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Abstract

We introduce a simple model illustrating the role of context in communication and the
challenge posed by uncertainty of knowledge of context. We consider a variant of distributional
communication complexity where Alice gets some information x and Bob gets y, where (x, y) is
drawn from a known distribution, and Bob wishes to compute some function g(x, y) (with high
probability over (x, y)). In our variant, Alice does not know g, but only knows some function f
which is an approximation of g. Thus, the function being computed forms the context for the
communication, and knowing it imperfectly models (mild) uncertainty in this context.

A naive solution would be for Alice and Bob to first agree on some common function h that
is close to both f and g and then use a protocol for h to compute h(x, y). We show that any
such agreement leads to a large overhead in communication ruling out such a universal solution.

In contrast, we show that if g has a one-way communication protocol with complexity k in
the standard setting, then it has a communication protocol with complexity O(k · (1 + I)) in the
uncertain setting, where I denotes the mutual information between x and y. In the particular
case where the input distribution is a product distribution, the protocol in the uncertain setting
only incurs a constant factor blow-up in communication and error.

Furthermore, we show that the dependence on the mutual information I is required. Namely,
we construct a class of functions along with a non-product distribution over (x, y) for which the
communication complexity is a single bit in the standard setting but at least Ω(

√
n) bits in the

uncertain setting.
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1 Introduction

Most forms of communication involve communicating players that share a large common context
and use this context to compress communication. In natural settings, the context may include
understanding of language, and knowledge of the environment and laws. In designed (computer-
to-computer) settings, the context includes knowledge of the operating system, communication
protocols, and encoding/decoding mechanisms. Remarkably, especially in the natural setting, con-
text can seemingly be used to compress communication, even when it is not shared perfectly. This
ability to communicate despite a major source of uncertainty has led to a series of works attempt-
ing to model various forms of communication amid uncertainty, starting with Goldreich, Juba and
Sudan [JS08, GJS12] followed by [JKKS11, JS11, JW13, HS14, CGMS15]. This current work in-
troduces a new theme to this series of works by introducing a functional notion of uncertainty and
studying this model. We start by describing our model and results below and then contrast our
model with some of the previous works.

Model. Our model builds upon the classical setup of communication complexity due to Yao [Yao79],
and we develop it here. The classical model considers two interacting players Alice and Bob each
possessing some private information x and y with x known only to Alice and y to Bob. They wish to
compute some joint function g(x, y) and would like to do so while exchanging the minimum possible
number of bits. In this work, we suggest that the function g is the context of the communication and
consider a setting where it is shared imperfectly. Specifically, we say that Bob knows the function
g and Alice knows some approximation f to g (with f not being known to Bob). This leads to the
question: when can Alice and Bob interact to compute g(x, y) with limited communication ?

It is clear that if x ∈ {0, 1}n, then n bits of communication suffice — Alice can simply ignore f
and send x to Bob. We wish to consider settings that improve on this. To do so correctly on every
input, a necessary condition is that g must have low communication complexity in the standard
model. However, this necessary condition does not seem to be sufficient — since Alice only has
an approximation f to g. Thus, we settle for a weaker goal: determining g correctly only on most
inputs. This puts us in a distributional communication complexity setting. A necessary condition
now is that g must have a low-error low-communication protocol in the standard setting. The
question is then: can g be computed with low error and low communication when Alice only knows
an approximation f to g (with f being unknown to Bob) ?

More precisely, in this setting, the input to Alice is a pair (f, x) and the input to Bob is a pair
(g, y). The functions (f, g) are adversarially chosen subject to the restrictions that they are close
to each other (under some distribution µ on the inputs) and that g (and hence f) has a low-error
low-communication protocol. The pair (x, y) is drawn from the distribution µ (independent of the
choice of f and g). The players both know µ in addition to their respective inputs.

Results. In order to describe our results, we first introduce some notation. Let δµ(f, g) denote the
(weighted and normalized) Hamming distance between f and g with respect to the distribution µ.
Let CCµε (f) denote the minimum communication complexity of a protocol computing f correctly on
all but an ε fraction of the inputs. Let owCCµε (f) denote the corresponding one-way communication
complexity of f . Given a family F of pairs of functions (f, g), we denote the uncertain complexity
CCUµε (F) to be the minimum over all public-coin protocols Π of the maximum over (f, g) ∈ F ,
(x, y) in the support of µ and settings of public coins, of the communication cost of Π, subject to
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the condition that for every (f, g) ∈ F , Π outputs g(x, y) with probability 1− ε over the choice of
(x, y) and the shared randomness. That is,

CCUµε (F) , min
{Π | ∀(f,g)∈F : δµ(Π,g)≤ε}

max
{(f,g)∈F ,(x,y)∈supp(µ), public coins}

{Comm. cost of Π((f, x), (g, y))}.

Similarly, let owCCUµε (F) denote the one-way uncertain communication complexity of F .
Our first result (Theorem 1.1) shows that if µ is a distribution on which f and g are close and

each has a one-way protocol with communication k bits in the standard model, then the pair (f, g)
has one-way uncertain communication complexity of at most O(k · (1 + I)) bits with I being the
mutual information1 of (x, y) ∼ µ. More precisely, let owFk,ε,δ denote the family of all pairs of
functions (f, g) with owCCµε (f), owCCµε (g) ≤ k and δµ(f, g) ≤ δ. We prove the following theorem.

Theorem 1.1. There exists an absolute constant c such that for every pair of finite sets X and Y ,
every distribution µ over X × Y and every θ > 0, it holds that

owCCUµε+2δ+θ(owF
µ
k,ε,δ) ≤

c
(
k + log

(
1
θ

))
θ2

·
(

1 +
I(X;Y )

θ2

)
. (1)

In the special case where µ is a product distribution, then I(X;Y ) = 0 and we obtain the
following particularly interesting corollary of Theorem 1.1.

Corollary 1.2. There exists an absolute constant c such that for every pair of finite sets X and
Y , every product distribution µ over X × Y and every θ > 0, it holds that

owCCUµε+2δ+θ(owF
µ
k,ε,δ) ≤

c
(
k + log

(
1
θ

))
θ2

.

In words, Corollary 1.2 says that for product distributions and for constant error probabilities,
communication in the uncertain model is only a constant factor larger than in the standard model.

Our result is significant in that it achieves (moderately) reliable communication despite un-
certainty about the context, even when the uncertainty itself is hard to resolve. To elaborate on
this statement, note that one hope for achieving a low-communication protocol for g would be for
Alice and Bob to first agree on some function q that is close to f and g, and then apply some low-
communication protocol for this common function q. This would be the “resolve the uncertainty
first” approach. We prove (Theorem 3.2) that resolving the uncertainty can be very expensive
(much more so than even the trivial protocol of sending x) and hence, this would not be a way to
prove Theorem 1.1. Instead, we show a path around the inherent uncertainty to computing the
desired function, and this leads to a proof of Theorem 1.1. To handle non-product distributions
in Theorem 1.1, we in particular use a one-way distributional variant of the correlated sampling
protocol of Braverman and Rao [BR11]. For a high-level overview of the proof of Theorem 1.1, we
refer the reader to Section 4.1.

We now describe our lower bound. Given the upper bound in Theorem 1.1, a natural question
is whether the dependence on I(X;Y ) in the right-hand side of Equation (1) is actually needed. In
other words, is it also the case that for non-product distributions, contextual uncertainty can only
cause a constant-factor blow-up in communication (for constant error probabilities) ? Perhaps sur-
prisingly, the answer to this question turns out to be negative. Namely, we show that a dependence
of the communication in the uncertain setting on I(X;Y ) is required.

