
On Being Far from Far

and on Dual Problems in Property Testing

Roei Tell

Department of Computer Science

Weizmann Institute of Science

roei.tell@weizmann.ac.il

April 23, 2015

Abstract

For a set Π in a metric space and δ > 0, denote by Fδ(Π) the set of elements that
are δ-far from Π. In property testing, a δ-tester for Π is required to accept inputs from Π
and reject inputs from Fδ(Π). A natural dual problem is the problem of δ-testing the set
of �no� instances, that is Fδ(Π): A δ-tester for Fδ(Π) needs to accept inputs from Fδ(Π)
and reject inputs that are δ-far from Fδ(Π), that is reject inputs from Fδ(Fδ(Π)). When
Π = Fδ(Fδ(Π)) the two problems are essentially equivalent, but this equality does not hold
in general.

In this work we study sets of the form Fδ(Fδ(Π)), and apply this study to investigate
dual problems in property testing. In particular, we present conditions on a metric space,
on δ, and on a set Π that are su�cient and/or necessary in order for the equality Π =
Fδ(Fδ(Π)) to hold. Using these conditions, we derive bounds on the query complexity of
several classes of natural dual problems in property testing. These include the dual problems
of testing codes with constant relative distance, testing monotone functions, testing whether
a distribution is identical to a known distribution, and testing several graphs properties in

the dense graph model. In some cases, our results are obtained by showing that Π =
Fδ(Fδ(Π)); in other cases, the results follow by showing that inputs in Fδ(Fδ(Π)) are
su�ciently close to Π. We also show that testing any dual problem with one-sided error is
either trivial or requires a linear number of queries.
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1 Introduction

For a set Ω equipped with a metric ∆, let the δ-far operator Fδ : P(Ω)→ P(Ω) be de�ned by
Fδ(Π) = {x ∈ Ω : ∆(x,Π) ≥ δ}. We are interested in the result of applying the operator Fδ
twice; that is, in sets of the form Fδ(Fδ(Π)) for some Π ⊆ Ω. One might mistakenly expect
that for any Ω, δ > 0 and Π it holds that Fδ(Fδ(Π)) = Π. However, and although it is always
true that Π ⊆ Fδ(Fδ(Π)), it is not necessarily true that Π = Fδ(Fδ(Π)). Furthermore, in some
spaces, most notably in the Boolean hypercube, the equality is not even typically true for most
subsets (see Section 1.1). In fact, the study of sets of the form Fδ(Fδ(Π)) turns out to be quite
complex.

Our motivation for investigating sets of the form Fδ(Fδ(Π)) comes from property testing
(see, e.g., [Gol10c]). In property testing, an ε-tester for Π ⊆ {0, 1}n is required to accept every
input in Π, with high probability, and reject every input in Fδ(Π), with high probability, where
δ = ε ·n refers to absolute distance, and ε > 0 refers to the relative distance.1 This constitutes a
promise problem, in which the set of �yes� instances is Π and the set of �no� instances is Fδ(Π).
A natural question is what is the relationship between the complexity of ε-testing the set of
�yes� instances Π and the complexity of the dual problem of ε-testing the set of �no� instances
Fδ(Π). An ε-tester for Fδ(Π) is required to accept every input in Fδ(Π), with high probability,
and reject every input in Fδ(Fδ(Π)), with high probability.

Dual problems in property testing are naturally appealing in many cases, and in Section 1.3
we articulate this point and show several interesting examples. Moreover, the complexity of a
dual problem is closely related to the complexity of the original problem, as follows. Since for
any ε > 0 and δ = ε · n it holds that Π ⊆ Fδ(Fδ(Π)), complementing the output of an ε-tester
for Fδ(Π) yields an ε-tester for Π with the same query complexity; thus, the dual problem is
at least as di�cult as the original problem. However, if Π = Fδ(Fδ(Π)), then an ε-tester for
Fδ(Π) can be obtained by complementing the output of an ε-tester for Π, which means that
the dual problem of ε-testing Fδ(Π) is equivalent to the original problem of ε-testing Π.

Unfortunately, given a metric space Ω,2 a parameter δ > 0 and a set Π ⊆ Ω, in many cases
it is non-obvious to determine whether Π = Fδ(Fδ(Π)) or not. We call such sets Fδ-closed;
that is �

De�nition 1.1 (Fδ-closed sets). For a metric space Ω, δ > 0 and Π ⊆ Ω, if Π = Fδ(Fδ(Π)),
then we say that Π is Fδ-closed in Ω.

Indeed, when Ω is clear from context we will usually just say that Π is Fδ-closed. In the
�rst part of this paper, our main focus is �nding su�cient and/or necessary conditions on a
metric space Ω, on the parameter δ > 0 and on Π ⊆ Ω such that Π is Fδ-closed in Ω. We
present conditions that are applicable in general metric spaces as well as conditions that apply
only in speci�c classes of metric spaces (e.g., graphs).

1Being consistent with the property testing literature, we let ε > 0 denote the relative (Hamming) distance.
In contrast, it is more convenient to carry out our analysis of the δ-far operator while referring to absolute
distance (denoted by δ > 0). Note that the abstract was intentionally vague with respect to this point, to avoid
premature complexity.

2Throughout the paper we identify a metric space (Ω,∆) with its set of elements Ω, and the metric itself is
always implicit and denoted by ∆.
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In the second part of the paper, we apply the conditions that we found to study several
classes of natural dual problems in property testing. In particular, we identify dual problems
that are equivalent to the original problems as well as dual problems that are di�erent from
their original problems, and prove bounds on their query complexity.

The rest of the introduction surveys our results: In Section 1.1 we set the stage for the rest
of the paper, by demonstrating the existence, and in some sense the abundance, of sets that
are not Fδ-closed. In Section 1.2 we present necessary and/or su�cient conditions for a set to
be Fδ-closed. And in Section 1.3 we survey our results regarding dual problems in property
testing.

1.1 On the non-triviality of the notion of Fδ-closed sets

As mentioned in the beginning of the introduction, one might mistakenly expect that for every
Ω and δ, all sets will be Fδ-closed. Indeed, for any metric space Ω, taking a value of δ such
that δ ≤ infx 6=y∈Ω{∆(x, y)} ensures that all sets are trivially Fδ-closed, since for any Π ⊆ Ω
it holds that Fδ(Π) = Ω \ Π. In contrast, taking a value of δ such that δ > supx,y{∆(x, y)}
ensures that all non-trivial subsets are not Fδ-closed, since any Π 6= ∅ satis�es Fδ(Π) = ∅ and
Fδ(Fδ(Π)) = Ω.

In Section 3.3 we prove the following theorem, which states that for any δ in between these
two values there exist both Fδ-closed sets and sets that are not Fδ-closed.
Theorem 1.2 (non-triviality of the notion of Fδ-closed sets). For any Ω, if
δ ∈

(
infx 6=y{∆(x, y)}, supx 6=y{∆(x, y)}

)
, then there exists a non-trivial Π ⊆ Ω that is Fδ-closed

and a non-trivial Π′ ⊆ Ω that is not Fδ-closed.
In addition to the existence of Fδ-closed sets and sets that are not Fδ-closed, we also show

that, in some metric spaces, sets that are not Fδ-closed exist in abundance. In particular, in
the Boolean hypercube it holds that a (1− o(1))-fraction of the sets are not Fδ-closed; and in
a broader class of metric spaces it holds that the majority of sets are not Fδ-closed (for exact
statements see Propositions 3.11 and 3.12).

Furthermore, in contrast to what one might expect, we show that the points in Fδ(Fδ(Π))
might not even be close to Π. In particular, in Section 3.4 we show that there exist spaces Ω
and sets Π ⊆ Ω such that some points in Fδ(Fδ(Π)) \ Π are relatively far from Π (i.e., almost
δ-far from Π); such sets also exist in the Boolean hypercube. We also show that there exist
spaces Ω and sets Π ⊆ Ω such that all points in Fδ(Fδ(Π)) \Π are almost δ-far from Π.

1.2 Su�cient and/or necessary conditions for a set to be Fδ-closed

Our results in this section are intended to facilitate the analysis of sets of the form Fδ(Fδ(Π)),
and in particular to simplify the identi�cation of sets that are Fδ-closed.

1.2.1 General metric spaces

The following are several equivalent characterizations of all Fδ-closed sets in any metric space
Ω and for any δ > 0. A more extensive list of such characterizations appears in Theorem 3.2 in
Section 3.1.
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Theorem 1.3 (characterizations of Fδ-closed sets, partial list). For any Ω, δ > 0, and Π ⊆ Ω,
the following statements are equivalent:

1. Π is Fδ-closed (i.e., Π = Fδ(Fδ(Π))).

2. For every x /∈ Π ∪ Fδ(Π) there exists z ∈ Fδ(Π) such that ∆(z, x) < δ.

3. There exists Π′ ⊆ Ω such that Π = Fδ(Π′).

4. There exists Π′ ⊆ Ω such that Π =
⋂
x∈Π′ Fδ({x}).

Condition (2) of Theorem 1.3 is the basic technical tool that we use to analyze Fδ-closed
sets when lacking a more convenient tool for the speci�c case. Interestingly, this condition is
actually a collection of local conditions, where by �local� we mean that each condition depends
only on a ball of radius 2δ in Ω.3 Thus, if Π violates one of these conditions, then it is not
Fδ-closed, and otherwise it is Fδ-closed.

Condition (3) of Theorem 1.3 implies, in particular, that all sets of the form Fδ(Π′), for
some Π′ ⊆ Ω, are Fδ-closed. Thus, it is always true that Fδ(Fδ(Fδ(Π))) = Fδ(Π), which implies
that repeated applications of the operator Fδ on a set Π yield a sequence comprised only of the
sets Π, Fδ(Π), and Fδ(Fδ(Π)). Moreover, if Π is Fδ-closed to begin with, then the sequence
will be comprised only of Π and Fδ(Π).

Condition (4) of Theorem 1.3 implies that the potentially small collection {Fδ({x})}x∈Ω

�generates� the collection of all Fδ-closed sets (i.e., a set is Fδ-closed if and only if it is an
intersection of sets from {Fδ({x})}x∈Ω).

1.2.2 Graphical metric spaces

If the metric space Ω is an undirected connected graph, equipped with the shortest path metric,
then we call it a graphical metric space. In this section, corresponding to Section 4.1 of the
text, we show several conditions that are either necessary or su�cient to deduce that a set in
a graphical space is Fδ-closed. We study these conditions in general graphical spaces as well as
in the special case of the Boolean hypercube, where the interest in the hypercube is due both
to its importance for applications in property testing and to the fact that it belongs to several
interesting graph classes.

One necessary condition for a set (in a graphical space) to be Fδ-closed is, loosely speaking,
that it does not �enclose� some vertex x /∈ Π ∪ Fδ(Π) from �all sides�. That is, if a set Π is
Fδ-closed, then every x /∈ Π ∪ Fδ(Π) is connected to Fδ(Π) via a path that does not intersect
Π (see Proposition 4.1). However, this necessary condition is not a su�cient one: There exist
graphs, values of δ > 0 and sets that satisfy this condition but that are not Fδ-closed. Moreover,
the condition is not a su�cient one even in the special case of the Boolean hypercube.

The �rst su�cient condition that we present for a set in a graphical space to be Fδ-closed
is a strengthening of the aforementioned necessary condition.

3Each condition depends on a ball of radius 2δ, since Condition (2) requires the existence of z ∈ Fδ(Π) such
that ∆(z, x) < δ, which holds if z is in the open radius-δ ball around x and the open radius-δ ball around z does
not intersect with Π.
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De�nition 1.4 (strongly Fδ-closed). For a graphical Ω and δ > 0, a set Π ⊆ Ω is strongly

Fδ-closed if every x /∈ Π ∪ Fδ(Π) lies on a shortest path (i.e., a path of length δ) from Π to
Fδ(Π).

An equivalent de�nition of being strongly Fδ-closed is as follows: A set Π is strongly Fδ-
closed if and only if, for every x /∈ Π ∪ Fδ(Π), there exists a neighbor x′ such that ∆(x′,Π) =
∆(x,Π) + 1.

Indeed, as implied by its name, a set that is strongly Fδ-closed is Fδ-closed (see the discussion
after Proposition 4.6). The condition of being strongly Fδ-closed might be more convenient to
evaluate in some cases, compared to the characterizations in Theorem 1.3, since it might be
easier to argue about the immediate neighbors of x /∈ Π ∪ Fδ(Π) instead of about the δ-
neighborhood of x (i.e., about a vertex z ∈ Fδ(Π) such that ∆(x, z) < δ) as is required in
Condition (2) of Theorem 1.3.

However, being strongly Fδ-closed is not a necessary condition for being Fδ-closed: There
exist graphical spaces Ω, parameters δ > 0 and subsets Π ⊆ Ω such that Π is Fδ-closed but
not strongly Fδ-closed. Furthermore, such sets exist even in the special case of the Boolean
hypercube.

Proposition 1.5 (strongly Fδ-closed is not a necessary condition for Fδ-closed in the Boolean
hypercube). For n ≥ 9 and 4 ≤ δ ≤ n

2 such that δ − 1 divides n, there exist sets in the Boolean
hypercube that are Fδ-closed but are not strongly Fδ-closed.

Nevertheless, there exists graphs and values of δ > 0 such that every Fδ-closed set in
the graph is also strongly Fδ-closed. In particular, this holds for δ = 2 and any graph. In
Section 4.1.3 and in Appendix C we brie�y study the question of for which graphs (and values
of δ > 0) does it holds that a set is Fδ-closed if and only if it is strongly Fδ-closed.

A di�erent direction of study is as follows: Instead of �xing δ and asking which are the
Fδ-closed sets, we ask, for a �xed set Π ⊆ Ω, what are the values of δ for which Π is strongly
Fδ-closed, Fδ-closed, or not Fδ-closed.

Interestingly, for any set Π in a graphical space with bounded diameter, the values of δ for
which Π is Fδ-closed constitute a single bounded interval. This interval starts at δ = 1 (since
every set is F1-closed), and for any set Π we denote the right-end of this interval by δC(Π) (i.e.,
δC(Π) is the maximal value for which Π is Fδ-closed). A similar claim holds for values of δ for
which Π is strongly Fδ-closed. That is �

Proposition 1.6 (values of δ for which a set is Fδ-closed and strongly Fδ-closed). For a
graphical Ω with bounded diameter and a non-trivial Π ⊆ Ω, there exist two integers δC(Π) and
δSC(Π) such that δSC(Π) ≤ δC(Π) and for every integer δ > 0 it holds that

1. Π is Fδ-closed if and only if δ ∈ [1, δC(Π)].

2. Π is strongly Fδ-closed if and only if δ ∈ [1, δSC(Π)].

In contrast, if the space Ω is not graphical, then a statement analogous to Item (1) in
Proposition 1.6 does not necessarily hold (see Proposition 4.13, and also recall that the notion
of strongly Fδ-closed is unde�ned in non-graphical metric spaces.)
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1.2.3 The Boolean hypercube

In the Boolean hypercube, for any �xed set Π, we can obtain a lower bound for δSC(Π) and
an upper bound for δC(Π), using coding-theoretic features of Π. In Section 4.2 we show such
bounds, and demonstrate that, in general, the bounds we show are far from being tight. In
particular, δC(Π) is smaller than the covering radius of Π, that is the minimal δ > 0 such that
every string x satis�es ∆(x,Π) ≤ δ. On the other hand, δSC(Π) is greater or equal to the unique
decoding distance of Π. In fact, we prove a stronger statement, as follows. A set Π is called
(δ, L)-list-decodable if every Hamming ball of radius δ contains at most L elements from Π.
Then:

Proposition 1.7 (
(
δ, nδ − 1

)
-list-decodable codes are strongly Fδ-closed). For a non-trivial set

Π in the n-dimensional Boolean hypercube and δ > 0, if Π is
(
δ, nδ − 1

)
-list-decodable, then Π

is strongly Fδ-closed.

Again, this su�cient condition for being strongly Fδ-closed is not a necessary one: There
exist sets that are strongly Fδ-closed for all values of δ ∈ [n − 1], but are not even (1, n)-list-
decodable. Nevertheless, the requirement in Proposition 1.7 that every Hamming ball contains
at most n

δ − 1 elements cannot be signi�cantly relaxed (see Proposition 4.18).

1.2.4 Digest

Figure 1 presents a summary of the su�cient conditions for a set to be Fδ-closed that were
presented in Section 1.2.

Relevant to the
Boolean Hypercube(

δ, nδ − 1
)
-list-decodable

====⇒
6⇐====

Relevant to
Graphical Spaces

strongly Fδ-closed
====⇒
6⇐====

Relevant to
General Metric Spaces

Fδ-closed

Figure 1: Summary of the main conditions presented in Section 1.2

We point out the interesting fact that the three conditions in Figure 1 can be presented as
collections of local conditions, where �local� conditions are ones that depend only on the behavior
of Π in a local neighborhood of Ω. While the local conditions implied by the characterization
of Fδ-closed sets in Condition (2) of Theorem 1.3 depend on balls of radius 2δ, the su�cient
(but not necessary) conditions in De�nition 1.4 and Proposition 1.7 imply local conditions that
depend only on balls of radius δ.

1.3 Applications for dual problems in property testing

In Section 5 we apply the study of sets of the form Fδ(Fδ(Π)) to the study of dual problems
in property testing. For a space Ω = Σn, and a set Π ⊆ Σn, and ε > 0, the standard property

5



testing problem is the one of ε-testing Π, and the corresponding dual problem is the one of
ε-testing Fε·n(Π).

For some properties, the dual problem is a natural property that is interesting by itself: For
example, the property of distributions that are far from uniform and the property of functions
that are far from monotone are both natural properties, and one might be interested in testing
them. Furthermore, in general, for every property Π the dual problem is intuitively related to
the original problem: It can be viewed as distinguishing between inputs that any ε-tester for
Π must reject, and inputs that need to be signi�cantly changed in order to be rejecetd by any
ε-tester for Π.

In standard property testing problems, the set of �yes� instances Π is �xed and the set of
�no� instances Fε·n(Π) depends on the proximity parameter ε > 0. However, in dual problems,
both the set of �yes� instances Fε·n(Π) and the set of �no� instances Fε·n(Fε·n(Π)) depend on ε.
Nevertheless, similar to standard property testing problems, when discussing dual problems we
are primarily interested in the asymptotic query complexity. That is, for Π = {Πn}n∈N such
that Πn ⊆ Σn, we seek either an asymptotic upper bound on the query complexity of ε-testing
Fε·n(Πn) for every ε > 0, or a lower bound for some value of ε > 0.

Accordingly, for a property Π = {Πn}n∈N, we will usually refer to the dual problem of the
problem of testing Π, or in short to the dual problem of Π, without specifying a parameter ε > 0.

De�nition 1.8 (dual problems that are equivalent to the original problems). For a set Σ, let
Π = {Πn}n∈N such that Πn ⊆ Σn. If for every su�ciently small ε > 0 and su�ciently large n
it holds that Πn is Fε·n-closed, then the problem of testing Π is equivalent to its dual problem.
Otherwise, the problem of testing Π is di�erent from its dual problem.

1.3.1 General results regarding the query complexity of dual problems

As mentioned in the beginning of the introduction, the query complexity of any dual problem
is closely related to the query complexity of its original problem. First, since for every set
Π ⊆ Σn and every δ > 0 it holds that Π ⊆ Fδ(Fδ(Π)), an ε-tester for Fε·n(Π) always yields an
ε-tester for Π, by complementing the output of the tester. This is since the promise problem
that corresponds to the original problem is (Π,Fε·n(Π)), whereas the promise problem for the
dual is (Fε·n(Π),Fε·n(Fε·n(Π))) ⊇ (Fε·n(Π),Π). Therefore:

Observation 1.9 (the query complexity of dual problems). The query complexity of a dual
problem is lower bounded by the query complexity of its original problem.

Needless to say, if the dual problem is equivalent to its original problem, then their query
complexities are identical.

We show a general lower bound for testing dual problems with one-sided error, regardless
of whether the dual problem is equivalent to its original or di�erent from it. Recall that in
property testing, testers with one-sided error are ones that always accept �yes� inputs; in the
case of dual problems, these are testers that always accept inputs from Fε·n(Π).

Theorem 1.10 (testing dual problems with one-sided error). For a set Σ, let Π = {Πn}n∈N
such that Πn ⊆ Σn. Suppose that for all su�ciently large n it holds that Πn 6= ∅ and that there
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exist inputs that are Ω(n)-far from Πn. Then, the query complexity of testing the dual problem
of Π with one-sided error is Ω(n).

It follows that testing the dual problem of a (non-empty) property with one-sided error and
query complexity o(n) is possible only if the distance of every input from the property is o(n).
However, in this case both the original problem and its dual are trivial to begin with, since for
any ε > 0 and su�ciently large n it holds that Fε·n(Πn) = ∅

The fact that testing dual problems with one-sided error is either trivial or requires a linear
number of queries stands in sharp contrast to standard property testing problems. This is
since in standard property testing problems, essentially for any sub-linear function q : N→ N,
there exists a property of Boolean functions such that the query complexity of testing it with
one-sided error is Θ(q(n)) [GKNR12].

1.3.2 Dual problems that are equivalent to the original problems

Recall that, by De�nition 1.8, the problem of testing a property Π = {Πn}n∈N is equivalent to
its dual problem if for every su�ciently small ε > 0, and every su�ciently large n, it holds that
Πn is Fε·n-closed. Then, the following corollary follows from Proposition 1.7.

Theorem 1.11 (testing duals of error-correcting codes). For any error-correcting code with
constant relative distance, the problem of testing the code is equivalent to its dual problem.

Two fundamental problems in property testing involve testing error-correcting codes: The
problem of linearity testing [BLR90], which consists of testing the set of multivariate linear
functions over a �nite �eld, and the problem of low-degree testing [RS96], which consists of
testing the set of low-degree multivariate polynomials over a �nite �eld. Theorem 1.11 implies
that both these problems are equivalent to their dual problems.

Another fundamental testing problem is that of monotonicity testing [GGL+00]. For an
ordered set Σ, a function f : {0, 1}` → Σ is monotone if for every x, y ∈ {0, 1}` such that x ≤ y
it holds that f(x) ≤ f(y) (where x ≤ y if xi ≤ yi for every i ∈ [`]). We prove the following:

Theorem 1.12 (testing whether a function is far from monotone). The problem of testing
monotone Boolean functions over the Boolean hypercube is equivalent to its dual problem.

In fact, we prove a signi�cant generalization of Theorem 1.12, as follows. For every n ∈ N,
consider functions from a poset [n] to a range Σn, and assume that the width of the poset is at
most n

2·|Σn| , where the width of a poset is the size of a maximum antichain in it.4 We show that

in this case, the problem of testing monotone functions is equivalent to its dual problem (see
Theorem 5.11). Note that the width requirement is quite mild. In particular, an `-dimensional
hypercube has width O(2`/

√
`), where its size is n = 2`.

The equivalence of the monotonicity testing problem and its dual is proved by showing that,
for any poset [n] and range Σn as above, and any δ < n

4 , the set of monotone functions from [n]

4Similar to metric spaces, we usually identify a partially ordered set ([n],≤) with its set of elements [n], and
the order relation is always implicit and denoted by ≤.
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to Σn is Fδ-closed. Interestingly, in the special case of Boolean functions (i.e., when |Σn| = 2),
the set of monotone functions is actually strongly Fδ-closed (see Proposition 5.10).

Turning to distribution testing [BFR+13], one basic problem is as follows: Fixing a predeter-
mined distribution D over [n], an ε-tester gets independent samples from an input distribution
I, and its task is to determine whether I = D or I is ε-far from D in the `1 norm. We show
that for some distributions D, this problem is equivalent to its dual problem. In particular,

Theorem 1.13 (testing whether a distribution is far from a predetermined distribution with un-
bounded min-entropy). Let {Dn}n∈N be a family of distributions such that
limn→∞min-entropy(Dn) = ∞. Then, the problem of testing whether an input distribution
In is identical to Dn is equivalent to its dual problem.

In particular, the problem of testing whether an input distribution is uniform is equivalent
to its dual problem. We also show another class of distribution-families that induce equivalent
dual problems (see Proposition 5.13 for details).

1.3.3 Dual problems that are di�erent from the original problems

Nevertheless, there exist natural dual problems that are di�erent from their original problems.
The �rst such problem we present is the general case of the aforementioned distribution testing
problem: When considering the worst-case, over all families of distributions, this problem is
di�erent from its original problem.

Proposition 1.14 (testing whether a distribution is far from a known distribution). There ex-
ists a distribution family {Dn}n∈N such that the problem of testing whether an input distribution
In is identical to Dn is di�erent from its dual problem.

The three other problems we present involve testing properties of graphs in the dense graph
model [GGR98]. In this model, an ε-tester queries the adjacency matrix of a graph over v
vertices, and tries to determine whether the graph has some property or ε ·

(
v
2

)
edges need to

be added and/or removed from the edge-set of the graph in order for it to have the property.
First, we consider the problem of testing whether a graph is far from being k-colorable.

While this problem is di�erent from its original problem, we show that its query complexity is
nevertheless O(1), as is the case for the original problem.

Theorem 1.15 (testing whether a graph is far from being k-colorable). For any k ≥ 2, the
problem of testing whether a graph is k-colorable is di�erent from its dual problem. Nevertheless,
the query complexity of the dual problem is O(1).

We mention that, unlike the complexity of the original problem, the constant in the O(1)
notation in Theorem 1.15 might be huge, and in particular it is not polynomial in the proximity
parameter ε. (This is since our proof relies on a result by Fischer and Newman [FN07], which
in turn relies on Szemerédi's regularity lemma.)

We also consider the problem of testing, for ρ ∈ (0, 1), whether a graph on v vertices is
far from having a clique of size ρ · v. We show that this problem is di�erent from its original
problem, but we do not know what its query complexity is.
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Proposition 1.16 (testing whether a graph is far from having a large clique). For any ρ ≤ 1
2 ,

the problem of testing whether a graph on v vertices has a clique of size ρ · v is di�erent from
its dual problem.

The last problem we discuss is the problem of testing graph isomorphism (see [Fis05, FM08]).
In this problem, an explicitly known graph G on v vertices is �xed in advance, and an ε-tester
needs to determine whether an input graph H is isomorphic to G or is ε ·

(
v
2

)
-far from being

isomorphic to G. This problem is also di�erent from its original problem.

Proposition 1.17 (testing whether a graph is far from being isomorphic to a known graph).
There exist graph families {Gn}n∈N such that testing whether an input graph Hn is isomorphic
to Gn is di�erent from its dual problem.

