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Abstract
For a boolean function f : {0,1}" — {0,1}, let f be the unique multilinear polynomial such that

f(z) = f(z) holds for every x € {0,1}". We show that, assuming VP # VNP, there exists a polynomial-
time computable f such that f requires super-polynomial arithmetic circuits. In fact, this f can be taken
as a monotone 2-CNF, or a product of affine functions.

This holds over any field. In order to prove the results in characteristics two, we design new VNP-
complete families in this characteristics. This includes the polynomial EC,, counting edge covers in a
graph, and the polynomial mclique,, counting cliques in a graph with deleted perfect matching. They
both correspond to polynomial-time decidable problems, a phenomenon previously encountered only in

characteristics # 2.

1 Introduction

Arithmetic circuit is a standard model for computing polynomials over a field. It resembles a boolean circuit,
except that an arithmetic circuit uses +, X as basic operations. The two most familiar arithmetic complexity
classes, introduced by Valiant [10], are VP and VNP, and resemble the boolean classes P/poly and NP /poly.
(For more details, we point the reader to, e.g., [7} [3].) Arguably, arithmetic circuits are better understood
than boolean ones: several results which hold in the arithmetic setting have no known counterpart in the
boolean world. Most notably, a polynomial-size arithmetic circuit computing a polynomial of polynomially-
bounded degree can be simulated by a circuit of polynomial size and O(log2 n) depth, see [9]. In the boolean
setting, this would amount to asserting P/poly = NCsy/poly. Moreover, main open problems in arithmetic
complexity — such as proving super-polynomial lower bounds on circuit size of an explicit polynomial — can be
seen as special cases of the corresponding boolean problems, and are therefore considered easier (at least in
a finite underlying field). Hence, it would be desirable to have a means of translating results from arithmetic
to boolean complexity.

One such possibilityﬂ is the following. With a boolean function f, associate the unique multilinear
polynomial f which takes the same values as f on 0, I-inputs. Can it be the case that f has a polynomial
size arithmetic circuit whenever f has polynomial size boolean circuit? This would have quite interesting
consequences, including P/poly = NCs/poly or that, in principle, arithmetic lower bounds imply boolean
lower ones. Not surprisingly, we show that this is not the case: assuming VP # VNP, there exists a
polynomial-time computable boolean function f such that f requires superpolynomial arithmetic circuits.
Moreover, the function f can be very simple, a monotone 2-CNF or a product of linear functions over Fs.
The converse also holds: if VP = VNP then f has complexity polynomial in that of f. These results are
similar to the VNP-dichotomy theorem in [I].

*Institute of Mathematics of ASCR, Prague, Czech Republic, pahrubes@gmail.com. Supported by ERC grant FEALORA
339691.
1Suggested to the author by A. Rao

ISSN 1433-8092



The above holds over any underlying field. We observe that the results are easy in characteristics different
from 2, whereas characteristics 2 requires much more work. This is a frequent phenomenon in arithmetic
complexity: for example, completeness results in Burgisser’s monograph [2] deal almost exquisitely with
char # 2, and similarly for the dichotomy in [I]. However, this is not caused by a pathological nature of
char = 2, but rather by the lack of examples of VNP-complete families. In [10], Valiant has shown that the
permanent polynomial, perm,,, is VNP-complete over any field of characteristics # 2, and the Hamiltonian
cycle polynomial, HC,,, is complete over any field. The permanent counts the number of perfect matchings
in a bipartite graph. In view of its simplicity, it has become synonymous with VNP in char # 2. HC,, counts
the number of Hamiltonian cycles in a graph, and is much more complicated than perm,,. One difference is
the difficulty of the underlying decision problems: we can decide in polynomial time whether a graph has
a perfect matching, whereas testing for a Hamiltonian cycle is NP-hard. This means that it is easier to
deduce completeness of other polynomials by a reduction to perm,,, and an abundance of such families was
presented in [2]. To the author’s knowledge, HC,, was the only previously known VNP-complete family in
characteristics two.

In this paper, we fill the gap by providing several new examples of VNP-complete families in characteristics
two. This includes the polynomial clique), which counts cliques of all sizes in a graph, the polynomial mclique,,
which counts n-cliques in 2n-vertex graph with a deleted matching, or the edge cover polynomial. The latter
families correspond to polynomial-time decision problems. We do not deduce VNP-completeness from the
completeness of HC,,, but rather employ the ®P-completeness proof of @2SAT, as given by Valiant in [I1].

2 Preliminaries

Polynomials and arithmetic circuits Let F be field. A polynomial f over F in variables zi,...,z,
is a finite sum of the form Y, c;x”/, where J = (j1,...,jn) € N", ¢; € F and 2/ denotes the monomial
[Ticm 7. The degree of a monomial 7 is 3
of a monomial with a non-zero coefficient.

