High-rate locally-correctable and locally-testable codes
with sub-polynomial query complexity*

Swastik Kopparty† Or Meir‡ Noga Ron-Zewi§ Shubhangi Saraf¶

November 8, 2015

Abstract

In this work, we construct the first locally-correctable codes (LCCs), and locally-testable
codes (LTCs) with constant rate, constant relative distance, and sub-polynomial query com-
plexity. Specifically, we show that there exist binary LCCs and LTCs with block length n,
constant rate (which can even be taken arbitrarily close to 1), constant relative distance, and
query complexity $\exp(\tilde{O}(\sqrt{\log n}))$. Previously such codes were known to exist only with $\Omega(n^\beta)$
query complexity (for constant $\beta > 0$), and there were several, quite different, constructions
known.

In addition to having small query complexity, our codes also achieve better trade-offs between
the rate and the relative distance than were previously known to be achievable by LCCs or LTCs.
Specifically, over large (but constant size) alphabet, our codes approach the Singleton bound,
that is, they have almost the best-possible relationship between their rate and distance. This
has the surprising consequence that asking for a large-alphabet error-correcting code to further
be an LCC or LTC with sub-polynomial query complexity does not require any sacrifice in
terms of rate and distance! Over the binary alphabet, our codes meet the Zyablov bound. Such
trade-offs between the rate and the relative distance were previously not known for any $o(n)$
query complexity. Our results on LCCs also immediately give locally-decodable codes (LDCs)
with the same parameters.

Our codes are based on a technique of Alon, Edmonds and Luby [AEL95, AL96]. We observe
that this technique can be used as a general distance-amplification method, and show that it
interacts well with local correctors and testers. We obtain our main results by applying this
method to suitably constructed LCCs and LTCs in the non-standard regime of sub-constant
relative distance.

*A preliminary version of this work appeared as [Mei14].
†Department of Mathematics & Department of Computer Science, Rutgers University, Piscataway NJ 08854, USA.
Supported in part by a Sloan Fellowship and NSF grant CCF-1253886. swastik.kopparty@gmail.com
‡Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 76100,
Israel. Meir was supported by Irit Dinur’s ERC grant number 239986, and in part by the Israel Science Foundation
(grant No. 460/05). or.meir@weizmann.ac.il
§School of Mathematics, Institute for Advanced Study, Princeton, NJ, USA and DIMACS, Rutgers University,
Piscataway, NJ, USA. This research was partially supported by NSF grants CCF-1412958 and CCF-1445755 and the
Rothschild fellowship. nogazewi@ias.edu
¶Department of Mathematics & Department of Computer Science, Rutgers University, Piscataway NJ 08854, USA.
Supported in part by NSF grant CCF-1330572. shubhangi.saraf@gmail.com
1 Introduction

Locally-correctable codes [BFLS91, STV01, KT00] and locally-testable codes [FS95, RS96, GS06] are error-correcting codes that admit local algorithms for decoding and testing respectively. More specifically:

- We say that a code C is a **locally-correctable code (LCC)**\(^1\) if there is a randomized algorithm that, when given a string z that is close to a codeword $c \in C$, and a coordinate i, computes c_i while making only a small number of queries to z.

- We say that a code C is a **locally-testable code (LTC)** if there is a randomized algorithm that, when given a string z, decides whether z is a codeword of C, or far from C, while making only a small number of queries to z.

The number of queries that are used by the latter algorithms is called the **query complexity**.

Besides being interesting in their own right, LCCs and LTCs have also played important roles in different areas of complexity theory, such as program checking [BK95, Lip90, BLR93, RS96], probabilistically checkable proofs [BFLS91, AS98, ALM+98, GS06], derandomization, hardness amplification and average-case to worst-case reductions [BFNW93, STV01, Tre03] and private information retrieval [CKGS98]. It is therefore a natural and well-known question to determine what are the best parameters that LCCs and LTCs can achieve.

LCCs and LTCs were originally studied in the setting where the query complexity was either constant or poly-logarithmic. In those settings, it is believed that LCCs and LTCs must be very redundant, since every bit of the codeword must contain, in some sense, information about every other bit of the codeword. Hence, we do not expect such codes to achieve a high rate. In particular, in the setting of constant query complexity, it is known that linear LCCs cannot have constant rate [KT00, WdW05, Woo07], and that LTCs with certain restrictions cannot have constant rate [DK11, BV12]. On the other hand, the best-known constant-query LCCs have exponential length\(^3\), and the best-known constant-query LTCs have quasi-linear length (see e.g. [BS08, Din07, Vid15]).

It turns out that the picture is completely different when allowing the query complexity to be much larger. In this setting, it has long been known that one can have LCCs and LTCs with constant rate and query complexity $O(n^\beta)$ for constant $\beta > 0$ [BFLS91, RS96]. More recently, it has been discovered that both LCCs [KSY14, GKS13, HOW13] and LTCs [BV09a, Vid10, GKS13] can simultaneously achieve rates that are arbitrarily close to 1 and query complexity $O(n^\beta)$ for an arbitrary constant $\beta > 0$. This is in contrast with the general belief that local correctability and testability requires much redundancy.

In this work, we show that there are LCCs and LTCs with constant rate (which can in fact be taken to be arbitrarily close to 1) and constant relative distance, whose associated local algorithms have $n^{o(1)}$ query complexity and running time. We find it quite surprising in light of the fact that there were several quite different constructions of LCCs and LTCs [BFLS91, RS96, KSY14, BV09a, Vid10, GKS13, HOW13] with constant rate and constant relative distance, all of which had $\Omega(n^\beta)$ query complexity.

\(^1\) There is a closely related notion of locally decodable codes (LDCs) that is more popular and very well studied. All our results for LCCs hold for LDCs as well, see discussion at the end of the introduction.

\(^2\) [KT00, WdW05, Woo07] proved a lower bound for the related notion of LDCs. Since every linear LCC is also an LDC, their lower bound applies to linear LCCs as well.

\(^3\) For example, a constant-degree Reed-Muller code is such an LCC.
Furthermore, we show that such codes can achieve stronger trade-offs between the rate and relative distance than were known before. Specifically, over large alphabets (of constant size), our codes approach the Singleton bound: they achieve a tradeoff between rate and distance which is essentially as good as possible for general error-correcting codes. This means that, remarkably, local correctability and local testability with \(n^{o(1)} \) queries over large alphabets is not only possible with constant rate and constant relative distance, but it also does not require “paying” anything in terms of rate and relative distance. Over the binary alphabet, our codes meet the Zyablov bound. Such trade-offs were previously not known for any \(o(n) \) query complexity.

1.1 Main results

We first state our theorems for the binary alphabet.

Theorem 1.1 (Binary LCCs with sub-polynomial query complexity). For every \(r \in (0, 1) \), there exists \(Z(r) \in (0, 1) \) such that there exists an explicit infinite family of binary linear codes \(\{C_n\}_n \) satisfying:

1. \(C_n \) has block length \(n \), rate at least \(r \), and relative distance at least \(Z(r) \).
2. \(C_n \) is locally correctable from \(\frac{1}{2} \cdot Z(r) \) fraction of errors with query complexity and running time at most \(\exp(\sqrt{\log n \cdot \log \log n}) \).

Theorem 1.2 (Binary LTCs with sub-polynomial query complexity). For every \(r \in (0, 1) \), there exists \(Z(r) \in (0, 1) \) such that there exists an explicit infinite family of binary linear codes \(\{C_n\}_n \) satisfying:

1. \(C_n \) has block length \(n \), rate at least \(r \), and relative distance at least \(Z(r) \).
2. \(C_n \) is locally testable with query complexity and running time at most \(\exp(\sqrt{\log n \cdot \log \log n}) \).

Our proofs in fact show that \(Z(r) \) can be taken to equal any real number smaller than

\[
\max_{R \in (r, 1)} \left\{ (1 - R) \cdot H^{-1}(1 - \frac{r}{R}) \right\},
\]

where \(H^{-1} \) is the inverse of the binary entropy function in the domain \((0, \frac{1}{2})\). Thus the codes in the above theorems can be made to approach the Zyablov bound.

The above codes over the binary alphabet are obtained by first constructing LCCs and LTCs over large alphabets that approach the Singleton bound [Sin64], and then concatenating them with binary codes that match the Gilbert-Varshamov bound [Gil52, Var57]. The following theorems describe these large-alphabet LCCs and LTCs.

Theorem 1.3 (LCCs with sub-polynomial query complexity approaching the Singleton bound). For every \(r \in (0, 1) \) and \(\varepsilon > 0 \), there exists a finite alphabet \(\Sigma \) and an explicit infinite family of \(\mathbb{F}_2 \)-linear codes \(\{C_n\}_n \) over \(\Sigma \) satisfying:

1. \(C_n \) has block length \(n \), rate at least \(r \), and relative distance at least \(1 - r - \varepsilon \),
2. \(C_n \) is locally correctable from \(\frac{1-r-\varepsilon}{2} \) fraction of errors with query complexity and running time at most \(\exp(\sqrt{\log n \cdot \log \log n}) \),
3. The size of Σ is at most $\exp(\text{poly}(1/\varepsilon))$.

Theorem 1.4 (LTCs with sub-polynomial query complexity approaching the Singleton bound). For every $r \in (0, 1)$ and $\varepsilon > 0$, there exists a finite alphabet Σ and an explicit infinite family of \mathbb{F}_2-linear codes $\{C_n\}_n$ over Σ satisfying:

1. C_n has block length n, rate at least r, and relative distance at least $1 - r - \varepsilon$,
2. C_n is locally testable with query complexity and running time at most $\exp(\sqrt{\log n \cdot \log \log n})$,
3. The size of Σ is at most $\exp(\text{poly}(1/\varepsilon))$.

The above theorems are proved in Sections 3 and 4. We note that the exponential dependence of the alphabet size on ε follows from our use of the distance-amplification method of Alon, Edmonds, and Luby (see below). This dependence indeed seems to be a bottleneck in all applications of this method, e.g. [GI05].

Remark 1.5. It seems reasonable to expect that one could further improve our codes to meet the Block-Zyablov bound [BZ82], and it would be interesting to see if this is possible.

1.2 Our techniques

The AEL distance-amplification. Our constructions are based on a technique of Alon, Edmonds, and Luby [AEL95, AL96]. We observe that this technique can be viewed as a method for distance amplification. This distance amplifier, based on a d-regular expander, converts an error-correcting code with relative distance $\gg 1/d$ into an error-correcting code with larger relative distance δ, while reducing the rate only by a factor of $\approx (1 - \delta)$. Thus for a large enough constant d, if we start with a code of rate $1 - \varepsilon$ and relative distance $\gg 1/d$, where $\varepsilon \ll \delta$, then after distance amplification with a d-regular expander, we get a code with rate $(1 - \delta)(1 - \varepsilon) \approx (1 - \delta)$ and relative distance δ.

The original application of this technique in [AEL95, AL96] was to construct linear-time erasure-decodable codes approaching the Singleton bound. In addition to the above distance-amplification technique, [AEL95, AL96] constructed a linear-time erasure-decodable code (not approaching the Singleton bound) which could be used as the input code to the amplifier. The main result of [AEL95, AL96] then follows from the fact that distance amplification via a constant-degree expander preserves linear-time erasure-decodability.

Subsequent applications of this distance-amplification technique followed a similar outline. One first constructs codes with high rate with some (possibly very small) constant relative distance and a certain desirable property. Then, applying distance amplification with a (possibly very large) constant-degree expander, one obtains a code with a much better tradeoff between its rate and relative distance. Finally one shows that the distance amplification with a constant degree expander preserves the desirable property. This scheme was implemented in [GI05], who constructed codes that can be decoded in linear time from errors (rather than erasures) and achieve the Singleton bound, and in [GI02, GR08], who constructed capacity-achieving list-decodable codes with constant alphabet.

For the sake of brevity, throughout the rest of this paper, we refer to this technique as the “AEL distance-amplification”.

