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Abstract

A simulation of an interactive protocol entails the use of an interactive communication to
produce the output of the protocol to within a fixed statistical distance ε. Recent works in
the TCS community have propagated that the information complexity of the protocol plays a
central role in characterizing the minimum number of bits that the parties must exchange for
a successful simulation, namely the distributional communication complexity of simulating the
protocol. Several simulation protocols have been proposed with communication complexity de-
pending on the information complexity of the simulated protocol. However, in the absence of
any general lower bounds for distributional communication complexity, the conjectured central
role of information complexity is far from settled. We fill this gap and show that the distri-
butional communication complexity of ε-simulating a protocol is bounded below by the ε-tail
λε of the information complexity density, a random variable with information complexity as its
expected value. For protocols with bounded number of rounds, we give a simulation protocol
that yields a matching upper bound. Thus, it is not information complexity but λε that governs
the distributional communication complexity.

As applications of our bounds, in the amortized regime for product protocols, we identify the
exact second order term, together with the precise dependence on ε. For general protocols such
as a mixture of two product protocols or for the amortized case when the repetitions are not
independent, we derive a general formula for the leading asymptotic term. These results sharpen
and significantly extend known results in the amortized regime. In the single-shot regime, our
lower bound clarifies the dependence of communication complexity on ε. We illustrate this
with an example that exhibits an arbitrary separation between distributional communication
complexity and information complexity for all sufficiently small ε.
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1 Introduction

Two parties observing random variables X and Y seek to run an interactive protocol π with inputs
X and Y . The parties have access to private as well as shared public randomness. What is
the minimum number of bits that they must exchange in order to simulate π to within a fixed
statistical distance ε? This question is of importance to the theoretical computer science as well as
the information theory communities. On the one hand, it is related closely to the communication
complexity problem [Yao79], which in turn is an important tool for deriving lower bounds for
computational complexity [KW88] and for space complexity of streaming algorithms [AMS96]. On
the other hand, it is a significant generalization of the classical information theoretic problem of
distributed data compression [SW73], replacing data to be compressed with an interactive protocol
and allowing interactive communication as opposed to the usual one-sided communication.

In recent years, it has been argued that the distributional communication complexity for simu-
lating a protocol π is related closely to its information complexity1 IC(π) defined as follows:

IC(π)
def
= I(Π ∧X|Y ) + I(Π ∧ Y |X),

where I(X∧Y |Z) denotes the conditional mutual information betweenX and Y given Z (cf. [Sha48,
CK11]). For a protocol π with communication complexity ‖π‖ (the depth of the binary protocol
tree), a simulation protocol requiring Õ(

√
IC(π)‖π‖) bits of communication was given in [BBCR10]

and one requiring 2O(IC(π)) bits of communication was given in [Bra12]. Interestingly, it was shown
in [BR11] that the amortized distributional communication complexity of simulating n copies of
a protocol π for vanishing simulation error is bounded above by2 IC(π). While a matching lower
bound was also derived in [BR11], it is not valid in our context – [BR11] considered function
computation and used a coordinate-wise error criterion. In fact, none of the works discussed
above gave a precise definition of simulation3 of a protocol, perhaps owing to their focus on the
upper bounds for distributional communication complexity of protocol simulation rather than the
lower bounds. A general version of the simulation problem was considered in [YGA12], but only
bounded round simulation protocols were considered. Nevertheless, we can readily modify the lower
bound argument in [BR11] and use the continuity of conditional mutual information to formally
obtain the required lower bound and thereby a characterization of the amortized distributional
communication complexity for vanishing simulation error. Specifically, denoting by D(πn) the
distributional communication complexity of simulating n copies of a protocol π with vanishing
simulation error, we have

lim
n→∞

1

n
D(πn) = IC(π).

Perhaps motivated by this characterization, or a folklore version of it, the research in this area
has focused on designing simulation protocols for π requiring communication of length depending
on IC(π); the results cited above belong to this category as well. However, the central role of
IC(π) in the distributional communication complexity of protocol simulation is far from settled and
many important questions remain unanswered. For instance, (a) Does IC(π) suffice to capture the

1For brevity, we do not display the dependence of IC(π) on the (fixed) distribution PXY .
2Braverman and Rao actually used their general simulation protocol as a tool for deriving the amortized distri-

butional communication complexity of function computation. This result was obtained independently by Ma and
Ishwar in [MI11] using standard information theoretic techniques.

3Prior literature makes no explicit distinction between simulation and compression of protocols. However, the
difference is significant and is discussed in Remark 2 below.
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dependence of distributional communication complexity on the simulation error ε? (b) Does infor-
mation complexity have an operational role in simulating πn besides being the leading asymptotic
term? (c) How about the simulation of more complicated protocols such as a mixture πmix of two
product protocols πn1 and πn2 – does IC(πmix) still constitute the leading asymptotic term in the
communication complexity of simulating πmix?

In this paper, we answer all these questions in the negative by exhibiting another quantity that
plays such a fundamental role and can differ from information complexity significantly. To this
end, we introduce the notion of information complexity density of a protocol π with inputs X and
Y generated from a fixed distribution PXY .

Definition 1 (Information complexity density). The information complexity density of a
private coin protocol π is given by the function

ic(τ ;x, y) = log
PΠ|XY (τ |x, y)

PΠ|X (τ |x)
+ log

PΠ|XY (τ |x, y)

PΠ|Y (τ |y)
,

for all observations x and y of the two parties and all transcripts τ , where PΠXY denotes the joint
distribution of the observation of the two parties and the random transcript Π generated by π.

Note that IC(π) = E [ic(Π;X,Y )]. We show that it is the ε-tail of the information complexity
density ic(Π;X,Y ), i.e., the supremum4 over values of λ such that Pr (ic(Π;X,Y ) > λ) ≤ ε, which
governs the communication complexity of simulating a protocol with simulation error less than ε
and not the information complexity of the protocol. The information complexity IC(π) becomes
the leading term in communication complexity for simulating π only when roughly

IC(π)�
√

Var(ic(Π;X,Y )) log(1/ε).

This condition holds, for instance, in the amortized regime considered in [BR11]. However, the
ε-tail of ic(Π;X,Y ) can differ significantly from IC(π), the mean of ic(Π;X,Y ). In Appendix
A, we provide an example protocol with inputs of size 2n such that for ε = 1/n3, the ε-tail of
ic(Π;X,Y ) is greater than 2n while IC(π) is very small, just Õ(n−2).

1.1 Summary of results

Our main results are bounds for distributional communication complexity Dε (π) for ε-simulating
a protocol π. The key quantity in our bounds is the ε-tail λε of ic(Π;X,Y ).

Lower bound. Our main contribution is a general lower bound for Dε (π). We show that for
every private coin protocol π, Dε (π) & λε. In fact, this bound does not rely on the structure of
random variable Π and is valid for the more general problem of simulating a correlated random
variable.

Prior to this work, there was no lower bound that captures both the dependence on simulation
error ε as well as the underlying probability distribution. On the one hand, the lower bound
above yields many sharp results in the amortized regime. It gives the leading asymptotic term
in the communication complexity for simulating any sequence of protocols, and not just product
protocols. For product protocols, it yields the precise dependence of communication complexity on
ε as well as the exact second-order asymptotic term. On the other hand, it clarifies the dependence
of Dε (π) on ε even in the single-shot regime. For instance, the result of [Bra12] is often stated as
Dε (π) = O(2IC(π)), a form which hides the dependence on ε. However, our lower bound shows that

4Formally, our lower bound uses lower ε-tail sup{λ : Pr (ic(Π;X,Y ) > λ) > ε} and the upper bound uses upper
ε-tail inf{λ : Pr (ic(Π;X,Y ) > λ) < ε}. For many interesting cases, the two coincide.
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this can be misleading. Consider the example protocol in Appendix A. On evaluating our lower
bound for this protocol, for ε = 1/n3 we get Dε (π) = Ω(n) which is far more than 2IC(π) since
IC(π) = Õ(n−2). Remarkably, [GKR14b, GKR14a] exhibited exponential separation between the
distributional communication complexity of computing a function and the information complexity
of that function even for a large ε. Our simple example shows a much stronger separation between
Dε (π) and IC(π), albeit for a small ε.

Upper bound. To establish our asymptotic results, we propose a new simulation protocol,
which is of independent interest. For a protocol π with bounded rounds of interaction, using our
proposed protocol we can show that Dε (π) . λε. Much as the protocol of [BR11], our simulation
protocol simulates one round at a time, and thus, the slack in our upper bound does depend on
the number of rounds.

Note that while the operative term in the lower bound and the upper bound is the ε-tail of
ic(Π;X,Y ), the lower bound approaches it from below and the upper bound approaches it from
above. It is often the case that these two limits match and the leading term in our bounds coincide.
See Figure 1 for an illustration of our bounds.

Lower bound Upper Bound

Pr(ic(⇧; X, Y )) > �) < ✏Pr(ic(⇧; X, Y )) > �) > ✏

Distribution of ic(⇧; X, Y )

Figure 1: Illustration of lower and upper bounds for Dε (π)

Amortized regime: second-order asymptotics. Denote by πn the n-fold product protocol
obtained by applying π to each coordinate (Xi, Yi) for inputs Xn and Y n. Consider the commu-
nication complexity Dε(π

n) of ε-simulating πn for independent and identically distributed (IID)
(Xn, Y n) generated from PnXY . Using the bounds above, we can obtain the following sharpening
of the results of [BR11]: With V(π) denoting the variance of ic(Π;X,Y ),

Dε(π
n) = nIC(π) +

√
nV(π)Q−1(ε) + o(

√
n),

where Q(x) is equal to the probability that a standard normal random variable exceeds x and
Q−1(ε) ≈

√
log(1/ε). On the other hand, the arguments in5 [BR11] or [YGA12] give us

Dε(π
n) ≥ nIC(π)− nε[‖π‖+ log |X ||Y|]− ε log(1/ε).

But the precise communication requirement is not less but
√
nV(π) log(1/ε) more than nIC(π).

General formula for amortized communication complexity. The lower and upper
bounds above can be used to derive a formula for the first-order asymptotic term, the coefficient of
n, in Dε(πn) for any sequence of protocols πn with inputs Xn ∈ X n and Yn ∈ Yn generated from
any sequence of distributions PXnYn . We illustrate our result by the following example.

Example 1 (Mixed protocol). Consider two protocols πh and πt with inputs X and Y such that
IC(πh) > IC(πt). For n IID observations (Xn, Y n) drawn from PXY , we seek to simulate the mixed
protocol πmix,n defined as follows: Party 1 first flips a (private) coin with probability p of heads and
sends the outcome Π0 to Party 2. Depending on the outcome of the coin, the parties execute πh

5The proof in [BR11] uses the inequality IC(π) ≤ ‖π‖, a multiparty extension of which is available in [CN08, MT10].
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or πt n times, i.e., they use πnh if Π0 = h and πnt if Π0 = t. What is the amortized communication
complexity of simulating the mixed protocol πmix,n? Note that

IC(πmix,n) = n [pIC(πh) + (1− p)IC(πt)] .

Is it true that in the manner of [BR11] the leading asymptotic term in Dε(πmix,n) is IC(πmix,n)? In
fact, it is not so. Our general formula implies that for all p ∈ (0, 1),

Dε(πmix,n) = nIC(πh) + o(n)

This is particularly interesting when p is very small and IC(πh)� IC(πt).

The results above illustrate the central thesis of this paper: It is the ε-tail of ic(Π;X,Y ) and
not just IC(π) that governs the communication complexity of ε-simulating a protocol π.

1.2 Proof techniques

Proof for the lower bound. We present a new method for deriving lower bounds on distributional
communication complexity. Our proof relies on a reduction argument that utilizes an ε-simulation
to generate an information theoretically secure secret key for X and Y (for a definition of the
latter, see [Mau93, AC93] or Section 4). Heuristically, a protocol can be simulated using fewer
bits of communication than its length because of the correlation in the observations X and Y .
Due to this correlation, when simulating the protocol, the parties agree on more bits (generate
more common randomness) than what they communicate. These extra bits can be extracted as
an information theoretically secure secret key for the two parties using the leftover hash lemma
(cf. [BBCM95, RW05]). A lower bound on the number of bits communicated can be derived using
an upper bound for the maximum possible length of a secret key that can be generated using
interactive communication; the latter was derived recently in [TW14a, TW14b].

Protocol for the upper bound. We simulate a given protocol one round at a time. Simulation
of each round consists of two subroutines: Interactive Slepian-Wolf compression and message reduc-
tion by public randomness. The first subroutine is an interactive version of the classical Slepian-
Wolf compression [SW73] for sending X to an observer of Y which is of optimal instantaneous
rate. The second subroutine uses an idea that appeared first in [RR11] (see, also, [Mur14, YAG14])
and reduces the number of bits communicated in the first by realizing a portion of the required
communication by the shared public randomness. This is possible since we are not required to
recover a given random variable Π, but only simulate it to within a fixed statistical distance.

The proposed protocol is closely related to that proposed in [BR11]. However, there are some
crucial differences. The protocol in [BR11], too, uses public randomness to sample each round of
the protocol, before transmitting it using an interactive communication of size incremented in steps.
However, our information theoretic approach provides a systematic method for choosing this step
size. Furthermore, our protocol for sampling the protocol from public randomness is significantly
different from that in [BR11] and relies on randomness extraction techniques. In particular, the
protocol in [BR11] does not attain the asymptotically optimal bounds achieved by our protocol.

