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Abstract

In this work, we construct the first locally-correctable codes (LCCs), and locally-testable
codes (LTCs) with constant rate, constant relative distance, and sub-polynomial query com-
plexity. Specifically, we show that there exist binary LCCs and LTCs with block length n,
constant rate (which can even be taken arbitrarily close to 1), constant relative distance, and
query complexity exp(Õ(

√
log n)). Previously such codes were known to exist only with Ω(nβ)

query complexity (for constant β > 0), and there were several, quite different, constructions
known.

In addition to having small query complexity, our codes also achieve better trade-offs between
the rate and the relative distance than were previously known to be achievable by LCCs or LTCs.
Specifically, over large (but constant size) alphabet, our codes approach the Singleton bound,
that is, they have almost the best-possible relationship between their rate and distance. This
has the surprising consequence that asking for a large-alphabet error-correcting code to further
be an LCC or LTC with sub-polynomial query complexity does not require any sacrifice in
terms of rate and distance! Over the binary alphabet, our codes meet the Zyablov bound. Such
trade-offs between the rate and the relative distance were previously not known for any o(n)
query complexity. Our results on LCCs also immediately give locally-decodable codes (LDCs)
with the same parameters.

Our codes are based on a technique of Alon, Edmonds and Luby [AEL95, AL96]. We observe
that this technique can be used as a general distance-amplification method, and show that it
interacts well with local correctors and testers. We obtain our main results by applying this
method to suitably constructed LCCs and LTCs in the non-standard regime of sub-constant
relative distance.
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1 Introduction

Locally-correctable codes [BFLS91, STV01, KT00] and locally-testable codes [FS95, RS96, GS06]
are error-correcting codes that admit local algorithms for decoding and testing respectively. More
specifically:

• We say that a code C is a locally-correctable code (LCC)1 if there is a randomized algorithm
that, when given a string z that is close to a codeword c ∈ C, and a coordinate i, computes ci
while making only a small number of queries to z.

• We say that a code C is a locally-testable code (LTC) if there is a randomized algorithm that,
when given a string z, decides whether z is a codeword of C, or far from C, while making
only a small number of queries to z.

The number of queries that are used by the latter algorithms is called the query complexity.
Besides being interesting in their own right, LCCs and LTCs have also played important roles

in different areas of complexity theory, such as program checking [BK95, Lip90, BLR93, RS96],
probabilistically checkable proofs [BFLS91, AS98, ALM+98, GS06], derandomization, hardness
amplification and average-case to worst-case reductions [BFNW93, STV01, Tre03] and private
information retrieval [CKGS98]. It is therefore a natural and well-known question to determine
what are the best parameters that LCCs and LTCs can achieve.

LCCs and LTCs were originally studied in the setting where the query complexity was either
constant or poly-logarithmic. In those settings, it is believed that LCCs and LTCs must be very
redundant, since every bit of the codeword must contain, in some sense, information about every
other bit of the codeword. Hence, we do not expect such codes to achieve a high rate. In particular,
in the setting of constant query complexity, it is known that linear LCCs cannot have constant
rate [KT00, WdW05, Woo07]2, and that LTCs with certain restrictions cannot have constant
rate [DK11, BV12]. On the other hand, the best-known constant-query LCCs have exponential
length3, and the best-known constant-query LTCs have quasi-linear length (see e.g. [BS08, Din07,
Vid15]).

It turns out that the picture is completely different when allowing the query complexity to
be much larger. In this setting, it has long been known that one can have LCCs and LTCs with
constant rate and query complexity O(nβ) for constant β > 0 [BFLS91, RS96]. More recently, it
has been discovered that both LCCs [KSY14, GKS13, HOW13] and LTCs [BV09a, Vid10, GKS13]
can simultaneously achieve rates that are arbitrarily close to 1 and query complexity O(nβ) for an
arbitrary constant β > 0. This is in contrast with the general belief that local correctability and
testability requires much redundancy.

In this work, we show that there are LCCs and LTCs with constant rate (which can in fact be
taken to be arbitrarily close to 1) and constant relative distance, whose associated local algorithms
have no(1) query complexity and running time. We find it quite surprising in light of the fact that
there were several quite different constructions of LCCs and LTCs [BFLS91, RS96, KSY14, BV09a,
Vid10, GKS13, HOW13] with constant rate and constant relative distance, all of which had Ω(nβ)
query complexity.

1There is a closely related notion of locally decodable codes (LDCs) that is more popular and very well studied.
All our results for LCCs hold for LDCs as well, see discussion at the end of the introduction.

2[KT00, WdW05, Woo07] proved a lower bound for the related notion of LDCs. Since every linear LCC is also
an LDC, their lower bound applies to linear LCCs as well.

3For example, a constant-degree Reed-Muller code is such an LCC.
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Furthermore, we show that such codes can achieve stronger trade-offs between the rate and
relative distance than were known before. Specifically, over large alphabets (of constant size), our
codes approach the Singleton bound: they achieve a tradeoff between rate and distance which is
essentially as good as possible for general error-correcting codes. This means that, remarkably,
local correctability and local testability with no(1) queries over large alphabets is not only possible
with constant rate and constant relative distance, but it also does not require “paying” anything in
terms of rate and relative distance. Over the binary alphabet, our codes meet the Zyablov bound.
Such trade-offs were previously not known for any o(n) query complexity.

1.1 Main results

We first state our theorems for the binary alphabet.

Theorem 1.1 (Binary LCCs with sub-polynomial query complexity). For every r ∈ (0, 1), there
exists Z(r) ∈ (0, 1) such that there exists an explicit infinite family of binary linear codes {Cn}n
satisfying:

1. Cn has block length n, rate at least r, and relative distance at least Z(r).

2. Cn is locally correctable from 1
2 · Z(r) fraction of errors with query complexity and running

time at most exp(
√

log n · log logn).

Theorem 1.2 (Binary LTCs with sub-polynomial query complexity). For every r ∈ (0, 1), there
exists Z(r) ∈ (0, 1) such that there exists an explicit infinite family of binary linear codes {Cn}n
satisfying:

1. Cn has block length n, rate at least r, and relative distance at least Z(r).

2. Cn is locally testable with query complexity and running time at most exp(
√

log n · log logn).

Our proofs in fact show that Z(r) can be taken to equal any real number smaller than

max
R∈(r,1)

{
(1−R) ·H−1(1− r

R
)
}
,

where H−1 is the inverse of the binary entropy function in the domain (0, 1
2). Thus the codes in

the above theorems can be made to approach the Zyablov bound.
The above codes over the binary alphabet are obtained by first constructing LCCs and LTCs over
large alphabets that approach the Singleton bound [Sin64], and then concatenating them with
binary codes that match the Gilbert-Varshamov bound [Gil52, Var57]. The following theorems
describe these large-alphabet LCCs and LTCs.

Theorem 1.3 (LCCs with sub-polynomial query complexity approaching the Singleton bound).
For every r ∈ (0, 1) and ε > 0, there exist a finite alphabet Σ and an explicit infinite family of
F2-linear codes {Cn}n over Σ satisfying:

1. Cn has block length n, rate at least r, and relative distance at least 1− r − ε,

2. Cn is locally correctable from 1−r−ε
2 fraction of errors with query complexity and running time

at most exp(
√

log n · log logn),
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3. The size of Σ is at most exp(poly(1/ε)).

Theorem 1.4 (LTCs with sub-polynomial query complexity approaching the Singleton bound).
For every r ∈ (0, 1) and ε > 0, there exists a finite alphabet Σ and an explicit infinite family of
F2-linear codes {Cn}n over Σ satisfying:

1. Cn has block length n, rate at least r, and relative distance at least 1− r − ε,

2. Cn is locally testable with query complexity and running time at most exp(
√

log n · log logn),

3. The size of Σ is at most exp(poly(1/ε)).

The above theorems are proved in Sections 3 and 4. We note that the exponential dependence of
the alphabet size on ε follows from our use of the distance-amplification method of Alon, Edmonds,
and Luby (see below). This dependence indeed seems to be a bottleneck in all applications of this
method, e.g. [GI05].

Remark 1.5. It seems reasonable to expect that one could further improve our codes to meet the
Block-Zyablov bound [BZ82], and it would be interesting to see if this is possible.

1.2 Our techniques

The AEL distance-amplification. Our constructions are based on a technique of Alon, Ed-
monds, and Luby [AEL95, AL96]. We observe that this technique can be viewed as a method
for distance amplification. This distance amplifier, based on a d-regular expander, converts an
error-correcting code with relative distance� 1/d into an error-correcting code with larger relative
distance δ, while reducing the rate only by a factor of ≈ (1−δ). Thus for a large enough constant d,
if we start with a code of rate 1− ε and relative distance � 1/d, where ε� δ, then after distance
amplification with a d-regular expander, we get a code with rate (1−δ)(1−ε) ≈ (1−δ) and relative
distance δ.

The original application of this technique in [AEL95, AL96] was to construct linear-time erasure-
decodable codes approaching the Singleton bound. In addition to the above distance-amplification
technique, [AEL95, AL96] constructed a linear-time erasure-decodable code (not approaching the
Singleton bound) which could be used as the input code to the amplifier. The main result
of [AEL95, AL96] then follows from the fact that distance amplification via a constant-degree
expander preserves linear-time erasure-decodability.

Subsequent applications of this distance-amplification technique followed a similar outline. One
first constructs codes with high rate with some (possibly very small) constant relative distance and
a certain desirable property. Then, applying distance amplification with a (possibly very large)
constant-degree expander, one obtains a code with a much better tradeoff between its rate and
relative distance. Finally one shows that the distance amplification with a constant degree expander
preserves the desirable property. This scheme was implemented in [GI05], who constructed codes
that can be decoded in linear time from errors (rather than erasures) and achieve the Signleton
bound, and in [GI02, GR08], who constructed capacity-achieving list-decodable codes with constant
alphabet.

