On hardness of multilinearization, and VNP-completeness in characteristics two

Pavel Hrubeš*

April 21, 2015

Abstract

For a boolean function $f:\{0,1\}^{n} \rightarrow\{0,1\}$, let \hat{f} be the unique multilinear polynomial such that $f(x)=\hat{f}(x)$ holds for every $x \in\{0,1\}^{n}$. We show that, assuming VP $\neq \mathrm{VNP}$, there exists a polynomialtime computable f such that \hat{f} requires super-polynomial arithmetic circuits. In fact, this f can be taken as a monotone $2-\mathrm{CNF}$, or a product of affine functions.

This holds over any field. In order to prove the results in characteristics two, we design new VNPcomplete families in this characteristics. This includes the polynomial EC_{n} counting edge covers in a graph, and the polynomial mclique ${ }_{n}$ counting cliques in a graph with deleted perfect matching. They both correspond to polynomial-time decidable problems, a phenomenon previously encountered only in characteristics $\neq 2$.

1 Introduction

Arithmetic circuit is a standard model for computing polynomials over a field. It resembles a boolean circuit, except that an arithmetic circuit uses,$+ \times$ as basic operations. The two most familiar arithmetic complexity classes, introduced by Valiant [10, are VP and VNP, and resemble the boolean classes P/poly and NP/poly. (For more details, we point the reader to, e.g., 7, 3].) Arguably, arithmetic circuits are better understood than boolean ones: several results which hold in the arithmetic setting have no known counterpart in the boolean world. Most notably, a polynomial-size arithmetic circuit computing a polynomial of polynomiallybounded degree can be simulated by a circuit of polynomial size and $O\left(\log ^{2} n\right)$ depth, see 9 . In the boolean setting, this would amount to asserting $\mathrm{P} /$ poly $=\mathrm{NC}_{2} /$ poly. Moreover, main open problems in arithmetic complexity - such as proving super-polynomial lower bounds on circuit size of an explicit polynomial - can be seen as special cases of the corresponding boolean problems, and are therefore considered easier (at least in a finite underlying field). Hence, it would be desirable to have a means of translating results from arithmetic to boolean complexity.

One such possibility ${ }^{1}$ is the following. With a boolean function f, associate the unique multilinear polynomial \hat{f} which takes the same values as f on 0,1 -inputs. Can it be the case that \hat{f} has a polynomial size arithmetic circuit whenever f has polynomial size boolean circuit? This would have quite interesting consequences, including $\mathrm{P} /$ poly $=\mathrm{NC}_{2}$ /poly or that, in principle, arithmetic lower bounds imply boolean lower ones. Not surprisingly, we show that this is not the case: assuming VP \neq VNP, there exists a polynomial-time computable boolean function f such that \hat{f} requires superpolynomial arithmetic circuits. Moreover, the function f can be very simple, a monotone 2 -CNF or a product of linear functions over \mathbb{F}_{2}. The converse also holds: if $\mathrm{VP}=\mathrm{VNP}$ then \hat{f} has complexity polynomial in that of f. These results are similar to the VNP-dichotomy theorem in [1].

[^0]The above holds over any underlying field. We observe that the results are easy in characteristics different from 2, whereas characteristics 2 requires much more work. This is a frequent phenomenon in arithmetic complexity: for example, completeness results in Burgisser's monograph [2] deal almost exquisitely with char $\neq 2$, and similarly for the dichotomy in [1]. However, this is not caused by a pathological nature of char $=2$, but rather by the lack of examples of VNP-complete families. In [10, Valiant has shown that the permanent polynomial, perm $_{n}$, is VNP-complete over any field of characteristics $\neq 2$, and the Hamiltonian cycle polynomial, HC_{n}, is complete over any field. The permanent counts the number of perfect matchings in a bipartite graph. In view of its simplicity, it has become synonymous with VNP in char $\neq 2 . \mathrm{HC}_{n}$ counts the number of Hamiltonian cycles in a graph, and is much more complicated than perm ${ }_{n}$. One difference is the difficulty of the underlying decision problems: we can decide in polynomial time whether a graph has a perfect matching, whereas testing for a Hamiltonian cycle is NP-hard. This means that it is easier to deduce completeness of other polynomials by a reduction to perm $_{n}$, and an abundance of such families was presented in [2]. To the author's knowledge, HC_{n} was the only previously known VNP-complete family in characteristics two.

In this paper, we fill the gap by providing several new examples of VNP-complete families in characteristics two. This includes the polynomial clique ${ }_{n}^{*}$ which counts cliques of all sizes in a graph, the polynomial mclique ${ }_{n}$ which counts n-cliques in $2 n$-vertex graph with a deleted matching, or the edge cover polynomial. The latter families correspond to polynomial-time decision problems. We do not deduce VNP-completeness from the completeness of HC_{n}, but rather employ the \oplus P-completeness proof of $\oplus 2 \mathrm{SAT}$, as given by Valiant in 11 .

2 Preliminaries

Polynomials and arithmetic circuits Let \mathbb{F} be field. A polynomial f over \mathbb{F} in variables x_{1}, \ldots, x_{n} is a finite sum of the form $\sum_{J} c_{J} x^{J}$, where $J=\left\langle j_{1}, \ldots, j_{n}\right\rangle \in \mathbb{N}^{n}, c_{J} \in \mathbb{F}$ and x^{J} denotes the monomial $\prod_{i \in[n]} x_{i}^{j_{i}}$. The degree of a monomial x^{J} is $\sum_{i \in[n]} j_{i}$, and the degree of a polynomial is the maximum degree of a monomial with a non-zero coefficient.

The standard model for computing polynomials over \mathbb{F} is that of arithmetic circuit. An arithmetic circuit starts from the variables x_{1}, \ldots, x_{n} and elements of \mathbb{F}, and computes f by means of the ring operations,$+ \times$. The exact definition can be found in, e.g., in [7]. We denote

$$
\mathrm{C}(f):=\text { the size of a smallest arithmetic circuit computing } f .
$$

The classes VP, VNP, completeness and hardness VP and VNP are the two most interesting complexity classes in arithmetic computation. The definitions are explained in greater detail in [7, 2, 3, and we give just the main points.

A family of polynomials $\left\{f_{n}\right\}=\left\{f_{n}\right\}_{n \in \mathbb{N}}$ is in VP, if f_{n} has polynomially bounded degree and circuit size. The family is in VNP, if $f_{n}(x)=\sum_{u \in\{0,1\}^{m}} g_{t(n)}(u, x)$ where $t: \mathbb{N} \rightarrow \mathbb{N}$ is polynomially bounded and $\left\{g_{n}\right\}$ is a family in VP. A polynomial $f\left(x_{1}, \ldots, x_{n}\right)$ is a projection of $g\left(y_{1}, \ldots, y_{m}\right)$, if there exist $a_{1}, \ldots a_{m} \in \mathbb{F} \cup\left\{x_{1}, \ldots, x_{n}\right\}$ such that $f\left(x_{1}, \ldots, x_{n}\right)=g\left(a_{1}, \ldots, a_{m}\right) .\left\{g_{n}\right\}$ is a p-projection of $\left\{f_{n}\right\}$, if there exists a polynomially bounded $t: \mathbb{N} \rightarrow \mathbb{N}$ such that g_{n} is a projection of $f_{t(n)}$ for every n. A family $\left\{f_{n}\right\}$ is VNP-complete, if it is in VNP and every family in VNP is a p-projection of $\left\{f_{n}\right\}$. As customary, we will often identify a family $\left\{f_{n}\right\}$ with the polynomial f_{n}.

