2.2 (Dual access model [BDKR05, GMV06, CR14]). Let D be a fixed distribution over Ω. A
dual oracle for D is a pair of oracles (SAMPD,EVALD) defined as follows: when queried, the sampling oracle
SAMPD returns an element x ∈ Ω, where the probability that x is returned is D(x) independently of all
previous calls to any oracle; while the evaluation oracle EVALD takes as input a query element y ∈ Ω, and
returns the probability weight D(y) that the distribution puts on y.

This type of dual access to a distribution was first considered (under the name combined oracle)
in [BDKR05] and [GMV06], where the authors address the task of estimating (multiplicatively) the en-
tropy of a distribution, or the f -divergence between two of them; before being reintroduced in [CR14] as one
of the main focuses of the paper. Finally, the last type of oracle we shall cover in this section also provides
dual access (both samples and evaluation queries) to the distribution; but this time query access is granted
to the cumulative distribution function (cdf).8

Definition 4.2.3 (Cumulative Dual access model [CR14]). Let D be a fixed distribution over [n]. A
cumulative dual oracle for D is a pair of oracles (SAMPD,CEVALD) defined as follows: the sampling oracle
SAMPD behaves as before, while the evaluation oracle CEVALD takes as input a query element j ∈ [n], and
returns the probability weight that the distribution puts on [j], that is D([j]) =

∑j
i=1D(i).

(This cumulative dual access, as defined, only applies to totally ordered domains.) Note that in the last two
definitions, one can decide to disregard the corresponding evaluation oracle, which amounts to falling back to
the standard sampling model. Furthermore, for distributions on Ω = [n] any EVALD query can be simulated
by (at most) two queries to a CEVALD oracle – that is, the cumulative dual model is at least as powerful as
the dual one.9

Remark 4.2.4 (On the relation to `p-testing for functions on the line). We note that testing distributions
with EVALD access is strongly reminiscent of the recent results of Berman et al. [BRY14] on testing functions

8To the best of our knowledge, such cumulative evaluation oracle CEVAL appears for the first time in [BKR04, Section 8].
9We mention that Canonne and Rubinfeld discuss in [CR14] a relaxation of these two models, where the queries to the

corresponding evaluation oracles are only answered within a multiplicative (1 ± γ) factor. They observe that many of their
algorithms can be made robust to such multiplicative noise, while maintaining their respective query complexity (see e.g. Table
1 of [CR14]). Such relaxation, however, does not preserve the relation between CEVAL and EVAL (one can no longer simulate
the latter from the former).

38

f : [n]→ [0, 1] with relation to `p distances. There are however two major differences, which prevent an easy
mapping between the two settings. First, the distance they consider is normalized (by a factor n in the case
of `1 distance), so that a straightforward translation between the two settings would imply replacing ε by
ε′ = ε/n, with a corresponding impact on the sample complexity. The second conceptual caveat is that the
distance to a class of [0, 1]-valued functions is not directly related to the distance to the analogous class of
distributions, which is in general a strict subset of the former.

4.2.2 Testing identity and closeness of general distributions
Unless specified otherwise, the results covered in this section originate from [CR14], where tight bounds on
the query complexity of testing and tolerant testing of uniformity, identity and closeness are given for the
Dual and Cumulative Dual settings.

Testing uniformity, identity and closeness

The first results we describe show that testing uniformity and identity (and, for the case of both dual models,
closeness) not only can be performed with a constant number of queries, but also that the dependence on ε
itself is as good as one could possibly hope for.

Theorem 4.2.5 (Testing uniformity). There exists an algorithm which, given EVALD or Dual (resp. CumulativeDual)
access to an unknown distribution D ∈ ∆(Ω) (resp. D ∈ ∆([n])), satisfies the following. On input ε ∈ (0, 1],
it makes O

(1
ε

)
queries to D, and

• if D = U , the algorithm outputs ACCEPT with probability at least 2/3;
• if dTV(D,U) > ε, the algorithm outputs REJECT with probability at least 2/3.

Furthermore, this query complexity is tight.

Theorem 4.2.6 (Testing identity). There exists an algorithm which, given the full specification of D∗ ∈ ∆(Ω)
and EVALD or Dual (resp. CumulativeDual) access to an unknown distribution D ∈ ∆(Ω) (resp. D ∈ ∆([n])),
satisfies the following. On input ε ∈ (0, 1], it makes O

(1
ε

)
queries to D, and

• if D = D∗, the algorithm outputs ACCEPT with probability at least 2/3;
• if dTV(D,D∗) > ε, the algorithm outputs REJECT with probability at least 2/3.

Furthermore, this query complexity is tight.

Theorem 4.2.7 (Testing closeness). There exists an algorithm which, given Dual (resp. CumulativeDual)
access to to two unknown distributions D1, D2 ∈ ∆(Ω) (resp. D1, D2 ∈ ∆([n])), satisfies the following. On
input ε ∈ (0, 1], it makes O

(1
ε

)
queries to D, and

• if D1 = D2, the algorithm outputs ACCEPT with probability at least 2/3;
• if dTV(D1, D2) > ε, the algorithm outputs REJECT with probability at least 2/3.

Furthermore, this query complexity is tight.

The first two upper bounds follow from a result of Rubinfeld and Servedio [RS09, Observation 24] which
applies to testing with EVALD queries: the idea is to query the probability weight given by D on samples
x drawn from the reference distribution D∗, hoping to detect some discrepancy between D∗(x) and D(x).
While this result does not transpose to testing closeness (as it relies on the ability to draw samples from at
least one of the two distributions), [CRS15] adapt this algorithm for testing closeness with their construction
of an Approx-Eval (see Section 4.1.6). In turn, this directly yields the testing algorithm of Theorem 4.2.7.

As for the lower bound, it follows from the hardness of distinguishing, even given Cumulative Dual access,
between the uniform distribution and a distribution where a random “chunk” of εn+ 1 consecutive elements
is perturbed, putting all its weight on the first element of the “chunk.”

39

Tolerant testing and distance estimation

distance estimation Given the results of the previous section, which establish that both dual models enabled
very efficient testing for the three related questions of uniformity, identity and closeness testing, it is natural
to wonder whether similar theorems hold for their tolerant testing counterpart. As shown in [CRS14], this
is indeed the case, and derives from a general technique already mentioned in the proof of Theorem 4.1.16:
namely, the ability to estimate at little cost quantities of the form Ex∼D[Φ(x,D(x)] for “nice” functions Φ.

Theorem 4.2.8. There exists an algorithm which, given EVALD or Dual (resp. CumulativeDual) access
to an unknown distribution D ∈ ∆(Ω) (resp. D ∈ ∆([n])), satisfies the following. On input ε1, ε2 ∈ (0, 1], it
makes O

(
1

(ε2−ε1)2

)
queries to D, and

• if dTV(D,U) ≤ ε1, the algorithm outputs ACCEPT with probability at least 2/3;
• if dTV(D,U) ≥ ε2, the algorithm outputs REJECT with probability at least 2/3.

Furthermore, this result query complexity is tight for both EVALD and dual accesses.

Theorem 4.2.9. There exists an algorithm which, given the full specification of D∗ ∈ ∆(Ω) and EVALD or
Dual (resp. CumulativeDual) access to an unknown distribution D ∈ ∆(Ω) (resp. D ∈ ∆([n])), satisfies the
following. On input ε1, ε2 ∈ (0, 1], it makes O

(
1

(ε2−ε1)2

)
queries to D, and

• if dTV(D,D∗) ≤ ε1, the algorithm outputs ACCEPT with probability at least 2/3;
• if dTV(D,D∗) ≥ ε2, the algorithm outputs REJECT with probability at least 2/3.

Furthermore, this result query complexity is tight for both EVALD and dual accesses.

Theorem 4.2.10. There exists an algorithm which, given Dual (resp. CumulativeDual) access to two
unknown distributions D1, D2 ∈ ∆(Ω) (resp. D1, D2 ∈ ∆([n])), satisfies the following. On input ε1, ε2 ∈ (0, 1],
it makes O

(
1

(ε2−ε1)2

)
queries to D1 and D2, and

• if dTV(D1, D2) ≤ ε1, the algorithm outputs ACCEPT with probability at least 2/3;
• if dTV(D1, D2) ≥ ε2, the algorithm outputs REJECT with probability at least 2/3.

Furthermore, this result query complexity is tight for dual access.

An O
(
1/ε2) upper bound. As previously mentioned, the upper bound (which only requires EVAL access,

as well as the ability to sample from at least one of the two distributions involved) follows from a general
technique extensively used in [CR14] and, to a lesser extent, in [GMV06]. In more detail, it boils down to
the ability to estimate with very few samples any quantity of the form Ex∼D [Φ(x,D(x))], for any bounded
function Φ. This in particularly applies to total variation distance (and, modulo some technical details, to
entropy and support size as well, as described in Section 4.2.4), observing that

dTV(D1, D2) =
∑
x∈Ω

D1(x)>D2(x)

|D1(x)−D2(x)| =
∑
x∈Ω

D1(x)>D2(x)

∣∣∣∣1− D2(x)
D1(x)

∣∣∣∣D1(x) = Ex∼D1 [Φ(x)]

where Φ(x) =def=
∣∣∣1− D2(x)

D1(x)

∣∣∣1{D1(x)>D2(x)} ∈ [0, 1] can be computed from evaluation queries.

An Ω
(
1/ε2) lower bound. The high-level idea of the lower bound is a reduction from distinguishing

between two differently biased coins (from independent tosses, which is “hard” by Fact D.1.3) to tolerant
testing of uniformity (in the dual access model). Specifically, given access to samples from a fixed coin
(promised to have one of these two biases), one can define a probability distribution D as follows: the domain
Ω = [n] is randomly partitioned into 1/ε2 pairs of buckets of equal number of elements. D will be uniform
within each bucket, and put equal total weight on every bucket pair (Bi, B′i). Yet, within each (Bi, B′i) the
probability weight is allocating according to a coin toss performed “on-the-fly” when a query is made by the

40

tolerant tester: so that either (a) D(Bi) = (1 + α)D(B′i), or (b) D(Bi) = D(B′i) (for some α function of the
unknown bias of the coin). Depending on the type of coin, the resulting distribution D will have different
distance from uniformity – so that a tolerant tester must be able to distinguish between the two cases.

We note that the lower bound only applies to the Dual access model (and thus a fortiori for EVAL access):
the case of Cumulative Dual access remains open, and showing for instance a o(1/ε2)-query tolerant testing
algorithm in this setting for any of the three problems above would result in a strong (and natural) separation
between the Dual and Cumulative Dual access models. (See Section 4.2.5 for a discussion of the current
separation results between these two.) More generally, we point out that proving lower bounds in these dual
models, as it was the case for the COND setting, is quite intricate: as far as the author of this survey is aware,
the only techniques available are by reductions such as the one above, or ad hoc proof involving a “needle
and haystack”-type argument.

4.2.3 Testing for structure: monotonicity
In this section, we consider in these new models the problem of testing whether an a priori arbitrary
distribution satisfies some structural condition, focusing on the particular case of monotonicity over [n]. The
results below originate from [Can15].

Theorem 4.2.11 (Testing monotonicity with Cumulative Dual). There exists an algorithm which, given
Cumulative Dual access to an unknown distribution D ∈ ∆([n]), satisfies the following. On input ε ∈ (0, 1], it
makes Õ

(1
ε4

)
queries to D, and

• if D ∈M, the algorithm outputs ACCEPT with probability at least 2/3;
• if dTV(D,M) > ε, the algorithm outputs REJECT with probability at least 2/3.

Furthermore, no algorithm taking o
(1
ε

)
samples can correctly perform this task with probability at least 2/3.

(We note that Canonne also describes a cumulative dual tolerant testing algorithm for monotonicity with
query complexity O(logn), although with a restriction on the range of parameters – see Table A.3.) Turning
to a weaker query model, [Can15] obtains (nearly) tight bounds, showing that the complexity of testing
monotonicity with EVAL queries is logarithmic:

Theorem 4.2.12 (Testing monotonicity with EVAL). There exists an algorithm which, given EVAL access
to an unknown distribution D ∈ ∆([n]), satisfies the following. On input ε ∈ (0, 1], it makes O

(
logn
ε + 1

ε2

)
queries to D, and
• if D ∈M, the algorithm outputs ACCEPT with probability at least 2/3;
• if dTV(D,M) > ε, the algorithm outputs REJECT with probability at least 2/3.

Furthermore, no algorithm taking o(logn
log logn) samples can correctly perform this task with probability at least

2/3, even for constant ε = 1/2.

The author additionally conjectures in [Can15] the “right” lower bound for this last problem to be Ω
(logn

ε

)
,

and establishes it for the special case of non-adaptive testing algorithms. We note, however, that nothing
specific to the Dual access model is known: that is, while a Oε(1)-query algorithm exists for cumulative dual,
no better upper bound than Oε(logn) as been shown for the dual setting.

The first result, Theorem 4.2.11, is the analogue of Theorem 4.1.12, and relies on the same approach
(tailored for the Cumulative Dual model). As for the second, Theorem 4.2.12, it derives for the positive side
from a result on learning monotone distributions in the EVAL setting, building on a modification of Birgé’s
argument for the SAMP model. The lower bound itself is obtained by reducing the task to a promise problem
on estimating the sum of a non-decreasing sequence, and invoking a result of Sariel Har-Peled [Har15] for the
latter. (Namely, the reduction works by “embedding” such a sequence, summing respectively to 1 or 1− ε,
into a distribution that is either (a) monotone, or (b) has a “bump” of weight ε at a randomly chosen element
– but is monotone besides this bump).

41

4.2.4 Testing (some) symmetric properties, with and without structure
In contrast to the previous types of oracle covered (see Section 3.5 and Section 4.1.4), no general approach to
testing symmetric properties is known for the evaluation, dual or cumulative dual access models.10 Some
specific results exist, however; specifically, for additive and multiplicative estimation of entropy and support
size.

The first results we mention relate to multiplicative estimation of entropy given Dual access to an unknown
distribution, provided a lower bound on this quantity is known. We then state the additive estimation
counterpart for entropy, as well as results pertaining to support size estimation (all in the dual access model).
Finally, we cover a result of [CR14] which shows that under a monotonicity constraint, entropy estimation
becomes exponentially easier with Cumulative Dual access (while Dual access queries do not help).

