
On Being Far from Far
and on Dual Problems in Property Testing

Roei Tell
Department of Computer Science

Weizmann Institute of Science
roei.tell@weizmann.ac.il

November 29, 2015

Abstract

This work studies a new type of problems in property testing, called dual problems.
For a set Π in a metric space and δ > 0, denote by Fδ(Π) the set of elements that are
δ-far from Π. Then, in property testing, a δ-tester for Π is required to accept inputs from
Π and reject inputs from Fδ(Π). A natural dual problem is the problem of δ-testing the set
of “no” instances, that is Fδ(Π): A δ-tester for Fδ(Π) needs to accept inputs from Fδ(Π)
and reject inputs that are δ-far from Fδ(Π); that is, it rejects inputs from Fδ(Fδ(Π)).
When Π = Fδ(Fδ(Π)) the dual problem is essentially equivalent to the original one, but
this equality does not hold in general.

Many dual problems constitute appealing testing problems that are interesting by
themselves. In this work we study sets of the form Fδ(Fδ(Π)), and apply this study
to investigate several natural dual problems. In particular, we derive lower bounds and
upper bounds on the query complexity of several classes of natural dual problems: These
include dual problems of properties of functions (e.g., testing error-correcting codes and
testing monotone functions), of properties of distributions (e.g., testing equivalence to a
known distribution), and of various graph properties in the dense graph model and in
the bounded-degree model. We also show that testing any dual problem with one-sided
error is either trivial or requires a linear number of queries.

Keywords: Metric spaces, Property Testing, Closure Operator.

Contents

1 Introduction 1
1.1 On the non-triviality of the notion of Fδ-closed sets 3
1.2 Dual problems in property testing . 3
1.3 Fδ-closed sets and the operator Π 7→ Fδ(Fδ(Π)) 9
1.4 Our techniques . 12

2 Preliminaries 14

3 Sets of the form Fδ(Fδ(Π)) and Fδ-closed sets 15
3.1 Characterizations of Fδ-closed sets . 16
3.2 Detour: The mapping Π 7→ Fδ(Fδ(Π)) is a closure operator in P(Ω) 18
3.3 Existence and prevalence of sets that are not Fδ-closed 19
3.4 On the distance of points in Fδ(Fδ(Π)) from Π 21

4 Evaluating whether a set is Fδ-closed in two special cases 26
4.1 Graphical spaces and strongly Fδ-closed sets . 27
4.2 The Boolean hypercube and list-decodable codes 37

5 Dual problems in property testing 41
5.1 General results regarding the query complexity of dual problems 41
5.2 Testing duals of error-correcting codes . 44
5.3 Testing functions that are far from monotone . 45
5.4 Testing distributions that are far from a known distribution 49
5.5 Testing graphs that are far from having a property in the dense graph model . 57
5.6 Testing graphs that are far from having a property in the bounded-degree model 63
5.7 A generalization: On being δ′-far from δ-far . 80

6 Open questions 82

Acknowledgments 84

References 84

Appendix A Additional results regarding the operator Π 7→ Fδ(Fδ(Π)) 89

Appendix B Sets with “holes” are not Fδ-closed 91

Appendix C Examples of Fδ-tight spaces 93

i

1 Introduction

Let (Ω, ∆) be a metric space,1 let Π ⊆ Ω be a set in this space, and let δ > 0 be a distance
parameter. A natural object that we are frequently interested in is the set of points in Ω that
are δ-far from Π, denoted Fδ(Π) = {x ∈ Ω : ∆(x, Π) ≥ δ}. Viewing Fδ as an operator on the
power set of Ω, a natural question is what happens when applying the operator Fδ twice;
that is, what is the structure of sets of the form Fδ(Fδ(Π)) for some Π ⊆ Ω. One might
mistakenly expect that for any metric space Ω, set Π ⊆ Ω, and distance parameter δ > 0 it
holds that Fδ(Fδ(Π)) = Π. However, although it is always true that Π ⊆ Fδ(Fδ(Π)), it is
not necessarily true that Π = Fδ(Fδ(Π)). Furthermore, in some spaces, most notably in the
Boolean hypercube, the equality is even typically false (i.e., it is false for most subsets; see
Section 1.1). In fact, the study of sets of the form Fδ(Fδ(Π)) turns out to be quite complex.
To the best of our knowledge, this basic question has not been explored so far.

The study of sets of the form Fδ(Fδ(Π)) has an interesting application in theoretical
computer science, specifically in the context of property testing (see, e.g., [Gol10b]). In prop-
erty testing, an ε-tester for Π ⊆ {0, 1}n is required to accept every input in Π, with high
probability, and reject every input in Fδ(Π), with high probability, where δ = ε · n refers
to absolute distance, and ε > 0 refers to the relative distance.2 This constitutes a promise
problem, in which the set of “yes” instances is Π and the set of “no” instances is Fδ(Π).
One plausible question in this context is what is the relationship between the complexity of
ε-testing the set of “yes” instances Π and the complexity of the dual problem of ε-testing the
set of “no” instances Fδ(Π). In many cases, the “far set” (i.e., Fδ(Π)) actually constitutes a
natural property, making the corresponding dual problem an interesting testing problem by
itself (see elaboration in Section 1.2).

For any set Π ⊆ {0, 1}n and δ = ε · n, an ε-tester for the dual problem of Π is required to
accept every input in Fδ(Π), with high probability, and reject every input in Fδ(Fδ(Π)), with
high probability. Indeed, if Π = Fδ(Fδ(Π)), then the problem of ε-testing Π is essentially
equivalent to its dual problem. We call such sets Fδ-closed:

Definition 1.1 (Fδ-closed sets). For a metric space Ω, a parameter δ > 0, and a set Π ⊆ Ω, if
Π = Fδ(Fδ(Π)), then we say that Π is Fδ-closed in Ω.

However, as mentioned above, not all sets are Fδ-closed, and for some spaces and δ
parameters, most sets are actually not Fδ-closed. Moreover, in many cases it is unfortunately
non-obvious to determine whether Π is Fδ-closed or not.

Key contributions. The contributions in this work consist of two parts, which are presented
as follows. First, in Section 1.2 we introduce dual problems in property testing, motivate their
study, and obtain results regarding their complexity. We show that in general, testing dual

1Throughout the paper we will usually identify a metric space (Ω, ∆) with its set of elements Ω, in which
case the metric is implicit and denoted by ∆.

2Being consistent with the property testing literature, we let ε > 0 denote the relative (Hamming) distance.
In contrast, it is more convenient to analyze the δ-far operator while referring to absolute distance (denoted by
δ > 0). Note that the abstract indeed used different notations, merely for simplicity of presentation.

1

problems with one-sided error requires a linear number of queries, unless the problem is
trivial to begin with; this stands in sharp contrast to testing standard problems with one-
sided error. In addition, we determine the complexity of several specific natural dual problems,
corresponding to well-known testing problems; these dual problems include:

• Testing whether a string is far from being a codeword in an error-correcting code.

• Testing whether a function is far from being monotone.

• Testing whether a distribution is far from being uniform.

• Testing whether a graph is far from being k-colorable in the dense graph model.

• Testing whether a graph is far from being connected in the bounded-degree model.

• Testing whether a graph is far from being cycle-free in the bounded-degree model.

Some of these dual problems are essentially equivalent to their original problems (i.e., the
corresponding sets Πn ⊆ {0, 1}n are Fδ-closed, for δ = ε · n; see Definition 1.3), and in these
cases the query complexity of the dual is the same as the query complexity of the original.
However, other dual problems mentioned above are different from the original problems (i.e.,
Πn 6= Fδ(Fδ(Πn))), and sometimes even significantly different; in these cases we present a
tester for the dual problem, which is different from known testers for the original problem,
and sometimes also has higher query complexity. Beyond the immediate implications of
these results (of determining the complexity of specific problems), their proofs typically also
include structural results related to the relevant property.

The second topic in the paper is the generic study of sets of the form Fδ(Fδ(Π)) in metric
spaces. In Section 1.3 we present several necessary and/or sufficient conditions for a set
to be Fδ-closed; some of these conditions are applicable in general metric spaces, whereas
others apply only in specific classes of metric spaces (e.g., in graphical metric spaces). Two
interesting general observations in this context are that (1) the condition of being Fδ-closed
can be presented as a collection of local conditions, where each local condition depends only
on a δ-neighborhood in the space (see discussion after Theorem 1.16); and (2) the operator
Π 7→ Fδ(Fδ(Π)) has the structure of a closure operator on the power set of Ω (see Section 1.3.1
for details on the latter).

The two topics mentioned above appear very natural to us, and they are related to prob-
lems studied for a long time. However, even given the results in this work, very little is
currently known about either of them. In particular, with regards to dual testing problems,
the current work proves one general lower bound (on testing with one-sided error), and sev-
eral specific upper bounds. The latter are proved mainly by reductions to tolerant testing; see
Section 1.4 for an elaboration on our techniques. We thus suggest, in Section 6, several broad
questions concerning dual testing problems that could promote the understanding of both
“far-from-far” sets and dual testing problems.

2

1.1 On the non-triviality of the notion of Fδ-closed sets

As mentioned in the beginning of the introduction, one might mistakenly expect that for
every Ω and δ, all sets will be Fδ-closed. Indeed, for any metric space Ω, taking a value of δ
such that δ ≤ infx 6=y∈Ω{∆(x, y)} ensures that all sets are trivially Fδ-closed, since for any Π ⊆
Ω it holds that Fδ(Π) = Ω \Π. In contrast, taking a value of δ such that δ > supx,y{∆(x, y)}
ensures that all non-trivial subsets are not Fδ-closed, since any Π 6= ∅ satisfies Fδ(Π) = ∅
and Fδ(Fδ(Π)) = Ω.

The following theorem, which we prove in Section 3.3, asserts that for any δ in between
these two values there exist both Fδ-closed sets and sets that are not Fδ-closed.

Theorem 1.2 (non-triviality of the notion of Fδ-closed sets). For any metric space Ω, if
δ ∈

(
infx 6=y{∆(x, y)}, supx 6=y{∆(x, y)}

)
, then there exists a non-trivial Π ⊆ Ω that is Fδ-closed

and a non-trivial Π′ ⊆ Ω that is not Fδ-closed.

In addition to the existence of sets that are not Fδ-closed, in some metric spaces such sets
are actually the typical case, rather than the exception. Most notably, in the Boolean hyper-
cube it holds that a (1− o(1))-fraction of the sets are not Fδ-closed. (This is the case since
for a random set Π ⊆ {0, 1}n and δ ≥ 3, with high probability it holds that Fδ(Π) = ∅.) In
addition, consider a metric space in which there exist N pairwise-disjoint δ-neighborhoods,
each containing at most log(N) points; in such a space, most sets are not Fδ-closed (for exact
statements see Propositions 3.11 and 3.12).

Furthermore, in contrast to what one might expect, points in Fδ(Fδ(Π)) might not even
be close to Π. In particular, in Section 3.4 we show that there exist spaces Ω and sets Π ⊆ Ω
such that some points in Fδ(Fδ(Π)) \Π are relatively far from Π (i.e., almost δ-far from Π);
such sets also exist in the Boolean hypercube. There even exist spaces Ω, parameters δ > 0,
and sets Π ⊆ Ω such that all points in Fδ(Fδ(Π)) \Π are almost δ-far from Π.

1.2 Dual problems in property testing

For a space Ω = Σn, and a set Π ⊆ Σn, and ε > 0, the standard property testing problem is
the one of ε-testing Π, and the corresponding dual problem is the one of ε-testing Fε·n(Π).

What is the meaning of dual testing problems? First, for some properties, the dual prob-
lem is an appealing property that is interesting by itself. Consider, for example, the set of
distributions that are far from uniform, the set of functions that are far from monotone, or the
set of graphs that are far from being connected. All these sets constitute natural properties,
and one might be interested in testing them. Secondly, in general, for every property Π the
dual problem is intuitively related to the original problem: It can be viewed as distinguishing
between inputs that any ε-tester for Π must reject, and inputs that need to be significantly
changed in order to be rejecetd by any ε-tester for Π. Thirdly, the query complexity of a testing
problem and of its dual problem are related: Specifically, the complexity of a dual problem
is lower bounded by the complexity of the original problem (see Observation 1.4).

Similar to standard testing problems, in dual problems we are also interested in the
asymptotic complexity. That is, for a property Π = {Πn}n∈N such that Πn ⊆ Σn, we seek

3

either an asymptotic upper bound on the query complexity of ε-testing Fε·n(Πn) for every
ε > 0, or a lower bound for some value of ε > 0. Accordingly, for a property Π = {Πn}n∈N,
we will usually refer to the dual problem of the problem of testing Π, or in short to the dual
problem of Π.

Definition 1.3 (dual problems that are equivalent to the original problems). For a set Σ, let Π =
{Πn}n∈N such that Πn ⊆ Σn. If for every sufficiently small ε > 0 and sufficiently large n it holds
that Πn is Fε·n-closed, then the problem of testing Π is equivalent to its dual problem. Otherwise,
the problem of testing Π is di�erent from its dual problem.

We stress that even if a standard testing problem Π is equivalent to its dual, it does not
imply that the standard problem is the “dual problem of its dual”. This is since the definition
of dual problems is inherently different than that of standard problems, with respect to the
dependence on the proximity parameter ε > 0. In particular, in standard problems, the sets
of “yes” instances {Πn}n∈N are fixed, and the sets of “no” instances {Fε·n(Πn)}n∈N depend
on the proximity parameter ε > 0; in contrast, in dual problems, both the sets of “yes”
instances {Fε·n(Πn)}n∈N and the sets of “no” instances {Fε·n(Fε·n(Πn))}n∈N depend on ε.

The current section corresponds to Section 5 of the text, and is organized as follows.
In Section 1.2.1 we state general results regarding the query complexity of dual problems;
in particular, we show a strong separation between standard testing problems and dual problems
with respect to testing with one-sided error. We then study specific natural dual problems,
corresponding to well-known properties: In Section 1.2.2 we focus on properties of functions,
in Section 1.2.3 we focus on properties of distributions, and in Section 1.2.4 we focus on graph
properties. In Section 1.2.5 we briefly mention a more general notion of dual problems,
obtained by considering two different proximity parameters.

1.2.1 General results regarding the query complexity of dual problems

The query complexity of any dual problem is closely related to the query complexity of its
original problem. First, since for every set Π ⊆ Σn and every δ > 0 it holds that Π ⊆
Fδ(Fδ(Π)), an ε-tester for Fε·n(Π) always yields an ε-tester for Π, by complementing the
output of the tester. (This is since the promise problem that corresponds to the original prob-
lem is (Π,Fε·n(Π)), whereas the promise problem for the dual is (Fε·n(Π),Fε·n(Fε·n(Π))) ⊇
(Fε·n(Π), Π).) Thus:

Observation 1.4 (the query complexity of dual problems). The query complexity of a dual problem
is lower bounded by the query complexity of its original problem.

Needless to say, if the dual problem is equivalent to its original problem, then their query com-
plexities are identical.

Building on Observation 1.4, in Section 5.1 we show a lower bound for testing dual
problems with one-sided error, regardless of whether the dual problem is equivalent to its
original. Recall that in property testing, testers with one-sided error are ones that always
accept “yes” inputs; in the case of dual problems, these are testers that always accept inputs
from Fε·n(Π).

4

Theorem 1.5 (testing dual problems with one-sided error). For a set Σ, let Π = {Πn}n∈N such
that Πn ⊆ Σn. Suppose that for all sufficiently large n it holds that Πn 6= ∅ and that there exist
inputs that are Ω(n)-far from Πn. Then, the query complexity of testing the dual problem of Π with
one-sided error is Ω(n).

It follows that testing the dual problem of a (non-empty) property with one-sided error
and query complexity o(n) is possible only if the distance of every input from the property
is o(n). However, in this case both the original problem and its dual are trivial to begin with,
since for any ε > 0 and sufficiently large n it holds that Fε·n(Πn) = ∅.

The fact that testing dual problems with one-sided error is either trivial or requires a
linear number of queries stands in sharp contrast to standard property testing problems. This is
since in standard property testing problems, essentially for any sub-linear function q : N→
N, there exists a property of Boolean functions such that the query complexity of testing it
with one-sided error is Θ(q(n)) [GKNR12].

1.2.2 Dual problems in testing properties of functions

When testing properties of functions, we identify each function f : [n] → Σ with its evalu-
ation sequence, viewed as f ∈ Σn. The metric space is thus Σn, and the (absolute) distance
between two functions is the Hamming distance between their string representations in Σn;
equivalently, it is the number of inputs on which they disagree.

Many well-known properties of functions induce an error-correcting code with constant
relative distance in Σn. The following theorem, which is proved in Section 5.2, asserts that
for such properties, the dual testing problem is equivalent to the original problem.

Theorem 1.6 (testing duals of error-correcting codes). For any error-correcting code with con-
stant relative distance, the problem of testing the code is equivalent to its dual problem.

One fundamental problem in this field that involves testing error-correcting codes is the
problem of linearity testing [BLR90], which consists of testing whether a function ϕ : G → H,
where G and H are groups, is a group homomorphism (see [Guo15] for sufficient conditions
on G and H such that the set of homomorphisms G → H is an error-correcting code).
Another fundamental problem that induces an error-correcting code is that of low-degree
testing [RS96], which consists of testing the set of low-degree multivariate polynomials over
a finite field.

A notable example of a property of functions that does not induce an error-correcting
code is the property of monotone functions, first considered for testing in [GGL+00]. For a
poset [n] and an ordered set Σ, a function f : [n] → Σ is monotone if for every x, y ∈ [n] such
that x ≤ y it holds that f (x) ≤ f (y). Nevertheless, the problem of testing this property is
also equivalent to its dual problem:

Theorem 1.7 (testing whether a function is far from monotone). The problem of testing monotone
Boolean functions over the Boolean hypercube is equivalent to its dual problem.

5

In fact, in Section 5.3 we prove a broad generalization of Theorem 1.7, as follows. For
every n ∈ N, consider functions from a poset ([n],≤) to a range Σn, and assume that the
width of the poset is at most n

2·|Σn| , where the width of a poset is the size of a maximum
antichain in it. In this case, the problem of testing monotone functions from [n] to Σn is
equivalent to its dual problem. Note that the width requirement is quite mild: In particular,
an `-dimensional hypercube has size n = 2` and width O(2`/

√
`) = o(n).

1.2.3 Dual problems in distribution testing

Turning to distribution testing [BFR+13], one well-known problem is as follows: Fixing a
predetermined distribution D over [n], an ε-tester gets independent samples from an input
distribution I, and its task is to determine whether I = D or I is ε-far from D in the `1
norm. In Section 5.4 we consider the dual problem of this problem, which consists of testing
whether a distribution is far from the predetermined distribution.

