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Abstract

We study the complexity of representing polynomials as a sum of products of polynomials
in few variables. More precisely, we study representations of the form

P =

T∑
i=1

d∏
j=1

Qij

such that each Qij is an arbitrary polynomial that depends on at most s variables.
We prove the following results.

• Over fields of characteristic zero, for every constant µ such that 0 ≤ µ < 1, we give an
explicit family of polynomials {PN}, where PN is of degree n in N = nO(1) variables, such
that any representation of the above type for PN with s = Nµ requires Td ≥ nΩ(

√
n). This

strengthens a recent result of Kayal and Saha [KS14a] which showed similar lower bounds
for the model of sums of products of linear forms in few variables. It is known that any
asymptotic improvement in the exponent of the lower bounds (even for s =

√
n) would

separate VP and VNP [KS14a].

• We obtain a deterministic subexponential time blackbox polynomial identity testing (PIT)
algorithm for circuits computed by the above model when T and the individual degree of
each variable in P are at most logO(1)N and s ≤ Nµ for any constant µ < 1/2. We

get quasipolynomial running time when s < logO(1)N . The PIT algorithm is obtained by
combining our lower bounds with the hardness-randomness tradeoffs developed in [DSY09,
KI04]. To the best of our knowledge, this is the first nontrivial PIT algorithm for this
model (even for the case s = 2), and the first nontrivial PIT algorithm obtained from
lower bounds for small depth circuits. 1
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1In a recent independent work, Forbes [For] does blackbox identity testing for another subclass of depth four

circuits using shifted partial derivative based methods. To the best of our understanding, the results in these two
papers are incomparable even though both rely on similar techniques.
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1 Introduction

Arithmetic circuits are the most natural model of computation for a wide variety of algebraic
problems such as matrix multiplication, computing fast fourier transforms etc. The problem
of proving lower bounds for arithmetic circuits is one of the most fundamental and interesting
problems in complexity theory. Proving superpolynomial lower bounds for general arithmetic
circuits would resolve the VP versus VNP conjecture [Val79], the algebraic analog of the P vs NP
conjecture. This is one of the holy grails of complexity theory and has received a lot of attention,
since it is a more structured and potentially easier question to understand and analyse than the
P vs NP problem .

The intimately related problem of polynomial identity testing (PIT) is the problem of testing
if a polynomial, given as an arithmetic circuit is identically zero. In the setting where the
algorithm cannot look inside the circuit, but only has access to evaluations of the circuit, the
problem is referred to as blackbox PIT. There is a very simple randomized algorithm for this
problem - simply evaluate the polynomial at a random point from a large enough domain. With
very high probability, a nonzero polynomial will have a nonzero evaluation [Sch80, Zip79]. It is
a very important and fundamental question to derandomize the above algorithm. In a seminal
work, Kabanets and Impagliazzo [KI04] showed that the problem of proving lower bounds for
arithmetic circuits and the problem of derandomizing identity testing are essentially equivalent!

These two problems have occupied a central position in complexity theory and despite much
attention, our understanding of general arithmetic circuits is still very limited. Thus there has
been a great deal of effort in understanding the complexity of restricted classes of arithmetic
circuits in an attempt to obtain a better understanding of the general problem. Low depth
arithmetic circuits in particular are one such well studied class.

Lower bounds for homogeneous low depth arithmetic circuits. The last few
years have seen a tremendous amount of exciting progress on the problems of “depth reduction”
of general arithmetic circuits to low depth arithmetic circuits, and of proving lower bounds for
low depth arithmetic circuits. Using depth reduction techniques [VSBR83, AV08, Koi12, Tav13]
it was shown that Nω(

√
n) lower bounds (for polynomials in N variables and of degree n) for

just homogeneous depth 4 arithmetic circuits of bottom fan-in
√
n would suffice to separate VP

from VNP and imply superpolynomial lower bounds for general arithmetic circuits. At the same
time there was a very exciting line of works proving NΩ(

√
n) lower bounds for the same model of

arithmetic circuits (and in fact for even the more general class of homogeneous depth 4 arithmetic
circuits with no restriction on bottom fan-in) [GKKSa, FLMS, KSS, KS, KLSS, KS14b].

Lower bounds for non-homogeneous low depth arithmetic circuits. Despite
all this remarkable progress, and some very strong lower bounds for homogeneous low depth
arithmetic circuits, in the nonhomogenous world much less is understood. Only mild lower
bounds are known when we drop the condition of homogeneity, even for very simple classes of
low depth arithmetic circuits. For depth 3 circuits over fields of characteristic 0, only quadratic
lower bounds known [SW01, Shp01], and there has been no progress on this question in more
than a decade now.

In a beautiful depth reduction result over fields of characteristic 0, Gupta et al [GKKSb]
showed that Nω(

√
n) lower bounds (for polynomials in N variables and of degree n) for the class

of non-homogeneous depth 3 circuits would already separate VP from VNP. It was recently
observed by Kayal and Saha [KS14a] 2 that in fact it suffices to prove such lower bounds for
depth 3 circuits with bottom fan-in

√
n.

2They attribute the observation to Ramprasad Saptharishi.
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Till recently (in particular till the work of [KS14a]), the best known lower bounds for depth
3 circuits even with bottom fan-in 2 were still just quadratic. In a very nice recent result,
Kayal and Saha [KS14a] showed an exponential lower bound for depth 3 circuits over fields of
characteristic 0, whose bottom fan-in is at most Nµ, where N is the number of variables and
0 ≤ µ < 1 is an arbitrary constant. More precisely, they prove the following.

Theorem 1.1 (Kayal-Saha [KS14a]). Let F be a field of characteristic zero. Then, for every
constant 0 ≤ µ < 1 there is a family {PN} of degree n polynomials in N = nOµ(1) variables over
F in VNP such that any depth three circuit of bottom fan-in at most Nµ computing PN has top
fan-in at least NΩµ(

√
n).

Our Model: In this work, we consider the model of sums of products of polynomials in few
variables. More formally, we consider representations of polynomials P (degree n in N = nO(1)

variables) in the form

P =

T∑
i=1

d∏
j=1

Qij (1)

where each Qij is an arbitrary polynomial (of arbitrarily high degree) in at most s variables.

We call this the model of ΣΠ (ΣΠ)
[s]

circuits.
Observe that the model is more general than that considered in [KS14a]. The model in

[KS14a] corresponds to sums of products of linear forms in few variables. In our case, the Qij
no longer have to be linear forms, but can be general polynomials of arbitrarily high degree.
Prior to this work, even for the case when s = 2, there were no nontrivial lower bounds known
for this model.

ΣΠ (ΣΠ)
[s]

circuits for s ≥ 2 can also be seen as a generalization of the model of sums

of products of univariate polynomials (which corresponds to ΣΠ (ΣΠ)
[s]

circuits with s = 1),
which has been very well studied in the arithmetic circuit complexity literature. Lower bounds

for ΣΠ (ΣΠ)
[1]

circuits follow from works of Nisan [Nis91] and Saxena [Sax07]. Over the last
few years, there have been some very nice results giving quasipolynomial time blackbox identity

testers for ΣΠ (ΣΠ)
[1]

circuits [FS13a, FS13b, ASS13]. ΣΠ (ΣΠ)
[s]

circuits can also be seen as
a generalization of the widely studied model of diagonal circuits, since polynomials computable

by diagonal circuits can be represented as a ΣΠ (ΣΠ)
[1]

circuit without much blow up in the
size of the representation [Sax07].

Although ΣΠ (ΣΠ)
[1]

circuits seem fairly well understood from the point of view of lower
bounds and derandomization of polynomial identity testing, if one considers the model of sums

of products of bivariate polynomials (ΣΠ (ΣΠ)
[2]

circuits), then our understanding changes

completely. Although only seemingly a mild generalization of ΣΠ (ΣΠ)
[1]

circuits, the known

proof techniques for lower bounds for ΣΠ (ΣΠ)
[1]

circuits (which were proved using evaluation
dimension techniques of [Nis91, Raz06]) seem to completely break down in this setting. Thus,
studying this model seems like an interesting next step towards understanding non-homogeneous
small depth algebraic computation. As far as we are aware there are also (not surprisingly) no
nontrivial PIT results for the model. We are now ready to state our results.

1.1 Our results

Lower bounds : We show an exponential lower bound for the model of ΣΠ (ΣΠ)
[s]

, when
s is at most Nµ for any constant 0 ≤ µ < 1 (N is the number of variables). More precisely, we
show the following.

Theorem 1.2. Let F be a field of characteristic zero and µ be any constant such that 0 ≤ µ < 1.
There exists a family {PN} of polynomials over F in VNP, where PN is of degree n in N = nOµ(1)
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variables, such that for any representation of PN of the form

PN =

T∑
i=1

d∏
j=1

Qij

where each Qij is polynomial in at most s = Nµ variables, it must be true that

T · d ≥ nΩµ(
√
n)

Given the depth reduction results of [GKKSb] and the observation mentioned earlier from [KS14a],
it is known that any asymptotic improvement in the exponent of the lower bound (even for
s = O(

√
n)) would imply VNP is different from VP.

As discussed in the introduction, even though this model seems a natural generalization of
the model of sums of products of univariate polynomials, our lower bound technique is very
different from those used in proving lower bounds for sums of products of univariates. Our
lower bound proof is based on ideas developed in the course of investigating homogeneous depth
four arithmetic circuits [KLSS, KS14b].