Theorem 4.2.13 (Upper bound [[GMV06], Theorem 5.2]). There exists an algorithm which, given Dual
access to an unknown distribution D ∈ ∆(Ω), satisfies the following. On input h > 0 and γ > 0, it makes
Θ
(logn
γ2h

)
queries to D, and outputs a value ĥ such that the following holds. Provided that H(D) ≥ h, then

ĥ ∈ [1− γ, 1 + γ]H(D) with probability at least 2/3.

Theorem 4.2.14 (Lower bound [[BDKR05], Theorem 18]). Fix γ > 0. In the Dual access model, any
algorithm that, given a parameter h > 0 and the promise that H(D) = Ω(h), estimates the entropy within a
multiplicative (1 + γ) factor must have sample complexity Ω

(logn
γ(2+γ)h

)
.

Turning to the task of additive estimation, one can obtain the following upper bounds for entropy and
support size, using similar techniques as for Theorem 4.2.13 and Section 4.2.2 (that is, carefully massaging
the property to estimate into a quantity of the form Ex∼D[Φ(x,D(x)] for bounded Φ):

Theorem 4.2.15. There exists an algorithm which, given Dual access to an unknown distribution D ∈ ∆(Ω),
satisfies the following. On input ∆1,∆2 ∈ (0, logn], it makes O

(1
(∆2−∆1)2 log2 n

∆2−∆1

)
queries to D, and

• if H(D) ≤ ∆1, the algorithm outputs ACCEPT with probability at least 2/3;
• if H(D) ≥ ∆2, the algorithm outputs REJECT with probability at least 2/3;

where H(D) = −
∑
x∈ΩD(x) logD(x) denotes the (Shannon) entropy of the distribution. Furthermore, this

query complexity is tight: no algorithm making o
(

log2 n
(∆2−∆1)2

)
queries can correctly perform this task with

probability at least 2/3, even when granted Cumulative Dual access.

The upper bound can be found in [CR14, Theorem 9], while the matching lower bound is due to Caferov
et al. [CKOS15].11

Theorem 4.2.16 ([CR14, Theorems 13 and 14],). There exists an algorithm which, given Dual access to
an unknown distribution D ∈ ∆(Ω) with the guarantee that D(x) ≥ 1/n for all x ∈ supp(D), satisfies the
following. On input ε1, ε2 ∈ (0, 1], it makes O

(1
(ε2−ε1)2

)
queries to D, and

• if |supp(D)| ≤ ε1n, the algorithm outputs ACCEPT with probability at least 2/3;
• if |supp(D)| ≥ ε2n, the algorithm outputs REJECT with probability at least 2/3;

Furthermore, this query complexity is tight: no algorithm taking o
(1

(ε2−ε1)2

)
samples can correctly perform

this task with probability at least 2/3, even when granted Cumulative Dual access.

[CR14] originally proved both upper and lower bounds in the Dual model; [CKOS15] later extended the
latter to Cumulative Dual access as well. Observe that the bound stated in Theorem 4.2.15 differs from
Theorem 4.2.13 in some regimes of parameters, e.g. ε2 − ε1 = γh > 1 and h > 1; and does not require any

10This statement is actually only partially correct, and follows from our definition of additive estimation of scalar properties.
Indeed, Guha et al. describe in [GMV06] general results, in the Dual access model, on multiplicative estimation of any symmetric
scalar property that can be written as an f-divergence.

11It is worth noting that [CKOS15] also considers the related question of estimating the Rényi entropy; for which the authors
provide matching upper and lower bounds.

42

lower bound h > 0 as input. The lower bounds of Theorem 4.2.15 and Theorem 4.2.16 proceed (once again)
by a reduction to the problem of distinguishing a fair from a biased coin, where the reduction is performed
“on-the-fly” to answer the dual (or cumulative dual) queries while asking for only one coin toss at a time.

Leveraging structure: entropy of (close to) monotone distributions. It is reasonable to ask if
the stronger queries granted in the Cumulative Dual access model could help for these estimation tasks.
Intuitively, this should be the case whenever the distribution presents some additional property (related to
an underlying total order) that cumulative queries can leverage, as in the case of monotonicity. Canonne
and Rubinfeld establish in [CR14] the following two results, establishing that cumulative queries do enable
significant improvements over the Dual access setting in specific cases:

Theorem 4.2.17. In the Cumulative Dual access model, there exists an algorithm that estimates the entropy
of distributions (on [n]) guaranteed to be O(1/ logn)-close to monotone to an additive ∆, with sample
complexity Õ

(
log2 logn

∆ /∆2
)
.

Theorem 4.2.18. In the Dual access model, any algorithm that estimates the entropy of distributions (on
[n]) guaranteed to be O(1/ logn)-close to monotone within an additive constant must make Ω(logn) queries
to the oracle.

On one hand, the upper bound draws again on properties of the Birgé decomposition to reduce the
effective domain size to logarithmic, while preserving the ability to simulate Cumulative Dual access to
this reduced distribution. On the other hand, the lower bound of Theorem 4.2.18 proceeds by building two
families of instances with very different support size, enough for the corresponding entropies to differ by a
constant. However, in both types of instances (1− 1/ logn) probability weight is put on the very first element
of the domain, effectively “masking” the rest of the support from SAMP queries (while estimating its size
with EVAL queries amounts to finding a needle in a haystack).

4.2.5 Separating the three models
One immediate question is whether the ability to query the cumulative distribution function, rather than
only the probability mass function, enables significant savings for some natural properties: that is, is there
a gap between Cumulative Dual and Dual access? We first observe that it is easy to obtain a separation
between EVAL and Dual access models, although for a contrived testing problem.12 Namely, consider the
property P defined as the set of distributions D ∈ ∆(Ω) putting equal weight on two distinct elements of the
domain. Given Dual (or, for this matter, even SAMP) access, a constant number of queries suffices to test P ;
while any EVAL testing algorithm must perform Ω(n) queries to distinguish a random distribution in P from
(say) a distribution putting all its weight on a single element. (Along with the sample complexity of testing
uniformity, this also shows that the EVAL and SAMP models are incomparable.)

Separating the respective power granted by Dual and Cumulative Dual accesses, however, is much trickier.
One possible candidate could be monotonicity testing, where the cumulative dual setting access enjoys a
constant upper bound (but no Oε(1)-query algorithm is known for dual access). Another would be tolerant
uniformity or identity testing, as hinted in Section 4.2.2: specifically, by proving a o(1/ε2) upper bound in the
Cumulative Dual access model. Intuitively, any such separation should take advantage of the underlying total
order of the domain, as this is the crucial aspect vindicating the Cumulative Dual setting. A preliminary
result of this sort was obtained in [CR14, Section 4.2], where the authors show that estimating the entropy
of distributions (very) close to monotone can be done with Õ

(
(log logn)2) dual queries, while Ω(logn) are

required in the dual access model.
12One can extend this example to the more natural problem of support size estimation, where both Cumulative Dual and Dual

access have a Oε(1)-query algorithm. Another (weaker) separation between EVAL and Cumulative Dual access, for a natural
property, also follows from the results of Section 4.2.3 on monotonicity testing.

43

4.2.6 Tips and tricks
As in the previous models, we give here an (alas) non-comprehensive list of useful things to consider when
working in the extended access settings.

Reductions for lower bounds. To the best of the author’s knowledge, the two main approaches to obtain
lower bounds are either by a reduction to a simpler and well-understood problem (e.g., the biased coin one,
as in Theorem 4.2.8 and Theorem 4.2.16), or by separately “disabling” both oracles and arguing against the
evaluation one via a needle-and-haystack argument. Note that once again, a key aspect in the reductions or
custom-tailored arguments is to handle the case of adaptive queries.

Use the Φ Hammer. As illustrated in Section 4.2.2 and Section 4.2.4, a general technique for getting
upper bounds in the Dual model is the ability to estimate “cheaply” any quantity Ex∼D[Φ(x,D(x)], as long
as Φ is a bounded function.

Leverage the total order. For the specific case of Cumulative Dual access, Section 4.2.3 and Theo-
rem 4.2.15 illustrate how to take advantage of results such as the Birgé decomposition to reduce the problem
to a much smaller domain. What is particularly useful here is the “self-reducibility” of Cumulative Dual access
with relation to flattenings: that is, the ability to simulate cumulative dual oracle access to any histogram D′

induced by D on a known partition, given cumulative dual access to D.

4.3 Collections of distributions
This section covers the models and results of Levi, Ron, and Rubinfeld [LRR13, LRR14], pertaining to (joint)
testing of properties of several distributions.

4.3.1 The setting
Introduced in [LRR13], this framework is concerned with properties of collections of m distributions over the
same domain Ω.13 Writing such family as D = (D1, . . . , Dm) ∈ ∆(Ω)m, the distance between two collections
D,D′ is defined as

dist(D,D′) def= 1
m

m∑
i=1
‖Di −D′i‖1 (4.2)

and the distance of D to a property P ⊆ ∆(Ω)m is correspondingly dist(D,P) = infD′∈P dist(D,D′).

Definition 4.3.1 (Sampling model). Fix a collection D ∈ ∆(Ω)m. A sampling oracle for D, denoted SAMPmD,
is defined as follows: when queried, SAMPmD first selects i ∈ [m] uniformly at random. Then, it returns an
element x ∈ Ω, where the probability that x is returned is Di(x). Both the choice of i and x are made
independently of all previous calls to the oracle.

Definition 4.3.2 (Query model). Fix a collection D ∈ ∆(Ω)m. A query oracle for D, denoted QCONDmD,
is defined as follows: the oracle takes as input a query i ∈ [m], chosen by the algorithm. When queried,
QCONDmD returns an element x ∈ Ω, where the probability that x is returned is Di(x) independently of all
previous calls to the oracle.

Levi, Ron, and Rubinfeld also consider a generalization of Definition 4.3.1 where the choice of i ∈ [m] is
not uniform, but instead follows an underlying distribution W over [m]. Two variants of the framework can
then be studied: the known-weights sampling model, where the algorithm is provided as input with the full

13Note that we assume both m and Ω to be known to the algorithms.

44

description of W ; and the unknown-weights model sampling model, where it has no prior knowledge of W . In
both cases, the distance criterion from Equation 4.2 becomes

dist(D,D′) =
m∑
i=1

W (i)‖Di −D′i‖1. (4.3)

4.3.2 Relation to other models
Our choice of notations SAMPmD, QCONDmD (specific to this survey) is not innocent, and hints at connections
between this testing framework and other settings already described. Specifically, we first observe that as
defined in Equation 4.2 (or more generally in Equation 4.3) the distance between two collections D,D′ can
be rewritten as

dist(D,D′) =
∑
i∈[m]

∑
x∈Ω
|W (i)Di(x)−W (i)D′i(x)| = 2dTV(DW,DW ′) (4.4)

where DW (resp. DW ′) is the distribution on [m]× Ω such that DW (i, x) = W (i)Di(x) (resp. DW ′(i, x) =
W (i)D′i(x)). Therefore, testing a property of collections of distributions amounts to testing a (related)
property of single distributions, but on a product space. This connection enables [LRR13] to derive bounds
on testing independence in the SAMP model from their results on testing equivalence in the collection setting
(see Section 3.3.5 and Section 4.3.3).

A byproduct of this rephrasing is that the query model can be seen as a restricted type of conditional
access to the distribution: i.e., one where the algorithm can only condition on sets of the form {i} × Ω.

4.3.3 Testing equivalence and clusterability
This section describes the results of [LRR13] on testing equivalence and clusterability of collections of
distributions in both sampling and query models; as well as their implications for testing independence in the
standard sampling setting. Note that we merely here provide the statements of the results and necessary
definitions.

For collections of distributions, the equivalence property is defined as

Peq
n,m

def= { (D∗, . . . , D∗) : D∗ ∈ ∆(Ω) } ⊆ ∆(Ω)m

where as before n = |Ω|. That is, D ∈ Peq
n,m if all its m distributions are identical: D1 = · · · = Dm.

Theorem 4.3.3. There exists an algorithm which, given SAMPm access to an unknown collection of
distributions D ∈ ∆(Ω)m, satisfies the following. On input ε ∈ (0, 1], it takes Õ

(
n2/3m1/3 +m

)
· poly(1

ε)
samples from D, and
• if dist

(
D,Peq

n,m

)
≤ Õ

(
ε4/
√
n
)
, the algorithm outputs ACCEPT with probability at least 2/3;

• if dist
(
D,Peq

n,m

)
> ε, the algorithm outputs REJECT with probability at least 2/3.

Furthermore, this algorithm also works in the unknown-weights sampling model.

Theorem 4.3.4. There exists an algorithm which, given SAMPm access to an unknown collection of
distributions D ∈ ∆(Ω)m, satisfies the following. On input ε ∈ (0, 1], it takes Õ

(
n1/2m1/2 + n

)
· poly(1

ε)
samples from D, and
• if dist

(
D,Peq

n,m

)
≤ Õ

(
ε3/
√
n
)
, the algorithm outputs ACCEPT with probability at least 2/3;

• if dist
(
D,Peq

n,m

)
> ε, the algorithm outputs REJECT with probability at least 2/3.

Furthermore, this algorithm also works in the known-weights sampling model.

45

(For the detailed statement of the weak tolerance guarantee provided by these two algorithms, the reader is
referred to [LRR13], Theorems 6.11 and 6.13 respectively.) The main technical contributions of this work lie in
proving (nearly) tight lower bounds on testing Peq

n,m in their sampling model, and as a corollary a corresponding
lower bound for testing independence in the (standard) SAMP setting (as covered in Section 3.3.5). We briefly
mention the key use of Poissonization in establishing Theorem 4.3.5.

Theorem 4.3.5. There exist absolute constants ε0 > 0 and c > 0 such that the following holds. Any
algorithm which, given SAMPm access to an unknown collection of distributions D ∈ ∆(Ω)m, distinguishes
with probability at least 2/3 between (a) D ∈ Peq

n,m and (b) dist
(
D,Peq

n,m

)
> ε0 must have sample complexity

Ω
(
n2/3m1/3), as long as n ≥ cm logm.

Theorem 4.3.6. There exists an absolute constant ε0 > 0 such that the following holds. For any m ≥ 64, any
algorithm which, given SAMPm access to an unknown collection of distributions D ∈ ∆(Ω)m, distinguishes
with probability at least 2/3 between (a) D ∈ Peq

n,m and (b) dist
(
D,Peq

n,m

)
> ε0 must have sample complexity

Ω
(
n1/2m1/2).
The connection to independence testing in the SAMP setting is provided by [LRR13, Lemma 3.18]:

Lemma 4.3.7 ([LRR13, Lemma 3.18]). If there exists an algorithm for testing independence of an unknown
distribution Q ∈ ∆(Ω× [m]) which takes q(m,n, ε) samples from SAMPQ, then there is an algorithm for
testing equivalence of collections of distributions D ∈ ∆(Ω)m in the (unknown-weights) sampling model.