The best known VNP-complete polynomials are the permanent and the Hamiltonian cycle polynomial

$$
\operatorname{perm}_{n}:=\sum_{\sigma} \prod_{i=1}^{n} x_{i, \sigma(i)}, \mathrm{HC}_{n}:=\sum_{\sigma^{\prime}} \prod_{i=1}^{n} x_{i, \sigma(i)}
$$

where σ ranges over permutations of $[n]$ and σ^{\prime} over all cycles in S_{n} (i.e., every monomial in HC_{n} corresponds to a Hamiltonian cycle in the complete directed graph on n vertices). Valiant [10] has shown that the permanent family is VNP complete over any field of characteristic different from 2, and HC_{n} is VNP-complete over any field.

Our last definition is less standard. We will say that a family $\left\{f_{n}\right\}$ is hard for VNP if for every family $\left\{g_{n}\right\} \in \mathrm{VNP}$, there exists a polynomially bounded $t: \mathbb{N} \rightarrow \mathbb{N}$ and $c \in \mathbb{N}$ such that

$$
\mathrm{C}\left(g_{n}\right)=O\left(n^{c} \cdot \mathrm{C}\left(f_{t(n)}\right)\right)
$$

Clearly, it is enough to take for $\left\{g_{n}\right\}$ a VNP-complete family. We do not require that g_{n} is somehow reducible to $f_{t(n)}$, only that the arithmetic complexity of g_{n} is polynomially bounded by that of $f_{t(n)}$. In Section 3.1 . we will compare this with the more common notion of c-reduction.

Notation For $v=\left\langle v_{1}, \ldots, v_{n}\right\rangle \in\{0,1\}^{n},|v|=\sum_{i=1}^{n} v_{i} \in \mathbb{N}$ denotes the number of 1 's in v. If $x=$ $\left\langle x_{1}, \ldots, x_{n}\right\rangle$ is a vector of variables, we define the polynomials x^{v} and x_{v} as

$$
\begin{equation*}
x^{v}:=\prod_{i: v_{i}=1} x_{i}, x_{v}:=\prod_{i: v_{i}=0}\left(1-x_{i}\right) . \tag{1}
\end{equation*}
$$

We usually write x as $\left\{x_{1}, \ldots, x_{n}\right\}$, identifying $v \in\{0,1\}^{n}$ with a function from x to $\{0,1\}$.

Multilinearization A polynomial f in variables x_{1}, \ldots, x_{n} is multilinear, if $f=\sum_{v \in\{0,1\}^{n}} c_{v} x^{v}$. In other words, every monomial containing x_{i}^{k} with $k>1$ has zero coefficient in f. Let f be a function $f:\{0,1\}^{n} \rightarrow \mathbb{F}$. The multilinearization of f is the unique multilinear polynomial \hat{f} over \mathbb{F} which satisfies $\hat{f}(v)=f(v)$ for every $v \in\{0,1\}^{n}$. The multilinearization can be explicitly written as

$$
\begin{equation*}
\hat{f}\left(x_{1}, \ldots, x_{n}\right)=\sum_{v \in\{0,1\}^{n}} f(v) x^{v} x_{v} \tag{2}
\end{equation*}
$$

A boolean function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ is automatically a function $f:\{0,1\}^{n} \rightarrow \mathbb{F} \supseteq\{0,1\}$, and the definition applies also in this case. However, \hat{f} significantly depends on the ambient field \mathbb{F}.

2.1 Main results

We are interested in the arithmetic circuit complexity of computing \hat{f}, provided f itself is easy to compute. This is interesting in two cases. First, when $f:\{0,1\}^{n} \rightarrow\{0,1\}$ is a boolean function with a small boolean circuit, or second, f is a polynomial computable by a small arithmetic circuit. The two cases are not unrelated, since a boolean circuit can be simulated by an arithmetic circuit on 0 , 1 -inputs (e.g., replace $\neg x$ by $1-x, x \wedge y$ by $x \cdot y$ and $x \vee y$ by $x y-x-y+1$).

A monotone 2-CNF is a booloean formula of the form $\bigwedge_{\langle i, j\rangle \in A}\left(x_{i} \vee x_{j}\right)$ for some $A \subseteq[n] \times[n]$. In the next section, we prove the following:

Theorem 1. Let \mathbb{F} be an arbitrary field. For every n, there exists a boolean function $\alpha_{n}:\{0,1\}^{n} \rightarrow\{0,1\}$ which can be computed by a monotone 2-CNF but the family $\left\{\hat{\alpha}_{n}\right\}$ is hard for VNP. Moreover, the 2-CNF is polynomial-time constructible and the family $\left\{\hat{\alpha}_{n}\right\}$ is VNP-complete in char $(\mathbb{F}) \neq 2$.

This implies:
Corollary 2. Assume that VP $\neq \mathrm{VNP}$. Then there exists $\left\{f_{n}\right\} \in \mathrm{VP}$ such that $\left\{\hat{f}_{n}\right\} \notin \mathrm{VP}$.
Theorem 1 and Corollary 2 show that boolean functions or polynomials cannot be efficiently multilinearized, unless VP $=$ VNP. The converse also holds $\overbrace{}^{2}$

Proposition 3. Assume that $\left\{f_{n}\right\}$ is i) a family of polynomials in VNP, or ii) a family of boolean function which is in $P /$ poly. Then $\left\{\hat{f}_{n}\right\}$ is in VNP.

[^1]Proof. i) Equation (2) can be written as $\hat{f}=\sum_{v \in\{0,1\}^{n}}\left(f(v) \prod_{i=1}^{n}\left(x_{i} v_{i}+\left(1-x_{i}\right)\left(1-v_{i}\right)\right)\right)$. This shows that $\left\{\hat{f}_{n}\right\} \in$ VNP. ii) If $f:\{0,1\}^{n} \rightarrow\{0,1\}$ has a boolean circuit of size s, we can find a polynomial f_{1} with an arithmetic circuit of size $O(s)$ such that $f(u)=f_{1}(u)$ for every $u \in\{0,1\}^{n}$. However, this polynomial may have an exponential degree. Instead, encode the boolean circuit as a 3-CNF in $m=O(s)$ new variables, obtaining a polynomial of degree $O(s)$ so that $f_{1}(u)=\sum_{v \in\{0,1\}^{m}} f_{2}(u, v)$ holds for every $u \in\{0,1\}^{n}$, and proceed as in i).

Other contributions of this paper are the following.
Multilinearization of linear products In Theorem7, Section 4, we consider \hat{f} for f defined as a product of affine functions. We show that this is hard for VNP already when each affine function depends on two variables only. The exception is the two-element field where three variables are necessary.

VNP-completeness in characteristics 2 In Section 5 we provide new examples of VNP-complete families in characteristics two. In Theorem 10, we first prove VNP-completeness of the clique polynomial

$$
\text { clique }_{n}^{*}=\sum_{A \subseteq[n]} \prod_{i<j \in[n]} x_{i, j}
$$

We use it to deduce completeness of other polynomials in Theorem 13 We focus on families based on polynomial-time decision problems, as well as polynomials whose coefficients can be expressed in terms of CNF's. In particular, the polynomial DS_{n} is used in the proof of Theorem 1. In Section 6, we discuss structural properties of the VNP-families in a greater detail.