1.4 Our techniques

In the �rst part of this work, which corresponds to Section 1.2, we develop techniques to handle
sets of the form Fδ(Fδ(Π)), and in particular present necessary and/or su�cient conditions for
a set to be Fδ-closed. Proving the validity of the conditions (i.e., that they are indeed su�cient
and/or necessary) usually relies on elementary arguments. Conversely, the limitations of these
conditions are demonstrated by constructing explicit counter-examples of sets in the relevant
metric spaces (i.e., general spaces, graphical spaces and/or the Boolean hypercube). Some of
these constructions are quite evasive, and in some cases (e.g., the construction in the proof of
Proposition 1.5) it seems a-priori non-obvious to us that a counter-example should even exist.

Our more involved proofs are mostly in the second part of this work, which corresponds
to Section 1.3, and studies dual property testing problems. The lower bound regarding testing
dual problems with one-sided error (i.e., Theorem 1.10) stems from a similar lower bound
with respect to testing standard problems with perfect soundness; that is, testing a property
such that �no� instances are always rejected. We show that the query complexity of testing
standard problems with perfect soundness is linear, unless the problem is trivial (i.e., unless
Fδ(Πn) = ∅ for a su�ciently large n). The lower bound regarding dual problems follows, since
the query complexity of testing a dual problem with one-sided error is lower bounded by the
query complexity of testing a standard problem with perfect soundness.

The general technical question underlying the proofs of many of the results presented in
Section 1.3 is the following: Given a metric space Σn, a set Π ⊆ Σn, a parameter δ > 0, and a
point x that satis�es some requirements regarding its distance from Π, does there exist a point
z such that ∆(x, z) < δ and ∆(z,Π) ≥ δ? We prove our results by tackling this question
in various speci�c instances. In most cases, given an object x that satis�es some distance
requirement from Π, we show how to explicitly modify x to a corresponding suitable z. Our
modi�cation of x to z capitalizes on structural properties of objects that satisfy the speci�c
distance requirement.

For example, consider the proof that testing distributions with unbounded min-entropy is
equivalent to its dual problem. We wish to prove that for a small constant δ > 0, and a
distributionD over [n] that has very high min-entropy, the singleton {D} is Fδ-closed. However,
since the metric space is not graphical, we cannot use the su�cient conditions from Section 1.2.2.
Instead, we rely on Condition (2) of Theorem 3.2. In particular, we show that every distribution
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X /∈ {D} ∪ Fδ({D}) can be modi�ed to a distribution Z ∈ Fδ({D}) such that ∆(X,Z) < δ.
The structural property that we use is that for every X /∈ {D} ∪ Fδ({D}), there exists a set
of support elements such that the probabilistic mass of each element is relatively small, but
the set of elements as a whole has a signi�cant amount of mass. We show that decreasing the
probabilistic mass of X on these elements, while increasing its mass on one other element, yields
a suitable distribution Z (see Lemma 5.14.1).

Similarly, we rely on Condition (2) of Theorem 3.2 to prove that the problem of testing
monotonicity of functions over posets with bounded width is equivalent to its dual problem. In
particular, for the set Π ⊆ Σn of monotone functions from [n] to Σ, we show that the image of
every function f /∈ Π∪Fδ(Π) can be modi�ed in δ−1 locations, to obtain a function h ∈ Fδ(Π).
To see how this is done, call a pair of inputs (x, y) such that x ≤ y violated if f(x) > f(y), and
�at if f(x) = f(y). We prove that for every function f /∈ Π∪Fδ(Π), there exists a collection C
of δ pairs such that all elements in the pairs are distinct, one of these pairs is violated, and the
rest of the pairs are �at. This relies on the hypothesis that the width of the poset is bounded
(see Lemma 5.9.1 and Corollary 5.9.2). By modifying the value of f on one input in each �at
pair in C, turning the pair to a violated pair, we obtain a function h such that ∆(f, h) = δ− 1,
and h is violated on δ pairs with distinct elements. Such a function satis�es h ∈ Fδ(Π). Using
a re�nement of this argument, we prove that the set of monotone Boolean functions is strongly
Fδ-closed. The re�ned argument relies on a structural feature speci�c to Boolean functions,
which was proved by Fischer et al. [FLN+02] (see Corollary 5.10.2).

The situation in the dense graph model is of particular interest. In this model, none of
the properties that we study are Fδ-closed. Nevertheless, we show that the dual problem of
k-colorability can be tested with O(1) queries. To prove this upper bound, we rely on a result
by Fischer and Newman [FN07], who showed that if a graph property Π in this model is testable
with O(1) queries, then, for every ε > 0 and α ∈ (0, 1), the problem of distinguishing between
graphs G that satisfy ∆(G,Π) ≤ (α · ε) · n and graphs in Fε·n(Π) is solvable with O(1) queries.
We show that for the set of k-colorable graphs Π, and for a suitable α ∈ (0, 1), it holds that
Fε·n(Fε·n(Π)) ⊆ {x : ∆(x,Π) ≤ (α · ε) · n}. (As mentioned in Section 1.1, this does not
hold for general sets in the hypercube.) Combined with the result of [FN07], this implies that
distinguishing between Fε·n(Fε·n(Π)) and Fε·n(Π) can be done O(1) queries.

To show that, for δ = ε · n, it holds that Fδ(Fδ(Π)) ⊆ {x : ∆(x,Π) ≤ α · δ}, we are again
faced with an instance of the aforementioned general technical question: For a graph G such
that ∆(G,Π) > α · δ, we construct H ∈ Fδ(Π) such that ∆(G,H) < δ, which implies that
G /∈ Fδ(Fδ(Π)). The structural property that we capitalize on is that in a graph G satisfying
∆(G,Π) ∈ (α·δ, δ), there exists a large collection of independent sets of size k+1 such that every
two sets in the collection share at most one common vertex (see Lemma 5.21.2, which relies on a
theorem of Bollobás [Bol76]). We show that by adding edges to each of these independent sets,
turning each of them into a (k+1)-clique, we obtain a graph H ∈ Fδ(Π) such that ∆(G,H) < δ,
which implies that G /∈ Fδ(Fδ(Π)).
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2 Preliminaries

Metric spaces. Throughout the paper we denote by Ω a set with at least two elements, and
we usually assume that it is equipped with a metric ∆ : Ω2 → [0,∞), such that (Ω,∆) is a
metric space. We will usually use shorthand notation, and identify the metric space (Ω,∆)
with its set of elements Ω, and the metric ∆ will be implicit. We call a metric space Ω graphical

when Ω is the vertex-set of a connected undirected graph, such that for any x, y ∈ Ω it holds
that ∆(x, y) is the length of a shortest path between x and y.

A special case of a graphical metric space is the Boolean hypercube, equipped with the
Hamming distance. We denote the n-dimensional Boolean hypercube by Hn, and for x, y ∈ Hn

we denote by sd(x, y) the symmetric di�erence between x and y; that is, sd(x, y) = {i ∈ [n] :
xi 6= yi}. Then ∆(x, y) = |sd(x, y)|. Also, for every x ∈ Hn, we denote by ‖x‖1 the Hamming
weight of x.

For any set Π ⊆ Ω, we denote its complement by Π
def
== {x ∈ Ω : x /∈ Π}. Also, for any

x ∈ Ω and δ > 0 we denote the closed radius-δ ball around x by B[x, δ]
def
== {y : ∆(x, y) ≤ δ}

and the open radius-δ ball around x by B[x, δ)
def
== {y : ∆(x, y) < δ}.

The �δ-far� operator. Abusing the notation ∆, for x ∈ Ω and non-empty Π ⊆ Ω we let

∆(x,Π)
def
== infp∈Π{∆(x, p)}. If ∆(x,Π) ≥ δ then we say that x is δ-far from Π. For any space

Ω and δ > 0, we de�ne the δ-far operator Fδ : P(Ω) → P(Ω) by Fδ(Π)
def
== {x : ∆(x,Π) ≥ δ}

for any non-empty Π ⊆ Ω, and Fδ(∅)
def
== Ω; that is, Fδ(Π) is the set of elements that are δ-far

from Π.

Property Testing. In property testing, we assume that Ω = Σn, for an arbitrary set Σ,
and n ∈ N. To avoid confusion, throughout the paper we will denote the (relative) proximity
parameter for testing by ε > 0, whereas the absolute distance between inputs will be denoted
by δ > 0. Indeed, in this case δ = ε · n.

De�nition 2.1 (property testing). For a set Σ, a property Π = {Πn}n∈N such that Πn ⊆ Σn,
and parameter ε > 0, an ε-tester for Π is a probabilistic algorithm T that gets oracle access to
x ∈ Σn, in the sense that for any i ∈ [n] it can query for the ith symbol of x, and satis�es the
following two conditions:

1. If x ∈ Πn then Pr[T x(1n) = 1] ≥ 2
3 .

2. If x ∈ Fε·n(Πn) then Pr[T x(1n) = 0] ≥ 2
3 .

The query complexity of an ε-tester T for Π is a function q : N → N, such that for every
n ∈ N it holds that q(n) is the maximal number, over any x ∈ Σn and internal coin tosses of
T , of oracle queries that T makes. The query complexity of ε-testing Π is a function q : N→ N
such that for every n ∈ N it holds that q(n) is the minimum, over all query complexities q′ of
ε-testers for Π, of q′(n).

We will sometimes slightly abuse De�nition 2.1, by referring to ε-testers for Π ⊆ Σn, where
n is a generic integer (instead of referring to ε-testers for an in�nite sequence Π = {Πn}n∈N).

11



3 Sets of the form Fδ(Fδ(Π)) and Fδ-closed sets

In this section we study the basic properties of sets of the form Fδ(Fδ(Π)). Motivated by appli-
cations in property testing, we focus on sets that satisfy Π = Fδ(Fδ(Π)), which by De�nition 1.1
are called Fδ-closed sets.

Intuitively, we expect that any set will be far from being far from itself; that is, we expect
every set Π to satisfy Π ⊆ Fδ(Fδ(Π)). This is indeed the case:

Fact 3.1 (a set is always far from being far from itself). For any space Ω, δ > 0, and Π ⊆ Ω,
it holds that Π ⊆ Fδ(Fδ(Π)).

Proof. Assume towards a contradiction that there exists x ∈ Π \ Fδ(Fδ(Π)). Since x /∈
Fδ(Fδ(Π)), there exists z ∈ Fδ(Π) such that ∆(x, z) < δ. However, since x ∈ Π, then
∆(z,Π) ≤ ∆(z, x) < δ, which contradicts z ∈ Fδ(Π).

However, as mentioned in the introduction, not every set Π satis�es Π = Fδ(Fδ(Π)); that
is, not every set is Fδ-closed.

In Section 3.1 we characterize the sets that are Fδ-closed in any metric space. Section 3.2
is a detour, in which we give additional insight into the relationship between any set Π and
Fδ(Fδ(Π)), by showing that the operator Π 7→ Fδ(Fδ(Π)) satis�es the axioms of a closure
operator (or hull operator).5 In Section 3.3 we study sets that are not Fδ-closed, and in
particular demonstrate their existence and lower bound the fraction of such sets in two classes
of metric spaces. And in Section 3.4 we study the distance of points in Fδ(Fδ(Π)) from Π.

3.1 Characterizations of Fδ-closed sets

For a �xed Ω and δ > 0, which are the Fδ-closed sets in Ω? The following theorem presents
several equivalent characterizations of the Fδ-closed sets for any �xed Ω and δ.

Theorem 3.2 (characterizations of Fδ-closed sets, extending Theorem 1.3). For any Ω, δ > 0,
and Π ⊆ Ω, the following statements are equivalent:

1. Π is Fδ-closed (i.e., Π = Fδ(Fδ(Π))).

2. For every x /∈ Π ∪ Fδ(Π) there exists z ∈ Fδ(Π) such that ∆(z, x) < δ.

3. There exists Π′ ⊆ Ω such that Π = Fδ(Fδ(Π′)).

4. There exists Π′′ ⊆ Ω such that Π = Fδ(Π′′).

5. There exists Π′′ ⊆ Ω such that Π =
⋂
x∈Π′′ Fδ({x}).

6. There exists Π′′ ⊆ Ω such that Π = Ω \
⋃
x∈Π′′ B[x, δ).

Proof. For the proof we will need the following two facts:

5This material will not be used in the rest of the paper.
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Fact 3.2.1 (far-sets are intersections of sets that are far from singletons). For any Ω, δ > 0
and Π ⊆ Ω it holds that Fδ(Π) =

⋂
x∈ΠFδ({x}).

Proof. For any z ∈ Ω it holds that z ∈ Fδ(Π) if and only if z is δ-far from every x ∈ Π, which
holds if and only if z ∈ Fδ({x}) for every x ∈ Π. �

Fact 3.2.2 (downwards monotonicity of Fδ). For any Ω, δ > 0 and A,B ⊆ Ω, if A ⊆ B, then
Fδ(A) ⊇ Fδ(B).

Proof. Relying on Fact 3.2.1,

Fδ(A) =
⋂
a∈A
Fδ({a}) ⊇

⋂
b∈B
Fδ({b}) = Fδ(B) �

We now prove the equivalences of Conditions (1)−(6).

(1) =⇒ (2) Since Π is Fδ-closed, every x /∈ Π satis�es x /∈ Fδ(Fδ(Π)). Equivalently, every
x /∈ Π satis�es ∆(x,Fδ(Π)) < δ. Thus, for every x /∈ Π, there exists z ∈ Fδ(Π) such that
∆(x, z) < δ. In particular, this holds for every x /∈ Π ∪ Fδ(Π).

(2) =⇒ (1) For any x ∈ Ω, if there exists z ∈ Fδ(Π) such that ∆(x, z) < δ, then x /∈
Fδ(Fδ(Π)). Combining this fact with the hypothesis, we deduce that Π ∪ Fδ(Π)∩Fδ(Fδ(Π)) =
∅. Also, since δ > 0 it holds that Fδ(Π) ∩ Fδ(Fδ(Π)) = ∅.

Now observe that Ω = Π∪Fδ(Π)∪Π ∪ Fδ(Π). Since we showed that Fδ(Fδ(Π))∩Fδ(Π) = ∅
and Fδ(Fδ(Π)) ∩ Π ∪ Fδ(Π) = ∅ it follows that Fδ(Fδ(Π)) ⊆ Π. By Fact 3.1 it holds that
Π ⊆ Fδ(Fδ(Π)), and therefore Π = Fδ(Fδ(Π)).

(1) =⇒ (3) Follows by setting Π′ = Π, since Π = Fδ(Fδ(Π)).

(3) =⇒ (4) Follows by setting Π′′ = Fδ(Π′).

(4) =⇒ (1) Let Π = Fδ(Π′′) for some Π′′ ⊆ Ω. By Fact 3.1 it holds that Π′′ ⊆ Fδ(Fδ(Π′′)),
whereas by Fact 3.2.2, we get that Π = Fδ(Π′′) ⊇ Fδ(Fδ(Fδ(Π′′))) = Fδ(Fδ(Π)). Using Fact 3.1
again, we know that Π ⊆ Fδ(Fδ(Π)), and thus Π = Fδ(Fδ(Π)).

(4) ⇐⇒ (5) By Fact 3.2.1.

(5) ⇐⇒ (6) Follows since for any x ∈ Ω it holds that Fδ({x}) = Ω \ B[x, δ), and by De-
Morgan's laws.

In the introduction, following the statement of Theorem 1.3, we commented on the impli-
cations of some of these characterizations. Here, we add several additional comments. First,
note that Condition (5) implies that any intersection of Fδ-closed sets is Fδ-closed. In addition,
Condition (6) provides another appealing interpretation for Fδ-closed sets: Fδ-closed sets are
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exactly the sets obtained by starting from the entire space Ω and removing any union of balls
from the potentially small collection {B[x, δ)}x∈Ω.

The equivalence of Conditions (4) and (3) implies that {Fδ(Fδ(Π))}Π⊆Ω = {Fδ(Π)}Π⊆Ω.
Moreover, the operator Fδ is a bijection between these two collections: The collection
{Fδ(Fδ(Π))}Π⊆Ω is the image of {Fδ(Π)}Π⊆Ω under Fδ; and by Condition (4), every set of
the form Fδ(Π) is Fδ-closed, which implies that the collection {Fδ(Π)}Π⊆Ω is also the image of
{Fδ(Fδ(Π))}Π⊆Ω under Fδ.

Condition (2) in Theorem 3.2 is the basic technical condition that we will use to evaluate
whether sets are Fδ-closed. As mentioned in the discussion after the statement of Theorem 1.3,
Condition (2) is in fact a collection of local conditions, where by �local� we mean that each
condition depends only on a ball of radius 2δ in Ω. The negation of Condition (2) yields a
more explicit description of a collection of conditions such that each condition corresponds to
a speci�c ball in Ω.

Corollary 3.3 (being Fδ-closed as a collection of local conditions). If, for some x ∈ Ω, it holds
that x /∈ Π and B[x, δ) ∩ Π 6= ∅ and B[x, δ) ∩ Fδ(Π) = ∅, then Π is not Fδ-closed. Otherwise,
Π is Fδ-closed.

Proof. By negating Condition (2) in Theorem 3.2 we get that Π is not Fδ-closed if and only if
there exists x /∈ Π ∪ Fδ(Π) such that for every z ∈ Fδ(Π) it holds that ∆(z, x) ≥ δ. Note that:

• For every x /∈ Π it holds that x /∈ Fδ(Π) if and only if B[x, δ) ∩Π 6= ∅.

• The condition that for every z ∈ Fδ(Π) it holds that ∆(z, x) ≥ δ is equivalent to the
condition that B[x, δ) ∩ Fδ(Π) = ∅.

3.2 Detour: The mapping Π 7→ Fδ(Fδ(Π)) is a closure operator in P(Ω)

The current section is a detour, which is intended to provide additional insight to the relationship
between Π and Fδ(Fδ(Π)), for any Ω and Π ⊆ Ω. The results in this section will not be used
in the rest of the paper, and thus are not essential in order to read other sections.

The notion of closure operators (or hull operators; see, e.g., [KD06, Chp. 2] or [vdV93, Chp.
1]) is prevalent in many mathematical �elds, including algebra, topology, matroid theory, and
computational geometry. We show that the operator Π 7→ Fδ(Fδ(Π)) is a closure operator on
Ω, a statement that gives some structure to the relationship between Π and Fδ(Fδ(Π)).

De�nition 3.4 (closure operators). A closure operator on a set Ω is an operator cl : P(Ω) →
P(Ω) such that for any Π,Π′ ⊆ Ω it holds that

1. (extensive) Π ⊆ cl(Π).

2. (upwards monotone) Π ⊆ Π′ =⇒ cl(Π) ⊆ cl(Π′).

3. (idempotent) cl(cl(Π)) = cl(Π).

Proposition 3.5 (Π 7→ Fδ(Fδ(Π)) is a closure operator). For any Ω and δ > 0 it holds that
Π 7→ Fδ(Fδ(Π)) is a closure operator on Ω.
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Proof. Axiom (1) follows from Fact 3.1. Axiom (2) follows by applying Fact 3.2.2 twice to the
expression Π ⊆ Π′. Axiom (3) is essentially the requirement that for any set Π it holds that

F (4)
δ (Π) = F (2)

δ (Π) (i.e., four applications of Fδ on Π are equivalent to two applications); or,
equivalently, that any set of the form Fδ(Fδ(Π)) is Fδ-closed. The latter statement follows from
Condition (3) in Theorem 3.2.

A closure operator is characterized by the collection of closed sets {cl(Π)}Π⊆Ω. In particular,
the collection of closed sets under the operator Π 7→ Fδ(Fδ(Π)) is {Fδ(Fδ(Π))}Π⊆Ω, which
according to Theorem 3.2 is exactly the collection of Fδ-closed sets. In general, any closure
operator maps any set Π to its closure, which is the unique smallest closed set containing Π.
The following proposition substantiates that this is indeed the case in the special case of the
operator Π 7→ Fδ(Fδ(Π)): The proposition states that Fδ(Fδ(Π)) is the intersection of all Fδ-
closed sets containing Π. Since Fδ(Fδ(Π)) is itself an Fδ-closed set, this implies that Fδ(Fδ(Π))
it the unique Fδ-closed set that contains Π, and that this set is minimal (i.e., does not contain
any other Fδ-closed set containing Π).

Proposition 3.6 (Fδ(Fδ(Π)) is the unique minimal Fδ-closed set containing Π). For any Ω,
δ > 0 and Π ⊆ Ω it holds that

Fδ(Fδ(Π)) =
⋂

Π′:Fδ(Fδ(Π′))⊇Π

Fδ(Fδ(Π′))

For convenience, we include a proof of Proposition 3.6 in Appendix A. The proof follows
the standard proof of the analogous fact for general closure operators.

For an intuitive grasp of closure operators one may think of the convex hull of a body in
Euclidean geometry or of the topological closure of a set in a topological space. We warn,
however, that in some �elds additional conditions are added to the basic three in De�nition 3.4,
resulting in special classes of closure operators. In Appendix A we show that the operator Π 7→
Fδ(Fδ(Π)) does not belong to some of these classes of operators. In particular, Π 7→ Fδ(Fδ(Π))
is not the convex hull operator in Euclidean spaces, is not a topological (i.e., Kuratowski) closure
operator, and does not satisfy the conditions of closure operators used in matroid theory.

3.3 Existence and prevalence of sets that are not Fδ-closed

The focus of this section is proving the existence, and in some sense the abundance, of sets that
are not Fδ-closed. The main result presented in this section is that for any Ω such that not all
points in it are equidistant and any δ that is not �too extreme� there exist non-trivial sets that
are Fδ-closed and non-trivial sets that are not Fδ-closed. We further show a lower bound on
the number of sets that are not Fδ-closed in two special cases: One is when we assume some
conditions on the structure of Ω and the other is when Ω is the Boolean hypercube.

First, for every Ω let us delineate two �extreme� settings for δ that collapse Π 7→ Fδ(Fδ(Π))
to a trivial operator. In one setting, δ is too large and Fδ(Fδ(Π)) ≡ Ω for any non-empty
Π; in this case all non-trivial sets are not Fδ-closed. In the other setting, δ is too small and
Fδ(Fδ(Π)) = Π for any Π ⊆ Ω; that is, all sets are Fδ-closed.
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Fact 3.7 (if δ is too large then Fδ(Fδ(Π)) ≡ Ω). For any Ω such that supx,y∈Ω{∆(x, y)} is
�nite, if δ > supx,y∈Ω{∆(x, y)}, then for every non-empty Π ⊆ Ω it holds that Fδ(Fδ(Π)) = Ω.

Proof. In this case, for any Π 6= ∅ it holds that Fδ(Π) = ∅, and thus Fδ(Fδ(Π)) = Ω.

Fact 3.8 (if δ is too small then Fδ(Fδ(Π)) ≡ Π). For any Ω such that infx 6=y{∆(x, y)} > 0, if
δ ≤ infx 6=y{∆(x, y)}, then for every Π ⊆ Ω it holds that Fδ(Fδ(Π)) = Π.

Proof. In this case, for every Π ⊆ Ω it holds that Fδ(Π) = Ω \ Π, and thus Fδ(Fδ(Π)) =
Ω \ Fδ(Π) = Ω \ (Ω \Π) = Π.

Following Facts 3.7 and 3.8, and disregarding for a moment the �boundary case� when
δ = supx 6=y{∆(x, y)}, we restrict our investigation to settings of Ω and δ such that

δ ∈

(
inf

x 6=y∈Ω
{∆(x, y)}, sup

x,y∈Ω
{∆(x, y)}

)
(3.1)

The following theorem shows that for every δ that satis�es Eq. (3.1) there exists a non-trivial
Π ⊆ Ω that is Fδ-closed and a non-trivial Π′ ⊆ Ω that is not Fδ-closed.

Theorem 3.9 (Theorem 1.2, restated). For any Ω, if δ > 0 satis�es Eq. (3.1), then there exists
a non-trivial Π ⊆ Ω that is Fδ-closed and a non-trivial Π′ ⊆ Ω that is not Fδ-closed.

Proof. Since δ < supx,y∈Ω{∆(x, y)} there exist x, y ∈ Ω such that ∆(x, y) ≥ δ. Let Π =
Fδ({x}), and note that Π /∈ {∅,Ω} since x /∈ Π and y ∈ Π. By Condition (4) of Theorem 3.2 it
holds that Π is Fδ-closed.

Now, since δ > infx 6=y∈Ω{∆(x, y)} there exist x′, y′ ∈ Ω such that ∆(x′, y′) < δ. Let Π′ =
Ω \ {x′}, and note that Π′ /∈ {∅,Ω} since x′ /∈ Π′ and y′ ∈ Π′. Since ∆(x′,Π′) ≤ ∆(x′, y′) < δ it
follows that x′ /∈ Fδ(Π′), and thus Fδ(Π′) = ∅ and Fδ(Fδ(Π′)) = Ω 6= Π′. Therefore Π′ is not
Fδ-closed.

For spaces in which the supremum in Eq. (3.1) is attained (e.g., �nite metric spaces) such
non-trivial sets exist if and only if δ ∈ (infx 6=y∈Ω{∆(x, y)},maxx,y∈Ω{∆(x, y)}]. (Note that now
the right boundary of the interval is closed.)

Proposition 3.10 (values of δ for which the notion of Fδ-closed sets is non-trivial). Let Ω
such that the supremum in Eq. (3.1) is attained (i.e., there exist u, v ∈ Ω such that ∆(u, v) =
supx,y∈Ω{∆(x, y)}). Then, for every δ > 0, it holds that

δ ∈
(

inf
x 6=y∈Ω

{∆(x, y)}, max
x,y∈Ω

{∆(x, y)}
]

(3.2)

if and only if there exist non-trivial sets that are Fδ-closed and non-trivial sets that are not
Fδ-closed.
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Proof. Assume that δ does not satisfy Eq. (3.2). If δ ≤ infx 6=y∈Ω{∆(x, y)}, then by Fact 3.8 all
sets are Fδ-closed; and if δ > maxx,y∈Ω{∆(x, y)}, then by Fact 3.7 all non-trivial sets are not
Fδ-closed.

For the other direction, assume that δ satis�es Eq. (3.2). Then, we can construct a non-
trivial set that is not Fδ-closed identically to the proof of Theorem 3.9; and for an Fδ-closed
set we take u and v such that ∆(u, v) = maxx,y{∆(x, y)} and let Π = Fδ({u}) 6= ∅.

Theorem 3.9 implies that for any Ω and δ > 0 that satis�es Eq. (3.1) there exist non-trivial
Fδ-closed sets and non-trivial sets that are not Fδ-closed. The following proposition assumes
slightly stricter conditions on the structure of Ω with respect to a parameter δ, and under these
conditions yields a lower bound on the fraction of sets that are not Fδ-closed.

Proposition 3.11 (lower bound on the fraction of sets that are not Fδ-closed). Let Ω be a
metric space and δ > 0. Assume that for n ∈ N and m ≥ 2 there exist x1, ..., xn ∈ Ω such that
for every i 6= j ∈ [n] it holds that ∆(xi, xj) ≥ 2δ and 2 ≤ |B[xi, δ)| ≤ m. Then, the probability
that a uniformly chosen random set is Fδ-closed is at most (1− 2−m)

n
.