4
Our observations. The first main observation of this paper is that the distance-amplification technique also preserves the property of being an LCC or an LTC. Specifically, if we start with an LCC or LTC with query complexity q, and then apply distance amplification with a d-regular expander, then the resulting code is an LCC/LTC with query complexity $q \cdot \text{poly}(d)$.

The next main observation is that this connection continues to hold even if we take d to be super-constant, and take the LCC or LTC to have sub-constant relative distance $\Theta(1/d)$ (and then we only require the LCC to be able to correct strings whose distance from the code is within some constant fraction of the minimum distance of the code). This is potentially useful, since we only blow up the query complexity by a factor of $\text{poly}(d)$, and perhaps LCCs/LTCs with high rate and sub-constant relative distance can have improved query complexity over their constant relative distance counterparts.

Finally, we show that existing families of high rate LCCs and LTCs can achieve sub-polynomial query complexity if we only require them to have sub-constant relative distance. Specifically, multiplicity codes [KSY14] in a super-constant number of variables give us the desired LCCs, and super-constant-wise tensor products [Vid15] give us the desired LTCs (The use of tensor products to construct LTCs was initiated in [BS06]). As far as we are aware, there have been no previous uses of the AEL distance-amplification technique using an expander of super-constant degree.

More generally, we wish to draw attention to the AEL technique. We believe that it should be viewed as a general scheme for improving the rate-distance tradeoff for codes with certain desirable properties. In particular, it may transfer properties that codes with constant rate and sub-constant relative distance are known to have, to codes with constant rate and constant relative distance, and even to codes approaching the Singleton bound. We believe that this is a good “take-home message” from this work.

Recently, following a preliminary version of this work [Mei14], Hemenway and Wootters [HW15] used this observation on the generality of the AEL technique to construct linear-time list-recoverable codes.

Correctable and testable codes. Using the above method, it is also possible to construct improved codes that are simultaneously locally correctable and locally testable. This can be done by applying the distance-amplification technique to the lifted Reed-Solomon codes of [GKS13]. The codes of [GKS13] are both locally correctable and testable, and achieve rates that are arbitrarily close to 1. Using these codes of [GKS13] in the sub-constant relative distance regime, and combining with our framework, we get codes of constant rate and constant relative distance (which over large alphabets approach the Singleton bound) that are both locally correctable and locally testable with $n^{O(1/\log \log n)}$ queries.

Locally decodable codes. An important variant of LCCs are locally decodable codes (LDCs). Those codes are defined similarly to LCCs, with the following difference: Recall that in the definition of LCCs, the decoder gets access to a string z which is close to a codeword c, and is required to decode a coordinate of c. In the definition of LDCs, we view the codeword c as the encoding of some message x, and the decoder is required to decode a coordinate of x. LDCs were studied extensively in the literature, perhaps more so than LCCs (see [Yek12] for a survey). One notable fact about LDCs is that there are constructions of LDCs with a constant query complexity and sub-exponential length [Yek08, Rag07, KY09, Efr12].

If we restrict ourselves to linear codes, then LDCs are a weaker object than LCCs, since every
linear LCC can be converted into an LDC by choosing a systematic encoding map4. Since the LCCs we construct in this paper are linear, all our results apply to LDCs as well.

Organization of this paper. We review the required preliminaries in Section 2, construct our LCCs in Section 3, and construct our LTCs in Section 4. We conclude with some open questions in Section 5.

Version. A preliminary version of this paper appeared as [Mei14], where the distance-amplification technique was used to construct codes approaching the Singleton bound with query complexity $O(n^\beta)$ (for arbitrary $\beta > 0$).

2 Preliminaries

All logarithms in this paper are in base 2. For any $n \in \mathbb{N}$ we denote $[n] \triangleq \{1, \ldots, n\}$. We denote by F_2 the finite field of two elements. For any finite alphabet Σ and any pair of strings $x, y \in \Sigma^n$, the relative Hamming distance (or, simply, relative distance) between x and y is the fraction of coordinates on which x and y differ, and is denoted by $\text{dist}(x, y) \triangleq |\{i \in [n] : x_i \neq y_i\}| / n$. We have the following useful approximation.

Fact 2.1. For every $x, y \in \mathbb{R}$ such that $0 \leq x \cdot y \leq 1$, it holds that

\begin{equation}
(1 - x)^y \leq 1 - \frac{1}{4} \cdot x \cdot y.
\end{equation}

Proof. It holds that

\begin{equation}
(1 - x)^y \leq e^{-x \cdot y} \leq 1 - \frac{1}{4} \cdot x \cdot y.
\end{equation}

The second inequality relies on the fact that $1 - \frac{1}{4} \cdot x \geq e^{-x}$ for every $x \in (0, 1)$, which can be proved by noting that $1 - \frac{1}{4} \cdot x = e^{-x}$ at $x = 0$, and that the derivative of e^{-x} is smaller than that of $1 - \frac{1}{4} \cdot x$ for every $x \in (0, 1)$. The first inequality relies on the fact that $1 - x \leq e^{-x}$ for every $x \in \mathbb{R}$, which can be proved using similar considerations. \blacksquare

2.1 Error-correcting codes

Let Σ be an alphabet and let n be a positive integer (the block length). A code is simply a subset $C \subseteq \Sigma^n$. If F is a finite field and Σ is a vector space over F, we say that a code $C \subseteq \Sigma^n$ is \textit{F-linear} if it is an F-linear subspace of the F-vector space Σ^n. If $\Sigma = F$, we simply say that C is linear. The rate of a code is the ratio $\log |C| / \log |\Sigma|^n$, which for F-linear codes equals $\frac{\dim_F(C)}{n \cdot \dim_F(\Sigma)}$.

The elements of a code C are called codewords. We say that C has relative distance at least δ if for every pair of distinct codewords $c_1, c_2 \in C$ it holds that $\text{dist}(c_1, c_2) \geq \delta$. We will use the notation $\text{dist}(w, C)$ to denote the relative distance of a string $w \in \Sigma^n$ from C, and say that w is ε-close (respectively, ε-far) to C if $\text{dist}(w, C) < \varepsilon$ (respectively, if $\text{dist}(w, C) \geq \varepsilon$).

An encoding map for C is a bijection $E_C : \Sigma^k \to C$, where $|\Sigma|^k = |C|$. We say that an infinite family of codes $\{C_n\}_n$ is explicit if there is a polynomial time algorithm that computes the encoding map.

4This conversion will lead to an LDC with the same query complexity, but the running time of the local decoder will be small only if the systematic encoding map can be computed efficiently.
maps of all the codes in the family. For a code C of relative distance δ, a given parameter $\tau < \delta/2$, and a string $z \in \Sigma^n$, the problem of decoding from τ fraction of errors is the task of finding the unique $c \in C$ (if any) which satisfies $\text{dist}(c, z) \leq \tau$.

Concatenation. Concatenation is an operation on codes that can be used for reducing the alphabet size of a code. Let Λ and Σ be alphabets, where we think of Σ as being much larger than Λ. Let $C \subseteq \Sigma^n$ be a code over Σ and let $H \subseteq \Lambda^m$ be a code over Λ such that $|H| = |\Sigma|$. Let $\phi: \Sigma \to H$ be a bijection. The concatenation of C with H is the code $C' \subseteq \Lambda^{m-n}$ that is obtained as follows: for each codeword $c \in C$, we construct a corresponding codeword $c' \in C'$ by replacing each symbol c_i with $\phi(c_i)$. We shall use the following well-known fact.

Fact 2.2 (Concatenation). Let $C \subseteq \Sigma^n$ be a code with rate r_C and relative distance δ_C, let $H \subseteq \Lambda^m$ be a code with rate r_H and relative distance δ_H, and let $C' \subseteq \Lambda^{m-n}$ be the concatenation of C with H. Then C' has rate $r_C \cdot r_H$ and relative distance $\delta_C \cdot \delta_H$. Furthermore, if Λ is a field, C is Λ-linear, and H is linear, then C' is linear.

Some useful codes. We use the following facts, which state the existence of Reed-Solomon codes, Gilbert-Varshamov codes, and Zyablov codes, and their relevant properties.

Fact 2.3 (Reed-Solomon Codes [RS60]). For every $k, n \in \mathbb{N}$ such that $n \geq k$, and for every finite field \mathbb{F} such that $|\mathbb{F}| \geq n$, there exists an \mathbb{F}-linear code $RS_{k,n} \subseteq \mathbb{F}^n$ with rate $r = k/n$, and relative distance at least $1 - \frac{k-1}{n} > 1 - r$. Furthermore, $RS_{k,n}$ has an encoding map $E: \mathbb{F}^k \to RS_{k,n}$ which can be computed in time $\text{poly}(n, \log |\mathbb{F}|)$, and can be decoded from up to $(1 - \frac{k-1}{n})/2$ fraction of errors in time $\text{poly}(n, \log |\mathbb{F}|)$.

Fact 2.4 (Gilbert-Varshamov codes [Gil52, Var57]). For every $0 < r < 1$ and $\epsilon > 0$, there exists a (non-explicit) infinite family $\{GV_n\}_{n}$ of binary linear codes of with rate r and relative distance $H^{-1}(1 - r)$, where H^{-1} is the inverse of the binary entropy function.

The following codes, due to Zyablov, are obtained by concatenating the Reed-Solomon codes with the Gilbert-Varshamov codes.

Fact 2.5 (Zyablov bound [Zya71]). For every $0 < r < 1$ and $\epsilon > 0$, there exists an explicit infinite family $\{Z_n\}_{n}$ of binary linear codes of with rate r and relative distance

$$\delta = \max_{r < R < 1} \left\{ (1 - R - \epsilon) \cdot H^{-1}\left(1 - \frac{r}{R}\right) \right\},$$

where H^{-1} is the inverse of the binary entropy function.

By choosing $r = 1 - \epsilon$ and $R = 1 - 2 \cdot \epsilon$ in Fact 2.6, we get the following useful special case.

Fact 2.6 (Special case of the Zyablov bound). For every $\epsilon > 0$, there exists an explicit infinite family $\{Z_n\}_{n}$ of binary linear codes of with rate $1 - \epsilon$ and relative distance at least

$$(1 - 3 \cdot \epsilon) \cdot H^{-1}(1 - \frac{1 - \epsilon}{1 - 2 \cdot \epsilon}) \geq \epsilon^2,$$

where the inequality holds for sufficiently small values of ϵ.

\[7\]
2.2 Locally-correctable codes

Intuitively, a code is said to be locally correctable [BFLS91, STV01, KT00] if, given a codeword $c \in C$ that has been corrupted by some errors, it is possible to decode any coordinate of c by reading only a small part of the corrupted version of c. Formally, it is defined as follows.

Definition 2.7. We say that a code $C \subseteq \Sigma^n$ is locally correctable from τ fraction of errors with query complexity q if there exists a randomized algorithm A that satisfies the following requirements:

- **Input:** A takes as input a coordinate $i \in [n]$ and also gets oracle access to a string $z \in \Sigma^n$ that is τ-close to a codeword $c \in C$.
- **Output:** A outputs c_i with probability at least $\frac{2}{3}$.
- **Query complexity:** A makes at most q queries to the oracle z.

We say that the algorithm A is a local corrector of C. Given an infinite family of LCCs $\{C_n\}_n$, a uniform local corrector for the family is a randomized oracle algorithm that given n, computes the local corrector of C_n. We will often be also interested in the running time of the uniform local corrector.

Remark 2.8. The above success probability of $\frac{2}{3}$ can be amplified using sequential repetition, at the cost of increasing the query complexity. Specifically, amplifying the success probability to $1 - e^{-t}$ requires increasing the query complexity by a factor of $O(t)$.