Coming back to upper bounds, a generalization of Peq
n,m is the (k, β)-clusterability property Pclust

n,m,k,β , where
instead of the m distributions D1, . . . , Dm all being equal to one given D∗ it is only required that they can
be partitioned into k disjoint clusters S1, . . . , Sk such that dTV(Di, D

∗
`) ≤ β for all i ∈ S` (for some choice

of D∗1 , . . . , D∗k). In particular, k = 1 and β = 0 yield Pclust
n,m,1,0 = Peq

n,m where as before n = |Ω|. [LRR13]
describes a tester for (k, β)-clusterability in the query model, which in particular implies a similar tester for
equivalence:

Theorem 4.3.8. There exists an algorithm which, given QCONDm access to an unknown collection of
distributions D ∈ ∆(Ω)m, satisfies the following. On input ε ∈ (0, 1] such that ε > 8β

√
n, it makes

Õ
(
kn2/3) · poly(1

ε) queries to D, and
• if D ∈ Pclust

n,m,k,β, the algorithm outputs ACCEPT with probability at least 2/3;

• if dist
(
D,Pclust

n,m,k,β

)
> ε, the algorithm outputs REJECT with probability at least 2/3.

4.3.4 Testing for similar means
This section touches on the results of [LRR14] on testing γ-similarity of means of collections of distributions
in both sampling and query models: that is, whether all m means of the distributions of D are within an
interval of size γn. In more detail, the γ-similarity of means of collections of distributions (on Ω = [n]) is
defined as

Pµγ,n
def= { (D1, . . . , Dm) : |µ(Di)− µ(Dj)| ≤ γn ∀i, j ∈ [m] } ⊆ ∆([n])m

where γ > 0 and µ(D) def= Ex∼D[x] denotes the mean of D ∈ ∆([n]). That is, D ∈ Pµγ,n if its m distributions
have all means within an interval of size γn.

For this property, Levi, Ron, and Rubinfeld establish upper and lower bounds in both the query and
(uniform weights) sampling accesses, showing in particular that in the latter a strong dependence on m was
unavoidable.

Theorem 4.3.9. There exists an algorithm which, given QCONDm access to an unknown collection of
distributions D ∈ ∆([n])m, satisfies the following. On input ε ∈ (0, 1] and γ > 0, it makes Õ

(1
ε2

)
queries

(independent of γ) to D, and
• if D ∈ Pµγ,n, the algorithm outputs ACCEPT with probability at least 2/3;

46

• if dist
(
D,Pµγ,n

)
> ε, the algorithm outputs REJECT with probability at least 2/3.

Furthermore, this sample complexity is nearly tight: any no algorithm making o
(1
ε2

)
queries can correctly

perform this task with probability at least 2/3.

Theorem 4.3.10. There exists an algorithm which, given SAMPm access to an unknown collection of
distributions D ∈ ∆([n])m, satisfies the following. On input γ > 0 and ε ∈ (0, 1] such that ε = Ω̃

(
1

logm

)
, it

takes Õ
(1
ε2

)
m1−Ω̃(ε2) samples from D, and

• if D ∈ Pµγ,n, the algorithm outputs ACCEPT with probability at least 2/3;
• if dist

(
D,Pµγ,n

)
> ε, the algorithm outputs REJECT with probability at least 2/3.

Furthermore, no algorithm taking less than (1− γ)m1−Õ
(√

ε/γ
)
samples can correctly perform this task with

probability at least 2/3.

The lower bound of Theorem 4.3.9 relies on a reduction to our favorite problem – distinguishing biased
from fair coins. The lower bound of Theorem 4.3.10 is more involved, however, and hinges as a first step on
the design of two families of distribution with matching first moments (and “therefore” hard to distinguish).
This construction builds on properties of Chebyshev polynomials. (As for the upper bound, it essentially
works by simulating the algorithm of Theorem 4.3.9, i.e. obtaining enough collisions in the samples to provide
query access to D.)

Extensions. In the last part of their work, the authors also study the specific case of Ω = {0, 1} (i.e., n = 2),
where they are able to obtain algorithms (in the sampling access setting) with better sample complexity.
(One of these upper bounds building on a result of [LRR13] for testing equivalence, Theorem 4.3.4.) They
also consider testing similarity of means under a different metric, the Earthmover distance, and argue their
results convey in this setting. Finally, they describe a generalization of Pµγ,n, extending it to several clusters
of similar means (k-clusterability of means).

4.4 Competitive Testing
This section describes the model of competitive testing introduced and considered in [ADJ+11, ADJ+12,
AJOS13], where the testing algorithm has to compete with the sample complexity of an almost omniscient
“ground-truth tester.” That is, on any instance of a property testing problem, the sample complexity of the
algorithm is compared to that of an ad hoc algorithm specifically designed for this instance, a “genie” which
knows almost everything there is to know beforehand.

4.4.1 The setting
The type of access to the distributions is almost the same as in the SAMP setting: that is, the algorithms are
provided with independent samples from one or several distributions. The difference now lies in that they are
not given as input a parameter ε ∈ (0, 1), but instead an integer m corresponding to the number of samples
they are allowed to take (i.e., that are available). The following definition will be necessary to define what
“competitive” means – i.e., with regard to what a tester has to compete:

Definition 4.4.1. Let P ⊆ ∆(Ω) be a property of distributions, and fix m ≥ 1, δ ∈ (0, 1). An instance
D ∈ ∆(Ω) is said to be (m, δ)-testable if there exists an algorithm T ∗ with the following guarantee. For any
D′ ∈ P such that D 6= D′, on input (the full descriptions, up to a permutation of the domain,14 of) D and
D′, as well as a sequence s1, . . . , sm of i.i.d. samples from an unknown D̃ ∈ {D,D′}:
• if D̃ = D, T ∗ outputs ACCEPT with probability at least 1− δ;

14We specify that the descriptions of D and D′ are only provided up to relabeling of the elements, since the actual “identity”
of the samples does not matter here: i.e., for any permutation π of Ω, (D ◦ π,D′ ◦ π) and (D,D′) have the same description.

47

• if D̃ = D′, T ∗ outputs REJECT with probability at least 1− δ.

(As before, a similar definition holds for properties over pairs or tuples of distributions.)

Given this, we are in position to state what a competitive testing algorithm is:

Definition 4.4.2. Let P ⊆ ∆(Ω) be as above, and ψ : N → N be a non-decreasing function. A testing
algorithm T for P is said to be ψ-competitive if the following holds. Given SAMP access to an unknown
distribution D ∈ ∆(Ω) and on input m ≥ 1, T takes ψ(m) samples from D, and
• if D ∈ P, it outputs ACCEPT with probability at least 2/3;
• if D /∈ P, it outputs REJECT with probability at least 2/3;

as long as D is (m, 1/3)-testable. (In particular, if D is not (m, 2/3)-testable any behavior of T is acceptable.)

The goal is therefore to obtain testing algorithms for as slowly growing a function ψ as possible – with the
identity function being the Holy Grail. Moreover, note that no dependence on n = |Ω| is explicitly mentioned:
in particular, Ω could be infinite or unknown.
Remark 4.4.3. We only describe here the gist of the results from [ADJ+11, ADJ+12]; in particular, the papers
do contain more observations and useful lemmas, relating (m, 1/3)-testability to general (m, δ)-testability as
well as results on the useful notions of patterns and profiles of sequences of samples (see next section for a
brief mention of the latter).

4.4.2 Testing closeness of general distributions
For the problem of closeness testing, the property P is as before defined as

P = { (D,D) : D ∈ ∆(Ω) } ⊆ ∆(Ω)×∆(Ω)

and an instance (D1, D2) /∈ P is (m, δ)-different if there exists an algorithm with sample complexity m which,
for all D ∈ ∆(Ω) and given as input the full descriptions (up to a permutation of the domain) of D1, D2
and D, can distinguish with probability at least 1− δ between (D1, D2) and (D,D). An arbitrary instance
(D1, D2) is then (m, δ)-testable if D1 = D2 or it is (m, δ)-different.

First considered in [ADJ+11], where a competitive bound of ψ(m) = O
(
m3) is achieved, closeness testing

is then addressed in [ADJ+12] (along with the related question of classification, where two references oracles
SAMPD1 and SAMPD2 are provided, along with a candidate SAMPD where D is promised to be either D1
or D2: the goal being to decide which of the two cases holds.) In this work, Acharya et al. establish the
following result:

Theorem 4.4.4 (Competitive Closeness Testing). There exists an algorithm which, given SAMP access to two
unknown distributions D1, D2 ∈ ∆(Ω), satisfies the following. On input m ≥ 1, it takes ψ(m) = O

(
m3/2 logm

)
samples from D1 and D2, and
• if D1 = D2, the algorithm outputs ACCEPT with probability at least 2/3;
• if D1 6= D2, the algorithm outputs REJECT with probability at least 2/3;

as long as (D1, D2) is (m, 1/3)-testable. Furthermore, any ψ′-competitive testing algorithm must satisfy
ψ′(m) = Ω̃

(
m7/6).

The upper bound is obtained by an algorithm combining a (variant of) χ2-test and a test based on the
“profiles” of the two sequences of samples obtained (i.e., a statistic summarizing all the information about
multiplicities and collisions among the samples, very similar in that to the notions of fingerprint and histogram
from Section 3.5). What the authors show is that if the distributions are (m, δ)-different, then at least of
these two tests will detect it – namely, if the “reference genie” focuses on the samples with big probabilities,
the χ2-test will capture the discrepancy; while if the genie mostly uses the samples with low probabilities,
the profile-based test will perform well.

48

For the lower bound, it “suffices” to give a family F of pairs of instances (D1, D2) along with a specific
algorithm that can distinguish (D1, D2) from (say) (D1, D1) with a number m of samples given the description
of D1, D2; but such that no algorithm can do this with less than Ω̃

(
m7/6) without this description. In

more detail, [ADJ+12] defines a fixed distribution D over m1/3/ logm elements, as well as a family Q of
2m1/3/(2 logm) distributions that are obtained by randomly perturbing D independently on every pair of
consecutive elements. An instance is then a pair (D,D′) where D′ is chosen uniformly at random in Q
(so that the hard problem is essentially testing identity to D). The authors show that an algorithm that
knows D′ can distinguish (D,D′) from (D,D) with m samples; but (from a minimax argument à la Le
Cam – see Section D.5) an algorithm which only knows that D′ is in Q must use Ω̃

(
m7/6) samples.15

4.4.3 Testing with structure
Subsequent work of Acharya, Jafarpour, Orlitsky, and Suresh [AJOS13] in this framework focuses on the
task of testing uniformity of monotone distributions (without loss of generality, over the domain Ω = [0, 1]).
In this setting, a monotone distribution D ∈ ∆([0, 1]) is (m, δ)-testable if there exists an algorithm with
sample complexity m which, given as input the full description of D (up to a permutation of the domain),
can distinguish with probability at least 1− δ between D and U([0, 1]).

By leveraging a binning technique based on a decomposition of monotone distributions reminiscent of
Birgé’s and once again a χ2-test-type testing algorithm, they manage to establish a tight bound on the
competitiveness of any algorithm for this question:

Theorem 4.4.5 (Competitive Uniformity Testing of Monotone Distributions). There exists an algorithm
which, given SAMP access to an unknown monotone distribution D ∈ ∆([0, 1]), satisfies the following. On
input m ≥ 1, it takes ψ(m) = O

(
m
√

logm
)
samples from D, and

• if D = U([0, 1]), the algorithm outputs ACCEPT with probability at least 2/3;
• if D 6= U([0, 1]), the algorithm outputs REJECT with probability at least 2/3;

as long as D is (m, 1/3)-testable. Furthermore, this is tight: any ψ′-competitive testing algorithm must satisfy
ψ′(m) = Ω

(
m
√

logm
)
.

(The lower bound is proven by defining, given m ≥ 1, an explicit family Q of monotone distributions such
that each fixed, specified D ∈ Q can be distinguished from uniform using m samples, but yet information-
theoretically – by a minimax argument – a random choice of D ∈ Q requires Ω

(
m
√

logm
)
samples.)

4.5 Cætera desunt
Before concluding this survey, we remind the reader that the material covered was, sadly, not exhaustive –
exhausting at best. In particular, we only briefly mention some of the topics that were left out, and may
have deserved a more thorough coverage, had we had the strength.
• Instance-optimal testing. Barely hinted at in Section 3.2.2, this model introduced in [VV14] aims at
going beyond the worst-case analysis in the SAMP model by achieving sample complexities that are
optimal on a case-by-case basis. Roughly speaking, to test for a property P, the number of samples
should only depend on known quantities pertaining to P, not on the size n of the domain Ω. (In the
case of testing identity to a known distribution D∗, for example, the sample complexity would have to
be a function of D∗ and ε only, in this case related to the 2/3-norm ‖D∗‖2/3).

• Testing in other distances. Instead of total variation or `2, one can consider testing with regard to
general `p norms (e.g., as in [Wag15], to pinpoint the exact tradeoff between n, p, and ε) or testing
closeness for classes of distances such as f -divergences (which include Jensen–Shannon, Hellinger, and
triangle divergences) [GMV06].

15Note that this is consistent with the identity testing upper and lower bounds of Theorem 3.2.5: indeed, as defined in [ADJ+12]
any D′ ∈ Q is ε-far from D for ε = Θ

(
1/m1/2

)
, and the support size is n = m1/3/ logm: so that

√
n/ε2 = m7/6/

√
logm.

49

• Testing with unequal samples. In the specific case of closeness testing (here in the SAMP model),
[AJOS14, BV15] consider the situation where the two distributions are not “created equal.” That is,
they work in the setting where getting samples from one of the two distributions is more expensive
than from the other, or equivalently where one does not get as many samples from the first and the
second distribution; and analyze the optimal tradeoff one can obtain between these two distinct sample
complexities.

• Connections to (standard) property testing. Although most of the work covered in this survey (as well as
most of the literature on the topic, to the best of our knowledge) appears to be disjoint from the property
testing literature on, say, Boolean functions, there exist some connections. In particular, Goldreich and
Ron articulate in [GR13, Section 6.3] the relation between sample-based testing of symmetric properties
of functions and distribution testing.

50

Chapter 5

Conclusion

As concluding remarks, we state a few particular research directions we find of particular appeal.