When considering the worst-case, over all families of distributions, the distribution testing
problem is different from its dual problem.

Proposition 1.8 (testing whether a distribution is far from a known distribution). There exists a
distribution family {Dn}n∈N such that the problem of testing whether an input distribution In is
identical to Dn is different from its dual problem.

However, for several specific classes of distribution families, this problem is equivalent to
its dual problem. In particular,

Theorem 1.9 (testing whether a distribution is far from a predetermined distribution that has low `∞
norm). Let {Dn}n∈N be a family of distributions such that limn→∞ ‖Dn‖∞ = 0 (where ‖Dn‖∞ =
maxi∈[n]{Prr∼Dn [r = i]}). Then, the problem of testing whether an input distribution In is identical
to Dn is equivalent to its dual problem.

Theorem 1.9 implies that the problem of testing whether an input distribution is far from
being the uniform distribution is equivalent to its original problem. Some distribution families
that do not meet the condition of Theorem 1.9 also induce dual problems that are equivalent
to their original problems: In particular, this applies to distribution families that assign Ω(1)
probabilistic mass to every element in their support (see Proposition 5.13).

1.2.4 Dual problems in testing graph properties

When testing graph properties, we are interested in metric spaces in which the points are
graphs, and the absolute distance between two graphs is the size of the symmetric difference
of their edge-sets. A property of graphs is a set of graphs that is closed under taking isomor-
phisms of the graphs. We consider dual problems in two models of testing graph properties:
The dense graph model [GGR98] and the bounded-degree model [GR02]. In both models,
many well-known testing problems are different from their dual problems.

6

1.2.4.1 The dense graph model

In the dense graph model [GGR98], an ε-tester queries the adjacency matrix of a graph over v
vertices, and tries to determine whether the graph has some property or ε · (v

2) edges need to
be added and/or removed from the edge-set of the graph in order for it to have the property.
In Section 5.5 we consider several dual problems in this model, corresponding to well-known
testing problems.

One well-known problem in this model is that of testing whether a graph is k-colorable
(see [GGR98]). We consider the dual problem, of testing whether a graph is far from being
k-colorable. This problem is different from its original problem, but its query complexity is
nevertheless O(1), as is the case for the original problem.

Theorem 1.10 (testing whether a graph is far from being k-colorable). For any k ≥ 2, the problem
of testing whether a graph is k-colorable is different from its dual problem. Nevertheless, the query
complexity of the dual problem is O(1).

However, unlike the complexity of the original problem, the constant in the O(1) notation
in Theorem 1.10 might be huge; in particular, our upper-bound has a tower-type dependence
on the reciprocal of the proximity parameter. (This is the case since our proof relies on a result
by Fischer and Newman [FN07], which in turn relies on Szemerédi’s regularity lemma.)

The following proposition asserts that two other well-known problems in the dense graph
model are different from their dual problems. The first problem is testing, for ρ ∈ (0, 1),
whether a graph on v vertices has a clique of size ρ · v (see [GGR98]). The second is the graph
isomorphism problem (see [Fis05, FM08]): For an explicitly known graph G that is fixed in
advance, the problem consists of testing whether an input graph is isomorphic to G.

Proposition 1.11 (ρ-clique and graph isomorphism).

1. For any ρ ≤ 1
2 , the problem of testing whether a graph on v vertices has a clique of size ρ · v is

different from its dual problem.

2. There exist graph families {Gn}n∈N such that testing whether an input graph Hn is isomorphic
to Gn is different from its dual problem.

In contrast to the dual problem of k-colorability, we do not know what is the query
complexity of the two dual problems mentioned in Proposition 1.11.

1.2.4.2 The bounded-degree model

In the bounded-degree model [GR02] we are interested only in graphs that are very sparse.
In particular, we assume that the degree of every vertex in an input graph is at most d, where
typically d = O(1). A testing scenario in this model is as follows. Given an input graph
over n vertices, we fix in advance an arbitrary ordering of the neighbors of each vertex in the
graph. Then, an ε-tester may issue queries of the form “who is the ith neighbor of u ∈ [n]?”,
and needs to determine whether the graph has some property or ε · d · n edges need to be
added and/or removed from the edge-set of the graph in order for it to have the property. In

7

Section 5.6 we consider several dual problems in this model, corresponding to well-known
testing problems.

One well-known problem in this model is that of testing whether a graph is connected
(see [GR02]). We consider the dual problem, of testing whether a graph is far from being
connected. Interestingly, although the dual problem is “very different” from the original
one (in the sense that Fδ(Fδ(Πn)) contains graphs that are Ω(n)-far from being connected),
the query complexity of the dual problem is nevertheless very close to that of the original
problem.

Theorem 1.12 (testing whether a graph is far from being connected). For any d ≥ 3, the problem
of testing whether a graph is connected is different from its dual problem. Nevertheless, the query
complexity of the dual problem is poly(1/ε).

Another well-known problem in this model is testing cycle-free graphs (see [GR02]). We
consider the dual problem, of testing whether a graph is far from being cycle-free.

Theorem 1.13 (testing whether a graph is far from being cycle-free). For any d ≥ 3, the problem of
testing whether a graph is cycle-free (i.e., a forest) is different from its dual problem. Nevertheless, the
query complexity of the dual problem is poly(1/ε).

The well-known problem of testing bipartiteness in this model is also not equivalent to
its dual problem, but we do not know what its query complexity is.

Proposition 1.14 (testing whether a graph is far from bipartite). The problem of testing whether a
graph is bipartite is different from its dual problem.

1.2.5 A generalization: On being δ′-far from δ-far

So far, the dual problem of a property Π = {Πn}n∈N was defined using a single proximity
parameter ε > 0. This parameter ε > 0 determines both the “yes” inputs for testing (i.e.,
Fε·n(Πn)) and the distance of the “no” inputs from the “yes” inputs (i.e., it also determines
Fε·n(Fε·n(Πn)). A more general notion of dual testing problems is obtained by considering
two proximity parameters, ε > 0 and ε′ > 0, such that ε > 0 determines the “yes” inputs
for testing, and ε′ > 0 is the proximity parameter that determines the distance of the “no”
inputs form the “yes” inputs; that is, the generalized dual problem consists of distinguishing
between Fε·n(Πn) and Fε′·n(Fε·n(Πn)).

Generalized dual problems are actually more similar to standard testing problems, com-
pared to non-generalized dual problems. This is the case since we can fix ε > 0, and define
the generalized ε-dual problem as the problem of testing the fixed property {Fε·n(Πn)}n∈N

with an arbitrarily small proximity parameter ε′ > 0.3 The latter definition is just the stan-
dard definition of property testing, for the fixed property {Fε·n(Πn)}n∈N. In Section 5.7 we
formalize this notion, and show the following (informally stated):

Theorem 1.15 (testers for generalized dual problems; informal). For every constant ε, ε′ > 0:

3When fixing ε > 0, and letting ε′ > 0 be arbitrary, we focus mainly on the setting of ε′ ≤ ε. This focus is
justified by the fact that the case of ε′ > ε reduces to the case of ε′ ≤ ε (see Observation 5.37).

8

1. The query complexity of the generalized dual problem of k-colorable graphs in the dense graphs
model is F(ε, ε′), for some function F that does not depend on n.4

2. The query complexity of the generalized dual problem of connected graphs in the bounded-degree
graphs model is poly (1/ min{ε′, ε}).

3. The query complexity of the generalized dual problem of cycle-free graphs in the bounded-degree
graphs model is poly (1/ min{ε′, ε}).

1.3 Fδ-closed sets and the operator Π 7→ Fδ(Fδ(Π))

Our results in this section are intended to facilitate the analysis of sets of the form Fδ(Fδ(Π)),
and in particular to simplify the identification of sets that are Fδ-closed.

1.3.1 General metric spaces

The following are several equivalent characterizations of all Fδ-closed sets in any metric space
Ω and for any δ > 0. A more extensive list of such characterizations appears in Theorem 3.2
in Section 3.1.

Theorem 1.16 (characterizations of Fδ-closed sets). For any Ω, δ > 0, and Π ⊆ Ω, the following
statements are equivalent:

1. Π is Fδ-closed (i.e., Π = Fδ(Fδ(Π))).

2. For every x /∈ Π ∪ Fδ(Π) there exists z ∈ Fδ(Π) such that ∆(z, x) < δ.

3. There exists Π′ ⊆ Ω such that Π = Fδ(Π′).

4. There exists Π′ ⊆ Ω such that Π =
⋂

x∈Π′ Fδ({x}).
Condition (2) of Theorem 1.16 is the basic technical tool that we use to analyze Fδ-closed

sets when lacking a more convenient tool for the specific case. Interestingly, this condition is
actually a collection of local conditions, where by “local” we mean that each condition depends
only on a ball of radius 2δ in Ω.5 Thus, if Π violates one of these conditions, then it is not
Fδ-closed, and otherwise it is Fδ-closed.

Condition (3) of Theorem 1.16 implies, in particular, that all sets of the form Fδ(Π′), for
some Π′ ⊆ Ω, are Fδ-closed. Thus, it is always true that Fδ(Fδ(Fδ(Π))) = Fδ(Π), which
implies that repeated applications of the operator Fδ on a set Π yield a sequence that consists
only of the sets Π, Fδ(Π), and Fδ(Fδ(Π)). Moreover, if Π is Fδ-closed, then the sequence
consists only of Π and Fδ(Π).

Condition (4) of Theorem 1.16 implies that the potentially small collection {Fδ({x})}x∈Ω
“generates” the collection of all Fδ-closed sets (i.e., a set is Fδ-closed if and only if it is an
intersection of sets from {Fδ({x})}x∈Ω).

4The function F originates from the query complexity of the tolerant tester of Fischer and Newman [FN07],
which has a tower-type dependency on the proximity parameters (see [FN07, Sec. 7]).

5Each condition depends on a ball of radius 2δ, since Condition (2) requires the existence of z ∈ Fδ(Π) such
that ∆(z, x) < δ, which holds if z is in the open radius-δ ball around x and the open radius-δ ball around z does
not intersect with Π.

9

The operator Π 7→ Fδ(Fδ(Π)) is a closure operator. For a space Ω and parameter δ > 0,
consider the operator Fδ ◦ Fδ (i.e., Π 7→ Fδ(Fδ(Π))) on the power set of Ω. In Section 3.2 we
show that this operator satisfies the following:

Proposition 1.17 (structural results regarding Π 7→ Fδ(Fδ(Π))). For any Ω, δ > 0, and Π, Π′ ⊆
Ω it holds that:

1. (extensiveness) Π ⊆ Fδ(Fδ(Π)).

2. (upwards monotonicity) If Π ⊆ Π′ then Fδ(Fδ(Π)) ⊆ Fδ(Fδ(Π′)).

3. (idempotency) F (4)
δ (Π) = Fδ(Fδ(Π)) (where F (4)

δ means four applications of Fδ).

The three assertions in Proposition 1.17 suffice to deduce that the operator Π 7→ Fδ(Fδ(Π))
is a closure operator (or hull operator) on the power set of Ω, a well-studied notion in many
mathematical fields including algebra, topology, and matroid theory (see, e.g., [KD06, Chp.
2] or [vdV93, Chp. 1]). A closure operator is characterized by a corresponding collection of
closed sets, which are the sets in its image; in our case, this is exactly the collection of Fδ-
closed sets. A general result about closure operators, which holds also in the specific case of
Π 7→ Fδ(Fδ(Π)), is that the closure of a set Π (i.e., the image of the set under the operator)
is the unique intersection of all closed sets that contain the set Π (see Proposition 3.6).

1.3.2 Graphical metric spaces

If the metric space Ω is an undirected connected graph equipped with the shortest path
metric, then we call it a graphical metric space. In this section we show several conditions
that are either necessary or sufficient to deduce that a set in a graphical space is Fδ-closed.
We also study these conditions in the special case of the Boolean hypercube, since the latter
is important for property testing and since it belongs to several interesting graph classes.

One necessary condition for a set (in a graphical space) to be Fδ-closed is that, loosely
speaking, it does not “fully enclose” some vertex x /∈ Π∪Fδ(Π). More precisely, if a set Π is
Fδ-closed, then every x /∈ Π∪Fδ(Π) is connected to Fδ(Π) via a path that does not intersect
Π nor any vertex adjacent to Π (see Proposition 4.1). However, this necessary condition is
not a sufficient one: There exist graphs, values of δ > 0 and sets that satisfy this condition
but are not Fδ-closed. Moreover, the condition is not a sufficient one even in the special case
of the Boolean hypercube (see Proposition 4.3).

The following sufficient condition for a set in a graphical space to be Fδ-closed, which we
study in Section 4.1.2, is a strengthening of the aforementioned necessary condition.

Definition 1.18 (strongly Fδ-closed). For a graphical Ω and δ > 0, a set Π ⊆ Ω is strongly Fδ-

closed if every x /∈ Π ∪ Fδ(Π) lies on a shortest path (i.e., a path of length δ) from Π to Fδ(Π).

Indeed, as implied by its name, a set that is strongly Fδ-closed is Fδ-closed (see the
discussion after Proposition 4.6). An equivalent definition of being strongly Fδ-closed is as
follows: A set Π is strongly Fδ-closed if and only if, for every x /∈ Π ∪ Fδ(Π), there exists a
neighbor x′ such that ∆(x′, Π) = ∆(x, Π) + 1.

10

The condition of being strongly Fδ-closed might be more convenient to evaluate in some
cases, compared to the characterizations in Theorem 1.16, since it might be easier to argue
about the immediate neighbors of x /∈ Π ∪ Fδ(Π) instead of about the δ-neighborhood of
x (i.e., about a vertex z ∈ Fδ(Π) such that ∆(x, z) < δ) as is required in Condition (2) of
Theorem 1.16. However, being strongly Fδ-closed is not a necessary condition for being Fδ-
closed: There exist graphical spaces Ω, parameters δ > 0 and subsets Π ⊆ Ω such that Π is
Fδ-closed but not strongly Fδ-closed. Furthermore, such sets exist even in the special case of
the Boolean hypercube.

Proposition 1.19 (strongly Fδ-closed is not a necessary condition for Fδ-closed in the Boolean hy-
percube). For n ≥ 9 and 4 ≤ δ ≤ n

2 such that δ − 1 divides n, there exist sets in the Boolean
hypercube that are Fδ-closed but are not strongly Fδ-closed.

Nevertheless, there exists graphs and values of δ > 0 such that every Fδ-closed set in
the graph is also strongly Fδ-closed. In Section 4.1.3 and Appendix C we briefly study the
question of for which graphs (and for which values of δ > 0) does it holds that a set is
Fδ-closed if and only if it is strongly Fδ-closed. In particular, we observe that this holds for
any graph when δ = 2 (but not when δ ≥ 3). We also show that there exist graph families
such that for every δ > 0, every Fδ-closed set in the graph is also strongly Fδ-closed; these
graph families include simple paths, cycles, and all 2× n grids.

A different direction of study, which we present in Section 4.1.4, is as follows: Instead
of fixing δ and asking which sets are Fδ-closed, we ask, for a fixed set Π ⊆ Ω, what are
the values of δ for which Π is strongly Fδ-closed, Fδ-closed, or not Fδ-closed. Interestingly,
for any set Π in a graphical space with bounded diameter, the values of δ for which Π is
Fδ-closed constitute a single bounded interval. This interval starts at δ = 1 (since every set is
F1-closed), and for any set Π we denote the right-end of this interval by δC(Π) (i.e., δC(Π) is
the maximal value for which Π is Fδ-closed). A similar claim holds for values of δ for which
Π is strongly Fδ-closed. That is –

Proposition 1.20 (values of δ for which a set is Fδ-closed and strongly Fδ-closed). For a graphical
Ω with bounded diameter and a non-trivial Π ⊆ Ω, there exist two integers δC(Π) and δSC(Π) such
that δSC(Π) ≤ δC(Π) and for every integer δ > 0 it holds that

1. Π is Fδ-closed if and only if δ ∈ [1, δC(Π)].

2. Π is strongly Fδ-closed if and only if δ ∈ [1, δSC(Π)].

In contrast, if the space Ω is not graphical, then a statement analogous to Item (1) in
Proposition 1.20 does not necessarily hold (see Proposition 4.13, and also recall that the
notion of strongly Fδ-closed sets was not defined for non-graphical metric spaces).

1.3.3 The Boolean hypercube

In the Boolean hypercube, for any fixed set Π, we can obtain a lower bound for δSC(Π) and
an upper bound for δC(Π), using coding-theoretic features of Π. In Section 4.2 we show such
bounds, and demonstrate that, in general, the bounds we show are far from being tight.

11

In particular, δC(Π) is smaller than the covering radius of Π, that is the minimal δ > 0 such
that every string x satisfies ∆(x, Π) ≤ δ. On the other hand, δSC(Π) is greater or equal to
the unique decoding distance of Π. In fact, we prove a stronger statement, as follows. A set Π
is called (δ, L)-list-decodable if every Hamming ball of radius δ contains at most L elements
from Π. Then:

Proposition 1.21 (
(
δ, n

δ − 1
)
-list-decodable codes are strongly Fδ-closed). For a non-trivial set Π in

the n-dimensional Boolean hypercube and δ > 0, if Π is
(
δ, n

δ − 1
)
-list-decodable, then Π is strongly

Fδ-closed.

Again, this sufficient condition for being strongly Fδ-closed is not a necessary one: There
exist sets that are strongly Fδ-closed for all values of δ ∈ [n− 1], but are not even (1, n)-list-
decodable. Nevertheless, in general, the requirement in Proposition 1.21 that every Hamming
ball contains at most n

δ − 1 elements cannot be significantly relaxed (see Proposition 4.20).

1.3.4 Digest

Figure 1 presents a summary of the sufficient conditions for a set to be Fδ-closed that were
presented in Section 1.3.

Relevant to the
Boolean Hypercube(

δ, n
δ − 1

)
-list-decodable

===⇒
6⇐===

Relevant to
Graphical Spaces

strongly Fδ-closed
===⇒
6⇐===

Relevant to
General Metric Spaces

Fδ-closed

Figure 1: Summary of the main conditions presented in Section 1.3

We point out the interesting fact that the three conditions in Figure 1 can be presented
as collections of local conditions, where “local” conditions are ones that depend only on
the behavior of Π in a local neighborhood of Ω. While the local conditions implied by the
characterization of Fδ-closed sets in Condition (2) of Theorem 1.16 depend on balls of radius
2δ, the sufficient (but not necessary) conditions in Definition 1.18 and Proposition 1.21 imply
local conditions that depend only on balls of radius δ.