Proof. By the hypothesis, for any i ∈ [n] it holds that |B[xi, δ)| ≥ 2. Therefore, if we choose Π
such that Π∩B[xi, δ) = B[xi, δ) \ {xi}, we get a set such that xi /∈ Π and B[xi, δ)∩Π 6= ∅ and
B[xi, δ) ∩ Fδ(Π) = ∅. According to Corollary 3.3, such a set is not Fδ-closed, regardless of the
way the set is de�ned in the rest of Ω. Therefore it su�ces to lower bound the probability that
a random set will be of this form in any of the n balls of radius δ whose existence is guaranteed
by the hypothesis.

For any �xed i ∈ [n], the probability that a uniformly chosen Π satis�es Π ∩ B[xi, δ) =
B[xi, δ) \ {xi} is 2−|B[xi,δ)|. Since, by the hypothesis, it holds that |B[xi, δ)| ≤ m, then this
probability is lower bounded by 2−m. Thus, the probability that Π ∩B[xi, δ) 6= B[xi, δ) \ {xi}
is at most 1 − 2−m. Also note that by the hypothesis, for any i 6= j ∈ [n] it holds that
∆(xi, xj) ≥ 2δ, and hence B[xi, δ)∩B[xj , δ) are disjoint, implying that the events Π∩B[xi, δ) 6=
B[xi, δ) \ {xi} for all i ∈ [n] are independent. Therefore, the probability that for every i ∈ [n]
it holds that Π ∩ B[xi, δ) 6= B[xi, δ) \ {xi} is upper bounded by (1 − 2−m)n. It follows that
probability that the set is Fδ-closed is at most (1− 2−m)n.

If the collection of balls in Proposition 3.11 satis�es n ≥ 2m, then we get that the majority
of sets in Ω are not Fδ-closed. However, the lower bound in Proposition 3.11 is far from tight
for some spaces. In particular, in the special case of the Boolean hypercube, Proposition 3.12
presents a tighter lower bound, relying on a simple argument tailored to this speci�c case.

Proposition 3.12 (most sets in the Boolean hypercube are not Fδ-closed). For the n-dimensional
Boolean hypercube Hn and δ ≥ 3, the probability that a uniformly chosen Π ⊆ Hn is Fδ-closed
is at most 2−Ω(n2).

Proof. First observe that any Π that satis�es Π 6= Hn and Fδ(Π) = ∅ is not Fδ-closed. We
show that a uniformly chosen random Π satis�es both conditions with very high probability.

For any z ∈ Hn it holds that z ∈ Fδ(Π) if and only if B[z, δ − 1] ∩ Π = ∅. For a �xed
z ∈ Hn this happens with probability 2−|B[z,δ−1]|, and since since δ ≥ 3 this expression is upper
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bounded by 2−(1+n+(n2)) = 2−Ω(n2). By union-bounding over all z ∈ Hn, the probability that
there exists some z ∈ Fδ(Π) is at most 2n−Ω(n2). Also, the probability that Π = Hn is 2−2n .
Thus the probability that a random set is Fδ-closed is at most

2n−Ω(n2) + 2−2n = 2−Ω(n2) .

3.4 On the distance of points in Fδ(Fδ(Π)) from Π

One might mistakenly think that even in cases where Π 6= Fδ(Fδ(Π)) (i.e., Π is not Fδ-closed),
all points in Fδ(Fδ(Π)) are, in some sense, close to Π. Indeed, since for any δ > 0 it holds
that Fδ(Fδ(Π))∩Fδ(Π) = ∅, the points in Fδ(Fδ(Π)) cannot be δ-far from Π. However, in this
section, we show several examples demonstrating that points in Fδ(Fδ(Π)) might be almost
δ-far from Π.

Proposition 3.13 (points in Fδ(Fδ(Π)) are not necessarily close to Π). There exists a space
Ω such that for every δ > 0 there exists a set Π ⊆ Ω such that for every δ′ < δ it holds that
Fδ(Fδ(Π)) contains points that are δ′-far from Π.

Proof. Let Ω = (0,∞) with the usual metric of R. For any δ > 0, let Π = {δ}. Since every
x ∈ (0, 2δ) satis�es ∆(x,Π) = |x − δ| < δ, then Fδ(Π) ⊆ Ω \ (0, 2δ) = [2δ,∞). Now, for every
positive δ′ < δ, let z = δ − δ′ > 0. Note that z satis�es ∆(z, δ) = δ′ (i.e., z is δ′-far from Π).
However, since Fδ(Π) ⊆ [2δ,∞), it follows that ∆(z,Fδ(Π)) = |2δ− z| = 2δ− (δ− δ′) > δ, and
thus z ∈ Fδ(Fδ(Π)).

The following proposition shows that this phenomenon, where points in Fδ(Fδ(Π)) are
almost δ-far from Π, happens also in the special case where Ω is the Boolean hypercube.

Proposition 3.14 (an analogue of Proposition 3.13 for the Boolean hypercube). Let Ω = Hn

be the n-dimensional Boolean hypercube. Then for every δ ≥ 2 there exists a set Π ⊆ Hn such
that Fδ(Fδ(Π)) contains points that are (δ − 1)-far from Π.

Proof. We show a set Π 6= Hn such that Fδ(Fδ(Π)) = Hn and there exist points that are (δ−1)-
far from Π. Recall that for x ∈ Hn, we denote by ‖x‖1 the Hamming weight of x. Let Π be the
set of strings with Hamming weight δ − 1 or more; that is, Π = {x ∈ Hn : ‖x‖1 ≥ δ − 1}. Note
that every x /∈ Π (i.e., every x such that ‖x‖1 ≤ δ−2) satis�es ∆(x,Π) = (δ−1)−‖x‖1 ≤ δ−1,
and hence Fδ(Π) = ∅ and Fδ(Fδ(Π)) = Hn. In particular, it holds that the vertex o = (0, ..., 0)
(i.e., ‖o‖1 = 0) satis�es o ∈ Fδ(Fδ(Π)) whereas ∆(o,Π) = δ − 1.

Another mistaken intuition is that even when Fδ(Fδ(Π)) contains points that are far from
Π, not all points in Fδ(Fδ(Π)) are so (i.e., Fδ(Fδ(Π)) also contains points that are closer to Π).
The following proposition demonstrates that this is not the case: There exist spaces and sets
in which all points in Fδ(Fδ(Π)) are either in Π or almost δ-far from Π.

Proposition 3.15 (all points in Fδ(Fδ(Π)) \Π might be almost δ-far from Π). For every odd
integer δ ≥ 3, there exist Ω and Π ⊆ Ω such that Π is not Fδ-closed, and every x ∈ Fδ(Fδ(Π))\Π
satis�es ∆(x,Π) = δ − 1.
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Proof. For an odd integer δ ≥ 3, let Ω be a graph that is a simple path of length δ− 1. We call
this path the base path, and denote its vertices by v0, v1, ..., vδ−1. Now add to Ω another simple
path, this time of length (δ − 1)/2 + 1, starting from v(δ−1)/2. We call this path the additional
path, and denote its vertices by v(δ−1)/2 = z0, z1, ..., z(δ−1)/2+1. The only vertex belonging to
both the base path and the additional path is v(δ−1)/2 = z0, and the two paths are edge-disjoint.

v0 v1 vδ−1v(δ−1)/2 = z0

z1

z(δ−1)/2+1
Π = {v0}

Fδ(Π) = {z(δ−1)/2+1}

Fδ(Fδ(Π)) = {v0, vδ−1}

Figure 2: The space Ω.

Let Π = {v0}. For every vertex vi on the base path, it holds that ∆(vi,Π) = i < δ. Also, for
every vertex zi on the additional path it holds that ∆(zi,Π) = ∆(zi, z0)+∆(z0,Π) = i+(δ−1)/2.
Thus, the only vertex that is δ-far from Π is z(δ−1)/2+1, implying that Fδ(Π) = {z(δ−1)/2+1}.

Now, note that for every vertex zi on the additional path it holds that ∆(zi,Fδ(Π)) =
(δ − 1)/2 + 1− i < δ. Also, for every vertex vi on the original path it holds that

∆(vi,Fδ(Π)) = ∆(vi, v(δ−1)/2) + ∆(z0, z(δ−1)/2+1) =

∣∣∣∣i− δ − 1

2

∣∣∣∣+

(
δ − 1

2
+ 1

)
and thus Fδ(Fδ(Π)) = {v0, vδ−1}. Therefore, only vδ−1 satis�es vδ−1 ∈ Fδ(Fδ(Π)) \ Π, and it
holds that ∆(vδ−1,Π) = δ − 1.

4 Evaluating whether a set is Fδ-closed in two special cases

Recall that Theorem 3.2 gives several su�cient and necessary conditions for a set to be Fδ-
closed in a metric space. In this section we present several conditions that are either su�cient
or necessary to deduce that a set is Fδ-closed, and that might be more convenient to evaluate
for some sets than the characterizations in Theorem 3.2.

However, each of the conditions that we present applies only in a speci�c class of metric
spaces: Some of them apply only in graphical spaces (see Section 4.1) and others apply only
in the special case of the Boolean hypercube (see Section 4.2). Furthermore, all conditions we
present are either su�cient or necessary, but not both.
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4.1 Graphical spaces and strongly Fδ-closed sets

In this section we focus only on graphical spaces; recall that these are connected undirected
graphs, equipped with the shortest path metric. Since the distances in such spaces are integer-
valued, we assume throughout the section that δ ∈ N. As an initial observation, note that for
any graphical Ω it holds that minx 6=y∈Ω{∆(x, y)} = 1. Recall that Fact 3.8 states that in any
space Ω, if δ ≤ minx6=y∈Ω{∆(x, y)}, then all sets in Ω are Fδ-closed. Thus, in every graphical
space, all sets are F1-closed. Accordingly, in this section we are mainly interested in integer
values of δ ≥ 2.

In Section 4.1.1 we show a necessary condition for a set to be Fδ-closed in a graphical space.
This necessary condition sets the stage for the subsequent section. In Section 4.1.2, which is
the main part of our discussion of graphical spaces, we present a su�cient condition for a set to
be Fδ-closed in a graphical space. We call sets that satisfy this su�cient condition strongly Fδ-
closed sets. Section 4.1.3 is a detour, in which we explore spaces (and values of δ > 0) for which
the su�cient condition of being strongly Fδ-closed is also a necessary one. In Section 4.1.4 we
show that for any �xed set in a graphical space, the values of δ for which the set is Fδ-closed
(resp., strongly Fδ-closed) constitute a single interval.

4.1.1 Sets that �enclose� a vertex are not Fδ-closed

Loosely speaking, a necessary condition for a set Π in a graphical space to be Fδ-closed is that
it does not �enclose� some vertex x /∈ Π ∪ Fδ(Π) from �all sides�. In particular, the following
proposition shows that if a set Π is Fδ-closed, then every x /∈ Π∪Fδ(Π) is connected to Fδ(Π)
via a path that does not intersect Π (nor any vertex that is adjacent to Π).

Proposition 4.1 (sets that �enclose� some vertex are not Fδ-closed). For a graphical Ω and
δ ≥ 2, let Π ⊆ Ω be an Fδ-closed set. Then, for every x /∈ Π ∪ Fδ(Π), there exists a path
x = v0, v1, ..., vl = z such that z ∈ Fδ(Π), and for every i ∈ [l] it holds that ∆(vi,Π) ≥ 2.

Note that x = v0 itself may be adjacent to Π, and the requirement is that the vertices
subsequent to x in the path to Fδ(Π) will neither be in Π nor adjacent to Π.

Proof. Let Ω and δ ≥ 2. The key observation is that, for every set Π (not necessarily an Fδ-
closed set) and every x /∈ Π ∪Fδ(Π), a shortest path from x to Π does not intersect Fδ(Π) nor
any vertex adjacent to Fδ(Π).

Fact 4.1.1. For a graphical Ω, and δ ≥ 2, let Π ⊆ Ω be a set (not necessarily an Fδ-closed
set). Then, for every x /∈ Π∪Fδ(Π) and a shortest path from x to Π, every vertex v subsequent
to x on the path satis�es ∆(v,Fδ(Π)) ≥ 2.

Proof. Let x /∈ Π∪Fδ(Π), and let p ∈ Π such that ∆(x,Π) = ∆(x, p). Let P be a shortest path
from x to p. Since P is a shortest path, for every vertex v subsequent to x on the path it holds
that v is closer to p than x; since x /∈ Fδ(Π), we get that, ∆(v, p) ≤ ∆(x, p)− 1 ≤ δ− 2. Thus,
every neighbor v′ of v satis�es ∆(v′,Π) ≤ ∆(v,Π) + 1 ≤ δ − 1, which implies that v′ /∈ Fδ(Π).
It follows that ∆(v,Fδ(Π)) ≥ 2. �
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Now, let Π be an Fδ-closed set, and let Π′ = Fδ(Π). Then, Π = Fδ(Π′), which implies that
Π′ ∪ Fδ(Π′) = Π ∪ Fδ(Π). According to Fact 4.1.1, for every x /∈ Π′ ∪ Fδ(Π′) = Π ∪ Fδ(Π), a
shortest path from x to Π′ = Fδ(Π) does not intersect Fδ(Π′) = Π nor any vertex adjacent to
Π.

By combining Proposition 4.1 and Fact 4.1.1, we get the following corollary, which sets
the stage for Section 4.1.2. Loosely speaking, it states that for an Fδ-closed set Π, every
x /∈ Π ∪ Fδ(Π) lies on a path from Π to Fδ(Π) that satis�es the following: The subpath from
Π to x does not intersect Fδ(Π) nor any neighbor of Fδ(Π); and the subpath from x to Fδ(Π)
does not intersect Π nor any neighbor of Π.

Corollary 4.2 (a corollary of Proposition 4.1). For a graphical Ω, and δ ≥ 2, let Π ⊆ Ω be an
Fδ-closed set. Then, for every x /∈ Π ∪ Fδ(Π), there exists a path v0, v1, ..., vm = x, ..., vl such
that:

1. v0 ∈ Π, and for every i ∈ [0,m− 1] it holds that ∆(vi,Fδ(Π)) ≥ 2.

2. vl ∈ Fδ(Π), and for every i ∈ [m+ 1, l] it holds that ∆(vi,Π) ≥ 2.

Proposition 4.1 asserts that the condition speci�ed in it (i.e., that every x /∈ Π ∪ Fδ(Π)
is connected to Fδ(Π) via a path that does not intersect Π nor any vertex adjacent to Π)
is a necessary condition for a set in a graphical space to be Fδ-closed. In some cases it is
convenient to show that this condition is not met, and deduce that the set is not Fδ-closed;
demonstrations for this technique appear in the proofs of Propositions 4.19, 5.20, 5.22, 5.23
and C.2. Readers interested in further details regarding the condition in Proposition 4.1 are
referred to Appendix B, where we show another condition that is equivalent to the condition
in Proposition 4.1, which might be interesting by itself.

The condition in Proposition 4.1 is not su�cient to deduce that a set is Fδ-closed. To
see this, consider the graph depicted in Figure 3 and δ = 3. Let Π = {p}, and note that
F3({p}) = {z}. Each vertex v1, ..., v4 /∈ {p} ∪ F3({p}) has a path starting from itself and
reaching z such that the path does not intersect p or any of its neighbors. Thus, {p} meets
the necessary condition implied by Proposition 4.1. However, since F3(F3({p})) = {p, v1}, it
follows that {p} is not F3-closed.

p v3

v4 z

v2v1
Π = {p}

F3(Π) = {z}

Figure 3: The singleton {p} is not F3-closed, although the necessary condition stated in Propo-
sition 4.1 is satis�ed.

The following proposition demonstrates that, even in the special case of the Boolean hy-
percube, the necessary condition implied by Proposition 4.1 is not su�cient for a set to be
Fδ-closed.
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Proposition 4.3 (the condition in Proposition 4.1 is not su�cient to be Fδ-closed in the
hypercube). For n ≥ 3, let Hn be the n-dimensional Boolean hypercube. Then, there exists a set
Π ⊆ Hn such that for every 4 ≤ δ ≤ n− 1:

1. For every x /∈ Π ∪ Fδ(Π) there exists a path p = v0, v1, ...x = vr, ..., vl = z such that for
every i ∈ [l] it holds that ∆(vi,Π) ≥ 2.

2. Π is not Fδ-closed.

Proof. For the proof it will be convenient to identify every vertex v ∈ {0, 1}n of Hn with the
corresponding subset of [n]; that is, the subset {i ∈ [n] : vi = 1}. Let

Π =
{
{1}, {2}, ..., {n− 2}

}
and let 4 ≤ δ ≤ n− 1.

To prove the �rst statement, for any x /∈ Π ∪Fδ(Π), we show a path satisfying the require-
ments. First note that since Π ⊆ {v : |v| = 1}, for any w such that |w| ≥ 2 it holds that
∆(w,Π) ≥ |w| − 1, since we need to remove at least |w| − 1 elements from w to reach Π. In
particular, this implies that:

• For every w such that |w| ≥ 3 it holds that ∆(w,Π) ≥ 2.

• ∆([n],Π) ≥ n− 1, and since δ ≤ n− 1 we get that [n] ∈ Fδ(Π).

Combining these two facts, we deduce that if |x| ≥ 2, then there exists a path from x to
[n] ∈ Fδ(Π) such that every vertex v subsequent to x in the path satis�es ∆(v,Π) ≥ 2: This
path is obtained by just adding elements to x (in arbitrary order). It is thus left to show that
for every x /∈ Π ∪ Fδ(Π) such that |x| ≤ 1 there exists a path from x to Fδ(Π) that does not
intersect Π nor vertices adjacent to Π. Note that it su�ces to show such a path from x to x′

such that |x′| = 2.
Now, the only vertices that satisfy both |x| ≤ 1 and x /∈ Π∪Fδ(Π) are ∅, {n− 1}, and {n}.

For ∅, we take the path ∅, {n}, {n− 1, n}, and indeed {n} and {n− 1, n} are neither in Π nor
adjacent to Π. Similarly, for {n} we take the path {n}, {n− 1, n}, whereas for {n− 1} we take
the path {n− 1}, {n− 1, n}. This completes the proof of Item (1).

To show that Π is not Fδ-closed, we rely on Condition (2) of Theorem 3.2. Note that
∆(∅,Π) = 1, and hence ∅ /∈ Π ∪ Fδ(Π). We will show that for every z ∈ Fδ(Π) it holds
that ∆(z, ∅) ≥ δ. Assume towards a contradiction that there exists z ∈ Fδ(Π) such that
∆(z, ∅) ≤ δ − 1, which implies that |z| ≤ δ − 1.

• If |z| ≤ δ − 2, then we can remove all elements from z, and add the element 1, to obtain
{1} ∈ Π. Therefore ∆(z,Π) ≤ ∆(z, {1}) ≤ |z|+ 1 ≤ δ − 1, which contradicts z ∈ Fδ(Π).

• If |z| = δ−1 ≥ 3, since
⋃
p∈Π p = [n]\{n, n−1}, it follows that z intersects the set

⋃
p∈Π p.

Thus, for some p ∈ Π, it holds that z ∩ p 6= ∅, and since Π only contains singletons, it
follows that z ∩ p = p. By removing the δ − 2 elements that are not in z ∩ p from z, we
obtain p ∈ Π, meaning that ∆(z,Π) ≤ ∆(z, p) ≤ δ − 2, which contradicts z ∈ Fδ(Π).

Having shown that Π is not Fδ-closed, the proposition follows.
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4.1.2 Strongly Fδ-closed sets

In Corollary 4.2 we showed the following necessary condition for a set to be Fδ-closed: If a set
Π is Fδ-closed, then for every x /∈ Π ∪ Fδ(Π), there exists a path from Π to x that does not
intersect Fδ(Π) (nor any of its neighbors), and a path from x to Fδ(Π) that does not intersect
Π (nor any of its neighbors). While each of these two paths is actually a shortest path, their
combination is not necessarily a shortest path from Π to Fδ(Π). In this section, we prove that
if every x /∈ Π ∪ Fδ(Π) lies on a shortest path from Π to Fδ(Π), then Π is Fδ-closed. We also
show that this su�cient condition is, unfortunately, not a necessary one.

We start by presenting several equivalent formulations for the latter condition, which we
call being strongly Fδ-closed.

De�nition 4.4 (De�nition 1.4, restated). For a graphical Ω and δ > 0, a set Π ⊆ Ω is strongly

Fδ-closed if every x /∈ Π ∪ Fδ(Π) lies on a shortest path (i.e., a path of length δ) from Π to
Fδ(Π).

Proposition 4.5 (strongly Fδ-closed, equivalent formulation). For a graphical Ω and δ > 0, a
set Π ⊆ Ω is strongly Fδ-closed if and only if for every x /∈ Π ∪ Fδ(Π) there exists z ∈ Fδ(Π)
such that ∆(x, z) = δ −∆(x,Π).6

Proof. We �rst show that De�nition 4.4 implies the condition in Proposition 4.5. Assume that
every x /∈ Π ∪ Fδ(Π) lies on a path of length δ from Π to Fδ(Π). Let x /∈ Π ∪ Fδ(Π). If
∆(x,Fδ(Π)) > δ −∆(x,Π), then any path from Π to Fδ(Π) that passes through x is of length
at least ∆(Π, x) + ∆(x,Fδ(Π)) > δ, which contradicts the hypothesis. Also, if ∆(x,Fδ(Π)) <
δ − ∆(x,Π), then there exists a path from Π to Fδ(Π) of length ∆(Π, x) + ∆(x,Fδ(Π)) < δ,
which is a contradiction. Hence ∆(x,Fδ(Π)) = δ − ∆(x,Π), which implies that there exists
z ∈ Fδ(Π) such that ∆(x, z) = δ −∆(x,Π).

For the other direction, assume that for every x /∈ Π ∪ Fδ(Π) there exists z ∈ Fδ(Π) such
that ∆(x, z) = δ − ∆(x,Π). Let x /∈ Π ∪ Fδ(Π), and let z ∈ Fδ(Π) be the vertex that exists
by the hypothesis. Now, let p ∈ Π such that ∆(p, x) = ∆(Π, x). Then, a shortest path from p
to x, combined with a shortest path from x to z, yields a path of length ∆(p, x) + ∆(x, z) = δ
between Π and Fδ(Π) that passes through x.

Proposition 4.6 (strongly Fδ-closed, equivalent formulation). For a graphical Ω and δ > 0, a
set Π ⊆ Ω is strongly Fδ-closed if and only if for every x /∈ Π ∪ Fδ(Π) there exists a neighbor
x′ of x such that ∆(x′,Π) = ∆(x,Π) + 1.

Proof. Assume that for every x /∈ Π∪Fδ(Π) there exists a neighbor x′ of x such that ∆(x′,Π) =
∆(x,Π) + 1. We show that for every x /∈ Π∪Fδ(Π) there exists z ∈ Fδ(Π) such that ∆(x, z) =
δ −∆(x,Π), and rely on Proposition 4.5 to deduce that Π is strongly Fδ-closed.

Let x /∈ Π ∪ Fδ(Π) and denote x0 = x. By the hypothesis, there exists x1 such that
∆(Π, x1) = ∆(Π, x0) + 1. If ∆(x1,Π) = δ we are done, since this implies that ∆(x,Π) =

6This condition can be generalized to non-graphical metric spaces. However, in general metric spaces, the
easier-to-evaluate condition in Proposition 4.6 would not be applicable. We thus do not de�ne the generalization
in the current paper.
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δ − 1 and hence ∆(x, x1) = 1 = δ − ∆(x,Π). Otherwise, note that x1 /∈ Π ∪ Fδ(Π), since
∆(x1,Π) > ∆(x0,Π) > 0, and hence we can apply the hypothesis again to obtain a neighbor
x2 of x1 such that ∆(x2,Π) = ∆(x1,Π) + 1. This way we repeatedly apply this step such
that for the ith application it holds that ∆(xi,Π) = ∆(x,Π) + i and ∆(xi, x) = i. As long as
i < δ−∆(x,Π) we can continue applying the step, since ∆(xi,Π) = ∆(x,Π) + i < δ, and hence
xi /∈ Π∪Fδ(Π), and so we rely on the hypothesis to obtain xi+1. When i = δ−∆(x,Π) we get
that ∆(xδ−∆(x,Π),Π) = δ and ∆(xδ−∆(x,Π), x) = δ −∆(x,Π), which is what we wanted.

For the other direction, assume that Π is strongly Fδ-closed. Then, by Proposition 4.5, for
every x /∈ Π ∪ Fδ(Π) there exists z ∈ Fδ(Π) such that x = x0, x1, ..., xδ−∆(Π,x) = z is a path
of length δ −∆(x,Π) between x and z. Hence it must be that ∆(x1,Π) > ∆(x,Π), otherwise
there exists a path between z and Π of length at most

∆(z, x1) + ∆(x1,Π) = δ −∆(Π, x)− 1 + ∆(x1,Π) ≤ δ − 1

which contradicts z ∈ Fδ(Π). Therefore, since ∆(x1,Π) > ∆(x,Π) and ∆(x1,Π) ≤ ∆(x,Π)+1,
it follows that ∆(x1,Π) = ∆(x,Π) + 1.

Recall that Condition (2) of Theorem 3.2 asserts that Π is Fδ-closed if and only if for every
x /∈ Π ∪ Fδ(Π) there exists z ∈ Fδ(Π) such that ∆(x, z) < δ. Comparing this condition to
Proposition 4.5, it follows that if a set is strongly Fδ-closed then it is Fδ-closed. However, the
condition in Proposition 4.6 seems more convenient to evaluate in some cases: When one seeks
to prove that a set is strongly Fδ-closed, and given a vertex x /∈ Π ∪ Fδ(Π), one does not need
to reason about Fδ(Π), but only to �nd a neighbor of x that is farther away from Π than x.
Demonstrations for this technique appear in the proofs of Propositions 4.15, 4.17, 4.19, 5.10,
and C.2.

While being strongly Fδ-closed is a su�cient condition for a set to be Fδ-closed, it is not
a necessary condition. To see this, consider the graph depicted in Figure 4, with δ = 3. Let
Π = {p}, and note that Fδ({p}) = {z}, and Fδ(Fδ({p})) = Fδ({z}) = {p}. Hence {p} is
Fδ-closed. However, the vertex b does not lie on a shortest path between {p} and {z}, and thus
{p} is not strongly Fδ-closed.

p v1 v2 z

b
Π = {p}

F3(Π) = {z}

Figure 4: The singleton {p} is F3-closed but not strongly F3-closed.

The following proposition substantiates that even in the special case where the graph is the
Boolean hypercube, being strongly Fδ-closed is not a necessary condition for being Fδ-closed.