Blackbox PIT : We also consider the problem of PIT for the model of ΣΠ (ΣΠ)
[s]

circuits.
For general sums of products of even bivariate polynomials, this question seems quite difficult,
and as of now we are not even able to obtain subexponential time PIT. However, as a consequence
of our lower bounds and by suitably adapting hardness randomness tradeoffs for arithmetic
circuits developed in [KI04] and [DSY09], we are able to obtain PIT results in the setting where
the top fan-in of the circuit is bounded, and when we have the promise that the circuit computes
a polynomial of low individual degree.

Our understanding of blackbox PIT for depth four circuits is very limited, and the results
known are in very restricted settings. Saraf and Volkovich [SV11] gave blackbox PIT algorithms
for multilinear depth 4 circuits with bounded top fan-in. To the best of our knowledge, the
idea in [SV11] does not extend to the case of non-multilinear depth 4 circuits, even when the
individual degree of each of the variables is at most 2. Recently, Oliveira et al [dOSV14] gave a
subexponential time blackbox PIT for all depth four multilinear circuits3. In the non-multilinear
setting, Agrawal et al. [ASSS12] gave PIT algorithms for constant depth formulas in which the
number of occurences of each variable is bounded. Without going into the technical details, we
remark that the notion of bounded occur is a generalization of the well studied notion of bounded
reads. The most closely related results to those in this paper that we are aware of are the recent
papers of Gupta [Gup14] and Mukhopadhyay [Muk], which give blackbox PIT results for sums
of products of low degree polynomials, where the top sum fan-in is bounded and the circuits
satisfy certain algebraic geometric restrictions.

So, the question of getting PIT results for general depth four circuits (even with bounded
top and bottom fan-in) remains wide open. For instance we still do not know any nontrivial PIT
results for a sum of constant many products of degree 2 polynomials. Though we still don’t know
how to deal with this question, when we replace the polynomials of low degree with polynomials
of few variables (but of arbitrarily large degree), then we are able to obtain quasipolynomial
PIT results. There is one added caveat however, that the final polynomial computed needs
to be of low individual degree (as seems necessary for PIT results obtained from the known
hardness-randomness tradeoffs for bounded depth circuits [DSY09]). We now formally state the
theorem.

3The running time increases with the size of the circuit, and in particular, it is subexponential time for polynomial
sized depth four multilinear circuits.
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Theorem 1.3. Let c and µ be arbitrary constants such that c > 0 and 0 ≤ µ < 1/2, and let F
be a field of characteristic zero. Let C be the set of polynomials P in N variables and individual
degree at most k over F, with the property that P can be expressed as

P =

T∑
i=1

d∏
j=1

Qij

such that

1. T < logcN

2. k < logcN

3. d < N c

4. each Qij depends on at most Nµ variables

Then, there exists a constant ε < 1 dependent only on c and µ, such that there is a hitting set
of size exp(N ε) for C which can be constructed in time exp(N ε).

Moreover, from our proof, it also follows that if each of polynomial Qij depends only on

logO(1)N variables, then both the size of the hitting set and the time to construct it, are upper
bounded by a quasipolynomial function in N .

Organisation of the paper: We provide an overview of the proofs in Section 2. We
describe some definitions and preliminaries in Section 3. We present the proof of the lower
bound in Section 4. We describe the application to blackbox PIT in Section 5 and conclude
with some open problems in Section 6.

2 Proof overview

In this section, we provide an overview of the main ideas in proofs of Theorem 1.2 and Theo-
rem 1.3.

2.1 Overview of proof of Theorem 1.2

We restate Theorem 1.2 for the sake of clarity.
Theorem 1.2 Let F be a field of characteristic zero and µ be any constant such that 0 ≤ µ < 1.
There exists a family {PN} of polynomials over F in VNP, where PN is of degree n in N = nOµ(1)

variables, such that for any representation of PN of the form

PN =

T∑
i=1

d∏
j=1

Qij

where each Qij is polynomial in only Nµ variables, it must be true that

T · d ≥ nΩµ(
√
n)

The key difference between proving the above lower bound and the lower bounds for ho-
mogeneous depth four circuits is that the formal degree of the circuit in the above case could
be much larger than the degree of the polynomial, which is n. In fact, even the fan-in of the
product gates at level 2, that is d could be much larger than n. Therefore, a straightforward
application of homogeneous depth four circuit lower bounds does not seem to work. Our proof
is in two steps and at a high level follows the strategy of the lower bound for non-homogeneous
depth three circuits with bounded bottom fan-in by Kayal and Saha [KS14a] with some key
differences.
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• In the first step, we obtain another representation of PN , as

PN =

Td2O(
√
n)∑

i=1

n∏
j=1

Q′ij

where every monomial in each of the Q′ij has support4 at most s, although each Q′ij
could now depend on all the variables. The key property that we have gained from this
transformation is that the fan-in of the product gates at level two is bounded by n now,
which is the degree of PN . However, we have no bound on the degree of the Q′ij . Moreover,
we have blown up the top fan-in a bit, but we will be able to tolerate this loss if s is small.

• In the second step, the strategy can be seen in two stages. If µ was very small, say 0.001,
then we could have taken advantage of the fact that in the representation obtained in the
first step above, the product fan-in is at most n and the support of every monomial in each
of the Q′ij is small, to prove an upper bound on the dimension of the space of projected
shifted partial derivatives of the above representation. Comparing this dimension with that
of our hard polynomial gives us our lower bound. For larger values of µ, we use random
restrictions to ensure that all the monomials of large support in Q′ij are set to zero. At
the end of such a procedure, we are back to the low support case. This step of the proof
is closely along the lines of the proof of homogeneous depth four arithmetic circuit lower
bounds in [KLSS, KS14b] although in the present case, formal degree of the circuit could
be as large as n2, which is much larger than the degree of the polynomial PN . For such
large formal degrees, in general we do not even know lower bounds for non-homogeneous
depth three circuits.

We would like to point out that the first step of the proof above is similar to the homogenization
step in the proof of lower bounds for general depth three circuits with bounded bottom fan-in
by Kayal and Saha [KS14a]. The key difference is that while the circuit they obtain at the
end of this step is a strictly homogeneous circuit of formal degree n, we are unable to get a
similar structure. The complication stems from the fact that when Qij are not affine forms,
they could contain monomials of varying degrees. In this case, it seems difficult to obtain a
strict homogenization with a small blow up in size. We get around this deficiency by a more
subtle analysis in the second step, where we show a lower bound for a circuit which has a formal
degree much larger than the degree of the polynomial being computed, but has some added
structure. This step critically uses that the fact that the product fan-in at level two of these
circuits is at most n, and the support of every monomial in each of the Q′ij is small.

2.2 Overview of proof of Theorem 1.3

We first restate Theorem 1.3.
Theorem 1.3 Let c and µ be arbitrary constants such that c > 0 and 0 ≤ µ < 1/2, and let F
be a field of characteristic zero. Let C be the set of polynomials P in N variables and individual
degree at most k over F, with the property that P can be expressed as

P =

T∑
i=1

d∏
j=1

Qij

such that

1. T < logcN

2. k < logcN

4A monomial is said to have support support s if it depends on at most s distinct variables.
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3. d < N c

4. each Qij depends on at most Nµ variables

Then, there exists a constant ε < 1 dependent only on c and µ, such that there is a hitting set
of size exp(N ε) for C which can be constructed in time exp(N ε).

The construction of the hitting set is based on the well known idea of using hard functions
for derandomization. Our goal is to reduce the number of variables from N to at most Nδ

for some constant δ < 1, while maintaining the zeroness/nonzeroness of the polynomial be-
ing tested [KI04, DSY09]. Once we have done this, we take a brute force hitting set of size

(Degree + 1)
Number of variables

as given by Lemma 5.5. To reduce the number of variables, we
use the framework introduced by Kabanets and Impagliazzo [KI04].

The key technical step of the proof is to show that for a non-zero polynomial P as defined
above, if there exists a polynomial f ∈ F[X1, X2, . . . , Xi−1, Xi+1, Xi+2, . . . , XN ] such that Xi−f
divides P , then f can also be expressed as a sum of products of polynomials in few variables
of reasonably small size. This step crucially uses a statement about complexity of roots of
polynomials computed by low depth circuits from [DSY09]. Therefore, if f is a polynomial
which does not have a small representation as a sum of products of polynomials in few variables,
then Xi − f does not divide P . This observation guarantees that the construction of hitting
sets from hard polynomials given by [KI04] works for this class of circuits.

3 Notation and Preliminaries

We now introduce some notation and preliminary notions that we use in the rest of the paper.

Computational model : In this work, we consider the model of sums of products of
polynomials in few variables. More formally, we consider representations of polynomials P
(degree n in N = nO(1) variables) in the form

P =

T∑
i=1

αi ·
d∏
j=1

Qij (2)

where each Qij is an arbitrary polynomial (of arbitrarily high degree) in at most s variables and

each αi is a field constant. We call this the model of ΣΠ (ΣΠ)
[s]

circuits. We use the quantity

Td as a measure of the size of a ΣΠ (ΣΠ)
[s]

circuit. Without loss of generality, we can assume
that the degree zero term in each of the Qij is either zero or one. If it is a non-zero constant
other than 1, we can extract it out and absorb it in αi. For each of the product gates, the fan-in
could be different, but we can assume without loss of generality that all the product fan-ins
are equal to d. Observe that the d could be much larger than the degree of the polynomial P .
Throughout this paper, we will be working over a field of characteristic zero.