For the sake of brevity, throughout the rest of this paper, we refer to this technique as the “AEL
distance-amplification”.
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Our observations. The first main observation of this paper is that the distance-amplification
technique also preserves the property of being an LCC or an LTC. Specifically, if we start with
an LCC or LTC with query complexity q, and then apply distance amplification with a d-regular
expander, then the resulting code is an LCC/LTC with query complexity q · poly(d).

The next main observation is that this connection continues to hold even if we take d to be
super-constant, and take the LCC or LTC to have sub-constant relative distance Θ(1/d) (and then
we only require the LCC to be able to correct strings whose distance from the code is within some
constant fraction of the minimum distance of the code). This is potentially useful, since we only
blow up the query complexity by a factor of poly(d), and perhaps LCCs/LTCs with high rate
and sub-constant relative distance can have improved query complexity over their constant relative
distance counterparts.

Finally, we show that existing families of high rate LCCs and LTCs can achieve sub-polynomial
query complexity if we only require them to have sub-constant relative distance. Specifically,
multiplicity codes [KSY14] in a super-constant number of variables give us the desired LCCs, and
super-constant-wise tensor products [Vid15] give us the desired LTCs (The use of tensor products
to construct LTCs was initiated in [BS06]). As far as we are aware, there have been no previous
uses of the AEL distance-amplification technique using an expander of super-constant degree.

More generally, we wish to draw attention to the AEL technique. We believe that it should be
viewed as a general scheme for improving the rate-distance tradeoff for codes with certain desirable
properties. In particular, it may transfer properties that codes with constant rate and sub-constant
relative distance are known to have, to codes with constant rate and constant relative distance,
and even to codes approaching the Singleton bound. We believe that this is a good “take-home
message” from this work.

Recently, following a preliminary version of this work [Mei14], Hemenway and Wootters [HW15]
used this observation on the generality of the AEL technique to construct linear-time list-recoverable
codes.

Correctable and testable codes. Using the above method, it is also possible to construct
improved codes that are simultaneously locally correctable and locally testable. This can be done
by applying the distance-amplification technique to the lifted Reed-Solomon codes of [GKS13]. The
codes of [GKS13] are both locally correctable and testable, and achieve rates that are arbitrarily
close to 1. Using these codes of [GKS13] in the sub-constant relative distance regime, and combining
with our framework, we get codes of constant rate and constant relative distance (which over large
alphabets approach the Singleton bound) that are both locally correctable and locally testable with
nO(1/ log logn) queries.

Locally decodable codes. An important variant of LCCs are locally decodable codes (LDCs).
Those codes are defined similarly to LCCs, with the following difference: Recall that in the definition
of LCCs, the decoder gets access to a string z which is close to a codeword c, and is required to
decode a coordinate of c. In the definition of LDCs, we view the codeword c as the encoding of
some message x, and the decoder is required to decode a coordinate of x. LDCs were studied
extensively in the literature, perhaps more so than LCCs (see [Yek12] for a survey). One notable
fact about LDCs is that there are constructions of LDCs with a constant query complexity and
sub-exponential length [Yek08, Rag07, KY09, Efr12].

If we restrict ourselves to linear codes, then LDCs are a weaker object than LCCs, since every
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linear LCC can be converted into an LDC by choosing a systematic encoding map4. Since the
LCCs we construct in this paper are linear, all our results apply to LDCs as well.

Organization of this paper. We review the required preliminaries in Section 2, construct our
LCCs in Section 3, and construct our LTCs in Section 4. We conclude with some open questions
in Section 5.

Version. A preliminary version of this paper appeared as [Mei14], where the distance-amplification
technique was used to construct codes approaching the Singleton bound with query complexity
O(nβ) (for arbitrary β > 0).

2 Preliminaries

All logarithms in this paper are in base 2. For any n ∈ N we denote [n]
def
= {1 . . . , n}. We denote

by F2 the finite field of two elements. For any finite alphabet Σ and any pair of strings x, y ∈ Σn,
the relative Hamming distance (or, simply, relative distance) between x and y is the fraction of

coordinates on which x and y differ, and is denoted by dist(x, y)
def
= |{i ∈ [n] : xi 6= yi}| /n. We

have the following useful approximation.

Fact 2.1. For every x, y ∈ R such that 0 ≤ x · y ≤ 1, it holds that

(1− x)y ≤ 1− 1

4
· x · y.

Proof. It holds that

(1− x)y ≤ e−x·y ≤ 1− 1

4
· x · y.

The second inequality relies on the fact that 1 − 1
4 · x ≥ e−x for every x ∈ (0, 1), which can be

proved by noting that 1− 1
4 · x = e−x at x = 0, and that the derivative of e−x is smaller than that

of 1 − 1
4 · x for every x ∈ (0, 1). The first inequality relies on the fact that 1 − x ≤ e−x for every

x ∈ R, which can be proved using similar considerations. �

2.1 Error-correcting codes

Let Σ be an alphabet and let n be a positive integer (the block length). A code is simply a subset
C ⊆ Σn. If F is a finite field and Σ is a vector space over F, we say that a code C ⊆ Σn is F-linear
if it is an F-linear subspace of the F-vector space Σn. If Σ = F, we simply say that C is linear. The
rate of a code is the ratio log |C|

log(|Σ|n) , which for F-linear codes equals dimF(C)
n·dimF(Σ) .

The elements of a code C are called codewords. We say that C has relative distance at least
δ if for every pair of distinct codewords c1, c2 ∈ C it holds that dist(c1, c2) ≥ δ. We will use the
notation dist(w,C) to denote the relative distance of a string w ∈ Σn from C, and say that w is
ε-close (respectively, ε-far) to C if dist(w,C) < ε (respectively, if dist(w,C) ≥ ε).

An encoding map for C is a bijection EC : Σk → C, where |Σ|k = |C|. We say that an infinite
family of codes {Cn}n is explicit if there is a polynomial time algorithm that computes the encoding

4This conversion will lead to an LDC with the same query complexity, but the running time of the local decoder
will be small only if the systematic encoding map can be computed efficiently.

6



maps of all the codes in the family. For a code C of relative distance δ, a given parameter τ < δ/2,
and a string z ∈ Σn, the problem of decoding from τ fraction of errors is the task of finding the
unique c ∈ C (if any) which satisfies dist(c, z) ≤ τ .

Concatenation. Concatenation is an operation on codes that can be used for reducing the al-
phabet size of a code. Let Λ and Σ be alphabets, where we think of Σ as being much larger than Λ.
Let C ⊆ Σn be a code over Σ and let H ⊆ Λm be a code over Λ such that |H| = |Σ|. Let φ : Σ→ H
be a bijection . The concatenation of C with H is the code C ′ ⊆ Λm·n that is obtained as follows:
for each codeword c ∈ C, we construct a corresponding codeword c′ ∈ C ′ by replacing each symbol
ci with φ(ci). We shall use the following well-known fact.

Fact 2.2 (Concatenation). Let C ⊆ Σn be a code with rate rC and relative distance δC , let H ⊆ Λm

be a code with rate rH and relative distance δH , and let C ′ ⊆ Λm·n be the concatenation of C with
H. Then C ′ has rate rC ·rH and relative distance δC ·δH . Furthermore, if Λ is a field, C is Λ-linear,
and H is linear, then C ′ is linear.

Some useful codes. We use the following facts, which state the existence of Reed-Solomon
codes, Gilbert-Varshamov codes, and Zyablov codes, and their relevant properties.

Fact 2.3 (Reed-Solomon Codes [RS60]). For every k, n ∈ N such that n ≥ k, and for every finite
field F such that |F| ≥ n, there exists an F-linear code RSk,n ⊆ Fn with rate r = k/n, and relative
distance at least 1− k−1

n > 1− r. Furthermore, RSk,n has an encoding map E : Fk → RSk,n which

can be computed in time poly(n, log |F|), and can be decoded from up to (1 − k−1
n )/2 fraction of

errors in time poly(n, log |F|).

Fact 2.4 (Gilbert-Varshamov codes [Gil52, Var57]). For every 0 < r < 1 and ε > 0, there exists
a (non-explicit) infinite family {GVn}n of binary linear codes of with rate r and relative distance
H−1(1− r), where H−1 is the inverse of the binary entropy function.

The following codes, due to Zyablov, are obtained by concatenating the Reed-Solomon codes
with the Gilbert-Varshamov codes.

Fact 2.5 (Zyablov bound [Zya71]). For every 0 < r < 1 and ε > 0, there exists an explicit infinite
family {Zn}n of binary linear codes of with rate r and relative distance

δ = max
r<R<1

{
(1−R− ε) ·H−1

(
1− r

R

)}
,

where H−1 is the inverse of the binary entropy function.

By choosing r = 1− ε and R = 1− 2 · ε in Fact 2.6, we get the following useful special case.

Fact 2.6 (Special case of the Zyablov bound). For every ε > 0, there exists an explicit infinite
family {Zn}n of binary linear codes of with rate 1− ε and relative distance at least

(1− 3 · ε) ·H−1(1− 1− ε
1− 2 · ε

) ≥ ε2,

where the inequality holds for sufficiently small values of ε.

7



2.2 Locally-correctable codes

Intuitively, a code is said to be locally correctable [BFLS91, STV01, KT00] if, given a codeword
c ∈ C that has been corrupted by some errors, it is possible to decode any coordinate of c by
reading only a small part of the corrupted version of c. Formally, it is defined as follows.

Definition 2.7. We say that a code C ⊆ Σn is locally correctable from τ fraction of errors with query
complexity q if there exists a randomized algorithm A that satisfies the following requirements:

• Input: A takes as input a coordinate i ∈ [n] and also gets oracle access to a string z ∈ Σn

that is τ -close to a codeword c ∈ C.

