
On hardness of multilinearization, and VNP-completeness in

characteristics two

Pavel Hrubeš∗

April 21, 2015

Abstract

For a boolean function f : {0, 1}n → {0, 1}, let f̂ be the unique multilinear polynomial such that
f(x) = f̂(x) holds for every x ∈ {0, 1}n. We show that, assuming VP 6= VNP, there exists a polynomial-
time computable f such that f̂ requires super-polynomial arithmetic circuits. In fact, this f can be taken
as a monotone 2-CNF, or a product of affine functions.

This holds over any field. In order to prove the results in characteristics two, we design new VNP-
complete families in this characteristics. This includes the polynomial ECn counting edge covers in a
graph, and the polynomial mcliquen counting cliques in a graph with deleted perfect matching. They
both correspond to polynomial-time decidable problems, a phenomenon previously encountered only in
characteristics 6= 2.

1 Introduction

Arithmetic circuit is a standard model for computing polynomials over a field. It resembles a boolean circuit,
except that an arithmetic circuit uses +,× as basic operations. The two most familiar arithmetic complexity
classes, introduced by Valiant [10], are VP and VNP, and resemble the boolean classes P/poly and NP/poly.
(For more details, we point the reader to, e.g., [7, 3].) Arguably, arithmetic circuits are better understood
than boolean ones: several results which hold in the arithmetic setting have no known counterpart in the
boolean world. Most notably, a polynomial-size arithmetic circuit computing a polynomial of polynomially-
bounded degree can be simulated by a circuit of polynomial size and O(log2 n) depth, see [9]. In the boolean
setting, this would amount to asserting P/poly = NC2/poly. Moreover, main open problems in arithmetic
complexity – such as proving super-polynomial lower bounds on circuit size of an explicit polynomial – can be
seen as special cases of the corresponding boolean problems, and are therefore considered easier (at least in
a finite underlying field). Hence, it would be desirable to have a means of translating results from arithmetic
to boolean complexity.

One such possibility1 is the following. With a boolean function f , associate the unique multilinear
polynomial f̂ which takes the same values as f on 0, 1-inputs. Can it be the case that f̂ has a polynomial
size arithmetic circuit whenever f has polynomial size boolean circuit? This would have quite interesting
consequences, including P/poly = NC2/poly or that, in principle, arithmetic lower bounds imply boolean
lower ones. Not surprisingly, we show that this is not the case: assuming VP 6= VNP, there exists a
polynomial-time computable boolean function f such that f̂ requires superpolynomial arithmetic circuits.
Moreover, the function f can be very simple, a monotone 2-CNF or a product of linear functions over F2.
The converse also holds: if VP = VNP then f̂ has complexity polynomial in that of f . These results are
similar to the VNP-dichotomy theorem in [1].

∗Institute of Mathematics of ASCR, Prague, Czech Republic, pahrubes@gmail.com. Supported by ERC grant FEALORA
339691.

1Suggested to the author by A. Rao

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 67 (2015)

The above holds over any underlying field. We observe that the results are easy in characteristics different
from 2, whereas characteristics 2 requires much more work. This is a frequent phenomenon in arithmetic
complexity: for example, completeness results in Burgisser’s monograph [2] deal almost exquisitely with
char 6= 2, and similarly for the dichotomy in [1]. However, this is not caused by a pathological nature of
char = 2, but rather by the lack of examples of VNP-complete families. In [10], Valiant has shown that the
permanent polynomial, permn, is VNP-complete over any field of characteristics 6= 2, and the Hamiltonian
cycle polynomial, HCn, is complete over any field. The permanent counts the number of perfect matchings
in a bipartite graph. In view of its simplicity, it has become synonymous with VNP in char 6= 2. HCn counts
the number of Hamiltonian cycles in a graph, and is much more complicated than permn. One difference is
the difficulty of the underlying decision problems: we can decide in polynomial time whether a graph has
a perfect matching, whereas testing for a Hamiltonian cycle is NP-hard. This means that it is easier to
deduce completeness of other polynomials by a reduction to permn, and an abundance of such families was
presented in [2]. To the author’s knowledge, HCn was the only previously known VNP-complete family in
characteristics two.

In this paper, we fill the gap by providing several new examples of VNP-complete families in characteristics
two. This includes the polynomial clique∗n which counts cliques of all sizes in a graph, the polynomial mcliquen
which counts n-cliques in 2n-vertex graph with a deleted matching, or the edge cover polynomial. The latter
families correspond to polynomial-time decision problems. We do not deduce VNP-completeness from the
completeness of HCn, but rather employ the ⊕P-completeness proof of ⊕2SAT, as given by Valiant in [11].

2 Preliminaries

Polynomials and arithmetic circuits Let F be field. A polynomial f over F in variables x1, . . . , xn
is a finite sum of the form

∑
J cJx

J , where J = 〈j1, . . . , jn〉 ∈ Nn, cJ ∈ F and xJ denotes the monomial∏
i∈[n] x

ji
i . The degree of a monomial xJ is

∑
i∈[n] ji, and the degree of a polynomial is the maximum degree

of a monomial with a non-zero coefficient.
The standard model for computing polynomials over F is that of arithmetic circuit. An arithmetic circuit

starts from the variables x1, . . . , xn and elements of F, and computes f by means of the ring operations +,×.
The exact definition can be found in, e.g., in [7]. We denote

C(f) : = the size of a smallest arithmetic circuit computing f .

The classes VP, VNP, completeness and hardness VP and VNP are the two most interesting com-
plexity classes in arithmetic computation. The definitions are explained in greater detail in [7, 2, 3], and we
give just the main points.