Technical approach. While we utilize new, bespoke techniques for deriving our lower and
upper bounds, casting our problem in an information theoretic framework allows us to build upon
the developments in this classic field. In particular, we rely on the information spectrum approach
of Han and Verdú, introduced in the seminal paper [HV93] (see the textbook [Han03] for a detailed
account). In this approach, the classical measures of information such as entropy and mutual
information are viewed as expectations of the corresponding information densities, and the notion
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of “typical sets” is replaced by sets where these information densities are bounded uniformly. The
set of values taken by an information density (such as h(x) = − log PX (x)) is called its spectrum.
Coding theorems of classical information theory consider IID repetitions and rely on the so-called
the asymptotic equipartition property [CT06] which essentially corresponds to the concentration of
spectrums on small intervals. For single-shot problems such concentrations are not available and
we have to work with the whole span of the spectrum.

Our main technical contribution in this paper is the extension of the information spectrum
method to handle interactive communication. Our results rely on the analysis of appropriately
chosen information densities and, in particular, will rely on the spectrum of the information com-
plexity density ic(Π;X,Y ). As is usually the case, different components of our analysis require
bounds on these information densities in different directions, which in turn renders our bounds loose
and incurs a gap equal to the length of the corresponding information spectrum. To overcome this
shortcoming, we use the spectrum slicing technique of Han [Han03]6 to divide the information spec-
trum into small portions with information densities closely bounded from both sides. While in
our upper bounds spectrum slicing is used to carefully choose the parameters of the protocol, it
is required in our lower bounds to identify a set of inputs where a given simulation will require a
large number of bits to be communicated.

1.3 Organization

A formal statement of the problem along with the necessary preliminaries is given in the next
section. Section 3 contains all our results. In Section 4, we review the information theoretic secret
key agreement problem, the leftover hash lemma, and the data exchange problem, all of which will
be instrumental in our proofs. The formal proof of our lower bound is contained in Section 5 and
that of our upper bound in Section 6. The final section contains a derivation of our asymptotic
results.

1.4 Notations

Random variables are denoted by capital letters such as X, Y , etc. realizations by small letters
such as x, y, etc. and their range sets by corresponding calligraphic letters such as X , Y, etc..
Protocols are denoted by appropriate subscripts or superscripts with π, the corresponding random
transcripts by the same sub- or superscripts with Π; τ is used as a placeholder for realizations of
random transcripts. All the logarithms in this paper are to the base 2.

The following convention, described for the entropy density, shall be used for all information
densities used in this paper. We shall abbreviate the entropy density hPX (x) = − log PX (x) by
h(x), when there is no confusion about PX , and the random variable h(X) corresponds to drawing
X from the distribution PX .

Whenever there is no confusion, we will not display the dependence of distributional commu-
nication complexity on the underlying distribution. In most of our discussion, the latter remains
fixed.

2 Problem Statement

Two parties observe correlated random variables X and Y , with Party 1 observing X and Party
2 observing Y , generated from a fixed distribution PXY and taking values in finite sets X and Y,

6The spectrum slicing technique was introduced in [Han03] to derive the error exponents of various problems for
general sources and a rate-distortion function for general sources.
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respectively. An interactive protocol π (for these two parties) consists of shared public randomness
U , private randomness7 UX and UY , and interactive communication Π1, ...,Πr. The parties com-
municate alternatively with Party 1 transmitting in the odd rounds and Party 2 in the even rounds.
Specifically, Πi is a string of bits determined by the previous transmissions Π1, ...,Πi−1 together
with (X,UX , U) for odd i and (Y,UY , U) for even i. The number of rounds of communication r
is a random stopping-time such that the event {r = t} is determined by the transcript Π1, ...,Πt;
we denote the overall transcript of the protocol8 by Π. The length of a protocol π, ‖π‖, is the
maximum number of bits that are communicated in any execution of the protocol.

A random variable F is said to be recoverable by π for Party 1 (or Party 2) if F is function of
(X,U,UX ,Π) (or (Y, U, UY ,Π)).

A protocol with a constant U is called a private coin protocol, that with a constant (UX , UY) is
called a public coin protocol, and with (U,UX , UY) constant is called a deterministic protocol.

When we execute the protocol π above, the overall view of the parties consists of random
variables (XYΠΠ), where the two Πs correspond to the transcript of the protocol seen by the two
parties. A simulation of the protocol consists of another protocol which generates almost the same
view as that of the original protocol. We are interested in the simulation of private coin protocols,
using arbitrary9 protocols; public coin protocols can be simulated by simulating for each fixed value
of public randomness the resulting private coin protocol.

Definition 2 (ε-Simulation of a protocol). Let π be a private coin protocol. Given 0 ≤ ε < 1,
a protocol πsim constitutes an ε-simulation of π if there exist ΠX and ΠY , respectively, recoverable
by πsim for Party 1 and Party 2 such that

dvar
(
PΠΠXY ,PΠXΠYXY

)
≤ ε, (1)

where dvar (P,Q) = 1
2

∑
x |Px − Qx| denotes the variational or the statistical distance between P

and Q.

Definition 3 (Distributional communication complexity). The ε-error distributional com-
munication complexity Dε (π|PXY ) of simulating a private coin protocol π is the minimum length
of an ε-simulation of π. The distribution PXY remains fixed throughout our analysis; for brevity,
we shall abbreviate Dε (π|PXY ) by Dε (π).

Problem. Given a protocol π and a joint distribution PXY for the observations of the two parties,
we seek to characterize Dε (π).

Remark 1 (Deterministic protocols). Note that a deterministic protocol corresponds to an
interactive function, and for such protocols,

dvar
(
PΠΠXY ,PΠXΠYXY

)
= 1− Pr (Π = ΠX = ΠY) .

Therefore, a protocol is an ε-simulation of a deterministic protocol if and only if it computes the
corresponding interactive function with probability of error less than ε. Furthermore, randomiza-
tion does not help in this case, and it suffices to use deterministic simulation protocols. Thus,
our results below provide tight bounds for distributional communication complexity of interactive

7The random variables U,UX , UY are mutually independent and independent jointly of (X,Y ).
8We allow Πi to be constant and allow it to depend only on the local observation (and not on the previous

communication Π1, ...,Πi−1. This description of an interactive protocol is the most general possible and is equivalent
to the usual protocol-tree based description (cf. [BBCR10, BR11]).

9Since we are not interested in minimizing the amount of randomness used in a simulation, and private randomness
can always be sampled from public randomness, we can restrict ourselves to public protocols for simulating.
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functions and, in fact, of all functions which are information theoretically securely computable for
the distribution PXY , since computing these functions is tantamount to computing an interactive
function [NTW15] (see, also, [Bea89, Kus92]).

Remark 2 (Compression of protocols). A protocol πcom constitutes an ε-compression of a given
protocol π if it recovers ΠX and ΠY for Party 1 and Party 2 such that

Pr (Π = ΠX = ΠY) ≥ 1− ε.

Note that randomization does not help in this case either. In fact, for deterministic protocols simu-
lation and compression coincide. In general, however, compression is a more demanding task than
simulation and our results show that in many cases, (such as the amortized regime), compression re-
quires strictly more communication than simulation. Specifically, our results for ε-simulation in this
paper can be modified to get corresponding results for ε-compression by replacing the information
complexity density ic(τ ;x, y) by

h(τ |x) + h(τ |y) = − log PΠ|X (τ |x) PΠ|Y (τ |y) .

The proofs remain essentially the same and, in fact, simplify significantly.

3 Main Results

We derive a lower bound for Dε (π) which applies to all private coin protocols π and, in fact,
applies to the more general problem of communication complexity of sampling a correlated random
variable. For protocols with bounded number of rounds of interaction, i.e., protocols with r =
r(X,Y, U, UX , UY) ≤ rmax with probability 1, we present a simulation protocol which yields upper
bounds for Dε (π) of similar form as our lower bounds. In particular, in the asymptotic regime our
bounds improve over previously known bounds and are tight.

3.1 Lower bound

We prove the following lower bound.

Theorem 1. Given 0 ≤ ε < 1 and a protocol π, for arbitrary 0 < η < 1/3

Dε (π) ≥ sup{λ : Pr (ic(Π;X,Y ) > λ) ≥ ε+ ε′} − λ′, (2)

where (x)+ denotes max{0, x} and the fudge parameters ε′ and λ′ depend on η as well as appropri-
ately chosen information spectrums and will be described below in (4) and (5).

When the fudge parameters ε′ and λ′ are negligible, the right-side of the bound above is close
to ε-tail of ic(Π;X,Y ). Indeed, the fudge parameters turn out to be negligible in many cases
of interest. For instance, for the amortized case ε′ can be chosen to be arbitrarily small. The
parameter λ′ is related to the length of the interval in which the underlying information densities
lie with probability greater than 1 − ε′, the essential length of spectrums. For the amortized case
with product protocols, by the central limit theorem the related essential spectrums are of length
Λ = O(

√
n) and λ′ = log Λ. On the other hand, λε is O(n). Thus, the log n order fudge parameter

λ′ is negligible in this case. The same is true also for the example protocol in Appendix A.

Remark 3. The result above does not rely on the interactive nature of Π and is valid for simulation
of any random variable. Specifically, for any joint distribution PΠXY , an ε-simulation satisfying
(1) must communicate at least as many bits as the right-side of (2), which is roughly equal to the
largest value λε of λ such that Pr (ic(Π;X,Y ) > λ) > ε.
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The fudge parameters. The fudge parameters ε′ and λ′ in Theorem 1 depend on the spec-
trums of the following information densities:

(i) Information complexity density: This density is described in Definition 1 and will play a
pivotal role in our results.

(ii) Entropy density of (X,Y ): This density, given by h(X,Y ) = − log PXY (X,Y ), captures the
randomness in the data and plays a fundamental role in the compression of the collective data
of the two parties (cf. [Han03]).

(iii) Conditional entropy density of X given YΠ: The conditional entropy density h(X|Y ) =
− log PX|Y (X|Y ) plays a fundamental role in the compression of X for an observer of Y
[MK95, Han03]. We shall use the conditional entropy density h(X|YΠ) in our bounds.

(iv) Sum conditional entropy density of (XΠ, YΠ): The sum conditional entropy density is given
by h (X4Y ) = − log PX|Y (X|Y ) PY |X (Y |X) has been shown recently to play a fundamental
role in the communication complexity of the data exchange problem [TVW15]. We shall use
the sum conditional entropy density h (XΠ4YΠ).

(v) Information density of X given Y is given by i(X ∧ Y )
def
= h(X)− h(X|Y ).

Let [λ
(1)
min, λ

(1)
max], [λ

(2)
min, λ

(2)
max], and [λ

(3)
min, λ

(3)
max] denote the “essential” spectrums of information

densities ζ1 = h(X,Y ), ζ2 = h(X|YΠ), and ζ3 = h (XΠ4YΠ), respectively. Concretely, let the tail

events Ei = {ζi /∈ [λ
(i)
min, λ

(i)
max]}, i = 1, 2, 3, satisfy

Pr (E1) + Pr (E2) + Pr (E3) ≤ εtail, (3)

where εtail can be chosen to be appropriately small. Further, let Λi = λ
(i)
max − λ(i)

min, i = 1, 2, 3,
denote the corresponding effective spectrum lengths. The parameters ε′ and λ′ in Theorem 1 are
given by

ε′ = εtail + 2η (4)

and

λ′ = 2 log Λ1Λ3 + log Λ2 − log(1− 3η) + 9 log 1/η + 3, (5)

where 0 < η < 1/3 is arbitrary. If Λi = 0, i = 1, 2, 3, we can replace it with 1 in the bound above.
Thus, our spectrum slicing approach allows us to reduce the dependence of λ′ on spectrum lengths
Λi’s from linear to logarithmic.

3.2 Upper bound

We prove the following upper bound.

Theorem 2. For every 0 ≤ ε < 1 and every protocol π,

Dε (π) ≤ inf
{
λ : Pr (ic(Π;X,Y ) > λ) ≤ ε− ε′

}
+ λ′,

where the fudge parameters ε′ and λ′ depend on the maximum number of rounds of interaction in
π and on appropriately chosen information spectrums.
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Remark 4. In contrast to the lower bound given in the previous section, the upper bound above
relies on the interactive nature of π. Furthermore, the fudge parameters ε′ and λ′ depend on the
number of rounds, and the upper bound may not be useful when the number of rounds is not
negligible compared to ε-tail of the information complexity density. However, we will see that the
above upper bound is tight for the amortized regime, even up to the second-order asymptotic term.

The simulation protocol. Our simulation protocol simulates the given protocol π round-by-
round, starting from Π1 to Πr. Simulation of each round consists of two subroutines: Interactive
Slepian-Wolf compression and message reduction by public randomness.

The first subroutine uses an interactive version of the classical Slepian-Wolf compression [SW73]
(see [MK95] for a single-shot version) for sending X to an observer of Y . The standard (nonin-
teractive) Slepian-Wolf coding entails hashing X to l values and sending the hash values to the
observer of Y . The number of hash values l is chosen to take into account the worst-case per-
formance of the protocol. However, we are not interested in the worst-case performance of each
round, but of the overall multiround protocol. As such, we seek to compress X using the least
possible instantaneous rate. To that end, we increase the number of hash values gradually, ∆
at a time, until the receiver decodes X and sends back an ACK. We apply this subroutine to
each round i, say i odd, with Πi in the role of X and (Y,Π1....,Πi−1) in the role of Y . Similar
interactive Slepian-Wolf compression schemes have been considered earlier in different contexts
(cf. [FS02, Orl90, YH10, HTW14, TVW15]).