3 Multilinearization of 2-CNFs

In this section, we prove Theorem1. In order to appreciate the power of multilinearization, let us first sketch a simple proof of Corollary 2 in $\operatorname{char}(\mathbb{F}) \neq 2$. Let f_{n} be the polynomial

$$
f_{n}:=\prod_{i \in[n]} \sum_{j \in[n]} x_{i j} z_{j}
$$

Then $\hat{f}_{n}=\left(\prod_{i \in[n]} z_{i}\right) \cdot \operatorname{perm}_{n}+g$, where g has degree $<2 n$. $\left(\prod_{i \in[n]} z_{i}\right) \cdot$ perm $_{n}$ is homogeneous of degree $2 n$, and so $\left(\prod_{i \in[n]} z_{i}\right) \cdot \operatorname{perm}_{n}$ is the $2 n$-homogeneous part of \hat{f}_{n}. To conclude VNP-hardness, it is enough to recall the following:
Lemma 4. For $k \in \mathbb{N}$, let $f^{(k)}$ be the k-homogeneous part of the polynomial f. Then $f^{(0)}, \ldots, f^{(k)}$ can be simultaneously computed by a circuit of size $O\left(C(f) k^{2}\right)$.

This fact traces back to Strassen [8], and appears in various places, including [7].
To prove Theorem 1, we need an appropriate 2-CNF, and the following lemma. The lemma shows that from a multilinear polynomial $f(x, y)$, we can easily compute other polynomials such as $\sum_{v \in\{0,1\}^{n}} f(v, y)$.

Lemma 5. Let $f(x, y)$ be a multilinear polynomial in two disjoint sets of variables x, y, with $x=\left\{x_{1}, \ldots, x_{n}\right\}$ and $C(f(x, y))=s$. For every $r \leq n$, the following can be computed by circuits of size $O\left(s n^{2}\right)$:
(i). $\sum_{v \in\{0,1\}^{n}} f(v, y) x^{v}, \sum_{v \in\{0,1\}^{n},|v|=r} f(v, y) x^{v}$,
(ii). $\sum_{v \in\{0,1\}^{n}} f(v, y), \sum_{v \in\{0,1\}^{n},|v|=r} f(v, y)$

Moreover, if $\operatorname{char}(\mathbb{F}) \neq 2$, we have $\sum_{v \in\{0,1\}^{n}} f(v, y)=2^{n} f(1 / 2, \ldots, 1 / 2, y)$.
In characteristics $\neq 2$, the "moreover" part was observed in [6].

Proof. We will suppress the dependance on y, writing $f(x)$ instead of $f(x, y)$. Accordingly, degree of f is taken with respect to the variables x. Since f is multilinear, it can be written as (v ranges over $\{0,1\}^{n}$)

$$
\begin{equation*}
f(x)=\sum_{v} f(v) x^{v} x_{v}=\sum_{v}\left(f(v) \prod_{i: v_{i}=1} x_{i} \prod_{i: v_{i}=0}\left(1-x_{i}\right)\right) \tag{3}
\end{equation*}
$$

In $\operatorname{char}(\mathbb{F}) \neq 2$, if we set x_{1}, \ldots, x_{n} to $1 / 2$, we obtain $x^{v} x_{v}=2^{-n}$, for every v. Hence, $f(1 / 2, \ldots, 1 / 2)=$ $2^{-n} \sum_{v} f(v)$, concluding the "moreover" part.

To prove (i) recall Lemma 4 and another useful fact, again due to Strassen [8: if a polynomial g has degree d and can be computed by a circuit with division gates of size s, it can be computed by a circuit without divisions of size $O\left(s d^{2}\right)$. (Strictly speaking, this holds in infinite fields; in finite fields the complexity may be slightly larger [4].) This said, we claim that

$$
\begin{equation*}
\sum_{v} f(v) x^{v}=f\left(x_{1} /\left(1+x_{1}\right), \ldots, x_{n} /\left(1+x_{n}\right)\right) \prod_{i \in[n]}\left(1+x_{i}\right) \tag{4}
\end{equation*}
$$

This follows from (3): we have

$$
\prod_{i: v_{i}=1} \frac{x_{i}}{1+x_{i}} \prod_{i: v_{i}=0}\left(1-\frac{x_{i}}{1+x_{i}}\right)=\prod_{i: v_{i}=1} x_{i} \cdot\left(\prod_{i \in[n]}\left(1+x_{i}\right)\right)^{-1}=x^{v}\left(\prod_{i \in[n]}\left(1+x_{i}\right)\right)^{-1}
$$

giving (4). This shows that $\sum_{v} f(v) x^{v}$ has circuit complexity $O\left(s n^{2}\right)$. Furthermore, $\sum_{|v|=r} f(v) x^{v}$ is the r-homogeneous part of $\sum_{v} f(v) x^{v}$ - this would give circuit complexity $O\left(s n^{4}\right)$. In order to obtain the $O\left(s n^{2}\right)$ bound, it is enough to reproduce the division elimination proof directly. In (4), replace $\left(1+x_{i}\right)^{-1}$ by its truncated power series, namely, with $\lambda\left(x_{i}\right)=\sum_{j=0}^{n-1}(-1)^{j} x_{i}^{j}$. Then $\sum_{|v|=r} f(v) x^{v}$ is the r-homogeneous part of $f\left(x_{1} \lambda\left(x_{1}\right), \ldots, x_{n} \lambda\left(x_{n}\right)\right) \prod_{i \in[n]}\left(1+x_{i}\right)$.
(ii) follows from (i) by setting $x_{1}, \ldots, x_{n}:=1$.

Proof of Theorem 1. Consider the DS_{n} polynomial defined in (6), Section 5.2, where we will prove its VNPcompleteness over any field. It depends on $m=n(n+1) / 2$ variables $x=\left\{x_{i}, x_{j, k}: i \in[n], j<k \in[n]\right\}$. The definition can be rewritten as $\mathrm{DS}_{n}=\sum_{v \in\{0,1\}^{m}} \alpha_{n}(v) x^{v}$, where α_{n} is the boolean function

$$
\alpha_{n}(y):=\bigwedge_{i<j \in[n]}\left(\left(\neg y_{i, j} \vee \neg y_{i}\right) \wedge\left(\neg y_{i, j} \vee \neg y_{j}\right)\right)
$$

By Lemma 5 part (i), we have $\mathrm{C}\left(\mathrm{DS}_{n}\right)=O\left(\mathrm{C}\left(\hat{\alpha}_{n}\right) m^{2}\right)$), and hence $\left\{\hat{\alpha}_{n}\right\}$ is VNP-hard. α_{n} is not monotone but rather antimonotone (i.e., all variables are negated). However, switching $\neg y_{a}$ to y_{a} in α_{n} amounts to switching y_{a} to $1-y_{a}$ in $\hat{\alpha}_{n}$, and has negligible effect on complexity. We can achieve that α_{n} depends on n variables by reindexing the family.