Lower bounds via communication complexity. Recent work of Blais, Brody, and Matulef [BBM12]
establishes a very elegant framework for leveraging communication complexity results to obtain property
testing lower bounds. Obtaining an analogous transference technique applicable to distribution testing,
in any of the models touched upon in this survey, would be of great interest.

Instance-optimal testing, and testing under structural constraints. Results going beyond the worst-
case analysis (as briefly mentioning in Section 3.2.2 with the results of [VV14]), or bypassing hardness
results by considering natural restrictions of testing problems (e.g., testing for a property P, under
the promise that the distribution originates from some class C) as in [DDS+13, DKN15b] both seem
legitimate and exciting directions for future research.

Connections to other fields. Drawing connections between distribution testing and other paradigms, such
as information complexity, sample-based or active testing, or the recently introduced model of “sampling
correction [CGR15], would most likely lead to new and thrilling insight and results.

Correcting mistakes occurring in this survey. The author believes this to be self-explanatory, albeit
slightly awkward.

51

Bibliography

[AAK+07] Noga Alon, Alexandr Andoni, Tali Kaufman, Kevin Matulef, Ronitt Rubinfeld, and Ning Xie.
Testing k-wise and almost k-wise independence. In Proceedings of STOC, pages 496–505, New
York, NY, USA, 2007. 3.3.5, 3.3.5, 3.3.14

[ACK14] Jayadev Acharya, Clément L. Canonne, and Gautam Kamath. A chasm between identity and
equivalence testing with conditional queries. ArXiV, abs/1411.7346, November 2014. 4.1.2, 5,
4.1.5, 4.1.5, A, A

[ACS10] Michat Adamaszek, Artur Czumaj, and Christian Sohler. Testing monotone continuous dis-
tributions on high-dimensional real cubes. In Proceedings of SODA, pages 56–65. Society for
Industrial and Applied Mathematics, 2010. 18

[AD14] Jayadev Acharya and Constantinos Daskalakis. Testing Poisson Binomial Distributions. In
Proceedings of SODA, pages 1829–1840, 2014. 3.3.3, 3.3.3, 3.3.3

[ADJ+11] Jayadev Acharya, Hirakendu Das, Ashkan Jafarpour, Alon Orlitsky, and Shengjun Pan. Com-
petitive closeness testing. In Proceedings of COLT, pages 47–68, 2011. 4.4, 4.4.3, 4.4.2

[ADJ+12] Jayadev Acharya, Hirakendu Das, Ashkan Jafarpour, Alon Orlitsky, Shengjun Pan, and
Ananda Theertha Suresh. Competitive classification and closeness testing. In Proceedings
of COLT, volume 23, pages 22.1–22.18, 2012. 3.3.3, 4.4, 4.4.3, 4.4.2, 4.4.2, 15

[AJ06] José A. Adell and Pedro Jodra. Exact Kolmogorov and total variation distances between some
familiar discrete distributions. Journal of Inequalities and Applications, 2006(1):64307, 2006.
D.1

[AJOS13] Jayadev Acharya, Ashkan Jafarpour, Alon Orlitsky, and Ananda Theertha Suresh. A competitive
test for uniformity of monotone distributions. In Proceedings of AISTATS, pages 57–65, 2013.
4.4, 4.4.3

[AJOS14] Jayadev Acharya, Ashkan Jafarpour, Alon Orlitsky, and Ananda Theertha Suresh. Sublinear
algorithms for outlier detection and generalized closeness testing. In 2014 IEEE International
Symposium on Information Theory (ISIT), pages 3200–3204. IEEE, 2014. 4.5

[An96] Mark Y. An. Log-concave probability distributions: theory and statistical testing. Technical
report, Centre for Labour Market and Social Research, Denmark, 1996. E.1

[AOST15] Jayadev Acharya, Alon Orlitsky, Ananda Theertha Suresh, and Himanshu Tyagi. The complexity
of estimating Rényi entropy. In Proceedings of SODA, pages 1855–1869. Society for Industrial
and Applied Mathematics (SIAM), 2015. 3.5

[Ass83] Patrice Assouad. Deux remarques sur l’estimation. Comptes Rendus des Séances de l’Académie
des Sciences. Série I. Mathématique, 296(23):1021–1024, 1983. D.5.2

52

[BBM12] Eric Blais, Joshua Brody, and Kevin Matulef. Property testing lower bounds via communication
complexity. Computational Complexity, 21(2):311–358, 2012. 5

[BDKR05] Tuğkan Batu, Sanjoy Dasgupta, Ravi Kumar, and Ronitt Rubinfeld. The complexity of
approximating the entropy. SIAM Journal on Computing, 35(1):132–150, 2005. 3.4.1, 3.5, 4.2.2,
4.2.1, 4.2.14, A, A.5

[BFF+01] Tuğkan Batu, Eldar Fischer, Lance Fortnow, Ravi Kumar, Ronitt Rubinfeld, and Patrick White.
Testing random variables for independence and identity. In Proceedings of FOCS, pages 442–451,
2001. 1.2, 3.2.1, 3.2.2, 3.2.2, 3.2.7, 3.3.5, 3.3.12, 3.3.5, 15, 19, 3.6, A, A

[BFR+00] Tuğkan Batu, Lance Fortnow, Ronitt Rubinfeld, Warren D. Smith, and Patrick White. Testing
that distributions are close. In Proceedings of FOCS, pages 189–197, 2000. 1, 1.2, 3.2.1, 3.2.3,
3.2.3, 3.2.11, 19, 3.5, 3.6, 5

[BFR+10] Tuğkan Batu, Lance Fortnow, Ronitt Rubinfeld, Warren D. Smith, and Patrick White. Test-
ing closeness of discrete distributions. ArXiV, abs/1009.5397, 2010. This is a long version
of [BFR+00]. 1.2, 3.2.3, A, A, D.3

[BFRV11] Arnab Bhattacharyya, Eldar Fischer, Ronitt Rubinfeld, and Paul Valiant. Testing monotonicity
of distributions over general partial orders. In Proceedings of ITCS, pages 239–252, 2011. 1.2

[Bir87] Lucien Birgé. On the risk of histograms for estimating decreasing densities. The Annals of
Mathematical Statistics, 15(3):pp. 1013–1022, 1987. 17, 3.4.3, D.4, D.4.2, D.5.1

[BKR04] Tuğkan Batu, Ravi Kumar, and Ronitt Rubinfeld. Sublinear algorithms for testing monotone
and unimodal distributions. In Proceedings of STOC, pages 381–390, New York, NY, USA, 2004.
ACM. 1.2, 3.3.1, 10, 3.3.1, 3.3.1, 11, 3.3.4, 3.4.1, 3.4.1, 3.6, 3.6.1, 8, A

[BRY14] Piotr Berman, Sofya Raskhodnikova, and Grigory Yaroslavtsev. Lp-testing. In Proceedings of
STOC, pages 164–173, New York, NY, USA, 2014. ACM. 4.2.4

[BV15] Bhaswar B. Bhattacharya and Gregory Valiant. Testing closeness with unequal sized samples.
ArXiV, abs/1504.04599, 2015. 4.5

[BY02] Ziv Bar-Yossef. The Complexity of Massive Data Set Computations. PhD thesis, UC Berkeley,
2002. Adviser: Christos Papadimitriou. 3.6.2, C.2.2, C.2

[Can13] Clément L. Canonne. Dompter les Distributions de Probabilité Géantes. http://www.cs.
columbia.edu/~ccanonne/files/misc/tamingbigdistr-fr.pdf, 2013. French translation
of [Rub12]. 1

[Can15] Clément L. Canonne. Big Data on the rise: Testing monotonicity of distributions. In Proceedings
of ICALP, 2015. To appear. Also available on arXiv at abs/1501.06783. 9, 4.1.3, 4.1.3, 4.2.3,
4.2.3, 4.2.3, A, A

[CDGR15] Clément L. Canonne, Ilias Diakonikolas, Themis Gouleakis, and Ronitt Rubinfeld. Testing
Shape Restrictions, 2015. Manuscript. 3.3, 3.3.1, 3.3.4, 3.3.4, A, 1

[CDSS13] Siu-On Chan, Ilias Diakonikolas, Rocco A. Servedio, and Xiaorui Sun. Learning mixtures of
structured distributions over discrete domains. In Proceedings of SODA, pages 1380–1394, 2013.
3.3.4, 3.3.4, 3.4.3

[CDSS14] Siu-On Chan, Ilias Diakonikolas, Rocco A. Servedio, and Xiaorui Sun. Efficient density estimation
via piecewise polynomial approximation. In Proceedings of STOC, pages 604–613. ACM, 2014.
3.3.4, 3.3.4, 3.4.3, 22

53

http://www.cs.columbia.edu/~ccanonne/files/misc/tamingbigdistr-fr.pdf
http://www.cs.columbia.edu/~ccanonne/files/misc/tamingbigdistr-fr.pdf
http://arxiv.org/abs/1501.06783

[CDVV14] Siu-On Chan, Ilias Diakonikolas, Gregory Valiant, and Paul Valiant. Optimal algorithms for
testing closeness of discrete distributions. In Proceedings of SODA, pages 1193–1203. Society for
Industrial and Applied Mathematics (SIAM), 2014. 1.2, 3.2.10, 3.2.11, 3.2.3, 3.2.3, 19, A

[CFGM13] Sourav Chakraborty, Eldar Fischer, Yonatan Goldhirsh, and Arie Matsliah. On the power of
conditional samples in distribution testing. In Proceedings of ITCS, pages 561–580, New York,
NY, USA, 2013. ACM. 4.1, 4.1.1, 4.1.2, 4.1.2, 4.1.2, 4.1.15, 4.1.17, 4.1.18, 4.1.4, 7, 4.1.5, 4.1.5,
4.1.6, 4.1.6, A, A.2

[CGR15] Clément L. Canonne, Themis Gouleakis, and Ronitt Rubinfeld. Sampling Correctors. ArXiV,
abs/1504.06544, April 2015. 5

[CKOS15] Cafer Caferov, Bariş Kaya, Ryan O’Donnell, and A. C. Cem Say. Optimal bounds for estimating
entropy with PMF queries, 2015. Manuscript. 4.2.4, 4.2.4, 11, A

[CR14] Clément L. Canonne and Ronitt Rubinfeld. Testing probability distributions underlying aggre-
gated data. In Proceedings of ICALP, pages 283–295, 2014. 4.2.2, 4.2.1, 4.2.3, 9, 4.2.2, 4.2.2,
4.2.4, 4.2.4, 4.2.16, 4.2.4, 4.2.4, 4.2.5, A, A

[CRS13] Clément L. Canonne, Dana Ron, and Rocco A. Servedio. Private communication, 2013. 4.1.3

[CRS14] Clément L. Canonne, Dana Ron, and Rocco A. Servedio. Testing equivalence between dis-
tributions using conditional samples. In Proceedings of SODA, pages 1174–1192. Society for
Industrial and Applied Mathematics (SIAM), 2014. See also [CRS15] (full version). 4.1, 4.1.1,
4.1.2, 4.1.2, 4.1.2, 4.1.3, 4.2.2, A, A

[CRS15] Clément L. Canonne, Dana Ron, and Rocco A. Servedio. Testing probability distributions using
conditional samples. SIAM Journal on Computing, 2015. To appear. Also available on arXiv at
abs/1211.2664. 4.1.5, 4.1.2, 4.1.7, 4.1.8, 4.1.2, 4.1.11, 4.1.3, 4.1.16, 4.1.4, 4.1.6, 4.1.6, 4.2.2, 5, A,
D.2.5

[DBNNR11] Khanh Do Ba, Huy L. Nguyen, Huy N. Nguyen, and Ronitt Rubinfeld. Sublinear time algorithms
for Earth Mover’s distance. Theory of Computing Systems, 48(2):428–442, 2011. C.4

[DD09] Yuxin Deng and Wenjie Du. The Kantorovich metric in computer science: A brief survey.
Electronic Notes in Theoretical Computer Science, 253(3):73 – 82, 2009. Proceedings of Seventh
Workshop on Quantitative Aspects of Programming Languages (QAPL 2009). C.4

[DDO+13] Constantinos Daskalakis, Ilias Diakonikolas, Ryan O’Donnell, Rocco A. Servedio, and Li-Yang
Tan. Learning Sums of Independent Integer Random Variables. In Proceedings of FOCS, pages
217–226. IEEE Computer Society, 2013. 3.3.4

[DDS12a] Constantinos Daskalakis, Ilias Diakonikolas, and Rocco A. Servedio. Learning k-modal distribu-
tions via testing. In Proceedings of SODA, pages 1371–1385. Society for Industrial and Applied
Mathematics (SIAM), 2012. 3.4.1, D.4

[DDS12b] Constantinos Daskalakis, Ilias Diakonikolas, and Rocco A. Servedio. Learning Poisson Binomial
Distributions. In Proceedings of STOC, STOC ’12, pages 709–728, New York, NY, USA, 2012.
ACM. 3.3.3

[DDS+13] Constantinos Daskalakis, Ilias Diakonikolas, Rocco A. Servedio, Gregory Valiant, and Paul
Valiant. Testing k-modal distributions: Optimal algorithms via reductions. In Proceedings of
SODA, pages 1833–1852. Society for Industrial and Applied Mathematics (SIAM), 2013. 3.4.1,
3.4.2, 19, 3.4.3, 5, D.4, D.4.3

54

http://arxiv.org/abs/1211.2664

[DKN15a] Ilias Diakonikolas, Daniel M. Kane, and Vladimir Nikishkin. Optimal Algorithms and Lower
Bounds for Testing Closeness of Structured Distributions. Private communication, April 2015.
20

[DKN15b] Ilias Diakonikolas, Daniel M. Kane, and Vladimir Nikishkin. Testing Identity of Structured
Distributions. In Proceedings of SODA, pages 1841–1854. Society for Industrial and Applied
Mathematics (SIAM), 2015. 3.2.1, 4, 3.4, 3.4.3, 3.4.3, 22, 5

[DKW56] Aryeh Dvoretzky, Jack Kiefer, and Jacob Wolfowitz. Asymptotic minimax character of the sample
distribution function and of the classical multinomial estimator. The Annals of Mathematical
Statistics, 27(3):642–669, 09 1956. D.1.1

[DL01] Luc Devroye and Gábor Lugosi. Combinatorial Methods in Density Estimation. Springer Series
in Statistics. Springer New York, 2001. 22

[Fis01] Eldar Fischer. The art of uninformed decisions: A primer to property testing. Bulletin of the
European Association for Theoretical Computer Science, 75:97–126, 2001. 1.1