1.4 Our techniques

This section focuses on our techniques for proving claims regarding dual problems in prop-
erty testing (i.e., the claims in Section 1.2). In comparison, the proofs for the claims of
Section 1.3 are easier, and some are straightforward. We note, however, that some construc-
tions for counter-examples in Section 1.3 are quite evasive, and it seems a-priori non-obvious
that a counter-example should even exist in these cases (see, e.g., Proposition 1.19).

The lower bound regarding testing dual problems with one-sided error (i.e., Theorem 1.5)
stems from a similar lower bound with respect to testing standard problems with perfect

12

soundness; that is, testing a property such that “no” inputs are always rejected. The query
complexity of testing standard problems with perfect soundness is linear, unless the problem
is trivial (i.e., unless Fδ(Πn) = ∅ for a sufficiently large n; see Proposition 5.6). The lower
bound regarding dual problems follows, since the query complexity of testing a dual problem
with one-sided error is lower bounded by the query complexity of testing a standard problem
with perfect soundness.

In testing specific dual problems, we rely on one of two general techniques. The first,
which we apply in the cases of error-correcting codes (Theorem 1.6), monotone functions
(Theorem 1.7), and distribution identity testing (Theorem 1.9), is showing that the dual prob-
lem is equivalent to the original. For a property Π = {Πn}n∈N, this requires showing that
for every sufficiently large n and sufficiently small ε > 0, the set Πn is Fε·n-closed (as in
Definition 1.3). The latter is done relying on the characterizations of Fδ-closed sets and on
the sufficient conditions for a set to be Fδ-closed, described in Section 1.3.

The second technique is useful when the dual problem is different from the original
one. Specifically, for the three dual problems that we solve in the context of graph property
testing (k-colorability in the dense graph model, and connectivity and cycle-free graphs in
the bounded-degree model), we reduce the dual problem to the problem of tolerant testing,
introduced by Parnas, Ron, and Rubinfeld [PRR06]: Given a set Πn, a parameter δ > 0 and
α < 1, the tolerant testing problem consists of distinguishing between inputs that are (α · δ)-
close to Πn and inputs that are δ-far from Πn. Reducing dual problems to tolerant testing
problems is done by showing that, for some α < 1, all points in Fδ(Fδ(Πn)) are (α · δ)-close
to Πn. These are structural results regarding the property Πn, which are of independent
interest.

Then, we need to show that the corresponding tolerant testing problem can be efficiently
solved. In the case of k-colorability in the dense graph model, the tolerant testing prob-
lem was solved by Fischer and Newman [FN07]; in the case of connected graphs in the
bounded-degree model, we solve the tolerant testing problem ourselves (see Lemma 5.28
and Section 5.6.1.3); and in the case of cycle-free graphs in the bounded-degree model, the
tolerant testing problem was solved by Marko and Ron [MR06].

We stress several points regarding reductions of dual problems to tolerant testing. Firstly,
as mentioned in Section 1.1, it is not true in general that points in Fδ(Fδ(Πn)) are (α · δ)-
close to Πn, for some α < 1. In fact, we show an artificial property Π = {Πn}n∈N of
strings in the Boolean hypercube such that for every small ε > 0 (of the form ε = 2−k)
and sufficiently large n there exist strings in Fε·n(Fε·n(Πn)) that are almost (ε · n)-far from
Πn (see Proposition 3.15). Secondly, even in the cases in which we know that the property
reduces to tolerant testing (i.e., for the three properties mentioned above), the proofs are not
very straightforward; and we were so far unable to prove such reductions for several related
natural properties (e.g., for the property of graphs containing a large clique). And thirdly,
there exist cases in which the tolerant testing problem is significantly more difficult than the
dual problem. For example, according to Theorem 1.9, the complexity of testing whether a
distribution is far from uniform is Θ(

√
n); however, the results of Valiant and Valiant [VV11]

imply that the complexity of the corresponding tolerant testing problem is Θ(n/ log(n)).
The general technical question underlying both techniques outlined above is the follow-

13

ing: Given a metric space Σn, a set Πn ⊆ Σn, a parameter δ > 0, and a point x that satisfies some
requirements regarding its distance from Πn, does there exist a point z such that ∆(x, z) < δ and
∆(z, Πn) ≥ δ? In most cases, given a point x that satisfies some distance requirement from
Πn, we show how to explicitly modify x to a corresponding suitable z. Our modification of
x to z capitalizes on structural features of objects in the relevant metric space that satisfy the
specific distance requirement. For example, when relying on Condition (2) of Theorem 1.16
to show that a set Πn is Fδ-closed, we start from a point x /∈ Πn ∪Fδ(Πn), and modify it into
z ∈ Fδ(Πn) such that ∆(x, z) < δ. Similarly, to reduce a dual problem to the corresponding
tolerant testing problem (i.e., to prove that Fδ(Fδ(Πn)) ⊆ {y : ∆(y, Πn) ≤ α · δ}), we start
with x such that ∆(x, Πn) ∈ (α · δ, δ), and modify it into z ∈ Fδ(Πn) such that ∆(x, z) < δ,
which implies that x /∈ Fδ(Fδ(Πn)).

2 Preliminaries

Metric spaces. Throughout the paper we denote by Ω a set with at least two elements, and
we usually assume that it is equipped with a metric ∆ : Ω2 → [0, ∞), such that (Ω, ∆) is a
metric space. We will usually use shorthand notation, and identify the metric space (Ω, ∆)
with its set of elements Ω, and the metric ∆ will be implicit. We call a metric space Ω graphical

when Ω is the vertex-set of a connected undirected graph, such that for any x, y ∈ Ω it holds
that ∆(x, y) is the length of a shortest path between x and y.

A special case of a graphical metric space is the Boolean hypercube, equipped with the
Hamming distance. We denote the n-dimensional Boolean hypercube by Hn, and for x, y ∈
Hn we denote by sd(x, y) the symmetric difference between x and y; that is, sd(x, y) = {i ∈
[n] : xi 6= yi}. Then ∆(x, y) = |sd(x, y)|. Also, for every x ∈ Hn, we denote by ‖x‖1 the
Hamming weight of x.

For any set Π ⊆ Ω, we denote its complement by Π def
== {x ∈ Ω : x /∈ Π}. Also, for any

x ∈ Ω and δ > 0 we denote the closed radius-δ ball around x by B[x, δ]
def
== {y : ∆(x, y) ≤ δ}

and the open radius-δ ball around x by B[x, δ)
def
== {y : ∆(x, y) < δ}.

The “δ-far” operator. Abusing the notation ∆, for x ∈ Ω and non-empty Π ⊆ Ω we let

∆(x, Π)
def
== infp∈Π{∆(x, p)}. If ∆(x, Π) ≥ δ then we say that x is δ-far from Π. For any space

Ω and δ > 0, we define the δ-far operator Fδ : P(Ω)→ P(Ω) by Fδ(Π)
def
== {x : ∆(x, Π) ≥ δ}

for any non-empty Π ⊆ Ω, and Fδ(∅)
def
== Ω; that is, Fδ(Π) is the set of elements that are

δ-far from Π.

Property Testing. In property testing, we assume that Ω = Σn, for an arbitrary set Σ, and
n ∈ N. To avoid confusion, throughout the paper we will denote the (relative) proximity
parameter for testing by ε > 0, whereas the absolute distance between inputs will be denoted
by δ > 0. Indeed, in this case δ = ε · n.

Definition 2.1 (property testing). For a set Σ, a property Π = {Πn}n∈N such that Πn ⊆ Σn, and
parameter ε > 0, an ε-tester for Π is a probabilistic algorithm T that gets oracle access to x ∈ Σn,

14

in the sense that for any i ∈ [n] it can query for the ith symbol of x, and satisfies the following two
conditions:

1. If x ∈ Πn then Pr[Tx(1n) = 1] ≥ 2
3 .

2. If x ∈ Fε·n(Πn) then Pr[Tx(1n) = 0] ≥ 2
3 .

The query complexity of an ε-tester T for Π is a function q : N → N, such that for every
n ∈ N it holds that q(n) is the maximal number, over any x ∈ Σn and internal coin tosses of T, of
oracle queries that T makes. The query complexity of ε-testing Π is a function q : N→N such that
for every n ∈ N it holds that q(n) is the minimum, over all query complexities q′ of ε-testers for Π,
of q′(n).

We will sometimes slightly abuse Definition 2.1, by referring to ε-testers for Π ⊆ Σn,
where n is a generic integer (instead of referring to ε-testers for an infinite sequence Π =
{Πn}n∈N).

3 Sets of the form Fδ(Fδ(Π)) and Fδ-closed sets

In this section we study the basic properties of sets of the form Fδ(Fδ(Π)). Motivated by
applications in property testing, we focus on sets that satisfy Π = Fδ(Fδ(Π)), which by
Definition 1.1 are called Fδ-closed sets.

Intuitively, we expect that any set will be far from being far from itself; that is, we expect
every set Π to satisfy Π ⊆ Fδ(Fδ(Π)). This is indeed the case:

Fact 3.1 (a set is always far from being far from itself). For any space Ω, δ > 0, and Π ⊆ Ω, it holds
that Π ⊆ Fδ(Fδ(Π)).

Proof. Assume towards a contradiction that there exists x ∈ Π \ Fδ(Fδ(Π)). Since x /∈
Fδ(Fδ(Π)), there exists z ∈ Fδ(Π) such that ∆(x, z) < δ. However, since x ∈ Π, then
∆(z, Π) ≤ ∆(z, x) < δ, which contradicts z ∈ Fδ(Π).

However, as mentioned in the introduction, not every set Π satisfies Π = Fδ(Fδ(Π));
that is, not every set is Fδ-closed.

In Section 3.1 we characterize the sets that are Fδ-closed in any metric space. Section 3.2
is a detour, in which we give additional insight into the relationship between any set Π
and Fδ(Fδ(Π)), by showing that the operator Π 7→ Fδ(Fδ(Π)) satisfies the axioms of a
closure operator (or hull operator).6 In Section 3.3 we study sets that are not Fδ-closed, and
in particular demonstrate their existence and lower bound the fraction of such sets in two
classes of metric spaces. And in Section 3.4 we study the distance of points in Fδ(Fδ(Π))
from Π.

6This material will not be used in the rest of the paper.

15

3.1 Characterizations of Fδ-closed sets

For a fixed Ω and δ > 0, which are the Fδ-closed sets in Ω? The following theorem presents
several equivalent characterizations of the Fδ-closed sets for any fixed Ω and δ.

Theorem 3.2 (characterizations of Fδ-closed sets, extending Theorem 1.16). For any Ω, δ > 0, and
Π ⊆ Ω, the following statements are equivalent:

1. Π is Fδ-closed (i.e., Π = Fδ(Fδ(Π))).

2. For every x /∈ Π ∪ Fδ(Π) there exists z ∈ Fδ(Π) such that ∆(z, x) < δ.

3. There exists Π′ ⊆ Ω such that Π = Fδ(Fδ(Π′)).

4. There exists Π′′ ⊆ Ω such that Π = Fδ(Π′′).

5. There exists Π′′ ⊆ Ω such that Π =
⋂

x∈Π′′ Fδ({x}).

6. There exists Π′′ ⊆ Ω such that Π = Ω \⋃x∈Π′′ B[x, δ).

Proof. For the proof we will need the following two facts:

Fact 3.2.1 (far-sets are intersections of sets that are far from singletons). For any Ω, δ > 0 and
Π ⊆ Ω it holds that Fδ(Π) =

⋂
x∈Π Fδ({x}).

Proof. For any z ∈ Ω it holds that z ∈ Fδ(Π) if and only if z is δ-far from every x ∈ Π, which
holds if and only if z ∈ Fδ({x}) for every x ∈ Π. �

Fact 3.2.2 (downwards monotonicity of Fδ). For any Ω, δ > 0 and A, B ⊆ Ω, if A ⊆ B, then
Fδ(A) ⊇ Fδ(B).

Proof. Relying on Fact 3.2.1,

Fδ(A) =
⋂

a∈A

Fδ({a}) ⊇
⋂
b∈B

Fδ({b}) = Fδ(B) �

We now prove the equivalences of Conditions (1)−(6).

(1) =⇒ (2) Since Π is Fδ-closed, every x /∈ Π satisfies x /∈ Fδ(Fδ(Π)). Equivalently, every
x /∈ Π satisfies ∆(x,Fδ(Π)) < δ. Thus, for every x /∈ Π, there exists z ∈ Fδ(Π) such that
∆(x, z) < δ. In particular, this holds for every x /∈ Π ∪ Fδ(Π).

(2) =⇒ (1) For any x ∈ Ω, if there exists z ∈ Fδ(Π) such that ∆(x, z) < δ, then x /∈
Fδ(Fδ(Π)). Combining this fact with the hypothesis, we deduce that Π ∪ Fδ(Π)∩Fδ(Fδ(Π)) =
∅. Also, since δ > 0 it holds that Fδ(Π) ∩ Fδ(Fδ(Π)) = ∅.

Now observe that Ω = Π ∪ Fδ(Π) ∪ Π ∪ Fδ(Π). Since we showed that Fδ(Fδ(Π)) ∩
Fδ(Π) = ∅ and Fδ(Fδ(Π)) ∩Π ∪ Fδ(Π) = ∅ it follows that Fδ(Fδ(Π)) ⊆ Π. By Fact 3.1 it
holds that Π ⊆ Fδ(Fδ(Π)), and therefore Π = Fδ(Fδ(Π)).

16

(1) =⇒ (3) Follows by setting Π′ = Π, since Π = Fδ(Fδ(Π)).

(3) =⇒ (4) Follows by setting Π′′ = Fδ(Π′).

(4) =⇒ (1) Let Π = Fδ(Π′′) for some Π′′ ⊆ Ω. By Fact 3.1 it holds that Π′′ ⊆ Fδ(Fδ(Π′′)),
whereas by Fact 3.2.2, we get that Π = Fδ(Π′′) ⊇ Fδ(Fδ(Fδ(Π′′))) = Fδ(Fδ(Π)). Using
Fact 3.1 again, we know that Π ⊆ Fδ(Fδ(Π)), and thus Π = Fδ(Fδ(Π)).

(4)⇐⇒ (5) By Fact 3.2.1.

(5) ⇐⇒ (6) Follows since for any x ∈ Ω it holds that Fδ({x}) = Ω \ B[x, δ), and by De-
Morgan’s laws.

In the introduction, following the statement of Theorem 1.16, we commented on the
implications of some of these characterizations. Here, we add several additional comments.
First, note that Condition (5) implies that any intersection of Fδ-closed sets is Fδ-closed.
In addition, Condition (6) provides another appealing interpretation for Fδ-closed sets: Fδ-
closed sets are exactly the sets obtained by starting from the entire space Ω and removing
any union of balls from the potentially small collection {B[x, δ)}x∈Ω.

The equivalence of Conditions (4) and (3) implies that {Fδ(Fδ(Π))}Π⊆Ω = {Fδ(Π)}Π⊆Ω.
Moreover, the operator Fδ is a bijection between these two collections: The collection
{Fδ(Fδ(Π))}Π⊆Ω is the image of {Fδ(Π)}Π⊆Ω under Fδ; and by Condition (4), every set
of the form Fδ(Π) is Fδ-closed, which implies that the collection {Fδ(Π)}Π⊆Ω is also the
image of {Fδ(Fδ(Π))}Π⊆Ω under Fδ.

Condition (2) in Theorem 3.2 is the basic technical condition that we will use to evaluate
whether sets are Fδ-closed. As mentioned in the discussion after the statement of Theo-
rem 1.16, Condition (2) is in fact a collection of local conditions, where by “local” we mean
that each condition depends only on a ball of radius 2δ in Ω. The negation of Condition (2)
yields a more explicit description of a collection of conditions such that each condition cor-
responds to a specific ball in Ω.

Corollary 3.3 (being Fδ-closed as a collection of local conditions). If, for some x ∈ Ω, it holds that
x /∈ Π and B[x, δ) ∩Π 6= ∅ and B[x, δ) ∩ Fδ(Π) = ∅, then Π is not Fδ-closed. Otherwise, Π is
Fδ-closed.

Proof. By negating Condition (2) in Theorem 3.2 we get that Π is not Fδ-closed if and only
if there exists x /∈ Π ∪ Fδ(Π) such that for every z ∈ Fδ(Π) it holds that ∆(z, x) ≥ δ. Note
that:

• For every x /∈ Π it holds that x /∈ Fδ(Π) if and only if B[x, δ) ∩Π 6= ∅.

• The condition that for every z ∈ Fδ(Π) it holds that ∆(z, x) ≥ δ is equivalent to the
condition that B[x, δ) ∩ Fδ(Π) = ∅.

17

3.2 Detour: The mapping Π 7→ Fδ(Fδ(Π)) is a closure operator in P(Ω)

The current section is a detour, which is intended to provide additional insight to the rela-
tionship between Π and Fδ(Fδ(Π)), for any Ω and Π ⊆ Ω. The results in this section will
not be used in the rest of the paper, and thus are not essential in order to read other sections.

The notion of closure operators (or hull operators; see, e.g., [KD06, Chp. 2] or [vdV93, Chp.
1]) is prevalent in many mathematical fields, including algebra, topology, matroid theory, and
computational geometry. We show that the operator Π 7→ Fδ(Fδ(Π)) is a closure operator
on Ω, a statement that gives some structure to the relationship between Π and Fδ(Fδ(Π)).

Definition 3.4 (closure operators). A closure operator on a set Ω is an operator cl : P(Ω)→ P(Ω)
such that for any Π, Π′ ⊆ Ω it holds that

1. (extensive) Π ⊆ cl(Π).

2. (upwards monotone) Π ⊆ Π′ =⇒ cl(Π) ⊆ cl(Π′).

3. (idempotent) cl(cl(Π)) = cl(Π).

Proposition 3.5 (Π 7→ Fδ(Fδ(Π)) is a closure operator). For any Ω and δ > 0 it holds that
Π 7→ Fδ(Fδ(Π)) is a closure operator on Ω.

Proof. Axiom (1) follows from Fact 3.1. Axiom (2) follows by applying Fact 3.2.2 twice to the
expression Π ⊆ Π′. Axiom (3) is essentially the requirement that for any set Π it holds that
F (4)

δ (Π) = F (2)
δ (Π) (i.e., four applications of Fδ on Π are equivalent to two applications); or,

equivalently, that any set of the form Fδ(Fδ(Π)) is Fδ-closed. The latter statement follows
from Condition (3) in Theorem 3.2.