To prove VNP-completeness in char $\neq 2$, consider the function

$$
g_{n}\left(x, y, x_{0}\right):=x_{0} \wedge \alpha_{n}(y) \wedge \bigwedge_{i \in[n], j<k \in[n]}\left(\left(\neg y_{i} \vee x_{i}\right) \wedge\left(\neg y_{j, k} \vee x_{j, k}\right)\right.
$$

It is easy to see that $\sum_{v \in\{0,1\}^{m}} \hat{g}_{n}\left(x, v, x_{0}\right)=x_{0} \mathrm{DS}_{n}$. Hence, by the "moreover" part of Lemma 5 , we have $x_{0} \mathrm{DS}_{n}=2^{n} \hat{g}_{n}\left(x, 1 / 2, \ldots, 1 / 2, x_{0}\right)$ and hence $\mathrm{DS}_{n}=\hat{g}_{n}\left(x, 1 / 2, \ldots, 1 / 2,2^{n}\right)$. That is, DS_{n} is a projection of \hat{g}_{n}. The variables x, x_{0} occur in g_{n} only positively and y only negatively. However, the y variables are all in the scope of the boolean sum, and replacing $\neg y_{a}$ by y_{a} in g_{n} yields the same result.

3.1 Comments

In the proof, we used the polynomial DS_{n}, since it can be easily expressed in terms of a 2 -CNF. In characteristics $\neq 2$, we could have used the permanent instead. We can write $\operatorname{perm}_{n}(x)=\sum_{|v|=n} x^{v} f_{n}(v)$, where f_{n} is an antimonotone 2-CNF. Namely,

$$
f_{n}(y)=\bigwedge_{i_{1} \neq i_{2}, j \in[n]}\left(\left(\neg y_{i_{1}, j} \vee \neg y_{i_{2}, j}\right) \wedge\left(\neg y_{j, i_{1}} \vee \neg y_{j, i_{2}}\right)\right) .
$$

This would give hardness of \hat{f}_{n} by Lemma 5 part (i). To obtain VNP-completeness, one can use the partial permanent polynomial, defined by

$$
\operatorname{perm}_{n}^{*}:=\sum_{\beta} \prod_{i \in \operatorname{dom}(\beta)} x_{i, \beta(i)},
$$

where β ranges over injective partial functions from $[n]$ to $[n]$ (the empty product equals 1). That the family perm $_{n}^{*}$ is VNP-complete in char $\neq 2$ was shown in [5, [2]. The advantage of perm ${ }_{n}^{*}$ is that perm ${ }_{n}^{*}=\sum_{v} x^{v} f_{n}(v)$ with v ranging over all of $\{0,1\}^{n^{2}}$. Furthermore, Theorem 1 in char $=2$ can be proved directly using Proposition 9

The difference between hardness and completeness in Theorem 1 is due to the restricted nature of p projections, and the family $\hat{\alpha}_{n}$ is complete with respect to more general reductions. In Lemma5, we need to compute $\sum_{v \in\{0,1\}^{n}} f(v, y)$ from $f(x, y)$ when f is multilinear. In characteristics different from two, this can be done by the projection $x:=1 / 2, \ldots, 1 / 2$. In general, the Lemma chiefly relies on computing homogeneous components of $f(h, y)$, where h is a substitution from VP. In infinite field, this will be accommodated by the more general c-reduction (introoduced in [2]). In this reduction, we think of f as an oracle and a computation can apply,$+ \times$ or f to previously computed values. By means of interpolation, the homogeneous components of f can be obtained from f via c-reductions (see [2]). We note:

Remark 6. (i). The polynomial $\hat{\alpha}_{n}$ from Theorem 1 can be evaluated in polynomial time on every $0,1-$ input. Hence, the family cannot be VNP-complete in \mathbb{F}_{2} unless $\oplus \mathrm{P} /$ poly $\subseteq P /$ poly (this is both with respect to p-projections and c-reductions).
(ii). If \mathbb{F} is infinite, but of arbitrary characteristics, $\hat{\alpha}_{n}$ is VNP-complete with respect to c-reductions.

4 Multilinearization of linear products

Here, we consider hardness of multlinearization of products of affine functions. An affine function over a field \mathbb{F} is a polynomial of the form $\sum_{i=1}^{n} a_{i} x_{i}+a_{0}$ with $a_{0}, \ldots, a_{n} \in \mathbb{F}$. Its width is the number of non-zero a_{i} 's. The following theorem shows that products of functions of small width are hard to multilinearize.

Theorem 7. Assume that \mathbb{F} is of size at least three. Then
(i). for every n, there exists a polynomial f_{n} in n variables which is a product of affine functions of width 2, but $\left\{\hat{f}_{n}\right\}$ is hard for VNP.

If $\mathbb{F}=\mathbb{F}_{2}$, then
(ii) the above holds with affine functions of width 3,
(iii) if f is a product of affine functions, each depending on at most 2 variables, then $C(\hat{f})=O(n)$.

We deduce parts (i) and (ii) from Theorem 1. Let $\alpha=\alpha_{n}=\bigwedge_{\langle i, j\rangle \in A}\left(x_{i} \vee x_{j}\right)$ be the hard 2-CNF in n variables.

Proof of part (i). This is implied by the following:

Claim. There exists $h\left(x_{1}, x_{2}\right)$ which is a product of three affine functions of width 2 such that for every $x_{1}, x_{2} \in\{0,1\}, x_{1} \vee x_{2}=h\left(x_{1}, x_{2}\right)$.

Proof. Assume that char $(\mathbb{F}) \neq 2$. Then take the product $2\left(1-x_{1} / 2\right)\left(1-x_{2} / 2\right)\left(x_{1}+x_{2}\right)$. If char $(\mathbb{F})=2$ but $|\mathbb{F}|>2$ then \mathbb{F} contains the 4 -element field \mathbb{F}_{4}. Choose two distinct non-zero $a, b \in \mathbb{F}_{4}$ and take the product $\left(a x_{1}+b x_{2}\right)^{3}$. This works because $t^{4}=t$ for every $t \in \mathbb{F}_{4}$.

Instead of the 2-CNF α, we can take the product $\prod_{\langle i, j\rangle \in A} h\left(x_{i}, x_{j}\right)$.
Proof of part (ii). With a disjunction $x_{1} \vee x_{2}$, we associate $L_{x_{1}, x_{2}}$, a system of the three equations

$$
z_{01}=x_{1}+1, z_{10}=x_{2}+1, z_{11}=x_{1}+x_{2}+1
$$

where z_{01}, z_{10}, z_{11} are fresh variables. For the hard 2-CNF α, let $L:=\bigcup_{\langle i, j\rangle \in A} L_{x_{i}, x_{j}}$. Setting $k:=|A|$, the system L depends on $3 k$ extra variables z.

Claim. For every $x \in\{0,1\}^{n}$ the following are equivalent:
(i). $\alpha(x)=1$
(ii). there exists $z \in\{0,1\}^{3 k}$ with $|z|=k$ such that x, z is a solution of L over \mathbb{F}_{2}, and such a z is unique.

Proof. $L_{x_{1}, x_{2}}$ is set up so that the following hold. If $x_{1}, x_{2}, z_{01}, z_{10}, z_{11} \in\{0,1\}$ is a solution and $x_{1} \vee x_{2}=0$ then $\left|z_{01}, z_{10}, z_{11}\right|=3$. If $x_{1} \vee x_{2}=1$ then $\left|z_{01}, z_{10}, z_{11}\right|=1$. Hence, every solution x, z of L satisfies $|z| \geq k$ and equality holds iff $\alpha(x)=1$.