• Output: A outputs ci with probability at least 2
3 .

• Query complexity: A makes at most q queries to the oracle z.

We say that the algorithm A is a local corrector of C. Given an infinite family of LCCs {Cn}n, a
uniform local corrector for the family is a randomized oracle algorithm that given n, computes the
local corrector of Cn. We will often be also interested in the running time of the uniform local
corrector.

Remark 2.8. The above success probability of 2
3 can be amplified using sequential repetition,

at the cost of increasing the query complexity. Specifically, amplifying the success probability to
1− e−t requires increasing the query complexity by a factor of O(t).

2.3 Locally-testable codes

Intuitively, a code is said to be locally testable [FS95, RS96, GS06] if, given a string z ∈ Σn, it is
possible to determine whether z is a codeword of C, or rather far from C, by reading only a small
part of z. There are two variants of LTCs in the literature, “weak” LTCs and “strong” LTCs. From
now on, we will work exclusively with strong LTCs, since it is a simpler notion and allows us to
state a stronger result.

Definition 2.9. We say that a code C ⊆ Σn is (strongly) locally testable with query complexity q if
there exists a randomized algorithm A that satisfies the following requirements:

• Input: A gets oracle access to a string z ∈ Σn.

• Completeness: If z is a codeword of C, then A accepts with probability 1.

• Soundness: If z is not a codeword of C, then A rejects with probability at least dist(z, C)/4.

• Query complexity: A makes at most q queries to the oracle z.

We say that the algorithm A is a local tester of C. Given an infinite family of LTCs {Cn}n, a
uniform local tester for the family is a randomized oracle algorithm that given n, computes the local
tester of Cn. Again, we will often also be interested in the running time of the uniform local tester.
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A remark on amplifying the rejection probability. It is common to define strong LTCs
with an additional parameter ρ, and have the following soundness requirement:

• If z is not a codeword of C, then A rejects with probability at least ρ·dist(z, C).

Our definition corresponds to the special case where ρ = 1
4 . However, given an LTC with ρ < 1

4 , it
is possible to amplify ρ up to 1

4 at the cost of increasing the query complexity. Hence, we chose to
fix ρ to 1

4 in our definition, which somewhat simplifies the presentation.
The amplification of ρ is performed as follows: The amplified tester invokes the original tester A

for 1
ρ times, and accepts only if all invocations of A accept. Clearly, this increases the query

complexity by a factor of 1
ρ and preserves the completeness property. To analyze the rejection

probability, let z be a string that is not a codeword of C, and observe that the amplified tester
rejects it with probability at least

1− (1− ρ · dist(z, C))
1
ρ

≥ 1−
(

1− 1

4
· 1

ρ
· ρ · dist(z, C)

)
(Fact 2.1)

=
1

4
· dist(z, C),

as required.

2.4 Expander graphs

Expander graphs are graphs with certain pseudorandom connectivity properties. Below, we state
the construction and properties that we need. The reader is referred to [HLW06] for a survey. For
a graph G, a vertex s and a set of vertices T , let E(s, T ) denote the set of edges that go from s
into T .

Definition 2.10. Let G = (U ∪ V,E) be a bipartite d-regular graph with |U | = |V | = n. We say
that G is an (α, γ)-sampler if the following holds for every T ⊆ V : For at least 1−α fraction of the
vertices s ∈ U it holds that

|E(s, T )|
d

− |T |
n
≤ γ.

Lemma 2.11. For every α, γ > 0 and every sufficiently large n ∈ N there exists a bipartite d-

regular graph Gn,α,γ = (U ∪ V,E) with |U | = |V | = n and d = poly
(

1
α·γ

)
such that Gn,α,γ is an

(α, γ)-sampler. Furthermore, there exists an algorithm that takes as inputs n, α, γ, and a vertex
w of Gn,α,γ, and computes the list of the neighbors of w in Gn,α,γ in time poly( logn

α·γ ).

Proof sketch. A full proof of Lemma 2.11 requires several definitions and lemmas that we have
not stated, such as second eigenvalue, edge expansion, and the expander mixing lemma. Since
this is not the focus of this paper, we only sketch the proof without stating those notions. The
interested reader is referred to [HLW06].

Let α, γ and n be as in the lemma. We sketch the construction of the graph G
def
= Gn,α,γ . First,

observe that it suffices to construct a strongly-explicit non-bipartite graph G′ over n vertices (that
is, a graph G′ in which the neighborhood of any given vertex is computable in time poly(log n))
with the desired property. The reason is that each such graph G′ can be converted into a bipartite
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graph G with the desired property, by taking two copies of the vertex set of G′ and connecting the
two copies according to the edges in G′. The existence of the algorithm stated in the lemma follows
from the fact that G′ is strongly-explicit.

We thus focus on constructing the graph G′. This is done in two steps: first, we show how to
construct a strongly-explicit expander G′′ over n vertices — this requires a bit of work, since n
can be an arbitrary number, and expanders are usually constructed for special values of n. In the
second step, we amplify the spectral gap of G′′ by powering, and set G′ to be the powered graph.
We then prove that G′ has the desired sampling property.

The first step. The work of [GG81] gives a strongly-explicit expander with constant degree and
constant edge expansion for every n that is a square, so we only need to deal with the case in which
n is not a square. Suppose that n = m2 − k, where m2 is the minimal square larger than n, and
observe that k ≤ 2m − 1, which is at most 1

2 ·m
2 for sufficiently large m. Now, we construct an

expander over m2 vertices using [GG81], and then merge k pairs of vertices. In order to maintain
the regularity, we add self-loops to all the vertices that were not merged. We set G′′ to be the
resulting graph.

It is easy to see that G′′ is a regular graph over n vertices. Since the merge and the addition
of self-loops maintain the degree and the edge expansion of the original expander up to a con-
stant factor, it follows that G′′ is an expander with constant degree and constant edge expansion.
Furthermore, it is not hard to see that G′′ is strongly-explicit.

The second step. Since G′′ is an expander, and in particular has constant edge expansion, it
follows from the Cheeger inequality [Dod84, AM85] that its second-largest normalized eigenvalue
(in absolute value) is some constant smaller than 1. Let us denote this normalized eigenvalue by
λ. We note that the degree and the edge expansion of G′′, as well as λ, are independent of n.

We now construct the graph G′ by raising G′′ to the power logλ (
√
α · γ). Observe that G′ is a

graph over n vertices with degree d
def
= poly

(
1
α·γ

)
and normalized second eigenvalue

√
α · γ. It is

not hard to see that G′ is strongly-explicit.

The sampling property. We prove that G′ has the desired sampling property. Let T be a
subset of vertices of G′. We show that for at least (1− α) fraction of the vertices s of G′ it holds
that

|E(s, T )|
d

− |T |
n
≤ γ.

To this end, let

S
def
=

{
s ∈ U

∣∣∣∣ |E(s, T )|
d

− |T |
n

> γ

}
.

Clearly, it holds that
|E(S, T )|
d · |S|

− |T |
n

> γ.

On the other hand, the expander mixing lemma [AC88] implies that

|E(S, T )|
d · |S|

− |T |
n
≤
√
α · γ ·

√
|T |
|S|

.
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By combining the above pair of inequalities, we get

γ <
√
α · γ ·

√
|T |
|S|

|S| < α · |T | ≤ α · n,

as required. �

3 LCCs with sub-polynomial query complexity

In this section, we prove the following theorem on LCCs, which immediately implies Theorem 1.3
from the introduction.

Theorem 3.1 (Main LCC theorem). For every r ∈ (0, 1) and ε > 0, there exist a finite vector
space Σ over F2 and an explicit infinite family of F2-linear codes {Cn}n over Σ satisfying:

1. Cn has block length n, rate at least r, and relative distance at least 1− r − ε.

2. Cn is locally correctable from 1−r−ε
2 fraction of errors with query complexity exp(

√
log n · log logn).

3. The size of Σ is at most exp(poly(1/ε)).

We explain how to construct our binary LCCs ((Theorem 1.1)) using Theorem 3.1 in Section 3.4
below.

The proof of Theorem 3.1 has two steps. In the first step, we give a transformation that
amplifies the fraction of errors from which an LCC can be corrected — this step follows the distance
amplification of [AEL95, AL96]. In the second step, we construct a locally-correctable code Wn

with the the desired query complexity but that can only be corrected from a sub-constant fraction
of errors. Finally, we construct the code Cn by applying the distance amplification to Wn (in a
slightly non-trivial way). Those two steps are formalized in the following pair of lemmas, which are
proved in Sections 3.1 and 3.2 respectively.

Lemma 3.2. Suppose that there exists a code W that is locally correctable from τW fraction of
errors with query complexity q, such that:

• W has rate rW .

• W is F2-linear

Then, for every 0 < τ < 1
2 and ε > 0, there exists a code C that is locally correctable from τ fraction

of errors with query complexity q · poly(1/(ε · τW )), such that:

• |C| = |W |.

• C has relative distance at least 2 · τ , and rate at least rW · (1− 2 · τ − ε).

• Let Λ denote the alphabet of W . Then, the alphabet of C is Σ
def
= Λp for some p =

poly(1/(ε · τW )).

11



• C is F2-linear.

Furthermore,

• There is a polynomial time algorithm that computes a bijection from every code W to the
corresponding code C, given rW , τW , τ , ε and Λ.

• There is an oracle algorithm that when given black box access to the local corrector of any
code W , and given also rW , τW , τ , ε, Λ, and the block length of W , computes the local
corrector of the corresponding code C. If the local corrector of W runs in time tW , then the
corresponding local corrector of C runs in time

O(tW ) + q · poly (1/(ε · τW ), log nW ) ,

where nW is the block length of W .

Lemma 3.3. There exists an explicit infinite family of F2-linear codes {Wn}n satisfying:

1. The code Wn has block length n, rate at least 1− 1
logn , and relative distance at least Ω

(√
log logn
log3 n

)
.