[FJO+15] Moein Falahatgar, Ashkan Jafarpour, Alon Orlitsky, Venkatadheeraj Pichapathi, and
Ananda Theertha Suresh. Faster algorithms for testing under conditional sampling. ArXiV,
abs/1504.04103, April 2015. 4.1.2, 4.1.2

[GGR98] Oded Goldreich, Shafi Goldwasser, and Dana Ron. Property testing and its connection to
learning and approximation. Journal of the ACM, 45(4):653–750, July 1998. 1.1, 1

[Gly87] Peter W. Glynn. Upper bounds on Poisson tail probabilities. Operations Research Letters,
6(1):9–14, March 1987. D.3.3

[GMV06] Sudipto Guha, Andrew McGregor, and Suresh Venkatasubramanian. Streaming and sublinear
approximation of entropy and information distances. In Proceedings of SODA, pages 733–742,
Philadelphia, PA, USA, 2006. Society for Industrial and Applied Mathematics (SIAM). 3.5,
4.2.2, 4.2.1, 4.2.2, 4.2.13, 10, 4.5, A

[Gol10] Oded Goldreich, editor. Property Testing: Current Research and Surveys. Springer, 2010. LNCS
6390. 1.1

[GR00] Oded Goldreich and Dana Ron. On testing expansion in bounded-degree graphs. Electronic
Colloquium on Computational Complexity (ECCC), 7:20, 2000. 1, 1.2, 3.2.1, 3.2.1, 3.2.2, 3.2.4,
11, A, A

[GR13] Oded Goldreich and Dana Ron. On Sample-Based Testers. Electronic Colloquium on Computa-
tional Complexity (ECCC), 20:109, 2013. 4.5

[GS02] Alison L. Gibbs and Francis E. Su. On choosing and bounding probability metrics. Interdisci-
plinary Science Reviews, 70:419–435, December 2002. C

[GV11] Oded Goldreich and Salil P. Vadhan. On the complexity of computational problems regarding
distributions. In Oded Goldreich, editor, Studies in Complexity and Cryptography. Miscellanea
on the Interplay between Randomness and Computation, volume 6650 of Lecture Notes in
Computer Science, pages 390–405. Springer, 2011. 2

[Har15] Sariel Har-Peled. Lower bound on estimating
∑n
k=1 ak for non-increasing (ak)k. Theoretical

Computer Science Stack Exchange, January 2015. http://cstheory.stackexchange.com/q/
28024 (version: 2015-01-01). 4.2.3

[ILR12] Piotr Indyk, Reut Levi, and Ronitt Rubinfeld. Approximating and Testing k-Histogram
Distributions in Sub-linear Time. In Proceedings of PODS, pages 15–22, 2012. 3.3.2

55

http://cstheory.stackexchange.com/q/28024
http://cstheory.stackexchange.com/q/28024

[JVW14] Jiantao Jiao, Kartik Venkat, and Tsachy Weissman. Order-optimal estimation of functionals of
discrete distributions. ArXiV, abs/1406.6956, 2014. 3.5

[KR58] Leonid Kantorovich and Gennady S. Rubinstein. On a space of totally additive functions.
Vestnik Leningrad. Univ, 13:52–59, 1958. C.4

[LC60] Lucien Le Cam. An approximation theorem for the Poisson binomial distribution. Pacific
Journal of Mathematics, 10(4):1181–1197, 1960. 4

[LC73] Lucien Le Cam. Convergence of estimates under dimensionality restrictions. The Annals of
Mathematical Statistics, 1:38–53, 1973. D.5.7

[LC86] Lucien Le Cam. Asymptotic methods in statistical decision theory. Springer Series in Statistics.
Springer-Verlag, New York, 1986. D.5.7

[LRR13] Reut Levi, Dana Ron, and Ronitt Rubinfeld. Testing properties of collections of distributions.
Theory of Computing, 9:295–347, 2013. 3.3.5, 3.3.5, 15, 4.3, 4.3.1, 4.3.2, 4.3.3, 4.3.3, 4.3.3, 4.3.7,
4.3.3, 4.3.4

[LRR14] Reut Levi, Dana Ron, and Ronitt Rubinfeld. Testing similar means. SIAM Journal on Discrete
Math, 28(4):1699–1724, 2014. 4.3, 4.3.4

[Ma81] Shang-Keng Ma. Calculation of entropy from data of motion. Journal of Statistical Physics,
26(2):221–240, 1981. 1

[Mas90] Pascal Massart. The tight constant in the Dvoretzky–Kiefer–Wolfowitz inequality. The Annals
of Probability, 18(3):1269–1283, 07 1990. D.1.1

[Md13] Ashley Montanaro and Ronald de Wolf. A Survey of Quantum Property Testing. ArXiV,
abs/1310.2035, October 2013. 1.2

[OW15] Ryan O’Donnell and John Wright. Quantum Spectrum Testing. ArXiV, abs/1501.05028, January
2015. 1.2

[Pan04] Liam Paninski. Estimating entropy on m bins given fewer than m samples. IEEE Transactions
on Information Theory, 50(9):2200–2203, 2004. 1.2, 3.5

[Pan08] Liam Paninski. A coincidence-based test for uniformity given very sparsely sampled discrete
data. IEEE Transactions on Information Theory, 54(10):4750–4755, 2008. 1.2, 3.2.1, 3.2.1, 11,
3.3.3, A, A, D.5.2

[Poi37] Siméon Denis Poisson. Recherches sur la probabilité des jugements en matière criminelle et en
matière civile: précédées des règles générales du calcul des probabilités. Bachelier, 1837. 12

[Pol03] David Pollard. Asymptopia. http://www.stat.yale.edu/~pollard/Books/Asymptopia, 2003.
Manuscript. 3.2.1, D.5.2

[PRR06] Michal Parnas, Dana Ron, and Ronitt Rubinfeld. Tolerant property testing and distance
approximation. Journal of Computer and System Sciences, 72(6):1012–1042, 2006. 2.0.4

[Reb05] Laurence Reboul. Estimation of a function under shape restrictions. applications to reliability.
The Annals of Mathematical Statistics, 33(3):1330–1356, 06 2005. 3.4

[Rey11] Leo Reyzin. Extractors and the leftover hash lemma. http://www.cs.bu.edu/~reyzin/
teaching/s11cs937/notes-leo-1.pdf, March 2011. Lecture notes. D.1

[Ron08] Dana Ron. Property Testing: A Learning Theory Perspective. Foundations and Trends in
Machine Learning, 1(3):307–402, 2008. 1.1

56

http://www.stat.yale.edu/~pollard/Books/Asymptopia
http://www.cs.bu.edu/~reyzin/teaching/s11cs937/notes-leo-1.pdf
http://www.cs.bu.edu/~reyzin/teaching/s11cs937/notes-leo-1.pdf

[Ron10] Dana Ron. Algorithmic and analysis techniques in property testing. Foundations and Trends in
Theoretical Computer Science, 5:73–205, 2010. 1.1

[RRSS09] Sofya Raskhodnikova, Dana Ron, Amir Shpilka, and Adam Smith. Strong lower bounds for
approximating distributions support size and the distinct elements problem. SIAM Journal on
Computing, 39(3):813–842, 2009. 3.5

[RS96] Ronitt Rubinfeld and Madhu Sudan. Robust characterization of polynomials with applications
to program testing. SIAM Journal on Computing, 25(2):252–271, 1996. 1.1

[RS09] Ronitt Rubinfeld and Rocco A. Servedio. Testing monotone high-dimensional distributions.
Random Structures and Algorithms, 34(1):24–44, January 2009. 1.2, 3.4.1, 4.2.1, 4.2.2, A

[Rub12] Ronitt Rubinfeld. Taming Big Probability Distributions. XRDS, 19(1):24–28, September 2012.
1, 5

[RX10] Ronitt Rubinfeld and Ning Xie. Testing non-uniform k-wise independent distributions over
product spaces. In Proceedings of ICALP, pages 565–581, Berlin, Heidelberg, 2010. Springer-
Verlag. 3.3.5

[Sch47] Henry Scheffé. A useful convergence theorem for probability distributions. The Annals of
Mathematical Statistics, 18(3):434–438, 09 1947. C.1.1

[SV03] Amit Sahai and Salil Vadhan. A complete problem for Statistical Zero Knowledge. Journal of
the ACM, 50(2):196–249, March 2003. C.1.2

[Szp01] Wojciech Szpankowski. Average Case Analysis of Algorithms on Sequences, chapter Analytic
Poissonization and Depoissonization, pages 442–519. John Wiley & Sons, Inc., 2001. D.3

[Val11] Paul Valiant. Testing symmetric properties of distributions. SIAM Journal on Computing,
40(6):1927–1968, 2011. 1.2, 3.2.3, 7, 4.1.19, A

[Val12] Gregory Valiant. Algorithmic Approaches to Statistical Questions. PhD thesis, UC Berkeley,
2012. Adviser: Christos Papadimitriou. D.3.3, D.3.4

[VV10a] Gregory Valiant and Paul Valiant. A CLT and tight lower bounds for estimating entropy.
Electronic Colloquium on Computational Complexity (ECCC), 17:179, 2010. 3.2.4, 3.2.4, 3.2.13,
3.5, 3.5, 3.5.2, 3.5.3, 24, 3.6, 4, 5, A, A

[VV10b] Gregory Valiant and Paul Valiant. Estimating the unseen: A sublinear-sample canonical
estimator of distributions. Electronic Colloquium on Computational Complexity (ECCC), 17:180,
2010. 3.5, 3.5.3, 3.6, 5, A, A

[VV11] Gregory Valiant and Paul Valiant. The power of linear estimators. In Proceedings of FOCS,
pages 403–412, October 2011. See also [VV10a] and [VV10b]. 1.2, 3.2.4, 3.2.14, 3.5, 3.5.2, 3.2.14,
3.5, 3.6, A, A, A, C.4, D.3

[VV14] Gregory Valiant and Paul Valiant. An automatic inequality prover and instance optimal identity
testing. In Proceedings of FOCS, 2014. 1.2, 3.2.2, 3.2.8, 4, 3.3.4, 19, 4.5, 5, A, A

[Wag15] Bo Waggoner. Lp testing and learning of discrete distributions. In Proceedings of ITCS, pages
347–356. ACM, 2015. 4.5

[Wal09] Guenther Walther. Inference and modeling with log-concave distributions. Statistical Science,
24(3):319–327, 08 2009. 3.4

[WY14] Yihong Wu and Pengkun Yang. Minimax rates of entropy estimation on large alphabets via
best polynomial approximation. ArXiV, abs/1407.0381, 2014. 3.5

57

[Yu97] Bin Yu. Assouad, Fano, and Le Cam. In David Pollard, Erik Torgersen, and Grace L. Yang,
editors, Festschrift for Lucien Le Cam, pages 423–435. Springer New York, 1997. D.5, D.5.7

58

Index

χ2-test, 7, 9, 10, 25, 28, 48, 49
f -divergence, 42

adaptive, non-adaptive algorithm, 4, 36, 70

biased coin, 40, 43, 44, 47, 69
Big Data, 1
Birgé, 49
birthday paradox, 7
bucketing, 8, 17, 24, 29, 30, 33, 36

collisions, 7, 37
core adaptive tester, 30, 35, 37

data processing inequality, 69
distance estimation, 4, 23, 34, 40
distances, 66

`1, see total variation
`2, 3, 7, 10, 13–15, 21, 24, 31
`∞, 32, 36, 37
Ak, 20
earthmover’s, 3, 11, 22, 23, 47, 68
Hellinger, 3, 25, 67
Kolmogorov, 3, 67, 69
statistical, see total variation
total variation, 3, 66
Wasserstein, see earthmover’s

distribution
conditional, 3
definition, 3
support, 3

DKW inequality, 25, 67, 69
Dvoretzky–Kiefer–Wolfowitz, see DKW inequality

effective support, 15
egg, see testing algorithm (tolerant), 11
entropy, 21, 23, 24, 34, 42, 62, 63

Rényi, 24, 42

faking queries, 28, 29
fingerprint, 11, 22, 48, 71

histogram, 48, 72
hullabaloo, see Big Data

independence, 71
instance optimality, 9, 49, 51

learning, 5, 32, 41

metrics, see distances
model

cumulative dual, 38
dual, 38
collections, 44
known-weights, unknown-weights, 45
query, 44
sampling, 44

conditional, 26, 45
standard, see sampling oracle

monotonicity, 12, 18, 31, 41
Birgé, 19, 32, 41, 43, 44, 72

one-sided, two-sided tester, 4
oracle

CEVAL, 38
COND, 26
EVAL, 38
INTCOND, 26
PAIRCOND, 26
SAMP, 5
combined oracle, see CEVAL
conditional, 26
evaluation, 38
sampling, 5

persistent sampler, 34
Poisson distribution, 71
poissonization, 22, 25, 46, 71
probabilistic inequalities, 64

Chebyshev’s inequality, 64
Chernoff bounds, 64
Markov’s inequality, 64

property, 3

quantum distribution testing, 2

sieve, 17
support size, 21, 34, 42, 62

59

symmetric property, 21, 34, 42, 62

testing
closeness, 6, 9, 18, 29, 39, 48
equivalence, see closeness
identity, 6, 8, 19, 28, 36, 39
independence, 17, 19, 45
uniformity, 6, 27, 36, 39

testing algorithm, 3
testing algorithm (tolerant), 4, 16, 40
tolerant testing, see testing algorithm (tolerant)
transcript, 6, 7, 71

Yao’s principle, 6, 70

60

Appendix A

Summary of results

We here summarize (a subset of) the results described in this survey; these tables are to be taken as a
quick reference, and are by no means exhaustive. The problems and bounds are stated for distributions over
[n]: the testing ones are for deciding whether the property holds (i.e. dTV = 0) versus dTV ≥ ε, while the
tolerant testing ones are for distinguishing dTV ≤ ε1 versus dTV ≥ ε2. For the latter, the results are in some
places phrased as distance estimation (to an additive ε); for the correspondence between the two, ε is to be
understood as the difference ε2 − ε1.