We can rewrite L as $\ell_{1}=1, \ldots, \ell_{m}=1$, where every ℓ_{i} is a linear function of width ≤ 3. Define $g(x, z):=\prod_{i \in[m]} \ell_{i}$. The Claim entails that $\hat{\alpha}(x)$ can be written as $\hat{\alpha}(x)=\sum_{z \in\{0,1\}^{3 k},|z|=k} g(x, z)$. Therefore, \hat{g} is VNP-hard by Lemma 5 part (ii).

Proof of part (iii). Assume that f is in variables x_{1}, \ldots, x_{n} and $f=f_{1} f_{2} \cdots f_{s}$ where each f_{i} is an affine function depending on at most 2 variables. Consider the graph G on vertices x_{1}, \ldots, x_{n} defined as follows: there is an edge between $x_{i} \neq x_{j}$ iff there exists $k \in[s]$ such that f_{k} depends on both x_{i} and x_{j} (i.e., $f_{k}=$ $x_{i}+x_{j}$ or $f_{k}=x_{i}+x_{j}+1$). Suppose G has connected components G_{1}, \ldots, G_{r}. Then $f=g_{1} \cdots g_{r}$, where for every i, g_{i} is the product of the f_{j} 's depending on some variable from G_{i}. Since g_{1}, \ldots, g_{r} depend on disjoint sets of variables, we have $\hat{f}=\hat{g}_{1} \cdots \hat{g}_{r}$, and it is enough to multilinearize each g_{i} separately. It is therefore sufficient to consider the case when G is connected. But then there exist at most two $u \in\{0,1\}^{n}$ such that $f(u)=1$. For if we fix $x_{1} \in\{0,1\}$, the equations $f_{1}=1, \ldots, f_{s}=1$ have at most one solution: a simple path from x_{1} to x_{k} in G determines x_{k} uniquely. Writing $\hat{f}=\sum_{v \in\{0,1\}^{n}} x^{v} x_{v} f(v)=\sum_{v: f(v) \neq 0} f(v) x^{v} x_{v}$ gives a circuit of size $O(n)$.

We note that (ii) and (iii) of the theorem can be stated in a greater generality.
Remark 8. (i). Parts (ii) and (iii) hold for any field \mathbb{F}, if f and f_{n} are taken as boolean functions defined as conjunctions of affine functions over \mathbb{F}_{2}.
(ii). Given a set of linear equations over \mathbb{F}_{2}, we can count the number of solutions in polynomial time. Hence, the multilinearization in (ii) is easy to evaluate on every 0,1 -input, and cannot be VNP-complete (unless $\oplus \mathrm{P} /$ poly $\subseteq \mathrm{P} /$ poly).

5 VNP completeness in characteristics two

In this section, we present new VNP-complete families in characteristics two. We emphasize that completeness is understood with respect to p-projections. The main tool is the following proposition, implicit in [11]. In this paper, Valiant proved $\oplus \mathrm{P}$-completeness of $\oplus 2 \mathrm{SAT}$, as well as of several other problems, including counting vertex covers in special kinds of bipartite graphs $\bmod 2$. (An antimonotone 2-CNF is obtained by negating all variables in a monotone 2-CNF.)

Proposition 9 (11). Let $f(x)$ be an n-variate boolean function computable by a circuit of size s. Then there exists a monotone (similarly, antimonotone) 2-CNF $g(x, y)$ in $m=O(s)$ auxiliary variables y such that for every $x \in\{0,1\}^{n}, f(x)=\sum_{y \in\{0,1\}^{m}} g(x, y) \bmod 2$.

Proof sketch. First, it is enough to consider the case of f being a 3-CNF and, second, a single disjunction of three variables or their negations. Consider the disjunction $f(x, y, z)=\neg x \vee \neg y \vee \neg z$. Then take the 2-CNF $g(x, y, z, u)$ which is the conjunction of $u \vee x, u \vee y, u \vee z$. The key observation is that if $f(x, y, z)=1$, then $g(x, y, z, u)=1$ has unique solution $u=1$, and if $f(x, y, z)=0$ then every $u \in\{0,1\}$ satisfies $g(x, y, z, u)=1$. Hence, $f(x, y, z)=\sum_{u \in\{0,1\}} g(x, y, z, u) \bmod 2$, allowing to rewrite a 3 -CNF as a 2 -CNF. To convert a 2 CNF to a monotone one, we can replace $x \vee \neg y$ with the conjunction $x \vee \bar{y}, y \vee \bar{y}, \neg y \vee \neg \bar{y}$, where the last disjunct can be treated as before.

In Section 5.1, we use the proposition to prove VNP-completeness of our first polynomial, clique ${ }_{n}^{*}$. In Section 5.2 , we use clique ${ }_{n}^{*}$ to conclude completeness of several other families.

5.1 Completeness of clique*

The polynomial clique* is defined as

$$
\text { clique }_{n}^{*}:=\sum_{A \subseteq[n]} \prod_{i<j \in A} x_{i, j},
$$

where the empty products equal 1. Interpreting the variables as edges in a (simple and undirected) graph on n vertices, clique ${ }_{n}^{*}$ counts the number of cliques of all sizes. The polynomial has constant term $n+1$. In some contexts, it is more convenient to have the constant term equal 1 , as in (clique ${ }_{n}^{*}-n$). In this modification, VNP-completeness of clique ${ }_{n}^{*}$ in char $\neq 2$ was proved in 2.

In the rest of this section, we show:
Theorem 10. The family $\left\{\right.$ clique $\left._{n}^{*}\right\}$ is VNP-complete over any field.
It is convenient to think of clique ${ }_{n}^{*}$ and similar polynomials in terms of edge-weighted graphs. Let $G=(V, E)$ be a (simple undirected) graph whose edges are weighted by a variable from a set x or an element of \mathbb{F}, via the function $w: E \rightarrow \mathbb{F} \cup x$. For $E^{\prime} \subseteq E$, the weight of E^{\prime} is defined as the product of weights in E^{\prime} (empty products equal 1). A clique is a subset A of V such that every two distinct vertices in A are connected by an edge. The weight of a clique is the weight of its edge-set (hence, a clique of size ≤ 1 has weight 1). This guarantees that clique ${ }_{n}^{*}$ equals the sum of weights of all cliques in the complete graph on vertices $[n]$, where an edge between $i, j, i<j$, is weighted by $x_{i, j}$.

Lemma 11. Let $f(x)$ be an antimonotone 2-CNF in variables $x=\left\{x_{1}, \ldots, x_{n}\right\}$. Then there exists a graph $G=(V, E)$ with $|V|=O(n)$ and a weight function $w: E \rightarrow \mathbb{F} \cup x$, such that

$$
\begin{equation*}
\sum_{u \in\{0,1\}^{n}} f(u) x^{u}=\sum_{A} w(A), \tag{5}
\end{equation*}
$$

where A ranges over all cliques of G.