2.3 Locally-testable codes

Intuitively, a code is said to be locally testable [FS95, RS96, GS06] if, given a string $z \in \Sigma^n$, it is possible to determine whether z is a codeword of C, or rather far from C, by reading only a small part of z. There are two variants of LTCs in the literature, “weak” LTCs and “strong” LTCs. From now on, we will work exclusively with strong LTCs, since it is a simpler notion and allows us to state a stronger result.

Definition 2.9. We say that a code $C \subseteq \Sigma^n$ is (strongly) locally testable with query complexity q if there exists a randomized algorithm A that satisfies the following requirements:

- **Input:** A gets oracle access to a string $z \in \Sigma^n$.
- **Completeness:** If z is a codeword of C, then A accepts with probability 1.
- **Soundness:** If z is not a codeword of C, then A rejects with probability at least $\text{dist}(z, C)/4$.
- **Query complexity:** A makes at most q queries to the oracle z.

We say that the algorithm A is a local tester of C. Given an infinite family of LTCs $\{C_n\}_n$, a uniform local tester for the family is a randomized oracle algorithm that given n, computes the local tester of C_n. Again, we will often also be interested in the running time of the uniform local tester.
A remark on amplifying the rejection probability. It is common to define strong LTCs with an additional parameter ρ, and have the following soundness requirement:

- If z is not a codeword of C, then A rejects with probability at least $\rho \cdot \operatorname{dist}(z, C)$.

Our definition corresponds to the special case where $\rho = \frac{1}{4}$. However, given an LTC with $\rho < \frac{1}{4}$, it is possible to amplify ρ up to $\frac{1}{4}$ at the cost of increasing the query complexity. Hence, we chose to fix ρ to $\frac{1}{4}$ in our definition, which somewhat simplifies the presentation.

The amplification of ρ is performed as follows: The amplified tester invokes the original tester A for $\frac{1}{\rho}$ times, and accepts only if all invocations of A accept. Clearly, this increases the query complexity by a factor of $\frac{1}{\rho}$ and preserves the completeness property. To analyze the rejection probability, let z be a string that is not a codeword of C, and observe that the amplified tester rejects it with probability at least

$$1 - \left(1 - \frac{1}{4} \cdot \frac{1}{\rho} \cdot \rho \cdot \operatorname{dist}(z, C)\right)^{\frac{1}{\rho}}$$

(as required).

2.4 Expander graphs

Expander graphs are graphs with certain pseudorandom connectivity properties. Below, we state the construction and properties that we need. The reader is referred to [HLW06] for a survey. For a graph G, a vertex s and a set of vertices T, let $E(s, T)$ denote the set of edges that go from s into T.

Definition 2.10. Let $G = (U \cup V, E)$ be a bipartite d-regular graph with $|U| = |V| = n$. We say that G is an (α, γ)-sampler if the following holds for every $T \subseteq V$: For at least $1 - \alpha$ fraction of the vertices $s \in U$ it holds that

$$\frac{|E(s, T)|}{d} - \frac{|T|}{n} \leq \gamma.$$

Lemma 2.11. For every $\alpha, \gamma > 0$ and every sufficiently large $n \in \mathbb{N}$ there exists a bipartite d-regular graph $G_{n,\alpha,\gamma} = (U \cup V, E)$ with $|U| = |V| = n$ and $d = \operatorname{poly}\left(\frac{1}{\alpha \gamma}\right)$ such that $G_{n,\alpha,\gamma}$ is an (α, γ)-sampler. Furthermore, there exists an algorithm that takes as inputs n, α, γ, and a vertex w of $G_{n,\alpha,\gamma}$, and computes the list of the neighbors of w in $G_{n,\alpha,\gamma}$ in time $\operatorname{poly}\left(\frac{\log n}{\alpha \gamma}\right)$.

Proof sketch. A full proof of Lemma 2.11 requires several definitions and lemmas that we have not stated, such as second eigenvalue, edge expansion, and the expander mixing lemma. Since this is not the focus of this paper, we only sketch the proof without stating those notions. The interested reader is referred to [HLW06].

Let α, γ and n be as in the lemma. We sketch the construction of the graph $G \overset{\text{def}}{=} G_{n,\alpha,\gamma}$. First, observe that it suffices to construct a strongly-explicit non-bipartite graph G' over n vertices (that is, a graph G' in which the neighborhood of any given vertex is computable in time $\operatorname{poly}(\log n)$) with the desired property. The reason is that each such graph G' can be converted into a bipartite
graph G with the desired property, by taking two copies of the vertex set of G' and connecting the two copies according to the edges in G'. The existence of the algorithm stated in the lemma follows from the fact that G' is strongly-explicit.

We thus focus on constructing the graph G'. This is done in two steps: first, we show how to construct a strongly-explicit expander G'' over n vertices — this requires a bit of work, since n can be an arbitrary number, and expanders are usually constructed for special values of n. In the second step, we amplify the spectral gap of G'' by powering, and set G' to be the powered graph. We then prove that G' has the desired sampling property.

The first step. The work of [GG81] gives a strongly-explicit expander with constant degree and constant edge expansion for every n that is a square, so we only need to deal with the case in which n is not a square. Suppose that $n = m^2 - k$, where m^2 is the minimal square larger than n, and observe that $k \leq 2m - 1$, which is at most $\frac{1}{2} \cdot m^2$ for sufficiently large m. Now, we construct an expander over m^2 vertices using [GG81], and then merge k pairs of vertices. In order to maintain the regularity, we add self-loops to all the vertices that were not merged. We set G'' to be the resulting graph.

It is easy to see that G'' is a regular graph over n vertices. Since the merge and the addition of self-loops maintain the degree and the edge expansion of the original expander up to a constant factor, it follows that G'' is an expander with constant degree and constant edge expansion. Furthermore, it is not hard to see that G'' is strongly-explicit.

The second step. Since G'' is an expander, and in particular has constant edge expansion, it follows from the Cheeger inequality [Dod84, AM85] that its second-largest normalized eigenvalue (in absolute value) is some constant smaller than 1. Let us denote this normalized eigenvalue by λ. We note that the degree and the edge expansion of G'', as well as λ, are independent of n.

We now construct the graph G' by raising G'' to the power $\log_\lambda (\sqrt{\alpha} \cdot \gamma)$. Observe that G' is a graph over n vertices with degree $d \overset{\text{def}}{=} \text{poly} \left(\frac{1}{\alpha \cdot \gamma}\right)$ and normalized second eigenvalue $\sqrt{\alpha} \cdot \gamma$. It is not hard to see that G' is strongly-explicit.

The sampling property. We prove that G' has the desired sampling property. Let T be a subset of vertices of G'. We show that for at least $(1 - \alpha)$ fraction of the vertices s of G' it holds that

$$\frac{|E(s, T)|}{d} - \frac{|T|}{n} \leq \gamma.$$

To this end, let

$$S \overset{\text{def}}{=} \left\{ s \in U \left| \frac{|E(s, T)|}{d} - \frac{|T|}{n} > \gamma \right. \right\}.$$

Clearly, it holds that

$$\frac{|E(S, T)|}{d \cdot |S|} - \frac{|T|}{n} > \gamma.$$

On the other hand, the expander mixing lemma [AC88] implies that

$$\frac{|E(S, T)|}{d \cdot |S|} - \frac{|T|}{n} \leq \sqrt{\alpha} \cdot \gamma \cdot \sqrt{\frac{|T|}{|S|}}.$$
By combining the above pair of inequalities, we get
\[
\gamma < \sqrt{\alpha \cdot \gamma} \cdot \sqrt{|T| / |S|}
\]
\[
|S| < \alpha \cdot |T| \leq \alpha \cdot n,
\]
as required.

3 LCCs with sub-polynomial query complexity

In this section, we prove the following theorem on LCCs, which immediately implies Theorem 1.3 from the introduction.

Theorem 3.1 (Main LCC theorem). For every \(r \in (0, 1) \) and \(\varepsilon > 0 \), there exist a finite vector space \(\Sigma \) over \(\mathbb{F}_2 \) and an explicit infinite family of \(\mathbb{F}_2 \)-linear codes \(\{C_n\}_{n} \) over \(\Sigma \) satisfying:

1. \(C_n \) has block length \(n \), rate at least \(r \), and relative distance at least \(1 - r - \varepsilon \).
2. \(C_n \) is locally correctable from \(\frac{1 - r - \varepsilon}{2} \) fraction of errors with query complexity \(\exp(\sqrt{\log n \cdot \log \log n}) \).
3. The size of \(\Sigma \) is at most \(\exp(\text{poly}(1/\varepsilon)) \).

We explain how to construct our binary LCCs ((Theorem 1.1)) using Theorem 3.1 in Section 3.4 below.

The proof of Theorem 3.1 has two steps. In the first step, we give a transformation that amplifies the fraction of errors from which an LCC can be corrected — this step follows the distance amplification of [AEL95, AL96]. In the second step, we construct a locally-correctable code \(W_n \) with the the desired query complexity but that can only be corrected from a sub-constant fraction of errors. Finally, we construct the code \(C_n \) by applying the distance amplification to \(W_n \) (in a slightly non-trivial way). Those two steps are formalized in the following pair of lemmas, which are proved in Sections 3.1 and 3.2 respectively.

Lemma 3.2. Suppose that there exists a code \(W \) that is locally correctable from \(\tau_W \) fraction of errors with query complexity \(q \), such that:

- \(W \) has rate \(r_W \).
- \(W \) is \(\mathbb{F}_2 \)-linear

Then, for every \(0 < \tau < \frac{1}{2} \) and \(\varepsilon > 0 \), there exists a code \(C \) that is locally correctable from \(\tau \) fraction of errors with query complexity \(q \cdot \text{poly}(1/(\varepsilon \cdot \tau_W)) \), such that:

- \(|C| = |W| \).
- \(C \) has relative distance at least \(2 \cdot \tau \), and rate at least \(r_W \cdot (1 - 2 \cdot \tau - \varepsilon) \).
- Let \(\Lambda \) denote the alphabet of \(W \). Then, the alphabet of \(C \) is \(\Sigma \equiv \Lambda^p \) for some \(p = \text{poly}(1/(\varepsilon \cdot \tau_W)) \).
• C is \mathbb{F}_2-linear.

Furthermore,

• There is a polynomial time algorithm that computes a bijection from every code W to the corresponding code C, given τ_W, τ, ϵ and Λ.

• There is an oracle algorithm that when given black box access to the local corrector of any code W, and given also τ_W, τ, ϵ, Λ, and the block length of W, computes the local corrector of the corresponding code C. If the local corrector of W runs in time t_W, then the corresponding local corrector of C runs in time

$$O(t_W) + q \cdot \text{poly}(1/(\epsilon \cdot \tau_W),\log n_W),$$

where n_W is the block length of W.

Lemma 3.3. There exists an explicit infinite family of \mathbb{F}_2-linear codes $\{W_n\}_n$ satisfying:

1. The code W_n has block length n, rate at least $1 - \frac{1}{\log n}$, and relative distance at least $\Omega \left(\frac{\log \log n}{\log^3 n} \right)$.

2. The code W_n is locally correctable from $\Omega \left(\frac{\log \log n}{\log^3 n} \right)$ fraction of errors with query complexity $\exp(\sqrt{\log n \cdot \log \log n})$.

3. The alphabet of W_n is a vector space Λ_n over \mathbb{F}_2, such that $|\Lambda_n| \leq \exp(\exp(\sqrt{\log n \cdot \log \log n}))$.

Furthermore, the family $\{W_n\}_n$ has a uniform local corrector that runs in time $\exp(\sqrt{\log n \cdot \log \log n})$.

Proof of Theorem 3.1. It is tempting to try to prove Theorem 3.1 by applying the transformation of Lemma 3.2 to the codes W_n of Lemma 3.3 with $\tau \approx \frac{1 - \epsilon}{2}$. This would indeed yield codes of the required rate, relative distance and query complexity, but the alphabet size of those codes would be too large, and in particular, super-constant.