1Given a distribution µ over a pair (X,Y ) of random variables with marginals µX and µY overX and Y respectively,

the mutual information of X and Y is defined as I(X;Y ) , E(x,y)∼µ[log( µ(x,y)
µX (x)µY (y)

)].
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Theorem 1.3. There exist a distribution µ and a function class F ⊆ owFµ1,0,δ such that for every
ε > 0,

CCUµ1
2
−ε(F) ≥ Ω(

√
δn)− log(1/ε).

In particular, if δ is any small constant (e.g., 1/5), then Theorem 1.3 asserts the existence of a
distribution and a class of distance-δ functions for which the zero-error (one-way) communication
complexity in the standard model is a single bit, but under contextual uncertainty, any two-way
protocol (with an arbitrary number of rounds of interaction) having a noticeable advantage over
random guessing requires Ω(

√
n) bits of communication! We note that the distribution µ in The-

orem 1.3 has mutual information ≈ n, so Theorem 1.3 rules out improving the dependence on the
mutual information in Equation (1) to anything smaller than

√
I(X;Y ). It is an interesting open

question to determine the correct exponent of I(X;Y ) in Equation (1).
In order to prove Theorem 1.3, the function class F will essentially consist of the set of all close-

by pairs of parity functions and the distribution µ will correspond to the noisy Boolean hypercube.
We are then able to reduce the problem of computing F under µ with contextual uncertainty, to the
problem of computing a related function in the standard distributional communication complexity
model (i.e., without uncertainty) under a related distribution. We then use the discrepancy method
to prove a lower bound on the communication complexity of the new problem. This task itself
reduces to upper bounding the spectral norm of a certain communication matrix. The choice of our
underlying distribution then implies a tensor structure for this matrix, which reduces the spectral
norm computation to bounding the largest singular value of an explicit family of 4 × 4 matrices.
For more details about the proof of Theorem 1.3, we refer the reader to Section 5.

Contrast with prior work. The first works to consider communication with uncertainty in a
manner similar to this work were those of [JS08, GJS12]. Their goal was to model an extreme form of
uncertainty, where Alice and Bob do not have any prior (known) commonality in context and indeed
both come with their own “protocol” which tells them how to communicate. So communication is
needed even to resolve this uncertainty. While their setting is thus very broad, the solutions they
propose are much slower and typically involve resolving the uncertainty as a first step.

The later works [JKKS11, HS14, CGMS15] tried to restrict the forms of uncertainty to see
when it could lead to more efficient communication solutions. For instance, Juba et al. [JKKS11]
consider the compression problem when Alice and Bob do not completely agree on the prior. This
introduces some uncertainty in the beliefs, and they provide fairly efficient solutions by restricting
the uncertainty to a manageable form. Canonne et al. [CGMS15] were the first to connect this
stream of work to communication complexity, which seems to be the right umbrella to study the
broader communication problems. The imperfectness they study is however restricted to the ran-
domness shared by the communicating parties, and does not incorporate any other elements. They
suggest studying imperfect understanding of the function being computed as a general direction,
though they do not suggest specific definitions, which we in particular do in this work.

Organization In Section 2, we carefully develop the uncertain communication complexity model
after recalling the standard distributional communication complexity model. In Section 3, we prove
the hardness of contextual agreement. In Section 4, we prove our main upper bound (Theorem 1.1).
In Section 5, we prove our main lower bound (Theorem 1.3). For a discussion of some intriguing
future directions that arise from this work, we refer the reader to the conclusion section 6.
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2 The Uncertain Communication Complexity Model

We start by recalling the classical communication complexity model of Yao [Yao79] and then present
our definition and measures.

2.1 Communication Complexity

We start with some basic notation. For an integer n ∈ N, we denote by [n] the set {1, . . . , n}.
We use log x to denote a logarithm in base 2. For two sets A and B, we denote by A4B their
symmetric difference. For a distribution µ, we denote by x ∼ µ the process of sampling a value x
from the distribution µ. Similarly, for a set X we denote by x ∼ X the process of sampling a value
x from the uniform distribution over X. For any event E, let 1(E) be the 0-1 indicator of E. For
a probability distribution µ over X × Y , we denote by µX the marginal of µ over X. By µY |x, we
denote the conditional distribution of µ over Y conditioned on X = x.

Given a distribution µ supported on X and functions f, g : X → Σ, we let δµ(f, g) denote the
(weighted and normalized) Hamming distance between f and g, i.e., δµ(f, g) , Prx∼µ[f(x) 6= g(x)].
(Note that this definition extends naturally to probabilitistic functions f and g – by letting f(x)
and g(x) be sampled independently.)

We now turn to the definition of communication complexity. A more thorough introduction can
be found in [KN97]. Let f : X × Y → {0, 1} be a function and Alice and Bob be two parties. A
protocol Π between Alice and Bob specifies how and what Alice and Bob communicate given their
respective inputs and communication thus far. It also specifies when they stop and produce an
output (that we require to be produced by Bob). A protocol is said to be one-way if it involves
a single message from Alice to Bob, followed by Bob producing the output. The protocol Π is
said to compute f if for every (x, y) ∈ X × Y it holds that Π(x, y) = f(x, y). The communication
complexity of Π is the number of bits transmitted during the execution of the protocol between
Alice and Bob. The communication complexity of f is the minimal communication complexity of
a protocol computing f .

It is standard to relax the above setting by introducing a distribution µ over the input space
X×Y and requiring the protocol to succeed with high probability (rather than with probability 1).
We say that a protocol Π ε-computes a function f under distribution µ if δµ(Π(x, y), f(x, y)) ≤ ε.

Definition 2.1 (Distributional Communication Complexity). Let f : X×Y → {0, 1} be a Boolean
function and µ be a probability distribution over X × Y . The distributional communication com-
plexity of f under µ with error ε, denoted by CCµε (f), is defined as the minimum over all protocols
Π that ε-compute f over µ, of the communication complexity of Π. The one-way communication
complexity owCCµε (f) is defined similarly by minimizing over one-way protocols Π.

We note that it is also standard to provide Alice and Bob with a shared random string which
is independent of x, y and f . In the distributional communication complexity model, it is a known
fact that any protocol with shared randomness can be used to get a protocol that does not use
shared randomness without increasing its distributed communication complexity.

In this paper, unless stated otherwise, whenever we refer to a protocol, we think of the input
pair (x, y) as coming from a distribution.
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2.2 Uncertain Communication Complexity

We now turn to the central definition of this paper, namely uncertain communication complexity.
Our goal is to understand how Alice and Bob can communicate when the function that Bob wishes
to determine is not known to Alice. In this setting, we make the functions g (that Bob wants to
compute) and f (Alice’s estimate of g) explicitly part of the input to the protocol Π. Thus, in this
setting a protocol Π specifies how Alice with input (f, x) and Bob with input (g, y) communicate,
and how they stop and produce an output. We say that Π computes (f, g) if for every (x, y) ∈ X×Y ,
the protocol outputs g(x, y). We say that a (public-coin) protocol Π ε-computes (f, g) over µ if
δµ(g,Π) ≤ ε.