A closure operator is characterized by the collection of closed sets {cl(Π)}Π⊆Ω. In par-
ticular, the collection of closed sets under the operator Π 7→ Fδ(Fδ(Π)) is {Fδ(Fδ(Π))}Π⊆Ω,
which according to Theorem 3.2 is exactly the collection of Fδ-closed sets. In general, any
closure operator maps any set Π to its closure, which is the unique smallest closed set con-
taining Π. The following proposition substantiates that this is indeed the case in the special
case of the operator Π 7→ Fδ(Fδ(Π)): The proposition states that Fδ(Fδ(Π)) is the intersec-
tion of all Fδ-closed sets containing Π. Since Fδ(Fδ(Π)) is itself an Fδ-closed set, this implies
that Fδ(Fδ(Π)) it the unique Fδ-closed set that contains Π, and that this set is minimal (i.e.,
does not contain any other Fδ-closed set containing Π).

Proposition 3.6 (Fδ(Fδ(Π)) is the unique minimal Fδ-closed set containing Π). For any Ω, δ > 0
and Π ⊆ Ω it holds that

Fδ(Fδ(Π)) =
⋂

Π′ :Fδ(Fδ(Π′))⊇Π

Fδ(Fδ(Π′))

For convenience, we include a proof of Proposition 3.6 in Appendix A. The proof follows
the standard proof of the analogous fact for general closure operators.

18

For an intuitive grasp of closure operators one may think of the convex hull of a body
in Euclidean geometry or of the topological closure of a set in a topological space. We warn,
however, that in some fields additional conditions are added to the basic three in Defini-
tion 3.4, resulting in special classes of closure operators. In Appendix A we show that the
operator Π 7→ Fδ(Fδ(Π)) does not belong to some of these classes of operators. In particu-
lar, Π 7→ Fδ(Fδ(Π)) is not the convex hull operator in Euclidean spaces, is not a topological
(i.e., Kuratowski) closure operator, and does not satisfy the conditions of closure operators
used in matroid theory.

3.3 Existence and prevalence of sets that are not Fδ-closed

The focus of this section is proving the existence, and in some sense the abundance, of sets
that are not Fδ-closed. The main result presented in this section is that for any Ω such
that not all points in it are equidistant and any δ that is not “too extreme” there exist non-
trivial sets that are Fδ-closed and non-trivial sets that are not Fδ-closed. We further show a
lower bound on the number of sets that are not Fδ-closed in two special cases: One is when
we assume some conditions on the structure of Ω and the other is when Ω is the Boolean
hypercube.

First, for every Ω let us delineate two “extreme” settings for δ that collapse Π 7→ Fδ(Fδ(Π))
to a trivial operator. In one setting, δ is too large and Fδ(Fδ(Π)) ≡ Ω for any non-empty
Π; in this case all non-trivial sets are not Fδ-closed. In the other setting, δ is too small and
Fδ(Fδ(Π)) = Π for any Π ⊆ Ω; that is, all sets are Fδ-closed.

Fact 3.7 (if δ is too large then Fδ(Fδ(Π)) ≡ Ω). For any Ω such that supx,y∈Ω{∆(x, y)} is finite,
if δ > supx,y∈Ω{∆(x, y)}, then for every non-empty Π ⊆ Ω it holds that Fδ(Fδ(Π)) = Ω.

Proof. In this case, for any Π 6= ∅ it holds that Fδ(Π) = ∅, and thus Fδ(Fδ(Π)) = Ω.

Fact 3.8 (if δ is too small then Fδ(Fδ(Π)) ≡ Π). For any Ω such that infx 6=y{∆(x, y)} > 0, if
δ ≤ infx 6=y{∆(x, y)}, then for every Π ⊆ Ω it holds that Fδ(Fδ(Π)) = Π.

Proof. In this case, for every Π ⊆ Ω it holds that Fδ(Π) = Ω \Π, and thus Fδ(Fδ(Π)) =
Ω \ Fδ(Π) = Ω \ (Ω \Π) = Π.

Following Facts 3.7 and 3.8, and disregarding for a moment the “boundary case” when
δ = supx 6=y{∆(x, y)}, we restrict our investigation to settings of Ω and δ such that

δ ∈
(

inf
x 6=y∈Ω

{∆(x, y)}, sup
x,y∈Ω

{∆(x, y)}
)

(3.1)

The following theorem shows that for every δ that satisfies Eq. (3.1) there exists a non-
trivial Π ⊆ Ω that is Fδ-closed and a non-trivial Π′ ⊆ Ω that is not Fδ-closed.

Theorem 3.9 (Theorem 1.2, restated). For any Ω, if δ > 0 satisfies Eq. (3.1), then there exists a
non-trivial Π ⊆ Ω that is Fδ-closed and a non-trivial Π′ ⊆ Ω that is not Fδ-closed.

19

Proof. Since δ < supx,y∈Ω{∆(x, y)} there exist x, y ∈ Ω such that ∆(x, y) ≥ δ. Let Π =

Fδ({x}), and note that Π /∈ {∅, Ω} since x /∈ Π and y ∈ Π. By Condition (4) of Theorem 3.2
it holds that Π is Fδ-closed.

Now, since δ > infx 6=y∈Ω{∆(x, y)} there exist x′, y′ ∈ Ω such that ∆(x′, y′) < δ. Let Π′ =
Ω \ {x′}, and note that Π′ /∈ {∅, Ω} since x′ /∈ Π′ and y′ ∈ Π′. Since ∆(x′, Π′) ≤ ∆(x′, y′) < δ
it follows that x′ /∈ Fδ(Π′), and thus Fδ(Π′) = ∅ and Fδ(Fδ(Π′)) = Ω 6= Π′. Therefore Π′

is not Fδ-closed.

For spaces in which the supremum in Eq. (3.1) is attained (e.g., finite metric spaces) such
non-trivial sets exist if and only if δ ∈

(
infx 6=y∈Ω{∆(x, y)}, maxx,y∈Ω{∆(x, y)}

]
. (Note that

now the right boundary of the interval is closed.)

Proposition 3.10 (values of δ for which the notion of Fδ-closed sets is non-trivial). Let Ω such that
the supremum in Eq. (3.1) is attained (i.e., there exist u, v ∈ Ω such that ∆(u, v) = supx,y∈Ω{∆(x, y)}).
Then, for every δ > 0, it holds that

δ ∈
(

inf
x 6=y∈Ω

{∆(x, y)}, max
x,y∈Ω

{∆(x, y)}
]

(3.2)

if and only if there exist non-trivial sets that are Fδ-closed and non-trivial sets that are not Fδ-closed.

Proof. Assume that δ does not satisfy Eq. (3.2). If δ ≤ infx 6=y∈Ω{∆(x, y)}, then by Fact 3.8 all
sets are Fδ-closed; and if δ > maxx,y∈Ω{∆(x, y)}, then by Fact 3.7 all non-trivial sets are not
Fδ-closed.

For the other direction, assume that δ satisfies Eq. (3.2). Then, we can construct a non-
trivial set that is not Fδ-closed identically to the proof of Theorem 3.9; and for an Fδ-closed
set we take u and v such that ∆(u, v) = maxx,y{∆(x, y)} and let Π = Fδ({u}) 6= ∅.

Theorem 3.9 implies that for any Ω and δ > 0 that satisfies Eq. (3.1) there exist non-trivial
Fδ-closed sets and non-trivial sets that are not Fδ-closed. The following proposition assumes
slightly stricter conditions on the structure of Ω with respect to a parameter δ, and under
these conditions yields a lower bound on the fraction of sets that are not Fδ-closed.

Proposition 3.11 (lower bound on the fraction of sets that are not Fδ-closed). Let Ω be a metric
space and δ > 0. Assume that for n ∈ N and m ≥ 2 there exist x1, ..., xn ∈ Ω such that for every
i 6= j ∈ [n] it holds that ∆(xi, xj) ≥ 2δ and 2 ≤ |B[xi, δ)| ≤ m. Then, the probability that a
uniformly chosen random set is Fδ-closed is at most (1− 2−m)

n.

Proof. By the hypothesis, for any i ∈ [n] it holds that |B[xi, δ)| ≥ 2. Therefore, if we choose Π
such that Π∩ B[xi, δ) = B[xi, δ) \ {xi}, we get a set such that xi /∈ Π and B[xi, δ)∩Π 6= ∅ and
B[xi, δ) ∩ Fδ(Π) = ∅. According to Corollary 3.3, such a set is not Fδ-closed, regardless of
the way the set is defined in the rest of Ω. Therefore it suffices to lower bound the probability
that a random set will be of this form in any of the n balls of radius δ whose existence is
guaranteed by the hypothesis.

For any fixed i ∈ [n], the probability that a uniformly chosen Π satisfies Π ∩ B[xi, δ) =
B[xi, δ) \ {xi} is 2−|B[xi ,δ)|. Since, by the hypothesis, it holds that |B[xi, δ)| ≤ m, then this

20

probability is lower bounded by 2−m. Thus, the probability that Π ∩ B[xi, δ) 6= B[xi, δ) \ {xi}
is at most 1 − 2−m. Also note that by the hypothesis, for any i 6= j ∈ [n] it holds that
∆(xi, xj) ≥ 2δ, and hence B[xi, δ)∩ B[xj, δ) are disjoint, implying that the events Π∩ B[xi, δ) 6=
B[xi, δ) \ {xi} for all i ∈ [n] are independent. Therefore, the probability that for every i ∈ [n]
it holds that Π ∩ B[xi, δ) 6= B[xi, δ) \ {xi} is upper bounded by (1− 2−m)n. It follows that
probability that the set is Fδ-closed is at most (1− 2−m)n.

If the collection of balls in Proposition 3.11 satisfies n ≥ 2m, then we get that the majority
of sets in Ω are not Fδ-closed. However, the lower bound in Proposition 3.11 is far from tight
for some spaces. In particular, in the special case of the Boolean hypercube, Proposition 3.12
presents a tighter lower bound, relying on a simple argument tailored to this specific case.

Proposition 3.12 (most sets in the Boolean hypercube are not Fδ-closed). For the n-dimensional
Boolean hypercube Hn and δ ≥ 3, the probability that a uniformly chosen Π ⊆ Hn is Fδ-closed is at
most 2−Ω(n2).

Proof. First observe that any Π that satisfies Π 6= Hn and Fδ(Π) = ∅ is not Fδ-closed. We
show that a uniformly chosen random Π satisfies both conditions with very high probability.

For any z ∈ Hn it holds that z ∈ Fδ(Π) if and only if B[z, δ− 1] ∩Π = ∅. For a fixed
z ∈ Hn this happens with probability 2−|B[z,δ−1]|, and since since δ ≥ 3 this expression is
upper bounded by 2−(1+n+(n

2)) = 2−Ω(n2). By union-bounding over all z ∈ Hn, the probability
that there exists some z ∈ Fδ(Π) is at most 2n−Ω(n2). Also, the probability that Π = Hn is
2−2n

. Thus the probability that a random set is Fδ-closed is at most

2n−Ω(n2) + 2−2n
= 2−Ω(n2) .

3.4 On the distance of points in Fδ(Fδ(Π)) from Π

One might mistakenly think that even in cases where Π 6= Fδ(Fδ(Π)) (i.e., Π is not Fδ-
closed), all points in Fδ(Fδ(Π)) are, in some sense, close to Π. Indeed, since for any δ > 0
it holds that Fδ(Fδ(Π)) ∩ Fδ(Π) = ∅, the points in Fδ(Fδ(Π)) cannot be δ-far from Π.
However, in this section, we show several examples demonstrating that points in Fδ(Fδ(Π))
might be almost δ-far from Π.

Proposition 3.13 (points in Fδ(Fδ(Π)) are not necessarily close to Π). There exists a space Ω such
that for every δ > 0 there exists a set Π ⊆ Ω such that for every δ′ < δ it holds that Fδ(Fδ(Π))
contains points that are δ′-far from Π.

Proof. Let Ω = (0, ∞) with the usual metric of R. For any δ > 0, let Π = {δ}. Since every
x ∈ (0, 2δ) satisfies ∆(x, Π) = |x− δ| < δ, then Fδ(Π) ⊆ Ω \ (0, 2δ) = [2δ, ∞). Now, for every
positive δ′ < δ, let z = δ− δ′ > 0. Note that z satisfies ∆(z, δ) = δ′ (i.e., z is δ′-far from Π).
However, since Fδ(Π) ⊆ [2δ, ∞), it follows that ∆(z,Fδ(Π)) = |2δ− z| = 2δ− (δ− δ′) > δ,
and thus z ∈ Fδ(Fδ(Π)).

21

The following proposition shows that this phenomenon, where points in Fδ(Fδ(Π)) are
almost δ-far from Π, happens also in the special case where Ω is the Boolean hypercube.

Proposition 3.14 (an analogue of Proposition 3.13 for the Boolean hypercube). Let Ω = Hn be
the n-dimensional Boolean hypercube. Then, for every δ ≥ 2, there exists a set Π ⊆ Hn such that
Fδ(Fδ(Π)) contains points that are (δ− 1)-far from Π.

Proof. We show a set Π 6= Hn such that Fδ(Fδ(Π)) = Hn and there exist points that are
(δ− 1)-far from Π. Recall that for x ∈ Hn, we denote by ‖x‖1 the Hamming weight of x. Let
Π be the set of strings with Hamming weight δ− 1 or more; that is, Π = {x ∈ Hn : ‖x‖1 ≥
δ − 1}. Note that every x /∈ Π (i.e., every x such that ‖x‖1 ≤ δ − 2) satisfies ∆(x, Π) =
(δ− 1)− ‖x‖1 ≤ δ− 1, and hence Fδ(Π) = ∅ and Fδ(Fδ(Π)) = Hn. In particular, it holds
that the vertex o = (0, ..., 0) (i.e., ‖o‖1 = 0) satisfies o ∈ Fδ(Fδ(Π)) whereas ∆(o, Π) = δ− 1.

In the context of property testing, a typical setting involves a sequence Π = {Πn}n∈N

such that Πn ⊆ {0, 1}n, and the distance of interest is δ = ε · n, for a small constant ε > 0.
Recall that, as mentioned in Section 1.4, the dual testing problem of Π = {Πn}n∈N reduces
to the problem of tolerant testing if for every sufficiently small ε > 0 it holds that the distance
of points in Fε·n(Fε·n(Πn)) is bounded away from ε · n. We now show a property Π for
which this does not happen.

Note that Proposition 3.14 does not suffice to establish the existence of such a property.
This is the case since in Proposition 3.14 the set Π depends on the distance parameter δ. In
contrast, we now show a single fixed set Π = {Πn}n∈N such that for every small ε it holds that
points in Fε·n(Fε·n(Πn)) are not close to Πn (actually, we show that the latter holds for an
infinite sequence of ε’s that tends to zero).

Proposition 3.15 (a dual problem that does not reduce to tolerant testing). There exists Π =
{Πn}n∈N, where Πn ⊆ {0, 1}n, that satisfies the following. For every ε = 2−k such that k ≥ 2, and
sufficiently large n, there exists x ∈ Fε·n(Fε·n(Πn)) such that ∆(x, Πn) ≥ ε · n− 2.

Proof. Let us start by describing the intuition behind our construction. Fix any ε > 0. The
basic observation is that if Πn contains all the strings of Hamming weight `, for some ` ∈ [n],
and all the strings of Hamming weight roughly h = `+ 2 · (ε · n− 1), and Πn does not contain
any string of Hamming weight in between these two values, then Fε·n(Fε·n(Πn)) contains a
string whose distance from Πn is at least ε · n− 2 (see Lemma 3.15.2). Intuitively, this is the
case since a string x of Hamming weight h+`

2 is, on the one hand, far from being far from Πn
(since all strings of Hamming weight in between ` and h are not (ε · n)-far from Πn, which
implies that any shortest path from x to Fε·n(Πn) passes through Πn); but x is, on the other
hand, not close to Πn (since ∆(x, Πn) ≈ ε · n− 1). See Figure 2 for a graphical illustration.

For any ε > 0, if Πn is as above (i.e., Πn contains all strings with Hamming weight ` or h
and no string with Hamming weight in between these values), then we say that Πn exhibits
a disruptive pattern for ε. Thus, it suffices to construct Π = {Πn} such that for every ε = 2−k

and sufficiently large n it holds that Πn exhibits a disruptive pattern for ε.

22

Accordingly, for any n, we construct Πn such that it exhibits many disruptive patterns
at once, for many values of ε. Fixing any n, we first define roughly log(n) pairwise-disjoint
subsets of {0, 1}n, which we call regions. Specifically, for any 1 < k < log(n), the region that
corresponds to k includes all strings with relative Hamming weight more than 1− 2−(k−2)

and at most 1− 2−(k−1). Since the region that corresponds to k contains strings with about
2−(k−1) different weights, we can define Πn in this region such that it exhibits a disruptive
pattern for ε = 2−k. Hence, for any fixed ε = 2−k and n ≥ exp(k) it holds that Πn contains a
disruptive pattern for ε. Details follow.

Fε·n(Πn)

h + ε · n

h = `+ 2 · (ε · n− 1)

x
(`+ h)/2

`

Fε·n(Πn)

`− ε · n

H
am

m
in

g
w

ei
gh

t

{0, 1}n

Figure 2: Graphical illustration of a disruptive pattern for ε = 1/8. The rhombus represents
{0, 1}n such that lower points inside the rhombus are strings with low Hamming weight,
and higher points are strings with high Hamming weight. The set Πn consists of all strings
with Hamming weight ` = n/2 or h = 3/4n− 2, and thus Fε·n(Πn) is contained in the gray
areas. The string x satisfies x ∈ Fε·n(Fε·n(Πn)) as well as ∆(x, Πn) =

h−`
2 = ε · n− 1.

The actual proof. We start by defining a disruptive pattern for ε > 0, and proving that it
indeed yields a string in Fε·n(Fε·n(Πn)) whose distance from Πn is ε · n−O(1).

Definition 3.15.1 (disruptive pattern for ε). Let ε > 0 and n ∈ N such that ε · n ≥ 2. We say
that Πn ⊆ {0, 1}n exhibits a disruptive pattern for ε if there exist `, h ∈ [n] such that h − ` =
2 · (bε · nc − 1), and the following hold:

1. Πn contains all strings with Hamming weight `, and all strings with Hamming weight h.

23

2. Πn does not contain any string with Hamming weight w such that ` < w < h.

Lemma 3.15.2. Let ε > 0 and n ∈ N such that ε · n ≥ 2. If Πn ⊆ {0, 1}n exhibits a disruptive
pattern for ε, then Fε·n(Fε·n(Πn)) contains a string x such that ∆(x, Πn) ≥ ε · n− 2.