Proof. Assume that f can be written as a conjunction of clauses $\mathcal{C}=C_{1}, \ldots, C_{m}$, where each C_{i} is of the form $\neg x_{i} \vee \neg x_{j}$ with $i, j \in\{1, \ldots n\}$. Let G be the graph whose vertices are $x_{0}, x_{1}, \ldots, x_{n}$, where x_{0} is a new variable not appearing in \mathcal{C}. There is an edge between x_{i} and $x_{j}, i \neq j$, iff every clause in \mathcal{C} is consistent with the assignment $x_{i}, x_{j}:=1$. (In other words, \mathcal{C} does not contain $\neg x_{i^{\prime}} \vee \neg x_{j^{\prime}}$ for any $i^{\prime}, j^{\prime} \in\{i, j\}$). This guarantees a one-to-one correspondence between cliques of G containing x_{0} and satisfying assignments of \mathcal{C} : $v \in\{0,1\}^{n}$ satisfies \mathcal{C} iff $A_{v} \cup\left\{x_{0}\right\}$ is a clique in G, where $A_{v}:=\left\{x_{i}: v_{i}=1, i \in\{1, \ldots n\}\right\}$. Let us weigh the graph as follows: an edge between x_{0} and x_{i} is weighted by x_{i} and all other edges by 1. Hence, the weight of $A_{v} \cup\left\{x_{0}\right\}$ is $\prod_{i \in A_{v}} x_{i}=x^{v}$. All cliques not containing x_{0} have weight 1 . In other words, the sum of weights of cliques in G equals

$$
\sum_{v \in\{0,1\}^{n}} x^{v} f(v)+a,
$$

for some $a \in \mathbb{F}$. We can add to G an isolated edge with weight $-a-2$ to obtain G^{\prime} with the required property.

We can now prove the theorem.
Proof of Theorem 10. Clearly, the family is in VNP. The family is complete in char $\neq 2$ as shown in 2, and it remains to deal with char $=2$. We deduce its completeness from VNP-completeness of HC_{n}. The only property of HC_{n} we use is the following: it can be written as $\mathrm{HC}_{n}=\sum_{v \in\{0,1\}^{n^{2}}} f(v) x^{v}$, where x is the vector of its n^{2} variables and $f:\{0,1\}^{n^{2}} \rightarrow\{0,1\}$ is a boolean function of polynomial circuit size. By means of Proposition 9, we can write

$$
\mathrm{HC}_{n}=\sum_{v \in\{0,1\}^{n^{2}, u \in\{0,1\}^{m}}} g(v, u) x^{v}
$$

where g is an antimonotone 2 -CNF, m is polynomial in n, and the summation is in characteristics 2 . Lemma 11 shows that the polynomial

$$
\sum_{v \in\{0,1\}^{n^{2}}, u \in\{0,1\}^{m}} g(v, u) x^{v} y^{u}
$$

is a projection of clique ${ }_{k}^{*}$, with k polynomial in n. Setting the variables y to 1 means that also HC_{n} is a projection of clique ${ }_{k}^{*}$

5.2 Other VNP-complete families

Let clique ${ }_{n}$ and mclique $_{n}$ be the polynomials

$$
\text { clique }_{n}:=\sum_{A \subseteq[2 n],|A|=n} \prod_{i<j \in[2 n]} x_{i, j}, \text { mclique }_{n}:=\operatorname{clique}_{n}\left(x_{1, n+1}, \ldots, x_{n, 2 n}:=0\right)
$$

They are both homogeneous of degree $n(n-1) / 2$. clique ${ }_{n}$ counts the number of cliques of size n in a $2 n$ vertex graph. We can think of mclique $_{n}$ as counting n-cliques in a special kind of graph, which we call a graph with forbidden matching. This is a graph on $2 n$ vertices $a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n}$ such that there is no edge between a_{i} and b_{i} for every $i \in[n]$. We note that completeness of clique could be proved directly via parsimonius reductions to 3 -SAT. mclique is more interesting, because the corresponding decision problem is in polynomial time:

Observation 12. Given a $2 n$-vertex graph G with forbidden matching, we can decide in polynomial time whether it contains a clique of size n.

Proof. We assume that the forbidden matching is part of the input (otherwise, we can find it in polynomial time by finding a perfect matching in the complementary graph). Note that every n-clique in G must contain
precisely one of the vertices a_{i}, b_{i} for every $i \in[n]$. Identifying a_{i} with i and b_{i} with $i+n$, we then see that G has an n-clique iff the following clauses are satisfiable

$$
x_{i} \vee x_{i+n}, i \in[n], \neg x_{j} \vee \neg x_{k}, \text { for all } j \neq k \in[2 n] \text { such that } j, k \text { are not incident. }
$$

This is a set of 2-clauses and its satisfiability can be determined in polynomial time.
We also define the subgraph counting polynomial and disjoint subgraph polynomial by

$$
\begin{equation*}
\mathrm{CS}_{n}:=\sum_{A \subseteq[n], B \subseteq A^{(2)}}\left(\prod_{i \in A} x_{i} \prod_{\langle j, k\rangle \in B} x_{j, k}\right), \mathrm{DS}_{n}:=\sum_{A \subseteq[n], B \subseteq([n] \backslash A)^{(2)}}\left(\prod_{i \in A} x_{i} \prod_{\langle j, k\rangle \in B} x_{j, k}\right) \tag{6}
\end{equation*}
$$

Here $A^{(2)}:=\{\langle j, k\rangle: j<k \in A\}$. The motivation is the following: if $B \subseteq A^{(2)}$ then B can be viewed as a set of edges on vertices A, and so (B, A) is a subgraph of the complete n-vertex graph.

Finally, we present two polynomials counting edge-coverings of a graph

$$
\mathrm{EC}_{n}^{*}:=\sum_{B} \prod_{\langle j, k\rangle \in B} x_{j, k}, \mathrm{EC}_{n}:=\sum_{|B|=\lceil 3 n / 4\rceil} \prod_{\langle j, k\rangle \in B} x_{j, k},
$$

where B ranges over $B \subseteq[n]^{(2)}$ which form an edge cover of $[n]-$ that is, such that $v(B)=[n]$, where $v(B):=\{i, j:\langle i, j\rangle \in B\}$. The factor $3 / 4$ in EC_{n} is rather arbitrary. In the proof, it matters that $1 / 2<3 / 4<1$. Note that any n-vertex graph, $n>1$, has a minimal edge cover of size between $n / 2$ and $n-1$, where an edge cover of size $n / 2$ is a perfect matching.

Theorem 13. The families clique ${ }_{n}$, mclique $_{n}, \mathrm{CS}_{n}$ and DS_{n} are VNP complete over any field. EC_{n}^{*} and EC_{n} are VNP-complete in characteristics equal to two.

We divide the proof into its constituent parts.
clique $_{n}$ and malique $_{n}$. This is by reduction to clique*. Given an edge-weighted graph G on vertices a_{1}, \ldots, a_{n}, consider the following graph H on $2 n$ vertices $a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n}$. H is the union of G, a complete graph on b_{1}, \ldots, b_{n}, as well as all edges $<a_{i}, b_{j}>$ such that $j \neq i$. All edges in $H \backslash G$ have weight one. Every n-clique of H must contain precisely one of the vertices a_{i}, b_{i} for every $i \in[n]$, and is of the form $\left\{a_{i}: i \in A\right\} \cup\left\{b_{i}: i \in[n] \backslash A\right\}$, where $\left\{a_{i}: i \in A\right\}$ is a clique in G. This provides a one-to-one correspondence between cliques of G and n-cliques of H, preserving clique-weight. This shows that clique ${ }_{n}^{*}$ is a projection of mclique $_{n}$ and hence $\left\{\right.$ mclique $\left._{n}\right\}$ is VNP-complete. By definition, mclique ${ }_{n}$ is a projection of clique ${ }_{n}$ and hence also $\left\{\right.$ clique $\left._{n}\right\}$ is VNP-complete.