Next, one may be tempted to define the communication complexity of a pair of functions (f, g)
as the minimum over all protocols that compute (f, g) of their maximum communication. But
this does not capture the uncertainty! (Rather, a protocol that works for the pair corresponds
to both Alice and Bob knowing both f and g.) To model uncertainty, we have to consider the
communication complexity of a whole class of pairs of functions, from which the pair (f, g) is
chosen (in our case by an adversary).

Let F ⊆ {f : X × Y → {0, 1}}2 be a family of pairs of Boolean functions with domain X × Y .
We say that a public-coin protocol Π ε-computes F over µ if for every (f, g) ∈ F , we have that Π
ε-computes (f, g) over µ. We are now ready to present our main definition.

Definition 2.2 (Contextually Uncertain Communication Complexity). Let µ be a distribution on
X × Y and F ⊆ {f : X × Y → {0, 1}}2. The communication complexity of F under contextual
uncertainty, denoted CCUµε (F), is the minimum over all public-coin protocols Π that ε-compute F
over µ, of the maximum communication complexity of Π over (f, g) ∈ F , (x, y) from the support
of µ and settings of the public coins.

As usual, the one-way contextually uncertain communication complexity owCCUµε (F) is defined
similarly.

We remark that while in the standard distributional model of Subsection 2.1, shared randomness
can be assumed without loss of generality, this is not necessarily the case in Definition 2.2. This
is because in principle, shared randomness can help fool the adversary who is selecting the pair
(f, g) ∈ F . Also, observe that in the special case where F = {(f, g)}, Definition 2.2 boils down
to the standard definition of distributional communication complexity (i.e., Definition 2.1) for the
function g, and we thus have CCUµε ({(f, g)}) = CCµε (g). Furthermore, the uncertain communication
complexity is monotone, i.e., if F ⊆ F ′ then CCUµε (F) ≤ CCUµε (F ′). Hence, we conclude that
CCUµε (F) ≥ max{g | ∃f s.t. (f,g)∈F}{CCµε (g)}.

In this work, we attempt to identify a setting under which the above lower bound can be
matched. If the set of functions Γ(g) = {f | (f, g) ∈ F} is not sufficiently informative about g,
then it seems hard to conceive of settings where Alice can do non-trivially well. We thus pick a
simple and natural restriction on Γ(g), namely, that it contains functions that are close to g (in
δµ-distance). This leads us to our main target classes. For parameters k, ε, δ > 0, define the sets of
pairs of functions

Fk,ε,δ , {(f, g) | δµ(f, g) ≤ δ & CCµε (f),CCµε (g) ≤ k}

and

owFk,ε,δ , {(f, g) | δµ(f, g) ≤ δ & owCCµε (f), owCCµε (g) ≤ k}.
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In words, Fk,ε,δ (resp. owFk,ε,δ) considers all possible functions g with communication complexity
(resp. one-way communication complexity) at most k with Alice being roughly under all possible
uncertainties within distance δ of Bob.2

It is clear that owCCµε (owFk,ε,δ) ≥ k. Our first main result, Theorem 1.1, gives an upper bound
on this quantity, which in the particular case of product distributions is comparable to k (up to
a constant factor increase in the error and communication complexity). In Theorem 3.2 we show
that a naive strategy that attempts to reduce the uncertain communication problem to a “function
agreement problem” (where Alice and Bob agree on a function q that is close to f and g and then
use a protocol for q) cannot work. Furthermore, our second main result, Theorem 1.3, shows that
for general non-product distributions, CCµε (owFk,ε,δ) can be much larger than k. More precisely,
we construct a function class along with a distribution µ for which the one-way communication
complexity in the standard model is a single bit whereas, under contextual uncertainty, the two-way
communication complexity is at least Ω(

√
n)!

3 Hardness of Contextual Agreement

In this section, we show that even if both f and g have small one-way distributional communication
complexity on some distribution µ, agreeing on a q such that δµ(q, f) is small takes communication
that is roughly the size of the bit representation of f (which is exponential in the size of the input).
Thus, agreeing on q before simulating a protocol for q is exponentially costlier than even the trivial
protocol where Alice sends her input x to Bob. Formally, we consider the following communication
problem:

Definition 3.1 (Agreeδ,γ(F)). For a family of pairs of functions F ⊆ {f : X ×Y → {0, 1}}2, the
F-agreement problem with parameters δ, γ ≥ 0 is the communication problem where Alice gets f
and Bob gets g such that (f, g) ∈ F and their goal is for Alice to output qA and Bob to output qB
such that δ(qA, f), δ(qB, g) ≤ δ and Pr[qA = qB] ≥ γ.

Somewhat abusing notation, we will use Agreeδ,γ(D) to denote the distributional problem
where D is a distribution on {f : X × Y → {0, 1}}2 and the goal now is to get agreement with
probability δ over the randomness of the protocol and the input.

If the agreement problem could be solved with low communication for the family Fk,δ,ε as
defined at the end of Section 2, then this would turn into a natural protocol for CCU(Fk,ε′,δ′) for
some positive ε′ and δ′ as well. Our following theorem proves that agreement is a huge overkill.

Theorem 3.2. For every δ, δ2 > 0, there exists α > 0 and a family F ⊆ F0,0,δ such that for every
γ > 0, it holds that CC(Agreeδ2,γ(F)) ≥ α|Y | − log(1/γ).

In words, Theorem 3.2 says that there is a family of pairs of functions supported on functions
of zero communication complexity (with zero error) for which agreement takes communication
polynomial in the size of the domain of the functions. Note that this is exponentially larger than
the trivial communication complexity for any function g, which is at most min{1+log |Y |, log |X|}.

We stress that while an agreement lower bound for zero communication functions may feel a
lower bound for a toy problem, a lower bound for this setting is inherent in any separation between

2For the sake of symmetry, we insist that CCµε (f) ≤ k (resp. owCCµε (f) ≤ k). We need not have insisted on it
but since the other conditions anyhow imply that CCµε+δ(f) ≤ k (resp. owCCµε+δ(f) ≤ k), we decided to include this
stronger condition for aesthetic reasons.
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agreement complexity for F and communication complexity with uncertainty for F . To see this,
note that given any input to the CCU(F) problem, Alice and Bob can execute any protocol for
CCU(F) pinning down the value of the function to be computed with high probability and low
communication. If one considers the remaining challenge to agreement, it comes from a zero
communication problem.

Our proof of Theorem 3.2 uses a lower bound on the communication complexity of agreement
distillation (with imperfectly shared randomness) problem defined in [CGMS15], who in turn rely
on a lower bound for randomness extraction from correlated sources due to Bogdanov and Mos-
sel [BM11].

We describe their problem below and the result that we use. We note that their context is
slightly different and our description below is a reformulation. First, we define the notion of ρ-
perturbed sequences of bits. A pair of bits (a, b) is said to be a pair of ρ-perturbed uniform bits if
a is uniform over {0, 1}, and b = a with probability 1− ρ and b 6= a with probability ρ. A pair of
sequences of bits (r, s) is said to be ρ-perturbed if r = (r1, . . . , rn) and s = (s1, . . . , sn) and each
coordinate pair (ri, si) is a ρ-perturbed uniform pair drawn independently of all other pairs. For a
random variable W , we define its min-entropy as H∞(w) , minw∈supp(W ){− log(Pr[W = w]}.

Definition 3.3 (Agreement-Distillationkγ,ρ). In this problem, Alice and Bob get as inputs r and
s, where (r, s) form a ρ-perturbed sequence of bits. Their goal is to communicate deterministically
and produce as outputs wA (Alice’s output) and wB (Bob’s output) with the following properties:
(i) H∞(wA), H∞(wB) ≥ k and (ii) Pr(r,s)[wA = wB] ≥ γ.