2. The code Wn is locally correctable from Ω
(√

log logn
log3 n

)
fraction of errors with query complexity

exp(
√

log n · log log n).

3. The alphabet of Wn is a vector space Λn over F2, such that |Λn| ≤ exp
(
exp(
√

log n · log logn)
)
.

Furthermore, the family {Wn}n has a uniform local corrector that runs in time exp(
√

log n · log logn).

Proof of Theorem 3.1. It is tempting to try to prove Theorem 3.1 by applying the transforma-
tion of Lemma 3.2 to the codes Wn of Lemma 3.3 with τ ≈ 1−r

2 . This would indeed yield codes
of the required rate, relative distance and query complexity, but the alphabet size of those codes
would be too large, and in particular, super-constant.

We therefore take a slightly indirect route: first, we apply the transformation of Lemma 3.2
to the codes Wn with τ ≈ ε. This yields codes with very high rate, constant (but small) relative
distance, and alphabet of super-constant size. Then, we concatenate those codes with binary codes
of high rate and small constant distance, thus obtaining binary codes with very high rate and small
constant distance. Finally, we apply the transformation to the latter binary codes with τ ≈ 1−r

2 ,
and this gives the codes with the desired parameters. Details follow.

Fix a choice of the parameters r and ε. We describe how to construct the corresponding infinite
family of codes {Cn}n. We start by applying Lemma 3.2 to the family {Wn}n of Lemma 3.3 with

τW = Ω
(√

log logn
log3 n

)
, τ = 1

64 · ε, and ε = 1
32 · ε. This yields an infinite family of codes {W ′n}n that

has rate 1 − 1
16 · ε −

1
logn ≥ 1 − 1

8 · ε and alphabet size exp
(
exp(
√

log n · log log n)
)
, and which is

locally correctable from 1
64 · ε fraction of errors with query complexity exp(

√
log n · log log n).

Let {Zn}n be the infinite family of binary Zyablov codes of rate 1− 1
8 · ε and relative distance(

1
8 · ε

)2
whose existence is guaranteed by Fact 2.6. We concatenate the family {W ′n}n with the

family {Zn}n, thus obtaining an infinite family of binary linear codes {Bn}n with rate 1− 1
4 · ε and

relative distance Ω(ε3). Furthermore, it is not hard to see that those codes are locally correctable
from Ω(ε3) fraction of errors using query complexity exp(

√
log n · log log n): the localy corrector of
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{Bn}n emulates the local corrector of {W ′n}n. Whenever the local corrector of {W ′n}n makes a query,
the localy corrector of {Bn}n reads the corresponding puported codeword of the inner Zyablov code,
decodes it to the nearest codeword, and uses the result to answer the query of the local corrector
of {W ′n}n. It is easy to see that the query complexity of this local corrector is exp(

√
log n · log logn),

and standard arguments of coding theory show that it can correct Ω(ε3) fraction of errors (see
Section 3.4 for a sophisticated version of those arguments).

Finally, we apply Lemma 3.2 again, this time to the family {Bn}n, with τW = Ω
(
ε3
)
, ε = 1

4 · ε,
and

τ =
1

2
·

(
1− r

1− 1
4 · ε

− 1

4
· ε

)
≥ 1

2
· (1− r − ε) .

This results in an infinite family {Cn}n of F2-linear codes with rate

(1− 1

4
· ε) · (1− 2 · τ − 1

4
· ε) = (1− 1

4
· ε) ·

(
1− (1− r

1− 1
4 · ε

− 1

4
· ε)− 1

4
· ε

)
= r,

and alphabet size exp(poly(1/ε)), which is locally correctable from τ ≥ 1−r−ε
2 fraction of errors

with query complexity

exp(
√

log n · log log n) · poly(1/ε) = exp(
√

log n · log logn),

as required. The family {Cn}n is explicit with the required running time due to the first item in
the “furthermore” part of Lemma 3.2, and has a uniform local corrector due to the second item of
that part. �

Remark 3.4. In Lemma 3.2 above, we chose to assume that W is F2-linear for simplicity. More
generally, if W is F-linear for any finite field F, then C is F-linear as well. Furthermore, the lemma
also works if W is not F-linear for any field F, in which case C is not guaranteed to be F-linear for
any field F.

3.1 Proof of Lemma 3.2

3.1.1 Overview

Let 0 < τ < 1
2 . Our goal is to construct a code C that can be locally corrected from a fraction of

errors at most τ . The idea of the construction is to combine the LCC W with a Reed-Solomon code
to obtain a code C that enjoys “the best of both worlds”: both the local correctability of W and
the good error correction capability of Reed-Solomon. We do it in two steps: first, we construct a
code C ′ which can be corrected from τ fraction of random errors. Then, we augment C ′ to obtain
a code C that can be corrected from τ fraction of adversarial errors.

We first describe the construction of C ′. To this end, we describe a bijection from W to C ′.
Let w be a codeword of W . To obtain the codeword c′ ∈ C ′ that corresponds to w, we partition w
into blocks of length b (to be determined later), and encode each block with a Reed-Solomon code
RSb,d. We choose the relative distance of RSb,d to be 2 · τ + ε, so its rate is 1 − 2 · τ − ε and the
rate of C ′ is indeed rW · (1− 2 · τ − ε), as required.

We now claim that if one applies to a codeword c′ ∈ C ′ a noise that corrupts each coordinate
with probability τ , then the codeword c′ can be recovered from its corrupted version with high
probability. To see it, first observe that with high probability, almost all the blocks of c′ have at
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most τ + ε
2 fraction of corrupted coordinates. Let us call those blocks “good blocks”, and observe

that the good blocks can be corrected by decoding them to the nearest codeword of RSb,d (since
τ + ε

2 is half the relative distance of RSb,d). Next, observe that if b is sufficiently large, the fraction
of “good blocks” is at least 1 − τW , and hence we can correct the remaining τW fraction of errors
using the decoding algorithm of W . It follows that C ′ can be corrected from τ fraction of random
errors, as we wanted.

Next, we show how to augment C ′ to obtain a code C that is correctable from adversarial errors.
This requires two additional ideas. The first idea to apply a permutation that is “pseudorandom”
in some sense to the coordinates of C ′. The “pseudorandom” permutation is determined by the
edges of an expander graph (see Section 2.4). This step is motivated by the hope that, after the
adversary decided which coordinates to corrupt, applying the permutation to the coordinates will
make the errors behave pseudorandomly. This will allow the above analysis for the case of random
errors to go through.

Of course, on its own, this idea is doomed to fail, since the adversary can take the permutation
into account when he chooses where to place the errors. Here the second idea comes into play:
after applying the permutation to the coordinates of C ′, we will increase the alphabet size of the
code, packing each block of symbols into a new big symbol. The motivation for this step is that
increasing the alphabet size restricts the freedom of the adversary in choosing the pattern of errors.
Indeed, we will show that after the alphabet size is increased, applying the permutation to the
coordinates of the code makes the errors behave pseudorandomly. This allows us to prove that the
code can be decoded from τ fraction of errors, as we wanted.

3.1.2 The construction of C

Choosing the parameters. Let W , rW , τW , r, ε, and Λ be as in Lemma 3.2. Let {Gn}n be an
infinite family of (τW ,

1
2 · ε)-samplers as in Theorem 2.11, and let d be their degree.

Recall that we assumed that W is F2-linear, so |Λ| is a power of 2. Let F be an extension field
of F2, whose size is the minimal power of |Λ| that is at least d. Let RSb,d be a Reed-Solomon code
over F with relative distance 2 · τ + ε, rate 1− 2 · τ − ε, and block length d.

Let nW be the block length of W , and let t be such that |F| = |Λ|t. The block length of C will

be n
def
= nW

b·t , and its alphabet will be Σ
def
= Fd. Here, we assume that nW is divisible by b · t. If nW

is not divisible by b · t, we consider two cases:

• if nW > b · t/ε, we increase nW to the next multiple of b · t by padding the codewords of W
with additional zero coordinates. This decreases the rate of W by at most ε, which essentially
does not affect our results.

• Otherwise, we set C to be any Reed-Solomon code with blocklength nW , relative distance 2·τ ,
and rate 1− 2 · τ . Observe that such a Reed-Solomon is locally correctable from τ fraction of
errors with query complexity

nW ≤ b · t/ε = poly(1/(ε · τW )),

which satisfies our requirements.

A bijection from W to C. We construct the code C by describing a bijection from W to C.
Given a codeword w ∈W , one obtains the corresponding codeword c ∈ C as follows:
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• Partition w into n
def
= nW

b·t blocks of length b · t. We view each of those blocks as a vector
in Fb, and encode it via the code RSb,d. Let us denote the resulting string by c′ ∈ Fn·d and
the resulting codewords of RSb,d by B1, . . . , Bn ∈ Fd.

• Next, we apply a “pseudorandom” permutation to the coordinates of c′ as follows: Let Gn
be the graph from the infinite family above and let U = {u1, . . . , un} and V = {v1, . . . , vn}
be the left and right vertices of Gn respectively. For each i ∈ [n] and j ∈ [d], we write the
j-th symbol of Bi on the j-th edge of ui. Then, we construct new blocks S1, . . . , Sn ∈ Fd, by
setting the j-th symbol of Si to be the symbol written on the j-th edge of vi.

• Finally, we define the codeword c of C ⊆ Σn as follows: the i-th coordinate ci is the block

Si, reinterpreted as a symbol of the alphabet Σ
def
= Fd. We choose c to be the codeword in C

that corresponds to the codeword w in W .