Proposition 4.7 (Proposition 1.5, restated). For n ≥ 9 and 4 ≤ δ ≤ n
2 such that δ− 1 divides

n, there exist sets in the Boolean hypercube that are Fδ-closed but are not strongly Fδ-closed.
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Proof. Similar to the proof of Proposition 4.3, in the current proof it will be convenient to
identify every vertex v ∈ {0, 1}n with the corresponding subset of [n] that v indicates (i.e.,
the set {i : vi = 1}). Also recall that for x, y ∈ {0, 1}n we denote by sd(x, y) the symmetric
di�erence between x and y, and that ∆(x, y) = |sd(x, y)|.

Let n ∈ N and δ be as in the hypothesis. The set Π is an equipartition of [n] to n/(δ − 1)
sets, each of cardinality δ − 1; speci�cally,

Π = {{1, ..., δ − 1}, {δ, ..., 2 · δ − 2}, ..., {n− δ + 2, ..., n}} .

We will �rst show that Π is not strongly Fδ-closed, and then show that Π is Fδ-closed.

Claim 4.7.1. Π is not strongly Fδ-closed.

Proof. Note that ∆(∅,Π) = δ−1 ∈ (0, δ), hence ∅ /∈ Π∪Fδ(Π). Relying on Proposition 4.6, we
show that ∅ has no neighbor that is farther from Π than ∅ itself. Note that the neighbors of ∅
are singletons. Since

⋃
p∈Π p = [n], for every singleton x′ there exists p ∈ Π such that p∩x′ 6= ∅,

which implies that ∆(x′,Π) ≤ ∆(x′, p) ≤ δ − 2. It follows that ∆(x′,Π) < ∆(∅,Π). Thus, Π is
not strongly Fδ-closed. �

To prove that Π is Fδ-closed we will need the following two facts:

Fact 4.7.2 (all sets of size at least 2 · δ − 1 are in Fδ(Π)). There exists z ⊆ [n] satisfying
|z| ≥ 2 · δ − 1. For any such z it holds that z ∈ Fδ(Π).

Proof. Since 2 · δ − 1 ≤ n there exist sets of cardinality 2 · δ − 1. Every such set z satis�es
z ∈ Fδ(Π), since Π ⊆ {v : |v| = δ − 1}, and since we need to remove at least δ elements from z
to obtain a set of cardinality δ − 1. �

Fact 4.7.3 (there exist sets of size 3 that are in Fδ(Π)). There exists z ⊆ [n] such that |z| = 3
and for every p ∈ Π it holds that |z ∩ p| ≤ 1. For any such z it holds z ∈ Fδ(Π).

Proof. To see that z as in the statement exists, note that n
δ−1 > 2, and hence there exist at

least three distinct subsets in Π. A suitable z is comprised of three elements, each from one of
those three distinct subsets in Π. For such a set z it holds that

|sd(z, p)| = |(z ∪ p) \ (z ∩ p)|
= |z|+ |p| − 2 · |z ∩ p|
≥ 3 + (δ − 1)− 2 · 1
= δ

and thus ∆(z,Π) ≥ δ. �

It is thus left to show that Π is Fδ-closed. To do this we rely on Condition (2) from
Theorem 3.2: For x /∈ Π∪Fδ(Π) we show that there exists z ∈ Fδ(Π) such that ∆(x, z) ≤ δ−1.

Let x /∈ Π ∪ Fδ(Π). First, relying on Fact 4.7.2 and on the hypothesis that x /∈ Fδ(Π),
it follows that |x| < 2 · δ − 1. Now, if |x| ∈ [δ, 2 · δ − 1), then we can add (2 · δ − 1) − |x|
elements from [n] \ x to x, thereby obtaining a subset z of cardinality |z| = 2 · δ − 1 satisfying
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∆(x, z) = (2 · δ− 1)− |x| ≤ δ− 1. Relying on Fact 4.7.2, again, it holds that z ∈ Fδ(Π). Hence
the condition holds.

We are left with the case of |x| ≤ δ− 1. In this case we show that it is possible to modify x
to a subset as in Fact 4.7.3 (i.e., a subset z such that |z| = 3 and |z ∩ p| ≤ 1 for every p ∈ Π),
by at most δ − 1 actions of adding elements to x or removing elements from it. Since such z is
in Fδ(Π), once we show this it will follow that there exists z ∈ Fδ(Π) such that ∆(x, z) ≤ δ−1.

Recall that for x /∈ Π ∪ Fδ(Π) such that |x| ≤ δ − 1, we wish to present a set z such that
∆(x, z) ≤ δ − 1, and |z| = 3, and for every p ∈ Π it holds that |z ∩ p| ≤ 1. Also recall that, as
mentioned in the proof of Fact 4.7.3, since n

δ−1 > 2, there exist at least three distinct subsets
in Π. We proceed by a case analysis:

• If x = ∅, then we can reach a suitable z with three actions (which is less than δ ≥ 4) by
adding one element from each of three distinct subsets in Π.

• If x intersects with a single subset p ∈ Π, then it holds that |x| = |x∩p| ≤ δ−2, otherwise
x = p ∈ Π, contradicts x /∈ Π. Therefore we can remove |x|−1 ≤ δ−3 arbitrary elements
from x, and then add to x two elements from two distinct subsets p1, p2 6= p from Π,
thereby reaching a suitable z with at most δ − 1 actions.

• If x intersects with k ≥ 2 subsets of Π, denote these subsets by {p1, ..., pk}. We start by
removing all elements from x, except for a single element from p1 and a single element
from p2. Since |x| ≤ δ − 1 we performed at most δ − 3 actions so far. We now add to x
an element from a subset p3 ∈ Π such that p3 6= p1, p2, thereby reaching a suitable z with
at most δ − 2 actions.

4.1.3 Detour: Fδ-tight spaces

In Figure 4 and Proposition 4.7, we presented two graphs (and values of δ) for which being
strongly Fδ-closed is not a necessary condition for being Fδ-closed. However, there exist graphs
and values of δ > 0 for which this su�cient condition is also necessary. We call such spaces
Fδ-tight ; that is �

De�nition 4.8 (Fδ-tight spaces). For a graphical space Ω and δ > 0, we say that Ω is Fδ-tight
if every Fδ-closed set in Ω is also strongly Fδ-closed.

Thus, in Fδ-tight spaces, a set is Fδ-closed if and only if it is strongly Fδ-closed. In the
current section we present an initial exploration of this notion.

First, observe that every graph is F1-tight: This is true since every set in a graphical space
is strongly F1-closed (since for δ = 1, the condition in De�nition 4.4 holds vacuously). Thus, all
sets in graphical spaces are both F1-closed and strongly F1-closed. The following proposition
states that every graph is also F2-tight.

Proposition 4.9 (all graphs are F2-tight). Every graphical space is F2-tight.

Proof. Let Π ⊆ Ω be a set that is F2-closed. Relying on De�nition 4.4, we show that every
x /∈ Π ∪ F2(Π) lies on a 2-path from Π to F2(Π); that is, x has a neighbor in F2(Π). Since Π
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is F2-closed, by Proposition 4.1, every x /∈ Π ∪ F2(Π) lies on a path to F2(Π) such that every
vertex v subsequent to x in the path satis�es ∆(v,Π) ≥ 2. Thus, the vertex subsequent to x
on the path is a neighbor of x in F2(Π).

However, not all graphical spaces are F3-tight, as demonstrated by the example in Figure 4.
Nevertheless, the following proposition asserts that every graphical space is Fδ-tight for values
of δ that are larger than the diameter of the graph.

Proposition 4.10 (graphs with diameter d are Fδ-tight for every δ > d). Let Ω be a graphical
space with diameter d. Then, for every δ > d it holds that Ω is Fδ-tight.

Proof. Observe that for δ > d, any Π ⊆ Ω satis�es Fδ(Π) = ∅ and Fδ(Fδ(Π)) = Ω. Thus, the
only Fδ-closed set is Π = Ω, and this set is also strongly Fδ-closed.

Overall, we showed that every graph is F1-tight and F2-tight, but not necessarily F3-tight;
and that every graph is Fδ-tight for values of δ that are larger than the diameter of the graph.
A consequent question is therefore:

For which graphs G and values of δ ∈ [3,diam(G)] does it hold that G is Fδ-tight?

Indeed, this seems to be an interesting combinatorial question. We pose it as an open
question in Section 6, and as an initial step towards tackling it, we show several simple graph
families that are Fδ-tight for every δ > 0.

Proposition 4.11 (graphs that are Fδ-tight for every δ > 0). The following graphs are Fδ-
tight, for every δ > 0:

1. A complete graph on n ≥ 2 vertices.

2. A path on n ≥ 2 vertices.

3. A cycle on n ≥ 2 vertices.

4. A 2× n grid (i.e., a grid with two rows and n columns), for any n ≥ 2.

The proof of Proposition 4.11 appears in Appendix C. Following Item (3), a natural question
is whether the n× n grid is also Fδ-tight for every δ > 0.

4.1.4 The values of δ for which a set is Fδ-closed

For a �xed set Π ⊆ Ω, what are the values of δ for which Π is strongly Fδ-closed, or just Fδ-
closed? The following proposition shows that for any set Π in a graphical space with bounded
diameter, the values of δ for which Π is Fδ-closed constitute a single bounded interval; ditto
for values of δ for which Π is strongly Fδ-closed.

Proposition 4.12 (Proposition 1.6, restated). For a graphical Ω with bounded diameter and a
non-trivial Π ⊆ Ω, there exist two integers δC(Π) and δSC(Π) such that δSC(Π) ≤ δC(Π) and for
every integer δ > 0 it holds that
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1. Π is Fδ-closed if and only if δ ∈ [1, δC(Π)].

2. Π is strongly Fδ-closed if and only if δ ∈ [1, δSC(Π)].

Proof. Let Π ⊆ Ω such that Π /∈ {∅,Ω}. The proposition will essentially follow from the
following claim:

Claim 4.12.1. For δ > 1, if Π is Fδ-closed (resp., strongly Fδ-closed), then Π is Fδ−1-closed
(resp., strongly Fδ−1-closed).

Proof. We �rst prove the statement regarding Fδ-closed sets, and then prove the statement
regarding strongly Fδ-closed sets in a similar way.

Assuming that Π is Fδ-closed, we rely on Condition (2) from Theorem 3.2, and show that for
every x /∈ Π∪Fδ−1(Π) there exists z ∈ Fδ−1(Π) such that ∆(x, z) ≤ δ− 2. If Ω = Π∪Fδ−1(Π)
then the claim vacuously holds. Otherwise, let x /∈ Π ∪ Fδ−1(Π). Since Fδ(Π) ⊆ Fδ−1(Π) it
follows that x /∈ Π∪Fδ(Π). Since Π is Fδ-closed, and relying on Condition (2) of Theorem 3.2
again, there exists z′ ∈ Fδ(Π) such that ∆(x, z′) ≤ δ − 1. Let x = x0, x1, ..., xk−1, xk = z′

be a path of length k ≤ δ − 1 from x to z′. Since z′ ∈ Fδ(Π) it follows that ∆(xk−1,Π) ≥
δ − 1, otherwise ∆(z′,Π) ≤ ∆(z′, xk−1) + ∆(xk−1,Π) ≤ δ − 1. Thus, xk−1 ∈ Fδ−1(Π) and
∆(x, xk−1) ≤ k − 1 ≤ δ − 2.

To prove the statement regarding strongly Fδ-closed sets, we rely on Proposition 4.5. As-
suming that Π is strongly Fδ-closed, for x /∈ Π ∪ Fδ−1(Π) we show z ∈ Fδ−1(Π) such that
∆(x, z) = (δ − 1) −∆(x,Π). Similar to the previous proof, it holds that x /∈ Π ∪ Fδ(Π), and
by Proposition 4.5 there exists a path x = x0, x1, ...xk−1, xk = z′ such that z′ ∈ Fδ(Π) and
k = δ −∆(x,Π). Since z′ ∈ Fδ(Π) it follows that ∆(xk−1,Π) ≥ δ − 1. Thus, xk−1 ∈ Fδ−1(Π)
and ∆(x, xk−1) = (δ − 1)−∆(x,Π). �

It follows that the integer values of δ for which a non-trivial set Π is Fδ-closed (resp., strongly
Fδ-closed) constitute a continuous interval. To see that the interval for which Π is Fδ-closed
is upper-bounded, note that for any δ larger than the diameter of Ω, which is upper-bounded
according to the hypothesis, it holds that Fδ(Π) = ∅, and thus Fδ(Fδ(Π)) = Ω 6= Π and Π is
not Fδ-closed. Moreover, since for any δ > 0, if Π is strongly Fδ-closed then Π is Fδ-closed,
we get that the interval for which Π is strongly Fδ-closed is also upper-bounded, and that
δSC(Π) ≤ δC(Π). To see that both intervals are lower bounded by 1, note that every set is
strongly F1-closed, since the condition in De�nition 4.4 holds vacuously.

The following proposition shows that a statement analogous to Item (1) in Proposition 4.12
does not hold in general metric spaces.

Proposition 4.13 (a statement analogous to Proposition 4.12 does not hold in general metric
spaces). There exists a non-graphical metric space Ω and a set Π ⊆ Ω such that the values of δ
for which Π is Fδ-closed in Ω do not lie in a single interval.

Proof. Let Ω = {0, 1, 3} with the standard metric of R, and let Π be the singleton {0}. Then:

• For δ = 1 it holds that F1({0}) = {1, 3} and F1(F1({0})) = {0}, and thus {0} is Fδ-closed.
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• For δ = 2 it holds that F2({0}) = {3} and F2(F2({0})) = {0, 1}, and thus {0} is not
F2-closed.

• For δ = 3 it holds that F3({0}) = {3} and F3(F3({0})) = {0}, and thus {0} is F3-closed.

The counter-example in the proof of Proposition 4.13 is indeed quite arti�cial. Note that the
proof of Proposition 4.13 demonstrates that, for a �xed Π ⊆ Ω, the operator Π 7→ Fδ(Fδ(Π))
is not necessarily monotone with respect to δ.

4.2 The Boolean hypercube and list-decodable codes

In the current section we focus solely on the n-dimensional Boolean hypercube Ω = Hn, and
continue studying the question from Section 4.1.4: For every �xed set Π ⊆ Hn, we want to
�nd the values of δ for which Π is strongly Fδ-closed, or just Fδ-closed. In particular, for every
�xed Π ⊆ Hn, we will rely on coding-theoretic features of Π (i.e., view Π as an error-correcting
code), to obtain a lower bound for δSC(Π) and an upper bound for δC(Π). We will also show
that these bounds are, in general, far from being tight.

4.2.1 Motivation: Two simple observations

We state two simple observations that motivate the use of the coding-theoretic features of a
set Π to bound δSC(Π) and δC(Π) . By standard coding theory terminology, the covering radius

of a set Π is the minimum δ > 0 such that every x ∈ Hn satis�es ∆(x,Π) ≤ δ. The �rst
observation is that for any non-trivial set Π and δ larger than the covering radius of Π, it holds
that Fδ(Π) = ∅, which implies that Π is not Fδ-closed. Therefore, δC(Π) is upper-bounded by
the covering radius of Π.

Observation 4.14 (δC(Π) is upper-bounded by the covering radius of Π). For any non-trivial
Π ⊆ Hn, let δ

CR(Π) be the covering radius of Π; that is, the minimal δ ≥ 0 such that every
x ∈ Hn satis�es ∆(x,Π) ≤ δ. Then, δC(Π) < δCR(Π).

Another standard term from coding theory is the unique decoding distance of a set Π, that
is d = 1

2 ·minx 6=y∈Π{∆(x, y)}. Then, the second simple observation is the following:

Proposition 4.15 (δSC(Π) is lower-bounded by the unique decoding distance of Π). For any
non-trivial Π ⊆ Hn such that |Π| ≥ 2, let d = 1

2 · minx 6=y∈Π{∆(x, y)} be the unique decoding

distance of Π. Then, δSC(Π) ≥ d.

Proof. We prove that Π is strongly Fd-closed, relying on Proposition 4.6: For every x /∈ Π ∪
Fd(Π), we show a neighbor x′ of x such that ∆(x′,Π) = ∆(x,Π) + 1. Let x /∈ Π ∪ Fd(Π), and
note that it is in the (d− 1)-neighborhood of exactly one p ∈ Π. By �ipping a bit i ∈ [n] such
that xi = pi, we obtain a neighbor x′ of x such that either x′ ∈ Fd(Π) (and ∆(x,Π) = d− 1),
or x′ is still in the (d− 1)-neighborhood of p, in which case ∆(x′,Π) = ∆(x′, p) = ∆(x, p) + 1.
Either way, x′ is farther from Π compared to x.
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4.2.2 List-decodable codes

In this section we show a lower bound on δSC(Π) that is potentially larger than the one shown
in Proposition 4.15. Loosely speaking, it is intuitive to expect that if the set Π is very sparse in
a neighborhood of x, then we can �nd a neighbor x′ of x that is farther from Π. Accordingly,
we expect that if Π is sparse in every neighborhood of Ω, then it will be strongly Fδ-closed.
Such �locally sparse� sets are known in coding theory as list-decodable codes.7

De�nition 4.16 (list-decodable codes). For a non-empty Π ⊆ Hn and δ, L ∈ N, we say that Π
is (δ, L)-list-decodable if for every x ∈ Hn it holds that |Π ∩ B[x, δ]| ≤ L, where B[x, δ] is the
closed Hamming ball of radius δ around x. The number δ is referred to as the decoding radius,
whereas L is referred to as the list size.

We now show that for any set Π and δ > 0, if Π is
(
δ, nδ − 1

)
-list-decodable, then it is

strongly Fδ-closed. It follows that the maximal δ > 0 such that Π is (δ, nδ − 1)-list-decodable
lower bounds δSC(Π).

Proposition 4.17 (Proposition 1.7, extended). For any non-empty Π ⊆ Hn, let δ
LD(Π) be the

maximal δ ∈ [n] such that Π is
(
δ, nδ − 1

)
-list-decodable. If no such δ ∈ [n] exists, let δLD(Π) = 0.

Then, δSC(Π) ≥ δLD(Π).

Two preliminary comments are in order. First, note that if the unique decoding distance of
Π is d ≤ n

2 , then Π is (d, nd − 1)-list-decodable. In this case, δLD(Π) is a potentially larger lower
bound on δSC(Π) than d. Second, note that δLD is not a standard quantity: In a typical setting,
one usually �xes a target list size, and is interested in the maximal decoding radius, for that
list size.8 In contrast, in the de�nition of δLD(Π), the allowed list size decreases as the decoding
radius increases.

Proof of Proposition 4.17. For a set Π ⊆ Hn and δ > 0 such that Π is
(
δ, nδ − 1

)
-list-decodable,

we show that Π is strongly Fδ-closed. Relying on Proposition 4.6, for x /∈ Π ∪ Fδ(Π), we need
to show a neighbor x′ of x such that ∆(x′,Π) = ∆(x,Π) + 1.

High-level overview. We will prove that there exists a coordinate i ∈ [n] such that all
vertices p ∈ Π satisfying ∆(p, x) ≤ ∆(x,Π)+1 also satisfy pi = xi. Thus, by �ipping the ith bit
of x, we obtain a neighbor x′ of x such that for every p ∈ Π it holds that ∆(x′, p) ≥ ∆(x,Π)+1.
This is true since, if ∆(x, p) ≤ ∆(x,Π) + 1, then x′ is farther from p than x (because x′i 6= pi,
whereas xi = pi), and thus ∆(x′, p) ≥ ∆(x, p) + 1 ≥ ∆(x,Π) + 1. On the other hand, if
∆(x, p) ≥ ∆(x,Π) + 2, then, since x′ cannot be closer to p by more than one unit, compared to
x, we get that ∆(x′, p) ≥ ∆(x, p)− 1 ≥ ∆(x,Π) + 1.

7While many texts de�ne list-decodability using relative distance (see, e.g., [Vad12]), for coherency with the
rest of the current text we use the notion of absolute distance.

8A typical setting of parameters in the study of list-decodable codes (at least within the TCS community)
would allow for a list size of poly(n).
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The actual proof. Denote by Πx the set of vertices in Π whose distance from x is either
∆(x,Π) or ∆(x,Π) + 1; that is, Πx = {p ∈ Π : ∆(x, p) = ∆(x,Π) ∨∆(x, p) = ∆(x,Π) + 1}.
Similar to previous proofs, we identify every v ∈ {0, 1}n with the corresponding subset of [n]
(i.e., i ∈ [n] such that vi = 1). In addition, for any set S ⊆ Hn, let sd(x, S) =

⋃
s∈S sd(x, s).

We �rst prove that |sd(x,Πx)| ≤ n− 1, which implies that there exists i ∈ [n] such that for
every p ∈ Πx it holds that pi = xi. Since the distance of any p ∈ Π from x is at least ∆(x,Π),
it holds that Πx = B[x,∆(x,Π) + 1] ∩Π. Since ∆(x,Π) ≤ δ − 1 (because x /∈ Fδ(Π)), it holds
that B[x,∆(x,Π) + 1] ⊆ B[x, δ], and thus

Πx ⊆ B[x, δ] ∩Π . (4.1)

By our hypothesis, it holds that |B[x, δ]∩Π| ≤
(
n
δ − 1

)
. Also, for every z ∈ B[x, δ] it holds

that |sd(x, z)| = ∆(x, z) ≤ δ. Combining these facts, and relying on Eq. (4.1), we get that

|sd(x,Πx)| ≤ |sd(x,B[x, δ] ∩Π)|

≤
(n
δ
− 1
)
· max
z∈B[x,δ]∩Π

{|sd(z, x)|}

≤
(n
δ
− 1
)
· δ

≤ n− 1 .

Thus, there exists i ∈ [n] such that for every p ∈ Πx it holds that xi = pi. By �ipping this
coordinate in x we obtain x′ such that the following hold:

• For every p ∈ Πx it holds that xi = pi, whereas x
′
i 6= pi. Therefore, ∆(x′, p) = ∆(x, p)+1.

Since ∆(x,Π) ≤ ∆(x, p), we get that ∆(x′, p) ≥ ∆(x,Π) + 1.

• For every p ∈ Π\Πx it holds that ∆(x, p) ≥ ∆(x,Π)+2. Relying on the triangle inequality,
we get that ∆(x, p) ≤ ∆(x′, p)+1, which implies that ∆(x′, p) ≥ ∆(x, p)−1 ≥ ∆(x,Π)+1.

Therefore, the distance of x′ from every p ∈ Π is at least ∆(x,Π) + 1.

It is natural to ask whether the requirement on the list size (of nδ −1) in Proposition 4.17 can
be relaxed. The following proposition states that the list size condition is tight up to a constant
multiplicative factor with respect to the conclusion that the set is strongly Fδ-closed, and tight
up to a linear additive term (in n) with respect to the conclusion that the set is Fδ-closed.
Actually, we show that there exist relatively small sets that are not strongly Fδ-closed (resp.,
Fδ-closed), while noting that every set of size k is (δ, k)-list-decodable for every δ > 0.

Proposition 4.18 (on the tightness of the list size in the condition of Proposition 4.17).

1. (tightness with respect to being strongly Fδ-closed). For every n ≥ 9 and 1 ≤ δ ≤ n/2 such
that δ − 1 divides n, there exists a set of cardinality n

δ−1 that is not strongly Fδ-closed.

2. (tightness with respect to being Fδ-closed). For every n ≥ 3 and 2 ≤ δ ≤ n, there exists a
set of cardinality n− δ + 2 that is not Fδ-closed.
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Proof. In this proof we again identify every v ∈ {0, 1}n with the corresponding subset of [n]
(i.e., i ∈ [n] such that vi = 1). For the �rst statement, we can use the construction from
the proof of Proposition 4.7. In particular, the set Π is a collection of n

δ−1 sets that form an
equipartition of [n]. In the proof of Proposition 4.7 we showed that such a set is not strongly
Fδ-closed.

For the second statement, we use a variation of the construction in the proof of Proposi-
tion 4.3. Let δ be as in the statement, and let

Π = {{1}, {2}, ..., {n− (δ − 2)}} .

To show that Π is not Fδ-closed, we rely on Condition (2) from Theorem 3.2: In particular,
since δ ≥ 2, it holds that ∅ /∈ Π∪Fδ(Π), and we show that there does not exist z ∈ Fδ(Π) such
that ∆(∅, z) ≤ δ − 1. Let z be such that ∆(z, ∅) ≤ δ − 1, implying that |z| ≤ δ − 1.

• If |z| ≤ δ − 2, then we can remove all its elements, and add the element 1, to obtain the
set {1} ∈ Π. Thus, ∆(z,Π) ≤ ∆(z, {1}) ≤ |z|+ 1 ≤ δ − 1, which implies that z /∈ Fδ(Π).

• If |z| = δ− 1, since |
⋃
p∈Π p| = n− δ+ 2 and z contains δ− 1 elements from [n], it follows

that z intersects the set
⋃
p∈Π p. Thus, z ∩ p = p for some p ∈ Π, implying that we can

remove all the other elements from z to obtain p ∈ Π. Therefore ∆(z,Π) ≤ ∆(x, p) ≤ δ−2,
which implies that z /∈ Fδ(Π).

4.2.3 The non-tightness of the bounds for δSC and δC

For any non-trivial Π ⊆ Hn, recall that Observation 4.14 implies that δC(Π) < δCR(Π), whereas
Proposition 4.17 implies that δSC(Π) ≥ δLD(Π). By combining these bounds with the fact that
δSC(Π) ≤ δC(Π), and with the fact that both δLD(Π) and δCR(Π) are values in the interval [0, n],
we get the following bounds on δSC and on δC:

0 ≤ δLD(Π) ≤ δSC(Π) ≤ δC(Π) < δCR(Π) ≤ n . (4.2)

In particular, Eq. (4.2) implies the non-obvious fact that δCR(Π) > δLD(Π).

The following proposition demonstrates that the bounds that δLD and δCR yield for δSC and
δC, respectively, are, in general, far from being tight. In particular, the proposition asserts the
existence of two sets, Π and Π′, such that δLD(Π) = δLD(Π′) = 0 (i.e., δLD is the lowest possible
bound for both sets) and δCR(Π) = δCR(Π′) = n − 1 (i.e., δCR is almost the highest possible
bound for both sets), but Π and Π′ vastly di�er with respect to the values of δ > 0 for which
they are Fδ-closed.

Proposition 4.19 (non-tightness of the bounds that δLD and of δCR yield for δSC and δC, respec-
tively). For every n ≥ 2, there exist two sets Π,Π′ ⊆ Hn, such that δLD(Π) = δLD(Π′) = 0 (i.e.,
both are not (1, n− 1)-list-decodable), and δCR(Π) = δCR(Π′) = n− 1, but:

1. Π is strongly Fδ-closed for every δ ∈ [n− 1].

2. Π′ is not Fδ-closed for every δ ≥ 2.
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Proof. Recall that for x ∈ Hn, we denote by ‖x‖1 the Hamming weight of x. Let Π = {p :
‖p‖1 ≤ 1}; that is, Π is the set of strings with Hamming weight 0 or 1. For o = (0, ..., 0) (i.e.,
‖o‖1 = 0), let Π′ = Π \ {o}; that is, Π′ is the set of strings with Hamming weight 1.