Problem Conditional model [CRS15, CRS14] Standard model

Is D uniform?
(Testing uniformity)

CONDD Ω
(1
ε2

)
PAIRCONDD Õ

(1
ε2

)
INTCONDD

Õ
(

log3 n
ε3

)
Θ
(√

n
ε2

)
[GR00, BFR+10, Pan08]

Ω
(

logn
log logn

)
Is D = D∗ for a known D∗?
(Testing identity)

CONDD Õ
(1
ε4

)
PAIRCONDD

Õ
(

log4 n
ε4

)
Θ
(√

n
ε2

)
[BFF+01, Pan08, VV14]

Ω
(√

logn
log logn

)
Are D1, D2 (both unknown)

equal? (Testing closeness)
CONDD1,D2

Õ
(

log5 n
ε4

)
Θ
(

max
(
n2/3

ε4/3 ,
√
n
ε2

))
[BFR+10, Val11, CDVV14]

Ω
(√

log logn
)
[ACK14]

PAIRCONDD1,D2 Õ
(

log6 n
ε21

)
Is D monotone?
(Testing monotonicity)

CONDD Õ
(1
ε22

)
[Can15] Õ

(√
n
ε4

)
[BKR04, CDGR15],

Ω
(√

n
ε2

)
[BKR04, Pan08]

PAIRCONDD Õ
(

log2 n
ε4

)
[this survey]

INTCONDD Õ
(

log5 n
ε4

)
[Can15]

How far is D from uniform?
(Tolerant uniformity) PAIRCONDD Õ

(1
ε20

) O
(

1
ε2

n
logn

)
[VV11, VV10b]

Ω
(

1
ε

n
logn

)
[VV11, VV10a]

Table A.1: Comparison between the COND model and the standard SAMP model on a variety of testing
problems.

61

Problem
Conditional model

Standard model
Adaptive Non-adaptive

Testing uniformity and identity Õ
(
1/ε2), Ω

(
1/ε2)

[CRS14]
poly(logn, 1/ε) [CFGM13],

Ω(logn) [ACK14]

Θ
(√

n
ε2

)
[GR00, BFR+10, BFF+01,

Pan08, VV14]

Testing symmetric properties poly(logn, 1/ε) (?),
Ω
(√

log logn
) Ω(logn) (from uniformity) Θ

(
n

logn

)
[VV11, VV10b]

Testing general properties Ω(n) Ω(n) (from adaptive)

Table A.2: Comparison between the COND model (both adaptive and non-adaptive) and the standard SAMP
model on several classes of testing problems (all bounds without explicit reference are from [CFGM13]). For
the upper bound (?), INTCOND suffices (conditioning on dyadic intervals is enough).

Problem EVAL Dual [CR14] Cumulative Dual [CR14]
Testing uniformity

O
(1
ε

)
[RS09], Ω

(1
ε

)∗
Θ
(1
ε

)
(†) Θ

(1
ε

)
(†)Testing identity

Testing closeness Ω(n)
Tolerant uniformity

Ω
(

1
(ε2−ε1)2

)∗
Θ
(

1
(ε2−ε1)2

)
(†) O

(
1

(ε2−ε1)2

)
(†)Tolerant identity

Tolerant closeness
Testing monotonicity O

(
logn
ε + 1

ε2

)
, Ω
(

logn
log logn

)
[Can15] (upper bound from EVAL) Õ

(1
ε4

)
(†) [Can15]

Tolerant monotonicity
O
(

logn
ε3

2

)
for

ε2 > (3 + Ω(1))ε1
[Can15]

O
(

1
ε2

2
+ logn

ε2

)
for

ε2 > (3 + Ω(1))ε1
[Can15]

Table A.3: Summary of results on a range of testing problems and their tolerant testing counterparts. (†)
stands for “robust to multiplicative noise.” The bounds with an asterisk are those which, in spite of being for
different models, derive from the results of the last two columns.

Problem SAMP[VV11, VV10a] Dual [CR14, CKOS15] Cumulative Dual [CR14, CKOS15]
Estimating entropy to
±∆ Ω

(
n

logn

)
Θ
(

log2 n
∆2

)
(†) Θ

(
log2 n

∆2

)
(†)

Estimating support
size to ±εn Ω

(
n

logn

)
Θ
(1
ε2

)
Θ
(1
ε2

)
Tolerant closeness O

(
1
ε2

n
logn

)
Θ
(

1
(ε2−ε1)2

)
(see above) O

(
1

(ε2−ε1)2

)
(see above)

Table A.4: Summary of results on some tolerant testing problems. (†) stands for “robust to multiplicative
noise.”

62

Problem: SAMP EVAL Dual
H(D) arbitrary ∞ Θ(n) Ω

(
n(1−o(1))/γ2

)
H(D) > h

O
(
nO(1)/γ2 logn

)
for h = Ω(γ),

Ω
(
n1/2γ2

)
for h = logn

γ2

Ω
(

n
2γ2(h+1)

) O
(

logn
(γ−1)2h

)
[GMV06],

Ω
(

logn
h(γ2−1)+γ2

)
[BDKR05]

Table A.5: Summary of results for multiplicative approximation of entropy, up to factor γ > 1 (all bounds
without explicit reference are from [BDKR05]).

63

Appendix B

Probabilistic Inequalities

B.1 Markov’s and Chebyshev’s Inequalities
Theorem B.1.1 (Markov’s Inequality). Let X be a non-negative random variable. Then, ∀a > 0,

Pr[X ≥ a] ≤ EX
a

.

Theorem B.1.2 (Chebyshev’s Inequality). Let X be a real-valued random variable such that VarX is
well-defined. Then, ∀t > 0,

Pr[|X − EX| > t] ≤ VarX
t2

.

B.2 Chernoff and Hoeffding bounds
Theorem B.2.1. Let Y1, . . . , Ym be m independent random variables that take on values in [0, 1], where
E[Yi] = pi, and

∑m
i=1 pi = P . For any γ ∈ (0, 1] we have

(additive bound1) Pr
[

m∑
i=1

Yi > P + γm

]
, Pr

[
m∑
i=1

Yi < P − γm

]
≤ exp(−2γ2m) (B.1)

(multiplicative bound) Pr
[

m∑
i=1

Yi > (1 + γ)P
]
< exp(−γ2P/3) (B.2)

and

(multiplicative bound) Pr
[

m∑
i=1

Yi < (1− γ)P
]
< exp(−γ2P/2). (B.3)

The bound in Equation (B.2) is derived from the following more general bound, which holds from any γ > 0:

Pr
[

m∑
i=1

Yi > (1 + γ)P
]
≤
(

eγ

(1 + γ)1+γ

)P
, (B.4)

and which also implies that for any B > 2eP ,

Pr
[

m∑
i=1

Yi > B

]
≤ 2−B . (B.5)

0The term Hoeffding bound usually refers to (and is the more appropriate name for) this “additive version” of the Chernoff
bounds.

64

Remark B.2.2. The additive bound (B.1) is better than the multiplicative ones when p def= P
m = Ω(1).

The following extension of the multiplicative bound is useful when we only have upper and/or lower bounds
on P :

Corollary B.2.3. In the setting of Theorem B.2.1 suppose that PL ≤ P ≤ PH . Then for any γ ∈ (0, 1], we
have

Pr
[

m∑
i=1

Yi > (1 + γ)PH

]
< exp(−γ2PH/3) (B.6)

Pr
[

m∑
i=1

Yi < (1− γ)PL

]
< exp(−γ2PL/2) (B.7)

Finally, one also has the following corollary of Theorem B.2.1:

Corollary B.2.4. Let 0 ≤ w1, . . . , wm ∈ R be such that wi ≤ κ for all i ∈ [m] where κ ∈ (0, 1]. Let
X1, . . . , Xm be i.i.d. Bernoulli random variables with Pr[Xi = 1] = 1/2 for all i, and let X =

∑m
i=1 wiXi

and W =
∑m
i=1 wi. For any γ ∈ (0, 1],

Pr
[
X > (1 + γ)W2

]
< exp

(
−γ2W

6κ

)
and Pr

[
X < (1− γ)W2

]
< exp

(
−γ2W

4κ

)
,

and for any B > e ·W ,
Pr[X > B] < 2−B/κ .

65

Appendix C

Metrics over ∆(Ω)

We state the definitions of distances below in full generality; that is, unless specified otherwise, they also hold
for probability distributions P,Q over the “usual” probability space (Rd,BRd), as long as they are absolutely
continuous with relation to Lebesgue measure. When considering the case of some discrete set Ω ⊆ Rd, the
corresponding σ-algebra is the discrete σ-algebra over Ω. Due to the scope of this survey, we did leave out
many distances and semi-metrics on distributions; for a more complete introduction to those, as well as a
summary of relations between them, we refer the reader to [GS02].

C.1 More on Total Variation
As stated in (2.1), the total variation distance is given two different expressions, the standard one being as
the supremum over all (Borel) sets of (P (S)−Q(S)), and the other as half the `1 distance between P and Q.
These two definitions are easily shown to be equivalent; this result is known as Scheffé’s Identity:

Lemma C.1.1 (Scheffé’s Identity [Sch47]). For P , Q two probability measures as above with densities p, q,

dTV(P,Q) = 1
2

∫
Rd
|p− q| .

It is often crucial, when dealing with independent draws from two distributions, to bound the variation
distance between the resulting tuples. This is done in the lemma below, using properties of the total variation
distance (essentially Chernoff and union bounds).

Lemma C.1.2 (Direct Product Lemma [SV03, Lemma 3.4]). For P,Q as above, and m ≥ 1 an arbitrary
integer, let the distributions P⊗m and Q⊗m on Rd×· · ·×Rd be defined respectively by drawing m independent
samples s1, . . . , sm from p (resp. q) and outputting their m-fold product (s1, . . . , sm). Then, P⊗m and Q⊗m
satisfy

1− 2e−mα
2

2 ≤ dTV
(
P⊗m, Q⊗m

)
≤ mα (C.1)

where α def= dTV(P,Q). Furthermore, there exist distributions for which the upper bound is achieved.

(Fact C.2.3, by using properties of the Hellinger distance, will tighten these bounds.) More generally, the
following folklore bound holds:

Fact C.1.3. For P1, Q1 ∈ ∆(Ω1) and P2, Q2 ∈ ∆(Ω2) as above,

dTV(P1 ⊗ P2, Q1 ⊗Q2) ≤ dTV(P1, Q1) + dTV(P2, Q2) . (C.2)

66

C.2 Hellinger distance
Definition C.2.1 (Hellinger distance). For P , Q two probability measures as above with densities p, q, the
Hellinger distance is defined as

dH(P,Q) =

√
1
2

∫
Rd

(√p−√q)2 =

√
1−

∫
Rd

√
pq

and takes value in [0, 1]. If P , Q are discrete distributions over some set Ω,

dH(P,Q) =
√

1
2
∑
x∈Ω

(√
P (x)−

√
Q(x)

)2
=
√

1−
∑
x∈Ω

√
P (x)

√
Q(x) = 1√

2
‖
√
P −

√
Q‖2 .

The result below relates Hellinger and total variation distances:

Theorem C.2.2 ([BY02, Corollary 2.39]). For any probability distributions P , Q as above,

1−
√

1− dTV(P,Q)2 ≤ dH(P,Q)2 ≤ dTV(P,Q) (C.3)

The Hellinger distance is particularly useful when trying to bound the distance between two tuples of m
independent draws from respectively P and Q. Indeed, in contrast with the total variation, the Hellinger
distance between tuples from P⊗m and Q⊗m has an exact expression in terms of the distance between P and
Q:

dH
(
P⊗m, Q⊗m

)2 = 1−
(

1− dH(P,Q)2
)m

(C.4)

where the quantity 1− dH(P,Q)2 is sometimes called the Hellinger affinity between P and Q.
Combining with Lemma C.1.2 (whose upper bound is better for small values of the total variation distance)

yields the following:

Fact C.2.3 (Total Variation Distance of m-fold Products). Letting α def= dTV(P,Q), one has

1
2 + τ

mα2 ≤ 1−
(
1− α2)m2 ≤ dTV

(
P⊗m, Q⊗m

)
≤ min

(
mα,

√
1− (1− α)2m

)
(C.5)

where the leftmost inequality holds for any τ > 0, for α small enough.

For more details on this metric, see e.g. [BY02, Section 2.4.1].

C.3 Kolmogorov distance
Definition C.3.1 (Kolmogorov distance). Assuming the domain is totally ordered (e.g., Ω = [n], or at least
distributions over R), one can also define the Kolmogorov distance between P and Q as

dK(P,Q) def= max
x
|FP (x)− FQ(x)| = max

x
(P ([−∞, x))−Q([−∞, x)))

where FP and FQ are the respective cumulative distribution functions (cdf) of P and Q. Thus, the Kolmogorov
distance is the `∞ distance between the cdf’s; and the second equality directly implies dK(P,Q) ≤ dTV(P,Q) ∈
[0, 1].

The main reason to introduce and consider this looser metric is the use of the Dvoretzky–Kiefer–Wolfowitz
inequality (Theorem D.1.1), whose guarantees are stated in terms of Kolmogorov distance.

67

C.4 Earthmover’s distance
Definition C.4.1 (Earthmover’s distance). For P , Q two probability measures defined on a metric space
(Ω, δ), with densities p, q, the Earthmover’s distance (EMD) is defined as

dEMD(P,Q) = inf
γ∈Γ(p,q)

∫
Ω×Ω

δ(x, y)dγ(x, y)

where Γ(p, q) ⊆ ∆(Ω×Ω) denotes the set of probability distributions with marginals p and q. It is also called
the Wasserstein metric.

Intuitively, this metric measures the number of “dirt (probability weight) units” one has to transfer from
some place x to some other place y of the domain, in order to transform P into Q; where each such unit
transfer has a cost δ(x, y) (the closer x and y, the cheaper the transfer). This can be made precise when
the domain Ω is finite (e.g. [n]), in which case the EMD has a clean characterization as the solution of
a minimum-cost flow optimization problem (see e.g. [DBNNR11]). Note that the EMD depends heavily
on the choice of the underlying metric on Ω; for instance, [VV11] chose to endow (0, 1] with the metric
δ : (x, y) 7→ |log x− log y|, which confers to the corresponding EMD properties suited to their needs.

As a last property of the EMD, the following theorem of Kantorovich and Rubinstein [KR58] gives a third
characterization of the distance, when the distributions have bounded support (e.g., Ω is bounded):

Theorem C.4.2. For P , Q as above,

dEMD(P,Q) = inf
f∈Lip1

(∫
Ω
fdp−

∫
Ω
fdq

)
where Lip1 denotes the set of all 1-Lipschitz functions from Ω to R.

Remark C.4.3. In the case Ω ⊆ R, recall that dTV(P,Q) = infS⊆Ω
(∫

Ω 1Sdp−
∫

Ω 1Sdq
)
and dK(P,Q) =

infx∈R
(∫

Ω 1(−∞,x]dp−
∫

Ω 1(−∞,x]dq
)
. This yields a general formulation for the three distances.