This concludes the definition of the bijection. It is not hard to see that this bijection can be
computed in polynomial time, and that the code C is F2-linear. Furthermore, Σ = Fd = Λt·d where
d · t ≤ d log d = poly(1/(ε · τW )). The rate of C is

log |C|
n · log |Σ|

=
log |W |

n · d · log |F|

=
rW · log |ΛnW |
n · d · log |F|

= rW ·
nW
n
· 1

d
· log |Λ|

log |F|

= rW · (b · t) ·
1− 2 · τ − ε

b
· 1

t
= rW · (1− 2 · τ − ε),

as required. The relative distance of C is at least 2 · τ — although this could be proved directly, it
also follows immediately from the fact that C is locally correctable from τ fraction of errors, which
is proved in the next section.

3.1.3 Local correctability

In this section, we complete the proof of Lemma 3.2 by proving that C is locally correctable from
τ fraction of errors with query complexity poly(d) · q. To this end, we describe a local corrector A.
The algorithm A is based on the following algorithm A0, which locally corrects coordinates of W
from a corrupted codeword of C.

Lemma 3.5. There exists an algorithm A0 that satisfies the following requirements:

• Input: A0 takes as input a coordinate i ∈ [nW ], and also gets oracle access to a string z ∈ Σn

that is τ -close to a codeword c ∈ C.

• Output: Let wc be the codeword of W from which c was generated. Then, A0 outputs wci
with probability at least 1− 1

3·b·t·d .

• Query complexity: A0 makes poly(d) · q queries to the oracle z.
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Before proving Lemma 3.5, we show how to construct the algorithm A given the algorithm A0.
Suppose that the algorithm A is given oracle access to a string z that is τ -close to a codeword c ∈ C,
and a coordinate i ∈ [n]. The algorithm is required to decode ci. Let wc ∈ ΛnW be the codeword
of W from which c was generated, and let Bc

1, . . . , B
c
n and Sc1, . . . , S

c
n be the corresponding blocks.

In order to decode ci, the algorithm A should decode each of the symbols in the block Sci ∈ Fd.
Let uj1 , . . . , ujd be the neighbors of vi in the graph Gn. Each symbol of the block Sci belongs to one
of the blocks Bc

j1
, . . . , Bc

jd
, and therefore it suffices to retrieve the latter blocks. Now, each block Bc

jh
is the encoding via RSb,d of b · t symbols of wc (in the alphabet Λ). The algorithm A invokes the
algorithm A0 to decode each of those b · t symbols of wc, for each of the blocks Bc

j1
, . . . , Bc

jd
. By the

union bound, the algorithm A0 decodes all those b · t · d symbols of wc correctly with probability at
least 1−b·t·d· 1

3·b·t·d = 2
3 . Whenever that happens, the algorithm A retrieves the blocks Bc

j1
, . . . , Bc

jd
correctly, and therefore computes the block Sci correctly. This concludes the construction of the
algorithm A. Note that the query complexity of A is larger than that of A0 by a factor of at
most b · t · d, and hence it is at most poly(d) · q. It remains to prove Lemma 3.5.

Proof of Lemma 3.5. Let AW be the local corrector of the code W . By amplification, we may
assume that AW errs with probability at most 1

3·b·t·d , and this incurs a factor of at most poly(d) to
its query complexity.

Suppose that the algorithm A0 is invoked on a string z ∈ Σn and a coordinate i ∈ [nW ]. The
algorithm A0 invokes the algorithm AW to retrieve the coordinate i, and emulates AW in the natural
way: Recall that AW expects to be given access to a corrupted codeword of W , and makes queries
to it. Whenever AW makes a query to a coordinate iW ∈ [nW ], the algorithm A0 performs the
following steps.

1. A0 finds the block Bl to which the coordinate iW belongs. Formally, l
def
= diW/(b · t)e.

2. A0 finds the neighbors of the vertex ul in Gn. Let us denote those vertices by vj1 , . . . , vjd .

3. A0 queries the coordinates j1, . . . jd, thus obtaining the blocks Sj1 , . . . , Sjd .

4. A0 reconstructs the block Bl by reversing the permutation of Gn on Sj1 , . . . , Sjd .

5. A0 attempts to decode Bl by applying an efficient decoding algorithm of Reed-Solomon.

6. Suppose that the decoding succeeded and returned a codeword of RSb,d that is
(
τ + ε

2

)
-close

to Bl. Then, A0 retrieves the value of the iW -th coordinate of wc from the latter codeword,
and feeds it to AW as an answer to its query.

7. Otherwise, A0 feeds 0 as an answer to the query of AW .

When the algorithm AW finishes running, the algorithm A0 finishes and returns the output of AW .
It is not hard to see that the query complexity of A0 is at most d times the query complexity of AW ,
and hence it is at most poly(d) · q. It remains to show that A0 succeeds in decoding from τ fraction
of errors with probability at least 1− 1

3·b·t·d .
Let z ∈ Σn be a string that is τ -close to a codeword c ∈ C. Let wc ∈ ΛnW be the codeword

of W from which c was generated, and let Bc
1, . . . , B

c
n and Sc1, . . . , S

c
n be the corresponding blocks.

We also use the following definitions:

1. Let Sz1 , . . . , S
z
n ∈ Fd be the blocks that correspond to the symbols of z.
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2. Let Bz
1 , . . . , B

z
n be the blocks that are obtained from Sz1 , . . . , S

z
n by reversing the permutation.

3. Define blocks Bz
1
′, . . . , Bz

n
′ as follows: if Bz

i is
(
τ + ε

2

)
-close to RSb,d, then Bz

i
′ is the nearest

codeword of RSb,d. Otherwise, Bz
i
′ is the all-zeroes block.

4. Let wz ∈ ΛnW be the string that is obtained by extracting the coordinates of w from each of
the codewords Bz

1
′, . . . , Bz

n
′.

It is easy to see that A0 emulates the action of AW on wz. Therefore, if we prove that wz is τW -close
to wc, we will be done. In order to do so, it suffices to prove that for at least 1− τW fraction of the
blocks Bz

l , it holds that Bz
l is

(
τ + ε

2

)
-close to Bc

l .
To this end, let J be the set of coordinates on which z and c differ. In other words, for every

j ∈ J it holds that Szj 6= Scj . By assumption, |J | ≤ τ ·n. Now, observe that since Gn is a
(
τW ,

1
2 · ε

)
-

sampler, it holds that for at least (1− τW ) fraction of the vertices ul of Gn, there are at most(
τ + ε

2

)
· d edges between ul and J . For each such ul, it holds that Bz

ul
is
(
τ + ε

2

)
-close to Bc

ul
, and

this concludes the proof. �

It can be verified that the local correctors A0 and A can be implemented efficiently with black
box access to AW , as required by the second item in the “furthermore” part of the lemma.

3.2 Proof of Lemma 3.3

In this section we prove Lemma 3.3, restated below.

Lemma 3.3. There exists an explicit infinite family of F2-linear codes {Wn}n satisfying:

1. The code Wn has block length n, rate at least 1− 1
logn , and relative distance at least Ω

(√
log logn
log3 n

)
.

2. The code Wn is locally correctable from Ω
(√

log logn
log3 n

)
fraction of errors with query complexity

exp(
√

log n · log log n).

3. The alphabet of Wn is a vector space Λn over F2, such that |Λn| ≤ exp
(
exp(
√

log n · log logn)
)
.

Furthermore, the family {Wn}n has a uniform local corrector that runs in time exp(
√

log n · log logn).

For the proof of Lemma 3.3 we use the multiplicity codes of [KSY14], in a specialized sub-
constant relative distance regime.

Lemma 3.6 ([KSY14, Lemma 3.5]). Let F be any finite field. Let s, d,m be positive integers. Let
M be the multiplicity code of order s evaluations of degree d polynomials in m variables over F.

Then M has block length |F|m, relative distance at least δ
def
= 1− d

s·|F| and rate
(d+mm )

(s+m−1
m )·|F|m

, which

is at least (
s

m+ s

)m
·
(

d

s · |F|

)m
≥
(

1− m2

s

)
· (1− δ)m.

The alphabet of C is F(m+s−1
m ), and C is F-linear. Furthermore, there is poly

(
Fm,

(
m+s−1
m

))
time

algorithm that computes an encoding map of M given s, d, m, and F.
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Lemma 3.7 ([KSY14, Lemma 3.6]). Let M be the multiplicity code as above. Let δ = 1− d
s·|F| be a

lower bound for the relative distance of M . Suppose |F| ≥ max{10 ·m, d+6·s
s , 12 · (s+ 1)}. Then M

is locally correctable from δ/10 fraction of errors with query complexity O(sm · |F|). As discussed in
Section 4.3 of [KSY14], this local corrector can be implemented to have running time poly(|F| , sm)
over fields of constant characteristic. In fact, [Kop14] shows that the query complexity and running
time for local correcting multiplicity codes can be further reduced to |F| ·O

(
(1
δ )m

)
queries, but this

does not lead to any noticeable improvement for our setting.

We now prove Lemma 3.3.

Proof. Let n ∈ N be a codeword length. We set the code Wn to be a multiplicity code with the

following parameters. We choose F to be a field of size 2
√

logn·log logn, and choose m =
√

logn
log logn .

Note that indeed |F|m = n. We choose s = 2 ·m2 · log n. Let δ = 1
2·m·logn (this will be a lower bound

on the relative distance of the code) and choose the degree of the polynomials to be d = s·|F|·(1−δ).
It can be verified that the relative distance of the code is at least δ ≥ Ω

(√
log logn
log3 n

)
. The rate

of the code is at least(
1− m2

s

)
· (1− δ)m ≥

(
1− 1

2 · log n

)(
1− 1

2 ·m · log n

)m
≥ 1− 1

log n
,

as required. The alphabet size is

|F|(
m+s−1
m ) ≤ exp

(√
log n · log log n · sm

)
= exp

√log n · log logn ·
(

log2 n

log log n

)√
logn

log logn


= exp

(
exp

(√
log n · log log n

))
.