Proof. Let `, h ∈ [n] as in Definition 3.15.1, and denote by B the set of strings with Hamming
weight w such that ` < w < h. We will show that any string x ∈ B with Hamming weight
h+`

2 is, on one hand, in Fε·n(Fε·n(Πn)), and is, on the other hand, (ε · n− 2)-far from Πn.
First note that there exists a string with Hamming weight `+h

2 . This is the case because
h− ` = 2 · (bε · nc − 1) ≥ 2 (by our hypothesis that ε · n ≥ 2). Let x be such a string, and
observe that x ∈ B. The lemma follows from the following two facts:

1. The distance of x from Πn is at least ε · n− 2. This is the case because B ∩Πn = ∅ (by
our hypothesis), and thus any path from x to Πn has to pass through some u /∈ B such
that u has a neighbor in B. However, any such u has Hamming weight either ` or h,
and thus u ∈ Πn. It follows that ∆(x, Πn) =

h−`
2 = bε · nc − 1 ≥ ε · n− 2.

2. The distance of x from Fε·n(Πn) is more than ε · n. To see that this holds, first note
that B ∩ Fε·n(Πn) = ∅ (because for every y ∈ B, we can flip at most h−`

2 < ε · n bits
in y, to obtain a string with Hamming weight ` or h). Thus, every path from x to
Fε·n(Πn) has to pass through some u /∈ B such that u has a neighbor in B; but any
such u has Hamming weight ` or h, and thus u ∈ Πn. The length of any such path is
∆(x, u) + ∆(u,Fε·n(Πn)) ≥ 1 + ε · n, and hence ∆(x,Fε·n(Πn)) ≥ 1 + ε · n. �

For every n ∈ N, in order to define Πn ⊆ {0, 1}n, we first define the pairwise-disjoint
regions in {0, 1}n. For each k ∈ {2, ..., blog(n)c − 1} we will have a corresponding region in
{0, 1}n, which is denoted byRn

k and defined as follows: The regionRn
k is the set of all strings

with relative Hamming weight more than 1− 2−(k−2) and at most 1− 2−(k−1); that is,

Rn
k =

{
x ∈ {0, 1}n : 1− 2−(k−2) <

‖x‖1
n
≤ 1− 2−(k−1)

}
,

where ‖x‖1 is the Hamming weight of x. First, observe that for any n, the regions in {0, 1}n

are indeed pairwise-disjoint.

Fact 3.15.3 (the regions are pairwise-disjoint). For every n ∈ N, the regions in {0, 1}n, correspond-
ing to different values of k ∈ {2, ..., blog(n)c − 1}, are pairwise-disjoint.

Proof. For any k, k′ ∈ {2, ..., blog(n)c − 1} such that k′ > k, the maximal Hamming weight of
a string in Rn

k is
⌊(

1− 2−(k−1)
)
· n
⌋

, whereas the minimal Hamming weight of a string in

Rn
k′ is

⌊(
1− 2−(k

′−2)
)
· n
⌋
+ 1 ≥

⌊(
1− 2−(k−1)

)
· n
⌋
+ 1. �

For any n ∈ N, we define Πn as follows. First, Πn includes all strings that are outside
the regions in {0, 1}n (i.e., the all-zero string is included in Πn, and so are all strings with

24

Hamming weight more than
(

1− 2−(blog(n)c−2)
)
· n).7 Now, relying on Fact 3.15.3, we can

define Πn independently in each of the pairwise-disjoint regions. For k ∈ {2, ..., blog(n)c −
1}, we will define Πn in Rn

k such that it exhibits a disruptive pattern for ε = 2−k. Specifically,
we define Πn such that it contains all the strings with minimal Hamming weight inRn

k , where
this minimal weight is denoted by `n

k , and Πn contains all strings in Rn
k with Hamming

weight at least `n
k + 2 · (

⌊
2−k · n

⌋
− 1), and Πn does not contain any string with Hamming

weight in between these two values. Let us now verify that Πn indeed exhibits a disruptive
pattern for ε = 2−k in Rn

k .

Claim 3.15.4 (Πn exhibits a disruptive patterns). For any 2 ≤ k ≤ blog(n)c − 1 it holds that Πn
exhibits a disruptive pattern for ε = 2−k.

Proof. Let k be as in the hypothesis, and let εk = 2−k. First observe that εk · n ≥ 2 (because
k ≤ blog(n)c− 1). Next, denote by `n

k the minimal Hamming weight of a string inRn
k , and by

hn
k the maximal Hamming weight of a string inRn

k ; then, it holds that hn
k − `n

k ≥ 2 · (εk · n− 1),
because:

hn
k − `n

k =
⌊(

1− 2−(k−1)
)
· n
⌋
−
(⌊(

1− 2−(k−2)
)
· n
⌋
+ 1
)

≥
(

1− 2−(k−1)
)
· n− 1−

((
1− 2−(k−2)

)
· n + 1

)
= 2−(k−1) · n− 2
= 2 · (εk · n− 1) .

In particular, for ` = `n
k there exists h ≤ hn

k such that h− ` = 2 · (bεk · nc − 1), and Rn
k

contains all strings with Hamming weight w ∈ [`, h]. By the definition of Πn, it holds that Πn
contains all strings with Hamming weight `, and all strings with Hamming weight h, and no
string with Hamming weight in between these two values. According to Definition 3.15.1, it
holds that Πn contains a disruptive pattern for εk = 2−k. �

Let Π = ∪n∈NΠn. For any fixed ε = 2−k, where k ≥ 2, and any n ≥ 2k+1, by combining
Claim 3.15.4 and Lemma 3.15.2, we deduce that there exists a string in Fε·n(Fε·n(Πn)) whose
distance from Πn is at least ε · n− 2. Proposition 3.15 follows.

Another mistaken intuition is that even when Fδ(Fδ(Π)) contains points that are far from
Π, not all points in Fδ(Fδ(Π)) are so (i.e., Fδ(Fδ(Π)) also contains points that are closer to
Π). The following proposition demonstrates that this is not the case: There exist spaces and
sets in which all points in Fδ(Fδ(Π)) are either in Π or almost δ-far from Π.

Proposition 3.16 (all points in Fδ(Fδ(Π)) \Π might be almost δ-far from Π). For every odd integer
δ ≥ 3, there exist Ω and Π ⊆ Ω such that Π is not Fδ-closed, and every x ∈ Fδ(Fδ(Π)) \Π satisfies
∆(x, Π) = δ− 1.

7The choice to include these strings in Πn is arbitrary, and does not affect the proof.

25

Proof. For an odd integer δ ≥ 3, let Ω be a graph that is a simple path of length δ− 1. We
call this path the base path, and denote its vertices by v0, v1, ..., vδ−1. Now add to Ω another
simple path, this time of length (δ− 1)/2 + 1, starting from v(δ−1)/2. We call this path the
additional path, and denote its vertices by v(δ−1)/2 = z0, z1, ..., z(δ−1)/2+1. The only vertex
belonging to both the base path and the additional path is v(δ−1)/2 = z0, and the two paths
are edge-disjoint.

v0 v1 vδ−1v(δ−1)/2 = z0

z1

z(δ−1)/2+1Π = {v0}

Fδ(Π) = {z(δ−1)/2+1}

Fδ(Fδ(Π)) = {v0, vδ−1}

Figure 3: The space Ω.

Let Π = {v0}. For every vertex vi on the base path, it holds that ∆(vi, Π) = i < δ.
Also, for every vertex zi on the additional path it holds that ∆(zi, Π) = ∆(zi, z0) + ∆(z0, Π) =
i + (δ− 1)/2. Thus, the only vertex that is δ-far from Π is z(δ−1)/2+1, implying that Fδ(Π) =
{z(δ−1)/2+1}.

Now, note that for every vertex zi on the additional path it holds that ∆(zi,Fδ(Π)) =
(δ− 1)/2 + 1− i < δ. Also, for every vertex vi on the original path it holds that

∆(vi,Fδ(Π)) = ∆(vi, v(δ−1)/2) + ∆(z0, z(δ−1)/2+1) =

∣∣∣∣i− δ− 1
2

∣∣∣∣+(δ− 1
2

+ 1
)

and thus Fδ(Fδ(Π)) = {v0, vδ−1}. Therefore, only vδ−1 satisfies vδ−1 ∈ Fδ(Fδ(Π)) \Π, and
it holds that ∆(vδ−1, Π) = δ− 1.

4 Evaluating whether a set is Fδ-closed in two special cases

Recall that Theorem 3.2 gives several sufficient and necessary conditions for a set to be Fδ-
closed in a metric space. In this section we present several conditions that are either sufficient
or necessary to deduce that a set is Fδ-closed, and that might be more convenient to evaluate
for some sets than the characterizations in Theorem 3.2.

However, each of the conditions that we present applies only in a specific class of metric
spaces: Some of them apply only in graphical spaces (see Section 4.1) and others apply only
in the special case of the Boolean hypercube (see Section 4.2). Furthermore, all conditions we
present are either sufficient or necessary, but not both.

26

4.1 Graphical spaces and strongly Fδ-closed sets

In this section we focus only on graphical spaces; recall that these are connected undirected
graphs, equipped with the shortest path metric. Since the distances in such spaces are
integer-valued, we assume throughout the section that δ ∈ N. As an initial observation,
note that for any graphical Ω it holds that minx 6=y∈Ω{∆(x, y)} = 1. Recall that Fact 3.8 states
that in any space Ω, if δ ≤ minx 6=y∈Ω{∆(x, y)}, then all sets in Ω are Fδ-closed. Thus, in every
graphical space, all sets are F1-closed. Accordingly, in this section we are mainly interested
in integer values of δ ≥ 2.

In Section 4.1.1 we show a necessary condition for a set to be Fδ-closed in a graphical
space. This necessary condition sets the stage for the subsequent section. In Section 4.1.2,
which is the main part of our discussion of graphical spaces, we present a sufficient condition
for a set to be Fδ-closed in a graphical space. We call sets that satisfy this sufficient condition
strongly Fδ-closed sets. Section 4.1.3 is a detour, in which we explore spaces (and values of
δ > 0) for which the sufficient condition of being strongly Fδ-closed is also a necessary one.
In Section 4.1.4 we show that for any fixed set in a graphical space, the values of δ for which
the set is Fδ-closed (resp., strongly Fδ-closed) constitute a single interval.

4.1.1 Sets that “enclose” a vertex are not Fδ-closed

Loosely speaking, a necessary condition for a set Π in a graphical space to be Fδ-closed
is that it does not “enclose” some vertex x /∈ Π ∪ Fδ(Π) from “all sides”. In particular,
the following proposition shows that if a set Π is Fδ-closed, then every x /∈ Π ∪ Fδ(Π) is
connected to Fδ(Π) via a path that does not intersect Π (nor any vertex that is adjacent to
Π).

Proposition 4.1 (sets that “enclose” some vertex are not Fδ-closed). For a graphical Ω and δ ≥ 2, let
Π ⊆ Ω be an Fδ-closed set. Then, for every x /∈ Π∪Fδ(Π), there exists a path x = v0, v1, ..., vl = z
such that z ∈ Fδ(Π), and for every i ∈ [l] it holds that ∆(vi, Π) ≥ 2.

Note that x = v0 itself may be adjacent to Π, and the requirement is that the vertices
subsequent to x in the path to Fδ(Π) will neither be in Π nor adjacent to Π.

Proof. Let Ω and δ ≥ 2. The key observation is that, for every set Π (not necessarily an Fδ-
closed set) and every x /∈ Π ∪ Fδ(Π), a shortest path from x to Π does not intersect Fδ(Π)
nor any vertex adjacent to Fδ(Π).

Fact 4.1.1. For a graphical Ω, and δ ≥ 2, let Π ⊆ Ω be a set (not necessarily an Fδ-closed set).
Then, for every x /∈ Π ∪ Fδ(Π) and a shortest path from x to Π, every vertex v subsequent to x on
the path satisfies ∆(v,Fδ(Π)) ≥ 2.

Proof. Let x /∈ Π ∪ Fδ(Π), and let p ∈ Π such that ∆(x, Π) = ∆(x, p). Let P be a shortest
path from x to p. Since P is a shortest path, for every vertex v subsequent to x on the path it
holds that v is closer to p than x; since x /∈ Fδ(Π), we get that, ∆(v, p) ≤ ∆(x, p)− 1 ≤ δ− 2.
Thus, every neighbor v′ of v satisfies ∆(v′, Π) ≤ ∆(v, Π) + 1 ≤ δ − 1, which implies that
v′ /∈ Fδ(Π). It follows that ∆(v,Fδ(Π)) ≥ 2. �

27

Now, let Π be an Fδ-closed set, and let Π′ = Fδ(Π). Then, Π = Fδ(Π′), which implies
that Π′ ∪ Fδ(Π′) = Π ∪ Fδ(Π). According to Fact 4.1.1, for every x /∈ Π′ ∪ Fδ(Π′) =
Π ∪ Fδ(Π), a shortest path from x to Π′ = Fδ(Π) does not intersect Fδ(Π′) = Π nor any
vertex adjacent to Π.

By combining Proposition 4.1 and Fact 4.1.1, we get the following corollary, which sets
the stage for Section 4.1.2. Loosely speaking, it states that for an Fδ-closed set Π, every
x /∈ Π ∪ Fδ(Π) lies on a path from Π to Fδ(Π) that satisfies the following: The subpath
from Π to x does not intersect Fδ(Π) nor any neighbor of Fδ(Π); and the subpath from x to
Fδ(Π) does not intersect Π nor any neighbor of Π.

Corollary 4.2 (a corollary of Proposition 4.1). For a graphical Ω, and δ ≥ 2, let Π ⊆ Ω be an
Fδ-closed set. Then, for every x /∈ Π∪Fδ(Π), there exists a path v0, v1, ..., vm = x, ..., vl such that:

1. v0 ∈ Π, and for every i ∈ [0, m− 1] it holds that ∆(vi,Fδ(Π)) ≥ 2.

2. vl ∈ Fδ(Π), and for every i ∈ [m + 1, l] it holds that ∆(vi, Π) ≥ 2.

Proposition 4.1 asserts that the condition specified in it (i.e., that every x /∈ Π ∪ Fδ(Π)
is connected to Fδ(Π) via a path that does not intersect Π nor any vertex adjacent to Π)
is a necessary condition for a set in a graphical space to be Fδ-closed. In some cases it is
convenient to show that this condition is not met, and deduce that the set is not Fδ-closed;
demonstrations for this technique appear in the proofs of Propositions 4.21, 5.20, 5.23, 5.24,
5.29, 5.32, 5.35, and C.2. Readers interested in further details regarding the condition in
Proposition 4.1 are referred to Appendix B, where we show another condition that is equiv-
alent to the condition in Proposition 4.1, which might be interesting by itself.

The condition in Proposition 4.1 is not sufficient to deduce that a set is Fδ-closed. To
see this, consider the graph depicted in Figure 4 and δ = 3. Let Π = {p}, and note that
F3({p}) = {z}. Each vertex v1, ..., v4 /∈ {p} ∪ F3({p}) has a path starting from itself and
reaching z such that the path does not intersect p or any of its neighbors. Thus, {p} meets
the necessary condition implied by Proposition 4.1. However, since F3(F3({p})) = {p, v1},
it follows that {p} is not F3-closed.

p v3

v4 z

v2v1Π = {p}

F3(Π) = {z}

Figure 4: The singleton {p} is not F3-closed, although the necessary condition stated in
Proposition 4.1 is satisfied.

The following proposition demonstrates that, even in the special case of the Boolean
hypercube, the necessary condition implied by Proposition 4.1 is not sufficient for a set to be
Fδ-closed.

28

Proposition 4.3 (the condition in Proposition 4.1 is not sufficient to be Fδ-closed in the hypercube).
For n ≥ 3, let Hn be the n-dimensional Boolean hypercube. Then, there exists a set Π ⊆ Hn such that
for every 4 ≤ δ ≤ n− 1:

1. For every x /∈ Π ∪ Fδ(Π) there exists a path p = v0, v1, ...x = vr, ..., vl = z such that for
every i ∈ [l] it holds that ∆(vi, Π) ≥ 2.

2. Π is not Fδ-closed.

Proof. For the proof it will be convenient to identify every vertex v ∈ {0, 1}n of Hn with the
corresponding subset of [n]; that is, the subset {i ∈ [n] : vi = 1}. Let

Π =
{
{1}, {2}, ..., {n− 2}

}
and let 4 ≤ δ ≤ n− 1.

To prove the first statement, for any x /∈ Π ∪ Fδ(Π), we show a path satisfying the
requirements. First note that since Π ⊆ {v : |v| = 1}, for any w such that |w| ≥ 2 it holds
that ∆(w, Π) ≥ |w| − 1, since we need to remove at least |w| − 1 elements from w to reach Π.
In particular, this implies that:

• For every w such that |w| ≥ 3 it holds that ∆(w, Π) ≥ 2.

• ∆([n], Π) ≥ n− 1, and since δ ≤ n− 1 we get that [n] ∈ Fδ(Π).

Combining these two facts, we deduce that if |x| ≥ 2, then there exists a path from x to
[n] ∈ Fδ(Π) such that every vertex v subsequent to x in the path satisfies ∆(v, Π) ≥ 2: This
path is obtained by just adding elements to x (in arbitrary order). It is thus left to show that
for every x /∈ Π ∪ Fδ(Π) such that |x| ≤ 1 there exists a path from x to Fδ(Π) that does not
intersect Π nor vertices adjacent to Π. Note that it suffices to show such a path from x to x′

such that |x′| = 2.
Now, the only vertices that satisfy both |x| ≤ 1 and x /∈ Π ∪ Fδ(Π) are ∅, {n− 1}, and

{n}. For ∅, we take the path ∅, {n}, {n− 1, n}, and indeed {n} and {n− 1, n} are neither in
Π nor adjacent to Π. Similarly, for {n} we take the path {n}, {n− 1, n}, whereas for {n− 1}
we take the path {n− 1}, {n− 1, n}. This completes the proof of Item (1).

To show that Π is not Fδ-closed, we rely on Condition (2) of Theorem 3.2. Note that
∆(∅, Π) = 1, and hence ∅ /∈ Π ∪ Fδ(Π). We will show that for every z ∈ Fδ(Π) it holds
that ∆(z, ∅) ≥ δ. Assume towards a contradiction that there exists z ∈ Fδ(Π) such that
∆(z, ∅) ≤ δ− 1, which implies that |z| ≤ δ− 1.