The second subroutine reduces the number of bits communicated in the first by realizing a
portion of the required communication by the shared public randomness U . Specifically, instead of
transmitting hash values of Πi, we transmit hash values of a random variable Π̂i generated in such
a manner that some of its corresponding hash bits can be extracted from U and the overall joint
distributions do not change by much. Since U is independent of (X,Y ), the number k of hash bits
that can be realized using public randomness is the maximum number of random hash bits of Πi

that can be made almost independent of (X,Y ), a good bound for which is given by the leftover
hash lemma. The overall simulation protocol for Πi now communicates l − k instead of l bits. A
similar technique for message reduction appears in a different context in [RR11, Mur14, YAG14].

The overall performance of the protocol above is still suboptimal because the saving of k bits is
limited by the worst-case performance. To remedy this shortcoming, we once again take recourse
to spectrum slicing to ensure that our saving k is close to the best possible for each realization
(Π, X, Y ).

Note that our protocol above is closely related to that proposed in [BR11]. However, the
information theoretic form here makes it amenable to techniques such as spectrum slicing, which
leads to tighter bounds than those established in [BR11].

The fudge parameters. The fudge parameters ε′ and λ′ in Theorem 2 depend on the spectrum
of various conditional information densities. Our simulation protocol simulates π one round at a
time. Simulation of each round consists of two subroutines: Interactive Slepian-Wolf compression
and message reduction by public randomness. To optimize the performance of each subroutine,
we slice the spectrum of the respective conditional information density involved. Specifically, for
odd round t, we slice the spectrum of h(Πt|YΠt−1) = − log PΠt|YΠt−1

(
Πt|Y,Πt−1

)
for interactive

Slepian-Wolf compression and h(Πt|XΠt−1) = − log PΠt|XΠt−1

(
Πt|X,Πt−1

)
for the substitution

of message by public randomness; for even rounds, the role of X and Y is interchanged. Each
round involves some residuals related to the two conditional information densities. Then, the fudge
parameters ε′ and λ′ are accumulations of the residuals of each round. See Remark 5 in Section 6.5
for explicit expressions for ε′ and λ′.
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3.3 Amortized regime: second-order asymptotics

It was shown in [BR11] that information complexity of a protocol equals the amortized communi-
cation rate for simulating the protocol, i.e.,

lim
ε→0

lim
n→∞

1

n
Dε(π

n|PnXY ) = IC(π),

where PnXY denotes the n-fold product of the distribution PXY , namely the distribution of random
variables (Xi, Yi)

n
i=1 drawn IID from PXY , and πn corresponds to running the same protocol π on

every coordinate (Xi, Yi). Thus, IC(π) is the first-order term (coefficient of n) in the communication
complexity of simulating the n-fold product of the protocol. However, the analysis in [BR11] sheds
no light on finer asymptotics such as the second-order term or the dependence of Dε(π

n|PnXY ) on10

ε. On the one hand, it even remains unclear from [BR11] if a positive ε reduces the amortized
communication rate or not. On the other hand, the amortized communication rate yields only a
loose bound for Dε(π

n|PnXY ) for a finite, fixed n. A better estimate of Dε(π
n|PnXY ) at a finite n and

for a fixed ε can be obtained by identifying the second-order asymptotic term. Such second-order
asymptotics were first considered in [Str62] and have received a lot of attention in information
theory in recent years following [Hay09, PPV10].

Our lower bound in Theorem 1 and upper bound in Theorem 2 show that the leading term in
Dε(π

n|PnXY ) is roughly the ε-tail λε of the random variable ic(Πn;Xn, Y n) =
∑n

i=1 ic(Πi;Xi, Yi),
a sum of n IID random variables. By the central limit theorem the first-order asymptotic term in
λε equals nE [icΠ;X,Y ] = IC(π), recovering the result of [BR11]. Furthermore, the second-order
asymptotic term depends on the variance V(π) of ic(Π;X,Y ), i.e., on

V(π)
def
= Var [ic(Π;X,Y )] .

We have the following result.

Theorem 3. For every 0 < ε < 1 and every protocol π with V(π) > 0,

Dε(π
n|PnXY ) = nIC(π) +

√
nV(π)Q−1(ε) + o(

√
n),

where Q(x) is equal to the probability that a standard normal random variable exceeds x.

As a corollary, we obtain the so-called strong converse.

Corollary 4. For every 0 < ε < 1, the amortized communication rate

lim
n→∞

1

n
Dε(π

n|PnXY ) = IC(π).

Corollary 4 implies that the amortized communication complexity of simulating protocol π
cannot be smaller than its information complexity even if we allow a positive error. Thus, if the
length of the simulation protocol πsim is “much smaller” than nIC(π), the corresponding simulation
error ε = εn must approach 1. But how fast does this εn converge to 1? Our next result shows
that this convergence is exponentially rapid in n.

Theorem 5. Given a protocol π and an arbitrary δ > 0, for any simulation protocol πsim with

‖πsim‖ ≤ n[IC(π)− δ],

there exists a constant E = E(δ) > 0 such that for every n sufficiently large, it holds that

dvar

(
PΠnΠnXnY n ,PΠnXΠnYX

nY n

)
≥ 1− 2−En.

10The lower bound in [BR11] gives only the weak converse which holds only when ε = εn → 0 as n→∞.
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A similar converse was first shown for the channel coding problem in information theory by
Arimoto [Ari73] (see [DK79, PV10] for further refinements of this result), and has been studied for
other classical information theory problems as well. To the best of our knowledge, Corollary 5 is
the first instance of an Arimoto converse for a problem involving interactive communication.

In the TCS literature, such converse results have been termed direct product theorems and
have been considered in the context of the (distributional) communication complexity problem
(for computing a given function) [BRWY13, BW14, JPY12]. Our lower bound in Theorem 1, too,
yields a direct product theorem for the communication complexity problem. We state this simple
result in the passing, skipping the details since they closely mimic Theorem 5. Specifically, given
a function f on X × Y, by slight abuse of notations and terminologies, let Dε(f) = Dε(f |PXY ) be
the communication complexity of computing f . As noted in Remark 3, Theorem 1 is valid for an
arbitrary random variables Π, and not just an interactive protocol. Then, by following the proof
of Theorem 5 with F = f(X,Y ) replacing Π in the application of Theorem 1, we get the following
direct product theorem.

Theorem 6. Given a function f and an arbitrary δ > 0, for any function computation protocol π
computing estimates FX ,n and FY,n of fn at the Party 1 and Party 2, respectively, and with length

‖π‖ ≤ n[H(F |X) +H(F |Y )− δ], (6)

there exists a constant E = E(δ) > 0 such that for every n sufficiently large, it holds that

Pr (FX ,n = FY,n = Fn) ≤ 2−En,

where Fn := (F1, ..., Fn) and Fi := f(Xi, Yi), 1 ≤ i ≤ n.

Recall that [BR11, MI11] showed that the first order asymptotic term in the amortized com-
munication complexity for function computation was shown to equal the information complexity
IC(f) of the function, namely the infimum over IC(π) for all interactive protocols π that recover f
with 0 error. Ideally, we would like to show an Arimoto converse for this problem, i.e., replace the
threshold on the right-side of (6) with n[IC(f)− δ]. The direct product result above is weaker than
such an Arimoto converse, and proving the Arimoto converse for the function computation problem
is work in progress. Nevertheless, the simple result above is not comparable with the known direct
product theorems in [BRWY13, BW14] and can be stronger in some regimes11.

3.4 General formula for amortized communication complexity

Consider arbitrary distributions PXnYn on X n × Yn and arbitrary protocols πn with inputs Xn

and Yn taking values in X n and Yn, for each n ∈ N. For vanishing simulation error εn, how does
Dεn(πn|PXnYn) evolve as a function of n?

The previous section, and much of the theoretical computer science literature, has focused
on the case when PXnYn = PnXY and the same protocol π is executed on each coordinate. In
this section, we identify the first-order asymptotic term in Dεn(πn|PXnYn) for a general sequence
of distributions12 {PXnYn}∞n=1 and a general sequence of protocols π = {πn}∞n=1. Formally, the
amortized (distributional) communication complexity of π for {PXnYn}∞n=1 is given by13

D(π)
def
= lim

ε→0
lim sup
n→∞

1

n
Dε(πn|PXnYn).

11The result in [BRWY13, BW14] shows a direct product theorem when we communicate less than
nIC(f)/poly(logn).

12We do not require PXnYn to be even consistent.
13Although D(π) also depends on {PXnYn}∞n=1, we omit the dependency in our notation.
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Our goal is to characterize D(π) for any given sequences Pn and π. We seek a general formula
for D(π) under minimal assumptions. Since we do not make any assumptions on the underlying
distribution, we cannot use any measure concentration results. Instead, we take recourse to prob-
ability limits of information spectrums introduced by Han and Verdú in [HV93] for handling this
situation (cf. [Han03]). Specifically, for a sequence of protocols π = {πn}∞n=1 and a sequence of
observations (X,Y) = {(Xn, Yn)}∞n=1, the sup information complexity is defined as

IC(π)
def
= inf

{
α | lim

n→∞
Pr

(
1

n
ic(Πn;Xn, Yn) > α

)
= 0

}
,

where, with a slight abuse of notation, Πn is the transcript of protocol πn for observations (Xn, Yn).
The result below shows that it is nIC(π), and not IC(πn), that determines the communication
complexity in general.

Theorem 7. For every sequence of protocols π = {πn}∞n=1,

D(π) = IC(π).

The proof uses Theorem 1 and Theorem 2 with carefully chosen spectrum-slice sizes.
For the case when πn = πn and PXnYn = PnXY , it follows from the law of large numbers that

IC(π) = IC(π) and we recover the result of [BR11]. However, the utility of the general formula
goes far beyond this simple amortized regime. Example 1 provides one such instance. In this case,
IC(π) can be easily shown to equal IC(πh) for any bias of the coin Π0.

4 Background: Secret Key Agreement and Data Exchange

Our proofs draw from various techniques in cryptography and information theory. In particular,
we use our recent results on information theoretic secret key agreement and data exchange, which
are reviewed in this section together with the requisite background.

4.1 Secret key agreement by public discussion

The problem of two party secret key agreement by public discussion was alluded to in [BBR88], but
a proper formulation and an asymptotically optimal construction appeared first in [Mau93, AC93].
Consider two parties with the first and the second party, respectively, observing the random variable
X and Y . Using an interactive protocol π and their local observations, the parties agree on a secret
key. A random variable K constitutes a secret key if the two parties form estimates that agree with
K with probability close to 1 and K is concealed, in effect, from an eavesdropper with access to
the transcript Π and a side-information Z. Formally, let KX and KY , respectively, be recoverable
by π for the first and the second party. Such random variables KX and KY with common range K
constitute an ε-secret key if the following condition is satisfied:

dvar

(
PKXKYΠZ ,P

(2)
unif × PΠZ

)
≤ ε,

where

P
(2)
unif (kX , kY) =

1(kX = kY)

|K|
.

The condition above ensures both reliable recovery, requiring Pr (KX 6= KY) to be small, and
information theoretic secrecy, requiring the distribution of KX (or KY) to be almost independent of
the eavesdropper’s side information (Π, Z) and to be almost uniform. See [TW14a] for a discussion.

13



Definition 4. Given 0 ≤ ε < 1, the supremum over lengths log |K| of an ε-secret key is denoted
by Sε(X,Y |Z), and for the case when Z is constant by Sε(X,Y ).

By its definition, Sε(X,Y |Z) has the following monotonicity property.

Lemma 8 (Monotonicity). For any deterministic protocol π,

Sε(X,Y |Z) ≥ Sε(XΠ, YΠ|ZΠ).

Furthermore, if VX and VY can be recovered by π for the first and the second party, respectively,
then

Sε(X,Y |Z) ≥ Sε(XVX , VY |ZΠ).

The claim holds since the two parties can generate a secret key by first running π and then generat-
ing a secret key for the case when the first party observes (X,Π), the second party observes (Y,Π)
and the eavesdropper observes (Z,Π). Similarly, the second inequality holds since the parties can
ignore a portion of their observations and generate a secret key from (X,VX ) and (Y, VY).

4.1.1 Leftover hash lemma: A tool for generating secret keys

A key tool for generating secret keys is the leftover hash lemma [BBR88, ILL89, BBCM95, RW05,
Ren05] which, given a random variable X and an l-bit eavesdropper’s observation Z, allows us to
extract roughly Hmin(PX)− l bits of uniform bits, independent of Z. We shall use a slightly more
general form. Given random variables X and Z, let

Hmin (PXZ | QZ)
def
= sup

x,z
− log

PXZ (x, z)

QZ (z)
.

We define14 the conditional min-entropy of X given Z by

Hmin (PXZ | Z)
def
= sup

QZ : supp(PZ)⊂ supp(QZ)
Hmin (PXZ | QZ) .

Further, let F be a 2-universal family of mappings f : X → K, i.e., for each x′ 6= x, the family F
satisfies

1

|F|
∑
f∈F

1(f(x) = f(x′)) ≤ 1

|K|
.

Lemma 9 (Leftover Hash). Consider random variables X,Z and V taking values in countable
sets X , Z, and a finite set V, respectively. Let S be a random seed such that fS is uniformly
distributed over a 2-universal family F . Then, for KS = fS(X)

ES {dvar (PKSV Z ,PunifPV Z)} ≤ 1

2

√
|K||V|2−Hmin(PXZ |Z),

where Punif is the uniform distribution on K.