Lemma 3.4 ([CGMS15, Theorem 2]). For every ρ > 0, there exists ε > 0 such that for every
k and γ, it holds that every deterministic protocol Π that computes Agreekγ,ρ has communication
complexity at least εk − log 1/γ.

We note that while the agreement distillation problem is very similar to our agreement problem,
there are some syntactic differences. We are considering pairs of functions with low communica-
tion complexity, whereas the agreement-distillation problem considers arbitrary random sequences.
Also, our output criterion is proximity to the input functions, whereas in the agreement-distillation
problem, we need to produce high-entropy outputs. Finally, we want a lower bound for our agree-
ment problem when Alice and Bob are allowed to share perfect randomness while the agreement-
distillation bound only holds for deterministic protocols. Nevertheless, we are able to reduce to
their setting quite easily as we will see shortly.

Our proof of Theorem 3.2 uses the standard Chernoff-Hoeffding tail inequality on random
variables that we include below. Denote exp(x) , ex, where e is the base of the natural logarithm.

Proposition 3.5 (Chernoff bound). Let X =
∑n

i=1Xi be a sum of identically distributed inde-
pendent random variables X1, . . . , Xn ∈ {0, 1}. Let µ = E[X] =

∑n
i=1 E[Xi]. It holds that for

δ ∈ (0, 1),

Pr[X < (1− δ)µ] ≤ exp
(
−δ2µ/2

)
and

Pr[X > (1 + δ)µ] ≤ exp
(
−δ2µ/3

)
,

and for a > 0,

Pr[X > µ+ a] ≤ exp(−2a2/n)
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Proof of Theorem 3.2. We prove the theorem for α < δ/6, in which case we may assume γ >
exp(−δ|Y |/6) since otherwise the right-hand side is non-positive.

Let FB denote the set of functions that depend only on Bob’s inputs, i.e., f ∈ FB if there exists
f ′ : Y → {0, 1} such that f(x, y) = f ′(y) for all x, y. Our family F will be a subset of FB × FB,
the subset that contains functions that are at most δ|Y | apart.

F , {(f, g) ∈ FB ×FB | δ(f, g) ≤ δ}.

It is clear that communication complexity of every function in the support of F is zero, with zero
error (Bob can compute it on his own) and so F ⊆ F0,0,δ. So it remains to prove a lower bound on
CC(Agreeδ2,γ(F)).

We prove our lower bound by picking a distribution Dρ supported mostly on F and by giving a
lower bound on CC(Agreeδ2,γ(Dρ)). Let ρ = δ/2. The distribution Dρ is a simple one. It samples
(f, g) as follows. The function f is drawn uniformly at random from FB. Then, g is chosen to
be a “ρ-perturbation” of f , namely for every y ∈ Y , g′(y) is chosen to be equal to f(x, y) with
probability 1−ρ and 1− f(x, y) with probability ρ. For every x ∈ X, we now set g(x, y) = g′(x, y).

By the Chernoff bound (see Proposition 3.5), we have that Pr(f,g)∼Dρ [δ(f, g) > δ] = exp(−ρ|Y |/3) ≤
γ. So with overwhelmingly high probability, Dρ draws elements from F . In particular, if some pro-
tocol solves Agreeδ2,γ(F), then it would also solve Agreeδ2,2γ(Dρ).

We thus need to show a lower bound on the communication complexity of Agreeδ2,2γ(Dρ).
We now note that since this is a distributional problem, by Yao’s min-max principle, if there is
randomized protocol to solve Agreeδ2,2γ(Dρ) with C bits of communication, then there is also
a deterministic protocol for the same problem and with the same complexity. Thus, it suffices to
lower bound the deterministic communication complexity of Agreeδ2,2γ(Dρ). Claim 3.6 shows that
any such protocol gives a deterministic protocol for Agreement-Distillation with k = Ωδ2(|Y |).
Combining this with Lemma 3.4 gives us the desired lower bound on CC(Agreeδ2,2γ(Dρ)) and
hence on CC(Agreeδ2,γ(F)).

Claim 3.6. Every protocol for Agreeδ2,γ(Dρ) is also a protocol for Agreement-Distillationkγ,ρ
for k = (1 − h(δ2))|Y |, where h(·) is the binary entropy function given by h(x) = −x log x − (1 −
x) log(1− x).

Proof. Suppose Alice and Bob are trying to solve Agreement-Distillationkγ,ρ. They can sample

ρ-pertubed strings (r, s) ∈ {0, 1}|Y | and interpret them as functions f ′, g′ : Y → {0, 1} or equiva-
lently as functions (f, g) ∼ Dρ. They can now simulate the protocol for Agreeδ,γ(f, g) and output
qA and qB. By definition of Agree, we have qA = qB with probability at least γ. So it suffices
to show that H∞(qA), H∞(qB) ≥ k. But this is obvious since any function qA is output only if
δ(f, qA) ≤ δ2 and we have that |{f | δ(f, qA) ≤ δ}| ≤ 2h(δ2)|Y |. Since the probability of sampling
f for any f is at most 2−|Y |, we have that the probability of outputting qA for any qA is at most
2−(1−h(δ2))|Y |. In other words, H∞(qA) ≥ (1 − h(δ2))|Y |. Similarly, we can lower bound H∞(qB)
and thus we have that the outputs of the protocol for Agree solve Agreement-Distillation
with k = (1− h(δ2))|Y |.

4 One-way Communication with Contextual Uncertainty

In this section, we prove Theorem 1.1. We start with a high-level description of the protocol.
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4.1 Overview of Protocol

Let µ be a distribution over an input space X × Y . For any function s : X × Y → {0, 1} and any
x ∈ X, we define the restriction of s to x to be the function sx : Y → {0, 1} given by sx(y) = s(x, y)
for any y ∈ Y .

We now give a high-level overview of the protocol. First, we consider the particular case
of Theorem 1.1 where µ is a product distribution, i.e., µ = µX × µY . Note that in this case,
I(X;Y ) = 0 in the right-hand side of Equation (1). We will handle the case of general (not
necessarily product) distributions later on.

The general idea is that given inputs (f, x), Alice can determine the restriction fx, and she will
try to describe it to Bob. For most values of x, fx will be close (in δµY -distance) to the function
gx. Bob will try to use the (yet unspecified) description given by Alice in order to determine some
function B that is close to gx. If he succeeds in doing so, he can output B(y) which would equal
gx(y) with high probability over y.

We next explain how Alice will describe fx, and how Bob will determine some function B that
is close to gx based on Alice’s description. For the first part, we let Alice and Bob use shared
randomness in order to sample y1, . . . , ym, where the yi’s are drawn independently with yi ∼ µY ,
and m is a parameter to be chosen later. Alice’s description of fx will then be (fx(y1), . . . , fx(ym)) ∈
{0, 1}m. Thus, the length of the communication is m bits and we need to show that setting m to be
roughly O(k) suffices. Before we explain this, we first need to specify what Bob does with Alice’s
message.