Moreover, the alphabet is a vector space over F and hence in particular over F2 (since we chose the
size of F to be a power of 2). The code Wn is F-linear and in particular F2-linear.

By Lemma 3.7, Wn is locally correctable from 1
10 · δ ≥ Ω

(√
log logn
log3 n

)
fraction of errors with

query complexity

O(sm · |F|) ≤ O
(

log2 n

log logn

)√
logn

log logn

· 2
√

logn·log logn = 2O(
√

logn·log logn),

as required. Finally, the fact that the family {Wn}n is explicit follows from the “furthermore” part
of Lemma 3.6, and the fact that it has an efficient uniform local corrector with the required running
time follows from the discussion after Lemma 3.7. �

3.3 LDCs

As remarked earlier, by choosing a systematic encoding map, linear LCCs automatically give LDCs
with the same rate, relative distance, and query complexity. The running time of the local decoding
algorithm will be essentially the same as the running time of the local correction algorithm, provided
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that the systematic encoding map can be computed efficiently. Using the fact that multiplicity codes
have an efficiently computable systematic encoding map [Kop12], it is easy to check that the codes
we construct above also have an efficiently computable systematic encoding map. Thus we get
LDCs with the same parameters as our LCCs.

3.4 Binary LCCs that attain the Zyablov bound

In this section, we explain how to construct binary LCCs that attain the Zyablov bound, i.e., how
to derive Theorem 1.1 from Theorem 3.1. Recall that for every rate 0 < r < 1 and every ε > 0, we
would like to construct binary LCCs that can be decoded from

1

2
· Zε(r) =

1

2
· max
r<R<1

{
(1−R− ε) ·H−1(1− r

R
)
}

(1)

fraction of errors. We do it by concatenating the codes of Theorem 3.1 with an appropriate Gilbert-
Varshamov codes, which is a standard idea in coding theory. More specifically, let r < R < 1 be
the value that maximizes the expression in 1. We obtain from Theorem 3.1 an infinite family
of LCCs with rate R and relative distance 1 − R − ε. We concatenate the latter codes with the
Gilbert-Varshamov codes of rate r

R and relative distance H−1(1− r
R) (see Fact 2.4). The resulting

concatenated codes have rate r and relative distance

max
r<R<1

{
(1−R− ε) ·H−1(1− r

R
)
}
.

However, we still need to show that they can be locally corrected from half the relative distance.
In order to show it, we prove a variant of the GMD decoding of [For66] that is tailored for locally-
correctable codes. To this end, we use the following definitions, which generalize local correction
to deal with both errors and erasures.

Definition 3.8. Let C ⊆ Σn be a code, and let z ∈ (Σ ∪ {?})n. The fraction of errors in z with
respect to a codeword c ∈ C is the fraction of coordinates i such that zi /∈ {ci, ?}. The fraction of
erasures in z is the fraction of coordinates i such that zi =?.

Definition 3.9. We say that a code C ⊆ Σn is locally correctable from δ fraction of twice-errors and
erasures with query complexity q if there exists a randomized algorithm A that satisfies the following
requirements:

• Input: A takes as input a coordinate i ∈ [n], and also gets oracle access to a string z ∈
(Σ ∪ {?})n that has ρe fraction of errors and ρ? fraction of erasures with respect to some
codeword c ∈ C, such that

2 · ρe + ρ? ≤ δ.

• Output: A outputs ci with probability at least 2
3 .

• Query complexity: A makes at most q queries to the oracle z.

Note that the fraction of errors in the above condition is multiplied by 2. Specifically, observe
that if C is locally correctable from δ fraction of twice-errors and erasures then in particular it is
locally correctable from δ/2 fraction of errors (rather than δ fraction of errors). We now have the
following variant of GMD decoding.
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Theorem 3.10 (GMD decoding of LCCs). Let C ⊆ Σn be a locally correctable code from δC
fraction of twice-errors and erasures with query complexity q. Let H ⊆ Λm be a code with relative
distance δH such that |H| = |Σ|. Let C ′ ⊆ Λm·n be the concatenation of C with H. Then, C ′ is
locally correctable from

1

2
· δC · δH −O(

1√
n

)

fraction of errors with query complexity O(q ·m).
Furthermore, there is an oracle algorithm that when given

• black box access to a local corrector of C that runs in time tC, and

• black box access to an algorithm that decodes H from δH/2 fraction of errors in time tH,

computes a local corrector of the corresponding code C ′. The resulting local corrector of C runs in
time tC +O(q · tH) + poly (m, log n).

We prove Theorem 3.10 in Section 3.4.1 below. It remains to explain how to use Theorem 3.10
to show that the codes we constructed above can be locally corrected from the fraction of errors
in Equation 1. Basically, this follows by applying Theorem 3.10 with C being the codes obtained
from Theorem 3.1, with H being the Gilbert-Varshamov codes, and with5 δC = 1 − R − ε, δH =
H−1(1 − r

R). However, in order to apply Theorem 3.10, we need to show that the codes obtained
from Theorem 3.1 can be locally corrected from 1−r−ε fraction of twice-errors and erasures. Note
that Theorem 3.1 only tells us that they can be locally corrected from 1−r−ε

2 fraction of errors.
It remains to show that the codes obtained from Theorem 3.1 can be locally corrected from

twice-errors and erasures. To this end, we observe that the AEL distance-amplification (Lemma 3.2)
yields codes that are locally correctable from twice-errors and erasures. More formally, we have the
following result.

Lemma 3.11 (Lemma 3.2 for twice-errors and erasures). Let W , τW be as in Lemma 3.2, and let
0 < δ < 1 and ε > 0. Then, there exists a code C that is locally correctable from δ fraction of
twice-errors and erasures with query complexity q · poly(1/(ε · τW )) that has rate rW · (1 − δ − ε).
Furthermore, C satisfies analogous properties of the code C in Lemma 3.2.

If we replace Lemma 3.2 with Lemma 3.11 in the proof of Theorem 3.1, we immediately obtain
that the codes of Theorem 3.1 can be locally corrected from the required fraction of twice-errors
and erasures, as required.

Proof sketch of Lemma 3.11. This lemma is proved exactly as Lemma 3.2, with the following
modification. Recall that the key idea in the analysis of the local corrector of C in that lemma
was the following: when the local corrector is given oracle access to a corrupted codeword, almost
all the blocks B1, . . . , Bn contain the “correct” fraction of errors (up to an additive term of Ω(ε)),
and therefore those blocks can be corrected by the decoding algorithm of Reed-Solomon codes.
The same argument can be used to show that if the corrupted codeword contains both errors and
erasures, then almost all the blocks B1, . . . , Bn again contain the “correct” fraction of twice-errors
and erasures (again, up to an additive term of Ω(ε)). Thus, those blocks can again be corrected by
the decoding algorithm of Reed-Solomon codes, which is well-known to decode from twice-errors
and erasures. �

5The O( 1√
n

) term of Theorem 3.10 can be incorporated within the parameter ε.
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3.4.1 Proof of Theorem 3.10

Comparison with GMD decoding. The proof of Theorem 3.10 follows the proof of the GMD
decoding of [For66], with small modifications. Recall that the standard presentation of the GMD
algorithm (e.g., [Sud01, Lecture 11]) is as follows: First, a randomized decoding algorithm is
presented. Then, it is shown that the latter algorithm succeeds in expectation (rather than with
high probability). Finally, the randomized algorithm is derandomized, yielding a deterministic
algorithm that always succeeds.

In our setting, we do not know how to perform the derandomization step. The reason is that
the derandomization is done by enumerating over all the possible sequence of coin tosses of the
randomized algorithm, and checking for each sequence whether it yields the correct answer — i.e.,
whether it yields a codeword that is sufficiently close to the received string. In our case, we do
know how to check that the string that the decoder outputs is a valid codeword, since we are only
allowed to query a small part of this string.

In order to resolve this issue, we skip the derandomization step, and instead observe that the
original randomized decoder actually succeeds with high probability. Details follow.

The algorithm. Let C ⊆ Σn be locally correctable code from δC fraction of errors and erasures
with query complexity q. Let H ⊆ Λm be a code with relative distance δH such that |H| = |Σ|.
Let C ′ ⊆ Λm·n be the concatenation of C with H, and let φ : Σ→ H be the bijection that is used
to define the concatenation. Let A be the local corrector of C.

In what follows, we assume that A has success probability at least 7
9 (rather than 2

3). This can
be guaranteed by amplification, while increasing the query complexity of A by at most a constant
factor. We also assume that the code H has some associated decoding algorithm. If no such
algorithm is provided, we use the brute-force algorithm that enumerates over all codewords of H
and outputs the codeword h that is closest to v.

We describe a local corrector A′ for C ′. When A′ is given access to a string z′ ∈ Λm·n, and a
coordinate i′ ∈ [m · n], it behaves as follows. First, A′ finds the index i ∈ [n] of the block to which

i′ belongs (formally, i
def
= di′/me). Then, A′ emulates the action of the local corrector A of C on the

coordinate i. Whenever A makes a query to a coordinate j ∈ [n], the local corrector A′ emulates
the query as follows:

1. A′ queries the block of z′ that corresponds to j, that is, it queries the coordinates (j − 1) ·
m+ 1, . . . , (j − 1) ·m+m of z′. Let v ∈ Λm be the obtained string.

2. A′ invokes the decoding algorithm of H on v. Let h be the obtained codeword of H (if the
decoding fails, we set h to be an arbitrary codeword of h).

3. With probability

min

{
1,dist(v, h)/

δH
2

}
,

the local corrector A′ answers the query of A with φ−1(h) (i.e., the symbol in Σ that corre-
sponds to h).