We therefore take a slightly indirect route: first, we apply the transformation of Lemma 3.2 to the codes W_n with $\tau \approx \epsilon$. This yields codes with very high rate, constant (but small) relative distance, and alphabet of super-constant size. Then, we concatenate those codes with binary codes of high rate and small constant distance, thus obtaining binary codes with very high rate and small constant distance. Finally, we apply the transformation to the latter binary codes with $\tau \approx \frac{1 - \epsilon}{2}$, and this gives the codes with the desired parameters. Details follow.

Fix a choice of the parameters r and ϵ. We describe how to construct the corresponding infinite family of codes $\{C_n\}_n$. We start by applying Lemma 3.2 to the family $\{W_n\}_n$ of Lemma 3.3 with $\tau_W = \Omega \left(\frac{\log \log n}{\log^3 n} \right)$, $\tau = \frac{1}{64} \cdot \epsilon$, and $\epsilon = \frac{1}{32} \cdot \epsilon$. This yields an infinite family of codes $\{W'_n\}_n$ that has rate $1 - \frac{1}{16} \cdot \epsilon - \frac{1}{\log n} \geq 1 - \frac{1}{8} \cdot \epsilon$ and alphabet size $\exp(\exp(\sqrt{\log n \cdot \log \log n}))$, and which is locally correctable from $\frac{1}{64} \cdot \epsilon$ fraction of errors with query complexity $\exp(\sqrt{\log n \cdot \log \log n})$.

Let $\{Z_n\}_n$ be the infinite family of binary Zyablov codes of rate $1 - \frac{1}{8} \cdot \epsilon$ and relative distance $\left(\frac{1}{8} \cdot \epsilon \right)^2$ whose existence is guaranteed by Fact 2.6. We concatenate the family $\{W'_n\}_n$ with the family $\{Z_n\}_n$, thus obtaining an infinite family of binary linear codes $\{B_n\}_n$ with rate $1 - \frac{1}{4} \cdot \epsilon$ and relative distance $\Omega(\epsilon^3)$. Furthermore, it is not hard to see that those codes are locally correctable from $\Omega(\epsilon^3)$ fraction of errors using query complexity $\exp(\sqrt{\log n \cdot \log \log n})$: the local corrector of
\(\{B_n\}_n \) emulates the local corrector of \(\{W'_n\}_n \). Whenever the local corrector of \(\{W'_n\}_n \) makes a query, the locally corrector of \(\{B_n\}_n \) reads the corresponding purported codeword of the inner Zyablov code, decodes it to the nearest codeword, and uses the result to answer the query of the local corrector of \(\{W'_n\}_n \). It is easy to see that the query complexity of this local corrector is \(\exp(\sqrt{\log n \cdot \log \log n}) \), and standard arguments of coding theory show that it can correct \(\Omega(\varepsilon^3) \) fraction of errors (see Section 3.4 for a sophisticated version of those arguments).

Finally, we apply Lemma 3.2 again, this time to the family \(\{B_n\}_n \), with \(\tau_W = \Omega(\varepsilon^3), \varepsilon = \frac{1}{4} \cdot \varepsilon \), and

\[
\tau = \frac{1}{2} \left(1 - \frac{r}{1 - \frac{1}{4} \cdot \varepsilon} - \frac{1}{4} \cdot \varepsilon \right) \geq \frac{1}{2} \cdot (1 - r - \varepsilon).
\]

This results in an infinite family \(\{C'_n\}_n \) of \(\mathbb{F}_2 \)-linear codes with rate

\[
(1 - \frac{1}{4} \cdot \varepsilon) \cdot (1 - 2 \cdot \tau - \frac{1}{4} \cdot \varepsilon) = (1 - \frac{1}{4} \cdot \varepsilon) \cdot \left(1 - \left(1 - \frac{r}{1 - \frac{1}{4} \cdot \varepsilon} - \frac{1}{4} \cdot \varepsilon \right) - \frac{1}{4} \cdot \varepsilon \right) = r,
\]

and alphabet size \(\exp(\text{poly}(1/\varepsilon)) \), which is locally correctable from \(\tau \geq \frac{1 - r - \varepsilon}{2} \) fraction of errors with query complexity

\[
\exp(\sqrt{\log n \cdot \log \log n}) \cdot \text{poly}(1/\varepsilon) = \exp(\sqrt{\log n \cdot \log \log n}),
\]

as required. The family \(\{C'_n\}_n \) is explicit with the required running time due to the first item in the “furthermore” part of Lemma 3.2, and has a uniform local corrector due to the second item of that part.

Remark 3.4. In Lemma 3.2 above, we chose to assume that \(W \) is \(\mathbb{F}_2 \)-linear for simplicity. More generally, if \(W \) is \(\mathbb{F} \)-linear for any finite field \(\mathbb{F} \), then \(C \) is \(\mathbb{F} \)-linear as well. Furthermore, the lemma also works if \(W \) is not \(\mathbb{F} \)-linear for any field \(\mathbb{F} \), in which case \(C \) is not guaranteed to be \(\mathbb{F} \)-linear for any field \(\mathbb{F} \).

3.1 Proof of Lemma 3.2

3.1.1 Overview

Let \(0 < \tau < \frac{1}{4} \). Our goal is to construct a code \(C \) that can be locally corrected from a fraction of errors at most \(\tau \). The idea of the construction is to combine the LCC \(W \) with a Reed-Solomon code to obtain a code \(C \) that enjoys “the best of both worlds”: both the local correctability of \(W \) and the good error correction capability of Reed-Solomon. We do it in two steps: first, we construct a code \(C' \) which can be corrected from \(\tau \) fraction of random errors. Then, we augment \(C' \) to obtain a code \(C \) that can be corrected from \(\tau \) fraction of adversarial errors.

We first describe the construction of \(C' \). To this end, we describe a bijection from \(W \) to \(C' \). Let \(w \) be a codeword of \(W \). To obtain the codeword \(c' \in C' \) that corresponds to \(w \), we partition \(w \) into blocks of length \(b \) (to be determined later), and encode each block with a Reed-Solomon code \(RS_{b,d} \). We choose the relative distance of \(RS_{b,d} \) to be \(2 \cdot \tau + \varepsilon \), so its rate is \(1 - 2 \cdot \tau - \varepsilon \) and the rate of \(C' \) is indeed \(r_w \cdot (1 - 2 \cdot \tau - \varepsilon) \), as required.

We now claim that if one applies to a codeword \(c' \in C' \) a noise that corrupts each coordinate with probability \(\tau \), then the codeword \(c' \) can be recovered from its corrupted version with high probability. To see it, first observe that with high probability, almost all the blocks of \(c' \) have at
most \(\tau + \frac{\varepsilon}{2} \) fraction of corrupted coordinates. Let us call those blocks “good blocks”, and observe that the good blocks can be corrected by decoding them to the nearest codeword of \(RS_{b,d} \) (since \(\tau + \frac{\varepsilon}{2} \) is half the relative distance of \(RS_{b,d} \)). Next, observe that if \(b \) is sufficiently large, the fraction of “good blocks” is at least \(1 - \tau_W \), and hence we can correct the remaining \(\tau_W \) fraction of errors using the decoding algorithm of \(W \). It follows that \(C' \) can be corrected from \(\tau \) fraction of random errors, as we wanted.

Next, we show how to augment \(C' \) to obtain a code \(C \) that is correctable from adversarial errors. This requires two additional ideas. The first idea to apply a permutation that is “pseudorandom” in some sense to the coordinates of \(C' \). The “pseudorandom” permutation is determined by the edges of an expander graph (see Section 2.4). This step is motivated by the hope that, after the adversary decided which coordinates to corrupt, applying the permutation to the coordinates will make the errors behave pseudorandomly. This will allow the above analysis for the case of random errors to go through.

Of course, on its own, this idea is doomed to fail, since the adversary can take the permutation into account when he chooses where to place the errors. Here the second idea comes into play: after applying the permutation to the coordinates of \(C' \), we will increase the alphabet size of the code, packing each block of symbols into a new big symbol. The motivation for this step is that increasing the alphabet size restricts the freedom of the adversary in choosing the pattern of errors. Indeed, we will show that after the alphabet size is increased, applying the permutation to the coordinates of the code makes the errors behave pseudorandomly. This allows us to prove that the code can be decoded from \(\tau \) fraction of errors, as we wanted.

3.1.2 The construction of \(C \)

Choosing the parameters. Let \(W, r_W, \tau_W, r, \varepsilon \), and \(\Lambda \) be as in Lemma 3.2. Let \(\{G_n\}_n \) be an infinite family of \((\tau_W, \frac{1}{2} \cdot \varepsilon) \)-samplers as in Theorem 2.11, and let \(d \) be their degree.

Recall that we assumed that \(W \) is \(\mathbb{F}_2 \)-linear, so \(|\Lambda| \) is a power of 2. Let \(\mathbb{F} \) be an extension field of \(\mathbb{F}_2 \), whose size is the minimal power of \(|\Lambda| \) that is at least \(d \). Let \(RS_{b,d} \) be a Reed-Solomon code over \(\mathbb{F} \) with relative distance \(2 \cdot \tau + \varepsilon \), rate \(1 - 2 \cdot \tau - \varepsilon \), and block length \(d \).

Let \(n_W \) be the block length of \(W \), and let \(t \) be such that \(|\mathbb{F}| = |\Lambda|^t \). The block length of \(C \) will be \(n \overset{\text{def}}{=} n_W b t \), and its alphabet will be \(\Sigma \overset{\text{def}}{=} \mathbb{F}^d \). Here, we assume that \(n_W \) is divisible by \(b \cdot t \). If \(n_W \) is not divisible by \(b \cdot t \), we consider two cases:

- if \(n_W > b \cdot t / \varepsilon \), we increase \(n_W \) to the next multiple of \(b \cdot t \) by padding the codewords of \(W \) with additional zero coordinates. This decreases the rate of \(W \) by at most \(\varepsilon \), which essentially does not affect our results.

- Otherwise, we set \(C \) to be any Reed-Solomon code with blocklength \(n_W \), relative distance \(2 \cdot \tau \), and rate \(1 - 2 \cdot \tau \). Observe that such a Reed-Solomon is locally correctable from \(\tau \) fraction of errors with query complexity

\[
n_W \leq b \cdot t / \varepsilon = \text{poly}(1/(\varepsilon \cdot \tau_W)),
\]

which satisfies our requirements.

A bijection from \(W \) to \(C \). We construct the code \(C \) by describing a bijection from \(W \) to \(C \). Given a codeword \(w \in W \), one obtains the corresponding codeword \(c \in C \) as follows:
• Partition \(w \) into \(n \equiv \frac{n_W}{b \cdot t} \) blocks of length \(b \cdot t \). We view each of those blocks as a vector in \(\mathbb{F}^b \), and encode it via the code \(RS_{b,d} \). Let us denote the resulting string by \(c' \in \mathbb{F}^{n \cdot d} \) and the resulting codewords of \(RS_{b,d} \) by \(B_1, \ldots, B_n \in \mathbb{F}^d \).

• Next, we apply a “pseudorandom” permutation to the coordinates of \(c' \) as follows: Let \(G_n \) be the graph from the infinite family above and let \(U = \{ u_1, \ldots, u_n \} \) and \(V = \{ v_1, \ldots, v_n \} \) be the left and right vertices of \(G_n \) respectively. For each \(i \in [n] \) and \(j \in [d] \), we write the \(j \)-th symbol of \(B_i \) on the \(j \)-th edge of \(u_i \). Then, we construct new blocks \(S_1, \ldots, S_n \in \mathbb{F}^d \), by setting the \(j \)-th symbol of \(S_i \) to be the symbol written on the \(j \)-th edge of \(v_i \).

• Finally, we define the codeword \(c \) of \(C \subseteq \Sigma^n \) as follows: the \(i \)-th coordinate \(c_i \) is the block \(S_i \), reinterpreted as a symbol of the alphabet \(\Sigma \equiv \mathbb{F}^d \). We choose \(c \) to be the codeword in \(C \) that corresponds to the codeword \(w \) in \(W \).