A family of polynomials {fn} = {fn}n∈N is in VP, if fn has polynomially bounded degree and circuit
size. The family is in VNP, if fn(x) =

∑
u∈{0,1}m gt(n)(u, x) where t : N → N is polynomially bounded

and {gn} is a family in VP. A polynomial f(x1, . . . , xn) is a projection of g(y1, . . . , ym), if there exist
a1,am ∈ F∪{x1, . . . , xn} such that f(x1, . . . , xn) = g(a1, . . . , am). {gn} is a p-projection of {fn}, if there
exists a polynomially bounded t : N → N such that gn is a projection of ft(n) for every n. A family {fn}
is VNP-complete, if it is in VNP and every family in VNP is a p-projection of {fn}. As customary, we will
often identify a family {fn} with the polynomial fn.

The best known VNP-complete polynomials are the permanent and the Hamiltonian cycle polynomial

permn :=
∑
σ

n∏
i=1

xi,σ(i) , HCn :=
∑
σ′

n∏
i=1

xi,σ(i) ,

where σ ranges over permutations of [n] and σ′ over all cycles in Sn (i.e., every monomial in HCn corresponds
to a Hamiltonian cycle in the complete directed graph on n vertices). Valiant [10] has shown that the
permanent family is VNP complete over any field of characteristic different from 2, and HCn is VNP-complete
over any field.

2

Our last definition is less standard. We will say that a family {fn} is hard for VNP if for every family
{gn} ∈ VNP, there exists a polynomially bounded t : N→ N and c ∈ N such that

C(gn) = O(nc · C(ft(n))) .

Clearly, it is enough to take for {gn} a VNP-complete family. We do not require that gn is somehow reducible
to ft(n), only that the arithmetic complexity of gn is polynomially bounded by that of ft(n). In Section 3.1,
we will compare this with the more common notion of c-reduction.

Notation For v = 〈v1, . . . , vn〉 ∈ {0, 1}n, |v| =
∑n
i=1 vi ∈ N denotes the number of 1’s in v. If x =

〈x1, . . . , xn〉 is a vector of variables, we define the polynomials xv and xv as

xv :=
∏
i:vi=1

xi , xv :=
∏
i:vi=0

(1− xi) . (1)

We usually write x as {x1, . . . , xn}, identifying v ∈ {0, 1}n with a function from x to {0, 1}.

Multilinearization A polynomial f in variables x1, . . . , xn is multilinear, if f =
∑
v∈{0,1}n cvx

v. In other

words, every monomial containing xki with k > 1 has zero coefficient in f . Let f be a function f : {0, 1}n → F.

The multilinearization of f is the unique multilinear polynomial f̂ over F which satisfies f̂(v) = f(v) for
every v ∈ {0, 1}n. The multilinearization can be explicitly written as

f̂(x1, . . . , xn) =
∑

v∈{0,1}n
f(v)xvxv . (2)

A boolean function f : {0, 1}n → {0, 1} is automatically a function f : {0, 1}n → F ⊇ {0, 1}, and the

definition applies also in this case. However, f̂ significantly depends on the ambient field F.

2.1 Main results

We are interested in the arithmetic circuit complexity of computing f̂ , provided f itself is easy to compute.
This is interesting in two cases. First, when f : {0, 1}n → {0, 1} is a boolean function with a small boolean
circuit, or second, f is a polynomial computable by a small arithmetic circuit. The two cases are not
unrelated, since a boolean circuit can be simulated by an arithmetic circuit on 0, 1-inputs (e.g., replace ¬x
by 1− x, x ∧ y by x · y and x ∨ y by xy − x− y + 1).

A monotone 2-CNF is a booloean formula of the form
∧
〈i,j〉∈A(xi ∨ xj) for some A ⊆ [n] × [n]. In the

next section, we prove the following:

Theorem 1. Let F be an arbitrary field. For every n, there exists a boolean function αn : {0, 1}n → {0, 1}
which can be computed by a monotone 2-CNF but the family {α̂n} is hard for VNP. Moreover, the 2-CNF
is polynomial-time constructible and the family {α̂n} is VNP-complete in char(F) 6= 2.

This implies:

Corollary 2. Assume that VP 6= VNP. Then there exists {fn} ∈ VP such that {f̂n} 6∈ VP.

Theorem 1 and Corollary 2 show that boolean functions or polynomials cannot be efficiently multilin-
earized, unless VP = VNP. The converse also holds2:

Proposition 3. Assume that {fn} is i) a family of polynomials in VNP, or ii) a family of boolean function

which is in P/poly. Then {f̂n} is in VNP.

2Instead of P/poly, one could have]P/poly.

3

Proof. i) Equation (2) can be written as f̂ =
∑
v∈{0,1}n (f(v)

∏n
i=1 (xivi + (1− xi)(1− vi))). This shows

that {f̂n} ∈ VNP. ii) If f : {0, 1}n → {0, 1} has a boolean circuit of size s, we can find a polynomial f1 with
an arithmetic circuit of size O(s) such that f(u) = f1(u) for every u ∈ {0, 1}n. However, this polynomial
may have an exponential degree. Instead, encode the boolean circuit as a 3-CNF in m = O(s) new variables,
obtaining a polynomial of degree O(s) so that f1(u) =

∑
v∈{0,1}m f2(u, v) holds for every u ∈ {0, 1}n, and

proceed as in i).

Other contributions of this paper are the following.

Multilinearization of linear products In Theorem 7, Section 4, we consider f̂ for f defined as a product
of affine functions. We show that this is hard for VNP already when each affine function depends on two
variables only. The exception is the two-element field where three variables are necessary.