The standard model for computing polynomials over F is that of arithmetic circuit. An arithmetic circuit
starts from the variables x1, ..., z, and elements of F, and computes f by means of the ring operations +, x.
The exact definition can be found in, e.g., in [7]. We denote

icn Ji, and the degree of a polynomial is the maximum degree

C(f) : = the size of a smallest arithmetic circuit computing f .

The classes VP, VNP, completeness and hardness VP and VNP are the two most interesting com-
plexity classes in arithmetic computation. The definitions are explained in greater detail in [7, 2] [3], and we
give just the main points.

A family of polynomials {f,} = {fn}nen is in VP, if f,, has polynomially bounded degree and circuit
size. The family is in VNP, if f,(z) = ZuG{O,l}m Gi(n)(u, z) where ¢t : N — N is polynomially bounded
and {gn} is a family in VP. A polynomial f(z1,...,2,) is a projection of g(y1,...,ym), if there exist
aiy....0m € FU{xy,...,x,} such that f(z1,...,2,) = g(a1,...,am). {gn} is a p-projection of {f,}, if there
exists a polynomially bounded ¢ : N — N such that g, is a projection of f;(,,) for every n. A family {f,}
is VNP-complete, if it is in VNP and every family in VNP is a p-projection of {f,,}. As customary, we will
often identify a family {f,} with the polynomial f,.

The best known VNP-complete polynomials are the permanent and the Hamiltonian cycle polynomial

perm,, := Z Hxi,a(i) , HC,, = Z Hxiﬁ(i) J

o =1 o/ =1

where o ranges over permutations of [n] and ¢’ over all cycles in S,, (i.e., every monomial in HC,, corresponds
to a Hamiltonian cycle in the complete directed graph on n vertices). Valiant [I0] has shown that the
permanent family is VNP complete over any field of characteristic different from 2, and HC,, is VNP-complete
over any field.



Our last definition is less standard. We will say that a family {f,} is hard for VNP if for every family
{gn} € VNP, there exists a polynomially bounded ¢ : N — N and ¢ € N such that

Clgn) = O(n® - C(fi(m))) -

Clearly, it is enough to take for {g,} a VNP-complete family. We do not require that g,, is somehow reducible
to fi(n), only that the arithmetic complexity of g,, is polynomially bounded by that of f;(,). In Section
we will compare this with the more common notion of ¢-reduction.

Notation For v = (vy,...,v,) € {0,1}", |v| = YI", v; € N denotes the number of 1’s in v. If z =

(x1,...,2n) is a vector of variables, we define the polynomials 2 and z, as
¥ = H Ti, Ty = H (1—=x;). (1)
;=1 110, =0

We usually write z as {x1,...,2,}, identifying v € {0,1}" with a function from x to {0, 1}.

Multilinearization A polynomial f in variables x1,...,x, is multilinear, if f = ZUE{O 1}n cyx’. In other
words, every monomial containing z¥ with k > 1 has zero coefficient in f. Let f be a function f : {0,1}" — F.

The multilinearization of f is the unique multilinear polynomial f over F which satisfies f (v) = f(v) for
every v € {0,1}". The multilinearization can be explicitly written as

flas,. . m) = ) fv)aa,. (2)

ve{0,1}"

A boolean function f : {0,1}" — {0,1} is automatically a function f : {0,1}" — F D {0,1}, and the
definition applies also in this case. However, f significantly depends on the ambient field F.

2.1 Main results

We are interested in the arithmetic circuit complexity of computing f, provided f itself is easy to compute.
This is interesting in two cases. First, when f : {0,1}" — {0,1} is a boolean function with a small boolean
circuit, or second, f is a polynomial computable by a small arithmetic circuit. The two cases are not
unrelated, since a boolean circuit can be simulated by an arithmetic circuit on 0, 1-inputs (e.g., replace -z
byl—xz,zAybyx-yand zVy by a2y —x —y+1).

A monotone 2-CNF is a booloean formula of the form A; ;e 4(2i V ;) for some A C [n] x [n]. In the
next section, we prove the following:

Theorem 1. Let F be an arbitrary field. For every n, there exists a boolean function o, : {0,1}™ — {0,1}
which can be computed by a monotone 2-CNF but the family {&,} is hard for VNP. Moreover, the 2-CNF
is polynomial-time constructible and the family {&.,} is VNP-complete in char(F) # 2.

This implies:
Corollary 2. Assume that VP # VNP. Then there exists {f,} € VP such that {f,} & VP.

Theorem [1| and Corollary [2] show that boolean functions or polynomials cannot be efficiently multilin-
earized, unless VP = VNP. The converse also hold{’}

Proposition 3. Assume that {f,} is i) a family of polynomials in VNP, or i) a family of boolean function
which is in P/poly. Then {f,} is in VNP.

2Instead of P/poly, one could have §P/poly.