This concludes the definition of the bijection. It is not hard to see that this bijection can be computed in polynomial time, and that the code \(C \) is \(\mathbb{F}_2 \)-linear. Furthermore, \(\Sigma = \mathbb{F}^d = \Lambda^t \cdot \Delta \) where \(d \cdot t \leq d \log d = \text{poly}(1/\varepsilon \cdot \tau_W) \). The rate of \(C \) is

\[
\frac{\log |C|}{n \cdot \log |\Sigma|} = \frac{\log |W|}{n \cdot d \cdot \log |\mathbb{F}|} = \frac{r_W \cdot \log |\Lambda^{n_W}|}{n \cdot d \cdot \log |\mathbb{F}|} = \frac{r_W \cdot n_W}{n} \cdot \frac{1}{d} \cdot \frac{\log |\Delta|}{\log |\mathbb{F}|} = \frac{r_W \cdot (b \cdot t) \cdot \left(1 - 2 \cdot \frac{\tau - \varepsilon}{b} \right) \cdot \frac{1}{t}}{r_W \cdot (1 - 2 \cdot \tau - \varepsilon),}
\]

as required. The relative distance of \(C \) is at least \(2 \cdot \tau \) — although this could be proved directly, it also follows immediately from the fact that \(C \) is locally correctable from \(\tau \) fraction of errors, which is proved in the next section.

3.1.3 Local correctability

In this section, we complete the proof of Lemma 3.2 by proving that \(C \) is locally correctable from \(\tau \) fraction of errors with query complexity \(\text{poly}(d) \cdot q \). To this end, we describe a local corrector \(A \). The algorithm \(A \) is based on the following algorithm \(A_0 \), which locally corrects coordinates of \(\Lambda \) from a corrupted codeword of \(C \).

Lemma 3.5. There exists an algorithm \(A_0 \) that satisfies the following requirements:

• **Input:** \(A_0 \) takes as input a coordinate \(i \in [n_W] \), and also gets oracle access to a string \(z \in \Sigma^n \) that is \(\tau \)-close to a codeword \(c \in C \).

• **Output:** Let \(w^c \) be the codeword of \(\Lambda \) from which \(c \) was generated. Then, \(A_0 \) outputs \(w^c_i \) with probability at least \(1 - \frac{1}{3 \cdot b \cdot t \cdot d} \).

• **Query complexity:** \(A_0 \) makes \(\text{poly}(d) \cdot q \) queries to the oracle \(z \).
Before proving Lemma 3.5, we show how to construct the algorithm A given the algorithm A_0. Suppose that the algorithm A is given oracle access to a string z that is τ-close to a codeword $c \in C$, and a coordinate $i \in [n]$. The algorithm is required to decode c_i. Let $w^c \in \Lambda^{nw}$ be the codeword of W from which c was generated, and let $B^c_{j_1}, \ldots, B^c_{j_d}$ and $S^c_{i_1}, \ldots, S^c_{i_l}$ be the corresponding blocks.

In order to decode c_i, the algorithm A should decode each of the symbols in the block $S^c_i \in \mathbb{F}^d$. Let u_{j_1}, \ldots, u_{j_d} be the neighbors of v_i in the graph G_n. Each symbol of the block S^c_i belongs to one of the blocks $B^c_{j_1}, \ldots, B^c_{j_d}$, and therefore it suffices to retrieve the latter blocks. Now, each block $B^c_{j_h}$ is the encoding via $RS^c_{b,d}$ of $b \cdot t$ symbols of w^c (in the alphabet Λ). The algorithm A invokes the algorithm A_0 to decode each of those $b \cdot t$ symbols of w^c, for each of the blocks $B^c_{j_1}, \ldots, B^c_{j_d}$. By the union bound, the algorithm A_0 decodes all those $b \cdot t \cdot d$ symbols of w^c correctly with probability at least $1 - b \cdot t \cdot d \cdot \frac{1}{3b+t-d} = \frac{2}{3}$. Whenever that happens, the algorithm A retrieves the blocks $B^c_{j_1}, \ldots, B^c_{j_d}$ correctly, and therefore computes the block S^c_i correctly. This concludes the construction of the algorithm A. Note that the query complexity of A is larger than that of A_0 by a factor of at most $b \cdot t \cdot d$, and hence it is at most $\text{poly}(d) \cdot q$. It remains to prove Lemma 3.5.

Proof of Lemma 3.5. Let A_w be the local corrector of the code W. By amplification, we may assume that A_w errs with probability at most $\frac{1}{3b+t-d}$, and this incurs a factor of at most $\text{poly}(d)$ to its query complexity.

Suppose that the algorithm A_0 is invoked on a string $z \in \Sigma^n$ and a coordinate $i \in [n_w]$. The algorithm A_0 invokes the algorithm A_w to retrieve the coordinate i, and emulates A_w in the natural way: Recall that A_w expects to be given access to a corrupted codeword of W, and makes queries to it. Whenever A_w makes a query to a coordinate $i_w \in [n_w]$, the algorithm A_0 performs the following steps.

1. A_0 finds the block B_i to which the coordinate i_w belongs. Formally, $l \overset{\text{def}}{=} \lfloor i_w/(b \cdot t) \rfloor$.

2. A_0 finds the neighbors of the vertex u_l in G_n. Let us denote those vertices by v_{j_1}, \ldots, v_{j_d}.

3. A_0 queries the coordinates j_1, \ldots, j_d, thus obtaining the blocks S_{j_1}, \ldots, S_{j_d}.

4. A_0 reconstructs the block B_i by reversing the permutation of G_n on S_{j_1}, \ldots, S_{j_d}.

5. A_0 attempts to decode B_i by applying an efficient decoding algorithm of Reed-Solomon.

6. Suppose that the decoding succeeded and returned a codeword of $RS^c_{b,d}$ that is $(\tau + \frac{\varepsilon}{2})$-close to B_i. Then, A_0 retrieves the value of the i_w-th coordinate of w^c from the latter codeword, and feeds it to A_w as an answer to its query.

7. Otherwise, A_0 feeds 0 as an answer to the query of A_w.

When the algorithm A_w finishes running, the algorithm A_0 finishes and returns the output of A_w. It is not hard to see that the query complexity of A_0 is at most d times the query complexity of A_w, and hence it is at most $\text{poly}(d) \cdot q$. It remains to show that A_0 succeeds in decoding from τ fraction of errors with probability at least $1 - \frac{1}{3b+t-d}$.

Let $z \in \Sigma^n$ be a string that is τ-close to a codeword $c \in C$. Let $w^c \in \Lambda^{nw}$ be the codeword of W from which c was generated, and let $B^c_{j_1}, \ldots, B^c_{j_d}$ and $S^c_{i_1}, \ldots, S^c_{i_l}$ be the corresponding blocks. We also use the following definitions:

1. Let $S^c_{i_1}, \ldots, S^c_{i_l} \in \mathbb{F}^d$ be the blocks that correspond to the symbols of z.

16
2. Let B_1^1, \ldots, B_n^2 be the blocks that are obtained from S_1^2, \ldots, S_n^2 by reversing the permutation.

3. Define blocks B_1^3, \ldots, B_n^3 as follows: if B_i^3 is $(\tau + \frac{\varepsilon}{2})$-close to $RS_{b,d}$, then B_i^3 is the nearest codeword of $RS_{b,d}$. Otherwise, B_i^3 is the all-zeroes block.

4. Let $w^z \in \Lambda^{nW}$ be the string that is obtained by extracting the coordinates of w from each of the codewords B_1^z, \ldots, B_n^z.

It is easy to see that A_0 emulates the action of A_w on w^z. Therefore, if we prove that w^z is τ_W-close to w^c, we will be done. In order to do so, it suffices to prove that for at least $1 - \tau_W$ fraction of the blocks B_i^z, it holds that B_i^z is $(\tau + \frac{\varepsilon}{2})$-close to B_i^c.

To this end, let J be the set of coordinates on which z and c differ. In other words, for every $j \in J$ it holds that $S_j^z \neq S_j^c$. By assumption, $|J| \leq \tau \cdot n$. Now, observe that since G_n is a $(\tau_W, \frac{1}{2} \cdot \varepsilon)$-sampler, it holds that for at least $(1 - \tau_W)$ fraction of the vertices u_i of G_n, there are at most $(\tau + \frac{\varepsilon}{2}) \cdot d$ edges between u_i and J. For each such u_i, it holds that $B_{u_i}^z$ is $(\tau + \frac{\varepsilon}{2})$-close to $B_{u_i}^c$, and this concludes the proof.

It can be verified that the local correctors A_0 and A can be implemented efficiently with black box access to A_w, as required by the second item in the “furthermore” part of the lemma.

3.2 Proof of Lemma 3.3

In this section we prove Lemma 3.3, restated below.

Lemma 3.3. There exists an explicit infinite family of \mathbb{F}_2-linear codes $\{W_n\}_n$ satisfying:

1. The code W_n has block length n, rate at least $1 - \frac{1}{\log n}$, and relative distance at least $\Omega\left(\sqrt{\frac{\log \log n}{\log^2 n}}\right)$.

2. The code W_n is locally correctable from $\Omega\left(\sqrt{\frac{\log \log n}{\log^2 n}}\right)$ fraction of errors with query complexity $\exp(\sqrt{\log n \cdot \log \log n})$.

3. The alphabet of W_n is a vector space Λ_n over \mathbb{F}_2, such that $|\Lambda_n| \leq \exp(\exp(\sqrt{\log n \cdot \log \log n}))$. Furthermore, the family $\{W_n\}_n$ has a uniform local corrector that runs in time $\exp(\sqrt{\log n \cdot \log \log n})$.

For the proof of Lemma 3.3 we use the multiplicity codes of [KSY14], in a specialized subconstant relative distance regime.

Lemma 3.6 ([KSY14, Lemma 3.5]). Let \mathbb{F} be any finite field. Let s, d, m be positive integers. Let M be the multiplicity code of order s evaluations of degree d polynomials in m variables over \mathbb{F}. Then M has block length $|\mathbb{F}|^m$, relative distance at least $\delta \overset{\text{def}}{=} 1 - \frac{d}{s |\mathbb{F}|}$ and rate $\frac{(d + m)}{(s + m - 1) |\mathbb{F}|^m}$, which is at least

$$\left(\frac{s}{m + s}\right)^m \cdot \left(\frac{d}{s |\mathbb{F}|}\right)^m \geq \left(1 - \frac{m^2}{s}\right) \cdot (1 - \delta)^m.$$

The alphabet of C is $\mathbb{F}^{(m+s-1)/m}$, and C is \mathbb{F}-linear. Furthermore, there is poly $(|\mathbb{F}|^m, (m+s-1)/m)$ time algorithm that computes an encoding map of M given $s, d, m,$ and \mathbb{F}.
Lemma 3.7 ([KSY14, Lemma 3.6]). Let M be the multiplicity code as above. Let $\delta = 1 - \frac{d}{\log|F|}$ be a lower bound for the relative distance of M. Suppose $|F| \geq \max\{10 \cdot m, \frac{d+6}{s}, 12 \cdot (s+1)\}$. Then M is locally correctable from $\delta/10$ fraction of errors with query complexity $O(s^m \cdot |F|)$. As discussed in Section 4.3 of [KSY14], this local corrector can be implemented to have running time $\text{poly}(|F|, s^m)$ over fields of constant characteristic. In fact, [Kop14] shows that the query complexity and running time for local correcting multiplicity codes can be further reduced to $|F| \cdot O(\left(\frac{1}{2}\right)^m)$ queries, but this does not lead to any noticeable improvement for our setting.

We now prove Lemma 3.3.