The version above is a straightforward modification of the leftover hash lemma in, for instance,
[Ren05] and can be derived in a similar manner.

As an application of the leftover hash lemma above, we get the following useful result.

Lemma 10. Consider random variables X,Y, Z and V taking values in countable sets X , Y, Z,
and a finite set V, respectively. Then,

S2ε(X,Y |ZV ) ≥ Sε(X,Y |Z)− log |V| − 2 log(1/2ε).

The proof is relegated to Appendix B.

14There is no agreement over the definition conditional min-entropy; the form adopted here is convenient for our
use.
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4.1.2 Conditional independence testing upper bound for secret key lengths

Next, we recall the conditional independence testing upper bound for Sε(X,Y ), which was estab-
lished in [TW14a, TW14b]. In fact, the general upper bound in [TW14a, TW14b] is a single-shot
upper bound on the secret key length for a multiparty secret key agreement problem with side
information at the eavesdropper. Below, we recall a specialization of the general result for the two
party case with no side information at the eavesdropper. In order to state the result, we need the
following concept from binary hypothesis testing.

Consider a binary hypothesis testing problem with null hypothesis P and alternative hypothesis
Q, where P and Q are distributions on the same alphabet V. Upon observing a value v ∈ V, the
observer needs to decide if the value was generated by the distribution P or the distribution Q.
To this end, the observer applies a stochastic test T, which is a conditional distribution on {0, 1}
given an observation v ∈ V. When v ∈ V is observed, the test T chooses the null hypothesis
with probability T(0|v) and the alternative hypothesis with probability T (1|v) = 1 − T (0|v). For
0 ≤ ε < 1, denote by βε(P,Q) the infimum of the probability of error of type II given that the
probability of error of type I is less than ε, i.e.,

βε(P,Q) := inf
T : P[T]≥1−ε

Q[T],

where

P[T] =
∑
v

P(v)T(0|v),

Q[T] =
∑
v

Q(v)T(0|v).

The following upper bound for Sε(X,Y ) was established in [TW14a, TW14b].

Theorem 11 (Conditional independence testing bound). Given 0 ≤ ε < 1, 0 < η < 1 − ε,
the following bound holds:

Sε (X,Y ) ≤ − log βε+η
(
PXY ,QXQY

)
+ 2 log(1/η),

for all distributions QX and QY on X and Y, respectively.

We close by noting a further upper bound for βε(P,Q), which is easy to derive.

Lemma 12. For every 0 ≤ ε < 1 and λ,

− log βε(P,Q) ≤ λ− log

(
P

(
log

P (X)

Q (X)
< λ

)
− ε
)

+

,

where (x)+ = max{0, x}. As a corollary, we obtain the following upper bound for Sε(X,Y ):

Sε (X,Y ) ≤ λ− log

(
Pr

(
log

PXY (X,Y )

QX (X) QY (Y )
< λ

)
− ε− η

)
+

+ 2 log(1/η),

for all distributions QX and QY .
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4.2 The data exchange problem

The next primitive that will be used in the reduction argument in our lower bound proof is a
protocol for data exchange. The parties observing X and Y seek to know each other’s data. What
is the minimum length of interactive communication required? This basic problem, first studied
in [OG84], is in effect a two-party extension of the classical Slepian-Wolf compression [SW73] (see
[CN04] for a multiparty version). In a recent work [TVW15], we derived tight lower and upper
bounds for the length of a protocol that, for a given distribution PXY , will facilitate data exchange
with probability of error less than ε. We only review the proposed protocol and its performance
here; first, we formally define the data exchange problem.

Definition 5. For 0 ≤ ε < 1, a protocol π attains ε-data exchange if there exist Ŷ and X̂ which
are recoverable by π for the first and the second party, respectively, and satisfy

P(X̂ = X, Ŷ = Y ) ≥ 1− ε.

Note that data exchange corresponds to simulating a (deterministic) interactive protocol π
where Π1(X) = X and Π2 = Y ; attaining ε-data exchange is tantamount to ε-simulation of π. In
fact, the specific protocol for data exchange proposed in [TVW15] can be recovered as a special
case of our simulation protocol in Section 6. The next result paraphrases [TVW15, Theorem 2]
and can also be recovered as a special case of Lemma 21.

We paraphrase the result form [TVW15] in a form that is more suited for our application here.
The data exchange protocol proposed in [TVW15] relies on slicing the spectrum of h(X|Y ) (or
h(Y |X)). Let Etail denote the tail event h(X|Y ) /∈ [λ′min, λ

′
max]. The protocol entails slicing the

essential spectrum [λ′min, λ
′
max] into N parts of length ∆ each, i.e.,

N =
λ′max − λ′min

∆
.

Theorem 13 ([TVW15, Theorem 2], Lemma 21). Given ∆ > 0, ξ > 0, and N as above, there
exists a deterministic protocol for ε-data exchange satisfying the following properties:

(i) Denoting by Eerror the error event, it holds that

PXY (Eerror ∩ {h(X4Y ) ≤ λ}) ≤ PXY (Etail) +N2−ξ,

which further yields that the probability of error ε is bounded above as

ε ≤ PXY (h(X4Y ) > λ) + PXY (Etail) +N2−ξ;

(ii) the protocol communicates no more than λ+ ∆ +N + ξ bits;

(iii) for every (X,Y ) such that λ′min < h(X|Y ) < λ′max, the transcript of the protocol can take no
more than 2h(X4Y )+∆+ξ values.

Note that property (iii) above, though not explicitly stated in [TVW15, Theorem 2] or in the
general Lemma 21 below, follows simply from the proofs of these results. It makes the subtle
observation that while, for each (X,Y ) such that λ′min < h(X|Y ) < λ′max, h (X4Y ) + ∆ + N + ξ
bits are communicated to interactively generate the transcript, the number of (variable length)
transcripts is no more than15 h (X4Y ) + ∆ +N + ξ. Property (ii) above was crucial to establish

15The N -bit ACK-NACK feedback used in the protocol can be determined from the length of the transcript.
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the communication complexity results of [TVW15]; property (iii) was not relevant in the context
of that work. On the other hand, here we shall use the protocol of Theorem 13 in our reduction to
secret key agreement in the next section and will treat the communication used in data exchange
as eavesdropper’s side information. As such, it suffices to bound the number of values taken by the
transcript; the number of bits actually communicated in the interactive protocol is a loose upper
bound on the former quantity.

It is perhaps interesting that our simulation protocol given in Section 6 is used both in our upper
bound to compress a given protocol and in our lower bound to complete the reduction argument.

5 Proof of Lower Bound

As described in the introduction, our proof of Theorem 1 relies on generating a secret key for X
and Y from a given ε-simulation πsim of π. However, there are two caveats in the heuristic approach
described in the introduction:
First, to extract secret keys from the generated common randomness we rely on the leftover hash
lemma. In particular, the bits are extracted by applying a 2-universal hash family to the common
randomness generated. However, the range-size of the hash family must be selected based on the
min-entropy of the generated common randomness, which is not easy to estimate. To remedy this,
we communicate more using a data-exchange protocol proposed in [TVW15] to make the collective
observations (X,Y ) available to both the parties; a good bound for the communication complexity
of this protocol is available. The generated common randomness now includes (X,Y ) for which the
min-entropy can be easily bounded and the size of the aforementioned extracted secret key can be
tracked. A similar common randomness completion and decomposition technique was introduced
in [Tya13] to characterize a class of securely computable functions.
Second, our methodology described above requires bounds on various information densities in
different directions. A direct application of this method will result in a gap equal to the effective
length of various spectrums involved. To remedy this, we apply the methodology described above
not to the original distribution PXY but a conditional distribution PXY |E where the event E is
an appropriately chosen event contained in single slices of various spectrums involved. Such a
conditioning is allowed since we are interested in the worst-case communication complexity of the
simulation protocol.

We now describe the proof of Theorem 1 in detail. To make the exposition clear, we have
divided the proof into five steps.

Given a (private coin) protocol π, let πsim be its ε-simulation and ΠX and ΠY be the corre-
sponding estimates of the transcript Π for Party 1 and Party 2, respectively.

5.1 From simulation to probability of error

We first use a coupling argument to replace the ε-simulation condition with an ε probability of
error condition. Recall the maximal coupling lemma.

Lemma 14 (Maximal Coupling Lemma [Str65]). For any two distributions P and Q on the
same set, there exists a joint distribution PXY with X ∼ P and Y ∼ Q such that

Pr (X 6= Y ) = dvar (P,Q) .

Using the maximal coupling lemma, for each fixed x, y there exists a joint distribution PΠΠXΠY |X=x,Y=y

such that

Pr (Π = ΠX = ΠY |X = x, Y = y) = 1− dvar
(
PΠΠ|X=x,Y=y,PΠXΠY |X=x,Y=y

)
;
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Consequently,

Pr (Π = ΠX = ΠY) = 1−
∑
x,y

PXY (x, y) dvar
(
PΠΠ|X=x,Y=y,PΠXΠY |X=x,Y=y

)
= 1− dvar

(
PΠΠXY ,PΠXΠYXY

)
≥ 1− ε. (7)

As pointed in footnote 9, we restrict ourselves to public coin protocols πsim using shared public
randomness U . For concreteness (and convenience of proof), we define the joint distribution for
(ΠΠXΠYXY U) as

PΠXΠYΠXY U = PΠXΠYΠXY PU |ΠXΠYXY . (8)

Note that the marginal PΠXΠYXY U remains as in the original protocol. In particular, (X,Y ) is
jointly independent of U .

5.2 From partial knowledge to omniscience

As explained in the heuristic proof above, instead of extracting a secret key from the common
randomness generated by the protocol πsim, we first use the data exchange protocol of Theorem 13
to make all the data available to both the parties, which was termed attaining omniscience16 in
[CN04]. In particular, the parties run the protocol πsim followed by a data exchange protocol for
(XΠ, YΠ) to recover (X,Y ) at both the parties. Once both the parties have access to (X,Y ), they
can extract a secret key from (X,Y ) which will be used in the reduction in our final step.

Formally, with the notations introduced in Section 4.2, let πDE be the data exchange protocol
of Theorem 13 with X and Y replaced by (XΠ) and (YΠ), respectively, with N2 and ∆2 denoting

N and ∆, respectively, and with λ = λ
(3)
max, λ′min = λ

(2)
min, λ′max = λ

(2)
max. Then, denoting by Eerror

the error event for the protocol πDE Theorem 13(i) yields

Pr (Eerror ∩ Ec3) ≤ Pr (E2) +N22−ξ, (9)

where E2 and E3 are as in (3). Furthermore, for every realization (X,Y ) /∈ E3 the number possible
transcripts ΠDE is no more than

2h(XΠ4YΠ)+∆2+ξ. (10)

We seek to use πDE for recovering Y and X, respectively, at Party 1 and Party 2 by running πDE
successively after πsim. However, πsim yields XΠX and YΠY at Party 1 and Party 2, respectively,
while the data exchange protocol πDE facilitates data exchange when the two parties observe XΠ
and YΠ. We can easily fix this gap using (7).

Specifically, denote by X̂ and Ŷ the estimates of X and Y formed at Party 2 and Party 1 in
πDE. Note that πDE is a deterministic protocol and X̂ and Ŷ are functions of (X,Y,Π,Π). Denote
by A the set

A = {(τX , τY , τ, x, y) : τX = τY = τ}

and by B the set

B = {(τX , τY , τ, x, y) : X̂(x, y, τ, τ) = x, Ŷ (x, y, τ, τ) = y},
16Csiszár and Narayan considered a multiterminal version of the data exchange problem in [CN04] and connected

the minimum (amortized) rate of communication needed to the maximum (amortized) secret key rate.
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which is the same as Ecerror for Eerror in (9). Then, by (7) and (9)

Pr
(
{X̂(X,Y,ΠX ,ΠY) = X, Ŷ (X,Y,ΠX ,ΠY) = Y } ∩ Ec3

)
≥ PΠXΠYΠXY (A ∩ B ∩ Ec3)

≥ PΠXΠYΠXY (A) + Pr (Ec3)− PΠXΠYΠXY (Bc ∩ Ec3)− 1

≥ 1− ε− Pr (E2)− Pr (E3)−N22−ξ. (11)

5.3 From simulation to secret keys: A rough sketch of the reduction

The first step in our proof is to replace the simulation condition (1) with the probability of error
condition (7) for the joint distribution PΠXΠYΠXY U in (8).

Next, we “complete the common randomness,” i.e., we communicate more to facilitate the
recovery of Y and X at Party 1 and Party 2, respectively. To that end, upon executing πsim,
the parties run the data exchange protocol πDE of Theorem 13 for (XΠ) and (YΠ), with (X,ΠX )
and (Y,ΠY) in place of (XΠ) and (YΠ), respectively. Condition (7) guarantees that the combined
protocol (πsim, πDE) recovers Y and X at Party 1 and Party 2 with probability of error less than ε.

We now sketch our reduction argument. Consider the secret key agreement for X and Y when
the eavesdropper observes U . By the independence of (X,Y ) and U , Sη(XU, Y U |U) = Sη(X,Y ),
and further, the result of [TW14a] shows that Sη(X,Y ) is bounded above, roughly, by the mutual
information density i(X ∧ Y ) = log PXY (X,Y ) /PX (X) PY (Y ), i.e.,

Sη(XU, Y U |U) = Sη(X,Y ) . i(X ∧ Y ). (12)

On the other hand, we can generate a secret key using the following protocol:

1. Run the combined protocol (πsim, πDE) to attain data exchange for X and Y , resulting in a
common randomness of size roughly h(X,Y |U) = h(X,Y ).