Proof. 1) Equation can be written as f = 2vefoyn (f(v) [T, (v + (1 —2;)(1 —v;))). This shows
that {f,} € VNP. ii) If £ : {0,1}" — {0, 1} has a boolean circuit of size s, we can find a polynomial f; with
an arithmetic circuit of size O(s) such that f(u) = fi(u) for every u € {0,1}"™. However, this polynomial
may have an exponential degree. Instead, encode the boolean circuit as a 3-CNF in m = O(s) new variables,
obtaining a polynomial of degree O(s) so that fi(u) = >, c(g 1ym f2(u,v) holds for every u € {0,1}", and
proceed as in i). O

Other contributions of this paper are the following.
Multilinearization of linear products In Theorem Section we consider f for f defined as a product

of affine functions. We show that this is hard for VNP already when each affine function depends on two
variables only. The exception is the two-element field where three variables are necessary.

VNP-completeness in characteristics 2 In Section[5| we provide new examples of VNP-complete families
in characteristics two. In Theorem we first prove VNP-completeness of the clique polynomial

clique;, = Z H T -
AC[n]i<j€[n]

We use it to deduce completeness of other polynomials in Theorem We focus on families based on
polynomial-time decision problems, as well as polynomials whose coefficients can be expressed in terms of
CNF’s. In particular, the polynomial DS,, is used in the proof of Theorem In Section [6 we discuss
structural properties of the VNP-families in a greater detail.

3 Multilinearization of 2-CNF's

In this section, we prove Theorem [I} In order to appreciate the power of multilinearization, let us first sketch
a simple proof of Corollary [2[in char(F) # 2. Let f,, be the polynomial

fn = H Z CCZ‘ij .

i€[n] j€[n]

Then f, = (ITigpn #¢) - perm,, + g, where g has degree < 2n. ([];c(, 2i) - perm,, is homogeneous of degree

2n, and so ([, en] z;) - perm,, is the 2n-homogeneous part of fn To conclude VNP-hardness, it is enough to
recall the following:

Lemma 4. For k € N, let f*) be the k-homogeneous part of the polynomial f. Then f© ..., f*) can be
simultaneously computed by a circuit of size O(C(f)k?).

This fact traces back to Strassen [8], and appears in various places, including [7].
To prove Theorem [I} we need an appropriate 2-CNF, and the following lemma. The lemma shows that
from a multilinear polynomial f(x,y), we can easily compute other polynomials such as ) o1y [ (v,y).

Lemma 5. Let f(x,y) be a multilinear polynomial in two disjoint sets of variables x,y, withx = {x1,...,2,}
and O(f(x,y)) = s. For every r < n, the following can be computed by circuits of size O(sn?):

(1) 2vegoyn F(0:9)2%, 3o ayn joj=r [ (0:9)27,
(ii). Zye{o,l}" f(v.y), Eve{o,1}n,\v|zr f(v.y)
Moreover, if char(F) # 2, we have Zve{O,l}" flo,y)=2"f(1/2,...,1/2,y).

In characteristics # 2, the “moreover” part was observed in [6].



Proof. We will suppress the dependance on y, writing f(z) instead of f(z,y). Accordingly, degree of f is
taken with respect to the variables z. Since f is multilinear, it can be written as (v ranges over {0,1}")

10 = X ot = 3 (560 T o T -0 o
v v v, =1 1:v;=0

In char(F) # 2, if we set x1,...,z, to 1/2, we obtain z'z, = 27", for every v. Hence, f(1/2,...,1/2) =

27" %", f(v), concluding the “moreover” part.

To prove recall Lemma [4] and another useful fact, again due to Strassen [8]: if a polynomial g has
degree d and can be computed by a circuit with division gates of size s, it can be computed by a circuit
without divisions of size O(sd?). (Strictly speaking, this holds in infinite fields; in finite fields the complexity
may be slightly larger [4].) This said, we claim that

S fw)at = fla/(L+2), . an /A4 20) [] A+ ). (4)
v i€[n]
This follows from : we have

H 1 +1$i i:y:() (1 B 1 —‘,—Z;pi) = H Lg ( H (1 +£L’i))_1 = Z’U( H (]_ +xi))_1,

;=1 i€[n] i€[n]

;=1

giving . This shows that ), f(v)z" has circuit complexity O(sn?). Furthermore, 2 joj=r f(0)2" is the
r-homogeneous part of > f(v)2® — this would give circuit complexity O(sn?). In order to obtain the O(sn?)
bound, it is enough to reproduce the division elimination proof directly. In , replace (1 + x;)~1 by its
truncated power series, namely, with A(z;) = Z;L;Ol (=1)7z]. Then > jo|—r f(v)2? is the r-homogeneous part
of f(xiA(z1),.- . 2pMan)) [Ligpy (1 + @)

follows from by setting z1,...,x, := 1. O

Proof of Theorem [l Consider the DS,, polynomial defined in @, Section where we will prove its VNP-
completeness over any field. It depends on m = n(n+1)/2 variables z = {z;, 2z, : ¢ € [n],j < k € [n]}. The
definition can be rewritten as DS, = 3_, (g 13m @n(v)2”, where o, is the boolean function

an(y) == /\ ((7wig V=) A (2w vV —ys) -
i<je[n]