Proof. Let $n \in \mathbb{N}$ be a codeword length. We set the code W_n to be a multiplicity code with the following parameters. We choose F to be a field of size $2^{\sqrt{\log n \cdot \log \log n}}$, and choose $m = \sqrt{\frac{\log n}{\log \log n}}$. Note that indeed $|F|^m = n$. We choose $s = 2 \cdot m^2 \cdot \log n$. Let $\delta = \frac{1}{2 \cdot m \cdot \log n}$ (this will be a lower bound on the relative distance of the code) and choose the degree of the polynomials to be $d = s \cdot |F| \cdot (1 - \delta)$.

It can be verified that the relative distance of the code is at least $\delta \geq \Omega\left(\sqrt{\frac{\log n}{\log \log n}}\right)$. The rate of the code is at least $\left(1 - \frac{1}{2 \cdot \log n}\right)^m \geq 1 - \frac{1}{\log n}$, as required. The alphabet size is

$$|F|^{\binom{m+s-1}{m}} \leq \exp\left(\sqrt{\log n \cdot \log \log n} \cdot s^m\right) = \exp\left(\sqrt{\frac{\log n \cdot \log \log n}{\log \log n}} \cdot \left(\frac{\log^2 n}{\log \log n}\right)^{\frac{\log n}{\log \log n}}\right) = \exp\left(\exp\left(\sqrt{\frac{\log n}{\log \log n}}\right)\right).$$

Moreover, the alphabet is a vector space over F and hence in particular over F_2 (since we chose the size of F to be a power of 2). The code W_n is F-linear and in particular F_2-linear.

By Lemma 3.7, W_n is locally correctable from $\frac{1}{10} \cdot \delta \geq \Omega\left(\sqrt{\frac{\log n}{\log \log n}}\right)$ fraction of errors with query complexity

$$O(s^m \cdot |F|) \leq O\left(\frac{\log^2 n}{\log \log n}\right)^{\sqrt{\frac{\log n}{\log \log n}}} \cdot 2^{\sqrt{\log n \cdot \log \log n}} = 2^{O(\sqrt{\log n \cdot \log \log n})},$$

as required. Finally, the fact that the family $\{W_n\}_n$ is explicit follows from the “furthermore” part of Lemma 3.6, and the fact that it has an efficient uniform local corrector with the required running time follows from the discussion after Lemma 3.7.

3.3 LDCs

As remarked earlier, by choosing a systematic encoding map, linear LCCs automatically give LDCs with the same rate, relative distance, and query complexity. The running time of the local decoding algorithm will be essentially the same as the running time of the local correction algorithm, provided
that the systematic encoding map can be computed efficiently. Using the fact that multiplicity codes
have an efficiently computable systematic encoding map [Kop12], it is easy to check that the codes
we construct above also have an efficiently computable systematic encoding map. Thus we get
LDCs with the same parameters as our LCCs.

3.4 Binary LCCs that attain the Zyablov bound

In this section, we explain how to construct binary LCCs that attain the Zyablov bound, i.e., how
to derive Theorem 1.1 from Theorem 3.1. Recall that for every rate $0 < r < 1$ and every $\epsilon > 0$, we
would like to construct binary LCCs that can be decoded from

$$\frac{1}{2} \cdot Z_\varepsilon(r) = \frac{1}{2} \cdot \max_{r < R < 1} \left\{ (1 - R - \varepsilon) \cdot H^{-1}(1 - \frac{r}{R}) \right\}$$

(1)

fraction of errors. We do it by concatenating the codes of Theorem 3.1 with an appropriate Gilbert-
Varshamov codes, which is a standard idea in coding theory. More specifically, let $r < R < 1$ be
the value that maximizes the expression in 1. We obtain from Theorem 3.1 an infinite family
of LCCs with rate R and relative distance $1 - R - \varepsilon$. We concatenate the latter codes with the
Gilbert-Varshamov codes of rate $\frac{r}{R}$ and relative distance $H^{-1}(1 - \frac{r}{R})$ (see Fact 2.4). The resulting
concatenated codes have rate r and relative distance

$$\max_{r < R < 1} \left\{ (1 - R - \varepsilon) \cdot H^{-1}(1 - \frac{r}{R}) \right\}.$$

However, we still need to show that they can be locally corrected from half the relative distance.
In order to show it, we prove a variant of the GMD decoding of [For66] that is tailored for locally-
correctable codes. To this end, we use the following definitions, which generalize local correction
to deal with both errors and erasures.

Definition 3.8. Let $C \subseteq \Sigma^n$ be a code, and let $z \in (\Sigma \cup \{?\})^n$. The fraction of errors in z with
respect to a codeword $c \in C$ is the fraction of coordinates i such that $z_i \not\in \{c_i, ?\}$. The fraction of
erasures in z is the fraction of coordinates i such that $z_i = ?$.

Definition 3.9. We say that a code $C \subseteq \Sigma^n$ is locally correctable from δ fraction of twice-errors and
erasures with query complexity q if there exists a randomized algorithm A that satisfies the following
requirements:

- **Input:** A takes as input a coordinate $i \in [n]$, and also gets oracle access to a string $z \in (\Sigma \cup \{?\})^n$ that has ρ^e fraction of errors and $\rho^? \leq \delta$ fraction of erasures with respect to some
codeword $c \in C$, such that

$$2 \cdot \rho^e + \rho^? \leq \delta.$$

- **Output:** A outputs c_i with probability at least $\frac{2}{3}$.

- **Query complexity:** A makes at most q queries to the oracle z.

Note that the fraction of errors in the above condition is multiplied by 2. Specifically, observe
that if C is locally correctable from δ fraction of twice-errors and erasures then in particular it is
locally correctable from $\delta/2$ fraction of errors (rather than δ fraction of errors). We now have the
following variant of GMD decoding.
Theorem 3.10 (GMD decoding of LCCs). Let $C \subseteq \Sigma^n$ be a locally correctable code from δ_C fraction of twice-errors and erasures with query complexity q. Let $H \subseteq \Lambda^m$ be a code with relative distance δ_H such that $|H| = |\Sigma|$. Let $C' \subseteq \Lambda^{n \cdot m}$ be the concatenation of C with H. Then, C' is locally correctable from

$$\frac{1}{2} \cdot \delta_C \cdot \delta_H - O\left(\frac{1}{\sqrt{n}}\right)$$

fraction of errors with query complexity $O(q \cdot m)$.

Furthermore, there is an oracle algorithm that when given

- black box access to a local corrector of C that runs in time t_C, and
- black box access to an algorithm that decodes H from $\delta_H/2$ fraction of errors in time t_H,

computes a local corrector of the corresponding code C'. The resulting local corrector of C runs in time $t_C + O(q \cdot t_H) + \text{poly}(m, \log n)$.

We prove Theorem 3.10 in Section 3.4.1 below. It remains to explain how to use Theorem 3.10 to show that the codes we constructed above can be locally corrected from the fraction of errors in Equation 1. Basically, this follows by applying Theorem 3.10 with C being the codes obtained from Theorem 3.1, with H being the Gilbert-Varshamov codes, and with $\delta_C = 1 - R - \varepsilon$, $\delta_H = H^{-1}(1 - \frac{\varepsilon}{R})$. However, in order to apply Theorem 3.10, we need to show that the codes obtained from Theorem 3.1 can be locally corrected from $1 - r - \varepsilon$ fraction of twice-errors and erasures. Note that Theorem 3.1 only tells us that they can be locally corrected from $1 - r - \varepsilon/2$ fraction of errors.

It remains to show that the codes obtained from Theorem 3.1 can be locally corrected from twice-errors and erasures. To this end, we observe that the AEL distance-amplification (Lemma 3.2) yields codes that are locally correctable from twice-errors and erasures. More formally, we have the following result.

Lemma 3.11 (Lemma 3.2 for twice-errors and erasures). Let W, τ_W be as in Lemma 3.2, and let $0 < \delta < 1$ and $\varepsilon > 0$. Then, there exists a code C that is locally correctable from δ fraction of twice-errors and erasures with query complexity $q \cdot \text{poly}(1/(\varepsilon \cdot \tau_W))$ that has rate $r_W \cdot (1 - \delta - \varepsilon)$. Furthermore, C satisfies analogous properties of the code C in Lemma 3.2.

If we replace Lemma 3.2 with Lemma 3.11 in the proof of Theorem 3.1, we immediately obtain that the codes of Theorem 3.1 can be locally corrected from the required fraction of twice-errors and erasures, as required.

Proof sketch of Lemma 3.11. This lemma is proved exactly as Lemma 3.2, with the following modification. Recall that the key idea in the analysis of the local corrector of C in that lemma was the following: when the local corrector is given oracle access to a corrupted codeword, almost all the blocks B_1, \ldots, B_n contain the “correct” fraction of errors (up to an additive term of $\Omega(\varepsilon)$), and therefore those blocks can be corrected by the decoding algorithm of Reed-Solomon codes. The same argument can be used to show that if the corrupted codeword contains both errors and erasures, then almost all the blocks B_1, \ldots, B_n again contain the “correct” fraction of twice-errors and erasures (again, up to an additive term of $\Omega(\varepsilon)$). Thus, those blocks can again be corrected by the decoding algorithm of Reed-Solomon codes, which is well-known to decode from twice-errors and erasures.

\footnote{The $O(\frac{1}{\sqrt{n}})$ term of Theorem 3.10 can be incorporated within the parameter ε.}
3.4.1 Proof of Theorem 3.10

Comparison with GMD decoding. The proof of Theorem 3.10 follows the proof of the GMD decoding of [For66], with small modifications. Recall that the standard presentation of the GMD algorithm (e.g., [Sud01, Lecture 11]) is as follows: First, a randomized decoding algorithm is presented. Then, it is shown that the latter algorithm succeeds in expectation (rather than with high probability). Finally, the randomized algorithm is derandomized, yielding a deterministic algorithm that always succeeds.

In our setting, we do not know how to perform the derandomization step. The reason is that the derandomization is done by enumerating over all the possible sequence of coin tosses of the randomized algorithm, and checking for each sequence whether it yields the correct answer — i.e., whether it yields a codeword that is sufficiently close to the received string. In our case, we do know how to check that the string that the decoder outputs is a valid codeword, since we are only allowed to query a small part of this string.

In order to resolve this issue, we skip the derandomization step, and instead observe that the original randomized decoder actually succeeds with high probability. Details follow.

The algorithm. Let $C \subseteq \Sigma^n$ be locally correctable code from δ_C fraction of errors and erasures with query complexity q. Let $H \subseteq \Lambda^m$ be a code with relative distance δ_H such that $|H| = |\Sigma|$. Let $C' \subseteq \Lambda^{mn}$ be the concatenation of C with H, and let $\phi : \Sigma \rightarrow H$ be the bijection that is used to define the concatenation. Let A be the local corrector of C.

In what follows, we assume that A has success probability at least $\frac{7}{9}$ (rather than $\frac{2}{3}$). This can be guaranteed by amplification, while increasing the query complexity of A by at most a constant factor. We also assume that the code H has some associated decoding algorithm. If no such algorithm is provided, we use the brute-force algorithm that enumerates over all codewords of H and outputs the codeword h that is closest to v.

We describe a local corrector A' for C'. When A' is given access to a string $z' \in \Lambda^{mn}$, and a coordinate $i' \in [mn]$, it behaves as follows. First, A' finds the index $i \in [n]$ of the block to which i' belongs (formally, $i \overset{\text{def}}{=} \lceil i' / m \rceil$). Then, A' emulates the action of the local corrector A of C on the coordinate i. Whenever A makes a query to a coordinate $j \in [n]$, the local corrector A' emulates the query as follows:

1. A' queries the block of z' that corresponds to j, that is, it queries the coordinates $(j - 1) \cdot m + 1, \ldots, (j - 1) \cdot m + m$ of z'. Let $v \in \Lambda^m$ be the obtained string.

2. A' invokes the decoding algorithm of H on v. Let h be the obtained codeword of H (if the decoding fails, we set h to be an arbitrary codeword of h).