• If |z| ≤ δ − 2, then we can remove all elements from z, and add the element 1, to
obtain {1} ∈ Π. Therefore ∆(z, Π) ≤ ∆(z, {1}) ≤ |z|+ 1 ≤ δ− 1, which contradicts
z ∈ Fδ(Π).

• If |z| = δ − 1 ≥ 3, since
⋃

p∈Π p = [n] \ {n, n − 1}, it follows that z intersects the
set

⋃
p∈Π p. Thus, for some p ∈ Π, it holds that z ∩ p 6= ∅, and since Π only contains

singletons, it follows that z∩ p = p. By removing the δ− 2 elements that are not in z∩ p
from z, we obtain p ∈ Π, meaning that ∆(z, Π) ≤ ∆(z, p) ≤ δ− 2, which contradicts
z ∈ Fδ(Π).

29

Having shown that Π is not Fδ-closed, the proposition follows.

4.1.2 Strongly Fδ-closed sets

In Corollary 4.2 we showed the following necessary condition for a set to be Fδ-closed: If a
set Π is Fδ-closed, then for every x /∈ Π ∪ Fδ(Π), there exists a path from Π to x that does
not intersect Fδ(Π) (nor any of its neighbors), and a path from x to Fδ(Π) that does not
intersect Π (nor any of its neighbors). While each of these two paths is actually a shortest
path, their combination is not necessarily a shortest path from Π to Fδ(Π). In this section,
we prove that if every x /∈ Π ∪ Fδ(Π) lies on a shortest path from Π to Fδ(Π), then Π is
Fδ-closed. We also show that this sufficient condition is, unfortunately, not a necessary one.

We start by presenting several equivalent formulations for the latter condition, which we
call being strongly Fδ-closed.

Definition 4.4 (Definition 1.18, restated). For a graphical Ω and δ > 0, a set Π ⊆ Ω is strongly

Fδ-closed if every x /∈ Π∪Fδ(Π) lies on a shortest path (i.e., a path of length δ) from Π to Fδ(Π).

Proposition 4.5 (strongly Fδ-closed, equivalent formulation). For a graphical Ω and δ > 0, a set
Π ⊆ Ω is strongly Fδ-closed if and only if for every x /∈ Π ∪ Fδ(Π) there exists z ∈ Fδ(Π) such
that ∆(x, z) = δ− ∆(x, Π).8

Proof. We first show that Definition 4.4 implies the condition in Proposition 4.5. Assume that
every x /∈ Π ∪ Fδ(Π) lies on a path of length δ from Π to Fδ(Π). Let x /∈ Π ∪ Fδ(Π). If
∆(x,Fδ(Π)) > δ−∆(x, Π), then any path from Π to Fδ(Π) that passes through x is of length
at least ∆(Π, x) + ∆(x,Fδ(Π)) > δ, which contradicts the hypothesis. Also, if ∆(x,Fδ(Π)) <
δ− ∆(x, Π), then there exists a path from Π to Fδ(Π) of length ∆(Π, x) + ∆(x,Fδ(Π)) < δ,
which is a contradiction. Hence ∆(x,Fδ(Π)) = δ− ∆(x, Π), which implies that there exists
z ∈ Fδ(Π) such that ∆(x, z) = δ− ∆(x, Π).

For the other direction, assume that for every x /∈ Π∪Fδ(Π) there exists z ∈ Fδ(Π) such
that ∆(x, z) = δ− ∆(x, Π). Let x /∈ Π ∪ Fδ(Π), and let z ∈ Fδ(Π) be the vertex that exists
by the hypothesis. Now, let p ∈ Π such that ∆(p, x) = ∆(Π, x). Then, a shortest path from p
to x, combined with a shortest path from x to z, yields a path of length ∆(p, x) + ∆(x, z) = δ
between Π and Fδ(Π) that passes through x.

Proposition 4.6 (strongly Fδ-closed, equivalent formulation). For a graphical Ω and δ > 0, a set
Π ⊆ Ω is strongly Fδ-closed if and only if for every x /∈ Π ∪Fδ(Π) there exists a neighbor x′ of x
such that ∆(x′, Π) = ∆(x, Π) + 1.

Proof. Assume that for every x /∈ Π ∪ Fδ(Π) there exists a neighbor x′ of x such that
∆(x′, Π) = ∆(x, Π) + 1. We show that for every x /∈ Π ∪ Fδ(Π) there exists z ∈ Fδ(Π)
such that ∆(x, z) = δ − ∆(x, Π), and rely on Proposition 4.5 to deduce that Π is strongly
Fδ-closed.

8This condition can be generalized to non-graphical metric spaces. However, in general metric spaces, the
easier-to-evaluate condition in Proposition 4.6 would not be applicable. We thus do not define the generalization
in the current paper.

30

Let x /∈ Π ∪ Fδ(Π) and denote x0 = x. By the hypothesis, there exists x1 such that
∆(Π, x1) = ∆(Π, x0) + 1. If ∆(x1, Π) = δ we are done, since this implies that ∆(x, Π) =
δ − 1 and hence ∆(x, x1) = 1 = δ − ∆(x, Π). Otherwise, note that x1 /∈ Π ∪ Fδ(Π), since
∆(x1, Π) > ∆(x0, Π) > 0, and hence we can apply the hypothesis again to obtain a neighbor
x2 of x1 such that ∆(x2, Π) = ∆(x1, Π) + 1. This way we repeatedly apply this step such
that for the ith application it holds that ∆(xi, Π) = ∆(x, Π) + i and ∆(xi, x) = i. As long as
i < δ − ∆(x, Π) we can continue applying the step, since ∆(xi, Π) = ∆(x, Π) + i < δ, and
hence xi /∈ Π∪Fδ(Π), and so we rely on the hypothesis to obtain xi+1. When i = δ−∆(x, Π)
we get that ∆(xδ−∆(x,Π), Π) = δ and ∆(xδ−∆(x,Π), x) = δ− ∆(x, Π), which is what we wanted.

For the other direction, assume that Π is strongly Fδ-closed. Then, by Proposition 4.5, for
every x /∈ Π ∪ Fδ(Π) there exists z ∈ Fδ(Π) such that x = x0, x1, ..., xδ−∆(Π,x) = z is a path
of length δ− ∆(x, Π) between x and z. Hence it must be that ∆(x1, Π) > ∆(x, Π), otherwise
there exists a path between z and Π of length at most

∆(z, x1) + ∆(x1, Π) = δ− ∆(Π, x)− 1 + ∆(x1, Π) ≤ δ− 1

which contradicts z ∈ Fδ(Π). Therefore, since ∆(x1, Π) > ∆(x, Π) and ∆(x1, Π) ≤ ∆(x, Π) +
1, it follows that ∆(x1, Π) = ∆(x, Π) + 1.

Recall that Condition (2) of Theorem 3.2 asserts that Π is Fδ-closed if and only if for
every x /∈ Π∪Fδ(Π) there exists z ∈ Fδ(Π) such that ∆(x, z) < δ. Comparing this condition
to Proposition 4.5, it follows that if a set is strongly Fδ-closed then it is Fδ-closed. However,
the condition in Proposition 4.6 seems more convenient to evaluate in some cases: When one
seeks to prove that a set is strongly Fδ-closed, and given a vertex x /∈ Π∪Fδ(Π), one does not
need to reason about Fδ(Π), but only to find a neighbor of x that is farther away from Π than
x. Demonstrations for this technique appear in the proofs of Propositions 4.17, 4.19, 4.21, 5.10,
and C.2.

While being strongly Fδ-closed is a sufficient condition for a set to be Fδ-closed, it is not
a necessary condition. To see this, consider the graph depicted in Figure 5, with δ = 3. Let
Π = {p}, and note that Fδ({p}) = {z}, and Fδ(Fδ({p})) = Fδ({z}) = {p}. Hence {p} is
Fδ-closed. However, the vertex b does not lie on a shortest path between {p} and {z}, and
thus {p} is not strongly Fδ-closed.

p v1 v2 z

bΠ = {p}

F3(Π) = {z}

Figure 5: The singleton {p} is F3-closed but not strongly F3-closed.

The following proposition substantiates that even in the special case where the graph
is the Boolean hypercube, being strongly Fδ-closed is not a necessary condition for being
Fδ-closed.

31

Proposition 4.7 (Proposition 1.19, restated). For n ≥ 9 and 4 ≤ δ ≤ n
2 such that δ− 1 divides n,

there exist sets in the Boolean hypercube that are Fδ-closed but are not strongly Fδ-closed.

Proof. Similar to the proof of Proposition 4.3, in the current proof it will be convenient to
identify every vertex v ∈ {0, 1}n with the corresponding subset of [n] that v indicates (i.e.,
the set {i : vi = 1}). Also recall that for x, y ∈ {0, 1}n we denote by sd(x, y) the symmetric
difference between x and y, and that ∆(x, y) = |sd(x, y)|.

Let n ∈N and δ be as in the hypothesis. The set Π is an equipartition of [n] to n/(δ− 1)
sets, each of cardinality δ− 1; specifically,

Π = {{1, ..., δ− 1}, {δ, ..., 2 · δ− 2}, ..., {n− δ + 2, ..., n}} .

We will first show that Π is not strongly Fδ-closed, and then show that Π is Fδ-closed.

Claim 4.7.1. Π is not strongly Fδ-closed.

Proof. Note that ∆(∅, Π) = δ− 1 ∈ (0, δ), hence ∅ /∈ Π ∪Fδ(Π). Relying on Proposition 4.6,
we show that ∅ has no neighbor that is farther from Π than ∅ itself. Note that the neighbors
of ∅ are singletons. Since

⋃
p∈Π p = [n], for every singleton x′ there exists p ∈ Π such

that p ∩ x′ 6= ∅, which implies that ∆(x′, Π) ≤ ∆(x′, p) ≤ δ− 2. It follows that ∆(x′, Π) <
∆(∅, Π). Thus, Π is not strongly Fδ-closed. �

To prove that Π is Fδ-closed we will need the following two facts:

Fact 4.7.2 (all sets of size at least 2 · δ − 1 are in Fδ(Π)). There exists z ⊆ [n] satisfying |z| ≥
2 · δ− 1. For any such z it holds that z ∈ Fδ(Π).

Proof. Since 2 · δ − 1 ≤ n there exist sets of cardinality 2 · δ − 1. Every such set z satisfies
z ∈ Fδ(Π), since Π ⊆ {v : |v| = δ− 1}, and since we need to remove at least δ elements from
z to obtain a set of cardinality δ− 1. �

Fact 4.7.3 (there exist sets of size 3 that are in Fδ(Π)). There exists z ⊆ [n] such that |z| = 3 and
for every p ∈ Π it holds that |z ∩ p| ≤ 1. For any such z it holds z ∈ Fδ(Π).

Proof. To see that z as in the statement exists, note that n
δ−1 > 2, and hence there exist at least

three distinct subsets in Π. A suitable z is comprised of three elements, each from one of
those three distinct subsets in Π. For such a set z it holds that

|sd(z, p)| = |(z ∪ p) \ (z ∩ p)|
= |z|+ |p| − 2 · |z ∩ p|
≥ 3 + (δ− 1)− 2 · 1
= δ

and thus ∆(z, Π) ≥ δ. �

32

It is thus left to show that Π is Fδ-closed. To do this we rely on Condition (2) from
Theorem 3.2: For x /∈ Π ∪ Fδ(Π) we show that there exists z ∈ Fδ(Π) such that ∆(x, z) ≤
δ− 1.

Let x /∈ Π ∪ Fδ(Π). First, relying on Fact 4.7.2 and on the hypothesis that x /∈ Fδ(Π),
it follows that |x| < 2 · δ − 1. Now, if |x| ∈ [δ, 2 · δ − 1), then we can add (2 · δ − 1) − |x|
elements from [n] \ x to x, thereby obtaining a subset z of cardinality |z| = 2 · δ− 1 satisfying
∆(x, z) = (2 · δ − 1) − |x| ≤ δ − 1. Relying on Fact 4.7.2, again, it holds that z ∈ Fδ(Π).
Hence the condition holds.

We are left with the case of |x| ≤ δ− 1. In this case we show that it is possible to modify
x to a subset as in Fact 4.7.3 (i.e., a subset z such that |z| = 3 and |z ∩ p| ≤ 1 for every
p ∈ Π), by at most δ− 1 actions of adding elements to x or removing elements from it. Since
such z is in Fδ(Π), once we show this it will follow that there exists z ∈ Fδ(Π) such that
∆(x, z) ≤ δ− 1.

Recall that for x /∈ Π ∪ Fδ(Π) such that |x| ≤ δ− 1, we wish to present a set z such that
∆(x, z) ≤ δ− 1, and |z| = 3, and for every p ∈ Π it holds that |z ∩ p| ≤ 1. Also recall that, as
mentioned in the proof of Fact 4.7.3, since n

δ−1 > 2, there exist at least three distinct subsets
in Π. We proceed by a case analysis:

• If x = ∅, then we can reach a suitable z with three actions (which is less than δ ≥ 4) by
adding one element from each of three distinct subsets in Π.

• If x intersects with a single subset p ∈ Π, then it holds that |x| = |x ∩ p| ≤ δ − 2,
otherwise x = p ∈ Π, contradicts x /∈ Π. Therefore we can remove |x| − 1 ≤ δ − 3
arbitrary elements from x, and then add to x two elements from two distinct subsets
p1, p2 6= p from Π, thereby reaching a suitable z with at most δ− 1 actions.

• If x intersects with k ≥ 2 subsets of Π, denote these subsets by {p1, ..., pk}. We start by
removing all elements from x, except for a single element from p1 and a single element
from p2. Since |x| ≤ δ− 1 we performed at most δ− 3 actions so far. We now add to
x an element from a subset p3 ∈ Π such that p3 6= p1, p2, thereby reaching a suitable z
with at most δ− 2 actions.

4.1.3 Detour: Fδ-tight spaces

In Figure 5 and Proposition 4.7, we presented two graphs (and values of δ) for which being
strongly Fδ-closed is not a necessary condition for being Fδ-closed. However, there exist
graphs and values of δ > 0 for which this sufficient condition is also necessary. We call such
spaces Fδ-tight; that is –

Definition 4.8 (Fδ-tight spaces). For a graphical space Ω and δ > 0, we say that Ω is Fδ-tight if
every Fδ-closed set in Ω is also strongly Fδ-closed.

Thus, in Fδ-tight spaces, a set is Fδ-closed if and only if it is strongly Fδ-closed. In the
current section we present an initial exploration of this notion.

First, observe that every graph is F1-tight: This is true since every set in a graphical
space is strongly F1-closed (since for δ = 1, the condition in Definition 4.4 holds vacuously).

33

Thus, all sets in graphical spaces are both F1-closed and strongly F1-closed. The following
proposition states that every graph is also F2-tight.

Proposition 4.9 (all graphs are F2-tight). Every graphical space is F2-tight.

Proof. Let Π ⊆ Ω be a set that is F2-closed. Relying on Definition 4.4, we show that every
x /∈ Π ∪ F2(Π) lies on a 2-path from Π to F2(Π); that is, x has a neighbor in F2(Π). Since
Π is F2-closed, by Proposition 4.1, every x /∈ Π ∪ F2(Π) lies on a path to F2(Π) such that
every vertex v subsequent to x in the path satisfies ∆(v, Π) ≥ 2. Thus, the vertex subsequent
to x on the path is a neighbor of x in F2(Π).

However, not all graphical spaces are F3-tight, as demonstrated by the example in Fig-
ure 5. Nevertheless, the following proposition asserts that every graphical space is Fδ-tight
for values of δ that are larger than the diameter of the graph.

Proposition 4.10 (graphs with diameter d are Fδ-tight for every δ > d). Let Ω be a graphical space
with diameter d. Then, for every δ > d it holds that Ω is Fδ-tight.

Proof. Observe that for δ > d, any Π ⊆ Ω satisfies Fδ(Π) = ∅ and Fδ(Fδ(Π)) = Ω. Thus,
the only Fδ-closed set is Π = Ω, and this set is also strongly Fδ-closed.

Overall, we showed that every graph is F1-tight and F2-tight, but not necessarily F3-
tight; and that every graph is Fδ-tight for values of δ that are larger than the diameter of the
graph. A consequent question is therefore:

For which graphs G and values of δ ∈ [3, diam(G)] does it hold that G is Fδ-tight?

Indeed, this seems to be an interesting combinatorial question. As an initial step towards
tackling it, we show several simple graph families that are Fδ-tight for every δ > 0.

Proposition 4.11 (graphs that are Fδ-tight for every δ > 0). The following graphs are Fδ-tight, for
every δ > 0:

1. A complete graph on n ≥ 2 vertices.

2. A path on n ≥ 2 vertices.

3. A cycle on n ≥ 2 vertices.

4. A 2× n grid (i.e., a grid with two rows and n columns), for any n ≥ 2.

The proof of Proposition 4.11 appears in Appendix C. Following Item (4), a natural ques-
tion is whether the n× n grid is also Fδ-tight for every δ > 0.

34

4.1.4 The values of δ for which a set is Fδ-closed

For a fixed set Π ⊆ Ω, what are the values of δ for which Π is strongly Fδ-closed, or just
Fδ-closed? The following proposition shows that for any set Π in a graphical space with
bounded diameter, the values of δ for which Π is Fδ-closed constitute a single bounded
interval; ditto for values of δ for which Π is strongly Fδ-closed.

Proposition 4.12 (Proposition 1.20, restated). For a graphical Ω with bounded diameter and a non-
trivial Π ⊆ Ω, there exist two integers δC(Π) and δSC(Π) such that δSC(Π) ≤ δC(Π) and for every
integer δ > 0 it holds that

1. Π is Fδ-closed if and only if δ ∈ [1, δC(Π)].

2. Π is strongly Fδ-closed if and only if δ ∈ [1, δSC(Π)].

Proof. Let Π ⊆ Ω such that Π /∈ {∅, Ω}. The proposition will essentially follow from the
following claim:

Claim 4.12.1. For δ > 1, if Π is Fδ-closed (resp., strongly Fδ-closed), then Π is Fδ−1-closed (resp.,
strongly Fδ−1-closed).

Proof. We first prove the statement regarding Fδ-closed sets, and then prove the statement
regarding strongly Fδ-closed sets in a similar way.