2. The data exchange protocol πDE for (XΠ) and (YΠ) communicates roughly h (XΠ4YΠ) bits
for every fixed realization (X,Y,Π). Thus, the combined protocol (πsim, πDE), which allows
both the parties to recover (X,Y ), communicates no more than ‖πsim‖ + h (XΠ4YΠ) bits
for every fixed realization (X,Y,Π). Using the leftover hash lemma, we can extract a secret
key of rate roughly h(X,Y )− ‖πsim‖ − h (XΠ4YΠ).

The following approximate inequalities summarize our reduction:

Sη(XU, Y U |U) ≥ Sη(XŶ , X̂Y |ΠsimΠDEU)

& Sη(XŶ , X̂Y |U)− ‖πsim‖ − h (XΠ4YΠ)

≈ h(X,Y )− ‖πsim‖ − h (XΠ4YΠ) , (13)

where the first inequality is by Lemma 8 and the the second by Lemma 9.
We note that the generation of secret keys from data exchange was first proposed in [CN04] in

an amortized, IID setup and was shown to yield a secret key of asymptotically optimal rate.
From (12) and (13) it follows that

‖πsim‖ & h(X,Y )− h (XΠ4YΠ)− i(X ∧ Y ) = ic(Π;X,Y ),

which is the required lower bound.
Clearly, the steps above are not precise. We have used instantaneous communication and

common randomness lengths in our bounds whereas a formal treatment will require us to use
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worst-case performance bounds for these quantities. Unfortunately, such worst-case bounds do not
yield our desired lower bound for Dε (π). To fill this gap, we apply the arguments above not for
the original distribution PΠXΠYΠXY U but for the conditional distribution PΠXΠYΠXY U |E where the
event E is carefully constructed in such a manner that the aforementioned worst-case bounds are
close to instantaneous bounds for all realizations. Specifically, E is selected by appropriately slicing
the spectrums of the various information densities that appear in the worst-case bounds.

5.4 From original to conditional probabilities

To identify an appropriate critical event for conditioning, we take recourse to spectrum slicing.
Specifically, we identify an appropriate subset of intersection of slices of spectrums (ii) and (iv)
described in Section 3.1. For the combined protocol (πsim, πDE) and the estimates (X̂, Ŷ ) as above,

and λ
(i)
min, λ

(i)
max, i = 1, 2, 3, as in Section 3.1, let

Esim = {Π = ΠX = ΠY},
EDE = {X̂(X,Y,ΠX ,ΠY) = X, Ŷ (X,Y,ΠX ,ΠY) = Y },
Eλ = {ic(Π;X,Y ) ≥ λ}

E(1)
i = {λ(1)

min + (i− 1)∆1 ≤ h(X,Y ) ≤ λ(1)
min + i∆1}, 1 ≤ i ≤ N1,

E(3)
j = {λ(3)

min + (j − 1)∆3 ≤ h (XΠ4YΠ) ≤ λ(3)
min + j∆3}, 1 ≤ j ≤ N3,

where

N1 =
λ

(1)
max − λ(1)

min

∆1
and N3 =

λ
(3)
max − λ(3)

min

∆3
.

Note that ∪i E(1)
i = Ec1 and ∪j E(3)

j = Ec3, where the events E1 and E3 are as in (3). Finally, define
the event Eij as follows:

Eij = Esim ∩ EDE ∩ Eλ ∩ E
(1)
i ∩ E

(3)
j , 1 ≤ i ≤ N1, 1 ≤ j ≤ N3.

The next lemma says that (at least) one of the events Eij has significant probability, and this
particular event will be used as the critical event in our proofs.

Lemma 15. There exists i, j such that

Pr (Eij) ≥
Pr (Eλ)− ε− εtail −N22−ξ

N1N3

def
= α. (14)

Proof. Note that the event Esim∩EDE∩Ec3 is the same as the event A∩B∩Ec3 of (11). Therefore,

Pr (Esim ∩ EDE ∩ Eλ ∩ Ec1 ∩ Ec3) ≥ Pr (Eλ) + Pr (Esim ∩ EDE ∩ Ec3) + Pr (Ec1)− 2

≥ Pr (Eλ)− ε− Pr (E2)− Pr (E3)−N22−ξ − Pr (E1)

≥ Pr (Eλ)− ε− εtail −N22−ξ,

where the second inequality uses (11) and and the third uses (3). The proof is completed upon
noting that {Eij}i,j constitutes a partition of Esim ∩ EDE ∩ Eλ ∩ Ec1 ∩ Ec3 with N1N3 parts. �
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5.5 From simulation to secret keys: The formal reduction proof

We are now in a position to complete the proof of our lower bound. For brevity, let E denote the
event Eij of Lemma 15 satisfying Pr (E) ≥ α.

Our proof essentially formalizes the steps outlined in Section 5.3, but for the conditional dis-
tribution given E . With an abuse of notation, let Sη(X,Y |Z, E) denote the maximum length of
an η-secret key for two parties observing X and Y , and the eavesdropper’s side information Z,
when the distribution of (X,Y, Z) is given by PXY Z|E . Then, using Lemma 12 with QX = PX and
QY = PY , we get the following bound in place of (12):

S2η(X,Y |E) ≤ γ − log

(
Pr

({
(x, y) : log

PXY |E (x, y)

PX (x) PY (y)
< γ

} ∣∣∣∣ E)− 3η

)
+

+ 2 log(1/η)

≤ γ − log

(
Pr

({
(x, y) : log

PXY (x, y)

PX (x) PY (y)
< γ + logα

} ∣∣∣∣ E)− 3η

)
+

+ 2 log(1/η),

(15)

where 0 < η < 1/3 is arbitrary and in the previous inequality we have used

PXY |E (x, y|E) ≤ PXY (x, y)

Pr (E)
≤ PXY (x, y)

α
.

To replace (13), note tha by Lemma 8

S2η(X,Y |E) ≥ S2η(XΠsimΠDE, YΠsimΠDE|U,Πsim,ΠDE, E)

≥ S2η(XŶ , X̂Y |U,Πsim,ΠDE, E). (16)

Next, note that by (10) the transcript ΠsimΠDE takes no more than 2‖πsim‖+h(XΠ4YΠ)+∆2+ξ

values for every realization (X,Y ) /∈ E3. However, when the event E = Eij holds, h (XΠ4YΠ) ≤
λ

(3)
min + j∆3. It follows by Lemma 22 that

S2η(XŶ , X̂Y |UΠsimΠDE, E)

≥ Sη(XŶ , X̂Y |U, E)− ‖πsim‖ − λ(3)
min − j∆3 −∆2 − ξ − 2 log(1/2η). (17)

Also, since {X = X̂, Y = Ŷ } holds when we condition on E ,

Sη(XŶ , X̂Y |U, E) = Sη(XY,XY |U, E)

≥ Hmin(PXY U |E | U)− 2 log(1/2η), (18)

where the previous inequality is by the leftover hash lemma. Furthermore, by using

PXY U |E(x, y, u) ≤ PXY U (x, y, u)

Pr (E)
≤ PXY U (x, y, u)

α

we can bound Hmin(PXY U |E | U) as follows:

Hmin(PXY U |E | U) ≥ min
x,y,u
− log

PXY U |E (x, y, u)

PU (u)

≥ min
x,y,u
− log

PXY U (x, y, u)1(PXY U |E (x, y, u) > 0)

αPU (u)
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= min
x,y∈E(1)

i

hPXY (x, y) + logα

≥ λ(1)
min + (i− 1)∆1 + logα. (19)

Thus, on combining (16)-(19), we get

S2η(X,Y |E) ≥ [λ
(1)
min + (i− 1)∆1 − λ(3)

min − j∆3 + logα]−∆2 − ξ − 4 log(1/2η)− ‖πsim‖. (20)

To get a matching form of the upper bound (15) for S2η(X,Y |E), note that since17

−icPΠXY
(τ ;x, y) = iPXY (x ∧ y)− hPXY (x, y) + hPΠXY

((x, τ)4(y, τ)),

and since under E

hPXY (x, y) ≤ λ(1)
min + i∆1,

hPXYΠ
((x, τ)4(y, τ)) ≥ λ(3)

min + (j − 1)∆3,

it holds that

Pr

(
{(x, y) : iPXY (x ∧ y) < γ + logα}

∣∣∣∣ E)
≥ Pr

({
(x, y, τ) : −icPXYΠ

(x, y, τ) < γ − λ(1)
min − i∆1 + λ

(3)
min + (j − 1)∆3 + logα

} ∣∣∣∣ E) .
On choosing

γ = −λ+ λ
(1)
min + i∆1 − λ(3)

min − (j − 1)∆3 − logα,

it follows from (15) that

S2η(X,Y |E)

≤ −λ+ [λ
(1)
min + i∆1 − λ(3)

min − (j − 1)∆3 − logα]− log (Pr (Eλ | E)− 3η)+ + 2 log(1/η)

≤ −λ+ [λ
(1)
min + i∆1 − λ(3)

min − (j − 1)∆3 − logα]− log(1− 3η) + 2 log(1/η), (21)

where the equality holds since Pr (Eλ | E) = 1.
Thus, by (20) and (21), we get

‖πsim‖ ≥ λ+ 2 logα−∆1 −∆2 −∆3 − ξ − 6 log(1/η) + log(1− 3η) + 4

= λ+ 2 log(Pr (Eλ)− ε− εtail − η)− 2 logN1N3 − (∆1 + ∆2 + ∆3)− logN2

− 7 log(1/η) + log(1− 3η) + 4.

where the equality holds for ξ = − log η + logN2. Note that the maximum value of the right-side
above, when maximized over Ni and ∆i under the constraint Ni∆i = Λi, i = 1, 2, 3, occurs for
∆1 = ∆3 = 2 and ∆2 = 1. Substituting this choice of parameters, we get

‖πsim‖ ≥ λ+ 2 log(Pr (Eλ)− ε− εtail − η)− 2 log Λ1Λ3 − log Λ2 − 7 log(1/η) + log(1− 3η) + 3.

≥ λ− 2 log Λ1Λ3 − log Λ2 − 9 log(1/η) + log(1− 3η) + 3.

where the final inequality holds for every λ such that Pr (Eλ) ≥ ε+ εtail + 2η; Theorem 1 follows
upon maximizing the right side-over all such λ. �

17For clarity, we display the dependence of each information density on the underlying distribution in the remainder
of this section.
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6 Simulation Protocol and the Upper Bound

In this section, we formally present an ε-simulation of a given interactive protocol π with bounded
rounds. For clarity, we build the simulation protocol in steps.

6.1 Sending X using one-sided communication

We start with the well-known Slepian-Wolf compression problem [SW73] where Party 1 wants to
transmit X itself to Party 2 using as few bits as possible. This corresponds to simulating the
deterministic protocol Π = Π1 = X. See Remark 1 in Section 2 for a discussion on simulation of
deterministic protocols.

For encoder, we use a hash function that is randomly chosen from a 2-universal hash family
Fl(X ); for decoder, we use a kind of joint typical decoder [CT06]. Let the typical set TPX|Y be
given by

TPX|Y =
{

(x, y) : hPX|Y (x|y) ≤ l − γ
}

(22)

for a slack parameter γ > 0. Our first protocol is given below:

Protocol 1: Slepian-Wolf compression

Input: Observations X and Y , uniform public randomness Uhash, and a parameter l
Output: Estimate X̂ of X at party 2
Both parties use Uhash to select f from Fl(X )
Party 1 sends Πsim,1 = f(X)
if Party 2 finds a unique x ∈ TPX|Y with hash value f(x) = Πsim,1 then

set X̂ = x
else

protocol declares an error

The following result is from [MK95], [Han03, Lemma 7.2.1] (see, also, [Kuz12]).

Lemma 16 (Performance of Protocol 1). For every γ > 0, the protocol above satisfies

Pr
(
X 6= X̂

)
≤ PXY

(
T cPX|Y

)
+ 2−γ .

Essentially, the result above says that Party 1 can send X to Party 2 with probability of error
less than ε using roughly as many bits as the ε-tail of hPX|Y (X|Y ).

In fact, the use of the typical set in (22) is not crucial in Protocol 1 and its performance analysis:
For a given measure QXY , we can define another typical set TQX|Y by replacing hPX|Y (x|y) with
hQX|Y (x|y) in (22) even though the underlying distribution of (X,Y ) is PXY . Then, the error
probability is bounded as

Pr
(
X 6= X̂

)
≤ PXY

(
T cQX|Y

)
+ 2−γ ,

which implies that X can be sent by using roughly as many bits as the ε-tail of hQX|Y (X|Y ) under
PXY . This modification simplifies our performance analysis of the more involved protocols in the
following sections.
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6.2 Sending X using interactive communication

Protocol 1 aims at minimizing the worst-case communication length over all realization of (X,Y ).
However, our goal here is to simulate a multiround interactive protocol and as such, we need not
account for the worst-case communication length in each round. Instead, we shall optimize the
worst-case communication length for the combined interactive protocol. The protocol below is a
modification of Protocol 1 and uses roughly h(X|Y ) bits for transmitting X instead of its ε-tail.