By Lemma part we have C(DS,,) = O(C(4,,)m?)), and hence {&,,} is VNP-hard. «,, is not monotone
but rather antimonotone (i.e., all variables are negated). However, switching —y, to y, in a, amounts to
switching y, to 1 — y, in &, and has negligible effect on complexity. We can achieve that «,, depends on n
variables by reindexing the family.

To prove VNP-completeness in char # 2, consider the function

gn(@,y,20) = wo Aan(y) A N\ (Wi V) A (cyin Vo) -
1€[n],j<k€[n]

It is easy to see that ZUE{O,I}"" Jn(x,v,20) = 2oDS,,. Hence, by the “moreover” part of Lemma, we have
20DS,, = 2§ (2,1/2,...,1/2,20) and hence DS,, = §,(x,1/2,...,1/2,2™). That is, DS,, is a projection of
GJn- The variables x, o occur in g, only positively and y only negatively. However, the y variables are all in
the scope of the boolean sum, and replacing —y, by ¥y, in g, yields the same result. O



3.1 Comments

In the proof, we used the polynomial DS,,, since it can be easily expressed in terms of a 2-CNF. In charac-
teristics # 2, we could have used the permanent instead. We can write perm,,(z) = 3_,,_,, 2" fu(v), where
frn is an antimonotone 2-CNF. Namely,

@)= N\ ((Wirg V ing) A (i V) -
i1742,5€[n]

This would give hardness of fn by Lemma [5| part To obtain VNP-completeness, one can use the partial
permanent polynomial, defined by
permf, :=>  [[  wise,

B iedom(p)

where [ ranges over injective partial functions from [n] to [n] (the empty product equals 1). That the family
perm;; is VNP-complete in char # 2 was shown in [5[2]. The advantage of perm, is that perm}, = > 2" f,(v)
with v ranging over all of {0, 1}"2. Furthermore, Theorem |l in char = 2 can be proved directly using
Proposition [9]

The difference between hardness and completeness in Theorem [I] is due to the restricted nature of p-
projections, and the family &, is complete with respect to more general reductions. In Lemma [5] we need to
compute ), (013" f(v,y) from f(x,y) when f is multilinear. In characteristics different from two, this can
be done by the projection x :=1/2,...,1/2. In general, the Lemma chiefly relies on computing homogeneous
components of f(h,y), where h is a substitution from VP. In infinite field, this will be accommodated by the
more general c-reduction (introoduced in [2]). In this reduction, we think of f as an oracle and a computation
can apply +, X or f to previously computed values. By means of interpolation, the homogeneous components
of f can be obtained from f via c-reductions (see [2]). We note:

Remark 6. (i). The polynomial &, from Theorem |1| can be evaluated in polynomial time on every 0, 1-
input. Hence, the family cannot be VNP-complete in Fy unless P /poly C P/poly (this is both with
respect to p-projections and c-reductions).

(ii). If F is infinite, but of arbitrary characteristics, &, is VNP-complete with respect to c-reductions.

4 Multilinearization of linear products

Here, we consider hardness of multlinearization of products of affine functions. An affine function over a
field F is a polynomial of the form Z?:l a;x; + ag with ag,...,a, € F. Its width is the number of non-zero
a;'s. The following theorem shows that products of functions of small width are hard to multilinearize.

Theorem 7. Assume that F is of size at least three. Then

(i). for every n, there exists a polynomial f,, in n variables which is a product of affine functions of width
2, but {fn} is hard for VNP.

If F =Fy, then

(ii) the above holds with affine functions of width 3,

(iii) if [ is a product of affine functions, each depending on at most 2 variables, then C(f) = O(n).

We deduce parts (i) and (ii) from Theorem (I} Let o = ap = A; jyc (@i V 25) be the hard 2-CNF in n
variables.

Proof of part (i). This is implied by the following:



Claim. There exists h(x1,x2) which is a product of three affine functions of width 2 such that for every
x1,To € {O, 1}, 1V xe = h(.’L’l,Jﬁg).

Proof. Assume that char(F) # 2. Then take the product 2(1 — z1/2)(1 — x2/2)(x1 + x2). If char(F) = 2 but
|F| > 2 then F contains the 4-element field Fy. Choose two distinct non-zero a,b € Fy and take the product
(axy + bxs)3. This works because t* = t for every t € Fy. O

Instead of the 2-CNF «, we can take the product ], h(z;, ;). O

i) €A
Proof of part (ii). With a disjunction x1 V x2, we associate Ly, ,, a system of the three equations
Zoo=a1+1, zio=22+1, 211 =21+ 22+ 1,

where 291, 210, 211 are fresh variables. For the hard 2-CNF «, let L := U(ij}eA Ly, ;. Setting k := |A], the
system L depends on 3k extra variables z.