VNP-completeness in characteristics 2 In Section 5 we provide new examples of VNP-complete families
in characteristics two. In Theorem 10, we first prove VNP-completeness of the clique polynomial

clique∗n =
∑
A⊆[n]

∏
i<j∈[n]

xi,j .

We use it to deduce completeness of other polynomials in Theorem 13. We focus on families based on
polynomial-time decision problems, as well as polynomials whose coefficients can be expressed in terms of
CNF’s. In particular, the polynomial DSn is used in the proof of Theorem 1. In Section 6, we discuss
structural properties of the VNP-families in a greater detail.

3 Multilinearization of 2-CNFs

In this section, we prove Theorem 1. In order to appreciate the power of multilinearization, let us first sketch
a simple proof of Corollary 2 in char(F) 6= 2. Let fn be the polynomial

fn :=
∏
i∈[n]

∑
j∈[n]

xijzj .

Then f̂n = (
∏
i∈[n] zi) · permn + g, where g has degree < 2n. (

∏
i∈[n] zi) · permn is homogeneous of degree

2n, and so (
∏
i∈[n] zi) · permn is the 2n-homogeneous part of f̂n. To conclude VNP-hardness, it is enough to

recall the following:

Lemma 4. For k ∈ N, let f (k) be the k-homogeneous part of the polynomial f . Then f (0), . . . , f (k) can be
simultaneously computed by a circuit of size O(C(f)k2).

This fact traces back to Strassen [8], and appears in various places, including [7].
To prove Theorem 1, we need an appropriate 2-CNF, and the following lemma. The lemma shows that

from a multilinear polynomial f(x, y), we can easily compute other polynomials such as
∑
v∈{0,1}n f(v, y).

Lemma 5. Let f(x, y) be a multilinear polynomial in two disjoint sets of variables x, y, with x = {x1, . . . , xn}
and C(f(x, y)) = s. For every r ≤ n, the following can be computed by circuits of size O(sn2):

(i).
∑
v∈{0,1}n f(v, y)xv,

∑
v∈{0,1}n,|v|=r f(v, y)xv,

(ii).
∑
v∈{0,1}n f(v, y),

∑
v∈{0,1}n,|v|=r f(v, y)

Moreover, if char(F) 6= 2, we have
∑
v∈{0,1}n f(v, y) = 2nf(1/2, . . . , 1/2, y).

In characteristics 6= 2, the “moreover” part was observed in [6].

4

Proof. We will suppress the dependance on y, writing f(x) instead of f(x, y). Accordingly, degree of f is
taken with respect to the variables x. Since f is multilinear, it can be written as (v ranges over {0, 1}n)

f(x) =
∑
v

f(v)xvxv =
∑
v

(
f(v)

∏
i:vi=1

xi
∏
i:vi=0

(1− xi)

)
. (3)

In char(F) 6= 2, if we set x1, . . . , xn to 1/2, we obtain xvxv = 2−n, for every v. Hence, f(1/2, . . . , 1/2) =
2−n

∑
v f(v), concluding the “moreover” part.

To prove (i), recall Lemma 4 and another useful fact, again due to Strassen [8]: if a polynomial g has
degree d and can be computed by a circuit with division gates of size s, it can be computed by a circuit
without divisions of size O(sd2). (Strictly speaking, this holds in infinite fields; in finite fields the complexity
may be slightly larger [4].) This said, we claim that∑

v

f(v)xv = f(x1/(1 + x1), . . . , xn/(1 + xn))
∏
i∈[n]

(1 + xi) . (4)

This follows from (3): we have∏
i:vi=1

xi
1 + xi

∏
i:vi=0

(
1− xi

1 + xi

)
=
∏
i:vi=1

xi · (
∏
i∈[n]

(1 + xi))
−1 = xv(

∏
i∈[n]

(1 + xi))
−1 ,

giving (4). This shows that
∑
v f(v)xv has circuit complexity O(sn2). Furthermore,

∑
|v|=r f(v)xv is the

r-homogeneous part of
∑
v f(v)xv – this would give circuit complexity O(sn4). In order to obtain the O(sn2)

bound, it is enough to reproduce the division elimination proof directly. In (4), replace (1 + xi)
−1 by its

truncated power series, namely, with λ(xi) =
∑n−1
j=0 (−1)jxji . Then

∑
|v|=r f(v)xv is the r-homogeneous part

of f(x1λ(x1), . . . , xnλ(xn))
∏
i∈[n](1 + xi).

(ii) follows from (i) by setting x1, . . . , xn := 1.

Proof of Theorem 1. Consider the DSn polynomial defined in (6), Section 5.2, where we will prove its VNP-
completeness over any field. It depends on m = n(n+ 1)/2 variables x = {xi, xj,k : i ∈ [n], j < k ∈ [n]}. The
definition can be rewritten as DSn =

∑
v∈{0,1}m αn(v)xv, where αn is the boolean function

αn(y) :=
∧

i<j∈[n]

((¬yi,j ∨ ¬yi) ∧ (¬yi,j ∨ ¬yj)) .

By Lemma 5 part (i), we have C(DSn) = O(C(α̂n)m2)), and hence {α̂n} is VNP-hard. αn is not monotone
but rather antimonotone (i.e., all variables are negated). However, switching ¬ya to ya in αn amounts to
switching ya to 1− ya in α̂n, and has negligible effect on complexity. We can achieve that αn depends on n
variables by reindexing the family.