The new protocol proceeds as the previous one but relies on spectrum-slicing to adapt the
length of communication to the specific realization of (X,Y ): It increases the size of the hash
output gradually, starting with λ1 = λmin and increasing the size ∆-bits at a time until either
Party 2 decodes X or λmax bits have been sent. After each transmission, Party 2 sends either an
ACK-NACK feedback signal. The protocol stops when an ACK symbol is received.

Fix an auxiliary distribution QXY . For λmin
QX|Y

, λmax
QX|Y

,∆QX|Y > 0 with λmax
QX|Y

> λmin
QX|Y

, let

NQX|Y =
λmax

QX|Y
− λmin

QX|Y

∆QX|Y

,

and

λ
(i)
QX|Y

= λmin
QX|Y

+ (i− 1)∆QX|Y , 1 ≤ i ≤ NQX|Y .

Further, let

T (0)
QX|Y

:=
{

(x, y) | hQX|Y (x|y) ≥ λmax
QX|Y

or hQX|Y (x|y) < λmin
QX|Y

}
, (23)

and for 1 ≤ i ≤ NQX|Y , let T (i)
QX|Y

denote the ith slice of the spectrum given by

T (i)
QX|Y

=
{

(x, y) | λ(i)
QX|Y

≤ hQX|Y (x|y) < λ
(i)
QX|Y

+ ∆QX|Y

}
.

Note that T (0)
QX|Y

corresponds to T cQX|Y in the previous section and will be counted as an error event.

Our protocol is described in Protocol 2. For every (x, y) ∈ T (i)
QX|Y

, 1 ≤ i ≤ NQX|Y , the following

lemma provides a bound on the error.

Lemma 17 (Performance of Protocol 2). For (x, y) ∈ T (i)
QX|Y

, 1 ≤ i ≤ NQX|Y , denoting by

X̂ = X̂(x, y) the estimate of x at Party 2 at the end of the protocol (with the convention that X̂ = ∅
if an error is declared), Protocol 2 sends at most (l + (i− 1)∆QX|Y + i) bits and has probability of
error bounded above as follows:

Pr
(
X̂ 6= x | X = x, Y = y

)
≤ i2

λmin
QX|Y

+∆QX|Y −l.

Proof. Since (x, y) ∈ T (i)
QX|Y

, an error occurs if there exists a x̂ 6= x such that (x̂, y) ∈ T (j)
QX|Y

and

Πsim,2k−1 = f2k−1(x̂) for 1 ≤ k ≤ j for some j ≤ i. Therefore, the probability of error is bounded
above as

Pr
(
X̂ 6= x | X = x, Y = y

)
≤

i∑
j=1

∑
x̂ 6=x

Pr (f2k−1(x) = f2k−1(x̂), ∀ 1 ≤ k ≤ j)1
(

(x̂, y) ∈ T (j)
QX|Y

)
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Protocol 2: Interactive Slepian-Wolf compression

Input: Observations X and Y with distribution PXY , uniform public randomness Uhash,
auxiliary distribution QXY , and parameters γ, λmin

QX|Y
, ∆QX|Y , NQX|Y , and l

Output: Estimate X̂ of X at party 2
Both parties use Uhash to select f1 from Fl(X )
Party 1 sends Πsim,1 = f1(X)

if Party 2 finds a unique x ∈ T (1)
QX|Y

with hash value f1(x) = Πsim,1 then

set X̂ = x
send back Πsim,2 = ACK

else
send back Πsim,2 = NACK

while 2 ≤ i ≤ NQX|Y and party 2 did not send an ACK do
Both parties use Uhash to select fi from F∆QX|Y

(X ), independent of f1, ..., fi−1

Party 1 sends Πsim,2i−1 = fi(X)

if Party 2 finds a unique x ∈ T (i)
QX|Y

with hash value fj(x) = Πsim,2j−1, ∀ 1 ≤ j ≤ i then

set X̂ = x
send back Πsim,2i = ACK

else
if More than one such x found then

protocol declares an error
else

send back Πsim,2i = NACK

Reset i→ i+ 1

if No X̂ found at party 2 then
Protocol declares an error

≤
i∑

j=1

∑
x̂ 6=x

1

2
l+(j−1)∆QX|Y

1

(
(x̂, y) ∈ T (j)

QX|Y

)

=
i∑

j=1

∑
x̂ 6=x

1

2
l+(j−1)∆QX|Y

∣∣∣{x̂ | (x̂, y) ∈ T (j)
QX|Y

}∣∣∣
≤ i2

λmin
QX|Y

+∆QX|Y −l,

where the first inequality follows from the union bound, the second inequality follows from the
property of 2-universal hash family, and the third inequality follows from the fact that

|{x̂ | (x̂, y) ∈ T (j)
QX|Y

}| ≤ 2
λ

(j)
QX|Y

+∆QX|Y .

Note that the protocol sends l bits in the first transmission, and ∆QX|Y bits and 1-bit feedback in
every subsequence transmission. Therefore, no more than (l + (i− 1)∆QX|Y + i) bits are sent. �

Corollary 18. Protocol 2 with l = λmin
QX|Y

+ ∆QX|Y + γ sends at most (hQX|Y (X|Y ) + ∆QX|Y + γ +
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NQX|Y ) bits when the observations are18 (X,Y ) /∈ T (0)
QX|Y

, and has probability of error less than

Pr
(
X̂ 6= X

)
≤ Pr

(
(X,Y ) ∈ T (0)

QX|Y

)
+NQX|Y 2−γ .

6.3 Simulation of Π1 using interactive communication

We now proceed to simulating the first round of our given interactive protocol π. Note that using
Protocol 2, we can send Π1 using roughly h(Π1|Y ) bits. This protocol uses a public randomness
Uhash only to choose hash functions, which is convenient for our probability of error analysis, and
can be easily derandomized. We now present a scheme which uses another independent portion of
public randomness Usim to reduce the rate of the communication further. However, the scheme will
only allow the parties to simulate Π1 (rather than recover it with small probability of error) and
cannot be derandomized.

Specifically, our next protocol uses X and U = (Uhash, Usim) to simulate Π1 in such a manner
that Usim can be treated, in effect, as a portion of the communication used in Protocol 2. Note
that since Usim is independent of (X,Y ), the portion of communication which is equivalent to Usim

must as well be almost independent of (X,Y ). Such a portion can be guaranteed by noting that
the communication used in Protocol 2 is simply a random hash of Π1 drawn from a 2-universal
family, and therefore, its appropriately small portion can have the desired independence property
by the leftover hash lemma. In fact, since the Markov condition Π1 −◦− X −◦− Y holds, it suffices
guarantee the independent of X instead of (X,Y ).

Protocol 3: Simulation of Π1

Input: Observations X and Y with distribution PXY , uniform public randomness
U = (Uhash, Usim), auxiliary distribution QΠ1Y , and parameters γ, λmin

QΠ1|Y
, ∆QΠ1|Y

,

NQΠ1|Y
and k

Output: Estimates Π1X and Π1Y of Π1

1. Two parties share k random bits Usim and an h chosen from Hk(supp(Π1)) using Uhash

2. Party 1 generates a sample Π1X using PΠ1|Xf(Π1) (·|X,Usim)
3. Parties use Protocol 2 with auxiliary distribution QΠ1Y , and parameters γ, λmin

QΠ1|Y
,

∆QΠ1|Y
, NQΠ1|Y

, and l = λmin
QΠ1|Y

+ ∆QΠ1|Y
+ γ to send Π1X to Party 2 by treating Usim as the

first k bits of communication obtained via the hash function f

Our simulation protocol is described in Protocol 3. Let the quantities such as λmin
QΠ1|Y

,∆QΠ1|Y
,

and NQΠ1|Y
be defined analogously to the corresponding quantities in Section 6.2 with Π1 replacing

X. The following lemma provides a bound on the simulation error for Protocol 3.

Lemma 19 (Performance of Protocol 3). Protocol 3 sends at most(
hQΠ1|Y

(Π1X |Y ) + ∆QΠ1|Y
+NQΠ1|Y

+ γ − k
)

+

bits when (Π1X , Y ) /∈ T (0)
QΠ1|Y

, and has simulation error

dvar
(
PΠ1XΠ1YXY ,PΠ1Π1XY

)
≤ Pr

(
(Π1, Y ) ∈ T (0)

QΠ1|Y

)
+NQΠ1|Y

2−γ +
1

2

√
2k−Hmin(PΠ1X

|QX)

for any auxiliary distribution QX on X .

18When hQX|Y (X|Y ) < λmin
QX|Y

, Protocol 2 may transmit more than (hQX|Y (X|Y ) + ∆QX|Y + γ +NQX|Y ) bits.
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Proof. Consider the following simple protocol for simulating Π1 at Party 2:

1. Party 1 generates a sample Π1 using PΠ1|X (·|X).

2. Both parties use Protocol 2 with auxiliary distribution QΠ1Y , and parameters γ, λmin
QΠ1|Y

,

∆QΠ1|Y
, NQΠ1|Y

, and l = λmin
QΠ1|Y

+ ∆QΠ1|Y
+ γ to generate an estimate Π̂1 of Π1 at Party 2.

In this protocol, lwst = λmin
QΠ1|Y

+ NQΠ1|Y
∆QΠ1|Y

+ γ bits of hash values will be sent for the worst

(Π1, Y ). We divide these lwst hash values into two parts, the fist k bits and the last lwst−k bits; let f
and f ′, respectively, denote the hash function producing the first and the second parts. Protocol 3
replaces, in effect, f with shared randomness Usim for an appropriately chosen value of k.

Note that the joint distribution of the random variables involved in the simple protocol above
satisfies19

Pf(Π1)f ′(Π1)Π1Π̂1XY
(v, v′, τ, τ̂ , x, y)

= Pf(Π1)X(v, x)PΠ1|Xf(Π1)(τ |x, v)Pf ′(Π1)|Π1
(v′|τ)PY |X(y|x)PΠ̂1|f(Π1)f ′(Π1)Π1XY

(τ̂ |v, v′, τ, x, y).

(24)

Note that the simple protocol above is deterministic and therefore by Remark 1

dvar

(
Pf(Π1)f ′(Π1)Π1Π̂1XY

,Pf(Π1)f ′(Π1)Π1Π1XY

)
= Pr

(
Π1 6= Π̂1

)
≤ Pr

(
(Π1, Y ) ∈ T (0)

QΠ1|Y

)
+NQΠ1|Y

2−γ , (25)

where the inequality is by Corollary 18.
On the other hand, the joint distribution of random variables involved in Protocol 3 can be

factorized as

PUsimf ′(Π1X )Π1XΠ1YXY (u, u′, τ, τ̂ , x, y)

= PUsim
(u)PX(x)PΠ1|Xf(Π1)(τ |x, u)Pf ′(Π1)|Π1

(u′|τ)PY |X(y|x)PΠ̂1|f(Π1)f ′(Π1)Π1XY
(τ̂ |u, u′, τ, x, y).

(26)

Therefore, the simulation error for Protocol 3 is bounded as

dvar
(
PΠ1XΠ1YXY ,PΠ1Π1XY

)
≤ dvar

(
PUsimf ′(Π1)Π1XΠ1YXY ,Pf(Π1)f ′(Π1)Π1Π1XY

)
≤ dvar

(
PUsimf ′(Π1)Π1XΠ1YXY ,Pf(Π1)f ′(Π1)Π1Π̂1XY

)
+ dvar

(
Pf(Π1)f ′(Π1)Π1Π̂1XY

,Pf(Π1)f ′(Π1)Π1Π1XY

)
= dvar

(
PUsim

PX ,Pf(Π1)X

)
+ dvar

(
Pf(Π1)f ′(Π1)Π1Π̂1XY

,Pf(Π1)f ′(Π1)Π1Π1XY

)
≤ dvar

(
PUsim

PX ,Pf(Π1)X

)
+ Pr

(
(Π1, Y ) ∈ T (0)

QΠ1|Y

)
+NQΠ1|Y

2−γ ,

where the first inequality is by the monotonicity of ‖ · ‖, the second inequality is by the triangular
inequality, the equality is by the fact that replacing PUsim

PX with Pf(Π1)X is the only difference
between the factorizations in (26) and (24), and the final inequality is by (25). The desired bound
on simulation error for Protocol 3 follows by using Lemma 9 to get

dvar
(
PUsim

PX ,Pf(Π1)X

)
≤ 1

2

√
2k−Hmin(PΠ1X

|QX).

Since Protocol 3 uses shared randomness Usim instead of sending f(Π1), it communicates k fewer
bits in comparison with the simple protocol above, which completes the proof. �

19When the protocol terminate before NQΠ1|Y th round, a part of (f(Π1), f ′(Π1)) may not be sent.

27



6.4 Improved simulation of Π1

In Protocol 3 we were able to reduce the communication by roughly Hmin(PΠ1X |QX) bits by sim-
ulating a Π1 such that if we use Protocol 2 for sending Π1 to Party 2, a portion of the required
communication can be treated as shared public randomness. However, this is the least reduc-
tion in communication we can obtain in the worst-case. In this section, we slice the spectrum of
hPΠ1|X

(Π1|X) to obtain an instantaneous reduction of roughly hPΠ1|X
(Π1|X) bits.

Denote by J a random variable which takes the value j ∈ {0, 1, . . . , NPΠ1|X
} if (Π1, X) ∈ T (j)

PΠ1|X
.