Some basic notations :

1. For an integer i, we denote the set {1, 2, . . . , i} by [i].

2. By X, we mean the set of variables {X1, X2, . . . , XN}.
3. For a polynomial P and a positive integer i, we represent by Homi[P ], the homogeneous

component of P of degree equal to i. By Hom≤i[P ] and Hom≥i[P ], we represent the
component of P of degree at most i and at least i respectively.

4. The support of a monomial α is the set of variables which appear with a non-zero exponent
in α. We denote the size of the support of α by Supp(α).
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5. Throughout the paper, we say that a function f(N) is subexponential in N if there exists
a positive real number ε, such that ε < 1 and for all N sufficiently large, f(N) < exp(N ε).

6. We say that a function f(N) is quasipolynomial in N if there exists a positive absolute
constant c, such that for all N sufficiently large, f(N) < exp(logcN).

7. In this paper, we only consider layered arithmetic circuits and we will be counting levels
from top to bottom, starting with the output gates being at level one.

8. By a ΣΠΣ∧ circuit, we refer to a depth four circuit with all the product gates at the lowest
level being replaced by powering (∧) gates. Similarly, by a ΣΠΣ ∧ ΣΠ circuit, we mean a
depth six circuit all of whose product gates at level four from the top are powering gates.

Hitting set : Let C be a set of polynomials in N variables over a field F. Then, a set
H ⊆ FN is said to be a hitting set for the class C, if for every polynomial P ∈ C such that P is
not the identically zero polynomial, there exists a p ∈ H such that P (p) 6= 0.

Elementary symmetric polynomials : For variables X = {X1, X2, . . . , XN} and any
integer 0 ≤ l ≤ N , the elementary symmetric polynomial of degree l on variables X is defined
as

ESYMl(X) =
∑

S⊆[N ],|S|=l

∏
j∈S

Xj

Projected shifted partial derivatives : A key idea behind the recent progress on lower
bounds is the notion of shifted partial derivatives introduced in [Kay12]. In this paper, we
use a variant of the measure, called projected shifted partial derivatives introduced in [KLSS]
and subsequently used in [KS14b]. Although we never explicitly do any calculations with the
measure in this paper, we provide a brief introduction to it below since the bounds are based
on it.

For a polynomial P and a monomial γ, ∂γ(P ) is the partial derivative of P with respect to
γ. For every polynomial P and a set of monomialsM, ∂M(P ) is the set of partial derivatives of
P with respect to monomials in M. The space of (M,m)-projected shifted partial derivatives
of a polynomial P is defined below.

Definition 3.1 ((M,m)-projected shifted partial derivatives). For an N variate polynomial
P ∈ F[X1, X2, . . . , XN ], set of monomialsM and a positive integer m ≥ 0, the space of (M,m)-
projected shifted partial derivatives of P is defined as

〈∂M(P )〉m
def
= F-span{σ(

∏
i∈S

Xi · g) : g ∈ ∂M(P ), S ⊆ [N ], |S| = m} (3)

Here, σ(P ) of a polynomial P is the projection of P on the multilinear monomials in its
support. The measure of complexity of a polynomial that we use in this paper, is the dimension
of projected shifted partial derivative space of P with respect to some set of monomialsM and
a parameter m. Formally,

ΦM,m(P ) = Dim(〈∂M(P )〉m)

From the definitions, it is straight forward to see that the measure is subadditive.

Lemma 3.2 (Sub-additivity). Let P and Q be any two multivariate polynomials in F[X1, X2, . . . , XN ].
Let M be any set of monomials and m be any positive integer. Then, for all scalars α and β

ΦM,m(α · P + β ·Q) ≤ ΦM,m(P ) + ΦM,m(Q)
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Approximations : We will refer to the following lemma to approximate expressions during
our calculations.

Lemma 3.3 ([GKKSa]). Let a(n), f(n), g(n) : Z>0 → Z>0 be integer valued functions such
that (f + g) = o(a). Then,

log
(a+ f)!

(a− g)!
= (f + g) log a±O

(
(f + g)2

a

)
In the proofs in this paper, we use Lemma 3.3 only in situations where (f +g)2 will be O(a).

In this case, the error term will be bounded by an absolute constant. So, up to constant factors,
(a+f)!
(a−g)! = a(f+g). We use the symbol ≈ to indicate equality up to constant factors.

Complexity of coefficients and homogeneous components : We now summarise
two simple lemmas which are useful for our proof. The first lemma summarises that given a
circuit C for a polynomial P ∈ F[X1, X2, . . . , XN , Y ] of degree at most d, for every 0 ≤ i ≤ d,
the coefficient of Y i in P (when viewing P as a polynomial in F[X1, X2, . . . , XN ][Y ]) can also
be computed by a circuit of size not much larger than the size of C.

Lemma 3.4. Let P ∈ F[X1, X2, . . . , XN , Y ] be a polynomial of degree at most d in Y over a
field F of characteristic zero, such that P is computable by an arithmetic circuit C of size |C|.
Let

P =

d∑
i=0

Qi(X1, X2, . . . , XN ) · Y i

for polynomials Qi(X1, X2, . . . , XN ) ∈ F[X1, X2, . . . , XN ]. Then, for every i such that 0 ≤ i ≤ d,
the polynomial Qi can be computed by an arithmetic circuit C ′ of size at most |C| · (d + 1).
Moreover, if the output gate of C is a + gate, then the depth of C ′ is equal to the depth of C.
Else, the depth of C ′ is at most 1 more than the depth of C.

Proof. We can view P as a univariate polynomial of degree at most d in Y with the coefficients
coming from F(X). From the classical Lagrange interpolation, we know that the coefficient of
Y i in P can be written as an F(X) linear combination of the evaluations of P at d+ 1 distinct
values of Y taken from F(X). In fact, more strongly, we can evaluate P at d + 1 values of Y
all chosen from F itself, in which case the constants in the linear combination are also from F.
So, Qi can be computed by a circuit obtained from taking d+ 1 circuits each obtained from P
by substituting Y by a scalar in F, and taking their linear combination. Let this circuit be C ′.
Clearly the size of C ′ is at most (d + 1) times the size of C. If the output gate of C was an
addition gate, then the outer addition for the linear combination can be absorbed into it, and
the depth remains the same. Else, the depth increases by one.

The second lemma stated below essentially says that the circuit complexity of homogeneous
components of a polynomial is not much larger than the circuit complexity of the polynomial
itself.

Lemma 3.5. Let P be a polynomial of degree at most d in N variables over a field F of
characteristic zero, such that P is computable by an arithmetic circuit C of size |C|. Then, for
every i such that 0 ≤ i ≤ d, the homogeneous component of degree i of P can be computed by
an arithmetic circuit C ′ of size at most |C| · (d + 1). Moreover, if the output gate of C is a +
gate, then the depth of C ′ is equal to the depth of C. Else, the depth of C ′ is at most 1 more
than the depth of C.
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Proof. Let P ′(t) be the polynomial obtained from P by replacing every variable X in P by
X · t for a new variable t. We can view P ′ to be a univariate polynomial of degree at most d
in t with the coefficients coming from F(X). Observe that for every i such that 0 ≤ i ≤ d, the
homogeneous component of P of degree equal to i is equal to the coefficient of ti in P ′. The
proof now follows from Lemma 3.4.

4 Proof of the lower bound

In this section, we give the proof of Theorem 1.2. We prove the lower bound for a variant of
the well known family of Nisan-Wigderson polynomials defined by Kayal and Saha [KS14a].

4.1 Target polynomials for the lower bound

We now define the family of polynomials of degree n in N variables for which we prove the lower
bounds. The family is a variant of the Nisan-Wigderson polynomials which were introduced by
Kayal et al in [KSS] in the context of lower bounds for homogeneous depth four circuits. The
particular variant we use in the paper is due to Kayal and Saha [KS14a].

The tradeoff between the number of variables N and the degree n will be parameterized by
the parameter µ where 0 ≤ µ < 1. First we need some parameters, which we define below.

1. δ = (1− µ)/2 is a positive real number such that µ+ δ < 1.

2. γ = 2(µ+δ)+1
1−µ−δ .

3. N is chosen such that N/n is a prime number between n1+γ and 2n1+γ . Such a prime
number always exists from the Bertrand-Chebychev theorem. Without loss of generality,
we pick the smallest one.

4. ρ = (µ+ δ) logN
logn

5. D = γ+ρ
2(1+γ) · n , where D− 1 is the degree of the underlying univariate polynomials in the

definition of NWn,µ.

Let ψ be the prime number equalling N/n. We are now ready to restate the definition of NWn,µ

from [KS14a].

Definition 4.1 (Nisan-Wigderson Polynomials [KS14a]). Let µ be a real number such that
0 ≤ µ < 1. For a given µ and n, let N , D, ψ be as defined above. For the set of N variables
{Xij : i ∈ [n], j ∈ [ψ]}, we define the degree n homogeneous polynomial NWn,µ as

NWn,µ =
∑

f(z)∈Fψ [z]
deg(f)≤D−1

∏
i∈[n]

Xif(i)

From the definition, we can observe the following properties of NWn,µ.

1. The number of monomials in NWn,µ is exactly ψD = nO(D).

2. Each of the monomials in NWn,µ is multilinear.

3. Each monomial corresponds to evaluations of a univariate polynomial of degree at most
D − 1 at all points of Fψ. Thus, any two distinct monomials agree in at most D − 1
variables in their support.