To prove VNP-completeness in char 6= 2, consider the function

gn(x, y, x0) := x0 ∧ αn(y) ∧
∧

i∈[n],j<k∈[n]

((¬yi ∨ xi) ∧ (¬yj,k ∨ xj,k) .

It is easy to see that
∑
v∈{0,1}m ĝn(x, v, x0) = x0DSn. Hence, by the “moreover” part of Lemma 5 , we have

x0DSn = 2nĝn(x, 1/2, . . . , 1/2, x0) and hence DSn = ĝn(x, 1/2, . . . , 1/2, 2n). That is, DSn is a projection of
ĝn. The variables x, x0 occur in gn only positively and y only negatively. However, the y variables are all in
the scope of the boolean sum, and replacing ¬ya by ya in gn yields the same result.

5

3.1 Comments

In the proof, we used the polynomial DSn, since it can be easily expressed in terms of a 2-CNF. In charac-
teristics 6= 2, we could have used the permanent instead. We can write permn(x) =

∑
|v|=n x

vfn(v), where
fn is an antimonotone 2-CNF. Namely,

fn(y) =
∧

i1 6=i2,j∈[n]

((¬yi1,j ∨ ¬yi2,j) ∧ (¬yj,i1 ∨ ¬yj,i2)) .

This would give hardness of f̂n by Lemma 5 part (i). To obtain VNP-completeness, one can use the partial
permanent polynomial, defined by

perm∗n :=
∑
β

∏
i∈dom(β)

xi,β(i) ,

where β ranges over injective partial functions from [n] to [n] (the empty product equals 1). That the family
perm∗n is VNP-complete in char 6= 2 was shown in [5, 2]. The advantage of perm∗n is that perm∗n =

∑
v x

vfn(v)

with v ranging over all of {0, 1}n2

. Furthermore, Theorem 1 in char = 2 can be proved directly using
Proposition 9

The difference between hardness and completeness in Theorem 1 is due to the restricted nature of p-
projections, and the family α̂n is complete with respect to more general reductions. In Lemma 5, we need to
compute

∑
v∈{0,1}n f(v, y) from f(x, y) when f is multilinear. In characteristics different from two, this can

be done by the projection x := 1/2, . . . , 1/2. In general, the Lemma chiefly relies on computing homogeneous
components of f(h, y), where h is a substitution from VP. In infinite field, this will be accommodated by the
more general c-reduction (introoduced in [2]). In this reduction, we think of f as an oracle and a computation
can apply +,× or f to previously computed values. By means of interpolation, the homogeneous components
of f can be obtained from f via c-reductions (see [2]). We note:

Remark 6. (i). The polynomial α̂n from Theorem 1 can be evaluated in polynomial time on every 0, 1-
input. Hence, the family cannot be VNP-complete in F2 unless ⊕P/poly ⊆ P/poly (this is both with
respect to p-projections and c-reductions).

(ii). If F is infinite, but of arbitrary characteristics, α̂n is VNP-complete with respect to c-reductions.

4 Multilinearization of linear products

Here, we consider hardness of multlinearization of products of affine functions. An affine function over a
field F is a polynomial of the form

∑n
i=1 aixi + a0 with a0, . . . , an ∈ F. Its width is the number of non-zero

ai’s. The following theorem shows that products of functions of small width are hard to multilinearize.

Theorem 7. Assume that F is of size at least three. Then

(i). for every n, there exists a polynomial fn in n variables which is a product of affine functions of width

2, but {f̂n} is hard for VNP.

If F = F2, then

(ii) the above holds with affine functions of width 3,

(iii) if f is a product of affine functions, each depending on at most 2 variables, then C(f̂) = O(n).

We deduce parts (i) and (ii) from Theorem 1. Let α = αn =
∧
〈i,j〉∈A(xi ∨ xj) be the hard 2-CNF in n

variables.

Proof of part (i). This is implied by the following:

6

Claim. There exists h(x1, x2) which is a product of three affine functions of width 2 such that for every
x1, x2 ∈ {0, 1}, x1 ∨ x2 = h(x1, x2).

Proof. Assume that char(F) 6= 2. Then take the product 2(1− x1/2)(1− x2/2)(x1 + x2). If char(F) = 2 but
|F| > 2 then F contains the 4-element field F4. Choose two distinct non-zero a, b ∈ F4 and take the product
(ax1 + bx2)3. This works because t4 = t for every t ∈ F4.

Instead of the 2-CNF α, we can take the product
∏
〈i,j〉∈A h(xi, xj).

Proof of part (ii). With a disjunction x1 ∨ x2, we associate Lx1,x2
, a system of the three equations

z01 = x1 + 1 , z10 = x2 + 1 , z11 = x1 + x2 + 1 ,

where z01, z10, z11 are fresh variables. For the hard 2-CNF α, let L :=
⋃
〈i,j〉∈A Lxi,xj

. Setting k := |A|, the
system L depends on 3k extra variables z.

Claim. For every x ∈ {0, 1}n the following are equivalent:

(i). α(x) = 1

(ii). there exists z ∈ {0, 1}3k with |z| = k such that x, z is a solution of L over F2, and such a z is unique.

Proof. Lx1,x2 is set up so that the following hold. If x1, x2, z01, z10, z11 ∈ {0, 1} is a solution and x1 ∨ x2 = 0
then |z01, z10, z11| = 3. If x1 ∨ x2 = 1 then |z01, z10, z11| = 1. Hence, every solution x, z of L satisfies |z| ≥ k
and equality holds iff α(x) = 1.