In our modified protocol, Party 1 first samples J and sends it to Party 2. Then, they proceed with
Protocol 3 for PΠ1XY |J=j by selecting k to be less than Hmin(PΠ1X|J=j |QX) for an appropriately
chosen QX . Let Jg be the set of ”good” indices j > 0 with

PJ (j) ≥ 1

N2
PΠ1|X

;

it holds that

PJ
(
J cg
)
< Pr

(
(Π1, X) ∈ T (0)

PΠ1|X

)
+

1

NPΠ1|X

.

Note that for j ∈ Jg, with QX = PX , we have

Hmin(PΠ1X|J=j |PX) = min
τ,x
− log

PΠ1X|J (τ, x|j)
PX (x)

= min
τ,x
− log

PΠ1|X (τ |x)

PJ (j)

≥ λmin
PΠ1|X

+ (j − 1)∆PΠ1|X
− 2 logNPΠ1|X

.

Protocol 4: Improved simulation of Π1

Input: Observations X and Y with distribution PXY , uniform public randomness
U = (Uhash, Usim), and parameters λmin

PΠ1|Y
, ∆PΠ1|Y

, NPΠ1|Y
, λmin

PΠ1|X
, ∆PΠ1|X

, NPΠ1|X
,

and γ
Output: Estimates Π1X and Π1Y of Π1

Party 1 generate J ∼ PJ |X(·|X), and send it to Party 2.

if J = j ∈ Jg then
Parties use Protocol 3 with auxiliary distribution PΠ1Y , parameters γ, λmin

PΠ1|Y
, ∆PΠ1|Y

,

NPΠ1|Y
, and k = λmin

PΠ1|X
+ (j − 1)∆PΠ1|X

− 2 logNPΠ1|X
− 2γ + 2 to simulate Π1X and

Π1Y for the distribution PΠ1XY |J=j

else
protocol declares an error

Our modified simulation protocol is described in Protocol 4. The following lemma provides a
bound on the simulation error.

Lemma 20 (Performance of Protocol 4). Protocol 4 sends at most(
hPΠ1|Y

(Π1X |Y )− hPΠ1|X
(Π1X |X) +NPΠ1|Y

+ 3 logNPΠ1|X
+ ∆PΠ1|Y

+ ∆PΠ1|X
+ 3γ

)
+
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bits when (Π1X , Y ) /∈ T (0)
PΠ1|Y

, and has simulation error

dvar
(
PΠ1XΠ1YXY ,PΠ1Π1XY

)
≤ Pr

(
(Π1, Y ) ∈ T (0)

PΠ1|Y

)
+ Pr

(
(Π1, X) ∈ T (0)

PΠ1|X

)
+
(
NPΠ1|Y

+ 1
)

2−γ +
1

NPΠ1|X

.

Proof. First, we have

dvar
(
PΠ1XΠ1YXY ,PΠ1Π1XY

)
≤ dvar

(
PΠ1XΠ1YXY J ,PΠ1Π1XY J

)
=
∑
j

PJ(j)dvar
(
PΠ1XΠ1YXY |J=j ,PΠ1Π1XY |J=j

)
≤
∑
j∈Jg

PJ(j)dvar
(
PΠ1XΠ1YXY |J=j ,PΠ1Π1XY |J=j

)
+ PJ

(
J cg
)

≤
∑
j∈Jg

PJ(j)dvar
(
PΠ1XΠ1YXY |J=j ,PΠ1Π1XY |J=j

)
+ Pr

(
(Π1, X) ∈ T (0)

PΠ1|X

)
+

1

NPΠ1|X

.

Then, we apply Lemma 19 with QX = PX for each j ∈ Jg, and get

dvar
(
PΠ1XΠ1YXY |J=j ,PΠ1Π1XY |J=j

)
≤ Pr

(
(Π1, Y ) ∈ T (0)

PΠ1|Y
| J = j

)
+NPΠ1|Y

2−γ +
1

2

√
2k−Hmin(PΠ1X|J=j |PX)

≤ Pr
(

(Π1, Y ) ∈ T (0)
PΠ1|Y

| J = j
)

+
(
NPΠ1|Y

+ 1
)

2−γ . (27)

Thus, we have the desired bound on simulation error.
Next, we prove the claimed bound on the number of bits sent by the protocol. By Lemma 19,

the fact that J can be sent by using at most logNPΠ1|X
+ 1 bits and the choice of k in Protocol 4,

for J = j the protocol above communicates at most

hQΠ1|Y
(Π1X |Y ) + ∆QΠ1|Y

+NQΠ1|Y
+ γ + logNPΠ1|X

+ 2− k

≤ hQΠ1|Y
(Π1X |Y )− λmin

PΠ1|X
− (j − 1)∆PΠ1|X

+ ∆QΠ1|Y
+NQΠ1|Y

+ 3 logNPΠ1|X
+ 3γ.

≤ hQΠ1|Y
(Π1X |Y )− hPΠ1|X

(Π1X |X) + ∆PΠ1|X
+ ∆QΠ1|Y

+NQΠ1|Y
+ 3 logNPΠ1|X

+ 3γ,

where the previous inequality holds since for Π1X generated by PΠ1|Xf(Π1)J(·|X,Usim, j)

λmin
PΠ1|X

+ j∆PΠ1|X
≥ hPΠ1|X

(Π1X |X),

for each j ∈ Jg. �

6.5 Simulation of Π

We are now in a position to describe our complete simulation protocol. Consider an interactive
protocol π with maximum number of rounds rmax = d <∞. We simply apply Protocol 4 for each
round Πt of Π. Our overall simulation protocol is described in Protocol 5. In each round we use
Protocol 4 assuming that the simulation up to the previous round has succeeded, where, for the
rounds with even numbers, we use Protocol 4 by interchanging the role of Party 1 and Party 2.

The following lemma provides a bound on the simulation error.
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Protocol 5: Simulation of Π
Input: Observations X and Y with distribution PXY , uniform public randomness

U = (Ut,hash, Ut,sim : t = 1, . . . , d), and parameters λmin
PΠt|XΠt−1

, ∆PΠt|XΠt−1 ,

NPΠt|XΠt−1 , λmin
PΠt|YΠt−1

, ∆PΠt|YΠt−1 , NPΠt|YΠt−1 for t = 1, . . . , d and γ.

Output: Estimates ΠX and ΠY of Π
while Total communication is less than lmax bits, and simulation not ended do

Party 1 and Party 2, respectively, use estimates Πt−1
X and Πt−1

Y for Πt−1 ;
Parties use Protocol 4 for simulating PΠt(XΠt−1)(YΠt−1) with parameters λmin

PΠt|XΠt−1
,

∆PΠt|XΠt−1 , NPΠt|XΠt−1 , λmin
PΠt|YΠt−1

, ∆PΠt|YΠt−1 , NPΠt|YΠt−1 and γ ;

Update t→ t+ 1

if Total communication exceeds lmax bits then
Declare an error

Lemma 21 (Performance of Protocol 5). Protocol 5 sends at most lmax bits, and has simulation
error

dvar
(
PΠXΠYXY ,PΠΠXY

)
≤ Pr

(
ic(Π;X,Y ) +

d∑
t=1

δt > lmax

)

+
d∑
t=1

[
4Pr

(
(Πt, (Y,Π

t−1)) ∈ T (0)
PΠt|YΠt−1

)
+ 4Pr

(
(Πt, (X,Π

t−1)) ∈ T (0)
PΠt|XΠt−1

)
+ 3

(
NPΠt|YΠt−1 +NPΠt|XΠt−1 + 2

)
2−γ +

3

NPΠt|XΠt−1

+
3

NPΠt|YΠt−1

]
,

where

δt =

{
NPΠt|YΠt−1 + 3 logNPΠt|XΠt−1 + ∆PΠt|YΠt−1 + ∆PΠt|XΠt−1 + 3γ odd t

NPΠt|XΠt−1 + 3 logNPΠt|YΠt−1 + ∆PΠt|XΠt−1 + ∆PΠt|YΠt−1 + 3γ even t
.

Remark 5. The fudge parameters ε′ and λ′ can be explicitly given by

ε′ =
d∑
t=1

[
4Pr

(
(Πt, (Y,Π

t−1)) ∈ T (0)
PΠt|YΠt−1

)
+ 4Pr

(
(Πt, (X,Π

t−1)) ∈ T (0)
PΠt|XΠt−1

)
+ 3

(
NPΠt|YΠt−1 +NPΠt|XΠt−1 + 2

)
2−γ +

3

NPΠt|XΠt−1

+
3

NPΠt|YΠt−1

]
,

λ′ =

d∑
t=1

δt.

Proof. Consider a virtual protocol which does not terminate even if the total number of bits exceed
lmax. Denote the output of this protocol by Π̄X = (Π̄1X , . . . , Π̄dX ) and Π̄Y = (Π̄1Y , . . . , Π̄dY). We
have

dvar
(
PΠXΠYXY ,PΠΠXY

)
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≤ dvar
(

PΠXΠYXY ,PΠ̄X Π̄YXY

)
+ dvar

(
PΠ̄X Π̄YXY

,PΠΠXY

)
≤ Pr

(
(ΠX ,ΠY) 6= (Π̄X , Π̄Y)

)
+ dvar

(
PΠ̄X Π̄YXY

,PΠΠXY

)
. (28)

First, we bound the second term of (28). By using triangular inequality repeatedly and by using
Lemma 20, we have

dvar

(
PΠ̄X Π̄YXY

,PΠΠXY

)
≤ dvar

(
PΠ̄1X Π̄1Y ···Π̄(d−1)X Π̄(d−1)Y Π̄dX Π̄dYXY

,PΠ1Π1···Π(d−1)Π(d−1)Π̄dX Π̄dYXY

)
+ dvar

(
PΠ1Π1···Π(d−1)Π(d−1)Π̄dX Π̄dYXY

,PΠ1Π1···Π(d−1)Π(d−1)ΠdΠdXY

)
= dvar

(
PΠ̄1X Π̄1Y ···Π̄(d−1)X Π̄(d−1)YXY

,PΠ1Π1···Π(d−1)Π(d−1)XY

)
+ dvar

(
PΠ̄dX Π̄dY (XΠd−1)(YΠd−1),PΠdΠd(XΠd−1)(YΠd−1)

)
=

...

=
d∑
t=1

dvar

(
PΠ̄tX Π̄tY (XΠt−1)(YΠt−1),PΠtΠt(XΠt−1)(YΠt−1)

)
≤
∑
t:odd

[
Pr
(

(Πt, (Y,Π
t−1)) ∈ T (0)

PΠt|YΠt−1

)
+ Pr

(
(Πt, (X,Π

t−1)) ∈ T (0)
PΠt|XΠt−1

)]
+
(
NPΠt|YΠt−1 + 1

)
2−γ +

1

NPΠt|XΠt−1

]
+
∑
t:even

[
Pr
(

(Πt, (Y,Π
t−1)) ∈ T (0)

PΠt|YΠt−1

)
+ Pr

(
(Πt, (X,Π

t−1)) ∈ T (0)
PΠt|XΠt−1

)]
+
(
NPΠt|XΠt−1 + 1

)
2−γ +

1

NPΠt|YΠt−1

]

≤
d∑
t=1

[
Pr
(

(Πt, (Y,Π
t−1)) ∈ T (0)

PΠt|YΠt−1

)
+ Pr

(
(Πt, (X,Π

t−1)) ∈ T (0)
PΠt|XΠt−1

)
+
(
NPΠt|YΠt−1 +NPΠt|XΠt−1 + 2

)
2−γ +

1

NPΠt|XΠt−1

+
1

NPΠt|YΠt−1

]
. (29)

By denoting

l(X,Y, Π̄X , Π̄Y) :=
∑
t:odd

hPΠt|YΠt−1 (Π̄tX |Y, Π̄t−1
Y )− hPΠt|XΠt−1 (Π̄tX |X, Π̄t−1

X )

+
∑
t:even

hPΠt|XΠt−1 (Π̄tY |X, Π̄t−1
X )− hPΠt|YΠt−1 (Π̄tY |Y, Π̄t−1

Y ),

Since (ΠX ,ΠY) coincides with (Π̄X , Π̄Y) when the accumulated message length of the protocol
generating (Π̄X , Π̄Y) does not exceed lmax, and since the message length of each round is bounded

by each term of l(X,Y, Π̄X , Π̄Y) plus δt by Lemma 20 unless (Π̄tX , (Y, Π̄
t−1
Y )) ∈ T (0)

PΠt|YΠt−1
or

(Π̄tY , (X, Π̄
t−1
X )) ∈ T (0)

PΠt|XΠt−1
, we have

Pr
(
(ΠX ,ΠY) 6= (Π̄X , Π̄Y)

)
31



≤ Pr

(
l(X,Y, Π̄X , Π̄Y) +

d∑
t=1

δt > lmax

)

+ Pr

( ⋃
t:odd

(Π̄tX , (Y, Π̄
t−1
Y )) ∈ T (0)

PΠt|YΠt−1
or

⋃
t:even

(Π̄tY , (X, Π̄
t−1
X )) ∈ T (0)

PΠt|XΠt−1

)
(30)

Since

Pr
(
(X,Y, Π̄X , Π̄Y) ∈ E

)
≤ Pr ((X,Y,Π,Π) ∈ E) + dvar

(
PΠ̄X Π̄YXY

,PΠΠXY

)
for any event E , it follows from (30) that

Pr
(
(ΠX ,ΠY) 6= (Π̄X , Π̄Y)

)
≤ Pr

(
l(X,Y,Π,Π) +

d∑
t=1

δt > lmax

)

+ Pr

( ⋃
t:odd

(Πt, (Y,Π
t−1)) ∈ T (0)

PΠt|YΠt−1
or

⋃
t:even

(Πt, (X,Π
t−1)) ∈ T (0)

PΠt|XΠt−1

)
+ 2dvar

(
PΠ̄X Π̄YXY

,PΠΠXY

)
≤ Pr

(
l(X,Y,Π,Π) +

d∑
t=1

δt > lmax

)

+

d∑
t=1

[
Pr
(

(Πt, (Y,Π
t−1)) ∈ T (0)

PΠt|YΠt−1

)
+ Pr

(
(Πt, (X,Π

t−1)) ∈ T (0)
PΠt|XΠt−1

)]
+ 2dvar

(
PΠ̄X Π̄YXY

,PΠΠXY

)
.