3. With probability

 $$\min \left\{ 1, \frac{\text{dist}(v, h)}{\delta_H} \right\},$$

 the local corrector A' answers the query of A with $\phi^{-1}(h)$ (i.e., the symbol in Σ that corresponds to h).

4. Otherwise, it answers the query with an erasure, i.e., with the symbol “?”.

When the emulation of A ends, A outputs a symbol $\sigma \in \Sigma$. Then, the local corrector A' finishes and outputs the symbol of $\phi(\sigma)$ that corresponds to i', i.e., the symbol $\phi(\sigma)_{i'} \mod m$.

21
The analysis. It is easy to see that the query complexity of \(A' \) is \(m \) times the query complexity of \(A \). This means that the query complexity of \(A' \) is at most \(O(m \cdot q) \), as required (there is a constant factor here because we amplified the success probability of \(A \)). It is also not hard to see that \(A' \) has the required running time.

It remains to prove that if there is a codeword \(c' \in C' \) such that

\[
\dist(z', c') \leq \frac{1}{2} \cdot \delta_C \cdot \delta_H - O\left(\frac{1}{\sqrt{n}}\right),
\]

then \(A' \) outputs \(c'_i \) with probability at least \(\frac{2}{3} \). To this end, observe that the output of \(A' \) is distributed exactly like the output of the following algorithm \(A'' \) (which is not query efficient). The algorithm \(A'' \) takes the string \(z' \) and the coordinate \(i' \), and performs the following steps:

1. The algorithm \(A'' \) constructs a string \(z \in \Sigma^n \) by setting each coordinate \(j \in [n] \) according to the way that \(A' \) emulates a query of \(A \) to \(j \). More specifically, \(A'' \) sets \(z_j \) as follows:
 (a) \(A'' \) queries the block of \(z' \) that corresponds to \(j \), thus obtaining a string \(v \in \Lambda^m \).
 (b) \(A'' \) invokes the decoding algorithm of \(H \) on \(v \), thus obtaining a codeword \(h \in H \).
 (c) With probability
 \[
 \min \left\{ 1, \frac{\dist(v, h)}{\delta_H} \right\},
 \]
 the algorithm sets \(z_j = \phi^{-1}(z) \), and otherwise it sets \(z_j = ? \).

2. The algorithm \(A'' \) invokes the local corrector \(A \) on \(z \) and the coordinate \(i \equiv \lfloor i'/m \rfloor \), thus obtaining a symbol \(\sigma \in \Sigma \).

3. The algorithm \(A'' \) outputs \(\phi(\sigma)_{i'} \mod m \).

It therefore suffices to prove that \(A'' \) outputs \(c'_i \) with probability at least \(\frac{2}{3} \). To this end, we prove the following result.

Proposition 3.12. Let \(c \) be the codeword of \(C \) that corresponds to \(c' \). Let \(\rho^e \) and \(\rho^? \) be the fractions of errors and erasures in \(z \) with respect to \(c \) respectively. Then, with probability at least \(\frac{8}{9} \) it holds that

\[
2 \cdot \rho^e + \rho^? \leq \delta_C. \tag{2}
\]

Before proving Proposition 3.12, observe that it implies the required result. Indeed, whenever Inequality 2 holds, the local corrector \(A \) (and thus the algorithm \(A'' \)) is guaranteed to succeed with probability at least \(\frac{7}{9} \). The proposition says that the probability that this inequality does not hold is at most \(\frac{1}{9} \), so it follows that \(A'' \) succeeds with probability at least \(\frac{7}{9} - \frac{1}{9} = \frac{2}{3} \), as required.

Proof of Proposition 3.12. For every \(j \in [n] \), let \(I_j^e \) be the indicator random variable of the event that \(z_j \) is an error (i.e., \(z_j \notin \{c_j, ?\} \)), and let \(I_j^? \) be the indicator random variable of the event that \(z_j \) is an erasure. For every \(j \in [n] \), define the random variable

\[
T_j \equiv 2 \cdot I_j^e + I_j^?.
\]
We wish to prove that
\[
\frac{1}{n} \cdot \sum_{j=1}^{n} T_j \leq \delta_C
\]
with probability at least \(\frac{8}{9} \). It is a known fact\(^6\) about GMD decoding that
\[
\mathbb{E} \left[\frac{1}{n} \cdot \sum_{j=1}^{n} T_j \right] \leq \delta_C - O\left(\frac{1}{\sqrt{n}} \right)
\]
(see, e.g., [Sud01, Lecture 11]). Thus, it remains to prove that the average \(\frac{1}{n} \cdot \sum_{j=1}^{n} T_j \) is concentrated around its expectation. To this end, observe the random variables \(T_j \) are independent, and that each \(T_j \) takes a value in \([0,2] \). Therefore a standard application of the Hoeffding bound implies that
\[
\Pr \left[\frac{1}{n} \cdot \sum_{j=1}^{n} T_j \leq \delta_C - O\left(\frac{1}{\sqrt{n}} \right) + \varepsilon \right] \geq 1 - e^{-\frac{1}{2} \cdot \varepsilon^2 \cdot n}.
\]
In particular, by setting \(\varepsilon \) to be equal to the \(O\left(\frac{1}{\sqrt{n}} \right) \) term, and choosing the constant in the Big-O appropriately, we get that
\[
\Pr \left[\frac{1}{n} \cdot \sum_{j=1}^{n} T_j \leq \delta_C \right] \geq \frac{8}{9},
\]
as required. \(\square \)

Remark 3.13. In the proof above, we argued that the outputs of \(A' \) and \(A'' \) are identically distributed. Actually, this only holds under the assumption that \(A \) never makes the same query twice. However, this can be assumed without loss of generality.

4 LTCs with sub-polynomial query complexity

In this section, we prove the following theorem on LTCs, which immediately implies Theorem 1.4 from the introduction.

Theorem 4.1 (Main LTC theorem). For every \(r \in (0,1) \), and \(\varepsilon > 0 \), there exist a finite vector space \(\Sigma \) over \(\mathbb{F}_2 \) and an explicit infinite family of \(\mathbb{F}_2 \)-linear codes \(\{ C_n \}_n \) over \(\Sigma \) satisfying:

1. \(C_n \) has block length \(n \), rate at least \(r \), and relative distance at least \(1 - r - \varepsilon \).

2. \(C_n \) is locally testable with query complexity \(\exp(\sqrt{\log n \cdot \log \log n}) \).

3. The size of \(\Sigma \) is at most \(\exp(\text{poly}(1/\varepsilon)) \).

Furthermore, the family \(\{ C_n \}_n \) has a uniform local tester that runs in time \(\exp(\sqrt{\log n \cdot \log \log n}) \).

\(^6\)Actually, the known fact is that if \(\text{dist}(c', C') \leq \frac{1}{2} \cdot \delta_C \cdot \delta_H \) then \(\mathbb{E} \left[\frac{1}{n} \cdot \sum_{j=1}^{n} T_j \right] \leq \delta_C \). However, we can get the desired inequality by subtracting the term \(O\left(\frac{1}{\sqrt{n}} \right) \) in the appropriate places in the proof of this fact.
We explain how to construct our binary LTCs (Theorem 1.2) using Theorem 4.1 in Section 4.3 below.

The proof of Theorem 4.1 has two steps. In the first step, we give a transformation that amplifies the relative distance of an LTC — this step follows the distance amplification of [AEL95, AL96]. In the second step, we construct a locally-testable code W_n with the desired query complexity but that has sub-constant relative distance. Finally, we construct the code C_n by applying the distance amplification to W_n. Those two steps are formalized in the following pair of lemmas, which are proved in Sections 4.2 and 4.3 respectively.

Lemma 4.2. Suppose that there exists a code W with relative distance δ_W that is locally testable with query complexity q such that:

- W has rate r_W.
- W is \mathbb{F}_2-linear.

Then, for every $0 < \delta, \varepsilon < 1$, there exists a code C with relative distance at least δ that is locally testable with query complexity $q \cdot \text{poly}(1/(\varepsilon \cdot \delta_W))$, such that:

- $|C| = |W|$.
- C has rate at least $r_W \cdot (1 - \delta - \varepsilon)$.
- Let Λ denote the alphabet of W. Then, the alphabet of C is $\Sigma \stackrel{\text{def}}{=} \Lambda^p$ for some $p = \text{poly}(1/(\varepsilon \cdot \delta_W))$.
- C is \mathbb{F}_2-linear.

Furthermore,

- There is a polynomial time algorithm that computes a bijection from every code W to the corresponding code C, given r_W, δ_W, δ, ε and Λ.
- There is an oracle algorithm that when given black box access to the local tester of any code W, and given also r_W, δ_W, δ, ε, Λ, and the block length of W, computes the local tester of the corresponding code C. The resulting local tester of C runs in time that is polynomial in the running time of the local tester of W and in $1/\delta_W$, $1/\varepsilon$ and $\log(n_W)$ where n_W is the block length of W.

Lemma 4.3. There exists an explicit infinite family of \mathbb{F}_2-linear codes $\{W_n\}$ satisfying:

1. W_n has block length n, rate at least $1 - \frac{1}{\log n}$, and relative distance at least $\exp(-\sqrt{\log n \cdot \log \log n})$.
2. W_n is locally testable with query complexity $\exp(\sqrt{\log n \cdot \log \log n})$.
3. The alphabet of W_n is a vector space Λ_n over \mathbb{F}_2, such that $|\Lambda_n| \leq \exp(\sqrt{\log n \cdot \log \log n})$.

Furthermore, the family $\{W_n\}$ has a uniform local tester that runs in time $\exp(\sqrt{\log n \cdot \log \log n})$.

The proof of Theorem 4.1 from Lemmas 4.2 and 4.3 is analogous to the proof of Theorem 3.1 from Lemmas 3.2 and 3.3, and we therefore omit it. The only difference between the proofs is the way to show that the concatenated codes are locally testable. This is done using a standard argument, and we refer the reader to Section 4.3 for an example of such an argument.
Remark 4.4. In Lemma 4.2 above, as in Lemma 3.2, we chose to assume that W is \mathbb{F}_2-linear for simplicity. More generally, if W is \mathbb{F}-linear for any finite field \mathbb{F}, then C is \mathbb{F}-linear as well. Furthermore, the lemma also works if W is not \mathbb{F}-linear for any field \mathbb{F}, in which case C is not guaranteed to be \mathbb{F}-linear for any field \mathbb{F}.

4.1 Proof of Lemma 4.2

Our construction of the LTC C is the same as the construction of the LCCs of Section 3.1, with τ_W and τ replaced by $\delta_W/2$ and $\delta/2$ respectively. Our LTCs have the required rate, relative distance and alphabet size due to the same considerations as before.

It remains to prove that C is locally testable with query complexity $q \cdot \text{poly}(1/(\varepsilon \cdot \delta_W))$. To this end, we describe a local tester A. In what follows, we use the notation of Section 3.1.2.

Let A_w be the local tester of W. When given oracle access to a purported codeword $z \in \Sigma^n$, the local tester A emulates the action of A_w in the natural way: Recall that A_w expects to be given access to a purported codeword of W, and makes queries to it. Whenever A_w makes a query to a coordinate $j \in [n/2]$, the algorithm A performs the following steps:

1. A finds the block B_l to which the coordinate j belongs. Formally, $l \overset{\text{def}}{=} \lceil j/(b \cdot t) \rceil$.
2. A finds the neighbors of the vertex u_l in G_n. Let us denote those vertices by v_{j_1}, \ldots, v_{j_d}.
3. A queries the coordinates j_1, \ldots, j_d, thus obtaining the blocks S_{j_1}, \ldots, S_{j_d}.
4. A reconstructs the block B_l by reversing the permutation of G_n on S_{j_1}, \ldots, S_{j_d}.
5. If B_l is not a codeword of $RS_{b,d}$, the local tester A rejects.
6. Otherwise, A retrieves the value of the j-th coordinate of w from B_l, and feeds it to A_w as an answer to its query.

If A_w finishes running, then A accepts if and only if A_w accepts.