We can rewrite L as `1 = 1, . . . , `m = 1, where every `i is a linear function of width ≤ 3. Define
g(x, z) :=

∏
i∈[m] `i. The Claim entails that α̂(x) can be written as α̂(x) =

∑
z∈{0,1}3k,|z|=k g(x, z). Therefore,

ĝ is VNP-hard by Lemma 5 part (ii).

Proof of part (iii). Assume that f is in variables x1, . . . , xn and f = f1f2 · · · fs where each fi is an affine
function depending on at most 2 variables. Consider the graph G on vertices x1, . . . , xn defined as follows:
there is an edge between xi 6= xj iff there exists k ∈ [s] such that fk depends on both xi and xj (i.e., fk =
xi+xj or fk = xi+xj +1). Suppose G has connected components G1, . . . , Gr. Then f = g1 · · · gr, where for
every i, gi is the product of the fj ’s depending on some variable from Gi. Since g1, . . . , gr depend on disjoint

sets of variables, we have f̂ = ĝ1 · · · ĝr, and it is enough to multilinearize each gi separately. It is therefore
sufficient to consider the case when G is connected. But then there exist at most two u ∈ {0, 1}n such that
f(u) = 1. For if we fix x1 ∈ {0, 1}, the equations f1 = 1, . . . , fs = 1 have at most one solution: a simple path

from x1 to xk in G determines xk uniquely. Writing f̂ =
∑
v∈{0,1}n x

vxvf(v) =
∑
v:f(v) 6=0 f(v)xvxv gives a

circuit of size O(n).

We note that (ii) and (iii) of the theorem can be stated in a greater generality.

Remark 8. (i). Parts (ii) and (iii) hold for any field F, if f and fn are taken as boolean functions defined
as conjunctions of affine functions over F2.

(ii). Given a set of linear equations over F2, we can count the number of solutions in polynomial time.
Hence, the multilinearization in (ii) is easy to evaluate on every 0, 1-input, and cannot be VNP-complete
(unless ⊕P/poly ⊆ P/poly).

7

5 VNP completeness in characteristics two

In this section, we present new VNP-complete families in characteristics two. We emphasize that complete-
ness is understood with respect to p-projections. The main tool is the following proposition, implicit in [11].
In this paper, Valiant proved ⊕P-completeness of ⊕2SAT, as well as of several other problems, including
counting vertex covers in special kinds of bipartite graphs mod 2. (An antimonotone 2-CNF is obtained
by negating all variables in a monotone 2-CNF.)

Proposition 9 ([11]). Let f(x) be an n-variate boolean function computable by a circuit of size s. Then
there exists a monotone (similarly, antimonotone) 2-CNF g(x, y) in m = O(s) auxiliary variables y such
that for every x ∈ {0, 1}n, f(x) =

∑
y∈{0,1}m g(x, y) mod 2.

Proof sketch. First, it is enough to consider the case of f being a 3-CNF and, second, a single disjunction of
three variables or their negations. Consider the disjunction f(x, y, z) = ¬x∨¬y ∨¬z. Then take the 2-CNF
g(x, y, z, u) which is the conjunction of u ∨ x, u ∨ y, u ∨ z. The key observation is that if f(x, y, z) = 1, then
g(x, y, z, u) = 1 has unique solution u = 1, and if f(x, y, z) = 0 then every u ∈ {0, 1} satisfies g(x, y, z, u) = 1.
Hence, f(x, y, z) =

∑
u∈{0,1} g(x, y, z, u) mod 2, allowing to rewrite a 3-CNF as a 2-CNF. To convert a 2-

CNF to a monotone one, we can replace x ∨ ¬y with the conjunction x ∨ ȳ, y ∨ ȳ, ¬y ∨ ¬ȳ, where the last
disjunct can be treated as before.

In Section 5.1, we use the proposition to prove VNP-completeness of our first polynomial, clique∗n. In
Section 5.2, we use clique∗n to conclude completeness of several other families.

5.1 Completeness of clique∗

The polynomial clique∗ is defined as

clique∗n :=
∑
A⊆[n]

∏
i<j∈A

xi,j , ,

where the empty products equal 1. Interpreting the variables as edges in a (simple and undirected) graph on
n vertices, clique∗n counts the number of cliques of all sizes. The polynomial has constant term n+1. In some
contexts, it is more convenient to have the constant term equal 1, as in (clique∗n − n). In this modification,
VNP-completeness of clique∗n in char 6= 2 was proved in [2].

In the rest of this section, we show:

Theorem 10. The family {clique∗n} is VNP-complete over any field.

It is convenient to think of clique∗n and similar polynomials in terms of edge-weighted graphs. Let
G = (V,E) be a (simple undirected) graph whose edges are weighted by a variable from a set x or an
element of F, via the function w : E → F ∪ x. For E′ ⊆ E, the weight of E′ is defined as the product of
weights in E′ (empty products equal 1). A clique is a subset A of V such that every two distinct vertices in
A are connected by an edge. The weight of a clique is the weight of its edge-set (hence, a clique of size ≤ 1
has weight 1). This guarantees that clique∗n equals the sum of weights of all cliques in the complete graph
on vertices [n], where an edge between i, j, i < j, is weighted by xi,j .

Lemma 11. Let f(x) be an antimonotone 2-CNF in variables x = {x1, . . . , xn}. Then there exists a graph
G = (V,E) with |V | = O(n) and a weight function w : E → F ∪ x, such that∑

u∈{0,1}n
f(u)xu =

∑
A

w(A) , (5)

where A ranges over all cliques of G.