We will also need the following lemma in our proof.

Lemma 4.2. Let µ be a non-negative real number less than 1. Given q ∈ FN , µ, n, we can
evaluate the polynomial NWn,µ at q in time NO(n).
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Proof. Given n and µ, we first find D, ψ as given by the choice of parameters. Once we have D,
we iterate through every monomial α of degree n in the X variables which is supported on all
the rows of the variable matrix and check if it is in the polynomial NWn,µ by trying to find a
univariate polynomial f(z) ∈ Fψ[z] such that degree of f is at most D−1 and

∏
i∈[n]Xif(i) = α.

The interpolation takes only Poly(n) time, and the total number of monomials to try is at most
Nn. So, we get the lemma.

We now proceed with the proof as outlined in Section 2.1.

4.2 Reducing the product fan-in at level two

Let P be a homogeneous polynomial in N variables of degree n which has a ΣΠ (ΣΠ)
[s]

circuit
of top fan-in T and product fan-in d at the second level. In other words, there exist polynomials
{Qij : i ∈ [T ], j ∈ [d]} in at most s variables each, such that

P =

T∑
i=1

αi ·
d∏
j=1

Qij (4)

Recall that without loss of generality, we can assume that the constant term in each of the Qij
is either 0 or 1. We have the following lemma.

Lemma 4.3. Let F be a field of characteristic zero. Let P be a homogeneous polynomial of
degree n in N variables over F as defined above. For each i, 1 ≤ i ≤ T define the set

Si = {j : 1 ≤ j ≤ d and Hom0[Qij ] = 1}

Then,

P =

T∑
i=1

αi · Homn

∏
j /∈Si

Qij ×
n∑
l=0

ESYMl({Hom≥1[Qij ] : j ∈ Si})

 (5)

Proof. To prove the lemma, we will try to extract out the homogeneous part of degree n of
each product gate

∏d
j=1Qij . Together with the fact that the polynomial P is homogeneous

of degree n, we get the lemma. Every Qij with a non-zero constant term can be written as

Hom≥1[Qij ] + 1, since the constant term in each Qij is either 0 or 1. Now,

d∏
j=1

Qij =
∏
j /∈Si

Qij ×
∏
j∈Si

(Hom≥1[Qij ] + 1) (6)

Decomposing the product
∏
j∈Si(Hom

≥1[Qij ] + 1) further, we have

∏
j∈Si

(Hom≥1[Qij ] + 1] =

|Si|∑
l=0

∑
U⊆Si:|U |=l

∏
j∈U

Hom≥1[Qij ] (7)

Now, observe that the degree of every monomial in
∏
j∈U Hom≥1[Qij ] is at least as large as the

size of U . So, for every subset U of size larger than n,
∏
j∈U Hom≥1[Qij ] is a polynomial of

degree strictly larger than n. Also, for any fixed l, the expression
∑
U⊆Si:|U |=l

∏
j∈U Hom≥1[Qij ]

is precisely the elementary symmetric polynomial of degree l in the set of variables {Hom≥1[Qij ] :
j ∈ Si}. Therefore,

Hom≤n

∏
j∈Si

(Hom≥1[Qij ] + 1)

 = Hom≤n

[
n∑
l=0

ESYMl({Hom≥1[Qij ] : j ∈ Si})

]
(8)
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Therefore,

Homn

 d∏
j=1

Qij

 = Homn

∏
j /∈Si

Qij ×
n∑
l=0

ESYMl({Hom≥1[Qij ] : j ∈ Si})

 (9)

Summing up for all i, we get the lemma.

The lemma above has in some sense helped us locate the monomials of degree n in the
circuit, which otherwise has a much higher formal degree. We now combine the above lemma
with the well known fact that elementary symmetric polynomial of degree l in k variables can be

computed by homogeneous ΣΠΣ∧ circuits of size at most k2O(
√
l) to obtain a ΣΠΣ∧ΣΠ circut

C ′ such that the fan-in of the product gates at level two is at most n. We use the following
theorem (Theorem 5.2) by Shpilka and Wigderson [SW01].

Theorem 4.4 (Shpilka-Wigderson [SW01]). For every set of variables {Y1, Y2, . . . , Ym} and a
positive integer l, ESYMl({Y1, Y2, . . . , Ym}) can be computed by a homogeneous ΣΠΣ∧ circuit of

size m2O(
√
l).

We now prove the following lemma.

Lemma 4.5. Let F be a field of characteristic zero. Let P be a polynomial of degree n in N

variables over F which is computable by an ΣΠ (ΣΠ)
[s]

circuit C of top fan-in T and the degree
of product gates at level two being d. So, P can be represented as

P =

T∑
i=1

αi ·
d∏
j=1

Qij

Then, P can be represented as the homogeneous component of degree n of a polynomial computed
by a ΣΠΣ ∧ ΣΠ circuit C ′′ with the following properties :

1. The inputs to the ∧ gates are the polynomials {Hom≥1[Qij ] : 1 ≤ i ≤ T, 1 ≤ j ≤ d}
2. The fan-in of the × gates at the second level from the top is at most n

3. The top fan-in of C ′′ is at most Tdn2O(
√
n).

Proof. From Lemma 4.3, we know that for the set Si defined as

Si = {j : 1 ≤ j ≤ d and Hom0[Qij ] = 1}

the polynomial P can be written as

P =

T∑
i=1

αi · Homn

∏
j /∈Si

Qij ×
n∑
l=0

ESYMl({Hom≥1[Qij ] : j ∈ Si})


which is the same as

P = Homn

 T∑
i=1

αi ·
∏
j /∈Si

Qij ×
n∑
l=0

ESYMl({Hom≥1[Qij ] : j ∈ Si})


Observe that the polynomial

∏
j /∈Si Qij has degree at least d−|Si|. We remark that if d−|Si| is

larger than n, then such product gates do not contribute anything to the degree n component of
the polynomial and hence can be discarded without loss of generality; hence we assume n− (d−
|Si|) > 0. So, we could confine the inner sum from l = 0 to l = n− (d− |Si|), and still preserve
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the degree n part of the polynomial, which is what we are interested in. From Theorem 4.4, we
know that for every 0 ≤ l ≤ n, we can compute the polynomial ESYMl({Hom≥1[Qij ] : j ∈ Si})
by a ΣΠΣ∧ circuit of top fan-in at most d × 2O(

√
l) which takes as input the polynomials

{Hom≥1(Qij) : 1 ≤ j ≤ d}. From the homogeneity of the circuits given by Theorem 4.4, it
follows that the product gates at level two of these circuits have fan-in at most the degree of
polynomial they compute, which is at most n− (d− |Si|). So, it follows that the polynomial

P̃ =

 T∑
i=1

αi ·
∏
j /∈Si

Qij ×
n−(d−|Si|)∑

l=0

ESYMl({Hom≥1[Qij ] : j ∈ Si})


can be computed by a ΣΠΣ ∧ ΣΠ circuit, with top fan-in at most Tdn · 2O(

√
n), which satisfies

the conditions in the lemma.

Finally, given the circuit C ′′ constructed above, we can construct a circuit which computes
the polynomial P as given by Lemma 3.5. For this, observe that the monomials of degree strictly
larger than n in any of the Qij do not contribute to degree n part of P̃ . So, we can drop them,

while still preserving the degree n part of P̃ . Therefore, the degree of P̃ can be upper bounded
by n2d. We can recover the degree n part of P̃ by interpolation which blows up the top fan-in
by a factor of at most n2d.

In this process, the fan-in of the product gates at level two remains unchanged. Strictly
speaking, inputs to the powering gate ∧ at level four may no longer be the polynomials Hom≥1[Qij ],

since in the process of interpolation, we replaced every variable Xi by Xi.t in P̃ and looked at
the resulting polynomial P̃ ′ as a univariate polynomial in t over the function field F(X). We
then evaluated P̃ ′ at sufficiently many values of t ∈ F and then took their F linear combination.
So, each of the polynomials Hom≥1[Qij ] gives rise to many other polynomials, one each for

different values of t. We will call them the siblings of Hom≥1[Qij ]. The key observation for our

proof is that the set of variables in the siblings of Hom≥1[Qij ] is the same as the set of variables

in Hom≥1[Qij ]. From the lemma and the discussion above, we have the following corollary.

Corollary 4.6. Let F be a field of characteristic zero. Let P be a polynomial of degree n in N

variables over F which is computable by an ΣΠ (ΣΠ)
[s]

circuit C of top fan-in T and the degree
of product gates at level two being d. So, P can be represented as

P =

T∑
i=1

αi ·
d∏
j=1

Qij

Then, P can be computed by a ΣΠΣ ∧ ΣΠ circuit C ′′ with the following properties :

1. The inputs to the ∧ gates are the siblings of polynomials {Hom≥1[Qij ] : 1 ≤ i ≤ T, 1 ≤ j ≤
d}

2. The fan-in of the × gates at the second level from the top is at most n

3. The top fan-in of C ′′ is at most Td2n32O(
√
n).

4.3 Random Restrictions

From the definition, it follows that the total number of variables in NWn,µ is N . Let the
set of all these variables be V. We now define our random restriction procedure by defining
a distribution D over subsets V ⊂ V. The random restriction procedure will sample V ← D
and then keep only those variables “alive” that come from V and set the rest to zero. We will
denote the restriction of the polynomial obtained by such a restriction as NWn,µ|V . Observe
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that a random restriction also results in a distribution over all circuits computing the polynomial
NWn,µ. We denote by C|V the restriction of a circuit C obtained by setting every input gate
in C which is labelled by a variable outside V to 0.