As a first cut, let us consider the following natural strategy: Bob picks an x̃ ∈ X such that gx̃
is close to fx on y1, . . . , ym, and sets B = gx̃. It is clear that if x̃ = x, then B = gx̃ = gx, and for
every y ∈ µY , we would have B(y) = gx(y). Moreover, if x̃ is such that gx̃ is close to gx (which is
itself close to fx), then B(y) would now equal gx(y) with high probability. It remains to deal with
x̃ such that gx̃ is far from gx. Note that if we first fix any such x̃ and then sample y1, . . . , ym, then
with high probability, we would reveal that gx̃ is far from gx. This is because gx is close to fx, so
gx̃ should also be far from fx. However, this idea alone cannot deal with all possible x̃ — using
a naive union bound over all possible x̃ ∈ X would require a failure probability of 1/|X|, which
would itself require setting m to be roughly log |X|. Indeed, smaller values of m should not suffice
since we have not yet used the fact that CCµε (g) ≤ k — but we do so next.

Suppose that Π is a one-way protocol with k bits of communication. Then, note that Alice’s
message partitions X into 2k sets, one corresponding to each message. Our modified strategy for
Bob is to let him pick a representative x from each set in this partition, and then set B = gx̃ for
an x̃ among the representatives for which gx̃ and f are the closest on the samples y1, . . . , ym. A
simple analysis shows that the gx’s that lie inside the same set in this partition are close, and thus,
if we pick x̃ to be the representative of the set containing x, then gx̃ and fx will be close on the
sampled points. For an other representative, once again if gx̃ is close to gx, then gx̃(y) will equal
gx(y) with high probability. For a representative x̃ such that gx̃ is far from gx (which is itself close
to fx), we can proceed as in the previous paragraph, and now the union bound works out since the
total number of representatives is only 2k.3

We now turn to the case of general (not necessarily product) distributions. In this case, we
would like to run the above protocol with y1, y2, . . . , ym sampled independently from µY |x (instead

3We note that a similar idea was used in a somewhat different context by [BJKS02] (following on [KNR99]) in
order to characterize one-way communication complexity of any function under product distributions in terms of its
VC-dimension.
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of µY ). Note that Alice knows x and hence knows the distribution µY |x. Unfortunately, Bob does
not know µY |x; he only knows µY as a “proxy” for µY |x. While Alice and Bob cannot jointly sample
such yi’s without communicating (as in the product case), they can still run the correlated sampling
protocol of [BR11] in order to agree on such samples while communicating at most O(m · I(X;Y ))
bits. The original correlated sampling procedure of [BR11] inherently used multiple rounds of
communication, but we are able in our case to turn it into a one-way protocol by leveraging the
fact that our setup is distributional (see Subsection 4.2 for more details).

The outline of the rest of this section is the following. In Subsection 4.2, we describe the
properties of the correlated sampling procedure that we will use. In Subsection 4.3, we give the
formal proof of Theorem 1.1.

4.2 Correlated Sampling

We start by recalling two standard notions from information theory. Given two disributions P and
Q, the KL divergence between P and Q is defined as D(P ||Q) , Eu∼P [log(P (u)/Q(u))]. Given a
joint distribution µ of a pair (X,Y ) of random variables with µX and µY being the marginals of µ
over X and Y respectively, the mutual information of X and Y is defined as I(X;Y ) , D(µ||µXµY ).

The following lemma summarizes the properties of the correlated sampling protocol of [BR11].

Lemma 4.1 ([BR11]). Let Alice be given a distribution P and Bob be given a distribution Q over
a common universe U . There is an interactive public-coin protocol that uses an expected

D(P ||Q) + 2 log(1/ε) +O(
√
D(P ||Q) + 1)

bits of communication such that at the end of the protocol:

• Alice outputs an element a distributed according to P .

• Bob outputs an element b such that for each u ∈ U , Pr[b = u | a = u] > 1− ε.

Moreover, the message that Bob sends to Alice in any given round consists of a single bit indicating
if the protocol should terminate or if Alice should send the next message.

We point out that in general, the correlated sampling procedure in Lemma 4.1 can take more
than one round of communication. This is because initially, neither Alice nor Bob knows D(P ||Q)
and they will need to interactively “discover” it. In our case, we will be using correlated sampling
in a “distributional setup”. It turns out that this allows us to use a one-way version of correlated
sampling which is described in Lemma 4.2 below.

Lemma 4.2. Let µ be a distribution over (x, y) with marginal µX over x, and assume that µ is
known to both Alice and Bob. Fix ε > 0 and let Alice be given x ∼ µX . There is a one-way
public-coin protocol that uses at most

O(m · I(X;Y )/ε+ log(1/ε)/ε)

bits of communication such that with probability at least 1− ε over the public coins of the protocol
and the randomness of x, Alice and Bob agree on m samples y1, y2, . . . , ym i.i.d ∼ µ(Y |x) at the
end of the protocol.
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Proof. When x is Alice’s input, we can consider running the protocol in Lemma 4.1 on the distribu-
tions P ,

∏m
i=1 µ(Yi|x) and Q ,

∏m
i=1 µ(Yi) and with error parameter ε/2. Let Π be the resulting

protocol transcript. The expected communication cost of Π is at most

Ex∼µX [O(D(P ||Q)) +O(log(1/ε))] = O(Ex∼µX [D(P ||Q)]) +O(log(1/ε))

= O(m · I(X;Y )) +O(log(1/ε)), (2)

where the last equality follows from the fact that

Ex∼µX [D(P ||Q)] = Ex∼µX

[
Ey1|x,...,ym|x

[
log

(∏m
i=1 µ(yi|x)∏m
i=1 µ(yi)

)]]
=

m∑
i=1

Ex∼µX

[
Ey1|x,...,ym|x

[
log

(
µ(yi|x)

µ(yi)

)]]

=
m∑
i=1

Ex∼µX

[
Eyi|x

[
log

(
µ(yi|x)

µ(yi)

)]]

=
m∑
i=1

E(x,y)∼µ

[
log

(
µ(y|x)

µ(y)

)]
= m · I(X;Y ).

By Markov’s inequality applied to (2), we get that with probability at least 1− ε/2, the length of
the transcript Π is at most

` , O(m · I(X;Y )/ε) +O(log(1/ε)/ε).

Conditioned on the event E that the length of Π is at most ` bits, the total number of bits sent
by Alice to Bob is also at most `.

Note that Lemma 4.1 guarantees that each message of Bob in Π consists of a single bit indicating
if the protocol should terminate or if Alice should send the next message. Hence, Bob’s messages
do not influence the actual bits sent by Alice; they only determine how many bits are sent by her.

In the new one-way protocol Π′, Alice sends to Bob, in a single shot, the first ` bits that she
would have sent him in protocol Π if he kept refusing to terminate. Upon receiving this message,
Bob completes the simulation of protocol Π. The error probability of the new protocol Π′ is the
probability that either Alice did not send enough bits or that the protocol Π makes an error, which
by a union bound is at most

Pr[E] + ε/2 ≤ ε/2 + ε/2 = ε

where E denotes the complement of event E.