4. Otherwise, it answers the query with an erasure, i.e., with the symbol “?”.

When the emulation of A ends, A outputs a symbol σ ∈ Σ. Then, the local corrector A′ finishes
and outputs the symbol of φ(σ) that corresponds to i′, i.e., the symbol φ (σ)i′ mod m.
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The analysis. It is easy to see that the query complexity of A′ is m times the query complexity
of A. This means that the query complexity of A′ is at most O(m · q), as required (there is a
constant factor here because we amplified the success probability of A). It is also not hard to see
that A′ has the required running time.

It remains to prove that if there is a codeword c′ ∈ C ′ such that

dist(z′, c′) ≤ 1

2
· δC · δH −O(

1√
n

),

then A′ outputs c′i with probability at least 2
3 . To this end, observe that the output of A′ is

distributed exactly like the output of the following algorithm A′′ (which is not query efficient). The
algorithm A′′ takes the string z′ and the coordinate i′, and performs the following steps:

1. The algorithm A′′ constructs a string z ∈ Σn by setting each coordinate j ∈ [n] according to
the way that A′ emulates a query of A to j. More specifically, A′′ sets zj as follows:

(a) A′′ queries the block of z′ that corresponds to j, thus obtaining a string v ∈ Λm.

(b) A′′ invokes the decoding algorithm of H on v, thus obtaining a codeword h ∈ H.

(c) With probability

min

{
1,dist(v, h)/

δH
2

}
,

the algorithm sets zj = φ−1(z), and otherwise it sets zj =?.

2. The algorithm A′′ invokes the local corrector A on z and the coordinate i
def
= di′/me, thus

obtaining a symbol σ ∈ Σ.

3. The algorithm A′′ outputs φ (σ)i′ mod m.

It therefore suffices to prove that A′′ outputs c′i with probability at least 2
3 . To this end, we prove

the following result.

Proposition 3.12. Let c be the codeword of C that corresponds to c′. Let ρe and ρ? be the fractions
of errors and erasures in z with respect to c respectively. Then, with probability at least 8

9 it holds
that

2 · ρe + ρ? ≤ δC . (2)

Before proving Proposition 3.12, observe that it implies the required result. Indeed, whenever
Inequality 2 holds, the local corrector A (and thus the algorithm A′′) is guaranteed to succeed with
probability at least 7

9 . The proposition says that the probability that this inequality does not hold
is at most 1

9 , so it follows that A′′ succeeds with probability at least 7
9 −

1
9 = 2

3 , as required.

Proof of Proposition 3.12. For every j ∈ [n], let Iej be the indicator random variable of the

event that zj is an error (i.e., zj /∈ {cj , ?}), and let I?
j be the indicator random variable of the event

that zj is an erasure. For every j ∈ [n], define the random variable

Tj
def
= 2 · Iej + I?

j .
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We wish to prove that

1

n
·
n∑
j=1

Tj ≤ δC

with probability at least 8
9 . It is a known fact6 about GMD decoding that

E

 1

n
·
n∑
j=1

Tj

 ≤ δC −O(
1√
n

)

(see, e.g., [Sud01, Lecture 11]). Thus, it remains to prove that the average 1
n ·
∑n

j=1 Tj is concentrated
around its expectation. To this end, observe the random variables Tj are independent, and that
each Tj takes a value in [0, 2]. Therefore a standard application of the Hoefding bound implies that

Pr

 1

n
·
n∑
j=1

Tj ≤ δC −O(
1√
n

) + ε

 ≥ 1− e−
1
2
·ε2·n.

In particular, by setting ε to be equal to the O( 1√
n

) term, and choosing the constant in the Big-O

appropriately, we get that

Pr

 1

n
·
n∑
j=1

Tj ≤ δC

 ≥ 8

9
,

as required. �

Remark 3.13. In the proof above, we argued that the outputs of A′ and A′′ are identically
distributed. Actually, this only holds under the assumption that A never makes the same query
twice. However, this can be assumed without loss of generality.

4 LTCs with sub-polynomial query complexity

In this section, we prove the following theorem on LTCs, which immediately implies Theorem 1.4
from the introduction.

Theorem 4.1 (Main LTC theorem). For every r ∈ (0, 1), and ε > 0, there exist a finite vector
space Σ over F2 and an explicit infinite family of F2-linear codes {Cn}n over Σ satisfying:

1. Cn has block length n, rate at least r, and relative distance at least 1− r − ε.

2. Cn is locally testable with query complexity exp(
√

log n · log logn).

3. The size of Σ is at most exp(poly(1/ε)).

Furthermore, the family {Cn}n has a uniform local tester that runs in time exp(
√

log n · log log n)).

6Actually, the known fact is that if dist(c′, C′) ≤ 1
2
· δC · δH then E

[
1
n
·
∑n
j=1 Tj

]
≤ δC . However, we can get the

desired inequality by substracting the term O( 1√
n

) in the appropriate places in the proof of this fact.
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We explain how to construct our binary LTCs (Theorem 1.2) using Theorem 4.1 in Section 4.3
below.

The proof of Theorem 4.1 has two steps. In the first step, we give a transformation that amplifies
the relative distance of an LTC — this step follows the distance amplification of [AEL95, AL96].
In the second step, we construct a locally-testable code Wn with the desired query complexity but
that has sub-constant relative distance. Finally, we construct the code Cn by applying the distance
amplification to Wn. Those two steps are formalized in the following pair of lemmas, which are
proved in Sections 4.2 and 4.3 respectively.

Lemma 4.2. Suppose that there exists a code W with relative distance δW that is locally testable
with query complexity q such that:

• W has rate rW .

• W is F2-linear.

Then, for every 0 < δ, ε < 1, there exists a code C with relative distance at least δ that is locally
testable with query complexity q · poly(1/(ε · δW )), such that:

• |C| = |W |.

• C has rate at least rW · (1− δ − ε).

• Let Λ denote the alphabet of W . Then, the alphabet of C is Σ
def
= Λp for some p =

poly(1/(ε · δW )).

• C is F2-linear.

Furthermore,

• There is a polynomial time algorithm that computes a bijection from every code W to the
corresponding code C, given rW , δW , δ, ε and Λ.

• There is an oracle algorithm that when given black box access to the local tester of any code W ,
and given also rW , δW , δ, ε, Λ, and the block length of W , computes the local tester of the
corresponding code C. The resulting local tester of C runs in time that is polynomial in the
running time of the local tester of W and in 1/δW , 1/ε and log(nW ) where nW is the block
length of W .

Lemma 4.3. There exists an explicit infinite family of F2-linear codes {Wn}n satisfying:

1. Wn has block length n, rate at least 1− 1
logn , and relative distance at least exp(−

√
log n · log log n).

2. Wn is locally testable with query complexity exp(
√

log n · log logn).

3. The alphabet of Wn is a vector space Λn over F2, such that |Λn| ≤ exp
(√

log n · log log n
)
.

Furthermore, the family {Wn}n has a uniform local tester that runs in time exp(
√

log n · log logn).

The proof of Theorem 4.1 from Lemmas 4.2 and 4.3 is analogous to the proof of Theorem 3.1
from Lemmas 3.2 and 3.3, and we therefore omit it. The only difference between the proofs is
the way to show that the concatenated codes are locally testable. This is done using a standard
argument, and we refer the reader to Section 4.3 for an example of such an argument.
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Remark 4.4. In Lemma 4.2 above, as in Lemma 3.2, we chose to assume that W is F2-linear
for simplicity. More generally, if W is F-linear for any finite field F, then C is F-linear as well.
Furthermore, the lemma also works if W is not F-linear for any field F, in which case C is not
guaranteed to be F-linear for any field F.

4.1 Proof of Lemma 4.2

Our construction of the LTC C is the same as the construction of the LCCs of Section 3.1, with τW
and τ replaced by δW/2 and δ/2 respectively. Our LTCs have the required rate, relative distance
and alphabet size due to the same considerations as before7.

It remains to prove that C is locally testable with query complexity q · poly(1/(ε · δW )). To this
end, we describe a local tester A. In what follows, we use the notation of Section 3.1.2.

Let AW be the local tester of W . When given oracle access to a purported codeword z ∈ Σn,
the local tester A emulates the action of AW in the natural way: Recall that AW expects to be
given access to a purported codeword of W , and makes queries to it. Whenever AW makes a query
to a coordinate j ∈ [nW ], the algorithm A performs the following steps:

1. A finds the block Bl to which the coordinate j belongs. Formally, l
def
= dj/(b · t)e.

2. A finds the neighbors of the vertex ul in Gn. Let us denote those vertices by vj1 , . . . , vjd .

3. A queries the coordinates j1, . . . jd, thus obtaining the blocks Sj1 , . . . , Sjd .

4. A reconstructs the block Bl by reversing the permutation of Gn on Sj1 , . . . , Sjd .

5. If Bl is not a codeword of RSb,d, the local tester A rejects.

6. Otherwise, A retrieves the value of the j-th coordinate of w from Bl, and feeds it to AW as
an answer to its query.

If AW finishes running, then A accepts if and only if AW accepts.
It is easy to see that the query complexity of A is d · q. It is also not hard to see that if z

is a legal codeword of C, then A accepts with probability 1. It remains to show that if z is not
a codeword of C then A rejects with probability at least dist(z, C). To this end, it suffices to
prove that A rejects with probability at least 1

poly(d) · dist(z, C) — as explained in Section 2.3,

this rejection probability can be amplified to dist(z, C) while increasing the query complexity by a
factor of poly(d), which is acceptable. We use the following definitions:

1. Let Sz1 , . . . , S
z
n ∈ Fd be the blocks that correspond to the symbols of z.

2. Let Bz
1 , . . . , B

z
n ∈ Fd be the blocks that are obtained from Sz1 , . . . , S

z
n by reversing the permu-

tation.