8

Proof. Assume that f can be written as a conjunction of clauses C = C1, . . . , Cm, where each Ci is of the
form ¬xi∨¬xj with i, j ∈ {1, . . . n}. Let G be the graph whose vertices are x0, x1, . . . , xn, where x0 is a new
variable not appearing in C. There is an edge between xi and xj , i 6= j, iff every clause in C is consistent
with the assignment xi, xj := 1. (In other words, C does not contain ¬xi′ ∨¬xj′ for any i′, j′ ∈ {i, j}). This
guarantees a one-to-one correspondence between cliques of G containing x0 and satisfying assignments of C:
v ∈ {0, 1}n satisfies C iff Av ∪ {x0} is a clique in G, where Av := {xi : vi = 1, i ∈ {1, . . . n}}. Let us weigh
the graph as follows: an edge between x0 and xi is weighted by xi and all other edges by 1. Hence, the
weight of Av ∪ {x0} is

∏
i∈Av

xi = xv. All cliques not containing x0 have weight 1. In other words, the sum
of weights of cliques in G equals ∑

v∈{0,1}n
xvf(v) + a ,

for some a ∈ F. We can add to G an isolated edge with weight −a − 2 to obtain G′ with the required
property.

We can now prove the theorem.

Proof of Theorem 10. Clearly, the family is in VNP. The family is complete in char 6= 2 as shown in [2],
and it remains to deal with char = 2. We deduce its completeness from VNP-completeness of HCn. The
only property of HCn we use is the following: it can be written as HCn =

∑
v∈{0,1}n2 f(v)xv, where x is the

vector of its n2variables and f : {0, 1}n2 → {0, 1} is a boolean function of polynomial circuit size. By means
of Proposition 9, we can write

HCn =
∑

v∈{0,1}n2 ,u∈{0,1}m
g(v, u)xv ,

where g is an antimonotone 2-CNF, m is polynomial in n, and the summation is in characteristics 2. Lemma
11 shows that the polynomial ∑

v∈{0,1}n2 ,u∈{0,1}m
g(v, u)xvyu

is a projection of clique∗k, with k polynomial in n. Setting the variables y to 1 means that also HCn is a
projection of clique∗k

5.2 Other VNP-complete families

Let cliquen and mcliquen be the polynomials

cliquen :=
∑

A⊆[2n],|A|=n

∏
i<j∈[2n]

xi,j , mcliquen := cliquen(x1,n+1, . . . , xn,2n := 0) .

They are both homogeneous of degree n(n − 1)/2. cliquen counts the number of cliques of size n in a 2n-
vertex graph. We can think of mcliquen as counting n-cliques in a special kind of graph, which we call a
graph with forbidden matching. This is a graph on 2n vertices a1, . . . , an, b1, . . . , bn such that there is no
edge between ai and bi for every i ∈ [n]. We note that completeness of clique could be proved directly via
parsimonius reductions to 3-SAT. mclique is more interesting, because the corresponding decision problem
is in polynomial time:

Observation 12. Given a 2n-vertex graph G with forbidden matching, we can decide in polynomial time
whether it contains a clique of size n.

Proof. We assume that the forbidden matching is part of the input (otherwise, we can find it in polynomial
time by finding a perfect matching in the complementary graph). Note that every n-clique in G must contain

9

precisely one of the vertices ai, bi for every i ∈ [n]. Identifying ai with i and bi with i+ n, we then see that
G has an n-clique iff the following clauses are satisfiable

xi ∨ xi+n , i ∈ [n] , ¬xj ∨ ¬xk , for all j 6= k ∈ [2n] such that j, k are not incident .

This is a set of 2-clauses and its satisfiability can be determined in polynomial time.

We also define the subgraph counting polynomial and disjoint subgraph polynomial by

CSn :=
∑

A⊆[n],B⊆A(2)

∏
i∈A

xi
∏
〈j,k〉∈B

xj,k

 , DSn :=
∑

A⊆[n],B⊆([n]\A)(2)

∏
i∈A

xi
∏
〈j,k〉∈B

xj,k

 . (6)

Here A(2) := {〈j, k〉 : j < k ∈ A}. The motivation is the following: if B ⊆ A(2) then B can be viewed as a
set of edges on vertices A, and so (B,A) is a subgraph of the complete n-vertex graph.

Finally, we present two polynomials counting edge-coverings of a graph

EC∗n :=
∑
B

∏
〈j,k〉∈B

xj,k , ECn :=
∑

|B|=d3n/4e

∏
〈j,k〉∈B

xj,k ,

where B ranges over B ⊆ [n](2) which form an edge cover of [n] – that is, such that v(B) = [n], where
v(B) := {i, j : 〈i, j〉 ∈ B}. The factor 3/4 in ECn is rather arbitrary. In the proof, it matters that
1/2 < 3/4 < 1. Note that any n-vertex graph, n > 1, has a minimal edge cover of size between n/2 and
n− 1, where an edge cover of size n/2 is a perfect matching.

Theorem 13. The families cliquen, mcliquen, CSn and DSn are VNP complete over any field. EC∗n and
ECn are VNP-complete in characteristics equal to two.

We divide the proof into its constituent parts.

cliquen and mcliquen. This is by reduction to clique∗. Given an edge-weighted graph G on vertices
a1, . . . , an, consider the following graph H on 2n vertices a1, . . . , an, b1, . . . , bn. H is the union of G, a
complete graph on b1, . . . , bn, as well as all edges < ai, bj > such that j 6= i. All edges in H \G have weight
one. Every n-clique of H must contain precisely one of the vertices ai, bi for every i ∈ [n], and is of the form
{ai : i ∈ A}∪{bi : i ∈ [n]\A}, where {ai : i ∈ A} is a clique in G. This provides a one-to-one correspondence
between cliques of G and n-cliques of H, preserving clique-weight. This shows that clique∗n is a projection
of mcliquen and hence {mcliquen} is VNP-complete. By definition, mcliquen is a projection of cliquen and
hence also {cliquen} is VNP-complete.