Assuming that Π is Fδ-closed, we rely on Condition (2) from Theorem 3.2, and show
that for every x /∈ Π ∪ Fδ−1(Π) there exists z ∈ Fδ−1(Π) such that ∆(x, z) ≤ δ − 2. If
Ω = Π ∪ Fδ−1(Π) then the claim vacuously holds. Otherwise, let x /∈ Π ∪ Fδ−1(Π). Since
Fδ(Π) ⊆ Fδ−1(Π) it follows that x /∈ Π ∪ Fδ(Π). Since Π is Fδ-closed, and relying on
Condition (2) of Theorem 3.2 again, there exists z′ ∈ Fδ(Π) such that ∆(x, z′) ≤ δ− 1. Let
x = x0, x1, ..., xk−1, xk = z′ be a path of length k ≤ δ − 1 from x to z′. Since z′ ∈ Fδ(Π) it
follows that ∆(xk−1, Π) ≥ δ− 1, otherwise ∆(z′, Π) ≤ ∆(z′, xk−1) + ∆(xk−1, Π) ≤ δ− 1. Thus,
xk−1 ∈ Fδ−1(Π) and ∆(x, xk−1) ≤ k− 1 ≤ δ− 2.

To prove the statement regarding strongly Fδ-closed sets, we rely on Proposition 4.5.
Assuming that Π is strongly Fδ-closed, for x /∈ Π ∪ Fδ−1(Π) we show z ∈ Fδ−1(Π) such
that ∆(x, z) = (δ− 1)− ∆(x, Π). Similar to the previous proof, it holds that x /∈ Π ∪ Fδ(Π),
and by Proposition 4.5 there exists a path x = x0, x1, ...xk−1, xk = z′ such that z′ ∈ Fδ(Π) and
k = δ− ∆(x, Π). Since z′ ∈ Fδ(Π) it follows that ∆(xk−1, Π) ≥ δ− 1. Thus, xk−1 ∈ Fδ−1(Π)
and ∆(x, xk−1) = (δ− 1)− ∆(x, Π). �

It follows that the integer values of δ for which a non-trivial set Π is Fδ-closed (resp.,
strongly Fδ-closed) constitute a continuous interval. To see that the interval for which Π
is Fδ-closed is upper-bounded, note that for any δ larger than the diameter of Ω, which is
upper-bounded according to the hypothesis, it holds that Fδ(Π) = ∅, and thus Fδ(Fδ(Π)) =
Ω 6= Π and Π is not Fδ-closed. Moreover, since for any δ > 0, if Π is strongly Fδ-closed
then Π is Fδ-closed, we get that the interval for which Π is strongly Fδ-closed is also upper-
bounded, and that δSC(Π) ≤ δC(Π). To see that both intervals are lower bounded by 1, note
that every set is strongly F1-closed, since the condition in Definition 4.4 holds vacuously.

35

The following proposition shows that a statement analogous to Item (1) in Proposi-
tion 4.12 does not hold in general metric spaces.

Proposition 4.13 (a statement analogous to Proposition 4.12 does not hold in general metric spaces).
There exists a non-graphical metric space Ω and a set Π ⊆ Ω such that the values of δ for which Π
is Fδ-closed in Ω do not lie in a single interval.

Proof. Let Ω = {0, 1, 3} with the standard metric of R, and let Π be the singleton {0}. Then:

• For δ = 1 it holds that F1({0}) = {1, 3} and F1(F1({0})) = {0}, and thus {0} is
Fδ-closed.

• For δ = 2 it holds that F2({0}) = {3} and F2(F2({0})) = {0, 1}, and thus {0} is not
F2-closed.

• For δ = 3 it holds that F3({0}) = {3} and F3(F3({0})) = {0}, and thus {0} is F3-
closed.

The counter-example in the proof of Proposition 4.13 is indeed quite artificial. Note
that the proof of Proposition 4.13 demonstrates that, for a fixed Π ⊆ Ω, the operator Π 7→
Fδ(Fδ(Π)) is not necessarily monotone with respect to δ.

4.1.5 The distance of vertices in Fδ(Fδ(Π)) from Π

In this section we formalize a simple argument that we will repeatedly use. Recall that
vertices in Fδ(Fδ(Π)) need not be close to Π (i.e., they can be almost δ-far from Π). We show
a sufficient condition for deducing that the distance of vertices in Fδ(Fδ(Π)) is bounded
away from δ. Actually, we start with a slightly more general formulation, which will be
useful in order to discuss generalized dual problems (in Section 5.7).

Proposition 4.14. Let Ω be a graphical space, let Π ⊆ Ω, let δ ≥ 2, and let δ′ ≤ δ. If there
exists an integer m such that for every x /∈ Π ∪ Fδ(Π) there exists x′ satisfying ∆(x, x′) ≤ m and
∆(x′, Π) > ∆(x, Π), then Fδ′(Fδ(Π)) ⊆

{
y : ∆(y, Π) ≤ δ− δ′

m

}
.

Proof. We will show that if ∆(y, Π) > δ − δ′

m , then y /∈ Fδ′(Fδ(Π)). This will be done by
showing a path y0, ..., yt of length less than δ′ such that y = y0 and yt ∈ Fδ(Π). Specifically,
we start with y = y0, and proceed in iterations, where in iteration i we begin at vertex yi and
rely on the hypothesis to obtain yi+1 that is farther away from Π, compared to yi, such that
the distance between yi and yi+1 is at most m. After at most t = δ− ∆(y, Π) iterations, we
obtain yt such that ∆(yt, Π) ≥ t + ∆(y0, Π) = δ and ∆(y, yt) ≤ m · t = m · (δ− ∆(y, Π)) < δ′

(where the last inequality holds because ∆(y, Π) > δ− δ′

m).

A special case of Proposition 4.14 is when a set is strongly Fδ-closed. Specifically, for
a graphical space Ω and δ ≥ 2, if Π ⊆ Ω is strongly Fδ-closed, then for every δ′ ≤ δ the
condition in Proposition 4.14 is met with m = 1, which implies that Fδ′(Fδ(Π)) ⊆ {y :
∆(y, Π) ≤ δ− δ′}.

36

Proposition 4.14 is particularly appealing in the context of property testing, in which we
are interested in a sequence Π = {Πn}n∈N, and in distances of the form δ = ε · n, for a
constant ε > 0. In this context, when Proposition 4.14 holds with parameters δ = ε · n and
δ′ = ε′ · n and m = O(1), it follows that the distance of vertices in Fε′·n(Fε·n(Πn)) from Πn
is bounded away from Fε·n(Πn) by δ′/m = ε′·n

m = Ω(n). In addition, when taking δ′ = δ, we
obtain the following corollary of Proposition 4.14:

Corollary 4.15 (a sufficient condition for Fδ(Fδ(Π)) to be close to Π). Let Ω be a graphical space, let
Π ⊆ Ω, and let δ ≥ 2. If there exists an integer m such that for every x /∈ Π ∪Fδ(Π) there exists x′

satisfying ∆(x, x′) ≤ m and ∆(x′, Π) > ∆(x, Π), then Fδ(Fδ(Π)) ⊆
{

y : ∆(y, Π) ≤ (1− 1
m) · δ

}
.

4.2 The Boolean hypercube and list-decodable codes

In the current section we focus solely on the n-dimensional Boolean hypercube Ω = Hn, and
continue studying the question from Section 4.1.4: For every fixed set Π ⊆ Hn, we want
to find the values of δ for which Π is strongly Fδ-closed, or just Fδ-closed. In particular,
for every fixed Π ⊆ Hn, we will rely on coding-theoretic features of Π (i.e., view Π as an
error-correcting code), to obtain a lower bound for δSC(Π) and an upper bound for δC(Π).
We will also show that these bounds are, in general, far from being tight.

4.2.1 Motivation: Two simple observations

We state two simple observations that motivate the use of the coding-theoretic features of
a set Π to bound δSC(Π) and δC(Π) . By standard coding theory terminology, the covering

radius of a set Π is the minimum δ > 0 such that every x ∈ Hn satisfies ∆(x, Π) ≤ δ. The
first observation is that for any non-trivial set Π and δ larger than the covering radius of
Π, it holds that Fδ(Π) = ∅, which implies that Π is not Fδ-closed. Therefore, δC(Π) is
upper-bounded by the covering radius of Π.

Observation 4.16 (δC(Π) is upper-bounded by the covering radius of Π). For any non-trivial Π ⊆
Hn, let δCR(Π) be the covering radius of Π; that is, the minimal δ ≥ 0 such that every x ∈ Hn satisfies
∆(x, Π) ≤ δ. Then, δC(Π) < δCR(Π).

Another standard term from coding theory is the unique decoding distance of a set Π, that
is d = 1

2 ·minx 6=y∈Π{∆(x, y)}. Then, the second simple observation is the following:

Proposition 4.17 (δSC(Π) is lower-bounded by the unique decoding distance of Π). For any non-
trivial Π ⊆ Hn such that |Π| ≥ 2, let d = 1

2 ·minx 6=y∈Π{∆(x, y)} be the unique decoding distance

of Π. Then, δSC(Π) ≥ d.

Proof. We prove that Π is strongly Fd-closed, relying on Proposition 4.6: For every x /∈ Π ∪
Fd(Π), we show a neighbor x′ of x such that ∆(x′, Π) = ∆(x, Π) + 1. Let x /∈ Π∪Fd(Π), and
note that it is in the (d− 1)-neighborhood of exactly one p ∈ Π. By flipping a bit i ∈ [n] such
that xi = pi, we obtain a neighbor x′ of x such that either x′ ∈ Fd(Π) (and ∆(x, Π) = d− 1),
or x′ is still in the (d− 1)-neighborhood of p, in which case ∆(x′, Π) = ∆(x′, p) = ∆(x, p) + 1.
Either way, x′ is farther from Π compared to x.

37

4.2.2 List-decodable codes

In this section we show a lower bound on δSC(Π) that is potentially larger than the one
shown in Proposition 4.17. Loosely speaking, it is intuitive to expect that if the set Π is very
sparse in a neighborhood of x, then we can find a neighbor x′ of x that is farther from Π.
Accordingly, we expect that if Π is sparse in every neighborhood of Ω, then it will be strongly
Fδ-closed. Such “locally sparse” sets are known in coding theory as list-decodable codes.9

Definition 4.18 (list-decodable codes). For a non-empty Π ⊆ Hn and δ, L ∈ N, we say that Π is
(δ, L)-list-decodable if for every x ∈ Hn it holds that |Π ∩ B[x, δ]| ≤ L, where B[x, δ] is the closed
Hamming ball of radius δ around x. The number δ is referred to as the decoding radius, whereas L is
referred to as the list size.

We now show that for any set Π and δ > 0, if Π is
(
δ, n

δ − 1
)
-list-decodable, then it is

strongly Fδ-closed. It follows that the maximal δ > 0 such that Π is (δ, n
δ − 1)-list-decodable

lower bounds δSC(Π).

Proposition 4.19 (Proposition 1.21, extended). For any non-empty Π ⊆ Hn, let δLD(Π) be the
maximal δ ∈ [n] such that Π is

(
δ, n

δ − 1
)
-list-decodable. If no such δ ∈ [n] exists, let δLD(Π) = 0.

Then, δSC(Π) ≥ δLD(Π).

Two preliminary comments are in order. First, note that if the unique decoding distance
of Π is d ≤ n

2 , then Π is (d, n
d − 1)-list-decodable. In this case, δLD(Π) is a potentially larger

lower bound on δSC(Π) than d. Second, note that δLD is not a standard quantity: In a typical
setting, one usually fixes a target list size, and is interested in the maximal decoding radius,
for that list size.10 In contrast, in the definition of δLD(Π), the allowed list size decreases as
the decoding radius increases.

Proof of Proposition 4.19. For a set Π ⊆ Hn and δ > 0 such that Π is
(
δ, n

δ − 1
)
-list-decodable,

we show that Π is strongly Fδ-closed. Relying on Proposition 4.6, for x /∈ Π ∪ Fδ(Π), we
need to show a neighbor x′ of x such that ∆(x′, Π) = ∆(x, Π) + 1.

High-level overview. We will prove that there exists a coordinate i ∈ [n] such that all
vertices p ∈ Π satisfying ∆(p, x) ≤ ∆(x, Π) + 1 also satisfy pi = xi. Thus, by flipping the
ith bit of x, we obtain a neighbor x′ of x such that for every p ∈ Π it holds that ∆(x′, p) ≥
∆(x, Π) + 1. This is true since, if ∆(x, p) ≤ ∆(x, Π) + 1, then x′ is farther from p than x
(because x′i 6= pi, whereas xi = pi), and thus ∆(x′, p) ≥ ∆(x, p) + 1 ≥ ∆(x, Π) + 1. On the
other hand, if ∆(x, p) ≥ ∆(x, Π) + 2, then, since x′ cannot be closer to p by more than one
unit, compared to x, we get that ∆(x′, p) ≥ ∆(x, p)− 1 ≥ ∆(x, Π) + 1.

9While many texts define list-decodability using relative distance (see, e.g., [Vad12]), for coherency with the
rest of the current text we use the notion of absolute distance.

10A typical setting of parameters in the study of list-decodable codes (at least within the TCS community)
would allow for a list size of poly(n).

38

The actual proof. Denote by Πx the set of vertices in Π whose distance from x is either
∆(x, Π) or ∆(x, Π) + 1; that is, Πx = {p ∈ Π : ∆(x, p) = ∆(x, Π) ∨ ∆(x, p) = ∆(x, Π) + 1}.
Similar to previous proofs, we identify every v ∈ {0, 1}n with the corresponding subset of
[n] (i.e., i ∈ [n] such that vi = 1). In addition, for any set S ⊆ Hn, let sd(x, S) =

⋃
s∈S sd(x, s).

We first prove that |sd(x, Πx)| ≤ n− 1, which implies that there exists i ∈ [n] such that
for every p ∈ Πx it holds that pi = xi. Since the distance of any p ∈ Π from x is at least
∆(x, Π), it holds that Πx = B[x, ∆(x, Π) + 1]∩Π. Since ∆(x, Π) ≤ δ− 1 (because x /∈ Fδ(Π)),
it holds that B[x, ∆(x, Π) + 1] ⊆ B[x, δ], and thus

Πx ⊆ B[x, δ] ∩Π . (4.1)

By our hypothesis, it holds that |B[x, δ]∩Π| ≤
(n

δ − 1
)
. Also, for every z ∈ B[x, δ] it holds

that |sd(x, z)| = ∆(x, z) ≤ δ. Combining these facts, and relying on Eq. (4.1), we get that

|sd(x, Πx)| ≤ |sd(x, B[x, δ] ∩Π)|

≤
(n

δ
− 1
)
· max

z∈B[x,δ]∩Π
{|sd(z, x)|}

≤
(n

δ
− 1
)
· δ

≤ n− 1 .

Thus, there exists i ∈ [n] such that for every p ∈ Πx it holds that xi = pi. By flipping this
coordinate in x we obtain x′ such that the following hold:

• For every p ∈ Πx it holds that xi = pi, whereas x′i 6= pi. Therefore, ∆(x′, p) = ∆(x, p) +
1. Since ∆(x, Π) ≤ ∆(x, p), we get that ∆(x′, p) ≥ ∆(x, Π) + 1.

• For every p ∈ Π \ Πx it holds that ∆(x, p) ≥ ∆(x, Π) + 2. Relying on the triangle
inequality, we get that ∆(x, p) ≤ ∆(x′, p) + 1, which implies that ∆(x′, p) ≥ ∆(x, p)−
1 ≥ ∆(x, Π) + 1.

Therefore, the distance of x′ from every p ∈ Π is at least ∆(x, Π) + 1.

It is natural to ask whether the requirement on the list size (of n
δ − 1) in Proposition 4.19

can be relaxed. The following proposition states that the list size condition is tight up to a
constant multiplicative factor with respect to the conclusion that the set is strongly Fδ-closed,
and tight up to a linear additive term (in n) with respect to the conclusion that the set is Fδ-
closed. Actually, we show that there exist relatively small sets that are not strongly Fδ-closed
(resp., Fδ-closed), while noting that every set of size k is (δ, k)-list-decodable for every δ > 0.

Proposition 4.20 (on the tightness of the list size in the condition of Proposition 4.19).

1. (tightness with respect to being strongly Fδ-closed). For every n ≥ 9 and 1 ≤ δ ≤ n/2 such
that δ− 1 divides n, there exists a set of cardinality n

δ−1 that is not strongly Fδ-closed.

2. (tightness with respect to being Fδ-closed). For every n ≥ 3 and 2 ≤ δ ≤ n, there exists a set
of cardinality n− δ + 2 that is not Fδ-closed.

39

Proof. In this proof we again identify every v ∈ {0, 1}n with the corresponding subset of [n]
(i.e., i ∈ [n] such that vi = 1). For the first statement, we can use the construction from
the proof of Proposition 4.7. In particular, the set Π is a collection of n

δ−1 sets that form an
equipartition of [n]. In the proof of Proposition 4.7 we showed that such a set is not strongly
Fδ-closed.

For the second statement, we use a variation of the construction in the proof of Proposi-
tion 4.3. Let δ be as in the statement, and let

Π = {{1}, {2}, ..., {n− (δ− 2)}} .

To show that Π is not Fδ-closed, we rely on Condition (2) from Theorem 3.2: In particular,
since δ ≥ 2, it holds that ∅ /∈ Π ∪ Fδ(Π), and we show that there does not exist z ∈ Fδ(Π)
such that ∆(∅, z) ≤ δ− 1. Let z be such that ∆(z, ∅) ≤ δ− 1, implying that |z| ≤ δ− 1.

• If |z| ≤ δ − 2, then we can remove all its elements, and add the element 1, to obtain
the set {1} ∈ Π. Thus, ∆(z, Π) ≤ ∆(z, {1}) ≤ |z| + 1 ≤ δ − 1, which implies that
z /∈ Fδ(Π).

• If |z| = δ − 1, since |⋃p∈Π p| = n − δ + 2 and z contains δ − 1 elements from [n], it
follows that z intersects the set

⋃
p∈Π p. Thus, z ∩ p = p for some p ∈ Π, implying that

we can remove all the other elements from z to obtain p ∈ Π. Therefore ∆(z, Π) ≤
∆(x, p) ≤ δ− 2, which implies that z /∈ Fδ(Π).

4.2.3 The non-tightness of the bounds for δSC and δC

For any non-trivial Π ⊆ Hn, recall that Observation 4.16 implies that δC(Π) < δCR(Π),
whereas Proposition 4.19 implies that δSC(Π) ≥ δLD(Π). By combining these bounds with
the fact that δSC(Π) ≤ δC(Π), and with the fact that both δLD(Π) and δCR(Π) are values in the
interval [0, n], we get the following bounds on δSC and on δC:

0 ≤ δLD(Π) ≤ δSC(Π) ≤ δC(Π) < δCR(Π) ≤ n . (4.2)

In particular, Eq. (4.2) implies the non-obvious fact that δCR(Π) > δLD(Π).
The following proposition demonstrates that the bounds that δLD and δCR yield for δSC and

δC, respectively, are, in general, far from being tight. In particular, the proposition asserts the
existence of two sets, Π and Π′, such that δLD(Π) = δLD(Π′) = 0 (i.e., δLD is the lowest possible
bound for both sets) and δCR(Π) = δCR(Π′) = n− 1 (i.e., δCR is almost the highest possible
bound for both sets), but Π and Π′ vastly differ with respect to the values of δ > 0 for which
they are Fδ-closed.