3. Let wz ∈ (Λ ∪ {?})nW be the string that is obtained from the blocks Bz
1 , . . . , B

z
n as follows:

for each block Bz
l that is a legal codeword of RSb,d, we extract from Bz

l the corresponding
coordinates of wz in the natural way. For each block Bz

l that is not a legal codeword of RSb,d,
we set the corresponding coordinates of wz to be “?”.

7In particular, the lower bound on the relative distance of our LTC C follows from the lower bound on the relative
distance given in Lemma 3.2, using the fact that our LTC W has a (trivial, inefficient) nW query local corrector from
δW /2 fraction errors. Again, this lower bound on the distance could have been argued directly, without talking about
locality.
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We would like to lower bound the probability that A rejects z in terms of the probability that AW

rejects wz. However, there is a small technical problem: AW is defined as acting on strings in ΛnW ,
and not on strings in (Λ ∪ {?})nW . To deal with this technicality, we define an algorithm A′W that,
when given access to a string y ∈ (Λ ∪ {?})nW , emulates AW on y, but rejects whenever a query
is answered with “?”. We use the following proposition, whose proof we defer to the end of this
section.

Proposition 4.5. A′W rejects a string y ∈ (Λ ∪ {?})nW with probability at least 1
8 · dist(y,W ).

Now, it is not hard to see that when A is invoked on z, it emulates the action of A′W on wz. To
finish the proof, note that since each coordinate in W has at most d coordinates of C that depend
on it, it holds that

dist(z, C) · n ≤ d · dist(wz,W ) · nW
and therefore

dist(wz,W ) ≥ n

nW
· 1

d
· dist(z, C) ≥ 1

b · t · d
· dist(z, C).

It thus follows that A rejects z with probability at least

1

8
· dist(wz,W ) ≥ 1

poly(d)
· dist(z, C),

as required.
It is not hard to see that the local tester A can be implemented efficiently with black box access

to AW , as required by the second item in the “furthermore” part of the lemma. We turn to proving
Proposition 4.5.

Proof of Proposition 4.5. We may assume without loss of generality that AW makes at least
one query that is uniformly distributed over [nW ]: otherwise, we can change AW such that it makes
an additional uniformly distributed query and ignores the answer. This assumption means that
A′W makes at least one query that is uniformly distributed over [nW ], and rejects if the answer is
“?”. Let

E
def
= {i : yi =?}

be the set of erasures in y. We consider two cases:

• E is “large”: Suppose that |E|nW
≥ 1

2 · dist(y,W ). In this case, the uniformly distributed

query of A′W hits a coordinate in E with probability at least 1
8 · dist(y,W ). In such a case,

A′W rejects, and the proposition follows.

• E is “small”: Suppose that |E|nW
≤ 1

2 · dist(y,W ). Let y0 ∈ ΛnW be an arbitrary string that
agrees with y outside E. Clearly,

dist(y,W ) ≤ dist(y0,W ) +
|E|
nW

,
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so dist(y0,W ) ≥ 1
2 ·dist(y,W ). Let E denote the event that AW queries some coordinate in E.

We have that

Pr
[
A′W rejects y

]
= Pr [E ] · Pr

[
A′W rejects y|E

]
+ Pr [¬E ] · Pr

[
A′W rejects y|¬E

]
= Pr [E ] · 1 + Pr [¬E ] · Pr [AW rejects y0|¬E ]

≥ Pr [E ] · Pr [AW rejects y0|E ] + Pr [¬E ] · Pr [AW rejects y0|¬E ]

= Pr [AW rejects y0]

≥ dist(y0,W )

≥ 1

2
· dist(y,W ),

as required.

This concludes the proof. �

4.2 Proof of Lemma 4.3

In this section, we prove Lemma 4.3, restated below.

Lemma 4.3. There exists an explicit infinite family of F2-linear codes {Wn}n satisfying:

1. Wn has block length n, rate at least 1− 1
logn , and relative distance at least exp(−

√
log n · log log n).

2. Wn is locally testable with query complexity exp(
√

log n · log logn).

3. The alphabet of Wn is a vector space Λn over F2, such that |Λn| ≤ exp
(√

log n · log log n
)
.

Furthermore, the family {Wn}n has a uniform local tester that runs in time exp(
√

log n · log logn).

For the proof of Lemma 4.3 we use the tensor product codes instantiated in the sub-constant
relative distance regime. The use of tensor products to construct LTCs was initiated by [BS06],
and was studied further in [Val05, CR05, DSW06, Mei09, BV09b, BV09a, Vid12, GM12, Mei12,
Vid13, Vid15]. Our construction is based on a result of [Vid15].

We start with some definitions. Let F be a finite field. For a pair of vectors h1 ∈ F`1 and h2 ∈ F`2
their tensor product h1⊗h2 denotes the matrix M ∈ F`1×`2 with entries M(i1,i2) = (h1)i1 · (h2)i2 for

every i1 ∈ [`1] and i2 ∈ [`2]. For a pair of linear codes H1 ⊆ F`1 and H2 ⊆ F`2 their tensor product
code H1 ⊗ H2 ⊆ F`1×`2 is defined to be the linear subspace spanned by all matrices of the form

h1 ⊗ h2 where h1 ∈ H1 and h2 ∈ H2. For a linear code H, let H1 def
= H and Hm def

= Hm−1 ⊗H.
The following are some useful facts regarding tensor product codes (see e.g. [DSW06]).

Fact 4.6. Let H1 ⊆ F`1 and H2 ⊆ F`2 be linear codes of rates r1, r2 and relative distances δ1, δ2

respectively. Then H1 ⊗H2 ⊆ F`1×`2 is a linear code of rate r1 · r2 and relative distance δ1 · δ2. In
particular, if H ⊆ F` is a linear code of rate r and relative distance δ then Hm ⊆ F`m is a linear
code of rate rm and relative distance δm.

We use the following theorem that is given as Corollary 3.6 in [Vid15].

Theorem 4.7 (Immediate corollary of [Vid15, Thm. 4.4]). Let H ⊆ F` be a linear code with relative
distance δ. Then for every m ≥ 3, the code Hm ⊆ F`m is locally testable with query complexity

`2 · poly(m)/δ2m.
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For the proof of Lemma 4.3, we instantiate Theorem 4.7 with the tensor product of Reed-
Solomon8 codes.

Proof of Lemma 4.3 Fix a codeword length n ∈ N. The code Wn is defined as follows. Let

F def
= F2

√
logn·log logn , and let m

def
=
√

logn
log logn . Let R be a Reed-Solomon code over F with block

length n1/m, rate r
def
=
(

1− 1
logn

)1/m
and relative distance 1−r. Note that indeed the block length

is at most |F|, which is required for the existence of such codes. Finally, let Wn = Rm.
From the properties of tensor codes we have that Wn is a linear code over F with block length

(n1/m)m = n, rate rm = 1− 1
logn , and relative distance

(
1− r

)m
=

(
1−

(
1− 1

log n

)1/m
)m

≥
(

1−
(

1− 1

4 ·m · log n

))m
(Fact 2.1 : (1− x)y ≤ 1− 1

4 · x · y)

=

(
1

4 ·m · log n

)m
= 2−O(m·(logm+log logn))

= 2−O(
√

logn·log logn),

as required. The fact that Wn can be encoded in time poly(n) follows from standard properties of
tensor product codes (see e.g. [Sud01, Lecture 6]).

Finally, by Theorem 4.7, we have that Wn is locally testable with query complexity at most

n2/m · poly(m) ·
(

1

4 ·m · log n

)−2m

= 2O(
√

logn·log logn),

as required. The fact that the family {Wn}n has a uniform local tester with the required running
time follows immediately from the proof of [Vid15]. �

4.3 LTCs that attain the Zyablov bound

In this section, we explain how to obtain our binary LTCs from the above LTCs, i.e., how to derive
Theorem 1.2 from Theorem 4.1. As in the case of LCCs (Section 3.4), we construct our binary
LTCs by concatenating the codes {Cn}n of Theorem 4.1 with the Gilbert-Varshamov codes {GVn}n
(Fact 2.4). Let us denote the resulting family of concatenated codes by {C ′n}n. The analysis of the
rate and relative distance of these codes is the same as in the case of LCCs.

It remains to show that these codes are locally testable. Let A be the tester of the codes {Cn}n
of Theorem 4.1, and let us denote by Σ the alphabet of those codes. We describe a tester A′ for
the concatenated codes {C ′n}n: The tester A′ emulates the tester A. Whenever A makes a query,
the tester A′ reads the corresponding block and verifies that this block is a legal codeword of the
Gilbert-Varshamov code. If it is a legal codeword, A′ retrieves from it the corresponding symbol
of Σ and feeds it as an answer to the query of A. Otherwise, A′ rejects. If the emulation of A
finishes, the tester A′ accepts if A accepts and rejects otherwise.

8We chose Reed-Solomon codes for convenience, but any high-rate codes with reasonable distance will do.
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The tester A′ has query complexity that is at most a constant times the query complexity
of A, since the inner codes have constant block length. It is also easy to see that A′ satisfies the
completeness property, i.e., it accepts codewords of {C ′n}n with probability 1. It remains to prove
that A′ rejects a string z′ with probability that is proportional to its distance from the corresponding
code C ′|z′|. To this end, observe that A′ can be viewed as emulating the running of A on the string z

that is obtained by replacing blocks of z′ that are legal codewords with the corresponding symbols
in Σ, and replacing the other blocks with the symbol “?”. The required bound on the rejection
probability now follows from Proposition 4.5 using a similar argument to that of Section 4.1.

5 Open Questions

We conclude with some open questions:

• In this work, we found that LCCs and LTCs with sub-constant relative distance can be useful.
Are there better LCCs and LTCs in the sub-constant relative distance regime?

• LCCs and LTCs often come together with PCPs. Can we construct constant-rate PCPs with
sub-polynomial query complexity?

• Are there applications of our LCCs and LTCs to complexity theory?
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