(31)

Thus, by combining this bound with (28) and (29), and by noting

l(X,Y,Π,Π) = ic(Π;X,Y ),

we have the desired bound on simulation error. �

7 Asymptotic Optimality

We now present the proofs of Theorem 3 and Theorem 7. Both the proofs rely on carefully choosing
the slice-sizes in the lower and upper bounds.

7.1 Proof of Theorem 3

We start with the upper bound. Note that, for IID random variables (Πn, Xn, Y n), the spectrums
of h(Πn

t |Zn, (Πt−1)n) for20 Z = X or Y have width O(
√
n). Therefore, the parameters ∆s and Ns

that appear in the fudge parameters can be chosen as O(n1/4). Specifically, by standard measure

20We use this notation throughout this section to avoid repetition.

32



concentration bounds (for bounded random variables), for every ν > 0, there exists a constant21

c > 0 such that with

λmin
PΠnt |Z

n(Πt−1)n
= nH(Πt|Z,Πt−1)− c

√
n,

λmax
PΠnt |Z

n(Πt−1)n
= nH(Πt|Z,Πt−1) + c

√
n,

the following bound holds:

Pr

(
(Πn

t , (Z
n, (Πt−1)n)) ∈ T (0)

PΠnt |Z
n(Πt−1)n

)
≤ ν. (32)

Let T denote the third central moment of the random variable ic(Π;X,Y ). For

λn = nIC(π) +
√
nV(π)Q−1

(
ε− 9dν − T 3

2V(π)3/2
√
n

)
,

choosing ∆PΠnt |Z
n(Πt−1)n

= NPΠnt |Z
n(Πt−1)n

= γ =
√

2cn1/4, and lmax = λn +
∑d

t=1 δt in Theorem 2

(for the definition of the fudge parameters, see Remark 5), we get a protocol of length lmax and
satisfying

dvar

(
PΠnXΠnYX

nY n ,PΠnΠnXnY n

)
≤ Pr

(
n∑
i=1

ic(Πi;Xi, Yi) > λn

)
+ 9dν

for sufficiently large n. Here, note that δt = O(n1/4). Thus, the Berry-Esséen theorem (cf. [Fel71])
and the observation above gives a protocol of length lmax attaining ε-simulation. Therefore, using
the Taylor approximation of Q(·) yields the achievability of the claimed protocol length.

For the lower bound, we fix sufficiently small constant δ > 0, and we set λ
(1)
min = n(H(X,Y ) −

δ), λ
(1)
max = n(H(X,Y ) + δ), λ

(2)
min = n(H(X|Y,Π) − δ), λ

(2)
max = n(H(X|Y,Π) + δ), λ

(3)
min =

n(H(XΠ4YΠ)−δ), λ(3)
max = n(H(XΠ4YΠ)+δ), respectively. Then, by standard measure concen-

tration bounds imply that the tail probability εtail in (3) is bounded above by c
n for some constant

c > 0. We also set η = 1
n . For these choices of parameters, we note that the fudge parameter is

λ′ = O(log n). Thus, by setting

λ = λn = nIC(π) +
√
nV(π)Q−1

(
ε+

c+ 2

n
+

T 3

2V(π)3/2
√
n

)
= nIC(π) +

√
nV(π)Q−1(ε) +O(log n),

where the final equality is by the Tailor approximation, an application of the Berry-Esséen theorem
to the bound in (2) gives the desired lower bound on the protocol length. �

7.2 Proof of Theorem 5

Theorem 1 implies that if a protocol πsim is such that

log ‖πsim‖ < λ− λ′, (33)

21Although the constant depends on random variables appearing in each round, since the number of rounds is
bounded, we take the maximum constant so that (32) holds for every t.
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then its simulation error must be larger than

Pr (ic (Πn;Xn, Y n) > λ)− ε′. (34)

To compute fudge parameters, we set λ
(1)
min = n(H(X,Y ) − δ), λ(1)

max = n(H(X,Y ) + δ), λ
(2)
min =

n(H(X|Y,Π)−δ), λ(2)
max = n(H(X|Y,Π)+δ), λ

(3)
min = n(H(XΠ4YΠ)−δ), λ(3)

max = n(H(XΠ4YΠ)+
δ), respectively. By the Chernoff bound, there exists E1 > 0 such that

εtail ≤ 2−E1n.

Furthermore, Λi = O(n) for i = 1, 2, 3. We set η = 2−
δ
27
n. It follows that

ε′ ≤ 2−E1n + 2−
δ
27
n (35)

and

λ′ ≤ δ

3
n+O(log n). (36)

Finally, upon setting

λ = nIC(π)− δ

3
(37)

and applying the Chernoff bound once more, we obtain a constant E2 > 0 such that

Pr (ic (Πn;Xn, Y n) > λ) ≥ 1− 2−E2n. (38)

The result follows upon combining (33)-(38). �

7.3 Proof of Theorem 7

For a sequence of protocols π = {πn}∞n=1 and a sequence of observations (X,Y) = {(Xn, Yn)}∞n=1,
let

H(Πt|Z,Πt−1) = sup
{
α : lim

n→∞
Pr
(
h(Πn,t|ZnΠt−1

n ) < α
)

= 0
}
, (39)

H(Πt|Z,Πt−1) = inf
{
α : lim

n→∞
Pr
(
h(Πn,t|ZnΠt−1

n ) > α
)

= 0
}
, (40)

where Z = X or Y, Πt = {Πn,t}∞n=1 and Πt−1
n = {Πt−1

n }∞n=1 are sequences of transcripts of tth
round and up to tth rounds, respectively. For achievability part, we fix arbitrary small δ > 0, and
set

λmin
P

Πn,t|ZnΠt−1
n

= n
(
H(Πt|Z,Πt−1)− δ

)
,

λmax
P

Πn,t|ZnΠt−1
n

= n
(
H(Πt|Z,Πt−1) + δ

)
,

∆P
Πn,t|ZnΠt−1

n
= NP

Πn,t|ZnΠt−1
n

= γ =
√

2δn. We set

lmax = n
(
IC(π) + δ

)
+

d∑
t=1
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= n
(
IC(π) + δ

)
+O(

√
n).

Then, by Theorem 2, by the definition of IC(π) and by (39) and (40), there exists a simulation
protocol of length lmax with vanishing simulation error. Since δ > 0 is arbitrary, we have the desired
achievability bound.

For converse part, we fix arbitrary δ > 0, and set λ
(1)
min = n(H(X,Y)− δ), λ(1)

max = n(H(X,Y) +

δ), λ
(2)
min = n(H(X|Y,Π) − δ), λ(2)

max = n(H(X|Y,Π) + δ), λ
(3)
min = n(H(XΠ4YΠ) − δ), λ(3)

max =
n(H(XΠ4YΠ) + δ), respectively, where

H(X,Y) = sup
{
α : lim

n→∞
Pr (h(XnYn) < α) = 0

}
,

H(X,Y) = inf
{
α : lim

n→∞
Pr (h(XnYn) > α) = 0

}
,

H(X|Y,Π) = sup {α : Pr (h(Xn|YnΠn) < α) = 0} ,
H(X|Y,Π) = inf {α : Pr (h(Xn|YnΠn) > α) = 0} ,

H(XΠ4YΠ) = sup {α : Pr (−h(XnΠn4YnΠn) < α) = 0} ,
H(XΠ4YΠ) = inf {α : Pr (−h(XnΠn4YnΠn) > α) = 0} .

Then, by the definitions, we find that the tail probability εtail in (3) converges to 0. We also set
η = (1/n). For these choices of parameters, we note that the fudge parameter is λ′ = O(log n).
Thus, by using the bound in (2) for

λ = λn = n
(
IC(π) + δ

)
, (41)

and by taking δ → 0, we have the desired converse bound. �
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A Example Protocol

To illustrate the utility of our lower bound, we consider a protocol π which takes very few values
most of the time, but with very small probability it can send many different transcripts. The
proposed protocol can be ε-simulated using very few bits of communication on average. But in the
worst-case it requires as many bits of communication for ε-simulation as needed for data exchange,
for all ε > 0 small enough.

Specifically, let X = Y = {1, . . . , 2n} and let π be a deterministic protocol such that the
transcript τ(x, y) for (x, y) is given by

τ(x, y) =


a if x > δ2n, y > δ2n

b if x > δ2n, y ≤ δ2n
c if x ≤ δ2n, y > δ2n

(x, y) if x ≤ δ2n, y ≤ δ2n

for some small δ > 0, which will be specified later. Clearly, this protocol is interactive.
Let (X,Y ) be the uniform random variables on X × Y. Then,

Pr (Π /∈ {a, b, c}) = δ2.

Since

PΠ|X(τ(x, y)|x) =


1− δ if x > δ2n, y > δ2n

δ if x > δ2n, y ≤ δ2n
1− δ if x ≤ δ2n, y > δ2n

1
2n if x ≤ δ2n, y ≤ δ2n

and similarly for PΠ|Y (τ(x, y)|y), we have

ic(τ(x, y);x, y) =


2 log(1/(1− δ)) if x > δ2n, y > δ2n

log(1/δ) + log(1/(1− δ)) if x > δ2n, y ≤ δ2n
log(1/δ) + log(1/(1− δ)) if x ≤ δ2n, y > δ2n

2n if x ≤ δ2n, y ≤ δ2n
.

Consider δ = 1
n , and ε = 1

n3 . Note that for any λ < 2n,

Pr (ic(Π;X,Y ) > λ) ≥ Pr (Π{a, b, c}) = δ2 =
1

n2
> ε,

and
Pr (ic(Π;X,Y ) > 2n) = 0.

Thus, the ε-tail of information complexity density λε = sup{λ : Pr (ic(Π;X,Y ) > λ) > ε} is given
by

λε = 2n. (42)

On the other hand, we have

IC(π) = H(Π|X) +H(Π|Y )

≤ 2δ[h(δ) + log n− log(1/δ)] + 2(1− δ)hb(δ)
≤ Õ(δ2)

36



where hb(·) is the binary entropy function.
Also, to evaluate the lower bound of Theorem 1, we bound the fudge parameters in that bound.

To that end, we fix εtail = 0 and bound the spectrum lengths Λ1,Λ2,Λ3. Since (X,Y ) is uniform,
h(X,Y ) = 2n and so, Λ1 = 0. Also, note that with probability 1 the conditional entropy density
h(X|Π, Y ) is either 0 or log(δ2n), which implies Λ2 = O(n). A similar argument shows that
Λ3 = O(n). Therefore, the fudge parameter

λ′ = O(log Λ1Λ2Λ3) = O(log n),

which in view of (42) and Theorem 1 gives Dε (π) = Ω(2n). �

B Proof of Lemma 22

Lemma 22. Consider random variables X,Y, Z and V taking values in countable sets X , Y, Z,
and a finite set V, respectively. Then, for every 0 < ε < 1/2,

S2ε(X,Y |ZV ) ≥ Sε(X,Y |Z)− log |V| − 2 log(1/2ε).

Proof. Consider random variables K ′X and K ′Y with a common range K′ such that (K ′X ,K
′
Y)

constitutes an ε-secret key for X and Y given eavesdropper’s observation Z, recoverable using an

interactive protocol π′. Let QK′XK
′
YΠ′ZV denote the distribution P

′(2)
unifPΠ′ZV , where P

′(2)
unif denotes

the distribution

P
′(2)
unif(kX , kY) =

1(kX = kY)

|K′|
, ∀ kY , kY ∈ K′.

Then, by definition of an ε-secret key, it holds that

dvar

(
PK′XK

′
YΠ′Z ,QK′XK

′
YΠ′Z

)
≤ ε. (43)

Note that Hmin(QK′XΠ′Z | Π′Z) ≥ log |K′|. Therefore, by Lemma 9 there exists a function KX =
K(K ′X ) taking values in a set K with log |K| ≥ log |K′| − log |V| − 2 log(1/2ε) such that

dvar (QKXΠ′ZV ,PunifQΠ′ZV ) ≤ ε, (44)

where Punif denotes the uniform distribution on the set K. Upon letting KY = K(K ′Y) and defining

P
(2)
unif analogously to P

′(2)
unif with K in place of K′, we have

dvar

(
PKXKYΠ′ZV ,P

(2)
unifPΠ′ZV

)
≤ dvar

(
QKXKYΠ′ZV ,P

(2)
unifPΠ′ZV

)
+ ε

= dvar (QKΠ′ZV ,PunifPΠ′ZV ) + ε

≤ 2ε,

where the first inequality is by (43) and the second by (44), and the equality is by the definition
of Q. Therefore, (KX ,KY) constitutes a 2ε-secret key of length log |K′| − log |V| − 2 log(1/2ε) for
X and Y given eavesdropper’s observation (Z, V ). The claimed bound follows since K ′ was an
arbitrary secret key for X and Y given eavesdropper’s observation Z. �
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