4.3 Proof of Theorem 1.1

Recall that in the contextual setting, Alice’s input is (f, x) and Bob’s input is (g, y), where (f, g) ∈
owFµk,ε,δ and (x, y) ∼ µ. Let Π be the one-way protocol for g in the standard setting that shows that

owCCµε (g) ≤ k. Note that Π can be described by an integer L ≤ 2k and functions π : X → [L] and
{Bi : Y → {0, 1}}i∈[L], such that Alice’s message on input x is π(x), and Bob’s output on message
i from Alice and on input y is Bi(y). We use this notation below. We also set the parameter
m = Θ

(
c(k + log(1/θ))/θ2

)
, which is chosen such that 2k · exp(−θ2m/75) ≤ 2θ/5.
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The protocol. Algorithm 1 describes the protocol we employ in the contextual setting. Roughly
speaking, the protocol works as follows. First, Alice and Bob run the one-way correlated sampling
procedure given by Lemma 4.2 in order to sample y1, y2 . . . , ym i.i.d. ∼ µY |x. Then, Alice sends
the sequence (fx(y1), . . . , fx(ym)) to Bob. Bob enumerates over i ∈ [L] and counts the fraction
of z ∈ {y1, . . . , ym} for which Bi(z) 6= fx(z). For the index i which minimizes this fraction, Bob
outputs Bi(y) and halts.

Algorithm 1: The protocol that handles contextual uncertainty

The setting: Let µ be a probability distribution over a message space X × Y . Alice and
Bob are given functions f and g, and inputs x and y, respectively, where (f, g) ∈ owFµk,ε,δ
and (x, y) ∼ µ.
The protocol:

1. Alice and Bob run one-way correlated sampling with error parameter set to (θ/10)2 in order
to sample m values Z = {y1, y2, . . . , ym} ⊆ Y each sampled independently according to µY |x.

2. Alice sends {fx(yi)}i∈[m] to Bob.

3. For every i ∈ [L], Bob computes erri , 1
m

∑m
j=1 1(Bi(yj) 6= fx(yj)). Let

imin , argmini∈[L]{erri}. Bob outputs Bimin(y) and halts.

Analysis. Observe that by Lemma 4.2, the correlated sampling procedure requiresO(m·I(X;Y )/θ2+
log(1/θ)/θ2) bits of communication. Thus, the total communication of our protocol is at most

O(m · I(X;Y )/θ2 + log(1/θ)/θ2) +m =
c
(
k + log

(
1
θ

))
θ2

·
(

1 +
I(X;Y )

θ2

)
bits

for some absolute constant c, as promised. The next lemma establishes the correctness of the
protocol.

Lemma 4.3. PrΠ,(x,y)∼µ [Bimin(y) 6= g(x, y)] ≤ ε+ 2δ + θ.

Proof. We start with some notation. For x ∈ X, let δx , δµY |x(fx, gx) and let εx , δµY |x(gx, Bπ(x)).

Note that by definition, δ = Ex∼µX [δx] and ε = Ex∼µX [εx]. For i ∈ [L], let γi,x , δµY |x(fx, Bi).
Note that by the triangle inequality,

γπ(x),x = δµY |x(fx, Bπ(x)) ≤ δx + εx. (3)

In what follows, we will analyze the probability that Bimin(y) 6= g(x, y) by analyzing the estimate
erri and the index imin computed in the above protocol. Note that erri = erri(x) computed above
attempts to estimate γi,x, and that both erri and imin are functions of x.

Note that Lemma 4.2 guarantees that correlated sampling succeeds with probability at least
1 − θ2/100. Henceforth, we condition on the event that correlated sampling succeeds (we will
account for the event where this does happen at the end). By the Chernoff bound, we have for
every x and i ∈ [L]

Pr
y1,...,ym∼µY |x

[
|γi,x − erri| >

θ

5

]
≤ exp

(
−θ

2 ·m
75

)
.
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By a union bound, we have for every x ∈ X,

Pr
y1,...,ym∼µY |x

[
∃i ∈ [L] s.t. |γi,x − erri| >

θ

5

]
≤ L · exp

(
−θ

2 ·m
75

)
≤ 2θ

5
,

where the last inequality follows from our choice of m = Θ
(
c · (k + log(1/θ))/θ2

)
.

Now assume that for all i ∈ [L], we have that |γi,x − erri| ≤ θ/5, which we refer to below as the
“Good Event”. Then, for imin, we have

γimin,x ≤ errimin + θ/5 (since we assumed the Good Event)

≤ errπ(x) + θ/5 (by definition of imin)

≤ γπ(x),x + 2θ/5 (since we assumed the Good Event)

≤ δx + εx + 2θ/5. (By Equation (3))

Let W ⊆ {0, 1}n be the set of all x for which correlated sampling succeeds with probablity at least
1−θ/10 (over the internal randomness of the protocol). By Lemma 4.2 and an averaging argument,
Prx∼µX [x /∈W ] ≤ θ/10. Thus,

Pr
Π,(x,y)∼µ

[Bimin(y) 6= f(x, y)] ≤ Ex∼µX |x∈W
[

Pr
Π,y∼µY |x

[Bimin(y) 6= f(x, y)]

]
+ θ/10

≤ Ex∼µX |x∈W
[

Pr
y1,...,ym,y∼µY |x

[Bimin(y) 6= f(x, y)]

]
+ θ/5

= Ex∼µX |x∈W
[
γimin,x

]
+ θ/5

≤ Ex∼µX |x∈W
[
δx + εx

]
+ 3θ/5

≤ Ex∼µX
[
δx + εx

]
+ θ

= δ + ε+ θ

where the third inequality follows from the fact that the Good Event occurs with probability at
least 1 − 2θ/5, and from the corresponding upper bound on γimin,x. The other inequalities above
follow from the definition of the set W and the fact that Prx∼µX [x /∈ W ] ≤ θ/10. Finally, since
δ(f, g) ≤ δ, we have that Bob’s output does not equal g(x, y) (which is the desired output) with
probability at most ε+ 2δ + θ.

5 Lower Bound for Non-Product Distributions

In this section, we prove Theorem 1.3. We start by defining the class of function pairs and
distributions that will be used. Consider the parity functions on subsets of bits of the string
x ⊕ y ∈ {0, 1}n. Specifically, for every S ⊆ [n], let fS : {0, 1}n × {0, 1}n → {0, 1} be defined as
fS(x, y) , ⊕i∈S(xi ⊕ yi). Let q = q(n) > 0 and define

Fq , {(fS , fT ) : |S4T | ≤ q · n}. (4)

Next, we define a probability distribution µp on {0, 1}n × {0, 1}n where p = p(n). We do so by
giving a procedure to sample according to µp. To sample a pair (x, y) ∼ µp, we draw x ∈R {0, 1}n
and let y be a p-noisy copy of x, i.e., y ∼ Np(x). Here, Np(x) is the distribution on {0, 1}n that
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outputs y ∈ {0, 1}n such that, independently, for each i ∈ [n], yi = 1 − xi with probability p, and
yi = xi with probability 1 − p. In other words, µp(x, y) = 2−n · p|x⊕y| · (1 − p)n−|x⊕y| for every
(x, y) ∈ {0, 1}n × {0, 1}n. Here, |z| denotes the Hamming weight of z, for any z ∈ {0, 1}n.

We will prove Lemmas 5.1 and 5.2 below about the function class Fq and the distribution µp.

Lemma 5.1. For any p = p(n) and q = q(n), it holds that Fq ⊆ owFµp1,0,pqn.

In words, Lemma 5.1 says that any pair of functions in Fq are (pqn)-close in δµp-distance, and
any function in Fq has a one-way zero-error protocol with a single bit of communication. Lemma 5.2
lower bounds the contextually uncertain communication complexity of Fq under distribution µp.

Lemma 5.2. For any p = p(n), q = q(n) and ε > 0, it holds that:

CCU
µp
1
2
−ε(Fq) ≥ γ ·min{p · n, (q/2) · n} − log(1/ε) + η,

where η = 2−Θ(q·n)/ε, and γ > 0 is an absolute constant.