It is easy to see that the query complexity of A is $d \cdot q$. It is also not hard to see that if z is a legal codeword of C, then A accepts with probability 1. It remains to show that if z is not a codeword of C then A rejects with probability at least $\text{dist}(z, C)$. To this end, it suffices to prove that A rejects with probability at least $\frac{1}{\text{poly}(d)} \cdot \text{dist}(z, C)$ — as explained in Section 2.3, this rejection probability can be amplified to $\text{dist}(z, C)$ while increasing the query complexity by a factor of $\text{poly}(d)$, which is acceptable. We use the following definitions:

1. Let $S^z_1, \ldots, S^z_n \in \mathbb{F}^d$ be the blocks that correspond to the symbols of z.
2. Let $B^z_1, \ldots, B^z_n \in \mathbb{F}^d$ be the blocks that are obtained from S^z_1, \ldots, S^z_n by reversing the permutation.
3. Let $w^z \in (\Lambda \cup \{\text{?}\})^{n/2}$ be the string that is obtained from the blocks B^z_1, \ldots, B^z_n as follows: for each block B^z_l that is a legal codeword of $RS_{b,d}$, we extract from B^z_l the corresponding coordinates of w^z in the natural way. For each block B^z_l that is not a legal codeword of $RS_{b,d}$, we set the corresponding coordinates of w^z to be “?”.

\footnote{In particular, the lower bound on the relative distance of our LTC C follows from the lower bound on the relative distance given in Lemma 3.2, using the fact that our LTC W has a (trivial, inefficient) $n/2$ query local corrector from $\delta_W/2$ fraction errors. Again, this lower bound on the distance could have been argued directly, without talking about locality.}

25
We would like to lower bound the probability that A rejects z in terms of the probability that A_w rejects w^z. However, there is a small technical problem: A_w is defined as acting on strings in Λ^{nW}, and not on strings in $(\Lambda \cup \{\?\})^{nW}$. To deal with this technicality, we define an algorithm A'_w that, when given access to a string $y \in (\Lambda \cup \{\?\})^{nW}$, emulates A_w on y, but rejects whenever a query is answered with “?”. We use the following proposition, whose proof we defer to the end of this section.

Proposition 4.5. A'_w rejects a string $y \in (\Lambda \cup \{\?\})^{nW}$ with probability at least $\frac{1}{8} \cdot \text{dist}(y, W)$.

Now, it is not hard to see that when A is invoked on z, it emulates the action of A'_w on w^z. To finish the proof, note that since each coordinate in W has at most d coordinates of C that depend on it, it holds that

$$\text{dist}(z, C) \cdot n \leq d \cdot \text{dist}(w^z, W) \cdot n_W$$

and therefore

$$\text{dist}(w^z, W) \geq \frac{n}{n_W} \cdot \frac{1}{d} \cdot \text{dist}(z, C) \geq \frac{1}{b \cdot t \cdot d} \cdot \text{dist}(z, C).$$

It thus follows that A rejects z with probability at least

$$\frac{1}{8} \cdot \text{dist}(w^z, W) \geq \frac{1}{\text{poly}(d)} \cdot \text{dist}(z, C),$$

as required.

It is not hard to see that the local tester A can be implemented efficiently with black box access to A_w, as required by the second item in the “furthermore” part of the lemma. We turn to proving Proposition 4.5.

Proof of Proposition 4.5. We may assume without loss of generality that A_w makes at least one query that is uniformly distributed over $[n_W]$: otherwise, we can change A_w such that it makes an additional uniformly distributed query and ignores the answer. This assumption means that A'_w makes at least one query that is uniformly distributed over $[n_W]$, and rejects if the answer is “?”. Let

$$E \equiv \{i : y_i = ?\}$$

be the set of erasures in y. We consider two cases:

- **E is “large”:** Suppose that $\frac{|E|}{n_W} \geq \frac{1}{2} \cdot \text{dist}(y, W)$. In this case, the uniformly distributed query of A'_w hits a coordinate in E with probability at least $\frac{1}{8} \cdot \text{dist}(y, W)$. In such a case, A'_w rejects, and the proposition follows.

- **E is “small”:** Suppose that $\frac{|E|}{n_W} \leq \frac{1}{2} \cdot \text{dist}(y, W)$. Let $y_0 \in \Lambda^{nW}$ be an arbitrary string that agrees with y outside E. Clearly,

$$\text{dist}(y, W) \leq \text{dist}(y_0, W) + \frac{|E|}{n_W},$$

...
so \(\text{dist}(y_0, W) \geq \frac{1}{2} \cdot \text{dist}(y, W) \). Let \(E \) denote the event that \(A_w \) queries some coordinate in \(E \). We have that

\[
\Pr[A'_w \text{ rejects } y] = \Pr[E] \cdot \Pr[A'_w \text{ rejects } y|E] + \Pr[\neg E] \cdot \Pr[A'_w \text{ rejects } y|\neg E]
\]

\[
\geq \Pr[E] \cdot \Pr[A_w \text{ rejects } y_0|E] + \Pr[\neg E] \cdot \Pr[A_w \text{ rejects } y_0|\neg E]
\]

\[
\geq \Pr[A_w \text{ rejects } y_0]
\]

\[
\geq \frac{1}{2} \cdot \text{dist}(y_0, W),
\]

as required.

This concludes the proof. \(\square \)

4.2 Proof of Lemma 4.3

In this section, we prove Lemma 4.3, restated below.

Lemma 4.3. There exists an explicit infinite family of \(\mathbb{F}_2 \)-linear codes \(\{W_n\}_n \) satisfying:

1. \(W_n \) has block length \(n \), rate at least \(1 - \frac{1}{\log n} \), and relative distance at least \(\exp(-\sqrt{\log n \cdot \log \log n}) \).

2. \(W_n \) is locally testable with query complexity \(\exp(\sqrt{\log n \cdot \log \log n}) \).

3. The alphabet of \(W_n \) is a vector space \(\Lambda_n \) over \(\mathbb{F}_2 \), such that \(|\Lambda_n| \leq \exp(\sqrt{\log n \cdot \log \log n}) \).

Furthermore, the family \(\{W_n\}_n \) has a uniform local tester that runs in time \(\exp(\sqrt{\log n \cdot \log \log n}) \).

For the proof of Lemma 4.3 we use the tensor product codes instantiated in the sub-constant relative distance regime. The use of tensor products to construct LTCs was initiated by [BS06], and was studied further in [Val05, CR05, DSW06, Mei09, BV09b, BV09a, Vid12, GM12, Mei12, Vid13, Vid15]. Our construction is based on a result of [Vid15].

We start with some definitions. Let \(\mathbb{F} \) be a finite field. For a pair of vectors \(h_1 \in \mathbb{F}^{\ell_1} \) and \(h_2 \in \mathbb{F}^{\ell_2} \) their tensor product \(h_1 \otimes h_2 \) denotes the matrix \(M \in \mathbb{F}^{\ell_1 \times \ell_2} \) with entries \(M_{(i_1, i_2)} = (h_1)_{i_1} \cdot (h_2)_{i_2} \) for every \(i_1 \in [\ell_1] \) and \(i_2 \in [\ell_2] \). For a pair of linear codes \(H_1 \subseteq \mathbb{F}^{\ell_1} \) and \(H_2 \subseteq \mathbb{F}^{\ell_2} \) their tensor product code \(H_1 \otimes H_2 \subseteq \mathbb{F}^{\ell_1 \times \ell_2} \) is defined to be the linear subspace spanned by all matrices of the form \(h_1 \otimes h_2 \) where \(h_1 \in H_1 \) and \(h_2 \in H_2 \). For a linear code \(H \), let \(H^1 \overset{\text{def}}{=} H \) and \(H^m \overset{\text{def}}{=} H^{m-1} \otimes H \) for all \(m \geq 1 \).

The following are some useful facts regarding tensor product codes (see e.g. [DSW06]).

Fact 4.6. Let \(H_1 \subseteq \mathbb{F}^{\ell_1} \) and \(H_2 \subseteq \mathbb{F}^{\ell_2} \) be linear codes of rates \(r_1, r_2 \) and relative distances \(\delta_1, \delta_2 \) respectively. Then \(H_1 \otimes H_2 \subseteq \mathbb{F}^{\ell_1 \times \ell_2} \) is a linear code of rate \(r_1 \cdot r_2 \) and relative distance \(\delta_1 \cdot \delta_2 \). In particular, if \(H \subseteq \mathbb{F}^{\ell} \) is a linear code of rate \(r \) and relative distance \(\delta \) then \(H^m \subseteq \mathbb{F}^{\ell m} \) is a linear code of rate \(r^m \) and relative distance \(\delta^m \).

We use the following theorem that is given as Corollary 3.6 in [Vid15].

Theorem 4.7 (Immediate corollary of [Vid15, Thm. 4.4]). Let \(H \subseteq \mathbb{F}^{\ell} \) be a linear code with relative distance \(\delta \). Then for every \(m \geq 3 \), the code \(H^m \subseteq \mathbb{F}^{\ell m} \) is locally testable with query complexity

\[
\ell^2 \cdot \text{poly}(m)/\delta^{2m}.
\]
For the proof of Lemma 4.3, we instantiate Theorem 4.7 with the tensor product of Reed-Solomon codes.

Proof of Lemma 4.3 Fix a codeword length \(n \in \mathbb{N} \). The code \(W_n \) is defined as follows. Let \(\mathbb{F} \triangleq \mathbb{F}_{2^{\sqrt{\log n \cdot \log \log n}}} \), and let \(m \triangleq \sqrt{\frac{\log n}{\log \log n}} \). Let \(R \) be a Reed-Solomon code over \(\mathbb{F} \) with block length \(n^{1/m} \), rate \(r \triangleq \left(1 - \frac{1}{\log n} \right)^{1/m} \) and relative distance \(1 - r \). Note that indeed the block length is at most \(|\mathbb{F}| \), which is required for the existence of such codes. Finally, let \(W_n = R^m \).

From the properties of tensor codes we have that \(W_n \) is a linear code over \(\mathbb{F} \) with block length \((n^{1/m})^m = n \), rate \(r^m = 1 - \frac{1}{\log n} \), and relative distance \((1 - r)^m \geq 2^{-O(m \cdot \log m + \log \log n)} \).

We chose Reed-Solomon codes for convenience, but any high-rate codes with reasonable distance will do.

28

8We chose Reed-Solomon codes for convenience, but any high-rate codes with reasonable distance will do.
The tester A' has query complexity that is at most a constant times the query complexity of A, since the inner codes have constant block length. It is also easy to see that A' satisfies the completeness property, i.e., it accepts codewords of $\{C'_n\}$ with probability 1. It remains to prove that A' rejects a string z' with probability that is proportional to its distance from the corresponding code $C'_{|z|}$. To this end, observe that A' can be viewed as emulating the running of A on the string z that is obtained by replacing blocks of z' that are legal codewords with the corresponding symbols in Σ, and replacing the other blocks with the symbol “?”. The required bound on the rejection probability now follows from Proposition 4.5 using a similar argument to that of Section 4.1.

5 Open Questions

We conclude with some open questions:

- In this work, we found that LCCs and LTCs with sub-constant relative distance can be useful. Are there better LCCs and LTCs in the sub-constant relative distance regime?
- LCCs and LTCs often come together with PCPs. Can we construct constant-rate PCPs with sub-polynomial query complexity?
- Are there applications of our LCCs and LTCs to complexity theory?

Acknowledgement. We would like to thank Irit Dinur, Tali Kaufman, Ran Raz and Avi Wigderson for useful discussions and ideas. We would also like to thank Oded Goldreich, Irit Dinur, Madhu Sudan and anonymous referees for helpful comments on the preliminary version of this work.

References

<table>
<thead>
<tr>
<th>Reference</th>
<th>Author(s)</th>
<th>Title</th>
<th>Journal/Conference</th>
<th>Year</th>
</tr>
</thead>
</table>