Claim. For every x € {0,1}" the following are equivalent:
(1). a(z) =1
(ii). there exists z € {0,1}3% with |z| = k such that x,z is a solution of L over Fy, and such a z is unique.

Proof. Ly, 4z, is set up so that the following hold. If x1, 22, 201, 210, 211 € {0,1} is a solution and z1 Vz3 =0
then |zo1, 210, 211| = 3. If &1 V @2 = 1 then |2¢1, 210, 211| = 1. Hence, every solution z, z of L satisfies |z| > k

and equality holds iff a(z) = 1. O

We can rewrite L as ¢; = 1,...,4,, = 1, where every ¢; is a linear function of width < 3. Define
9(@, 2) == [, ti- The Claim entails that &(x) can be written as &(x) = >, c(0.1y3% |2)=k 9(%; 2). Therefore,
g is VNP-hard by Lemma [5| part O
Proof of part (iii). Assume that f is in variables z1,...,2z, and f = f1fo- - fs where each f; is an affine
function depending on at most 2 variables. Consider the graph G on vertices x1,...,z, defined as follows:

there is an edge between x; # x; iff there exists k € [s] such that f; depends on both z; and z; (ie., fr =
x;+a; or f =x;+x;+1). Suppose G has connected components Gy, ...,G,. Then f = g; - -- g,, where for
every %, g; is the product of the f;’s depending on some variable from G;. Since g1, ..., g, depend on disjoint
sets of variables, we have f = g1+ §r, and it is enough to multilinearize each g; separately. It is therefore
sufficient to consider the case when G is connected. But then there exist at most two u € {0,1}" such that
f(u) = 1. For if we fix z; € {0,1}, the equations f; = 1,..., fs = 1 have at most one solution: a simple path
from z; to xx in G determines zj uniquely. Writing f = ZvE{O,l}" 2z, f(v) = Zv:f(v#o f)a?xz, gives a
circuit of size O(n). O

We note that (i) and (iii) of the theorem can be stated in a greater generality.

Remark 8. (i). Parts (i) and (iii) hold for any field F, if f and f, are taken as boolean functions defined
as conjunctions of affine functions over Fy.

(ii). Given a set of linear equations over Fa, we can count the number of solutions in polynomial time.
Hence, the multilinearization in (ii) is easy to evaluate on every 0, 1-input, and cannot be VNP-complete
(unless &P /poly C P/poly).



5 VNP completeness in characteristics two

In this section, we present new VNP-complete families in characteristics two. We emphasize that complete-
ness is understood with respect to p-projections. The main tool is the following proposition, implicit in [IT].
In this paper, Valiant proved @P-completeness of G2SAT, as well as of several other problems, including
counting vertex covers in special kinds of bipartite graphs mod 2. (An antimonotone 2-CNF is obtained
by negating all variables in a monotone 2-CNF. )

Proposition 9 ([I1]). Let f(x) be an n-variate boolean function computable by a circuit of size s. Then
there exists a monotone (similarly, antimonotone) 2-CNF g(x,y) in m = O(s) auziliary variables y such

that for every x € {0,1}", f(z) = 32, c(0,13m 9(,y) mod 2.

Proof sketch. First, it is enough to consider the case of f being a 3-CNF and, second, a single disjunction of
three variables or their negations. Consider the disjunction f(z,y,2) = -2V -y V —z. Then take the 2-CNF
g(x,y, z,u) which is the conjunction of u V z,uV y,u V z. The key observation is that if f(z,y,2) = 1, then
g(z,y, z,u) = 1 has unique solution v = 1, and if f(z,y, z) = 0 then every u € {0, 1} satisfies g(z,y, z,u) = 1.
Hence, f(z,y,2) = Zue{(},l} g(z,y,z,u) mod 2, allowing to rewrite a 3-CNF as a 2-CNF. To convert a 2-
CNF to a monotone one, we can replace x V —y with the conjunction z V g, y V 7, -y V =y, where the last
disjunct can be treated as before. O

In Section we use the proposition to prove VNP-completeness of our first polynomial, clique),. In
Section we use clique), to conclude completeness of several other families.

5.1 Completeness of clique”

The polynomial clique® is defined as

3 * Pp—
clique;, := g H Ti s,

AC[n] i<jeA

where the empty products equal 1. Interpreting the variables as edges in a (simple and undirected) graph on
n vertices, clique;, counts the number of cliques of all sizes. The polynomial has constant term n+1. In some
contexts, it is more convenient to have the constant term equal 1, as in (clique;, — n). In this modification,
VNP-completeness of clique), in char # 2 was proved in [2].