To see that δLD(Π) = δLD(Π′) = 0, note that in both cases, the radius-1 ball around the origin
o contains at least n points from the set. Thus, both sets are not (1, n− 1)-list-decodable. To
see that δCR(Π) = δCR(Π′) = n − 1, note that every x such that ‖x‖1 ≥ 1 satis�es ∆(x,Π) =
∆(x,Π′) = ‖x‖1−1 ≤ n−1, whereas for z = (1, ..., 1) it holds that ∆(z,Π) = ∆(z,Π′) = n−1.

To prove Item (1), we rely on Proposition 4.6: For x /∈ Π∪Fδ(Π), we show a neighbor x′ of
x such that ∆(x′,Π) = ∆(x,Π) + 1. In particular, let x /∈ Π ∪ Fδ(Π), and note that any such
x satis�es ‖x‖1 ∈ [2, δ] ⊆ [2, n − 1]. Let i ∈ [n] such that xi = 0. By �ipping the ith bit in x,
we obtain x′ such that ∆(x′,Π) = ‖x′‖1 − 1 = ‖x‖1 = ∆(x,Π) + 1. To prove Item (2), note
that every path from o /∈ Π′ ∪ Fδ(Π′) to any other vertex, and in particular to Fδ(Π′), passes
through some p ∈ Π′. Relying on Proposition 4.1, it follows that Π′ is not Fδ-closed for any
δ ≥ 2.

5 Applications for dual problems in property testing

In this section we apply the techniques for identifying Fδ-closed sets to study dual problems in
property testing.

For a space Ω = Σn, and a set Π ⊆ Σn, and ε > 0, the standard property testing problem
is the one of ε-testing Π, and the corresponding dual problem is the one of ε-testing Fε·n(Π).
Recall that we are interested either in an upper bound on the asymptotic query complexity (as
a function of n) for every constant ε > 0, or in a lower bound for some constant ε > 0. Thus,
for a property Π = {Πn}n∈N, we usually refer to the dual problem of the problem of testing Π,
or in short to the dual problem of Π, without specifying a parameter ε > 0.

De�nition 5.1 (De�nition 1.8, restated). For a set Σ, let Π = {Πn}n∈N such that Πn ⊆ Σn.
If for every su�ciently small ε > 0 and su�ciently large n it holds that Πn is Fε·n-closed, then
the problem of testing Π is equivalent to its dual problem. Otherwise, the problem of testing Π
is di�erent from its dual problem.

In Section 5.1 we state and prove general results regarding the query complexity of dual
problems. In Sections 5.2 � 5.5 we study several classes of natural dual problems: We identify
dual problems that are equivalent to the original problems as well as dual problems that are
di�erent from their original problems, and prove bounds on their query complexity.

5.1 General results regarding the query complexity of dual problems

The following proposition holds for any dual problem, regardless of whether it is equivalent to
its original problem or not. Towards its statement we extend De�nition 2.1, by de�ning two
special types of testers:

De�nition 5.2 (extending De�nition 2.1 for testers with one-sided error and for testers with
perfect soundness). For any ε-tester T as in De�nition 2.1,
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1. If the probability in Condition (1) of De�nition 2.1 (i.e., the probability that inputs in Π
are accepted) is 1, then we say that T has one-sided error.

2. If the probability in Condition (2) of De�nition 2.1 (i.e., the probability that inputs in
Fε·n(Π) are rejected) is 1, then we say that T has perfect soundness.

While the �rst notion (i.e., one-sided error) is a standard notion in property testing, the
second notion (i.e., perfect soundness) is not standard, and we introduce it mainly as an auxiliary
notion. The query complexity of ε-testing Π with one-sided error (or with perfect soundness) is
de�ned in the straightforward way.

Proposition 5.3 (Observation 1.9, extended). The query complexity of a dual problem is
lower bounded by the query complexity of its original problem. Moreover, the query complexity
of testing a dual problem with one-sided error (resp., with perfect soundness) is lower bounded by
the query complexity of testing the original problem with perfect soundness (resp., with one-sided
error).

Proof. For Π ⊆ Σn and ε > 0, let T be an ε-tester for Fε·n(Π). Then, T accepts every
x ∈ Fε·n(Π), with high probability, and rejects every x ∈ Fε·n(Fε·n(Π)), with high probability.
By Fact 3.1, it holds that Π ⊆ Fε·n(Fε·n(Π)). Hence, the tester T ′, obtained by complementing
the output of T , accepts every x ∈ Fε·n(Fε·n(Π)) ⊇ Π, with high probability, and rejects every
x ∈ Fε·n(Π), with high probability. Thus, T ′ is an ε-tester for Π. It follows that for every Π
and ε > 0, the query complexity of ε-testing Π is upper-bounded by the query complexity of
ε-testing Fε·n(Π).

For the �moreover� statement, note that for every x ∈ Σn, the probability that T accepts
(resp., rejects) x equals the probability that T ′ rejects (resp., accepts) x. Therefore a tester T
with one-sided error (resp., with perfect soundness) yields a tester T ′ with perfect soundness
(resp., with one-sided error).

The proof of Proposition 5.3 relied on the fact that an ε-tester for Fε·n(Π) always yields an
ε-tester for Π. The converse statement, however, is not true.

Observation 5.4 (ε-testers for Π do not necessarily yield testers for Fε·n(Π)). Let Σ be a set
and ε > 0. Then, for every Π ⊆ Σn that is not Fε·n-closed, there exists an ε-tester T for Π such
that complementing the output of T does not yield an ε-tester for Fε·n(Π).

Proof. Let T be a trivial tester that on input x ∈ Σn makes all possible n queries and accepts if
and only if x ∈ Π, and let T ′ be the tester that is obtained by complementing the output of T .
Since Π is not Fε·n-closed, there exists y ∈ Fε·n(Fε·n(Π)) \ Π, whereas T rejects y /∈ Π. Thus,
T ′ accepts y although y ∈ Fε·n(Fε·n(Π)), implying that T ′ is not an ε-tester for Fε·n(Π).

We stress that Observation 5.4 only says that an ε-tester for Fε·n(Π) is not necessarily
obtained by a speci�c modi�cation (complementation of the output) to an arbitrary ε-tester
for Π. In particular, Observation 5.4 does not imply anything about the query complexity of
ε-testing Fε·n(Π). However, if Π is Fε·n-closed, then the problem of ε-testing Π and the problem
of ε-testing Fε·n(Π) are essentially equivalent.
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Observation 5.5 (problems that are equivalent to their dual problems). If the problem of
testing a property is equivalent to its dual problem (according to De�nition 5.1), then their
query complexities are identical.

We now show a general lower bound on testing dual problems with one-sided error. First,
we need the following proposition from our prior work [Tel14, Apdx. A].9

Proposition 5.6 (testing standard problems with perfect soundness). For a set Σ, let Π =
{Πn}n∈N such that Πn ⊆ Σn. Suppose that for all su�ciently large n it holds that Πn 6= ∅ and
that there exist inputs that are Ω(n)-far from Πn. Then, the query complexity of testing Π with
perfect soundness is Ω(n).

Proof. The key observation is that if there exists an ε-tester with perfect soundness and query
complexity q for Π, then every string is q-close to some string that is accepted by the tester
with positive probability. Since the tester has perfect soundness, the latter string cannot be
(ε · n)-far from Π.

Claim 5.6.1. For Π as in the hypothesis and any ε > 0, if there exists an ε-tester for Π with
perfect soundness and query complexity q, then for a su�ciently large n and every z ∈ Σn it
holds that ∆(z,Πn) < q(n) + ε · n.

Proof. Let ε > 0, and assume that there exists an ε-tester T for Π with perfect soundness and
query complexity q. By the hypothesis, for a su�ciently large n it holds that Πn 6= ∅, and hence
there exists x ∈ Πn. Now, there exists a random string r such that the residual deterministic
tester T x(1n, r) accepts after making q(n) queries. Denote the coordinates of these q(n) queries
by (i1, i2, ..., iq(n)), where we assume for simplicity and without loss of generality that T always
makes exactly q queries.

Note that every z′ ∈ Σn such that (z′i1 , z
′
i2
, ..., z′iq(n)) = (xi1 , xi2 , ..., xiq(n)) is accepted by the

residual deterministic tester with random string r. Since T has perfect soundness, this implies
that every such z′ satis�es ∆(z′,Πn) < ε · n (since inputs that are (ε · n)-far must be rejected
with probability 1). Hence, for any z ∈ Σn, by changing the q(n) coordinates (zi1 , zi2 , ..., ziq(n))
to equal (xi1 , xi2 , ..., xiq(n)), we obtain a string z′ such that ∆(z′,Πn) < ε · n. This implies that
every z ∈ Σn satis�es ∆(z,Πn) ≤ ∆(z, z′) + ∆(z′,Πn) < q(n) + ε · n. �

Now, by the hypothesis, for some ε > 0 and any su�ciently large n there exists z ∈ Σn such
that ∆(z,Πn) ≥ ε ·n. For ε′ < ε, let T be an ε′-tester with perfect soundness for Π, and denote
its query complexity by q. Then, by Claim 5.6.1,

ε · n ≤ ∆(z,Πn) ≤ q(n) + ε′ · n

which implies that q(n) = Ω(n).

By combining Proposition 5.6 and Proposition 5.3 we get the following corollary.

9The said appendix is unrelated to the rest of [Tel14], and will be omitted from [Tel14] in future versions of
it.
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Corollary 5.7 (Theorem 1.10, restated). For a set Σ, let Π = {Πn}n∈N such that Πn ⊆ Σn.
Suppose that for all su�ciently large n it holds that Πn 6= ∅ and that there exist inputs that are
Ω(n)-far from Πn. Then, the query complexity of testing the dual problem of Π with one-sided
error is Ω(n).

It follows that dual problems can be tested with one-sided error and query complexity o(n)
only if the distance of every input from the property is o(n). However, in this case both the
original problem and its dual are trivial to begin with, since for any ε > 0 and su�ciently large
n it holds that Fε·n(Πn) = ∅, and thus the property can be tested without querying the input
at all.

5.2 Testing duals of error-correcting codes

In the n-dimensional Boolean hypercube, a code Π = {Πn}n∈N has constant relative distance

ζ > 0 if for every n ∈ N it holds that minx,y∈Πn{∆(x, y)} ≥ ζ · n. Proposition 4.15 implies

that for any code Π with constant relative distance ζ > 0, and any δ ≤ ζ
2 , it holds that Πn is

(strongly) Fδ-closed. Therefore:

Theorem 5.8 (Theorem 1.11, restated). For any error-correcting code with constant relative
distance, the problem of testing the code is equivalent to its dual problem.

Several fundamental problems in property testing involve testing such codes, and so The-
orem 5.8 is particularly appealing for the duals of these problems. For example, Theorem 5.8
implies that:

1. The problem of linearity testing [BLR90], which consists of testing the property of multi-
variate linear functions over a �nite �eld, is equivalent to its dual problem. In particular,
the BLR tester can be used to test whether a function is far from being linear with O(1)
queries (by complementing the tester's output). For results regarding its complexity, see,
e.g., [BLR90, BGLR93, BS94, BCH+96, KLX10].

2. The problem of low-degree testing [RS96], which consists of testing the property of low-
degree multivariate polynomials over a �nite �eld, is equivalent to its dual problem. For
results regarding its complexity, see, e.g., [AKK+03, KR06, JPRZ09, HSS13, GHS15].

Similarly, the problem of testing whether a Boolean function over {0, 1}` is far from being
an s-sparse low-degree polynomial is equivalent to its dual problem, and its query complexity is
between Ω(s) and O(poly(s)) queries (see, e.g., [DLM+07, BO10, Gol10b, DLM+11, BBM12,
BK12, Tel14]). For d ∈ N, the original problem consists of testing whether a function is a degree-
d polynomial with s non-zero coe�cients. Note that the property of degree-d polynomials with
s non-zero coe�cients generalizes the property of �k-linearity� (i.e., of linear functions with k
non-zero coe�cients).

However, according to Corollary 5.7, neither of the dual problems mentioned in this section
can be tested with one-sided error and o(2n) queries.
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5.3 Testing functions that are far from monotone

Let [n] be a partially ordered set, and let Σ be an ordered set. A function f : [n] → Σ is
monotone if for every x, y ∈ [n] such that x ≤ y, it holds that f(x) ≤ f(y). The problem of
testing monotone functions was introduced by Goldreich et al. [GGL+00], and various versions
of it have been studied over the years (see, e.g., [DGL+99, LR01, FLN+02, ACCL07, RRS+12,
BCGSM12, CS13a, CS13b, CS14, CST14, CDST15, KMS15]).

Throughout this section, we identify every function f : [n]→ Σ with a corresponding string
f ∈ Σn. Recall the following standard de�nitions from poset theory: An antichain in a poset
is a set of elements in the poset that are pairwise incomparable; and the width of a poset is
the size of a maximum antichain in it. The main result that we prove in this section is the
following:

Proposition 5.9 (the set of monotone functions is Fδ-closed). Let [n] be a partially ordered
set and Σ be a �nite ordered set such that the width of [n] is at most n

2·|Σ| . Then, for every

δ < n
4 , the set of monotone functions from [n] to Σ is Fδ-closed.

In the special case of functions over the domain of the Boolean hypercube {0, 1}`, where
2` = n, Proposition 5.9 applies when the range satis�es |Σ| ≤

√
`/2. This is the case since,

by Sperner's theorem, the width of the `-dimensional hypercube, which has the element-set
[n] = [2`], is

(
`
b`/2c

)
. Thus, if |Σ| ≤

√
`/2, we get that the width satis�es

(
`
b`/2c

)
< n√

`
≤ n

2·|Σ| .

Proof of Proposition 5.9. For a su�ciently large n ∈ N, denote the set of monotone functions
from [n] to Σ by Πn ⊆ Σn, and let δ < n

4 . To show that Πn is Fδ-closed, we rely on Condition (2)
of Theorem 3.2: For every f /∈ Πn ∪ Fδ(Πn), we show a function h ∈ Fδ(Πn) such that
∆(f, h) < δ.

High-level overview. First, we de�ne some terminology that we will need. For any f : [n]→
Σ, we call (x, y) ∈ [n] × [n] a violating pair for f if x < y and f(x) > f(y). Observe that f is
monotone if and only if there are no violating pairs for f . Also, we call (x, y) ∈ [n]× [n] a �at
pair for f if x < y and f(x) = f(y). A collection of disjoint violating pairs for f is a collection
V of violating pairs such that for every (x1, y1) 6= (x2, y2) ∈ V it holds that x1, x2, y1, y2 are
distinct. A collection of disjoint �at pairs is de�ned analogously.

The proof idea is as follows. Let f /∈ Πn ∪ Fδ(Πn). First, let us assume that there exists a
collection C of δ disjoint pairs in [n], such that one pair in C is violating for f , and the other
δ − 1 pairs are �at for f . Then, observe that for every �at pair in C, we can change the value
of f at one input in the pair, thereby turning it into a violating pair (i.e., for a pair (x, y), if
f(x) = f(y) = maxσ∈Σ{σ}, we can set f(y) to be any other σ ∈ Σ, and otherwise, we can set
f(x) = maxσ∈Σ{σ}). Thus, by changing the value of f on one input in each �at pair in C, we
obtain h ∈ Σn such that ∆(h, f) = |C|−1 = δ−1 and that C is a collection of disjoint violating
pairs for h of size δ. The proposition follows since a function h that has a collection of δ disjoint
violating pairs satis�es ∆(h,Πn) ≥ δ (see Claim 5.9.3).

To prove that the collection C (of δ − 1 �at pairs and one violating pair) exists, we use the
fact that the width of [n] is bounded. In particular, we show that there exists a collection T of
n
4 disjoint �at pairs for f (see Lemma 5.9.1). Since f /∈ Πn, there exists at least one violating
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pair (x, y) for f . This pair shares a common element with at most two pairs in T . Using the
fact that δ ≤ n

4 −1, it follows that there exists T ′ ⊆ T such that C = T ′∪{(x, y)} is a collection
of disjoint pairs, and |T ′| ≥ |T | − 2 = n

4 − 2 ≥ δ− 1. To conclude, note that the pair (x, y) ∈ C
is violating for f , and that all other pairs in C are �at.

The actual proof. Let f /∈ Πn ∪ Fδ(Πn). The following lemma is used as the main step
towards establishing (in Corollary 5.9.2) that there exists a collection C of δ disjoint pairs in [n]
such that one of these pairs is a violating pair for f , and the other δ − 1 pairs are �at pairs for
f .

Lemma 5.9.1. Let [n] be a poset and Σ be an ordered set such that the width of [n] is at most
n

2·|Σ| . Then, for every f : [n]→ Σ, there exists a collection of disjoint �at pairs for f of size at

least n
4 .

Proof. By Dilworth's theorem [Dil50], and since the width of [n] is at most n
2·|Σ| , there exists

a partition of [n] into at most n
2·|Σ| monotone chains; that is, there exists a collectionM such

that |M| ≤ n
2·|Σ| that satis�es the following two conditions:

1. Every c ∈ M is a sequence c = (x1, ..., xnc) ⊆ [n] such that for every i ∈ [nc − 1] it holds
that xi < xi+1.

2. M is a partition of [n], in the sense that every x ∈ [n] appears in exactly one monotone
chain c ∈M.

For a �xed function f , we construct a corresponding collection T of disjoint �at pairs for
f as follows. We go over the chains inM, in an arbitrary order, and collect disjoint �at pairs
for f , which we add to T , while processing each chain separately. For any �xed chain c ∈ M,
we partition c into |Σ| (non-consecutive) sub-chains such that f is constant on each sub-chain;
that is, the partition of c is the collection {cσ}σ∈Σ such that for every σ ∈ Σ it holds that
cσ = {x ∈ c : f(x) = σ}. Note that each of the sub-chains is a �monochromatic� chain, and
thus, every pair of elements in each sub-chain constitutes a �at pair. Accordingly, we now try
to partition every sub-chain into pairs of elements (failing to pair at most one element in each
sub-chain), and add these pairs to T .

Since we only insert �at pairs to T , and sinceM is a partition of the hypercube, the set T
is a collection of disjoint �at pairs. In addition, for every �xed chain c ∈ M, we fail to pair at
most |Σ| elements (i.e., at most one element per sub-chain). Therefore, for every chain c ∈M,
we collect at least 1

2 · (|c| − |Σ|) �at pairs for T . Overall, we get at least∑
c∈M

1

2
· (|c| − |Σ|) =

1

2
· (n− |Σ| · |M|) ≥ n

4

disjoint �at pairs for T . �

Corollary 5.9.2. Let [n], Σ and δ be as in Proposition 5.9. Then, for every f /∈ Πn, there
exists a collection C of δ disjoint pairs in [n] such that one pair in C is a violating pair for f ,
and the other δ − 1 pairs are �at pairs for f .
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Proof. Since f /∈ Πn, there exists a violating pair (x, y) for f . Relying on Lemma 5.9.1, there
exists a collection T of �at pairs for f such that |T | ≥ n

4 ≥ δ + 1. Since there are at most two
pairs in T that share a common element with (x, y), there exists a sub-collection T ′ ⊆ T such
that |T ′| = δ − 1 and C = T ′ ∪ {(x, y)} is a collection as required. �

Let C be a collection of disjoint pairs for f , as in Corollary 5.9.2. Observe that we can turn
every �at pair (x, y) ∈ C into a violating pair, by modifying the value of f at one input. By
doing so, we obtain a function h such that ∆(f, h) = |C| − 1 = δ − 1 and C is a collection of
disjoint violating pairs for h of size δ. The proposition will follow from the following claim.

Claim 5.9.3. For h : [n] → Σ, if there exists a collection C of disjoint violating pairs for h
having size ρ, then ∆(h,Πn) ≥ ρ.10

Proof. Let g ∈ Πn such that ∆(h, g) = ∆(h,Πn). If there exists a pair (x, y) ∈ C such that
h(x) = g(x) and h(y) = g(y), then (x, y) is a violating pair for g, which contradicts g ∈ Πn.
Hence, the symmetric di�erence between h and g includes at least one element from each pair
in C. Since the pairs in C are disjoint, we get that ∆(h,Πn) = ∆(h, g) ≥ |C|. �

Thus, it holds that h ∈ Fδ(Πn).

Detour: Boolean functions. We now show that in the case of |Σ| = 2 (i.e., for Boolean
functions over a poset [n]), the set of monotone functions is actually strongly Fδ-closed. Al-
though we are not aware of any implications of this fact with respect to property testing, we
�nd it interesting combinatorially: It asserts that any Boolean function that is not too far from
being monotone can be made farther from monotone by changing its value at a single input.

The proof idea is similar to the proof of Proposition 5.9, but we will use an additional
lemma, which is speci�c for Boolean functions, and was proved in [FLN+02].

Proposition 5.10 (the set of monotone Boolean functions is strongly Fδ-closed). Let [n] be a
partially ordered set of width at most n

4 . Then, for every δ < n
8 , the set of monotone Boolean

functions over [n] is strongly Fδ-closed.

Proof. For a su�ciently large n, let Πn be the set of monotone Boolean functions over [n], and
let δ < n

8 . We will prove that Πn is strongly Fδ-closed, by relying on Proposition 4.6: For
f /∈ Πn ∪ Fδ(Πn) we show a function f ′ such that ∆(f, f ′) = 1 and ∆(f ′,Πn) = ∆(f,Πn) + 1.
We will rely on the following lemma.

Lemma 5.10.1 (Lemma 4 in [FLN+02]). For f : [n] → {0, 1}, if ∆(f,Πn) ≥ ρ, then there
exists a collection of disjoint violating pairs for f having size ρ.

Combining Claim 5.9.3 and Lemma 5.10.1, we get the following corollary:

Corollary 5.10.2. For a Boolean function f : [n] → {0, 1}, it holds that ∆(f,Πn) ≥ ρ if and
only if there exists a collection of disjoint violating pairs for f having size ρ.

10A related claim was proved in [GGL+00, Prop 3]. However, they considered Boolean functions over the
hypercube, and de�ned violating pairs di�erently.
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Now, let f /∈ Πn ∪ Fδ(Πn). According to Corollary 5.10.2, there exists a collection V of
disjoint violating pairs for f , such that |V| = ∆(f,Πn) < δ. According to Lemma 5.9.1, there
exists a collection T of �at pairs for f such that |T | ≥ n

4 ≥ 2δ. The number of pairs in T
that share a common element with any pair in V is at most 2 · |V| < 2 · δ ≤ |T |. Hence, there
exists some pair (x, y) ∈ T such that V ∪ {(x, y)} is a collection of disjoint pairs. By modifying
the value of f on one input from (x, y), we can turn it into a violating pair. This way, we
obtain a function f ′ such that ∆(f, f ′) = 1, and there exists a collection of disjoint violating
pairs for f ′ of size |V| + 1 = ∆(f,Πn) + 1. Relying on Corollary 5.10.2 again, we get that
∆(f ′,Πn) = ∆(f,Πn) + 1.

Implications on testing. Proposition 5.9 implies the following:

Theorem 5.11 (Theorem 1.12, extended). Let {Pn}n∈N be a family of posets such that Pn =
([n],≤n) for every n ∈ N, and let {Σn}n∈N be a family of ordered sets. Assume that for all
su�ciently large n, the width of Pn is at most n

2·|Σn| . Then, the problem of testing monotone
functions from Pn to Σn is equivalent to its dual problem.

In addition, the proof of Proposition 5.9 shows that for a poset Pn and a range Σn as
in Theorem 5.11, there always exist functions that are Ω(n)-far from being monotone. Thus,
according to Corollary 5.7, testing the dual problem with one-sided error requires Ω(n) queries.
Note that in the case of functions over the Boolean hypercube {0, 1}`, where n = 2`, this lower
bound is Ω(2`).

We explicitly state lower- and upper-bounds on the query complexity of testing functions
that are far from monotone over the Boolean hypercube {0, 1}`, relying on known results re-
garding the standard problem. In this case, a recent upper bound of Õ(

√
`) was given by

by Khot, Minzer, and Safra [KMS15], and a lower bound of Ω(`1/2−o(1)) for non-adaptive
testers was proved by Chen et al. [CDST15]. For functions to a general range Σ, a lower
bound of Ω

(
min

{
|Σ|2, `

})
was proved by Blais, Brody, and Matulef [BBM12], and an up-

per bound of O(`/ε) was proved by Chakrabarty and Seshadhri [CS13b]. Results regarding
testing functions that are far from monotone over general posets can be derived relying on,
e.g., [DGL+99, FLN+02, CS13b, CS14].

5.4 Testing distributions that are far from a known distribution

An important sub-�eld of property testing is the one of testing properties of distributions,
initiated by Batu et al. [BFR+13] (for recent surveys, see [Rub12, Can15]). In this context, a
tester gets independent samples from an input distribution, and tries to determine whether the
distribution has some property or is far from having the property.

A basic problem in this �eld is the one of testing whether a distribution is identical to a
known distribution. In this problem, a distribution D over [n] is predetermined and explicitly
known, and an ε-tester gets independent samples from a distribution I over [n]. The goal of the
tester is to determine, using as few samples as possible, whether I = D or I is ε-far from D in
the `1 norm; that is, whether ‖I−D‖1 =

∑
i∈[n] |I(i)−D(i)| ≥ ε.
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Note that the metric space for this problem is the standard simplex in Rn with the `1 norm,
and that the distances satisfy δ ∈ [0, 2]. Accordingly, we slightly abuse De�nition 2.1 in this
section, by requiring that an ε-tester distinguish between Π and Fε(Π), and not between Π and
Fε·n(Π) (i.e., the proximity parameter for testing ε > 0 is the absolute distance between �yes�
instances and �no� instances, and not the relative distance between them).

We consider the dual problem, in which, for a �xed D, an ε-tester needs to distinguish
between the case I ∈ Fε({D}) and the case I ∈ Fε(Fε({D})). The main question in this section
is for which families of distributions {Dn}n∈N, where Dn is a distribution over [n], the problem
of testing the property {{Dn}}n∈N is equivalent to its dual problem. More explicitly, we ask
for which families of distributions does it hold that for every su�ciently small constant δ > 0
and every su�ciently large n, the singleton {Dn} is Fδ-closed (cf. De�nition 5.1).

While in Rn with the Euclidean metric, every singleton is Fδ-closed for every δ > 0, the
following proposition shows that the analogous fact is not true in the simplex with the `1 norm.

Proposition 5.12 (Proposition 1.14, extended). Let {Dn}n∈N be a distribution family such
that for every n ∈ N it holds that Dn(1) = 1 − 1

n and for any i ∈ [n] \ {1} it holds that
Dn(i) = 1

n·(n−1) . Then, for every δ > 0 and su�ciently large n, it holds that Π = {Dn} is not
Fδ-closed.