To prove the rest of the theorem, we first note:

Claim. The family clique∗n|x̄+1 :=
∑
A⊆[n]

∏
i<j∈A(1 + xi,j) is VNP-complete.

Proof. In general, if a ∈ F and {fn} is VNP-complete then so is {fn|x̄+a}. Here, fx̄+a denotes the polynomial
obtained by substituting z := z + a, for every variable z in f . First, if h is a projection of g then hx̄+a

is a projection of gx̄+a. (For, if h(x1, . . . , xn) = g(q(y1), . . . , q(yn)) with q(yi) ∈ F ∪ {x1, . . . , xn} then
h(x1 + a, . . . , xn + a) = g(q′(y1) + a, . . . , q′(yn) + a), where: q′(yi) := q(yi), if q(yi) is a variable, and
q′(yi) = q(yi) − a if q(yi) ∈ F). Second, VNP-completeness of {fn} gives that {fn|x̄−a} is a p-projection of
{fn} and so {fn} is a p-projection of {fn|x̄+a}.

CSn and DSn. clique∗n|x̄+1 can be rewritten as

clique∗n|x̄+1 =
∑
A⊆[n]

∏
i<j∈A

(1 + xi,j) =
∑

A⊆[n],B⊆A(2)

∏
〈i,j〉∈B

xij . (7)

This is precisely the polynomial obtained by setting x1, . . . , xn to 1 in CSn or DSn.

10

Edge covers EC∗n. We work in characteristics two. We can further rewrite (7) as

clique∗n|x̄+1 =
∑

B⊆[n](2)

∑
A2⊇B

∏
〈j,k〉∈B

xj,k = c(B)
∑

B⊆[n](2)

∏
〈j,k〉∈B

xj,k ,

where c(B) is the number of sets A ⊆ [n] with B ⊆ A(2). Hence, c(B) = 2n−|v(B)|. In characteristics 2, the
only non-zero terms are those with v(B) = [n] corresponding to edge covers.

Edge covers ECn. This will be by reduction to EC∗n. Given an edge-weighted graph G on n vertices,
it is enough to find an edge-weighted graph H with m = O(n2) vertices such that the sum of weights of
edge-covers of G equals the sum of weights of edge-covers of size 3m/4 of H.

Given N and k, let GN,k be the following graph on 2N + 2k + 1 vertices. The vertices are partitioned
into sets {a}, A1, A2, and B1, B2 with |A1| = |A2| = N and |B1| = |B2| = k. Its 2N + k edges consist of all
edges between a and A1, a perfect matching between A1 and A2, and a perfect matching between B1 and
B2. Every edge cover of GN,k must contain the two matchings and at least one edge between a and A1.
Hence, every edge cover has size at least N +k+ 1 and the number of edge covers of size N +k+ r is exactly(
N
r

)
if 0 < r ≤ N . Furthermore, if N = 2q − 1 for some q ∈ N then

(
N
r

)
is odd for every r ∈ [N].

Let H be the disjoint union of G and GN,k, where N is the smallest N > n(n−1)/2 of the form N = 2q−1,
q ∈ N. Edges in GN,k are weighted by 1. We claim that, in characteristics 2,∑

E edge cover of G

w(E) =
∑

E′ edge cover of H,|E′|=2N+k

w(E′) .

This is because every edge cover E of G with |E| = s can be extended to exactly
(
N
N−s

)
covers E′ of E with

|E′| = 2N + k and E = E′ ∩ G. The weight of E′ equals the weight of E and
(
N
N−s

)
is odd. The graph H

has v = n + 2N + 2k + 1 vertices. If we choose k = N − 3(n + 1)/2, the sum ranges over E′ of size 3v/4.
(Without loss of generality, we assumed that n is odd.)

This concludes the proof of Theorem 13. We remark that:

Remark 14. By similar reductions, one can obtain VNP-completeness of analogous families defined on
bipartite graphs. Namely, polynomials counting bicliques∑

A1,A2⊆[n]

∏
i∈A1,j∈A2

xi,j ,
∑

A1∪̇A2=[n]

∏
i∈A1,j∈A2

xi,j ,

as well as polynomials counting edge covers in a bipartite graph.

6 Defining functions and complexity of decision problems

In this section, we give a different perspective on Theorem 1, and discuss our VNP-complete families in
terms of the complexity of their underlying decision problems.

With a boolean function f : {0, 1}n → {0, 1}, we have associated the polynomial f̂ which agrees with
f on the boolean cube. There is different way how to obtain a multilinear polynomial from f , namely, as
the polynomial whose coefficients are computed by f . More generally, if f : {0, 1}n → F, let f∗ be the
polynomial in variables x = {x1, . . . , xn}

f∗ :=
∑

v∈{0,1}n
f(v)xv .

Hence, the function f computes the coefficient of xv in f∗. We will call f the defining function of f∗. We
can compare this with (2): f̂ =

∑
v x

vxvf(v). The difference between f∗ and f̂ corresponds to generating
function versus probability generating function of [2]. The two polynomials can be quite different. If 1 is the
constant function from {0, 1}2 to {0, 1} then 1̂ = 1 whereas 1∗ = 1 + x1 + x2 + x1x2. However, we observe

that f̂ and f∗ are polynomially related.