To prove the rest of the theorem, we first note:
Claim. The family clique $\left.{ }_{n}^{*}\right|_{\bar{x}+1}:=\sum_{A \subseteq[n]} \prod_{i<j \in A}\left(1+x_{i, j}\right)$ is VNP-complete.
Proof. In general, if $a \in \mathbb{F}$ and $\left\{f_{n}\right\}$ is VNP-complete then so is $\left\{\left.f_{n}\right|_{\bar{x}+a}\right\}$. Here, $f_{\bar{x}+a}$ denotes the polynomial obtained by substituting $z:=z+a$, for every variable z in f. First, if h is a projection of g then $h_{\bar{x}+a}$ is a projection of $g_{\bar{x}+a}$. (For, if $h\left(x_{1}, \ldots, x_{n}\right)=g\left(q\left(y_{1}\right), \ldots, q\left(y_{n}\right)\right)$ with $q\left(y_{i}\right) \in \mathbb{F} \cup\left\{x_{1}, \ldots, x_{n}\right\}$ then $h\left(x_{1}+a, \ldots, x_{n}+a\right)=g\left(q^{\prime}\left(y_{1}\right)+a, \ldots, q^{\prime}\left(y_{n}\right)+a\right)$, where: $q^{\prime}\left(y_{i}\right):=q\left(y_{i}\right)$, if $q\left(y_{i}\right)$ is a variable, and $q^{\prime}\left(y_{i}\right)=q\left(y_{i}\right)-a$ if $\left.q\left(y_{i}\right) \in \mathbb{F}\right)$. Second, VNP-completeness of $\left\{f_{n}\right\}$ gives that $\left\{f_{n} \mid \bar{x}-a\right\}$ is a p-projection of $\left\{f_{n}\right\}$ and so $\left\{f_{n}\right\}$ is a p-projection of $\left\{\left.f_{n}\right|_{\bar{x}+a}\right\}$.
$\mathbf{C S}_{n}$ and $\mathbf{D S}_{n}$. clique $\left.{ }_{n}^{*}\right|_{\bar{x}+1}$ can be rewritten as

$$
\begin{equation*}
\left.\operatorname{clique}_{n}^{*}\right|_{\bar{x}+1}=\sum_{A \subseteq[n]} \prod_{i<j \in A}\left(1+x_{i, j}\right)=\sum_{A \subseteq[n], B \subseteq A^{(2)}} \prod_{\langle i, j\rangle \in B} x_{i j} . \tag{7}
\end{equation*}
$$

This is precisely the polynomial obtained by setting x_{1}, \ldots, x_{n} to 1 in CS_{n} or DS_{n}.

Edge covers $\mathbf{E C}_{n}^{*}$. We work in characteristics two. We can further rewrite (7) as

$$
\text { clique }\left._{n}^{*}\right|_{\bar{x}+1}=\sum_{B \subseteq[n]^{(2)}} \sum_{A^{2} \supseteq B} \prod_{\langle j, k\rangle \in B} x_{j, k}=c(B) \sum_{B \subseteq[n]^{(2)}} \prod_{\langle j, k\rangle \in B} x_{j, k},
$$

where $c(B)$ is the number of sets $A \subseteq[n]$ with $B \subseteq A^{(2)}$. Hence, $c(B)=2^{n-|v(B)|}$. In characteristics 2 , the only non-zero terms are those with $v(B)=[n]$ corresponding to edge covers.

Edge covers $\mathbf{E C}_{n}$. This will be by reduction to EC_{n}^{*}. Given an edge-weighted graph G on n vertices, it is enough to find an edge-weighted graph H with $m=O\left(n^{2}\right)$ vertices such that the sum of weights of edge-covers of G equals the sum of weights of edge-covers of size $3 m / 4$ of H.

Given N and k, let $G_{N, k}$ be the following graph on $2 N+2 k+1$ vertices. The vertices are partitioned into sets $\{a\}, A_{1}, A_{2}$, and B_{1}, B_{2} with $\left|A_{1}\right|=\left|A_{2}\right|=N$ and $\left|B_{1}\right|=\left|B_{2}\right|=k$. Its $2 N+k$ edges consist of all edges between a and A_{1}, a perfect matching between A_{1} and A_{2}, and a perfect matching between B_{1} and B_{2}. Every edge cover of $G_{N, k}$ must contain the two matchings and at least one edge between a and A_{1}. Hence, every edge cover has size at least $N+k+1$ and the number of edge covers of size $N+k+r$ is exactly $\binom{N}{r}$ if $0<r \leq N$. Furthermore, if $N=2^{q}-1$ for some $q \in \mathbb{N}$ then $\binom{N}{r}$ is odd for every $r \in[N]$.

Let H be the disjoint union of G and $G_{N, k}$, where N is the smallest $N>n(n-1) / 2$ of the form $N=2^{q}-1$, $q \in \mathbb{N}$. Edges in $G_{N, k}$ are weighted by 1 . We claim that, in characteristics 2,

$$
\sum_{E \text { edge cover of } G} w(E)=\sum_{E^{\prime} \text { edge cover of } H,\left|E^{\prime}\right|=2 N+k} w\left(E^{\prime}\right)
$$

This is because every edge cover E of G with $|E|=s$ can be extended to exactly $\binom{N}{N-s}$ covers E^{\prime} of E with $\left|E^{\prime}\right|=2 N+k$ and $E=E^{\prime} \cap G$. The weight of E^{\prime} equals the weight of E and $\binom{N}{N-s}$ is odd. The graph H has $v=n+2 N+2 k+1$ vertices. If we choose $k=N-3(n+1) / 2$, the sum ranges over E^{\prime} of size $3 v / 4$. (Without loss of generality, we assumed that n is odd.)

This concludes the proof of Theorem 13. We remark that:
Remark 14. By similar reductions, one can obtain VNP-completeness of analogous families defined on bipartite graphs. Namely, polynomials counting bicliques

$$
\sum_{A_{1}, A_{2} \subseteq[n]} \prod_{i \in A_{1}, j \in A_{2}} x_{i, j}, \sum_{A_{1} \cup A_{2}=[n]} \prod_{i \in A_{1}, j \in A_{2}} x_{i, j}
$$

as well as polynomials counting edge covers in a bipartite graph.

6 Defining functions and complexity of decision problems

In this section, we give a different perspective on Theorem 1, and discuss our VNP-complete families in terms of the complexity of their underlying decision problems.