The distribution Dp: Each variable in V is independently kept alive with a probability p.
We will choose the value of p based on the parameter µ.

4.4 Analysing the circuit under random restrictions

Let C be a ΣΠ (ΣΠ)
[Nµ]

circuit computing the polynomial NWn,µ. Let the top fan-in of C be
T and the product fan-in at the second level be d. So, we have the following expression.

NWn,µ =

T∑
i=1

αi ·
d∏
j=1

Qij

where each Qij depends on at most Nµ variables.
Recall that from the choice of parameters δ = (1 − µ)/2. Let s be a parameter, which we

later set such that s = Θ(
√
n). If T · d ≥ N

δ
4 s, then we already have the desired lower bound

of nΩ(
√
n) on the size of C and we are done. Therefore, for the rest of this discussion, we will

assume that T · d ≤ N
δ
4 s. We now apply the transformation to C given by Corollary 4.6 to

obtain a ΣΠΣ ∧ ΣΠ circuit C ′′, which has the following properties:

1. The inputs to the ∧ gates are the siblings of polynomials {Hom≥1[Qij ] : 1 ≤ i ≤ T, 1 ≤
j ≤ d}

2. The fan-in of the × gates at the second level from the top is at most n

3. The top fan-in of C ′′ is at most Td2n32O(
√
n).

We now analyse the effect of the random restrictions on the circuit C ′′. We will choose a
parameter p = N−µ−δ and keep every variable alive with a probability p. The circuit C ′′ can
be represented as

C ′′ =
∑
u

∏
v

Duv

Here, each Duv is a sum of powers of the siblings of Hom≥1[Qij ]. Our goal is to argue that
under random restrictions, all the monomials in each of the Duv are of small support (support
at most s).

For any polynomial P in Nµ variables and any integers t, t0 such that t0 < t, observe that
P t can be written as

P t = P0 +
∑
α

α · Pα

where P0 is the part of P consisting of monomials of support strictly less than t0. The inner
sum is over all multilinear monomials α of support equal to t0. Such a decomposition may not
be unique, but for this application, it would suffice to work with any one such decomposition.
The number of such monomials α is at most

(
Nµ

t0

)
. The probability that one such monomial

survives the random restriction procedure is equal to pt0 . So, the expected number of such
multilinear monomials α surviving the random restriction procedure is at most

(
Nµ

t0

)
· pt0 . The

crucial observation is that if no such monomials survive, then only the monomials in P0 survive,
all of which have support at most t0 − 1.

Now, observe that each of the Duv are a sum of powers of the siblings of polynomials in the
set {Hom≥1[Qij ] : 1 ≤ i ≤ T, 1 ≤ j ≤ d}. Define B to be the set of all multilinear monomials
of support equal to s, supported entirely on variables in any of the polynomials Qij for some
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1 ≤ i ≤ T, 1 ≤ j ≤ d. From the discussion in the paragraph above, the following observation
follows.

Observation 4.7. Let the polynomials Duv, Qij and the set B be as defined above. Then,

• |B| ≤ T · d ·
(
Nµ

s

)
• If none of the monomials in B survive under some random restrictions, then each of the

polynomials D′uv obtained as a restriction of Duv has all monomials of support at most s.

Proof. The bound on the size trivially follows from the fact that each of the Qij depends on at
most Nµ variables. For the second item, observe that each of the Duv is a sum of powers of
siblings of the Hom≥1[Qij ] and all the siblings are supported on the same set of variables. If all
the monomials in the set B are set to zero, then the surviving monomials in any power of any
of the siblings of Hom≥1[Qij ] has support at most s.

We now estimate the probability that at least one of the monomials in the set B survives
the random restriction procedure. We have the following lemma.

Lemma 4.8. Let δ be a positive real number such that δ = (1−µ)/2 and let p = N−µ−δ. Then

PrV←Dp [|B|V | ≥ 1] ≤ N−3/4·δ·s

Proof. We know that

|B| ≤ T · d ·
(
Nµ

s

)
and the probability that any fixed monomial in B survives the random restriction procedure is
at most ps. So

EV←Dp [|BV |] ≤ T · d ·
(
Nµ

s

)
· ps

Now, observing that the value of T · d is at most N
δ
4 s and p = N−µ−δ, the expected value is at

most

N
δ
4 s

(
Nµ

s

)
·N−(µ+δ)s ≤ N−3/4·δ·s

The lemma then follows by Markov’s inequality.

As a corollary of Lemma 4.8 and Observation 4.7, we get the following lemma.

Lemma 4.9. Let δ be a positive real number such that δ = (1 − µ)/2 and let p = N−µ−δ.
Then with probability at least 1 − N−3/4·δ·s over random restrictions V ← Dp, the polynomial

computed by the circuit C ′′|V can be written as
∑T ′

u=1

∏n
v=1D

′
uv, where each of the monomials

in each of the polynomials D′uv has support at most s.

4.5 Upper bound on the complexity of C

In order to upper bound the dimension of the projected shifted partial derivatives (under random

restrictions) of the ΣΠ (ΣΠ)
[s]

circuit C, Corollary 4.6 implies that it suffices to upper bound
the dimension of the space of projected shifted partial derivatives of the ΣΠΣ ∧ ΣΠ circuit C ′′

given by Corollary 4.6. In some sense, C ′′ is more structured than C and this lets us prove a
better upper bound.

Recall that we are under the assumption that for the circuit C, the product of the top fan-in
and the product fan-in at level two is at most N

δ
4 ·s, else we are already done. From Lemma 4.9,

we know that with a high probability, under random restrictions, we are left with a circuit of the
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form
∑T ′

u=1

∏n
v=1D

′
uv where each of the monomials in each of the polynomials D′uv has support

at most s. The upper bound on the complexity of the projected shifted partial derivatives of∑T ′

u=1

∏n
v=1D

′
uv then just follows from the upper bound for homogeneous depth four circuits of

bounded bottom support proved in [KLSS, KS14b]. We restate the bound from [KS14b].

Lemma 4.10. Let C be a depth 4 circuit with the fan-in or product gates at level two bounded
by n, the bottom support bounded by s and computing a polynomial in N variables. Let M be a
set of monomials of degree equal to r and let m be a positive integer. Then,

ΦM,m(C) ≤ Top fan-in(C)

(
n+ r

r

)(
N

m+ rs

)
for any choice of m, r, s,N satisfying m+ rs ≤ N/2.

The upper bound for ΣΠ (ΣΠ)
[Nµ]

circuits, follows easily form the above lemma after random
restrictions, and we formalize this in the lemma below.

Lemma 4.11. Let µ be a positive real number such that 0 ≤ µ < 1. Let δ = (1− µ)/2 and let
p = N−µ−δ and let F be a field of characteristic zero. Let P be a polynomial of degree n in N

variables over F which is computed by an ΣΠ (ΣΠ)
[Nµ]

circuit C of top fan-in T and degree of
product gates at level two at most d, i.e P can represented as

P =

T∑
i=1

αi ·
d∏
j=1

Qij

where αi are field constants. Let m and r be positive integers satisfying m+ rs ≤ N/2 and M
be any subset of multilinear monomials of degree equal to r. If Td ≤ N s·δ

4 , then with probability
at least 1−N−3/4·δ·s over random restrictions V ← Dp,

ΦM,m(C|V ) ≤ Td2n3 · rs · 2O(
√
n) ·
(

N

m+ rs

)
·
(
n+ r

r

)
Proof. The lemma follows immediately from Corollary 4.6, Lemma 4.9 and Lemma 4.10.

4.6 Nisan-Wigderson polynomial under random restrictions

To complete the proof of Theorem 1.2, we need a lower bound on the dimension of the space of
projected shifted partial derivatives of the polynomial NWn,µ, under random restrictions. To
this end, we will use the lower bound proved by Kayal and Saha [KS14a]. We first enumerate
our choice of parameters. Recall that δ = (1− µ)/2 is a positive real number.

1. γ = 2(µ+δ)+1
1−µ−δ

2. N is such that N/n is set equal to the smallest prime number between n1+γ and 2n1+γ .

3. ρ = (µ+ δ) logN
logn

4. D = γ+ρ
2(1+γ) · n , where D− 1 is the degree of the underlying univariate polynomials in the

definition of NWn,µ.

5. r, s which are the order of derivative and the bound on bottom support of the circuit after
random restrictions respectively, are chosen such that r = ε1 ·

√
n, s = ε2 ·

√
n. Here, ε1

and ε2 are small enough positive real numbers satisfying ε1 · ε2 = 0.001n.

6. m = N
2 (1− r lnn

n ) is the degree of the shifts.

7. p = N−(µ+δ) is the probability with which each variable is independently kept alive.
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8. M is the set of all multilinear monomials of degree r. We take partial derivatives with
respect to monomials in this set.

We are now ready to state the lower bound on the dimension of projected shifted partial deriva-
tives as in [KS14a].

Lemma 4.12 (Kayal-Saha [KS14a]). Let NWn,µ be Nisan-Wigderson polynomials as defined
in Definition 4.1. Let F be any field of characteristic zero. Then, for the choice of parameters
defined above

ΦM,m(NWn,µ|V ) ≥ 1

nO(1)
min

(
pr

4r
·
(
N

r

)
·
(
N

m

)
,

(
N

m+ n− r

))
with probability at least 1− 1

nθ(1)
over random restrictions V ← Dp.