In the rest of this section, we show:

Theorem 10. The family {clique)} is VNP-complete over any field.

It is convenient to think of clique; and similar polynomials in terms of edge-weighted graphs. Let
G = (V,E) be a (simple undirected) graph whose edges are weighted by a variable from a set z or an
element of F, via the function w : B — FUx. For E/ C E, the weight of E’ is defined as the product of
weights in E’ (empty products equal 1). A clique is a subset A of V such that every two distinct vertices in
A are connected by an edge. The weight of a clique is the weight of its edge-set (hence, a clique of size <1
has weight 1). This guarantees that clique;, equals the sum of weights of all cliques in the complete graph
on vertices [n], where an edge between ¢, j, i < j, is weighted by z; ;.

Lemma 11. Let f(x) be an antimonotone 2-CNF in variables x = {x1,...,x,}. Then there exists a graph
G = (V,E) with |V] = O(n) and a weight function w: E — FUx, such that

S flwet =3 w(4), (5)

ue{0,1}n A

where A ranges over all cliques of G.



Proof. Assume that f can be written as a conjunction of clauses C = C4,...,C,,, where each C; is of the
form —a; V —x; with i, j € {1,...n}. Let G be the graph whose vertices are g, z1, ..., Z,, where x¢ is a new
variable not appearing in C. There is an edge between z; and x;, i # j, iff every clause in C is consistent
with the assignment x;,z; := 1. (In other words, C does not contain -z, V -~z for any ¢, 7 € {¢,j}). This
guarantees a one-to-one correspondence between cliques of G containing xg and satisfying assignments of C:
v € {0,1}" satisfies C iff A, U {xo} is a clique in G, where A, := {z; : v; = 1,4 € {1,...n}}. Let us weigh
the graph as follows: an edge between zg and x; is weighted by z; and all other edges by 1. Hence, the
weight of A, U {xo} is Hz‘eAv x; = x¥. All cliques not containing zy have weight 1. In other words, the sum
of weights of cliques in G equals
Z z'f(v) +a,

ve{0,1}n
for some a € F. We can add to G an isolated edge with weight —a — 2 to obtain G’ with the required
property. O

We can now prove the theorem.

Proof of Theorem[I0 Clearly, the family is in VNP. The family is complete in char # 2 as shown in [2],
and it remains to deal with char = 2. We deduce its completeness from VNP-completeness of HC,,. The
only property of HC,, we use is the following: it can be written as HC,, = Zve{o,l}”z f(v)z?, where z is the

vector of its n2variables and f : {0,1}"" — {0,1} is a boolean function of polynomial circuit size. By means
of Proposition [9] we can write
HC, = Z g(v,u)x",

ve{0,1}7% ue{0,1}m

where ¢ is an antimonotone 2-CNF, m is polynomial in n, and the summation is in characteristics 2. Lemma
shows that the polynomial
> g(v, u)z"y"

ve{0,1}7% ue{0,1}™

is a projection of cliquey, with k polynomial in n. Setting the variables y to 1 means that also HC,, is a
projection of cliquey, O

5.2 Other VNP-complete families

Let clique,, and mclique,, be the polynomials

clique,, := E H x; j , mclique, = clique, (1 nt1,...,%n,2n :=0).
AC[2n],|A|=n i<j€[2n]

They are both homogeneous of degree n(n — 1)/2. clique,, counts the number of cliques of size n in a 2n-
vertex graph. We can think of mclique,, as counting n-cliques in a special kind of graph, which we call a
graph with forbidden matching. This is a graph on 2n vertices aq,...,a,, b1,...,b, such that there is no
edge between a; and b; for every i € [n]. We note that completeness of clique could be proved directly via
parsimonius reductions to 3-SAT. mclique is more interesting, because the corresponding decision problem
is in polynomial time:

Observation 12. Given a 2n-vertex graph G with forbidden matching, we can decide in polynomial time
whether it contains a clique of size n.

Proof. We assume that the forbidden matching is part of the input (otherwise, we can find it in polynomial
time by finding a perfect matching in the complementary graph). Note that every n-clique in G must contain



precisely one of the vertices a;, b; for every i € [n]. Identifying a; with ¢ and b; with ¢ + n, we then see that
G has an n-clique iff the following clauses are satisfiable

T V Tign, 1 € [n], x; Vo, for all j # k € [2n] such that j, k are not incident .
This is a set of 2-clauses and its satisfiability can be determined in polynomial time. O

We also define the subgraph counting polynomial and disjoint subgraph polynomial by

CS,, = Z sz H ik | » DSy = Z Hmz H Tk | - (6)