With a boolean function $f:\{0,1\}^{n} \rightarrow\{0,1\}$, we have associated the polynomial \hat{f} which agrees with f on the boolean cube. There is different way how to obtain a multilinear polynomial from f, namely, as the polynomial whose coefficients are computed by f. More generally, if $f:\{0,1\}^{n} \rightarrow \mathbb{F}$, let f^{*} be the polynomial in variables $x=\left\{x_{1}, \ldots, x_{n}\right\}$

$$
f^{*}:=\sum_{v \in\{0,1\}^{n}} f(v) x^{v}
$$

Hence, the function f computes the coefficient of x^{v} in f^{*}. We will call f the defining function of f^{*}. We can compare this with (2): $\hat{f}=\sum_{v} x^{v} x_{v} f(v)$. The difference between f^{*} and \hat{f} corresponds to generating function versus probability generating function of [2]. The two polynomials can be quite different. If 1 is the constant function from $\{0,1\}^{2}$ to $\{0,1\}$ then $\hat{1}=1$ whereas $1^{*}=1+x_{1}+x_{2}+x_{1} x_{2}$. However, we observe that \hat{f} and f^{*} are polynomially related.

Proposition 15. Let s_{1} and s_{2} be the circuit complexity of f^{*} and \hat{f}, respectively, where $f:\{0,1\}^{n} \rightarrow \mathbb{F}$. Then $s_{1}=O\left(s_{2} n^{2}\right)$ and $s_{2}=O\left(s_{1}\right) n^{2}$. Hence, VNP-hardness results of Theorem 1 and 7 hold for f^{*} instead of \hat{f}.

Proof. The first equality was proved in Lemma 5, the second one follows similarly from (4).
We believe that this is enough to reproduce the dichotomy results of [1] for both \hat{f} and f^{*} over fields of arbitrary characteristics.

Defining functions of VNP-complete families We now discuss the defining functions of the families from Section 5. For homogeneous polynomials, we consider slightly more general defining functions. If $f(x)$ is a homogeneous polynomial of degree k, we will call g its hom. defining function, if $f(x)=\sum_{|v|=k} g(v) x^{v}$. We note:

- The defining function of $\operatorname{perm}_{n}^{*}$ and the hom. defining function of perm_{n} is an antimonotone 2-CNF. In contrast, the hom. defining function of HC_{n} is not in AC 0 .

This is because the defining function of $\operatorname{perm}_{n}^{*}$ (and the hom. defining function of perm ${ }_{n}$) checks whether a bipartite graph is a partial matching. This can be expressed as an antimonotone 2-CNF as in Section 3.1. For HC_{n}, the homogeneous defining function decides, given a graph with n edges and n vertices, whether it is a cycle (cf. [12]). For the polynomials in Section 5, we note the following:
(i). The defining function of (clique ${ }_{n}^{*}-n$), DS_{n} and EC_{n}^{*} is a $3-\mathrm{CNF}$, antimonotone 2-CNF and a monotone CNF of polynomial size, respectively.
(ii). The hom. defining function of clique ${ }_{n}$, malique $_{n}$ and EC_{n} is a 3-CNF, antimonotone 2-CNF and a monotone CNF of polynomial size, respectively.

Underlying decision problems of VNP-complete families Let $\left\{f_{n}\right\}$ be a family of multilinear polynomials with 0 , 1 -coefficients such that f_{n} is in m_{n} variables. With $\left\{f_{n}\right\}$, we associate the following decision problem:
Given $n \in \mathbb{N}, v \in\{0,1\}^{m_{n}}$, and $k \leq m_{n}$, decide whether there exists $u \in\{0,1\}^{m_{n}}$ such that ${ }^{3} u \leq v,|u|=k$ and x^{u} has coefficient equal to 1 in f_{n}.

In characteristics zero, this is equivalent to checking whether $f^{(k)}(v) \neq 0$, where $f^{(k)}$ is the k-homogeneous part of f. For a family consisting of homogeneous polynomials, the parameter k can be dropped. For example, the decision problem associated with perm n_{n}^{*} consists in checking whether a bipartite graph has a matching of size k, and a perfect matching in the case of perm ${ }_{n}$. Hence, we note:

- The decision problem associated with perm_{n} or perm $_{n}^{*}$ is in P. For HC_{n}, it is NP-hard.

As for the polynomials in Section 5. we note
Proposition 16. The decision problem associated with (clique ${ }_{n}^{*}-n$) or clique ${ }_{n}$ is $N P$-hard. For the other families in Theorem 13, the decision problem is in P.

Proof. The first part follows from NP-hardness of deciding whether a $2 n$-vertex graph has an n-clique. For mclique $_{n}$, the statement is given by Observation $12, \mathrm{EC}_{n}$ and EC_{n}^{*} follow from the fact that a smallest edge cover can be found in polynomial time. The decision problem associated with CS_{n} amounts to the following: given a graph $G=(V, E)$ and $k \in \mathbb{N}$, decide whether there exists a subgraph $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ with $\left|V^{\prime}\right|+\left|E^{\prime}\right|=k$. Such a subgraph exists if and only if $k \leq|V|+|E|$: if $k \leq|V|$ we can remove all but $k-|V|$ edges to achieve $|V|+\left|E^{\prime}\right|=k$. If $k<|V|$, remove all edges and all but k vertices. DS_{n} is similar.

[^2]Acknowledgement We thank Anup Rao for triggering this investigation and Amir Yehudayoff for useful discussions.

References

[1] I. Briquel and P. Koiran. A dichotomy theorem for polynomial evaluation. In Mathematical Foundations of Computer Science, 2009.
[2] P. Bürgisser. Completeness and reduction in algebraic complexity theory, volume 7 of Algorithms and Computation in Mathematics. Springer, 2000.
[3] P. Bürgisser, M. Clausen, and M. A. Shokrollahi. Algebraic complexity theory, volume 315 of A series of comprehensive studies in mathematics. Springer, 1997.
[4] P. Hrubeš and A. Yehudayoff. Arithmetic complexity in ring extensions. Theory of Computing, 7:119129, 2011.
[5] M. Jerrum. On the complexity of evaluating multivariate polynomials. PhD thesis, Dept. of Computer Science, University of Edinburgh, 1981.
[6] A. Juma, V. Kabanets, C. Rackoff, and A. Shpilka. The black-box query complexity of polynomial summation. Comput. Complex., 18(1):59-79, 2009.
[7] A. Shpilka and A. Yehudayoff. Arithmetic circuits: A survey of recent results and open questions. Foundations and Trends in Theoretical Computer Science, 5(3):207-388, 2010.
[8] V. Strassen. Vermeidung von Divisionen. J. of Reine Angew. Math., 264:182-202, 1973.
[9] L. Valiant, S. Skyum, S. Berkowitz, and C. Rackoff. Fast parallel computation of polynomials using few processors. Siam J. Comp., 12:641-644, 1983.
[10] L. G. Valiant. Completeness classes in algebra. In Proceedings of the 11th Annual ACM Symposium on Theory of Computing, pages 249-261, 1979.
[11] L. G. Valiant. Accidental algorithms. In Proceedings of the 47 th Annual IEEE Symposium Foundations of Computer Science, pages 509-517, 2006.
[12] A. Wigderson. The complexity of graph connectivity. In Proceedings of the 17th International Symposium on Mathematical Foundations of Computer Science, pages 112-132, 1992.

[^0]: *Institute of Mathematics of ASCR, Prague, Czech Republic, pahrubes@gmail.com. Supported by ERC grant FEALORA 339691.
 ${ }^{1}$ Suggested to the author by A. Rao

[^1]: ${ }^{2}$ Instead of $\mathrm{P} /$ poly, one could have $\sharp \mathrm{P} /$ poly.

[^2]: ${ }^{3} u \leq v$ means $u_{i} \leq v_{i}$ for every $i \in\left[m_{n}\right]$