For more details on this metric, see e.g. [DD09].

68

Appendix D

A Non-Comprehensive Toolkit

D.1 Fundamental results
We first recall a fundamental fact from probability theory, the Dvoretzky–Kiefer–Wolfowitz (DKW) inequality.
Informally, this states that one can learn the cumulative distribution function of a distribution to additive
error ε in `∞ distance (i.e., learn the distribution in Kolmogorov distance), by taking only O

(1
ε2

)
samples

from it.

Theorem D.1.1 ([DKW56, Mas90]). Let D be a distribution over any (possibly continuous) domain Ω ⊆ R.
Given m independent samples x1, . . . , xm from D, define the distribution D̂ by its empirical distribution
function F̂ as follows:

F̂ (x) def= 1
m
|{ j ∈ [m] : xj ≤ x }|, x ∈ Ω.

Then, for all ε > 0, Pr
[

dK

(
D, D̂

)
> ε

]
≤ 2e−2mε2 , where the probability is taken over the samples.

(In particular, setting m = Θ
(

log(1/δ)
ε2

)
we get that dK

(
D, D̂

)
≤ ε with probability at least 1− δ.)

The following theorem guarantees that applying any (possibly randomized) function to two distributions
can never increase their total variation distance:

Fact D.1.2 (Data Processing Inequality for Total Variation Distance). Let D1, D2 be two distributions over
a domain Ω. Fix any randomized function1 F on Ω, and let F (D1) be the distribution such that a draw from
F (D1) is obtained by drawing independently x from D1 and f from F and then outputting f(x) (likewise for
F (D2)). Then we have

dTV(F (D1), F (D2)) ≤ dTV(D1, D2).

Moreover, we have equality if each realization f of F is one-to-one.

(see e.g. part (iv) of Lemma 2 of [Rey11] for a proof of this result.)

Finally, we recall a well-known result on distinguishing biased coins (which can for instance be derived
from Eq. (2.15) and (2.16) of [AJ06]), that often comes in handy in proving lower bound through reductions:

Fact D.1.3 (Distinguishing Biased Coins). For any constant c ∈ (0, 1), there exists κ > 0 such that the
following holds. Let p ∈ [c, 1− c], and suppose m ≤ κ

ε2 , with ε < c. Then,

dTV(Bin(m, p),Bin(m, p+ ε)) < 1
3 .

1Which can be seen as a distribution over functions over Ω.

69

D.2 On Yao and Non-Adaptive Algorithms
Yao’s Principle (at least, what its “easy direction”given below does) enables one to reduce the problem of
dealing with randomized non-adaptive algorithms over arbitrary inputs to the one of deterministic non-adaptive
algorithms over a (“suitably difficult”) distribution over instances2:

Theorem D.2.1 (Yao’s Minmax Principle (easy direction)). Fix any property P ⊆ ∆(Ω). Suppose there
is a distribution D over instances such that any q-query deterministic algorithm is correct with probability
strictly less than 2/3 when D ∼ D. Then, given any (non-adaptive) q-query randomized tester T , there exists
DT ∈ supp(D), such that

Pr[T is correct on DT] < 2/3 .
Hence, any non-adaptive property testing algorithm for P must make at least q + 1 queries.

Now, a direct application of the Data Processing Inequality (Fact D.1.2) bounds the probability of
distinguishing between samples from two distributions by their total variation distance:

Lemma D.2.2. Let D1, D2 be two distributions over some set Ω, and A be any algorithm (possibly
randomized) that takes x ∈ Ω as input and returns yes or no. Then∣∣∣∣ Pr

x∼D1
[A(x) = yes]− Pr

x∼D2
[A(x) = yes]

∣∣∣∣ ≤ dTV(D1, D2)

where the probabilities are also taken over the possible randomness of A.

To apply this, suppose the testing algorithm interacts with the oracle by sending queries from some set3

Λ, and receiving an answer from some set Ξ (e.g., Ξ = Ω for SAMP). Then, given a (non-adaptive) algorithm’s
sequence of queries Q = (z(1), . . . , z(q)) ⊆ Λq, a distribution D over ∆(Ω) induces a distribution D

∣∣
Q

over Ξq:
ξ is drawn from D

∣∣
Q

by
• drawing D ∼ D;
• outputting (ORACLED(z(1)), . . . ,ORACLED(z(q))) ∈ Ξq.

With this in hand, we can give a crucial tool in proving lower bounds in distribution testing:

Lemma D.2.3 (Key Tool Against Non-Adaptive Testers). Fix any property P ⊆ ∆(Ω). Let Dyes be a
distribution over distributions that belong to P, and Dno be a distribution over distributions that all have
dTV(D,P) > ε. Suppose further that for all q-query sets Q ⊆ Λq, one has dTV

(
Dyes

∣∣
Q
,Dno

∣∣
Q

)
≤ 1

4 . Then
any (two-sided) non-adaptive ε-testing algorithm for P must use at least q + 1 queries.

Proof. Let D be the mixture D def= 1
2D

yes + 1
2D

no (that is, a draw from D is obtained by tossing a fair coin,
and returning accordingly a sample drawn either from Dyes or Dno). Fix a q-query deterministic tester T . Let

pY
def= Pr

D∼Dyes
[T accepts on D], pN

def= Pr
D∼Dno

[T accepts on D]

That is, pY is the probability that a random yes-distribution is accepted, while pN is the probability that a
random no-distribution is accepted. Via the assumption and the previous lemma, |pY − pN | ≤ 1

4 . However,
this means that T cannot be a successful tester; as

Pr
D∼D

[A gives wrong answer] = 1
2(1− pY) + 1

2pN = 1
2 + 1

2(pN − pY) ≥ 3
8 >

1
3 .

So Yao’s principle (Theorem D.2.1) tells us that any randomized non-adaptive q-query tester is wrong on
some D in support of D with probability at least 3

8 ; but a legit tester can only be wrong on any such D with
probability less than 1

3 .
2An instance is a legitimate input to the testing problem, i.e. D ∈ P ∪ { D′ : dist(D′,P) > ε }.
3Possibly a singleton, as can be modeled for SAMP (which does not allow anything more than just “asking for one more

sample”).

70

Remark D.2.4 (Generalization of Lemma D.2.3). The conclusion of the above lemma still holds even under
the weaker assumptions

Pr
D∼Dyes

[f ∈ P] ≥ 99
100 , Pr

D∼Dno
[dTV(f,P) > ε] ≥ 99

100 .

More strings on this bow. We give below another straightforward, yet useful fact when arguing about
lower bounds (especially when applying to distributions over transcripts). It asserts that if two random
variables, conditioning on a low probability event not happening, are statistically close, then their overall
distributions are close:

Fact D.2.5 (Fact 34 from [CRS15]). Let D1, D2 be two distributions over the same finite set Ω. Let E
be an event such that Di(E) = αi ≤ α for i = 1, 2 and the conditional distributions (D1)E and (D2)E are
statistically close, i.e. dTV((D1)E , (D2)E) = β. Then dTV(D1, D2) ≤ α+ β.

Proof. Write

2dTV(D1, D2) =
∑

x∈Ω\E

|D1(x)−D2(x)|+
∑
x∈E
|D1(x)−D2(x)|.

We may upper bound
∑
x∈E |D1(x)−D2(x)| by

∑
x∈E(D1(x) + D2(x)) = D1(E) + D2(E) = α1 + α2;

furthermore,∑
x∈Ē

|D1(x)−D2(x)| =
∑
x∈Ē

∣∣(D1)Ē(x) ·D1(Ē)− (D2)Ē(x) ·D2(Ē)
∣∣

≤ D1(Ē) ·
∑
x∈Ē

|(D1)Ē(x)− (D2)Ē(x)|+
∣∣D1(Ē)−D2(Ē)

∣∣ · (D2)Ē(Ē)

≤ (1− α1) · (2β) + |α2 − α1| · 1 ≤ 2β + |α2 − α1|

Thus 2dTV(D1, D2) ≤ 2β+|α1 − α2|+α1+α2 = 2β+2 max{α1, α2} ≤ 2(α+β), and the fact is established.

D.3 Poissonization
This technique, taking its name after the Poisson distribution, itself named after Siméon Denis Poisson, a
French mathematician from the XIXth century whose name happens to mean “fish,” is a very handy trick
used to “restore independence” between random variables in some specific situations, generally to make the
analysis easier.

As an example, consider taking k independent samples from a distribution D ∈ ∆([n]), and looking at
the resulting fingerprint F = (F1, . . . , Fm) (i.e., the vector whose ith component is the number of elements in
the domain which have been drawn exactly i times). The Fi’s, whose analysis is often paramount to proving
upper or lower bounds, are not independent: for a start, they always sum to m. In order to come down on
F with all the convenient machinery which requires independence amongst random variables, one can then
apply this trick – in a nutshell, taking m′ ∼ Poisson(m) samples instead of exactly m. Then the individual
components of F will be independent; even better, many nice properties of the Poisson distribution will
apply: the random variable m′ will be tightly concentrated around its mean m, for instance. For more on
this technique, see e.g. [BFR+10, Section 3.2] and [VV11, Section 3.1], as well as [Szp01].

Definition D.3.1. Let λ > 0. A (discrete) random variable X is said to follow a Poisson distribution with
parameter λ, denoted Poisson(λ), if

∀k ∈ N, Pr[X = k] = e−λ
λk

k!
In particular, EX = VarX = λ.

71

The Poisson distribution has many key properties: amongst others, the sum of finitely many Poisson
random variables is itself Poisson; a Poisson random variable is tightly concentrated around its expectation;
and the Poisson distribution can be viewed as the limit of a Binomial distribution Bin(n, p) when n goes to
infinity while keeping the product λ = np constant4.

Fact D.3.2. Let Ω be a discrete domain, and D ∈ ∆(Ω). Suppose one takes m′ ∼ Poisson(m) independent
samples s1, . . . , sm′ from D, and define Xω for ω ∈ Ω as the number of times ω appears amongst the si’s.
Then (a) the (Xω)ω∈Ω are independent, and (b) Xω ∼ Poisson(mD(ω)).

Fact D.3.3 ([Gly87, Val12]). Let λ > 0, and k ∈ N. Then, for X ∼ Poisson(λ),
(i) if k < λ,

Pr[X ≤ k] ≤ e−λ

1− k
λ

λk

k! ;

(ii) if k ≥ λ,

Pr[X ≥ k] ≤ e−λ

1− λ
k+1

λk

k! .

Corollary D.3.4 ([Val12]). For any constant c > 0 there exists κ > 0 such that for any λ ≥ 1 and
X ∼ Poisson(λ),

Pr
[
|X − λ| ≥ λ 1

2 +c
]
≤ e−λ

κ

.

Corollary D.3.5. For any m ≥ 20 and X ∼ Poisson(2m),

Pr[X /∈ [m, 3m]] ≤ 2√
m

(
8e
27

)m
≤ 1

100 .

This implies that both for upper and lower bounds on algorithms taking i.i.d. samples from a distribution,
one can assume without loss of generality that for instance the fingerprint (as defined above) of the samples
has all independence properties wished: indeed, up to constant factors in the sample and time complexity,
the existence of a tester and a “Poissonized tester”5 are equivalent:
• a tester with sample complexity m and success probability 2/3 implies a “Poissonized tester” taking

Poisson(m) samples and having success probability 3/5;
• a “Poissonized tester” taking Poisson(m) samples and having success probability 2/3 implies a tester
with sample complexity 3m and success probability 3/5.

D.4 Birgé’s decomposition
We state here a few facts about monotone distributions, namely that they admit a succinct approximation,
itself monotone, close in total variation distance. This theorem from [Bir87] has recently been pivotal in
several results on learning and testing k-modal distributions [DDS12a, DDS+13].

Definition D.4.1 (Oblivious decomposition). Given a parameter ε > 0, the corresponding oblivious decom-
position of [n] is the partition Iε = (I1, . . . , I`), where ` = Θ

(
ln(εn+1)

ε

)
= Θ

(
logn
ε

)
and |Ik| =

⌊
(1 + ε)k

⌋
,

1 ≤ k ≤ `.

For a distribution D and parameter ε, define the histogram Φε(D) to be the flattened distribution with
relation to the oblivious decomposition Iε:

∀k ∈ [`],∀i ∈ Ik, Φε(D)(i) = D(Ik)
|Ik|

. (D.1)

4See also Le Cam’s Inequality [LC60] for a generalization of this limit theorem to sums of (non-necessarily identical) Bernoulli
random variables.

5A tester that, on input m, draws m′ ∼ Poisson(m) and then asks m′ samples from the oracle.

72

Note that while Φε(D) (obviously) depends on D, the partition Iε itself crucially does not; in particular,
it can be computed prior to getting any sample or information about D. We stress the fact that Φε(D) is
supported on logarithmically many intervals; and note that samples from Φε(D) can straightforwardly be
obtained given sampling access to D.

Theorem D.4.2 ([Bir87]). If D is monotone non-increasing, then dTV(D,Φε(D)) ≤ ε.

Remark D.4.3. Another proof, self-contained and phrased in terms of discrete distributions (whereas the
original paper by Birgé is primarily intended for continuous ones) can be found in [DDS+13, Theorem 3.1].

Corollary D.4.4 (Robustness). Suppose D is ε-close to monotone non-increasing. Then dTV(D,Φα(D)) ≤
2ε+ α; furthermore, Φα(D) is also ε-close to monotone non-increasing.

Proof. LetM be a monotone non-increasing distribution such that dTV(D,M) ≤ ε. By the triangle inequality,

dTV(D,Φα(D)) ≤ dTV(D,M) + dTV(M,Φα(M)) + dTV(Φα(M),Φα(D)) ≤ ε+ α+ dTV(Φα(M),Φα(D))

where the last inequality uses the assumption on M and Theorem D.4.2 applied to it. It only remains to
bound the last term: by definition,

2dTV(Φα(M),Φα(D)) =
n∑
i=1
|Φα(D)(i)− Φα(M)(i)| =

∑̀
k=1

∑
i∈Ik

|Φα(D)(i)− Φα(M)(i)|

=
∑̀
k=1

∑
i∈Ik

∣∣∣∣D(Ik)−M(Ik)
|Ik|

∣∣∣∣ =
∑̀
k=1
|D(Ik)−M(Ik)|

=
∑̀
k=1

∣∣∣∣∣∑
i∈Ik

(D(i)−M(i))

∣∣∣∣∣ ≤ ∑̀
k=1

∑
i∈Ik

|D(i)−M(i)| = 2dTV(M,D)

≤ 2ε

(showing in particular the second part of the claim, as Φα(M) is monotone) and thus

dTV(D,Φα(D)) ≤ 2ε+ α

as claimed.