Note that applying Lemmas 5.1 and 5.2 with F = Fq, µ = µp and p = q =
√
δ/n (where δ > 0

is any constant) implies Theorem 1.3.
In Subsection 5.1 below, we prove Lemma 5.1 which follows from two simple propositions. The

main part of the rest of this section is dedicated to the proof of Lemma 5.2. The idea behind the
proof of Lemma 5.2 is to reduce the problem of computing Fq under µp with contextual uncertainty,
into the problem of computing a related function in the standard distributional communication com-
plexity model (i.e., without uncertainty) under a related distribution. We then use the discrepancy
method to prove a lower bound on the communication complexity of the new problem. This task
itself reduces to upper bounding the spectral norm of a certain communication matrix. The choice
of our underlying distribution then implies a tensor structure for this matrix, which reduces the
spectral norm computation to bounding the largest singular value of an explicit family of 4 × 4
matrices.

We point out that our lower bound in Lemma 5.2 is essentially tight up to a logarithmic factor.
Namely, one can show using a simple one-way hashing protocol that for any constant ε > 0,
owCCU

µp
ε (Fq) ≤ O(r log r) with r , min{2p · n, q · n}.

5.1 Proof of Lemma 5.1

Lemma 5.1 follows from Propositions 5.3 and 5.4 below. We first show that every pair of functions
in Fq are close under the distribution µp.

Proposition 5.3. For every (f, g) ∈ Fq, it holds that δµp(f, g) ≤ pqn.

Proof. Any pair of functions (f, g) ∈ Fq is of the form f = fS and g = fT with |S4T | ≤ q. Hence,

Pr
(x,y)∼µ

[f(x, y) 6= g(x, y)] = Pr
(x,y)∼µ

[fS4T (x⊕ y) = 1] ≤ 1− (1− p)|S4T | ≤ 1− (1− p)qn ≤ pqn.

Next, we show that there is a simple one-way communication protocol that allows Alice and
Bob to compute fS (for any S ⊆ [n]) with just a single bit of communication.
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Proposition 5.4. owCC(fS) = 1.

Proof. Recall that fS(x, y) = ⊕i∈S(xi ⊕ yi). We write this as fS(x, y) = (⊕i∈S(xi)) ⊕ (⊕i∈S(yi)).
This leads to the simple one-way protocol where Alice computes b = ⊕i∈S(xi) and sends the single
bit result of the computation to Bob. Bob can now compute b ⊕ (⊕i∈S(yi)) = fS(x, y) to obtain
the value of fS (with zero error).

5.2 Proof of Lemma 5.2

In order to lower bound CCU
µp
1
2
−ε(Fq), we define a communication problem in the standard distri-

butional complexity setting that can be reduced to the problem of computing Fq under contextual
uncertainty. The lower bound in Lemma 5.2 is then obtained by proving a lower bound on the
communication complexity of the new problem which is defined as follows:

• Inputs: Alice’s input is a pair (S, x) where S ⊆ [n] and x ∈ {0, 1}n. Bob’s input is a pair
(T, y) such that T ⊆ [n] and y ∈ {0, 1}n.

• Distribution: LetDq be a distribution on pairs of Boolean functions (f, g) on {0, 1}n×{0, 1}n
defined by the following sampling procedure. To sample (f, g) ∼ Dq, we pick a set S ⊆ [n]
uniformly at random and set f = fS . We then pick T to be a (q/2)-noisy copy of S and set
g = fT . The distribution on the inputs of Alice and Bob is then described by νp,q = Dq × µp:
we sample (x, y) ∼ µp and sample (f, g) ∼ Dq.

• Function: The goal is to compute the function F given by F ((S, x), (T, y)) , fT (x⊕ y).

Proposition 5.5 below – which follows from a simple Chernoff bound – shows that a protocol
computing Fq under µp can also be used to compute the function F in the standard distributional
model with ((S, x), (T, y)) ∼ νp,q, and with the same amount of communication.

Proposition 5.5. For every ε > 0, it holds that CCU
µp
1
2
−ε(Fq) ≥ CC

νp,q
1
2
−ε+ε′(F ) with ε′ = 2−Θ(q·n).

In the rest of this section, we will prove the following lower bound on CC
νp,q
1
2
−ε(F ), which along

with Proposition 5.5, implies Lemma 5.2:

Lemma 5.6. For every ε > 0, it holds that

CC
νp,q
1
2
−ε(F ) ≥ γ ·min{p · n, (q/2) · n} − log(1/ε),

where γ > 0 is an absolute constant.

To prove Lemma 5.6, without loss of generality, we will set q = 2p and prove a lower bound of
γ · p ·n on the communication complexity4. So henceforth, we denote νp , νp,2p. The proof will use
the discrepancy bound which is a well-known method for proving lower bounds on distributional
communciation complexity in the standard model.

4We can do so because CC
νp,q
1
2
−ε(F ) ≥ CC

νr,2r
1
2
−ε (F ) with r , min(p, q/2), which follows from the fact that Alice can

always use her private randomness to reduce the correlation between either (x, y) or (S, T ).
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Definition 5.7 (Discrepancy; [KN97]). Let F and νp be as above and let R be any rectangle (i.e.,
any set of the form R = C ×D where C,D ⊆ {0, 1}2n). Denote

Discνp(R,F ) ,

∣∣∣∣Pr
νp

[
F ((S, x), (T, y)) = 0, ((S, x), (T, y)) ∈ R

]
−

Pr
νp

[
F ((S, x), (T, y)) = 1, ((S, x), (T, y)) ∈ R

]∣∣∣∣.
The discrepancy of F according to νp is Discνp(F ) , maxRDiscνp(R,F ) where the maximum is
over all rectangles R.

The next known proposition relates distributional communication complexity to discrepancy.

Proposition 5.8 ([KN97]). For any ε > 0, it holds that CC
νp
1
2
−ε(F ) ≥ log(2ε/Discνp(F )).

We will prove the following lemma.

Lemma 5.9. Discνp(F ) ≤ 2−γ·p·n for some absolute constant γ > 0.

Note that Lemma 5.9 and Proposition 5.8 put together immediately imply Lemma 5.6. The
proof of Lemma 5.9 uses some standard facts about the spectral properties of matrices and their
tensor powers that we next recall. Let A ∈ Rd×d be a real square matrix. Then, v ∈ Rd is said to
be an eigenvector of A with eigenvalue λ ∈ R if Av = λv. If A is furthermore (symmetric) positive
semi-definite, then all its eigenvalues are real and non-negative. We can now define the spectral
norm of a (not necessarily symmetric) matrix.

Definition 5.10. The spectral norm of a matrix A ∈ Rd×d is given by ‖A‖ ,
√
λmax(ATA), where

λmax(ATA) is the largest eigenvalue of ATA.

Also, recall that given a matrix A ∈ Rd×d and a positive integer t, the tensor power matrix
A⊗t ∈ Rdt×dt is defined by (A⊗t)(i1,...,it) =

∏t
j=1Aij for every (i1, . . . , it) ∈ {1, . . . , d}t. We will use

the following standard fact which in particular says that the spectral norm is multiplicative with
respect to tensoring.

Fact 5.11. For any matrix A ∈ Rd×d, vector u ∈ Rd, scalar c ∈ R and positive integer t, we have

1. ‖cA‖ = |c| · ‖A‖.

2. ‖A⊗t‖ = ‖A‖t.