4.7 Wrapping up the proof of Theorem 1.2

From Lemma 4.12 and Lemma 4.9, we know that with a non-zero probability over the random
restrictions V from the distribution Dp, the following two conditions hold.

1.

ΦM,m(NWn,µ|V ) ≥ 1

nO(1)
min

(
pr

4r
·
(
N

r

)
·
(
N

m

)
,

(
N

m+ n− r

))
2.

ΦM,m(C|V ) ≤ Td2n3 · rs · 2O(
√
n) ·
(

N

m+ rs

)
·
(
n+ r

r

)
If C computed the polynomial NWn,µ, then

Td2n3 · rs ≥
1

nO(1) min
(
pr

4r ·
(
N
r

)
·
(
N
m

)
,
(

N
m+n−r

))
2O(
√
n) ·
(

N
m+rs

)
·
(
n+r
r

)
From the calculations in Appendix A, it follows that for our choice of parameters, the ratio

is at least exp(
√
n log n). So, we have the following theorem.

Theorem 4.13. Let µ be an absolute constant such that 0 ≥ µ < 1 and F be a field of
characteristic zero. For 1 ≤ i ≤ T and 1 ≤ j ≤ d, if there exist polynomials Qij, each dependent
on only s = Nµ variables, such that

NWn,µ =

T∑
i=1

d∏
j=1

Qij

Then
T · d ≥ nΩµ(

√
n)

As a remark, we mention here that the lower bound above also holds for any translation
NWn,µ(X + a) of the polynomial NWn,µ(X). This is because the highest degree term of
NWn,µ(X + a) equals the polynomial NWn,µ(X) and from Lemma 3.5, the homogeneous com-

ponents of a polynomial computable by small sized ΣΠ (ΣΠ)
[s]

circuits also have small sized

ΣΠ (ΣΠ)
[s]

circuits. We leave the details to the interested reader.
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5 Application to polynomial identity testing

In this section, we prove Theorem 1.3. We are interested in identity testing for ΣΠ (ΣΠ)
[s]

circuits, i.e for polynomials in N variables {X1, X2, . . . , XN} which can be expressed in the
form

P =

T∑
i=1

d∏
j=1

Qij

such that

1. The individual degree in P of every variable is at most k

2. Each Qij depends on at most s variables

For the case of this application, we will think of k, T being polynomial in (logN) and s being
N1/2−ε for a positive constant ε. Observe that the bound on individual degree lets us upper
bound the total degree of the polynomials by Nk.

We describe the construction of the hitting set in Section 5.2 and prove its correctness in
Section 5.3. We go over some preliminaries that we need in our proof in the next section.

5.1 Some preliminaries

In the following lemma, we prove some properties of the model of ΣΠ (ΣΠ)
[s]

circuits, which
will be useful in the proof of the identity testing result.

Lemma 5.1. Let F be a field of characteristic zero. Let P be a non-zero polynomial in N

variables and individual degree at most k over F, which is computed by a ΣΠ (ΣΠ)
[s]

circuit C
of top fan-in T and product fan-in d at level two, i.e P can be expressed as

P =

T∑
i=1

d∏
j=1

Qij

such that for each i ∈ [T ] and j ∈ [d], Qij depends on at most s variables. Then, the following
are true.

1. For every variable y and integer 1 ≤ j ≤ k, ∂jP
∂yj can be computed by a circuit of the form

∂jP

∂yj
=

T ′∑
i=1

d∏
j=1

Q′ij

where T ′ ≤ T · (k + 1)2 and each of the polynomials Q′ij depends on at most s variables.

2. For any a ∈ FN , P (X + a) can be computed by a circuit of the form

P (X + a) =

T∑
i=1

d∏
j=1

Q′′ij

where each of the polynomials Q′′ij depends on at most s variables.

Proof. The proof of the second item is immediate from the definitions. The only thing that
changes due to a translation is the number of monomials in the Qij . The number of variables
that each Qij depends on remains unchanged, and so does the fan-in of the top sum gate and
the product gates at level two.
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We now prove the first item. Let the set of variables in P be X = X ′∪{y} where X ′ is of size

N − 1. Since the individual degree of P is at most k, we can write P =
∑k
i=0 Ci(X

′) · yi. Here,
Ci(X ′) are polynomials only in the X ′ variables and are the coefficient of yi, when viewing P as

an element of F[X ′][y]. Now, for every 0 ≤ i ≤ k, we can compute each of Ci by a ΣΠ (ΣΠ)
[s]

circuit with top fan-in at most T ·(k+1) by interpolation as given by Lemma 3.4. All the partial
derivatives of P with respect to y are linear combinations of the terms of the form Cj1 ·yj2 . And
so, the result follows.

We will also need the following simple fact about polynomials.

Lemma 5.2. Let F be a field of characteristic zero. Let R ∈ F[y] be a non-zero polynomial of
degree at most t over the field F. Then, for every a ∈ F such that R(a) = 0, there exists a j

such that 0 ≤ j ≤ t− 1 and ∂jR
∂yj (a) = 0 and ∂j+1R

∂yj+1 (a) 6= 0.

Proof. Let the degree of R in y be equal to t′. This means that the coefficient of highest degree
term yt

′
in R is non-zero. Let us call the coefficient of yt

′
in R(y) as Ct′ . We know that Ct′ is

nonzero. Consider j = t′ − 1. The lemma immediately follows.

We will crucially use the following result of Dvir, Shpilka, Yehudayoff [DSY09] in the analysis
of the hitting set constructed in this paper.

Lemma 5.3 (Dvir, Shpilka, Yehudayoff [DSY09]). For a field F, let P ∈ F[X1, X2, . . . , XN , Y ]
be a non-zero polynomial of degree at most k in Y . Let f ∈ F[X1, X2, . . . , XN ] be a polynomial
such that P (X1, X2, . . . , XN , f) = 0 and ∂P

∂Y (0, 0, . . . , 0, f(0, 0, . . . , 0)) 6= 0. Let

P =

k∑
i=0

Ci(X1, X2, . . . , XN ) · yi

Then, for every t ≥ 0, there exists a polynomial Rt ∈ F[Z1, Z2, . . . , Zk+1] of degree at most t
such that

Hom≤t[f(X1, X2, . . . , XN )] = Hom≤t[Rt(C0, C1, . . . , Ck)]

A key technical idea in the proof will be the notion of Nisan-Wigderson designs introduced
in [NW94]. We will use the following lemma.

Lemma 5.4 (Nisan-Wigderson [NW94]). For every a, b ∈ N, b < 2a, there exists a family of
sets S1, S2, . . . , Sb ⊆ {1, 2, . . . , l} such that

1. l ∈ O(a2/ log b)

2. for all i, |Si| = a

3. for all i 6= j, |Si ∩ Sj | ≤ log b

Moreover, such a set family can be constructed in time polynomial in b and 2l.

We will also use the following lemma of Alon [Alo99] very crucially in our proof.

Lemma 5.5 (Combinatorial Nullstellensatz [Alo99]). Let P be a non-zero polynomial of indi-
vidual degree at most d in N variables over a large enough field F. Let S be an arbitrary subset
of F of size d+ 1. Then, there exists a point p in SN such that P (p) 6= 0.
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5.2 Blackbox PIT for ΣΠ (ΣΠ)[s] circuits

In this section, we prove the following theorem.

Theorem 5.6. Let c and µ be arbitrary constants such that c > 0 and 0 ≤ µ < 1/2, and let F
be a field of characteristic zero. Let C be the set of polynomials P in N variables and individual
degree at most k over F, with the property that P can be expressed as

P =

T∑
i=1

d∏
j=1

Qij

such that

1. T < logcN

2. k < logcN

3. d < N c

4. each Qij depends on at most Nµ variables

Then, there exists a constant ε < 1 dependent only on c and µ, such that there is a hitting set
of size exp(N ε) for C which can be constructed in time exp(N ε).

From our proof, it also follows that if each of polynomial Qij depends only on logO(1)N
variables, then both the size of the hitting set and the time to construct it, are upper bounded
by a quasipolynomial function in N . In the rest of the section, we prove Theorem 5.6. We start
by describing the construction of the hitting set H.

5.2.1 Construction of hitting sets for ΣΠ (ΣΠ)[N
µ] circuits for 0 ≤ µ < 1/2

Given µ such that 0 ≤ µ < 1/2, we pick the parameter µ′ such that 0 < µ′ < 1 and 2µ
µ′ is a

positive constant strictly smaller than 1. We construct a family of Nisan-Wigderson designs as
described in Lemma 5.4 with the following parameters :

1. b, the number of sets is set equal to N

2. a, the size of each of the sets Si is set equal to N
µ
µ′ log

1
µ′ N .

3. l, the size of the universe is chosen large enough in order to satisfy the hypothesis of
Lemma 5.4. From Lemma 5.4, it follows that we can pick l which is not too large (l ∈
O(a2/ log b)). For the above chosen values of a, b, there is a choice of l such that l is at

most N
2µ
µ′ log

2
µ′−1

N .