One can interpret this corollary as saying that the Birgé decomposition provides a tradeoff between
becoming simpler (and at least as close to monotone) while not staying too far from the original distribution.
Incidentally, the last step of the proof above implies the following easy fact, that one could also get from
Fact D.1.2:

Fact D.4.5. For all α ∈ (0, 1] and distributions D1, D2,

dTV(Φα(D1),Φα(D2)) ≤ dTV(D1, D2) (D.2)

and in particular, for any property P left invariant by the Birgé transformation (such as monotonicity)

dTV(Φα(D),P) ≤ dTV(D,P) . (D.3)

Conjectures This corollary (which in particular implies that if D is ε-close to monotone, then so is Φα(D))
does not “feel” tight. Intuitively, flattening out parts of the distribution should indeed never bring it further
to monotone, but one would expect the process, in most cases; to it bring it strictly closer. This motivates
the following conjecture that there is always a “good” choice of parameter α:

Conjecture D.4.6. For all n ∈ N, there exists η > 0 such that the following holds. For all α ∈ (0, 1/2] and
D1, D2 ∈ ∆([n]), there exists β ∈ [α/2, 2α] for which dTV(Φβ(P),Φβ(D)) ≤ (1− η)dTV(P,D).

73

One could even hope for the stronger statement that many values of α are “good”:

Conjecture D.4.7. For every η > 0 there exists c > 0 such that for all α ∈ (0, 1/2] and D1, D2 ∈ ∆([n])

Pr
β∼U([α2 ,2α])

[dTV(Φβ(D1),Φβ(D2)) ≤ (1− η)dTV(D1, D2)] ≥ c.

D.5 Assouad and Le Cam
In this section, we describe on two techniques used to prove lower bounds for distribution learning and testing
in the SAMP model, respectively Assouad’s lemma and Le Cam’s method. (We do not cover here Fano’s
Inequality, another and somewhat more general result than Assouad’s – the interested reader is referred
to [Yu97].)

D.5.1 Learning Lower Bounds: Assouad’s Lemma
Definition D.5.1 (Minimax Risk). Let C ⊆ ∆(Ω) be a family of probability distributions, and m ≥ 1. The
minimax risk for C with m samples (with relation to the total variation distance) is defined as

Rm(C) def= inf
A∈Am

sup
D∈C

Es1,...,sm∼D

[
dTV

(
D, D̂A

)]
(D.4)

= inf
A∈Am

sup
D∈C

∫
Ωm

dTV(D,A(s))D⊗m(ds)

where Am is the set of (deterministic) learning algorithms A which take m samples and output a hypothesis
distribution D̂A.

In other terms, Rm(C) is the minimum expected error of any m-sample learning algorithm A when run on
the worst possible target distribution (from C) for it. It is immediate from the definition that for any H ⊆ C,
one has Rm(C) ≥ Rm(H).

To prove lower bounds on learning a family C, a very common method is to come up with a (sub)family
of distributions in which, as long as a learning algorithm does not take enough samples, there always exist
two (far) distributions which still could have yielded indistinguishable “transcripts”. In other terms, after
running any learning algorithm A on m samples, an adversary can still exhibit two very different distributions
(depending on A)6 that ought to be distinguished, yet could not possibly have been from only m samples.
This is formalized by the following theorem, due to Assouad:

Theorem D.5.2 (Assouad’s Lemma [Ass83]). Let C ⊆ ∆(Ω) be a family of probability distributions. Suppose
there exists a family of H ⊆ C of 2r distributions and constants α, β > 0 such that, writing H = {Dz}z∈{0,1}r ,
(i) for all x, y ∈ {0, 1}r, the distance between Dx and Dy is at least proportional to the Hamming distance:

dTV(Dx, Dy) ≥ α‖x− y‖1 (D.5)

(ii) for all x, y ∈ {0, 1}r with ‖x− y‖1 = 1, the squared Hellinger distance of Dx, Dy is small:

dH(Dx, Dy)2 ≤ β (D.6)

(or, equivalently, − ln(1− h2) ≤ ln 1
1−β)

6Note that this differs from the standard methodology for proving lower bounds for property testing, where two families of
distributions (yes and no-instances) are defined beforehand, and a couple of distributions is “committed to” before the algorithm
gets to make its move.

74

Then, for all m ≥ 1,
Rm(H) ≥ 1

4αr(1− β)2m = Ω
(
αre−O(βm)

)
. (D.7)

In particular, to achieve error at most ε, any learning algorithm for C must have sample complexity
Ω
(

1
β log αr

ε

)
.

Remark D.5.3 (High-level idea). Intuitively, every distribution in H is defined by making r distinct “choices”7.
With this interpretation, item (i) means that two distributions differing in many choices should be far (so
that a learning algorithm has to “figure out” most of the choices in order to achieve a small error), while
item (ii) requires that two distributions defined by almost the same choices be very close (so that a learning
algorithm cannot distinguish them too easily).
Remark D.5.4 (Technical detail). Applying Theorem C.2.2, we see that it is sufficient for (D.6) to show that
the (sometimes easier) condition holds:

dTV(Dx, Dy) ≤ β.

Note that, with (D.5) this imposes that α ≤ β; while working with the Hellinger distance only requires
α2 ≤ 2β − β2 (from (C.3) and (D.5)).

An example of application. To prove a lower bound of Ω(logn
ε3) for learning monotone distributions

over [n], Birgé [Bir87] invokes Assouad’s Lemma, defining a family H achieving parameters r = Θ(logn
ε),

α = Θ(ε/r) and β = Θ
(
ε2/r

)
. This example shows a very neat feature of Assouad’s Lemma – it makes it

“easy” to get a dependence on ε in the lower bound.

D.5.2 Testing Lower Bounds: Le Cam’s Method
We now turn to another technique, better suited for proving lower bounds on property testing or parameter
estimation – i.e., where the quantity of interest is a functional of the unknown distribution, instead of the
distribution itself. We start with some terminology that will be useful in stating the main result of this
section.

Definition D.5.5. Let C ⊆ ∆(Ω) be a family of probability distributions over Ω, and m ≥ 1. The convex
hull of m-product distributions from C, denoted convm(C), it the set of probability distributions over Ωq

defined as

convm(C) def=
{ ∑̀

k=1
αkD

⊗m
k : ` ≥ 1, D1, . . . , D` ∈ C, α1, . . . , α` ≥ 0,

∑̀
k=1

αk = 1
}
.

That is, convm(C) is the set of mixtures of m-wise product distributions from C. (Note that distributions in
convm(C) are not in general product distributions themselves.)

Definition D.5.6 (Estimator). Let C ⊆ ∆(Ω) be a family of probability distributions over Ω, and m ≥ 1.
For any real-valued functional ϕ : C → [0, 1] (“scalar property”), we denote by Em the set of estimators for ϕ:
that is, the set of (deterministic) algorithms E taking m ≥ 1 independent samples from a distribution D ∈ C
and outputting an estimate ϕ̂E of ϕ(D).

We state the following lemma for estimators taking value in [0, 1] endowed with the distance |·|, but it
holds for more general metric spaces, and in particular for ([0, 1], ‖·‖2).

Theorem D.5.7 (Le Cam’s Method [LC73, LC86, Yu97]). Let C ⊆ ∆(Ω) be a family of probability distribu-
tions over Ω, and let ϕ : C → [0, 1] be a scalar property. Suppose there exists γ ∈ [0, 1], subsets A1, A2 ⊆ [0, 1],
and families D1,D2 ⊆ C such that the following holds.

7E.g., by choosing, for each of r intervals partitioning the support, whether the distribution (a) is uniform on the interval or
(b) puts all its weight on the first half of the interval.

75

(i) A1 and A2 are γ-separated: |α1 − α2| ≥ γ for all α1 ∈ A1, α2 ∈ A2;
(ii) ϕ(D1) ⊆ A1 and ϕ(D2) ⊆ A2.

Then, for all m ≥ 1,

inf
E∈Em

sup
D∈C

Es1,...,sm∼D[|ϕ̂E − ϕ(D)|] ≥ γ

2

(
1− inf

p1∈convm(D1)
p2∈convm(D2)

dTV(p1, p2)
)
. (D.8)

One particular interest of this result is that the infimum is taken over the convex hull of the m-fold
product distributions from the families D1 and D2, and not over the m-fold distributions themselves. While
this makes the computations much less straightforward (as a mixture of product distributions is not in general
itself a product distribution, one can no longer rely on using the Hellinger distance as a proxy for total
variation and leverage its nice properties with regard to product distributions), it also usually yields much
tighter bounds – as the infimum over the convex hull is often significantly smaller.

We obtain an immediate corollary in terms of property testing, where a testing algorithm is said to fail if
it outputs ACCEPT on a no-instance or REJECT on a yes-instance. Note as usual that if the samples originate
from a distribution which is neither a yes nor no-instance, then the any output is valid and the tester cannot
fail.

Corollary D.5.8. Fix ε ∈ (0, 1), and a property P ⊆ ∆(Ω). Let D1,D2 ⊆ ∆(Ω) be families of respectively
yes- and no-instances, i.e. such that D1 ⊆ P, while any D ∈ D2 has dTV(D,P) > ε. Then, for all m ≥ 1,

inf
T∈Tm

sup
D∈∆(Ω)

Pr
s1,...,sm∼D

[T (s1, . . . , sm) fails] ≥ 1
2

(
1− inf

p1∈convm(D1)
p2∈convm(D2)

dTV(p1, p2)
)
. (D.9)

where Tm is the set of (deterministic) testing algorithms T with sample complexity m.

As any (possibly randomized) bona fide testing algorithm can only fail with probability 1/3, the above combined
with Yao’s Principle implies a lower bound of Ω(m) as soon as m and D1,D2 satisfy infp1,p2 dTV(p1, p2) < 1/3
in (D.9).

Proof of Corollary D.5.8. We apply Theorem D.5.7 with the following parameters: A1 = {0}, A2 = {1},
γ = 1, and ϕ : D ∈ C 7→ 1P(D) ∈ {0, 1}, where C = P ∪ { D ∈ ∆(Ω) : dTV(D,P) > ε } is the set of valid
instances.

An example of application. To prove a lower bound of Ω
(√
n/ε2) for testing uniformity over [n]

(cf. Section 3.2.1), Paninski [Pan08] defines the families D1 = P = {Un} and D2 as the set of distributions D
obtained by perturbing each disjoint pair of consecutive elements (2i− 1, 2i) by either (εn ,−

ε
n) or (− ε

n ,
ε
n)

(for a total of 2n2 distinct distributions). He then analyzes the total variation distance between U⊗mn and the
uniform mixture

p
def= 1

2n2
∑
D∈D2

D⊗m.

By an approach similar as that of [Pol03, Section 14.4], Paninski shows that infp2∈convm(D2) dTV(U⊗mn , p2) ≤
dTV(U⊗mn , p) ≤ 1

2

√
em2ε4/n − 1, which for m ≤ c

√
n

ε2 is less than 1/3 – establishing the lower bound.

76

Appendix E

Miscellaneous definitions

E.1 Distribution classes
1 Recall that a distribution D over [n] is monotone (non-increasing) if its probability mass function (pmf)
satisfies D(1) ≥ D(2) ≥ . . . D(n). A natural generalization of the classM of monotone distributions is the set
of t-modal distributions, i.e. distributions whose pmf can go “up and down” or “down and up” up to t times:

Definition E.1.1 (t-modal). Fix any distribution D over [n], and integer t. D is said to have t modes if
there exists a sequence i0 < · · · < it+1 such that either (−1)jD(ij) < (−1)jD(ij+1) for all 0 ≤ j ≤ t, or
(−1)jD(ij) > (−1)jD(ij+1) for all 0 ≤ j ≤ t. We call D t-modal if it has at most t modes, and writeMt for
the class of all t-modal distributions. The particular case of t = 1 corresponds to the setM1 of unimodal
distributions.

Definition E.1.2 (Log-Concave). A distribution D over [n] is said to be log-concave if the following
holds: (i) for any 1 ≤ i < j < k ≤ n such that D(i)D(k) > 0, D(j) > 0; and (ii) for all 1 < k < n,
D(k)2 ≥ D(k − 1)D(k + 1). We write L for the class of all log-concave distributions.

Definition E.1.3 (Concave and Convex). A distribution D over [n] is said to be concave if it satisfies the
following conditions: (i) for any 1 ≤ i < j < k ≤ n such that D(i)D(k) > 0, D(j) > 0; and (ii) for all
1 < k < n such that D(k− 1)D(k+ 1) > 0, 2D(k) ≥ D(k− 1) +D(k+ 1); it is convex if the reverse inequality
holds in (ii). We write K− (resp. K+) for the class of all concave (resp. convex) distributions.

It is not hard to see that convex and concave distributions are unimodal; moreover, every concave
distribution is also log-concave, i.e. K− ⊆ L. Note that in both Definition E.1.2 and Definition E.1.3,
condition (i) is equivalent to enforcing that the distribution be supported on an interval.

Definition E.1.4 (Monotone Hazard Rate). A distribution D over [n] is said to have monotone hazard rate
(MHR) if its hazard rate H(i) def= D(i)∑n

j=i
D(j)

is a non-decreasing function. We writeMHR for the class of all

MHR distributions.

It is known that every log-concave distribution is both unimodal and MHR (see e.g. [An96, Proposition
10]), and that monotone distributions are MHR. Finally, we recall the definition of the two following classes,
which both extend the family of Binomial distributions BINn:

Definition E.1.5 (Poisson Binomial). A random variable X is said to follow a Poisson Binomial Distribution
(with parameter n ∈ N) if it can be written as X =

∑n
k=1Xk, where X1 . . . , Xn are independent, non-

necessarily identically distributed Bernoulli random variables. We denote by PBDn the class of all such
Poisson Binomial Distributions.

1We reproduce these definitions from [CDGR15].

77

One can generalize even further, by allowing each random variable of the summation to be integer-valued:

Definition E.1.6 (k-SIIRV). Fix any k ≥ 0. We say a random variable X is a k-Sum of Independent Integer
Random Variables (k-SIIRV) with parameter n ∈ N if it can be written as X =

∑n
j=1Xj , where X1 . . . , Xn

are independent random variables taking value in {0, 1, . . . , k − 1}. We denote by k-SIIRVn the class of all
such k-SIIRVs.

78

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