AC[n],BCA® \i€A  (jk)€B ACIn],BC([n\A)@ \i€A  (jk)eB

Here A®) := {(j, k) : j < k € A}. The motivation is the following: if B C A® then B can be viewed as a
set of edges on vertices A, and so (B, A) is a subgraph of the complete n-vertex graph.
Finally, we present two polynomials counting edge-coverings of a graph

EC) = Z H Zjk, BEC, = Z H Tjk 5

B (j,k)eB |B|=[3n/4] (4,k)€B

where B ranges over B C [n]®) which form an edge cover of [n] — that is, such that v(B) = [n], where
v(B) := {i,j : (i,j) € B}. The factor 3/4 in EC,, is rather arbitrary. In the proof, it matters that
1/2 < 3/4 < 1. Note that any n-vertex graph, n > 1, has a minimal edge cover of size between n/2 and
n — 1, where an edge cover of size n/2 is a perfect matching.

Theorem 13. The families clique,, mclique,, CS,, and DS,, are VNP complete over any field. EC) and
EC,, are VNP-complete in characteristics equal to two.

We divide the proof into its constituent parts.

clique,, and mclique,,. This is by reduction to clique®. Given an edge-weighted graph G on vertices
ai,...,ay,, consider the following graph H on 2n vertices ai,...,an,b1,...,b,. H is the union of G, a
complete graph on by, ..., by, as well as all edges < a;,b; > such that j # ¢. All edges in H \ G have weight
one. Every n-clique of H must contain precisely one of the vertices a;, b; for every i € [n], and is of the form
{a; i€ AYU{b; : i € [n]\ A}, where {a; : i € A} is a clique in G. This provides a one-to-one correspondence
between cliques of G and n-cliques of H, preserving clique-weight. This shows that clique) is a projection
of mclique,, and hence {mclique,,} is VNP-complete. By definition, mclique,, is a projection of clique,, and
hence also {clique,, } is VNP-complete. O

To prove the rest of the theorem, we first note:
Claim. The family clique),|z4+1 == >oaci Hicjea(l + i ;) is VNP-complete.

Proof. In general, if a € F and {f,} is VNP-complete then so is { f,|z+4}. Here, fz+, denotes the polynomial
obtained by substituting z := z + a, for every variable z in f. First, if h is a projection of g then hz,
is a projection of gziq. (For, if h(z1,...,z,) = g(qy1),...,q(yn)) with ¢(y;) € FU {z1,...,2,} then
hzy +a,...,2n +a) = g(¢(y1) + a,...,q¢ (yn) + a), where: ¢'(y;) = q(y;), if q(y;) is a variable, and
q (y:) = q(y;) — a if q(y;) € F). Second, VNP-completeness of {f,} gives that {f,|z—a} is a p-projection of
{fn} and so {f,} is a p-projection of {f,|z+a}- O

CS,, and DS,,. clique}|z4+1 can be rewritten as

clique} |z41 = Z H 1+, = Z H Tij - (7)

AC[n) i<jeA AC[n],BCA® (ij)€B

This is precisely the polynomial obtained by setting z1,...,z, to 1 in CS,, or DS,,. O
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Edge covers EC). We work in characteristics two. We can further rewrite @ as

cliquey, [z4+1 = Z Z H Tk = c(B) Z H Lj,k

BC[n](® A2DB (j,k)eB BCn]® (j,k)eB

where ¢(B) is the number of sets A C [n] with B C A®). Hence, ¢(B) = 2" 1*(B)l, In characteristics 2, the
only non-zero terms are those with v(B) = [n] corresponding to edge covers. O

Edge covers EC,,. This will be by reduction to EC). Given an edge-weighted graph G on n vertices,
it is enough to find an edge-weighted graph H with m = O(n?) vertices such that the sum of weights of
edge-covers of G equals the sum of weights of edge-covers of size 3m/4 of H.

Given N and k, let G, be the following graph on 2NV 4 2k + 1 vertices. The vertices are partitioned
into sets {a}, A1, As, and By, Bs with |A1]| = |A3| = N and |By| = |Bz| = k. Its 2N + k edges consist of all
edges between a and Aj, a perfect matching between A; and As, and a perfect matching between B; and
By. Every edge cover of G must contain the two matchings and at least one edge between a and A;.
Hence, every edge cover has size at least N + k41 and the number of edge covers of size N + k + r is exactly
(]X) if 0 < r < N. Furthermore, if N =27 — 1 for some ¢ € N then (JX) is odd for every r € [N].

Let H be the disjoint union of G and Gy, where N is the smallest N > n(n—1)/2 of the form N =271,
g € N. Edges in G, are weighted by 1. We claim that, in characteristics 2,

Z w(E) = Z w(E").