Proof. For δ > 0, let n ∈ N such that δ > 3
n . Relying on Condition (2) of Theorem 3.2, it su�ces

to show a distribution X /∈ {Dn} ∪ Fδ({Dn}) such that there does not exist Z ∈ Fδ({Dn})
satisfying ∆(X,Z) < δ.

Let X be the distribution over [n] such that X(1) = 1 (and for every i > 1 it holds that
X(i) = 0). Then 0 < ∆(X,Dn) = 2/n < δ, implying that X /∈ {Dn} ∪ Fδ({Dn}). Let Z be
any distribution over [n]. If Z(1) > 1− 1

n , then
∑n

i=2 Z(i) < 1
n , and hence

∆(Z,Dn) = Z(1)−D(1) +
n∑
i=2

|Z(i)−Dn(i)|

≤ 1

n
+

n∑
i=2

Z(i) +
n∑
i=2

Dn(i)

<
3

n

and thus ∆(Z,Dn) < δ, implying that Z /∈ Fδ({Dn}). This completes the proof in the case of
∆(Z,Dn) > 1− 1

n . Otherwise, Z(1) ≤ 1− 1
n . For this case we use the following fact:

Fact 5.12.1. For a, b ∈ R+ it holds that b− |b− a| ≥ −a.

Proof. Relying on the triangle inequality and on the fact that a, b ≥ 0, we get that

|b− a| ≤ |b|+ |a| = b+ a

and by rearranging we get that b− |b− a| ≥ −a. �
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Now, note that Z(1) ≤ Dn(1) < X(1), and therefore |Z(1) − X(1)| − |Z(1) − Dn(1)| =
X(1)−Dn(1) = 1

n . Hence, we get that

∆(Z,X)−∆(Z,Dn) =
n∑
i=1

(
|Z(i)−X(i)| − |Z(i)−Dn(i)|

)
=

1

n
+

n∑
i=2

(
Z(i)−

∣∣∣Z(i)− 1

n(n− 1)

∣∣∣)
≥ 1

n
− (n− 1) · 1

n(n− 1)
(by Fact 5.12.1)

= 0 .

It follows that Z ∈ Fδ({Dn}) cannot satisfy ∆(Z,X) < δ (since in such a case ∆(Z,X) −
∆(Z,Dn) < 0).

Nevertheless, the following two propositions show that for many natural distributions, the
singleton induced by the �xed distribution is Fδ-closed for every su�ciently small δ > 0. In
these cases, the dual testing problem is equivalent to the original one. The �rst proposition refers
to distributions that have unbounded min-entropy, whereas the second refers to distributions
in which each support element has probability that is bounded away from both 0 and 1. We
start by proving the latter proposition, since the proof is much simpler and both proofs rely on
similar ideas.

Proposition 5.13 (distributions with bounded probabilistic mass on elements in their support).
For ρ > 0, let {Dn}n∈N be a distribution family such that for every n ∈ N and i ∈ [n] it holds
that either ρ ≤ Dn(i) ≤ 1 − ρ or Dn(i) = 0. Then, for any δ ∈ (0, ρ) and every n ∈ N, the
property Π = {Dn} is Fδ-closed.

Proof. Let δ ∈ (0, ρ) and n ∈ N. We prove that Π = {Dn} is Fδ-closed, relying on Condition (2)
of Theorem 3.2: For X /∈ {Dn}∪Fδ({Dn}), we show that there exists Z ∈ Fδ({Dn}) such that
∆(X,Z) < δ.

Since X 6= Dn and since X and Dn are distributions, there exist i, j ∈ [n] such that
X(i) > Dn(i) and X(j) < Dn(j). Since X /∈ Fδ({Dn}) it holds that

X(i)−Dn(i) <
∆(X,Z)

2
< ρ/2

and thus X(i) < Dn(i) + ρ/2 ≤ 1− ρ/2. Similarly, X(j) > ρ/2.
Let ∆ = 1

2 · (δ − ∆(X,Dn)) and note that 0 < ∆ < ρ/2. We de�ne Z as follows: Z(i) =
X(i) + ∆ < 1, and Z(j) = X(j) −∆ > 0, and for every k /∈ {i, j} it holds that Z(k) = X(k).
Note that Z is a distribution, since the probabilistic mass of every i ∈ [n] is in [0, 1], and∑

i∈[n] Zi =
∑

i∈[n] Xi = 1. Furthermore, ∆(Z,X) = 2 ·∆ < δ, and

∆(Z,Dn) = ∆(X,Dn) + |Z(i)−Dn(i)|+ |Z(j)−Dn(j)|
= ∆(X,Dn) + 2 ·∆
= δ
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which implies that Z ∈ Fδ({Dn}), as needed.

The following proposition shows an arguably broader family of distributions that induced
Fδ-closed properties. Although the proof is technically more involved, the basic idea is similar
to the one in the proof of Proposition 5.13: For X /∈ {Dn} ∪Fδ({Dn}), we explicitly construct
Z ∈ Fδ({Dn}) such that ∆(X,Z) < δ, by modifying X on carefully chosen coordinates.

Proposition 5.14 (distribution with unbounded min-entropy induce Fδ-closed properties). Let
{Dn}n∈N be a family of distributions such that limn→∞min-entropy(Dn) = ∞. Then, for any
δ ∈ (0, 1

4) and a su�ciently large n ∈ N, the property Π = {Dn} is Fδ-closed.

Proof. Let δ ∈ (0, 1
4), and let n ∈ N be su�ciently large such that for every i ∈ [n] it holds that

Dn(i) ≤ δ
20 . We prove that Π = {Dn} is Fδ-closed, relying on Condition (2) of Theorem 3.2: For

every X /∈ {Dn} ∪ Fδ({Dn}), we show that there exists Z ∈ Fδ({Dn}) such that ∆(X,Z) < δ.
Throughout the proof we simplify the notation by denoting D = Dn. Also, for every

distribution X, we denote the probabilistic mass of i ∈ [n] under X by Xi
def
== X(i).

High-level overview. Let X /∈ {D} ∪ Fδ({D}), and denote ∆(X,D) = αδ, where α ∈
(0, 1). We will show an explicit construction of a distribution Z that satis�es the following two
requirements:

1. ∆(Z,X) < δ.

2. ∆(Z,D)−∆(X,D) ≥ (1− α) · δ.

Note that Requirement (2) is equivalent to the requirement that ∆(Z,D) ≥ δ (i.e., Z ∈
Fδ({Dn})). For the distribution Z that we construct, and every i ∈ [n], let

Change(i) = |Zi −Xi|
Farther(i) = |Zi −Di| − |Xi −Di|

In words, Change(i) is the magnitude of change made in the probabilistic mass of i ∈ [n],
and Farther(i) re�ects how farther Z is from D, compared to the distance of X from D, in
i ∈ [n]. Thus, Requirement (1) is equivalent to the requirement that

∑
i Change(i) < δ, and

Requirement (2) is equivalent to the requirement that
∑

i Farther(i) ≥ (1− α) · δ. Intuitively,
when constructing Z, for every i ∈ [n] we want that Farther(i) be as large as possible, compared
to Change(i).

For the construction itself we will rely on the following lemma, which we prove:

Lemma 5.14.1. There exists a set LIGHT ⊆ [n] such that:

1. For every distribution Z and j ∈ LIGHT, if Zj ≤ min{Xj ,
1
2 · Dj}, then

Farther(j) ≥ 1−α
1+α · Change(j).

2. The probabilistic mass of LIGHT under X is substantial; in particular,
Prj∼X [j ∈ LIGHT] > 1

2 .
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(The term LIGHT is used since the elements in this set will have upper bounded probabilistic
mass; see the exact de�nition in the actual proof below).

In high level, our construction of Z is as follows. We �rst initiate Z = X, and let ∆ < δ
2 be

a parameter, which will be determined later. Since Z = X 6= D, there exists iUP ∈ [n] such that
ZiUP > DiUP . We increase the probabilistic mass of ZiUP by ∆, and since after the modi�cation
it holds that ZiUP > XiUP > DiUP , we get that Farther(iUP) = Change(iUP). Now, according to
the aforementioned lemma, there exists a set S ⊆ LIGHT with overall probabilistic mass of more
than δ

2 > ∆. We thus decrease the overall probabilistic mass of Z in S by ∆, while ensuring
that for every j ∈ S it holds that Zj is su�ciently small, such that, according to the lemma,
after the decrease of mass it holds that Farther(j) ≥ 1−α

1+α · Change(j).
Since we changed an overall 2 · ∆ probabilistic mass of X to obtain Z, we get that∑
i∈[n] Change(i) = 2 ·∆ < δ. Also,∑

i∈[n]

Farther(i) = Farther(iUP) +
∑
j∈S

Farther(j)

≥ Change(iUP) +
1− α
1 + α

·

∑
j∈S

Change(j)


=

(
1 +

1− α
1 + α

)
·∆

and for ∆ ≥ 1
2(1− α)(1 + α) · δ, this expression is at least (1− α) · δ.

Actually, we show two di�erent constructions for Z, according to the distance of X from D.
These two di�erent constructions are both of the form depicted above, but they di�er in their
choice of ∆, and in the way they decrease the probabilistic mass in the set S. Note that our
analysis mandates that

1

2
(1− α)(1 + α) · δ ≤ ∆ <

δ

2
(5.1)

If α ≥ 2
3 (i.e., X is relatively far from D), then the interval for possible values of ∆ in

Eq. (5.1) is quite large. In this case we can set ∆ to be slightly larger than 1
2(1− α)(1 + α) · δ,

and the construction of Z will be relatively simple. However, if α < 2
3 , the interval for ∆ in

Eq. (5.1) might be arbitrarily small. Actually, in this case we set ∆ = 1
2(1− α)(1 + α) · δ, but

we need to be quite careful when decreasing mass from elements in S. Details follow.

The actual proof of Proposition 5.14. We start by proving the two items of Lemma 5.14.1
and another technical fact. Let

LIGHT
def
== {j ∈ [n] : Xj ≤ (1 + 2αδ) ·Dj}

Claim 5.14.2 (Item 1 in Lemma 5.14.1). For any distribution Z and j ∈ LIGHT, if Zj ≤
min{Xj ,

1
2 ·Dj}, then

Farther(j) ≥ 1− α
1 + α

· Change(j)
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Proof. Let Z and j ∈ LIGHT such that Zj ≤ min{Xj ,
1
2 ·Dj}. If Xj ≤ Dj , then

Farther(j) = |Zj −Dj | − |Xj −Dj | = Xj − Zj = Change(j)

and we are done.
Otherwise, it holds that Xj > Dj , and since j ∈ LIGHT, it follows that Dj < Xj ≤

(1 + 2αδ) ·Dj . In particular, in this case Dj 6= 0. Note that Xj −Dj ≤ 2αδ ·Dj , whereas since
Zj ≤ 1

2 ·Dj , it holds that Dj − Zj ≥ 1
2 ·Dj . Also recall that δ < 1

4 . Therefore,

Xj −Dj

Dj − Zj
≤ 2αδ ·Dj

Dj/2
= 4αδ < α . (5.2)

Now, relying on Eq. (5.2), we deduce that

Xj − Zj = (Xj −Dj) + (Dj − Zj) < (1 + α) · (Dj − Zj) (5.3)

and thus we get that

Farther(j) = (Dj − Zj)− (Xj −Dj) (since Xj > Dj > Zj)

> (1− α) · (Dj − Zj) (according to (5.2))

>
1− α
1 + α

· (Xj − Zj) (according to (5.3))

=
1− α
1 + α

· Change(j) . �

Claim 5.14.3 (Item 2 in Lemma 5.14.1). It holds that
∑

j∈LIGHTXj ≥ 1
2 .

Proof. Let HEAVY = [n] \ LIGHT, and note that it su�ces to prove that
∑

i∈HEAVYXi <
1
2 .

For every i ∈ HEAVY, it holds that Xi − Di > 2αδ · Di (i.e., Di <
Xi−Di

2αδ ). Let ∆+ def
==∑

i:Xi>Di
Xi −Di, and note that ∆+ = ∆(X,D)

2 = αδ
2 . Also note that HEAVY ⊆ {i : Xi > Di}.

It follows that ∑
i∈HEAVY

Xi =
∑

i∈HEAVY
(Xi −Di) +

∑
i∈HEAVY

Di

<

(
1 +

1

2αδ

)
·
∑

i∈HEAVY
(Xi −Di)

≤
(

1 +
1

2αδ

)
·∆+ .

Recall that α < 1 and δ < 1
4 , and thus

(
1 + 1

2αδ

)
·∆+ =

(
1
2 + 1

4αδ

)
· αδ < 1

2 . �

Fact 5.14.4. For every i ∈ [n], there exists a set S ⊆ LIGHT \ {i} such that 1
3 · δ ≤

∑
j∈S Xj <

1
2 · δ.
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Proof. According to Claim 5.14.3, and since every i ∈ [n] satis�es Di ≤ δ
20 , it follows that∑

j∈LIGHT\{i}Xj >
1
2 −

δ
20 >

δ
3 . Also, for every j ∈ LIGHT it holds that

Xj ≤ (1 + 2αδ) ·Dj (since j ∈ LIGHT)

≤ (1 + 2αδ) · δ
20

(since Dj ≤ δ
20)

<
1

6
· δ . (since δ < 1

4)

We construct S by initiating S = ∅, and adding elements from LIGHT \ {i} to S until∑
j∈S Xj ≥ 1

3 · δ. Since
∑

j∈LIGHT\{i}Xj >
δ
3 , there is su�cient probabilistic mass in LIGHT\{i}

to construct a set S with
∑

j∈S Xj ≥ 1
3 · δ. Also, since the mass of every element in LIGHT \ {i}

is at most 1
6 · δ, the construction yields a set S such that

∑
j∈S Xj <

1
3 · δ + 1

6 · δ = 1
2 · δ. �

We now split the rest of the proof (of Proposition 5.14) into two cases, depending on
∆(X,D). In each case we prove the existence of a suitable Z using a di�erent construction.

Case 1: Assuming ∆(X,D) ≥ 2
3 · δ. In this case α ≥ 2

3 , and we set ∆ such that it might be
slightly larger than the lower bound implied by Eq. (5.1). The construction of the distribution
Z is as follows.

Construction 5.14.5. (construction of the distribution Z when ∆(X,D) ≥ 2
3 · δ).

1. Let Z = X, and let:

(a) iUP = argmaxi∈[n]{Xi −Di}.

(b) S ⊆ LIGHT \ {iUP} such that 1
3 · δ ≤

∑
j∈SXj <

1
2 · δ.

(c) ∆ =
∑
i∈SXi.

2. (increase ∆ mass) Set ZiUP = XiUP + ∆.

3. (decrease ∆ mass) For every j ∈ S set Zj = 0.

According to Fact 5.14.4, a suitable set S exists for Step (1b). Also, note that Z is a
distribution, since we obtained it by removing a probabilistic mass of ∆ from X at S, and
adding the same magnitude of mass to iUP. Since X 6= D, and iUP = argmaxi∈[n]{Xi − Di},
then ZiUP > XiUP > DiUP , implying that Farther(iUP) = Change(iUP) = ∆. Furthermore, since
for every j ∈ S it holds that j and Z satisfy the conditions in Claim 5.14.2, then for every j ∈ S
it holds that Farther(j) ≥ 0. Thus,

∆(Z,D)−∆(X,D) = Farther(iUP) +
∑
j∈S

Farther(j) ≥ Change(iUP)

and Change(iUP) = ∆ ≥ 1
3 · δ ≥ δ − ∆(X,D). It follows that ∆(Z,D) ≥ δ, implying that

Z ∈ Fδ({D}). Since we added and removed 2 ·∆ probabilistic mass from X to obtain Z, it also
holds that ∆(Z,X) = 2 ·∆ < δ.
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Case 2: Assuming ∆(X,D) < 2
3 · δ. In this case α = ∆(X,D)

δ < 2
3 , and X might be

arbitrarily close to D. In the latter case, the interval for values of ∆ implied by Eq. (5.1) might
be arbitrarily small. We thus set ∆ to exactly match the lower bound of this interval. The
construction of the distribution Z is as follows.

Construction 5.14.6. (construction of the distribution Z when ∆(X,D) < 2
3 · δ).

1. Let Z = X and ∆ = 1
2 · (1− α) · (1 + α) · δ.

2. (increase ∆ mass) For iUP = argmaxi∈[n]{Xi −Di} set ZiUP = XiUP + ∆.

3. (decrease ∆ mass)

(a) Let S = ∅.
(b) While

∑
j∈SXj < ∆ do S ← argmaxi∈LIGHT\(S∪{iUP}){Xi}.

(c) For every j ∈ S set Zj =
∑

j∈S Xj−∆

|S| .

The following claim speci�es conditions that Construction 5.14.6 satis�es, which we will
later rely on.

Claim 5.14.7. Construction 5.14.6 is well-de�ned, and it produces a distribution Z such that:

1. For iUP ∈ [n] it holds that ZiUP = XiUP + ∆ and XiUP > DiUP .

2. For S ⊆ LIGHT it holds that:

(a)
∑

j∈S Xj − Zj = ∆.

(b) For every j ∈ S it holds that Zj ≤ min{Xj ,
1
2 ·Dj}.

Before proving Claim 5.14.7, let us assume for a moment that it is correct, and see how
it implies that Z ∈ Fδ({D}) and ∆(X,Z) < δ. First, since ∆ = 1

2(1 − α)(1 + α) · δ <
δ/2, it holds that ∆(Z,X) = 2 · ∆ < δ. Now, since ZiUP > XiUP > DiUP , it follows that
Farther(iUP) = Change(iUP). Also, since for every j ∈ S it holds that j and Z satisfy the
conditions in Claim 5.14.2, it follows that Farther(j) ≥ 1−α

1+α · Change(j). Therefore,

∆(Z,D)−∆(X,D) = Farther(iUP) +
∑
j∈S

Farther(j)

≥ Change(iUP) +
1− α
1 + α

·
∑
j∈S

Change(j)

=

(
1− α
1 + α

+ 1

)
·∆

= (1− α) · δ

which implies that ∆(Z,D) ≥ (1−α) ·δ+∆(X,D) = δ. Hence Z ∈ Fδ({D}) and ∆(Z,X) < δ.
To �nish the proof it is thus left to prove Claim 5.14.7.

47



Proof of Claim 5.14.7. To see that Construction 5.14.6 is well-de�ned, note that according to
Fact 5.14.4 there is su�cient probability mass in LIGHT\{iUP} in order for the loop in Step (3b)
of Construction 5.14.6 to complete successfully. Also, the �rst part of Condition (1) follows since
the probabilistic mass of iUP only changes in Step (2); and the second part of Condition (1)
follows since X 6= D and by the de�nition of iUP.

Condition (2a) follows since

∑
j∈S

Xj − Zj =

∑
j∈S

Xj

− |S| · ∑j∈S Xj −∆

|S|
= ∆ .

For Condition (2b), we �rst need the following fact.

Fact 5.15 For every j ∈ S it holds that
∑

j′∈S Xj′ −∆ < Xj.

Proof. Denote the last element that was inserted into S in Step (3b) by k, and note that Xk ≤
Xj . Assume towards a contradiction that

∑
j′∈S Xj′−∆ ≥ Xj . It follows that

∑
j′∈S Xj′−Xk ≥∑

j′∈S Xj′ − Xj ≥ ∆. However, in this case, k would not have been added to S, since after
the previous-to-last iteration of Step (3b), the overall probabilistic mass of elements in S would
have already exceeded ∆. �

Now, let j ∈ S, and we show that Zj < min{Xj ,
1
2 ·Dj}.

• Zj < Xj : Since Zj =
∑
j′∈S Xj′−∆

|S| ≤
∑

j′∈S Xj′ −∆ < Xj .

• Zj <
1
2 ·Dj : Recall that α <

2
3 , and thus ∆ > 1

2 ·
1
3 = 1

6 . Also, for every i ∈ [n] it holds

that Xi ≤ δ
20 . It follows that

|S| ≥ ∆

maxi∈S{Xi}
>

1
6 · δ
δ/20

> 3 .

Therefore,

Zj =

∑
j′∈S Xj′ −∆

|S|
<

Xj

3
≤ 1 + 2αδ

3
·Dj

and note that 1+2αδ
3 < 1

3 + 1
6 = 1

2 .

Also, Z is a distribution, since by Conditions (1) and (2a) it holds that
∑

i∈[n] Zi = 1, and
for every i ∈ [n] it holds that Zi ≥ 0. �

This completes the proof of Proposition 5.14.
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Implications on testing. Proposition 5.14 implies the following:

Theorem 5.16 (Theorem 1.13, restated). Let {Dn}n∈N be a family of distributions such that
limn→∞min-entropy(Dn) = ∞. Then, the problem of testing whether an input distribution In
is identical to Dn is equivalent to its dual problem.

In particular, the problem of testing whether an input distribution is uniform is equivalent
to its dual problem. Also, according to Proposition 5.13, for any distribution D such that the
probabilistic mass of each support element is bounded away from 0 and from 1, the problem of
testing whether an input distribution I is identical to D is equivalent to its dual problem.

The query complexity of the distribution testing problem is Θ̃(
√
n): A lower bound of

Ω(
√
n), which holds in case the distribution is uniform, was implicitly proved by Goldreich and

Ron in [GR00, GR02], and an upper bound of Õ(
√
n) was proved by Batu et al. [BFF+01].

A �ne-grained analysis was recently given by Valiant and Valiant [VV14], who showed tight
bounds on the complexity of this problem on a distribution-by-distribution basis.

It follows that the query complexity of the dual problem is lower bounded by Ω(
√
n). Also,

for every distribution family from the classes of distributions described in Theorem 5.16 and
in Proposition 5.13, the query complexity of the dual problem is O(

√
n), and is also upper

bounded by the �ner upper bound given by [VV14].

5.5 Testing duals of graphs properties in the dense graph model

Property testing in the dense graph model was initiated by Goldreich, Goldwasser, and
Ron [GGR98] (for a recent survey, see [Gol10a]). In this model, the metric space is comprised
of simple, undirected graphs. A graph on v vertices is represented by a corresponding string
x ∈ {0, 1}n, where n =

(
v
2

)
, such that the ith edge is included in the graph if and only if xi = 1.

The distance between two graphs is the Hamming distance between the strings representing
them. A property of graphs consists of a set of graphs that is closed under taking isomorphisms
of the graphs, and we denote such properties by Π = {Πn}n∈N , where N =

{(
v
2

)
: v ∈ N

}
.

Loosely speaking, we show that the following dual problems in the dense graph model are
di�erent from their original problems:

• k-colorability (cf., [GGR98]): Testing whether a graph is far from being k-colorable.

• ρ-clique (cf., [GGR98]): For ρ ∈ (0, 1), testing whether a graph on v vertices is far from
having clique of size ρ · v.

• Isomorphism testing (cf., [Fis05, FM08]): For a graph G that is explicitly known in
advance, testing whether an input graph H is far from being isomorphic to G.

Nevertheless, we show that the query complexity of testing whether a graph is far from being
k-colorable is O(1), where the O-notation hides a huge dependence on the proximity parameter
ε.
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5.5.1 A general result regarding the duals of testable properties

In this section we present a result that can be used to prove that the complexity of some dual
problems in the dense graph model is O(1). The following de�nition is adapted from [FN07],
which follows [PRR06].

De�nition 5.17 ((α, ε)-estimation tester; cf. De�nition 2.1, and [FN07, Def. 2]). For a set
Σ, and a property Π = {Πn}n∈N such that Πn ⊆ Σn, and ε > 0, and α ∈ (0, 1), an (α, ε)-
estimation tester for Π is a probabilistic algorithm T that for every n ∈ N and x ∈ Σn satis�es
the following two conditions:

1. If ∆(x,Πn) ≤ α · ε · n, then Pr[T x(1n) = 1] ≥ 2
3 .

2. If ∆(x,Πn) ≥ ε · n, then Pr[T x(1n) = 0] ≥ 2
3 .

The query complexity of (α, ε)-estimation testers is de�ned in the straightforward way,
analogously to De�nition 2.1. Fischer and Newman [FN07] proved the following result.

Theorem 5.18 (testing implies estimation in the dense graph model). Let Π be a property
of graphs in the dense graph model with query complexity O(1). Then, for every ε > 0 and
α ∈ (0, 1), there exists an (α, ε)-estimation tester for Π with query complexity O(1).

The following is a corollary of Theorem 5.18 that is interesting in the context of dual
problems in the dense graph model.

Corollary 5.19 (a su�cient condition for a dual problem to be testable with O(1) queries).
Let Π = {Πn}n∈N be a property of graphs in the dense graph model with query complexity O(1).
If for every su�ciently small ε > 0 there exists α ∈ (0, 1) such that for every su�ciently large
n it holds that Fε·n(Fε·n(Πn)) ⊆ {x : ∆(x,Πn) ≤ (α · ε) · n}, then the query complexity of the
dual problem of Π is O(1).

Proof. For any ε > 0, let α ∈ (0, 1) such that for a su�ciently large n it holds that
Fε·n(Fε·n(Πn)) ⊆ {x : ∆(x,Πn) ≤ (α · ε) · n}. Since the query complexity of Π is O(1),
Theorem 5.18 implies that there exists an (α, ε)-estimation tester T for Π with query com-
plexity O(1). The point is that for a su�ciently large n it holds that T accepts, with high
probability, every x ∈ Σn such that ∆(x,Πn) ≤ (α · ε) · n, and rejects, with high probability,
every x ∈ Fε·n(Πn). Since Fε·n(Fε·n(Πn)) ⊆ {x : ∆(x,Πn) ≤ (α · ε) · n}, complementing the
output of T yields an ε-tester for Fε·n(Πn) with query complexity O(1).

Note that the tester for dual problems obtained by using Corollary 5.19 has two-sided error,
since the estimation tester given by [FN07] has a two-sided error. This two-sided error cannot
be eliminated; that is, Corollary 5.19 cannot yield a tester with one-sided error in general. This
is the case since there exist dual problems that are not trivial (i.e., such that Fδ(Πn) 6= ∅)
to which Corollary 5.19 applies (see, e.g., Proposition 5.21); but, according to Corollary 5.7,
testing such problems with one-sided error requires a linear number of queries.
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5.5.2 Testing the property of being far from k-colorable

In this section we study the dual problem of k-colorability: For every ε > 0, we are interested
in the problem of ε-testing the set of graphs that are

(
ε ·
(
v
2

))
-far from being k-colorable, where

v is the number of vertices in the graph. We �rst show that this problem is di�erent from its
original problem, and then show that its query complexity is O(1), relying on Corollary 5.19.

Proposition 5.20 (the set of k-colorable graphs is not Fδ-closed). For any k ≥ 2 and v ≥ k+1,
let n =

(
v
2

)
and δ ≥ 2. Then, the set of graphs over v vertices that are k-colorable, denoted by

Πn ⊆ {0, 1}n, is not Fδ-closed.