3. ‖Au‖2 ≤ ‖A‖ · ‖u‖2, where for any vector w ∈ Rd, ‖w‖2 denotes the Euclidean norm of w,

i.e., ‖w‖2 ,
√∑d

i=1w
2
i .

The next lemma upper bounds the spectral norm of an explicit family of 4 × 4 matrices that
will be used in the proof of Lemma 5.9. Looking ahead, it is crucial for our purposes that the
coefficient of a in the right-hand side of Equation (5) is a constant strictly smaller than 2.

Lemma 5.12. Let a ∈ (0, 1) be a real number and N , N(a) ,


1 a a −a2

a 1 −a2 a
a a2 1 −a
a2 a −a 1

. Then,

‖N‖2 ≤ 1 +
√

2 · a+ a2 +
a4

2
+
a5

√
2
. (5)
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Proof. One can verify that

NTN =


(a2 + 1)2 2a(a2 + 1) 2a(1− a2) 0

2a(a2 + 1) (a2 + 1)2 0 2a(1− a2)
2a(1− a2) 0 (a2 + 1)2 −2a(a2 + 1)

0 2a(1− a2) −2a(a2 + 1) (a2 + 1)2

 .
Assuming that a ∈ (0, 1), one can also verify that NTN has as eigenvectors

v1 ,


√

2(a4+1)

1−a2
a2+1
1−a2

1
0

 , v2 ,


a2+1
1−a2√
2(a4+1)

1−a2
0
1

 with eigenvalue λ1(a) , 2a2 + a4 + 2a
√

2(a4 + 1) + 1,

and v3 ,


√

2(a4+1)

a2−1
a2+1
1−a2

1
0

 , v4 ,


a2+1
1−a2√
2(a4+1)

a2−1

0
1

 with eigenvalue λ2(a) := 2a2+a4−2a
√

2(a4 + 1)+1.

Note that for any value of a ∈ (0, 1), the vectors v1, v2, v3 and v4 are linearly independent and
each of the eigenvalues λ1(a) and λ2(a) has multiplicity 2. Moreover, we have that λ1(a) ≥ λ2(a).
Hence,

‖N‖ =
√
λ1(a) =

√
2a2 + a4 + 2a

√
2(a4 + 1) + 1.

Applying twice the fact that
√

1 + x ≤ 1 + x/2 for any x ≥ −1, we get that

‖N‖ =

√
1 + 2a2 + a4 + 2a

√
2
√

1 + a4

≤ 1 + a2 +
a4

2
+ a
√

2
√

1 + a4

≤ 1 + a2 +
a4

2
+ a
√

2(1 +
a4

2
)

= 1 + a
√

2 + a2 +
a4

2
+
a5

√
2
.

We are now ready to prove Lemma 5.9.
Proof of Lemma 5.9: Fix any rectangle R = C ×D where C,D ⊆ {0, 1}2n. We wish to show
that Discνp(R,F ) ≤ 2−γ·p·n. First, note that Discνp(R,F ) = |1CM1D| where 1C and 1D are the
0/1 indicator vectors of C and D (respectively) and M is the 22n × 22n real matrix defined by5

M((S,x),(T,y)) , νp((S, T ), (x, y)) · (−1)fT (x⊕y)

=
1

22n
(1− p)2n(−1)〈T,x⊕y〉(

p

1− p
)|S⊕T |+|x⊕y|

5We here use the symbols S and T to denote both subsets of [n] and the corresponding 0/1 indicator vectors.
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for every S, x, T, y ∈ {0, 1}n. Letting a , p/(1− p), we can write

M((S,x),(T,y)) =
1

22n
(1− p)2n(N⊗n)((S,x),(T,y))

with N = N(a) being the 4× 4 real matrix defined by6

N((S1,x1),(T1,y1)) , (−1)T1(x1⊕y1)a|S1⊕T1|+|x1⊕y1| (6)

for all S1, x1, T1, y1 ∈ {0, 1}. Using the third property listed in Fact 5.11, we get

Discνp(R,F ) = |1CM1D| ≤ ‖1C‖2 · ‖M‖ · ‖1D‖2 ≤
√

22n · ‖M‖ ·
√

22n = 22n · ‖M‖ (7)

We now use the first two properties listed in Fact 5.11 to relate ‖M‖ to ‖N‖ as follows:

‖M‖ = ‖ 1

22n
(1− p)2nN⊗n‖ =

1

22n
(1− p)2n‖N‖n. (8)

Using Equation (6), we can check that

N = N(a) =


1 a a −a2

a 1 −a2 a
a a2 1 −a
a2 a −a 1

 .
Applying Lemma 5.12 with a = p/(1− p) and p sufficiently small (e.g., less than 1/10), we get

‖N‖ ≤ 1 +
√

2 · ( p

1− p
) +O(p2). (9)

Combining Equations (7) to (9) above, we conclude that

Discνp(R,F ) ≤ (1− p)2n ·
(
1 +
√

2 · ( p

1− p
) +O(p2)

)n
=

[
(1− p) ·

(
1 + p · (

√
2− 1) +O(p2)

)]n
=

[
1− p · (2−

√
2) +O(p2)

]n
≤ 2−γ·p·n

for some absolute constant γ > 0.

6In Equation (6), T1(x1 ⊕ y1) denotes the product of the bit T1 and the bit (x1 ⊕ y1). Moreover, since (S1 ⊕ T1)
is a single bit, its Hamming weight |S1 ⊕ T1| is the same as its bit-value, and similarly for (x1 ⊕ y1).
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6 Conclusion and Future Directions

In this work, we introduced and studied a simple model illustrating the role of context in commu-
nication and the challenge posed by uncertainty of knowledge of context.

On the technical side, it would be interesting to determine the correct exponent of I(X;Y ) in
Theorem 1.1. Theorems 1.1 and 1.3 imply that this exponent is between 1/2 and 1.

It would also be interesting to prove an analogue of Theorem 1.1 for two-way protocols. Our
proof of Theorem 1.1 uses in particular the fact that any low-communication one-way protocol in
the standard distributional communication model should have a certain canonical form: to compute
g(x, y), Alice tries to describe the entire function g(x, ·) to Bob, and this does not create a huge
overhead in communication. Coming up with a canonical form of two-way protocols that somehow
changes gradually as we morph from g to f seems to be the essence of the challenge in extending
Theorem 1.1 to the two-way setting.

On the more conceptual side, arguably, the model considered in this work is a fairly realistic one:
communication has some goals in mind which we model by letting Bob be interested in a specific
function of the joint information that Alice and Bob possess. Moreover, it is a fairly natural model
to posit that the two are not in perfect synchronization about the function that Bob is interested
in, but Alice can estimate the function in some sense. One aspect of our model that can be further
refined is the specific notion of distance that quantifies the gap between Bob’s function and Alice’s
estimate. In this work, we chose the Hamming distance which forms a good first starting point.
We believe that it is interesting to propose and study other models of distance between functions
that more accurately capture natural forms of uncertainty.

Finally, we wish to emphasize the mix of adversarial and probabilistic elements in our uncer-
tainty model — the adversary picks (f, g) whereas the inputs (x, y) are picked from a distribution.
We believe that richer mixtures of adversarial and probabilistic elements could lead to broader
settings of modeling and coping with uncertainty — the probabilistic elements offer efficient possi-
bilities that are often immediately ruled out by adversarial choices, whereas the adversarial elements
prevent the probabilistic assumptions from being too precise.
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