E edge cover of @ E' edge cover of H,|E/|=2N+k

This is because every edge cover E of G with |E| = s can be extended to exactly ( N]\l S) covers E’ of E with
|E'| = 2N + k and E = E'’ N G. The weight of E’ equals the weight of F and (N]\is) is odd. The graph H
has v = n 4+ 2N + 2k + 1 vertices. If we choose k = N — 3(n + 1)/2, the sum ranges over E’ of size 3v/4.
(Without loss of generality, we assumed that n is odd.) O

This concludes the proof of Theorem We remark that:

Remark 14. By similar reductions, one can obtain VNP-completeness of analogous families defined on
bipartite graphs. Namely, polynomials counting bicliques

DO I A DR | S

A1,A5C[n] i€A1,jEA, A1UAp=[n] i€A1,jEA;

as well as polynomials counting edge covers in a bipartite graph.

6 Defining functions and complexity of decision problems

In this section, we give a different perspective on Theorem [I} and discuss our VNP-complete families in
terms of the complexity of their underlying decision problems.

With a boolean function f : {0,1}" — {0, 1}, we have associated the polynomial f which agrees with
f on the boolean cube. There is different way how to obtain a multilinear polynomial from f, namely, as
the polynomial whose coefficients are computed by f. More generally, if f : {0,1}" — F, let f* be the

polynomial in variables z = {z1,...,z,}
> flos

ve{0,1}"

Hence, the function f computes the coefficient of ¥ in f*. We will call f the defining function of f*. We
can compare this with : f =Y, 2"z, f(v). The difference between f* and f corresponds to generating
function versus probability generating function of [2]. The two polynomials can be quite different. If 1 is the
constant function from {0,1}? to {0,1} then 1 =1 whereas 1* = 1 + 21 + 22 + x125. However, we observe
that f and f* are polynomially related.
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Proposition 15. Let s1 and so be the circuit complexity of f* and f, respectively, where f :{0,1}" — T.
Then s1 = O(san?) and so = O(s1)n?. Hence, VNP-hardness results of Theorem and@ hold for f* instead

of f .
Proof. The first equality was proved in Lemma |5 the second one follows similarly from . O

We believe that this is enough to reproduce the dichotomy results of [I] for both f and f* over fields of
arbitrary characteristics.

Defining functions of VNP-complete families We now discuss the defining functions of the families
from Section |5l For homogeneous polynomials, we consider slightly more general defining functions. If f(x)
is a homogeneous polynomial of degree k, we will call g its hom. defining function, if f(x) = Z\u|:k g(v)a?.
We note:

o The defining function of perm} and the hom. defining function of perm,, is an antimonotone 2-CNF.
In contrast, the hom. defining function of HC,, is not in ACO.

This is because the defining function of perm? (and the hom. defining function of perm,,) checks whether a
bipartite graph is a partial matching. This can be expressed as an antimonotone 2-CNF as in Section [3.1]
For HC,,, the homogeneous defining function decides, given a graph with n edges and n vertices, whether it
is a cycle (cf. [12]). For the polynomials in Section [5] we note the following:

(7). The defining function of (clique), —n), DS,, and EC; is a 3-CNF, antimonotone 2-CNF and a monotone
CNF of polynomial size, respectively.

(#). The hom. defining function of clique,,, mclique,, and EC,, is a 3-CNF, antimonotone 2-CNF and a
monotone CNF of polynomial size, respectively.

Underlying decision problems of VNP-complete families Let {f,} be a family of multilinear poly-
nomials with 0, 1-coefficients such that f,, is in m,, variables. With {f,}, we associate the following decision
problem:

Givenn € N, v € {0,1}™, and k < m,,, decide whether there exists u € {0,1}"™" such thaﬂu <w, |[ul =k
and x¥ has coefficient equal to 1 in f,.

In characteristics zero, this is equivalent to checking whether f(*)(v) # 0, where f(*) is the k-homogeneous
part of f. For a family consisting of homogeneous polynomials, the parameter k can be dropped. For example,
the decision problem associated with perm} consists in checking whether a bipartite graph has a matching
of size k, and a perfect matching in the case of perm,. Hence, we note:

e The decision problem associated with perm,, or perm} is in P. For HC,,, it is NP-hard.

As for the polynomials in Section [5] we note

Proposition 16. The decision problem associated with (clique), —n) or clique,, is NP-hard. For the other
families in Theorem [13, the decision problem is in P.

Proof. The first part follows from NP-hardness of deciding whether a 2n-vertex graph has an n-clique. For
mclique,,, the statement is given by Observation EC, and EC;, follow from the fact that a smallest
edge cover can be found in polynomial time. The decision problem associated with CS,, amounts to the
following: given a graph G = (V, E) and k € N, decide whether there exists a subgraph G’ = (V', E’) with
[V'| +|E’| = k. Such a subgraph exists if and only if k& < |V| 4+ |E|: if kK < |V| we can remove all but k — |V|
edges to achieve |V|+ |E'| = k. If k < |V, remove all edges and all but k vertices. DS,, is similar. O

3u < v means u; < v; for every i € [mn]
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