Proof. We rely on Proposition 4.1, which asserts that if Πn is Fδ-closed, then for every G /∈ Πn∪
Fδ(Πn) there exists a path (i.e., a sequence of graphs such that their bit-string representations
induce a path in {0, 1}n) from G to Fδ(Πn) such that every graph subsequent to G on the path
is neither in Πn nor adjacent to Πn. In particular, we show a graph G such that ∆(G,Πn) = 1,
and all neighbors of G are either in Πn or adjacent to Πn. Thus, for any δ ≥ 2, there does not
exist a path as above from G /∈ Πn∪Fδ(Πn) to Fδ(Πn), which implies that Πn is not Fδ-closed.

Let G be a graph that contains a single clique on k+1 vertices, and no other edges. Note that
G is not k-colorable, and thus ∆(G,Πn) ≥ 1. On the other hand, ∆(G,Πn) ≤ 1, since removing
any edge from the (k+ 1)-clique turns G into a k-colorable graph. (The latter statement is true
since after removing the edge, the vertices that belonged to the (k + 1)-clique can be colored
with k colors, and all the other vertices are isolated, and thus can be arbitrarily colored.)

Now, let G′ be any neighbor of G. We need to prove that ∆(G′,Πn) ≤ 1. As mentioned,
removing any edge from G turns it into a k-colorable graph; thus, it su�ces to show that any
graph G′ obtained by adding an edge to G satis�es ∆(G′,Πn) ≤ 1. To see this, note that any
such graph is comprised of a (k + 1)-clique (the same one that existed in G) and an additional
edge. By removing any edge from the clique, we obtain a k-colorable graph: After removing
the edge, the vertices of the (former) clique can be colored using k colors. Also, the additional
edge either connects a vertex from the clique and a vertex from outside the clique, or connects
two vertices from outside the clique. In both cases, we can extend the k-coloring of the clique
to a k-coloring of the rest of the graph.

The query complexity of the dual problem. A tester for the original problem with query
complexity O(1) was given by Goldreich, Goldwasser, and Ron [GGR98]. Note that the query
complexity of testing whether a graph on v vertices is far from being k-colorable with one-sided
error is Ω(n) = Ω

((
v
2

))
. This is true since for every v ∈ N and n =

(
v
2

)
there exist graphs over

v vertices that are Ω(n)-far from being k-colorable (e.g., the complete graph), and relying on
Corollary 5.7.

We now show that the query complexity of the dual problem is also O(1). To do this, we
rely on Corollary 5.19: This requires proving that for every su�ciently small ε > 0 there exists
α ∈ (0, 1) such that for every su�ciently large n ∈ N it holds that Fε·n(Fε·n(Πn)) ⊆

{
G :

∆(G,Πn) ≤ (α · ε) · n
}
.

Proposition 5.21 (graphs that are far-from-far from being k-colorable are relatively close to
being k-colorable). Let Π = {Πn}n∈N be the property of k-colorable graphs, where Πn ⊆ {0, 1}n
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consists of graphs over v vertices such that n =
(
v
2

)
. Then, there exists α ∈ (0, 1) such that for

every su�ciently small ε > 0 and su�ciently large n ∈ N it holds that Fε·n(Fε·n(Πn)) ⊆
{
G :

∆(G,Πn) ≤ (α · ε) · n
}
.

Note that Corollary 5.7 only requires that for every (su�ciently small) ε > 0 there exists
α ∈ (0, 1) such that the statement holds, whereas we show that there exists a single α ∈ (0, 1)
that su�ces for every (su�ciently small) ε > 0.

Proof. We start with a high-level overview, and then proceed to the actual proof.

High-level overview. Let α = 1− 1

(k+1
2 )

. To prove the proposition, we show that for every

su�ciently small ε > 0, and su�ciently large n, and δ = ε ·n, every graph G ∈ {0, 1}n such that
∆(G,Πn) > α · δ satis�es G /∈ Fδ(Fδ(Πn)). Observe that if ∆(G,Πn) ≥ δ, then G ∈ Fδ(Πn),
which implies that G /∈ Fδ(Fδ(Πn)). Thus, it su�ces to show that any graph G such that
∆(G,Πn) ∈ (α · δ, δ) satis�es G /∈ Fδ(Fδ(Πn)).

To do this, for any graph G such that ∆(G,Πn) ∈ (α·δ, δ), we construct a graphH ∈ Fδ(Πn)
such that ∆(G,H) < δ, which implies that G /∈ Fδ(Fδ(Πn)). We �rst show that for any such
graph G, there exists a collection I of δ −∆(G,Πn) independent sets of size (k + 1) in G such
that every two independent sets in I share at most one common vertex (see Lemma 5.21.2).
We also show that for every independent set in I, if we add

(
k+1

2

)
edges to it, turning it to a

(k+ 1)-clique, we obtain a graph that is farther away from Πn (see Claim 5.21.3). Accordingly,
we change every independent set in I to a (k + 1)-clique, obtaining a graph H.

Note that ∆(H,Πn) = ∆(G,Πn)+ |I| = δ, and thus H ∈ Fδ(Πn). To see that ∆(G,H) < δ,
note that for every set in I we added

(
k+1

2

)
edges to G to obtain H. Thus, we get that

∆(G,H) =
(
k+1

2

)
· |I| =

(
k+1

2

)
· (δ−∆(G,Πn)). Now, by our choice of α, we have

(
k+1

2

)
= 1

1−α ,
whereas by the hypothesis regarding G we have δ −∆(G,Πn) < (1− α) · δ. Therefore, it holds
that ∆(G,H) = 1

1−α · (δ −∆(G,Πn)) < δ.

The core of the proof is showing that the collection I exists (i.e., Lemma 5.21.2, which
relies on Claim 5.21.1). This is shown as follows. Let G be a graph on v vertices such that
∆(G,Πn) ∈ (α · δ, δ). Since ∆(G,Πn) < δ, it follows that for some k-partition of G, there exists
a cell U in the partition such that the number of vertices in U is at least v/k and the number
of edges between them is at most δ. Since δ is very small, the subgraph induced by the vertices
of U is very sparse. Relying on a well-known result of Bollobás [Bol76], we show such a sparse
graph contains Ω (n) = Ω

((
v
2

))
independent-sets of size k+ 1, such that each pair of sets share

at most one common vertex.
Indeed, for this argument to work we must set ε > 0 to be su�ciently small such that

δ = ε · n will satisfy two conditions: First, δ should be su�ciently small in order for U to be
sparse enough; and second, the exact number of edge-disjoint cliques, which was hidden in the
Ω-notation, should be at least (1− α) · δ.

The actual proof. Throughout the proof, it will be convenient to think of the number of
vertices, denoted by v, as the primary asymptotic parameter (recall that n =

(
v
2

)
). We need

to prove the statement of the proposition for every �su�ciently small� ε > 0; to de�ne what
�su�ciently small� means, we will need the following claim.
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Claim 5.21.1 (very dense graphs contain Ω (n) edge-disjoint (k + 1)-cliques). There exists
ρ ∈ (0, 1) such that any graph on v vertices with ρ ·

(
v
2

)
edges contains Ω

((
v
2

))
edge-disjoint

(k + 1)-cliques.

Proof. The claim follows as a corollary of a well-known theorem by Bollobás, which we now
describe. A decomposition of a graph G is a collection of edge-disjoint subgraphs of G such that
every edge of G belongs to exactly one subgraph in the collection. Bollobás [Bol76] showed that
for every k ≥ 2, there exists e(k) ∈ (0, 1) such that any graph on v vertices can be decomposed
to a collection C of subgraphs, satisfying:

1. Every subgraph in C is either a single edge or a clique on k + 1 vertices.

2. |C| ≤ e(k) ·
(
v
2

)
. 11

Let G be a graph on v vertices with m edges. Let C be the decomposition of G that
exists according to the above. Since the edges of |C| subgraphs cover the m edges of G, and

each subgraph is either a single edge or a (k + 1)-clique, it follows that at least m−|C|
(k+1

2 )
of the

subgraphs in C are (k + 1)-cliques. Thus, for any constant ρ > e(k), if G contains m = ρ ·
(
v
2

)
edges, then it contains m−|C|

(k+1
2 )
≥ ρ−e(k)

(k+1
2 )
·
(
v
2

)
= Ω

((
v
2

))
edge-disjoint (k + 1)-cliques. �

Now, let α = 1 − 1

(k+1
2 )

. According to Claim 5.21.1, there exist ρ > 0 and ξ > 0 such that

every graph on v/k vertices with ρ ·
(
v/k
2

)
edges contains at least ξ ·

(
v
2

)
edge-disjoint (k + 1)-

cliques. Let ε > 0 be su�ciently small such that for a su�ciently large v ∈ N and n =
(
v
2

)
it

holds that δ = ε · n satis�es

δ < min

{
(1− ρ) ·

(
v/k

2

)
,

ξ

1− α
·
(
v

2

)}
. (5.4)

Let v ∈ N be su�ciently large, and let n =
(
v
2

)
and δ = ε · n. According to the overview,

it su�ces to construct, for any graph G with v vertices satisfying ∆(G,Πn) ∈ (α · δ, δ), a
corresponding graph H ∈ Fδ(Πn) such that ∆(G,H) < δ (because this implies that G /∈
Fδ(Fδ(Πn))).

In order to constructH, we �rst need to de�ne some terminology. For any graph G = ([v], E)
and a k-partition P of [v], we call (u,w) ∈ [v]× [v] a violating pair for P if u and w are adjacent
and are in the same cell of the partition. Note that the distance of G from being k-colorable
is the minimum, over all k-partitions P of [v], of the number of violating pairs for P . The
following lemma establishes the existence of a collection I of independent sets in G, each of size
k + 1, as in the high-level overview.

Lemma 5.21.2. Let G be a graph on v vertices satisfying ∆(G,Πn) ∈ (α · δ, δ). Then, there
exists a collection I of independent sets in G, such that |I| = δ −∆(G,Πn), each set consists
of k + 1 vertices, and every two independent sets c1, c2 ∈ C share at most one common vertex.

11Actually, the original result of Bollobás asserts that |C| ≤ tk(v), where tk(v) ≤ 1
2

(
1− 1

k

)
·v2 is the (v, k+1)-

Turán number. For our purposes it will be more convenient to use a fraction of
(
v
2

)
.
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Proof. Since ∆(G,Πn) < δ, there exists a k-partition of the vertices of G with less than δ
violating edges. Let U be the cell in the partition with the maximal number of vertices, and
note that |U | ≥ v/k, and that the number of edges with both end-points in U is less than δ.
Without loss of generality, assume that |U | = v/k (since we can remove vertices from U , and
the number of edges between its vertices will still be less than δ). Relying on Eq. (5.4), the
number of edges between the vertices of U is less than (1− ρ) ·

(
v/k
2

)
.

Let G be the complement graph of G, and U be the subgraph of G induced by the vertices
of U . Note that the number of edges between vertices of U is more than ρ ·

(
v/k
2

)
, and thus (by

our de�nition of ρ and Claim 5.21.1) there exist at least ξ ·
(
v
2

)
edge-disjoint (k + 1)-cliques in

U . According to Eq. (5.4), it holds that δ < ξ
1−α ·

(
v
2

)
, and hence ξ ·

(
v
2

)
> (1 − α) · δ. Since

∆(G,Πn) > α · δ, it holds that (1− α) · δ > δ −∆(G,Πn).
It follows that there exists a collection of more than δ−∆(G,Πn) independent sets, each of

size k+ 1, in U , corresponding to the (k+ 1)-cliques in U . Since the cliques were edge-disjoint,
every two independent sets in the collection share at most one common vertex. �

Let I be a collection of δ−∆(G,Πn) independent sets in G as in Lemma 5.21.2. We modify
G into H by adding, for each independent set in I, edges between all pairs of vertices in the set.
For each set in I, we added

(
k+1

2

)
= 1

1−α edges to G. Overall, the number of edges we added

to G to obtain H is |I| ·
(
k+1

2

)
= (δ −∆(G,Πn)) · 1

1−α < δ, where the last inequality relied on
the fact that δ −∆(G,Πn) < (1− α) · δ (because ∆(G,Πn) > α · δ). Therefore, ∆(G,H) < δ.
To conclude the proof it is left to show that H ∈ Fδ(Πn).

Claim 5.21.3. For a graph G on v vertices, let I be an independent set of size k+ 1 in G. Let
G′ be the graph obtained by adding to G all edges connecting pairs of vertices in I (i.e., turning
I from an independent set to a clique). Then ∆(G′,Πn) ≥ ∆(G,Πn) + 1.

Proof. For any k-partition P of the vertices of G, the number of violating pairs for P in G′ is
larger than the number of violating pairs for P in G. This is the case since at least two vertices
in I are in the same cell of P (because |I| = k+1), forming a violating pair for P in G′, whereas
no edges were removed when modifying G to G′ (and thus all violating pairs for P in G are
also violating pairs for P in G′). The claim follows. �

To see that ∆(H,Πn) ≥ δ, assume that we sequentially turn each independent set in I to a
(k + 1)-clique. Since every two independent sets in I share at most one common vertex, after
turning each independent set to a clique, all the remaining sets in I are still independent sets.
Thus, repeatedly invoking Claim 5.21.3 (after turning each independent set to a clique), it holds
that ∆(H,Πn) ≥ ∆(G,Πn) + |I| = δ.

5.5.3 Testing the property of being far from having a large clique

In this section we study the dual problem of ρ-clique: For ρ ∈ (0, 1) and ε > 0, we are interested
in the problem of ε-testing the set of graphs that are

(
ε ·
(
v
2

))
-far from having a clique of size

ρ · v, where v is the number of vertices in the graph. We show that this problem is di�erent
from its original problem.
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Proposition 5.22 (the set of graphs with a clique of size ρ · v is not Fδ-closed). For any
ρ ∈

(
0, 1

2

]
, and δ ≥ 2, and even v ≥ 4, the property of graphs on v vertices containing a clique

of size ρ · v is not Fδ-closed.

Proof. For ρ ∈
(
0, 1

2

]
, and δ ≥ 2, and an even v ≥ 4, and n =

(
v
2

)
, let Π ⊆ {0, 1}n be the set of

graphs containing a clique of size ρ ·v. Similar to the proof of Proposition 5.20, we show that Π
is not Fδ-closed, relying on the necessary condition in Proposition 4.1. In particular, we show
a graph G such that ∆(G,Π) = 1, and all neighbors of G are either in Π or adjacent to Π. It
follows that there does not exist a path (i.e., a sequence of graphs such that their bit-string
representations induce a path in {0, 1}n) from G to Fδ(Π) such that every graph subsequent to
G on the path is neither in Π nor adjacent to Π. Relying on Proposition 4.1, this implies that
Π is not Fδ-closed.

Let G = (V,E) be as follows. We bisect V = V1 ∪ V2, and since ρ ≤ 1
2 and v = |V | is even,

it holds that |V1| = |V2| ≥ dρ · ve. We de�ne G such that it contains two vertex-disjoint �almost
cliques� of size dρ · ve, one in V1 and the other in V2, where an �almost clique� is a clique from
which one edge is omitted. Other than the two �almost cliques�, G contains no additional edges.
Since G contains no clique of size ρ · v, it follows that G /∈ Π. Also, since we can create such a
clique in G by adding a single edge, it follows that ∆(G,Π) = 1. Now, let G′ be neighbor of G.
We wish to prove that ∆(G′,Π) ≤ 1.

• If G′ was obtained by adding an edge to G, then either G′ ∈ Π (if the edge completed
one of the two �almost cliques� to a clique), or, otherwise, we can add an edge to G′ that
completes one of the �almost cliques� to a clique, in which case ∆(G′,Π) = 1. Either way,
∆(G′,Π) ≤ 1.

• Otherwise, G′ was obtained by removing an edge from one of the �almost cliques�. How-
ever, in this case we can still add an edge to the other �almost clique�, turning it to a
clique of size dρ · ve. Thus ∆(G′,Π) = 1.

Implications on testing. Similar to the problem of testing k-colorability, a tester for the
original problem of ρ-clique with query complexity O(1) was given by Goldreich, Goldwasser,
and Ron [GGR98]. However, in the case of ρ-clique it is not clear whether this upper bound
also holds for the dual problem. Nevertheless, according to Corollary 5.7, since for every v ∈ N
and n =

(
v
2

)
there exist graphs with v vertices that are Ω(n)-far from having clique of size ρ · v

(e.g., the graph with no edges), testing the dual problem with one-sided error requires Ω(n)
queries.

5.5.4 Testing the property of being far from isomorphic to a graph

The problem of testing graph isomorphism was introduced by Fischer [Fis05]. We study the
dual problem of a well-known version of this problem: In the dual problem, for a graph G
on v vertices that is predetermined and explicitly known in advance, the problem consists of
ε-testing the set of graphs that are

(
ε ·
(
v
2

))
-far from being isomorphic to G. We show that the

dual problem is di�erent from the original problem.
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Proposition 5.23 (graph families that induce properties that are not Fδ-closed). There exists
a graph family {Gn}n∈N such that for every δ ≥ 2 and n ∈ N , the property of graphs that are
isomorphic to Gn is not Fδ-closed.
Proof. For v ∈ N and n =

(
v
2

)
, let Gn be a graph with v vertices and a single edge. We

show that for every δ ≥ 2, the set Πn ⊆ {0, 1}n of graphs that are isomorphic to Gn is not
Fδ-closed. Note that Πn is exactly the set of vectors with Hamming weight 1, since each of
these vectors represents a graph that is isomorphic to Gn, and all vectors representing graphs
that are isomorphic to a given graph have the same Hamming weight (since isomorphic copies
of a graph have the same number of edges). However, Πn = B[∅, 1] \ {∅} is a property that we
already considered in the proof of Proposition 4.19, where we proved that it is not F2-closed,
relying on Proposition 4.1: We showed that there does not exist a path from ∅ /∈ Πn ∪ Fδ(Πn)
to Fδ(Πn).

Fischer and Matsliah proved [FM08] that the query complexity of this version of the graph
isomorphism is Θ̃(

√
v). We deduce that the query complexity of the dual problem is lower

bounded by Ω(
√
v). Also, according to Corollary 5.7, and since the testing problem is not

trivial, testing the dual problem with one-sided error requires Ω(n) queries.

6 Open questions

Fδ-tight spaces. A graph-theoretical problem we encountered during this work is the char-
acterization of Fδ-tight spaces. Recall that, by De�nition 4.8, a graphical space is Fδ-tight if
every Fδ-closed set in it is also strongly Fδ-closed. That is, if for every Fδ-closed set Π and
every x /∈ Π ∪ Fδ(Π) it holds that x lies on a shortest path from Π to Fδ(Π). In Section 4.1.3
we showed that all graphical spaces are Fδ-tight for δ = 1, 2 and for values of δ larger than the
diameter of the graph. We also showed that there exist spaces that are not Fδ-tight for δ = 3.
This leaves open the following general question.

Question 1 (Fδ-tight spaces). For which graphs G and values of δ ∈ [3, diam(G)] does it hold
that G is Fδ-tight?

In Proposition 4.11 in Section 4.1.3 we presented an initial exploration of this question, by
showing several examples for graphs that are Fδ-tight for every δ > 0.

Separation between dual problems and standard problems. Recall that, according to
Proposition 5.3, the complexity of any dual problem is lower bounded by the complexity of the
original problem. This leads to the following question:

Question 2 (separation between dual problems and standard problems). Is there a property
testing problem with query complexity that is signi�cantly lower than the query complexity of its
dual problem?

A di�erent interesting direction is to bound the query complexity of standard property
testing problems by determining the query complexity of their dual problems. In particular, by
Proposition 5.3, any upper bound on a dual problem implies an identical upper bound on the
original problem.
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Dual problems in the dense graph model. Recall that in the dense graph model, Corol-
lary 5.19 states the following (relying on [FN07]): For a graph property Π = {Πn}n∈N that is
testable with O(1) queries, if for every ε > 0 there exists α ∈ (0, 1) such that for all su�ciently
large n it holds that Fε·n(Fε·n(Πn)) ⊆ {x : ∆(x,Πn) ≤ (α · ε) ·n}, then the dual problem is also
testable with O(1) queries.

Question 3 (testable graph properties such that points in Fδ(Fδ(Π)) are su�ciently close to
Π). Let Π = {Πn}n∈N be a graph property in the dense graph model that is testable with O(1)
queries. Does it hold that for every ε > 0 there exists α ∈ (0, 1) such that for all su�ciently
large n it holds that Fε·n(Fε·n(Πn)) ⊆ {x : ∆(x,Πn) ≤ (α · ε) · n}?

An a�rmative answer to this question would imply that, in the dense graph model, a dual
problem is testable with O(1) queries if and only if the original problem is testable with O(1)
queries.
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Appendix A: Additional results regarding the operator Π 7→ Fδ(Fδ(Π))

Following Proposition 3.5, in this appendix we explore additional properties of the operator
Π 7→ Fδ(Fδ(Π)). More precisely, we prove that Π 7→ Fδ(Fδ(Π)) does not admit some properties
in general, and thus does not belong to some speci�c classes of closure operators. In particular,
we show that Π 7→ Fδ(Fδ(Π)) is not the convex hull operator in Euclidean spaces, is not a
Kuratowski (topological) closure operator, and does not satisfy the axioms of closure operators
from matroid theory. In the end of the appendix we repay a debt from Section 3.2, by including
a proof for Proposition 3.6.

Before proving these results, let us point to an interesting property that Π 7→ Fδ(Fδ(Π))
does admit: Namely, Π 7→ Fδ(Fδ(Π)) is the composition of another operator with itself; that is,
Π 7→ Fδ(Fδ(Π)) is the composed operator Fδ ◦Fδ. Moreover, the collection of closed sets under
Π 7→ Fδ(Fδ(Π)) is identical to the image of the composed operator (since by Theorem 3.2, it
holds that {Fδ(Π)}Π⊆Ω = {Fδ(Fδ(Π))}Π⊆Ω). This property seems distinct amongst the closure
operators we are familiar with.

A.1 Properties that Π 7→ Fδ(Fδ(Π)) does not admit

The convex hull operator in Euclidean spaces maps any set to the unique minimal convex set
containing it. The following claim states that in Euclidean spaces the operator Π 7→ Fδ(Fδ(Π))
is not the convex hull operator.

Claim A.1 (Π 7→ Fδ(Fδ(Π)) is not the convex hull operator). There exists a set Π ⊆ Rn such
that Π 7→ Fδ(Fδ(Π)) is not the convex hull of Π.

Proof. Let Π = {x, y} such that ∆(x, y) > 2δ. Note that the convex hull of Π contains the entire
line segment between x and y. However, there exists a point z on this line segment such that
∆(z, x) ≥ δ and ∆(z, y) ≥ δ. Thus, z ∈ Fδ(Π), which implies that z /∈ Fδ(Fδ(Π)). It follows
that the line segment between x and y is not contained in Fδ(Fδ(Π)), and thus Fδ(Fδ(Π)) is
not the convex hull of Π.

Closure operators in topology are called Kuratowski closure operators, and satisfy the three
conditions in De�nition 3.4 as well as the following additional condition: For Π,Π′ ⊆ Ω it holds
that cl(Π) ∪ cl(Π′) = cl(Π ∪ Π′). However, Π 7→ Fδ(Fδ(Π)) does not satisfy this condition in
general.

Claim A.2 (Π 7→ Fδ(Fδ(Π)) is not a Kuratowski closure operator). There exists a space Ω
and δ > 0 such that the operator Π 7→ Fδ(Fδ(Π)) does not satisfy the Kuratowski axioms.

Proof. Let Ω be a graph that is a simple path x1 − x2 − x3, and let δ = 2. Consider Π = {x1}
and Π′ = {x3}. Then Fδ(Fδ(Π)) = Π and Fδ(Fδ(Π′)) = Π′; but Fδ(Fδ(Π ∪ Π′)) = Ω 6=
Fδ(Fδ(Π)) ∪ Fδ(Fδ(Π′)).

Closure operators in matroid theory (see, e.g., [GM12]) satisfy the three conditions in De�-
nition 3.4 as well as an additional fourth condition. We now de�ne this fourth condition, and
show that the operator Π 7→ Fδ(Fδ(Π)) does not satisfy it in general.
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De�nition A.3 (MacLane-Steinitz exchange property). A closure operator cl : P(Ω) → P(Ω)
satis�es the MacLane-Steinitz exchange property if it meets the following condition: If there
exist Π ⊆ Ω and x, y ∈ Ω such that x ∈ cl(Π ∪ {y}) \ cl(Π), then y ∈ cl(Π ∪ {x}).

Claim A.4 (Π 7→ Fδ(Fδ(Π)) does not satisfy the MacLane-Steinitz exchange property). There
exists a space Ω and δ > 0 such that the operator Π 7→ Fδ(Fδ(Π)) does not satisfy the MacLane-
Steinitz exchange property.

Proof. Let Ω be a graph that is a simple path x − y − z, and let δ = 2 and Π = ∅. Note that
Fδ(Fδ(Π)) = Π = ∅, and Fδ(Fδ(Π ∪ {y})) = Ω 3 x, which implies that x ∈ Fδ(Fδ(Π ∪ {y})) \
Fδ(Fδ(Π)). However, it holds that Fδ(Fδ(Π ∪ {x})) = {x} 63 y.

A.2 Proof of Proposition 3.6 from Section 3.2

In general, a closure operator maps any set Π to the unique smallest closed set containing Π.
Proposition 3.6 from Section 3.2 asserts that this is indeed the case in the special case of the
operator Π 7→ Fδ(Fδ(Π)). For convenience, we now include a proof for the proposition.

Proposition A.5 (Proposition 3.6, restated). For any Ω, δ > 0 and Π ⊆ Ω it holds that

Fδ(Fδ(Π)) =
⋂

Π′:Fδ(Fδ(Π′))⊇Π

Fδ(Fδ(Π′))

Proof. We follow the standard proof that for any closure operator cl it holds that cl(Π) =⋂
Π′:cl(Π′)⊇Π cl(Π

′). This standard proof relies on the fact that for general closure operators,
the intersection of closed sets is closed; in the speci�c case of Π 7→ Fδ(Fδ(Π)), this fact follows
immediately from Condition (5) in Theorem 3.2, and was mentioned in the discussion after the
proof of Theorem 3.2.

Let I = {Fδ(Fδ(Π′)) : Π′ ⊆ Ω ∧ Fδ(Fδ(Π′)) ⊇ Π}. We seek to prove that

Fδ(Fδ(Π)) =
⋂

Φ∈I
Φ

To see that Fδ(Fδ(Π)) ⊇
⋂

Φ∈I Φ, note that by Condition (1) of De�nition 3.4 it holds that
Π ⊆ Fδ(Fδ(Π)), and thus Fδ(Fδ(Π)) ∈ I. For the other direction, to see that Fδ(Fδ(Π)) ⊆⋂

Φ∈I Φ, note that any Φ ∈ I satis�es Π ⊆ Φ; and thus

Π ⊆
⋂

Φ∈I
Φ (A.1)

Relying on Condition (2) of De�nition 3.4 and on Eq. (A.1), we get that

Fδ(Fδ(Π)) ⊆ Fδ

(
Fδ

(⋂
Φ∈I

Φ

))
(A.2)

Since every Φ ∈ I is of the form Fδ(Fδ(Π′)) for some Π′ ⊆ Ω, it holds that every Φ ∈ I is
Fδ-closed. Relying on the fact that the intersection of Fδ-closed sets is Fδ-closed, we get that
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⋂
Φ∈I Φ is Fδ-closed. It follows that Fδ

(
Fδ
(⋂

Φ∈I Φ
))

=
⋂

Φ∈I Φ, and relying on Eq. (A.2), we
get that

Fδ(Fδ(Π)) ⊆
⋂

Φ∈I
Φ .