Recall that our goal is to construct a hitting set for ΣΠ (ΣΠ)
[Nµ]

circuits. Observe that the
choice of parameters l, a, b satisfy the hypothesis of Lemma 5.4. So, we get a collection of N
subsets S1, S2, . . . , SN of {1, 2, 3, . . . , l} satisfying

1. for all 1 ≤ i ≤ N , |Si| = a

2. for all 1 ≤ i < j ≤ N , |Si ∩ Sj | ≤ logN

Moreover, these sets can be constructed in time polynomial in b and 2l. We identify the set
{1, 2, 3, . . . , l} with the set of new variables Y = {Y1, Y2, . . . , Yl}. Before we proceed further, we
need some notation. We will pick δ = (1− µ′)/2 to be a non-negative constant. Given, a, µ′, δ,

we define γ = 2(µ′+δ)+1
1−(µ′+δ) . Then, we define q to be the smallest prime number between (a/2)

1+γ
2+γ

and 2 · (a/2)
1+γ
2+γ . Also, we set a′ to be equal to (a/2)

1
2+γ . Observe that a/2 ≤ a′q ≤ a.
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For each i, such that 1 ≤ i ≤ N , let Si
′ be an arbitrary subset of Si of size equal to a′q. For

brevity, we rename the sets S′i as Si
5. Let ρ = (µ′ + δ) log a′q

log a′ and D = γ+ρ
2(1+γ) · a

′.

Often for the ease of notation we will identify the set Si of {1, 2, . . . , l} with the set of
variables {Yj : j ∈ Si}. We will think of the variables {Yj : j ∈ Si} to be arranged in a a′ × q
matrix V (i), with the variables placed in the matrix in some order. For every i ∈ {1, 2, 3, . . . , N},
we define NWa′,µ′(Si) as

NWa′,µ′(Si) =
∑

f(z)∈Fq [z]
deg(f)≤D−1

∏
j∈[a′]

V (i)jf(j)

For a point p = (p1, p2, . . . , pl) ∈ Fl, we denote byNWa′,µ′(Si)|p, the evaluation ofNWa′,µ′(Si)
when the variable Yj is set to pj .

Let G be an arbitrary subset of F of size Nka′ + 1. We define the hitting set H as follows.

Definition 5.7 (Definition of the hitting set H).

H =
{

(NWa′,µ′(S1)|p,NWa′,µ′(S2)|p, . . . , NWa′,µ′(SN )|p) : p ∈ Gl
}

We now proceed to prove the correctness of the construction. We first prove the following
lemma which shows that H is explicit and has the correct size as per Theorem 5.6.

Lemma 5.8. The set H as defined in Definition 5.7 has size at most (Nka′ + 1)l and all its
elements can be enumerated in time aa

′ · (Nka′ + 1)l ·NO(1).

Proof. The size of the set H is equal to |G|l = (Nka′ + 1)l. The set H can be enumerated
by enumerating through the points p in Gl in some natural order (say lexicographic order) and
evaluating the tuple (NWa′,µ′(S1)|p,NWa′,µ′(S2)|p, . . . , NWa′,µ′(SN )|p) at each of these points.
For every point p and subset Si, the polynomial NWa′,µ′(Si) can be evaluated in time at most

aa
′ × Poly(N) from Lemma 4.2. So, the second part of the lemma follows.

Observe that for our choice of parameters, the above bounds on the size and the time of
enumeration are bounded by a function which is subexponential in N .

We now show that for every non-zero polynomial P in the class C, as defined in the statement
of Theorem 5.6, there exists a point p ∈ H, such that P (p) is non-zero. We show this in
Lemma 5.9 below. That will complete the proof of Theorem 5.6.

5.3 Correctness of the construction

For the rest of this section, we denote Nµ by s.

Lemma 5.9. Let P be a non-zero polynomial in the set C as defined in the statement of
Theorem 5.6, and let H be the set defined in Definition 5.7. Then, there is a point p in the set
H such that P (p) 6= 0.

Proof. We define

Pi(X,Y ) := P (NWa′,µ′(S1), NWa′,µ′(S2), . . . , NWa′,µ′(Si), Xi+1, Xi+2, . . . , XN )

to be the polynomial obtained from P by substituting the variables Xj by NWa′,µ′(Sj), for
every 1 ≤ j ≤ i.

5We have replaced the family {S1, S2, . . . , SN} by the set family {S′1, S′2, . . . , S′N} such that for each i ∈ [N ],
S′i ⊆ Si. Observe that the design based properties of the original system continue to hold. The only thing that
changes is that the size of S′i could be smaller than the size of Si, by at most a factor 2.
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From the construction of our hitting set, it follows that it would suffice to argue that the
polynomial PN (X,Y ) is non-zero. If this was true, then the lemma above will follow from
Lemma 5.5, since the degree of any variable P (X,Y ) is at most Nka′.

We proceed via contradiction. If possible, let PN (X,Y ) be identically zero. Since P =
P0(X,Y ) is non-zero to start with, by a hybrid argument it follows that there is an index i, such
that Pi(X,Y ) is non-zero while Pi+1(X,Y ) is identically zero. Observe that Pi is a polynomial
in the variables Y and Xi+1, Xi+2, . . . , XN . In going from Pi to Pi+1, we substituted the variable
Xi+1 by the polynomial NWa′,µ′(Si+1). Since Pi(X,Y ) is non-zero by assumption above, there
exists a substitution c of all variables apart from {Yj : j ∈ Si+1} and Xi+1, which keeps the
polynomial non-zero. Let the polynomial resulting after this substitution be P ′i . From the
definitions, it follows that

P ′i = P (NWa′,µ′(S1)|c,NWa′,µ′(S2)|c, . . . , NWa′,µ′(Si)|c,Xi+1, Xi+2|c, . . . ,XN |c)

Observe that each of the polynomials NWa′,µ′(Sj)|c depends only on the variables in the
set Sj ∩ Si+1. From the properties of Nisan-Wigderson designs, and the choice of parameters,
the size of this intersection is at most logN . From the definition of Pi and the choice of c, P ′i
is not identically zero. We will think of P ′i as a polynomial in Xi+1 with the coefficients being
polynomials in the variables in the set {Yj : j ∈ Si+1}. Now, we know that the the polynomial
P ′i+1 obtained by substituting Xi+1 by NWa′,µ′(Si+1) is identically zero. Hence, it must be the
case that Xi+1 −NWa′,µ′(Si+1) is a factor of P ′i .

To proceed further, we need the following claim.

Claim 5.10. P ′i as defined above can be represented as

P ′i =

T∑
r=1

d∏
j=1

Q′rj

such that each of the polynomials Q′rj depends on at most s logN variables.

Proof. Recall that P can be represented as

P =

T∑
i=1

d∏
j=1

Qij

where each Qij is a polynomial in at most s = Nµ variables. In going from P to P ′i , we have
substituted each of the variables outside the set {Yj : j ∈ Si+1}∪{Xi+1} by either a constant or
by the polynomial NWa′,µ′(Sj)|c (which is a polynomial in at most |Sj∩Si+1| ≤ logN variables)
for some j. In either case, after substitution, the polynomials Q′rj obtained from Qrj depends
on at most s logN variables, since Qrj depended on at most s variables. This completes the
proof of the claim.

Moreover, since the individual degree of variables in P is at most k, the individual degree
of Xi+1 in P ′i is at most k. The goal now is to invoke Lemma 5.3, which would imply that
NWa′,µ′(Si+1) also has a small circuit as a sum of product of polynomials in few variables,
and together with the lower bound from Theorem 4.13, this would lead to a contradiction.We
essentially follow this outline. Formally, we use the following claim to complete the proof of
Lemma 5.9. We defer the proof of the claim to the end.

Claim 5.11. If (Xi+1 −NWa′,µ′(Si+1)) divides P ′i , then NWa′,µ′(Si+1) can be written as

NWa′,µ′(Si+1) =

I′∑
r=1

d′∏
j=1

Γrj
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where

1. I ′ ≤ (da′2 + 1) ·
(
k+a′+1
k+1

)
×
(
T ·(k+1)3+a′

a′

)k+1

2. d′ ≤ d · a′

3. Each Γrj depends on at most s logN variables

From our choice of parameters, recall that

a = Nµ/µ′ · log1/µ′ N

and
s = Nµ

Therefore, s logN ≤ Nµ · logN ≤ aµ
′
. To complete the proof, we observe that by Theo-

rem 4.13, we must have

I ′d′ ≥ (a′)Ω(
√
a′)

But, for our choice of parameters,

1. I ′ ≤ (da′2 + 1) ·
(
k+a′

k

)
×
(
T ·(k+1)3+a′

a′

)k+1
≤ daO(Tk4) ≤ da′

O(Tk4)
(since a and a′ are

polynomially related)

2. d′ ≤ da′

This implies that I ′d′ ≤ d2aO(Tk4). From our choice of parameters, s logN < aµ
′

and

Tk4 + 2 log d ∈ o(
√
a′). This contradicts that I ′d′ ≥ (a′)Ω(

√
a′). This completes the proof of

Lemma 5.9 assuming Claim 5.11.

We now give a proof of Claim 5.11.

Proof of Claim 5.11. From Claim 5.10, we know that

P ′i =

T∑
r=1

d∏
j=1

Q′rj

such that each Q′rj depends on at most s logN variables. Since P ′i is not identically zero and
NWa′,µ′(Si+1) is a root of P ′i , it follows from Lemma 5.2 that there is an integer λ such that
0 ≤ λ ≤ k − 1 and,

∂λP ′i
∂Xλ

i+1

(NWa′,µ′(Si+1)) = 0

and
∂λ+1P ′i
∂Xλ+1

i+1

(NWa′,µ′(Si+1)) 6= 0

From Lemma 5.1 it follows that P̃ ′i =
∂λP ′i
∂Xλi+1

can also be expressed as

P̃ ′i =

T ′∑
r=1

d∏
j=1

Q̃ij

where T ′ ≤ T · (k + 1)2 and each of the Q̃rj depends on at most s logN variables.