11

Proposition 15. Let s1 and s2 be the circuit complexity of f∗ and f̂ , respectively, where f : {0, 1}n → F.
Then s1 = O(s2n

2) and s2 = O(s1)n2. Hence, VNP-hardness results of Theorem 1 and 7 hold for f∗ instead

of f̂ .

Proof. The first equality was proved in Lemma 5, the second one follows similarly from (4).

We believe that this is enough to reproduce the dichotomy results of [1] for both f̂ and f∗ over fields of
arbitrary characteristics.

Defining functions of VNP-complete families We now discuss the defining functions of the families
from Section 5. For homogeneous polynomials, we consider slightly more general defining functions. If f(x)
is a homogeneous polynomial of degree k, we will call g its hom. defining function, if f(x) =

∑
|v|=k g(v)xv.

We note:

• The defining function of perm∗n and the hom. defining function of permn is an antimonotone 2-CNF.
In contrast, the hom. defining function of HCn is not in AC0.

This is because the defining function of perm∗n (and the hom. defining function of permn) checks whether a
bipartite graph is a partial matching. This can be expressed as an antimonotone 2-CNF as in Section 3.1.
For HCn, the homogeneous defining function decides, given a graph with n edges and n vertices, whether it
is a cycle (cf. [12]). For the polynomials in Section 5, we note the following:

(i). The defining function of (clique∗n−n), DSn and EC∗n is a 3-CNF, antimonotone 2-CNF and a monotone
CNF of polynomial size, respectively.

(ii). The hom. defining function of cliquen, mcliquen and ECn is a 3-CNF, antimonotone 2-CNF and a
monotone CNF of polynomial size, respectively.

Underlying decision problems of VNP-complete families Let {fn} be a family of multilinear poly-
nomials with 0, 1-coefficients such that fn is in mn variables. With {fn}, we associate the following decision
problem:

Given n ∈ N, v ∈ {0, 1}mn , and k ≤ mn, decide whether there exists u ∈ {0, 1}mn such that3 u ≤ v, |u| = k
and xu has coefficient equal to 1 in fn.

In characteristics zero, this is equivalent to checking whether f (k)(v) 6= 0, where f (k) is the k-homogeneous
part of f . For a family consisting of homogeneous polynomials, the parameter k can be dropped. For example,
the decision problem associated with perm∗n consists in checking whether a bipartite graph has a matching
of size k, and a perfect matching in the case of permn. Hence, we note:

• The decision problem associated with permn or perm∗n is in P. For HCn, it is NP-hard.

As for the polynomials in Section 5, we note

Proposition 16. The decision problem associated with (clique∗n − n) or cliquen is NP-hard. For the other
families in Theorem 13, the decision problem is in P.

Proof. The first part follows from NP-hardness of deciding whether a 2n-vertex graph has an n-clique. For
mcliquen, the statement is given by Observation 12. ECn and EC∗n follow from the fact that a smallest
edge cover can be found in polynomial time. The decision problem associated with CSn amounts to the
following: given a graph G = (V,E) and k ∈ N, decide whether there exists a subgraph G′ = (V ′, E′) with
|V ′|+ |E′| = k. Such a subgraph exists if and only if k ≤ |V |+ |E|: if k ≤ |V | we can remove all but k− |V |
edges to achieve |V |+ |E′| = k. If k < |V |, remove all edges and all but k vertices. DSn is similar.

3u ≤ v means ui ≤ vi for every i ∈ [mn]

12

Acknowledgement We thank Anup Rao for triggering this investigation and Amir Yehudayoff for useful
discussions.

References

[1] I. Briquel and P. Koiran. A dichotomy theorem for polynomial evaluation. In Mathematical Foundations
of Computer Science, 2009.

[2] P. Bürgisser. Completeness and reduction in algebraic complexity theory, volume 7 of Algorithms and
Computation in Mathematics. Springer, 2000.

[3] P. Bürgisser, M. Clausen, and M. A. Shokrollahi. Algebraic complexity theory, volume 315 of A series
of comprehensive studies in mathematics. Springer, 1997.

[4] P. Hrubeš and A. Yehudayoff. Arithmetic complexity in ring extensions. Theory of Computing, 7:119–
129, 2011.

[5] M. Jerrum. On the complexity of evaluating multivariate polynomials. PhD thesis, Dept. of Computer
Science, University of Edinburgh, 1981.

[6] A. Juma, V. Kabanets, C. Rackoff, and A. Shpilka. The black-box query complexity of polynomial
summation. Comput. Complex., 18(1):59–79, 2009.

[7] A. Shpilka and A. Yehudayoff. Arithmetic circuits: A survey of recent results and open questions.
Foundations and Trends in Theoretical Computer Science, 5(3):207–388, 2010.

[8] V. Strassen. Vermeidung von Divisionen. J. of Reine Angew. Math., 264:182–202, 1973.

[9] L. Valiant, S. Skyum, S. Berkowitz, and C. Rackoff. Fast parallel computation of polynomials using few
processors. Siam J. Comp., 12:641–644, 1983.

[10] L. G. Valiant. Completeness classes in algebra. In Proceedings of the 11th Annual ACM Symposium on
Theory of Computing, pages 249–261, 1979.

[11] L. G. Valiant. Accidental algorithms. In Proceedings of the 47th Annual IEEE Symposium Foundations
of Computer Science, pages 509–517, 2006.

[12] A. Wigderson. The complexity of graph connectivity. In Proceedings of the 17th International Symposium
on Mathematical Foundations of Computer Science, pages 112–132, 1992.

13

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