Appendix B: Sets with �holes� are not Fδ-closed
Recall that Proposition 4.1 presents a condition that is necessary for a set in a graphical space
to be Fδ-closed: That for every x /∈ Π ∪ Fδ(Π) there exists a path from x to Fδ(Π) that does
not intersect Π nor any vertices adjacent to Π. In this appendix we show a condition that is
equivalent to the one in Proposition 4.1. Intuitively, we show that a set that contains a �small
hole� is not Fδ-closed. Since this statement is still quite vague, we now describe it in further
detail.

For any Ψ ⊆ Ω, let the vertex boundary of Ψ be ∂Ψ = {x ∈ Ψ : ∃y ∈ Ω \ Ψ,∆(x, y) = 1};
that is, ∂Ψ consists of all vertices in Ψ with neighbors outside of Ψ. Also, the interior of Ψ is
Ψ \ ∂Ψ, and consists of all vertices in Ψ such that all their neighbors are in Ψ. We now use
these notations to describe a set Π with a �hole� in it. Consider some neighborhood Ψ ⊆ Ω
such that two conditions hold: First, the interior of Ψ contains vertices that are not in Π; and
second, the vertex boundary of Ψ satis�es ∂Ψ ⊆ Π. Thus, the interior of Ψ is �enclosed� by Π.
In such a case we think of the interior of Ψ as a �hole� in Π, and of Ψ as a neighborhood of Ω
in which Π contains a �hole�. Figure 5 presents an example for such a case.

Ψp1

p2

p3

p4 h1 h2

Ψ = {p1, ..., p4, h1, h2}

p1, ..., p4 ∈ Π

h1, h2 /∈ Π

Figure 5: An example for a neighborhood Ψ in a graph and a set Π such that Π contains a
�hole� in Ψ. The vertices p1, ..., p4 constitute ∂Ψ, and note that ∂Ψ ⊆ Π. The vertices h1, h2

constitute the interior of Ψ, and are not in Π. We think of the interior of Ψ (i.e., of {h1, h2})
as a �hole� in Π.

We now formally de�ne what it means for a set Π to have a �hole of diameter δ − 1�. Note
that in the examples described so far we required that ∂Ψ ⊆ Π; that is, that Π fully �encloses�
the interior of Ψ. In the de�nition itself we relax this requirement, and only require that every
z ∈ ∂Ψ is adjacent to Π.

De�nition B.1 (sets with �holes of diameter δ − 1�). For a graphical Ω, δ ≥ 2 and Π ⊆ Ω,
assume that there exists Ψ ⊆ Ω such that the following hold:
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1. (the interior of Ψ is �enclosed� by Π) Every z ∈ ∂Ψ satis�es ∆(z,Π) ≤ 1.

2. (the interior of Ψ contains a vertex not in Π) There exists x ∈ Ψ \ ∂Ψ such that x /∈ Π.

3. (the interior of Ψ is �(δ − 1)-covered� by Π) Every x ∈ Ψ satis�es ∆(x,Π) ≤ δ − 1.

Then we say that Π has a hole of diameter δ − 1 in Ψ.

We now show that a set has a �hole of diameter δ − 1� if and only if it does not satisfy the
necessary condition for a set to be Fδ-closed that was presented in Proposition 4.1. Thus, sets
that have a �hole of diameter δ− 1� are not Fδ-closed. The existence of such a �hole� might be
convenient to prove in some cases, since it only requires arguing about Π in a neighborhood Ψ
of Ω, and not about Fδ(Π).

Proposition B.2 (the condition of not having �holes of diameter δ − 1� is equivalent to the
condition in Proposition 4.1). For a graphical Ω and δ ≥ 2 it holds that Π ⊆ Ω has a �hole of
diameter δ − 1�, as in De�nition B.1, if and only if there exists x /∈ Π ∪ Fδ(Π) such that for
every path x = v0, v1, ..., vl = z, where z ∈ Fδ(Π), there exists i ∈ [l] such that ∆(vi,Π) ≤ 1.

Proof. In one direction, assume that for Π ⊆ Ω and δ > 0 there exists Ψ ⊆ Ω such that Ψ
and δ satisfy conditions of De�nition B.1. By Condition (2) of De�nition B.1, there exists
x ∈ Ψ \ (Π ∪ ∂Ψ). By Condition (3) of De�nition B.1, it holds that Ψ ∩ Fδ(Π) = ∅, and thus
x /∈ Fδ(Π). We show that x /∈ Π ∪ Fδ(Π) satis�es the conditions of Proposition 4.1 (i.e., every
path from x to Fδ(Π) intersects Π or a vertex adjacent to Π).

Let x = v0, v1, ..., vl = z ∈ Fδ(Π) be a path from x to Fδ(Π). Since Ψ ∩ Fδ(Π) = ∅, it
follows that Fδ(Π) ⊆ Ψ. In particular, z /∈ Ψ, and thus the path from x to z passes through
∂Ψ. Let i ∈ {0, ..., l} such that vi ∈ ∂Ψ. Since x /∈ ∂Ψ it follows that vi 6= x, hence i ∈ [l]. By
Condition (1) of De�nition B.1, it holds that ∆(vi,Π) ≤ 1.

For the other direction, let x /∈ Π ∪ Fδ(Π) such that for every path x = v0, v1, ..., vl = z,
where z ∈ Fδ(Π), there exists i ∈ [l] such that ∆(vi,Π) ≤ 1. We construct Ψ that satis�es the
conditions of De�nition B.1, as follows. Let P be the collection of all �nite paths that start
from x and end in some vertex in Fδ(Π); note that these paths are not necessarily simple, and
thus P is an in�nite collection. For every path x = v0, v1, ..., vl = z ∈ Fδ(Π) in P, let vi be the
�rst vertex in the path that satis�es vi 6= x and ∆(vi,Π) ≤ 1. We de�ne the path's truncation
to be all vertices vj in the path such that j ≤ i. We de�ne Ψ be the set of all vertices that are
in truncations of paths in P.

To see that Condition (1) of De�nition B.1 holds, assume towards a contradiction that
there exists v ∈ ∂Ψ such that ∆(v,Π) > 1. Since v ∈ Ψ, there exists a path x = v0, v1, ..., vr =
v, vr+1, ..., z ∈ Fδ(Π) such that for every i ∈ [r] it holds that ∆(vi,Π) > 1. However, this
implies that for any neighbor v′ of v there exists a path x = v0, v1, ..., vr = v, v′, v, vr+1, ..., z
such that for every i ∈ [r] it holds that ∆(vi,Π) > 1, which implies that v′ is in the truncation
of that path. Thus v′ ∈ Ψ. Since all of v's neighbors are in Ψ, it cannot be that v ∈ ∂Ψ.

To see that the vertex x that exists according to our hypothesis satis�es Condition (2) of
De�nition B.1, note that by the hypothesis x /∈ Π, and that by the de�nition of Ψ it holds that
x ∈ Ψ. Furthermore, since each of x's neighbors is in the truncation of some path from x to
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Fδ(Π) (e.g., a path from x to the neighbor, back to x, and then to Fδ(Π)), it follows that all of
x's neighbors are in Ψ, hence x /∈ ∂Ψ. Therefore x ∈ Ψ \ (Π ∪ ∂Ψ).

To see that Condition (3) of De�nition B.1 holds, �rst note that by the hypothesis x /∈ Fδ(Π).
Now, let z ∈ Ψ such that z 6= x, and we show that z /∈ Fδ(Π). By the de�nition of Ψ it holds
that z is in the truncation of some path from x to Fδ(Π). Denote the pre�x of such a path,
leading from x to z, by x = v0, v1, ..., vl = z, and note that for every i ∈ [l − 1] it holds that
∆(vi,Π) > 1 (since this is a pre�x of a truncation of a path). However, if z ∈ Fδ(Π), then this
pre�x is a path from x to Fδ(Π) without a vertex in the path that is in Π or adjacent to Π,
which contradicts the hypothesis. Therefore z /∈ Fδ(Π).

Appendix C: Examples of Fδ-tight spaces
Recall that in Section 4.1.3 we de�ned Fδ-tight spaces as follows:

De�nition C.1 (De�nition 4.8, restated). For a graphical space Ω and δ > 0, we say that Ω
is Fδ-tight if every Fδ-closed set in Ω is also strongly Fδ-closed.

In this appendix we prove that several speci�c graphs (or, more accurately, graph families)
are Fδ-tight for every δ > 0. In particular, we prove the following proposition:

Proposition C.2 (Proposition 4.11, extended). The following graphs are Fδ-tight, for every
δ > 0:

1. Any graph on n ≥ 2 vertices with diameter at most 2 (and in particular, a complete graph
on n ≥ 2 vertices).

2. A path on n ≥ 2 vertices.

3. A cycle on n ≥ 2 vertices.

4. A 2× n grid (i.e., a grid with two rows and n columns), for any n ≥ 2.

5. A circular ladder graph on 2n ≥ 4 vertices; that is, the graph that is comprised of two
cycles on n vertices such that for every i ∈ [n], the ith vertices in both cycles are connected
by an edge.

Recall that in Section 4.1.3 we showed that every graphical space is F1-tight and F2-tight,
and is Fδ-tight for values of δ larger than the diameter of the graph. Item (1) of Proposition C.2
follows as a corollary. We now prove Items (2) and (3). An intuitive reason that a single proof
su�ces for both the path and the cycle is that being Fδ-closed (resp., strongly Fδ-closed) is a
local phenomenon, and the local neighborhoods in both graphs are very similar.

Proposition C.3 (Items (2) and (3) of Proposition C.2). Let Gn be either a simple path on
n ≥ 2 vertices or a cycle on n ≥ 2 vertices. Then, for every δ > 0 it holds that Gn is Fδ-tight.
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Proof. It su�ces to prove that Gn is Fδ-tight for δ ≥ 3. Let δ ≥ 3, and let Π ⊆ Gn be an
Fδ-closed set. We prove that Π is strongly Fδ-closed, relying on Proposition 4.6: For every
x /∈ Π ∪ Fδ(Π), we show a neighbor x′ of x such that ∆(x′,Π) = ∆(x,Π) + 1.

Let x /∈ Π ∪ Fδ(Π). According to Corollary 4.2, there exists a path from x to Π that does
not intersect Fδ(Π), and a path from x to Fδ(Π) that does not intersect Π. Without loss of
generality, we can assume that both are simple paths. Now, note that a simple path from x to
any set can only be one of two paths: The path obtained by walking from x constantly to one
direction, and the path obtained by walking from x constantly to the other direction. Thus,
in one of these paths, the �rst vertex from Π ∪ Fδ(Π) that we encounter is from Π, and in the
other, the �rst vertex from Π∪Fδ(Π) that we encounter is from Fδ(Π) (otherwise there would
not exist two paths as in Corollary 4.2).

Let x′ be the neighbor of x to the side in which the �rst vertex from Π ∪ Fδ(Π) that we
encounter is from Fδ(Π). To see that ∆(x′,Π) = ∆(x,Π) + 1, note that a shortest path from
x′ to Π can be one of two paths: The path obtained by walking constantly to the direction of
x, and the path obtained by walking constantly to other direction. When walking constantly
to the direction of x, the �rst vertex subsequent to x′ on the path is x itself; such a path
is necessarily longer than a shortest path from x to Π. Conversely, when going to the other
direction, the �rst vertex from Π ∪ Fδ(Π) that we encounter is from Fδ(Π); since the distance
of such a vertex from Π is at least δ, such a path is of length at least δ ≥ ∆(x,Π) + 1 (where
the inequality is since x /∈ Fδ(Π)). It follows that ∆(x′,Π) = ∆(x,Π) + 1.

One can view a simple path on n vertices as a grid with one row and n columns; that is,
view the n-path as the 1× n grid. A consequent natural question is the following:

Is the n× n grid Fδ-tight for every δ > 0?

We present an initial step towards answering this question. In particular, the following
proposition asserts that the graph with two rows and n columns (i.e., the 2 × n grid) is also
Fδ-tight for every δ > 0. Similar to the proof of Proposition C.3, a nearly identical proof applies
both to the 2× n grid and to the circular ladder graph on 2n vertices.

Proposition C.4 (Items (4) and (5) of Proposition C.2). Let G2,n be either the 2× n grid or
the circular ladder graph on 2n vertices. Then, for every δ > 0 it holds that G2,n is Fδ-tight.

The following proof of Proposition C.4 is quite tedious. In particular, the proof relies on
elementary arguments and case analyses that are, in our opinion, not insightful. We hope to
�nd a more insightful proof in the future.

Proof of Proposition C.4. We prove the claim for the case in which G2,n is the 2× n grid. The
proof for the circular ladder graph is nearly identical, but slightly more cumbersome in terms
of notation; we will explicitly note the single place in which there is a minor di�erence. For
i ∈ {1, 2}, we denote the vertices in the ith row of G2,n by vi,1, ..., vi,n. Also, we de�ne the left
and right directions in the graph in the natural way (i.e., within a �xed row i ∈ {1, 2}, the left
direction is towards vi,1, and the right direction is towards vi,n).

Note that it su�ces to prove that G2,n is Fδ-tight for δ ≥ 3. Let δ ≥ 3, and let Π ⊆ G2,n

be an Fδ-closed set. We show that Π is strongly Fδ-closed, relying on Proposition 4.6: For
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x /∈ Π ∪ Fδ(Π), we show a neighbor x′ of x such that ∆(x′,Π) = ∆(x,Π) + 1. Without loss of
generality, assume that x = v1,j , for j ∈ [n].

High-level overview. The proof is based on a case analysis. In particular, it consists of
three cases, depending on the neighborhood of x. The �rst case is when the vertex beneath x
(i.e., the vertex v2,j) is in Fδ(Π). In this case, the vertex beneath x is a neighbor of x that is
farther from Π (since x /∈ Fδ(Π)). The second case is when the vertex beneath x is in Π. In
this case, since Π is Fδ-closed, Proposition 4.1 implies that there exists a path from x to Fδ(Π)
such that any vertex subsequent to x on the path is neither in Π nor adjacent to Π. The vertex
immediately subsequent to x on the path is a neighbor of x that is farther from Π (since, in
this case, x is adjacent to v2,j ∈ Π).

The third and last case, in which the vertex beneath x is not in Π ∪ Fδ(Π), will be the
main focus of our proof. In this case, we will rely on Corollary 4.2 to show that when walking
constantly from x to one horizontal direction (say, to the left), we reach a column in which
there is a vertex from Π before reaching any column in which there is a vertex from Fδ(Π); and
when walking constantly from x to the other horizontal direction (say, to the right), we reach
a column in which there is a vertex from Fδ(Π) before reaching any column in which there is
a vertex from Π. We prove that the neighbor of x to the right (i.e., to the direction in which
we reach a column with a vertex from Fδ(Π)) is farther from Π, compared to x. The proof
of the latter fact will rely on a more �ne-grained case analysis as well as on Condition (2) of
Theorem 3.2.

The actual proof. The overview showed how to handle the cases in which v2,j ∈ Π or
v2,j ∈ Fδ(Π). Thus, we focus on proving the case in which

v2,j /∈ Π ∪ Fδ(Π) . (C.1)

We start by limiting our analysis to a local neighborhood in the graph G2,n, and introducing
some additional notation. These will rely on the following observation:

Claim C.4.1. There exists a column to the left of column j with a vertex from Π ∪ Fδ(Π),
and a column to the right of column j with a vertex from Π ∪ Fδ(Π). Moreover, the �rst such
column that we encounter when walking from x to one direction (i.e., to the left or to the right)
contains a vertex from Π, and the �rst such column that we encounter when walking from x to
the other direction contains a vertex from Fδ(Π).

Proof. Since Π is Fδ-closed, and relying on Corollary 4.2, there exists a path from x to Π (resp.,
to Fδ(Π)) such that any vertex subsequent to x on the path is neither in Fδ(Π) (resp., in Π)
nor adjacent to Fδ(Π) (resp., to Π). Also note that column j does not contain a vertex from
Π ∪Fδ(Π) (since x = v1,j /∈ Π ∪Fδ(Π), and relying on Eq. (C.1)). Thus, both paths that exist
according to Corollary 4.2 end in columns either to the right or to the left of column j.

Now, observe that a column in the graph cannot contain one vertex from Π and another
vertex from Fδ(Π) (since δ ≥ 3, and the vertices in the column are adjacent). Also note that if
a column contains a vertex from a set Π′, then any path going through the column intersects
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Π′ or a vertex adjacent to Π′. Therefore, the path from x to Π cannot intersect a column in
which there is a vertex from Fδ(Π), and the path from x to Fδ(Π) cannot intersect a column
in which there is a vertex from Π. The claim follows. �

Denote by jR ∈ [n] the �rst column to the right of column j such that one of the vertices
in the column is in Π ∪ Fδ(Π); that is, jR = min{j′ > j : ∃i ∈ {1, 2}, vi,j′ ∈ Π ∪ Fδ(Π)}.
Similarly, denote jL = max{j′ < j : ∃i ∈ {1, 2}, vi,j′ ∈ Π ∪ Fδ(Π)}. Also, denote by iR the row
of the vertex in column jR that is in Π ∪ Fδ(Π) (or iR = 1, if both vertices in column jR are
in Π ∪ Fδ(Π)); that is, iR = min{i ∈ {1, 2} : vi,jR ∈ Π ∪ Fδ(Π)}. Denote iL in an analogous
way. Without loss of generality, assume that viL,jL ∈ Π and that viR,jR ∈ Fδ(Π). The rest of
the proof will focus only on columns jL, ..., jR in the graph.12

Now, let x′ = v1,j+1 be the vertex to the right of x (indeed, it is possible that x′ = v1,jR , in
case jR = j+ 1). We will prove that ∆(x′,Π) = ∆(x,Π) + 1. Figure 6 depicts the relevant part
of the graph, re�ecting some of our assumptions and notations at this point.

x x′

jL j j + 1 jR

viL,jL ∈ Π

x, v2,j /∈ Π ∪ Fδ(Π)

viR,jR ∈ Fδ(Π)

Figure 6: The relevant part of the graph G2,n, re�ecting our assumptions and notations at this
point (as well as an additional, unjusti�ed assumption that jR 6= j + 1). Note that columns
jL + 1, ..., jR − 1 do not contain vertices from Π ∪ Fδ(Π).

Before proceeding, let us de�ne one more term. For any two vertices vi′,j′ and vi′′,j′′ in the
graph, a path from vi′,j′ to vi′′,j′′ is called a straight simple path if it is comprised of a shortest
path from vi′,j′ to vi′,j′′ , and then (if i′ 6= i′′) a step from vi′,j′′ to vi′′,j′′ . That is, we �rst walk
�within the row�, and then, if needed, conclude with a step to the other row. We will frequently
rely on the following simple observation: If there exists a path of length k between two vertices
in the graph, then there exists a straight simple path of length k between the vertices. Thus,
for any vertex vi′,j′ and set Π′ ⊆ G2,n, to prove that ∆(vi′,j′ ,Π

′) ≥ k, it su�ces to prove that
any straight simple path from vi′,j′ to Π′ is of length at least k.

To prove that ∆(x′,Π) = ∆(x,Π) + 1, we show that any straight simple path from x′ to Π
is of length at least ∆(x,Π) + 1. Note that, since v2,j+1 /∈ Π, such a path starts by walking
from x′ either to the left or to the right (where v2,j+1 /∈ Π is since the �rst column to the right
of column j with a vertex from Π ∪ Fδ(Π) contains a vertex from Fδ(Π), so it cannot contain
a vertex from Π).

12In the case of the circular ladder graph, the argument is slightly di�erent in terms of notation. Assume that
the vertices of the graph are organized in two rows of n vertices, similar to the grid, such that the left-most
and right-most vertices in each row are adjacent. In this case, it is possible that j ∈ {1, n}, and thus it does
not necessarily hold that jR > j and jL < j. However, since the rest of the proof will depend only on columns
jL, ..., jR in the graph, we may assume without loss of generality that jL < j < jR. This is the only place in
which the proofs for the grid and for the circular ladder graphs di�er.
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Any straight simple path from x′ to Π that starts by walking to the left passes through x, and
is therefore longer than a shortest path from x to Π. Hence, to prove that ∆(x′,Π) = ∆(x,Π)+1,
it su�ces to show that any straight simple path from x′ to Π that starts by walking to the right
is of length at least ∆(x,Π) + 1. Note that such a path passes through v1,jR , since there are no
vertices from Π ∪ Fδ(Π) in columns j, ..., jR − 1. Thus, the length of such a path is at least

∆(x′, v1,jR) + ∆(v1,jR ,Π) . (C.2)

Since x /∈ Fδ(Π), it holds that ∆(x,Π)+1 ≤ δ. Thus, the value of the expression in Eq. (C.2)
can be smaller than ∆(x,Π)+1 only if it is at most δ−1. However, note that ∆(v1,jR ,Π) ≥ δ−1,
since there is a vertex from Fδ(Π) in column jR. Thus, the value of the expression in Eq. (C.2)
is smaller than ∆(x,Π)+1 only if the following conditions hold: ∆(x,Π) = δ−1, and x′ = v1,jR

(i.e., jR = j + 1), and ∆(x′,Π) = δ − 1. We prove that this case, in fact, does not happen.
More speci�cally, we prove that if ∆(x,Π) = δ − 1, and jR = j + 1, and ∆(x′,Π) = δ − 1, then
Π is not Fδ-closed, which is a contradiction.

Claim C.4.2. Assuming that v2,j /∈ Π ∪ Fδ(Π), and viL,jL ∈ Π, and ∆(x,Π) = δ − 1, and
jR = j + 1, and ∆(x′,Π) = δ − 1, it follows that Π is not Fδ-closed.

Assume, for a moment, that Claim C.4.2 holds. Then, the expression in Eq. (C.2) is lower
bounded by ∆(x,Π) + 1, which implies that any straight simple path from x′ to Π that starts
by walking to the right is of length at least ∆(x,Π) + 1. It follows that ∆(x′,Π) = ∆(x,Π) + 1,
which �nishes the current and last case (in which v2,j /∈ Π ∪ Fδ(Π)), and concludes the proof.
Thus, to conclude the proof it is just left to prove Claim C.4.2.

Proof of Claim C.4.2. First note that since column jR = j + 1 contains a vertex from Fδ(Π),
and ∆(x′,Π) = δ−1, it follows that v2,j+1 ∈ Fδ(Π). Figure 7 depicts columns jL, ..., j+ 1 = jR
of the graph, re�ecting our assumptions at this point.

x x′

jL j jR=
j+1

viL,jL ∈ Π

∆(x,Π) = ∆(x′,Π) = δ − 1

v2,j /∈ Π ∪ Fδ(Π)

v2,j+1 ∈ Fδ(Π)

Figure 7: Columns jL, ..., j+ 1 = jR of the graph G2,n, re�ecting our assumptions at this point.

Fact C.4.2.1. From the hypothesis of Claim C.4.2 it follows that j − jL = δ − 1.

Proof. To see that j − jL ≥ δ − 1, note that:

• If v1,jL ∈ Π, then, since ∆(x,Π) = δ−1, we get that δ−1 = ∆(x,Π) ≤ ∆(x, v1,jL) = j−jL.

• If v1,jL /∈ Π, then v2,jL ∈ Π (since one of the vertices in column jL is in Π). In this case,
the distance of v2,jL ∈ Π from v2,j+1 ∈ Fδ(Π) is at least δ. Thus, δ ≤ ∆(v2,jL , v2,j+1) =
j + 1− jL, which implies that j − jL ≥ δ − 1.
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To see that j − jL ≤ δ − 1, assume otherwise, and note that it implies that ∆(x,Π) ≥ δ,
which contradicts x /∈ Fδ(Π). This is true since any straight simple path from x to Π that
starts by walking to the right passes through x′; since ∆(x′,Π) = δ−1, such a path is of length
at least ∆(x, x′) + ∆(x′,Π) = δ. Conversely, any straight simple path from x to Π that starts
by walking to the left passes through v1,jL ; if indeed j − jL ≥ δ, then such a path is of length
at least ∆(x, v1,jL) + ∆(v1,jL ,Π) ≥ δ. �

To show that Π is not Fδ-closed, we rely on Condition (2) of Theorem 3.2: We show a vertex
v′ /∈ Π ∪ Fδ(Π) such that there does not exist z ∈ Fδ(Π) satisfying ∆(v′, z) < δ. In particular,
let v′ = v1,jL+1 be the vertex to the right of v1,jL . Since there are no vertices from Π ∪ Fδ(Π)
in columns jL + 1, ..., j, it holds that v′ /∈ Π ∪ Fδ(Π). We show that ∆(v′,Fδ(Π)) ≥ δ, which
implies that there does not exist z ∈ Fδ(Π) satisfying ∆(v′, z) < δ.

Fact C.4.2.2. From the hypothesis of Claim C.4.2 it follows that ∆(v′,Fδ(Π)) ≥ δ.

Proof. Note that v2,jL+1 /∈ Fδ(Π), since columns jL + 1, ..., j do not contain vertices from
Π∪Fδ(Π). Thus, any straight simple path from v′ to Fδ(Π) starts by walking either to the left
or to the right. Any path that starts by walking from v′ to the left goes through v1,jL . Since
a vertex in column jL is in Π, it holds that ∆(v1,jL ,Π) ≤ 1, and thus ∆(v1,jL ,Fδ(Π)) ≥ δ − 1.
Hence, any straight simple path from v′ to Fδ(Π) that starts by walking to the left is of length
at least ∆(v′, v1,jL) + ∆(v1,jL ,Fδ(Π)) ≥ δ.

Conversely, any straight simple path from v′ to Fδ(Π) that starts by walking to the right
passes through x′ (since there are no vertices from Π∪Fδ(Π) in columns jL + 1, ..., j). Relying
on Fact C.4.2.1, and on the fact that x′ /∈ Fδ(Π) (since ∆(x′,Π) = δ − 1), any such path is of
length at least ∆(v′, x′) + ∆(x′,Fδ(Π)) = (j + 1)− (jL + 1) + 1 = δ. �

By Condition (2) of Theorem 3.2, it follows that Π is not Fδ-closed, which concludes the
proof of Claim C.4.2. �

As mentioned in the discussion after the statement of Claim C.4.2, the proof of the latter
concludes the proof of Proposition C.4.
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