Observe that, P̃ ′i vanishes when NWa′,µ′(Si+1) is substituted for Xi+1, while its derivative
with respect to Xi+1 does not vanish identically at Xi+1 = NWa′,µ′(Si+1). So, in particular,

there is a substitution of the Y variables where the derivative
∂P̃ ′i
∂Xi+1

is nonzero. Since the class
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of ΣΠ (ΣΠ)
[s]

circuits is closed under translations of variables (from item 2 in Lemma 5.1), we
can assume without loss of generality that the derivative is nonzero when all the variables in
Y are set to zero. Also observe that by this variable translation, we have actually obtained a
polynomial NW ′a′,µ′(Si+1) from NWa′,µ′(Si+1). Moreover, the degree of NW ′a′,µ′(Si+1) is equal
to a′ and the homogeneous component of degree a′ of NW ′a′,µ′(Si+1) is equal to NWa′,µ′(Si+1).

Let the polynomial obtained after the variable translation from P̃ ′i as P̃ ′′i . At this point, the

hypothesis of Lemma 5.3 is satisfied by P̃ ′′i .

Let P̃ ′′i =
∑k
j=0 Cj(Y ) ·Xj

i+1. Here, Cj(Y ) is a polynomial only in the Y variables and is the

coefficient of Xj
i+1, when viewing P̃ ′′i as an element of F[Y ][Xi+1]. From Lemma 3.4, we know

that each of the polynomials Cj can be expressed as a polynomial of the form

Cj =

Tj∑
r=1

d∏
l=1

Q′′rl

where Tj ≤ T ′ · (k + 1) ≤ T · (k + 1)3 and each Q′′rl depends on at most s logN variables.
Hence, by Lemma 5.3, for every t ≥ 0, there exists a polynomial Rt ∈ F[Z1, Z2, . . . , Zk+1] of

degree at most t such that

Hom≤t[NW ′a′,µ′(Si+1)] = Hom≤t[Rt(C0, C1, . . . , Ck)]

The goal now is to obtain a representation of NWa′,µ′(Si+1) as a sum of products of poly-
nomials in few variables and show that this contradicts the lower bound in Theorem 4.13.
NW ′a′,µ′(Si+1) is a polynomial of degree at most a′. So, there is a polynomial Ra′ of degree at
most a′ in k + 1 variables such that

NW ′a′,µ′(Si+1) = Hom≤a
′
[Ra′(C0, C1, . . . , Ck)]

From the discussion on the relation between NW ′a′,µ′(Si+1) from NWa′,µ′(Si+1), we also know
that

NWa′,µ′(Si+1) = Homa′ [NW ′a′,µ′(Si+1)] = Homa′ [Ra′(C0, C1, . . . , Ck)]

Since Ra′ is a polynomial in k + 1 variables of degree a′, the number of monomials in Ra′ is

at most
(
a′+k+1
k+1

)
. Therefore, we can represent Ra′(C0, C1, . . . , Ck) as a sum of products of the

Cj ’s, with the sum fan-in at most
(
a′+k+1
k+1

)
and the product fan-in at most a′. Moreover, each

of the product gates in this representation takes the polynomials Cj ’s as inputs. We know that
each Cj can be written as

Cj =

Tj∑
r=1

d∏
l=1

Q′′rl

where each Q′′rl is a polynomial in at most s logN variables, and the top sum fan-in Tj is at most
T · (k+ 1)3. For any t, the polynomial Ctj , has a similar representation with the top sum fan-in

at most
(
T ·(k+1)3+t

t

)
. Therefore, any product of fan-in at most a′ in the Cj ’s can be written as

a sum of product of polynomials in at most s logN variables, with top fan-in at most(
T · (k + 1)3 + a′

a′

)k+1

since each Cj is raised to a power of at most a′ and there are k + 1 such Cj ’s. Therefore,
Ra′(C0, C1, . . . , Ck) can be written as

Ra′(C0, C1, . . . , Ck) =

I∑
r=1

d′∏
j=1

Γ′rj

such that
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1. I ≤
(
k+a′+1
k+1

)
×
(
T ·(k+1)3+a′

a′

)k+1

2. d′ ≤ d · a′

3. Each Γ′rj depends on at most s logN variables

We would now like to extract the homogeneous part of degree a′ of Ra′(C0, C1, . . . , Ck), which
we know is equal to NWa′,µ′(Si+1). We do this by a standard application of Lemma 3.5. Since
we are interested only in the homogeneous part of degree a′, we can assume without loss of
generality that each of the polynomials Γ′rj is of degree at most a′ (we can discard all monomials
of degree larger than a′ in each of the Γ′rj , since they do not contribute to the homogeneous
component of degree a′ of Ra′(C0, C1, . . . , Ck) ). Hence, the degree of Ra′(C0, C1, . . . , Ck) is
upper bounded by da′ · a′. So, from Lemma 3.5, we can extract the homogeneous component
of degree a′ of Ra′(C0, C1, . . . , Ck) by blowing up the top fan-in by a factor of at most da′2 + 1.
Hence, NWa′,µ′(Si+1) can be expressed as

NWa′,µ′(Si+1) =

I′∑
r=1

d′∏
j=1

Γrj

where

1. I ′ ≤ (da′2 + 1) ·
(
k+a′+1
k+1

)
×
(
T ·(k+1)3+a′

a′

)k+1

2. d′ ≤ d · a′

3. Each Γrj depends on at most s logN variables

We remark that if the value of s was logO(1)N to start with, the same proof as above goes
through with l and a being set to polynomials of sufficiently high degree in logN . The size of
the hitting set and the time to construct it in this case are upper bounded by a quasipolynomial
function in N .

6 Open problems

We conclude with some open problems.

1. An intriguing open question is to obtain PIT for ΣΠ (ΣΠ)
[s]

circuits without the restriction
on the individual degree. The strategy in this paper relies on hardness randomness tradeoffs
for bounded depth circuits [DSY09]. The tradeoffs in [DSY09] crucially use the fact that
the individual degree is bounded.

2. Another related question would be to get any non-trivial PIT (even subexponential) for
the sum of constant many products of degree two polynomials.

3. It would also be interesting to understand if one could obtain any non-trivial PIT for
slightly non-multilinear depth four circuits (say individual degree at most 2) with bounded
top fan-in. A natural strategy for this question would be to reduce it to the case of

ΣΠ (ΣΠ)
[s]

circuits by either expanding out the polynomials Qij which depend on too
many variables or use a partial derivative like trick, as in [dOSV14]. The immediate
challenge in this case is that the top fan-in seems to increase by any of these tricks and
the calculations in this paper seem to not work out.
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A Calculations

Td2n3 · rs ≥
1

nO(1) min
(
pr

4r ·
(
N
r

)
·
(
N
m

)
,
(

N
m+n−r

))
2O(
√
n) ·
(

N
m+rs

)
·
(
n+r
r

)
We first estimate the ratio (

N
m+n−r

)(
N

m+rs

)
·
(
n+r
r

)
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. (
N

m+n−r
)(

N
m+rs

)
·
(
n+r
r

) ≥ (m+ rs)!

(m+ n− r)!
(N −m− rs)!

(N −m− (n− r))!
·
(

r

e(n+ r)

)r

Here we use the fact that
(
n+r
r

)
≤
(
e(n+r)
r

)r
. Now, approximating the ratios using Lemma 3.3

and substituting m = N
2 (1− r lnn

n ), we get(
N

m+n−r
)(

N
m+rs

)
·
(
n+r
r

) ≥
(
N −m
m

)n−r−rs
·
(

r

e(n+ r)

)r
≥ exp

(
r lnn

n
· (n− r − rs)− r ln

e(n+ r)

r

)

Since r = Θ(
√
n), we get that the ratio is at least exp

(
r lnn((n− r − rs)/n− 1

2 + o(1))
)
,

which is exp(Ω(
√
n lnn)).

Next we estimate the ratio (
pr

4r ·
(
N
r

)
·
(
N
m

))(
N

m+rs

)
·
(
n+r
r

)
(
pr

4r ·
(
N
r

)
·
(
N
m

))(
N

m+rs

)
·
(
n+r
r

) ≥ pr

4r
· (m+ rs)!

m!
· (N −m− rs)!

(N −m)!
· N !

(N − r)!
· n!

(n+ r)!

≥ pr

4r
·
(

m

N −m

)rs
·
(
N

n

)r
≥ pr

4r
·
(

1− 2.01r
lnn

n

)rs
·
(
N

n

)r
≥ 1

4r
exp

(
−r(µ+ δ) lnN − 2.01r2s

lnn

n
+ r ln(N/n)

)

Here, we used Lemma 3.3 in the second step and substituted p = N−(δ+µ) in the last step. Now,
substituting 2n2+γ ≥ N ≥ n2+γ , the exponent is at least

r lnn(−(µ+ δ)(2 + γ)− 2.01rs/n+ (1 + γ))

This is at least
r lnn(−(µ+ δ)(2 + γ)− 2.01rs/n+ (1 + γ))

Now, plugging back the value of γ, the exponent is at least (2 − 2.01rs/n)r lnn. We have
chosen rs such that rs/n < 0.001. Therefore, the ratio we set out to lower bound is at least
exp(Ω(

√
n lnn)).
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