Proposition 4.21 (non-tightness of the bounds that δLD and of δCR yield for δSC and δC, respectively).
For every n ≥ 2, there exist two sets Π, Π′ ⊆ Hn, such that δLD(Π) = δLD(Π′) = 0 (i.e., both are
not (1, n− 1)-list-decodable), and δCR(Π) = δCR(Π′) = n− 1, but:

1. Π is strongly Fδ-closed for every δ ∈ [n− 1].

40

2. Π′ is not Fδ-closed for every δ ≥ 2.

Proof. Recall that for x ∈ Hn, we denote by ‖x‖1 the Hamming weight of x. Let Π = {p :
‖p‖1 ≤ 1}; that is, Π is the set of strings with Hamming weight 0 or 1. For o = (0, ..., 0) (i.e.,
‖o‖1 = 0), let Π′ = Π \ {o}; that is, Π′ is the set of strings with Hamming weight 1.

To see that δLD(Π) = δLD(Π′) = 0, note that in both cases, the radius-1 ball around
the origin o contains at least n points from the set. Thus, both sets are not (1, n − 1)-list-
decodable. To see that δCR(Π) = δCR(Π′) = n − 1, note that every x such that ‖x‖1 ≥ 1
satisfies ∆(x, Π) = ∆(x, Π′) = ‖x‖1 − 1 ≤ n − 1, whereas for z = (1, ..., 1) it holds that
∆(z, Π) = ∆(z, Π′) = n− 1.

To prove Item (1), we rely on Proposition 4.6: For x /∈ Π ∪ Fδ(Π), we show a neighbor
x′ of x such that ∆(x′, Π) = ∆(x, Π) + 1. In particular, let x /∈ Π ∪ Fδ(Π), and note that any
such x satisfies ‖x‖1 ∈ [2, δ] ⊆ [2, n− 1]. Let i ∈ [n] such that xi = 0. By flipping the ith bit
in x, we obtain x′ such that ∆(x′, Π) = ‖x′‖1 − 1 = ‖x‖1 = ∆(x, Π) + 1. To prove Item (2),
note that every path from o /∈ Π′ ∪ Fδ(Π′) to any other vertex, and in particular to Fδ(Π′),
passes through some p ∈ Π′. Relying on Proposition 4.1, it follows that Π′ is not Fδ-closed
for any δ ≥ 2.

5 Dual problems in property testing

For a space Ω = Σn, and a set Π ⊆ Σn, and ε > 0, the standard property testing problem
is the one of ε-testing Π, and the corresponding dual problem is the one of ε-testing Fε·n(Π).
Recall that we are interested either in an upper bound on the asymptotic query complexity
(as a function of n) for every constant ε > 0, or in a lower bound for some constant ε > 0.
Thus, for a property Π = {Πn}n∈N, we usually refer to the dual problem of the problem of
testing Π, or in short to the dual problem of Π, without specifying a parameter ε > 0.

Definition 5.1 (Definition 1.3, restated). For a set Σ, let Π = {Πn}n∈N such that Πn ⊆ Σn. If for
every sufficiently small ε > 0 and sufficiently large n it holds that Πn is Fε·n-closed, then the problem
of testing Π is equivalent to its dual problem. Otherwise, the problem of testing Π is di�erent from

its dual problem.

In Section 5.1 we state and prove general results regarding the query complexity of dual
problems. In Sections 5.2 – 5.6 we study several classes of natural dual problems: We identify
dual problems that are equivalent to the original problems as well as dual problems that are
different from their original problems, and prove bounds on their query complexity. In
Section 5.7 we formalize the notion of generalized dual testing problems, and upper-bound
the query complexity of several generalized dual problems.

5.1 General results regarding the query complexity of dual problems

The following proposition holds for any dual problem, regardless of whether it is equivalent
to its original problem or not. Towards its statement we extend Definition 2.1, by defining
two special types of testers:

41

Definition 5.2 (extending Definition 2.1 for testers with one-sided error and for testers with perfect
soundness). For any ε-tester T as in Definition 2.1,

1. If the probability in Condition (1) of Definition 2.1 (i.e., the probability that inputs in Π are
accepted) is 1, then we say that T has one-sided error.

2. If the probability in Condition (2) of Definition 2.1 (i.e., the probability that inputs in Fε·n(Π)
are rejected) is 1, then we say that T has perfect soundness.

While the first notion (i.e., one-sided error) is a standard notion in property testing, the
second notion (i.e., perfect soundness) is not standard, and we introduce it mainly as an
auxiliary notion. The query complexity of ε-testing Π with one-sided error (or with perfect
soundness) is defined in the straightforward way.

Proposition 5.3 (Observation 1.4, extended). The query complexity of a dual problem is lower
bounded by the query complexity of its original problem. Moreover, the query complexity of testing
a dual problem with one-sided error (resp., with perfect soundness) is lower bounded by the query
complexity of testing the original problem with perfect soundness (resp., with one-sided error).

Proof. For Π ⊆ Σn and ε > 0, let T be an ε-tester for Fε·n(Π). Then, T accepts every x ∈
Fε·n(Π), with high probability, and rejects every x ∈ Fε·n(Fε·n(Π)), with high probability. By
Fact 3.1, it holds that Π ⊆ Fε·n(Fε·n(Π)). Hence, the tester T′, obtained by complementing
the output of T, accepts every x ∈ Fε·n(Fε·n(Π)) ⊇ Π, with high probability, and rejects
every x ∈ Fε·n(Π), with high probability. Thus, T′ is an ε-tester for Π. It follows that for
every Π and ε > 0, the query complexity of ε-testing Π is upper-bounded by the query
complexity of ε-testing Fε·n(Π).

For the “moreover” statement, note that for every x ∈ Σn, the probability that T accepts
(resp., rejects) x equals the probability that T′ rejects (resp., accepts) x. Therefore a tester T
with one-sided error (resp., with perfect soundness) yields a tester T′ with perfect soundness
(resp., with one-sided error).

The proof of Proposition 5.3 relied on the fact that an ε-tester for Fε·n(Π) always yields
an ε-tester for Π. The converse statement, however, is not true.

Observation 5.4 (ε-testers for Π do not necessarily yield testers for Fε·n(Π)). Let Σ be a set and
ε > 0. Then, for every Π ⊆ Σn that is not Fε·n-closed, there exists an ε-tester T for Π such that
complementing the output of T does not yield an ε-tester for Fε·n(Π).

Proof. Let T be a trivial tester that on input x ∈ Σn makes all possible n queries and accepts if
and only if x ∈ Π, and let T′ be the tester that is obtained by complementing the output of T.
Since Π is not Fε·n-closed, there exists y ∈ Fε·n(Fε·n(Π)) \Π, whereas T rejects y /∈ Π. Thus,
T′ accepts y although y ∈ Fε·n(Fε·n(Π)), implying that T′ is not an ε-tester for Fε·n(Π).

We stress that Observation 5.4 only says that an ε-tester for Fε·n(Π) is not necessarily
obtained by a specific modification (complementation of the output) to an arbitrary ε-tester
for Π. In particular, Observation 5.4 does not imply anything about the query complexity
of ε-testing Fε·n(Π). However, if Π is Fε·n-closed, then the problem of ε-testing Π and the
problem of ε-testing Fε·n(Π) are essentially equivalent.

42

Observation 5.5 (problems that are equivalent to their dual problems). If the problem of testing a
property is equivalent to its dual problem (according to Definition 5.1), then their query complexities
are identical.

We now show a general lower bound on testing dual problems with one-sided error. First,
we need the following proposition from our prior work [Tel14, Apdx. A].11

Proposition 5.6 (testing standard problems with perfect soundness). For a set Σ, let Π = {Πn}n∈N

such that Πn ⊆ Σn. Suppose that for all sufficiently large n it holds that Πn 6= ∅ and that there exist
inputs that are Ω(n)-far from Πn. Then, the query complexity of testing Π with perfect soundness
is Ω(n).

Proof. The key observation is as follows. If there exists an ε-tester with query complexity q
for Π, then the tester accepts some input p ∈ Π, with positive probability, after making q
queries. Fix random coins r such that the tester accepts p when using these coins. Then,
whenever the tester uses the random coins r, it will also accept any other input that agrees
with p on the relevant q coordinates. Since the tester has perfect soundness, every such input
cannot be (ε · n)-far from Π. More formally,

Claim 5.6.1. For Π as in the hypothesis and any ε > 0, if there exists an ε-tester for Π with perfect
soundness and query complexity q, then for a sufficiently large n and every z ∈ Σn it holds that
∆(z, Πn) < q(n) + ε · n.

Proof. Let ε > 0, and assume that there exists an ε-tester T for Π with perfect soundness and
query complexity q. By the hypothesis, for a sufficiently large n it holds that Πn 6= ∅, and
hence there exists x ∈ Πn. Now, there exist random coins r such that the residual determin-
istic tester Tx(1n, r) (i.e., the deterministic tester obtained by fixing random coins r) accepts
after making q(n) queries. Denote the coordinates of these q(n) queries by (i1, i2, ..., iq(n)),
where we assume for simplicity and without loss of generality that T always makes exactly
q queries.

Note that every z′ ∈ Σn such that (z′i1 , z′i2 , ..., z′iq(n)
) = (xi1 , xi2 , ..., xiq(n)

) is accepted by the
residual deterministic tester with random coins r. Since T has perfect soundness, this implies
that every such z′ satisfies ∆(z′, Πn) < ε · n (since inputs that are (ε · n)-far must be rejected
with probability 1). Hence, for any z ∈ Σn, by changing the q(n) coordinates (zi1 , zi2 , ..., ziq(n)

)

to equal (xi1 , xi2 , ..., xiq(n)
), we obtain a string z′ such that ∆(z′, Πn) < ε · n. This implies that

every z ∈ Σn satisfies ∆(z, Πn) ≤ ∆(z, z′) + ∆(z′, Πn) < q(n) + ε · n. �

Now, by the hypothesis, for some ε > 0 and any sufficiently large n there exists z ∈ Σn

such that ∆(z, Πn) ≥ ε · n. For ε′ < ε, let T be an ε′-tester with perfect soundness for Π, and
denote its query complexity by q. Then, by Claim 5.6.1,

ε · n ≤ ∆(z, Πn) ≤ q(n) + ε′ · n

which implies that q(n) = Ω(n).

11The said appendix is unrelated to the rest of [Tel14], and will be omitted from [Tel14] in future versions of it.

43

By combining Proposition 5.6 and Proposition 5.3 we get the following corollary.

Corollary 5.7 (Theorem 1.5, restated). For a set Σ, let Π = {Πn}n∈N such that Πn ⊆ Σn. Suppose
that for all sufficiently large n it holds that Πn 6= ∅ and that there exist inputs that are Ω(n)-far from
Πn. Then, the query complexity of testing the dual problem of Π with one-sided error is Ω(n).

It follows that dual problems can be tested with one-sided error and query complexity o(n)
only if the distance of every input from the property is o(n). However, in this case both the
original problem and its dual are trivial to begin with, since for any ε > 0 and sufficiently
large n it holds that Fε·n(Πn) = ∅, and thus the property can be tested without querying the
input at all.

5.2 Testing duals of error-correcting codes

In the n-dimensional Boolean hypercube, a code Π = {Πn}n∈N has constant relative distance

ζ > 0 if for every n ∈ N it holds that minx,y∈Πn{∆(x, y)} ≥ ζ · n. Proposition 4.17 implies
that for any code Π with constant relative distance ζ > 0, and any ε ≤ ζ

2 , it holds that Πn is
(strongly) Fε·n-closed. Therefore:

Theorem 5.8 (Theorem 1.6, restated). For any error-correcting code with constant relative dis-
tance, the problem of testing the code is equivalent to its dual problem.

Several fundamental problems in property testing involve testing such codes, and so
Theorem 5.8 is particularly appealing for the duals of these problems. For example, the
following well-known problems involve testing error-correcting codes:

1. The problem of linearity testing [BLR90], which consists of testing whether a func-
tion ϕ : G → H, where G and H are groups, is a group homomorphism. The
most well-known specific case of linearity testing consists of testing the set of lin-
ear functions ϕ : {0, 1}n → {0, 1}, which indeed induces an error-correcting code
(i.e., the Hadamard code). For general groups, Guo [Guo15] showed sufficient condi-
tions on G and on H such that the set of homomorphisms G → H induces an error-
correcting code. Theorem 5.8 implies that in these cases, the BLR tester can be used
to test whether a function is far from being a group homomorphism with O(1) queries
(by complementing the tester’s output). For results regarding its complexity, see, e.g.,
[BLR90, BGLR93, BS94, BCH+96, KLX10].

2. The problem of low-degree testing [RS96], which consists of testing whether a multivari-
ate function over a finite field is a low-degree polynomial. Theorem 5.8 implies that
this problem is equivalent to the problem of testing whether a function is far from being
a low-degree polynomial. For results regarding its complexity, see, e.g., [AKK+03, KR06,
JPRZ09, HSS13, GHS15].

Similarly, the problem of testing whether a Boolean function over {0, 1}` is far from being
an s-sparse low-degree polynomial is equivalent to its dual problem, and its query complexity is
between Ω(s) and O(poly(s)) queries (see, e.g., [DLM+07, BO10, Gol10a, DLM+11, BBM12,

44

BK12, Tel14]). For d ∈ N, the original problem consists of testing whether a function is a
degree-d polynomial with s non-zero coefficients. Note that the property of degree-d poly-
nomials with s non-zero coefficients generalizes the property of “k-linearity” (i.e., of linear
functions with k non-zero coefficients).

Note that in cases where these problems involve testing Boolean functions over {0, 1}`,
the generated error-correcting code is in {0, 1}2` . According to Corollary 5.7, the correspond-
ing dual problems cannot be tested with one-sided error and o(2`) queries.

5.3 Testing functions that are far from monotone

Let [n] be a partially ordered set,12 and let Σ be an ordered set. A function f : [n] → Σ is
monotone if for every x, y ∈ [n] such that x ≤ y, it holds that f (x) ≤ f (y). The problem of
testing monotone functions was introduced by Goldreich et al. [GGL+00], and various versions
of it have been studied over the years (see, e.g., [DGL+99, LR01, FLN+02, ACCL07, RRS+12,
BCGSM12, CS13a, CS13b, CS14, CST14, CDST15, KMS15]).

Throughout this section, we identify every function f : [n] → Σ with a corresponding
string f ∈ Σn. Recall the following standard definitions from poset theory: An antichain in
a poset is a set of elements in the poset that are pairwise incomparable; and the width of a
poset is the size of a maximum antichain in it. The main result that we prove in this section
is the following:

Proposition 5.9 (the set of monotone functions is Fδ-closed). Let [n] be a partially ordered set, and
let Σ be a finite ordered set such that the width of [n] is at most n

2·|Σ| . Then, for every δ < n
4 , the set

of monotone functions from [n] to Σ is Fδ-closed.

In the special case of functions over the domain of the Boolean hypercube {0, 1}`, where
2` = n, Proposition 5.9 applies when the range satisfies |Σ| ≤

√
`/2. This is the case since,

by Sperner’s theorem, the width of the `-dimensional hypercube, which has the element-set
[n] = [2`], is (`

b`/2c). Thus, if |Σ| ≤
√
`/2, we get that the width satisfies (`

b`/2c) <
n√
`
≤ n

2·|Σ| .
Thus, Theorem 1.7 follows from Proposition 5.9 as a special case.

Proof of Proposition 5.9. For a sufficiently large n ∈ N, denote the set of monotone functions
from [n] to Σ by Πn ⊆ Σn, and let δ < n

4 . To show that Πn is Fδ-closed, we rely on
Condition (2) of Theorem 3.2: For every f /∈ Πn ∪ Fδ(Πn), we show a function h ∈ Fδ(Πn)
such that ∆(f , h) < δ.

High-level overview. First, we define some terminology that we will need. For any f :
[n]→ Σ, we call (x, y) ∈ [n]× [n] a violating pair for f if x < y and f (x) > f (y). Observe that
f is monotone if and only if there are no violating pairs for f . Also, we call (x, y) ∈ [n]× [n]
a flat pair for f if x < y and f (x) = f (y). A collection of disjoint violating pairs for f is
a collection V of violating pairs such that for every (x1, y1) 6= (x2, y2) ∈ V it holds that
x1, x2, y1, y2 are distinct. A collection of disjoint flat pairs is defined analogously.

12Similar to metric spaces, we usually identify a partially ordered set ([n],≤) with its set of elements [n], and
the order relation is implicit and denoted by ≤.

45

The proof idea is as follows. Let f /∈ Πn ∪ Fδ(Πn). First, let us assume that there exists a
collection C of δ disjoint pairs in [n], such that one pair in C is violating for f , and the other
δ− 1 pairs are flat for f . Then, observe that for every flat pair in C, we can change the value
of f at one input in the pair, thereby turning it into a violating pair (i.e., for a pair (x, y), if
f (x) = f (y) = maxσ∈Σ{σ}, we can set f (y) to be any other σ ∈ Σ, and otherwise, we can
set f (x) = maxσ∈Σ{σ}). Thus, by changing the value of f on one input in each flat pair in
C, we obtain h ∈ Σn such that ∆(h, f) = |C| − 1 = δ− 1 and that C is a collection of disjoint
violating pairs for h of size δ. The proposition follows since a function h that has a collection
of δ disjoint violating pairs satisfies ∆(h, Πn) ≥ δ (see Claim 5.9.3).

To prove that the collection C (of δ− 1 flat pairs and one violating pair) exists, we use the
fact that the width of [n] is bounded. In particular, we show that there exists a collection T of
n
4 disjoint flat pairs for f (see Lemma 5.9.1). Since f /∈ Πn, there exists at least one violating
pair (x, y) for f . This pair shares a common element with at most two pairs in T . Using
the fact that δ ≤ n

4 − 1, it follows that there exists T ′ ⊆ T such that C = T ′ ∪ {(x, y)} is a
collection of disjoint pairs, and |T ′| ≥ |T | − 2 = n

4 − 2 ≥ δ− 1. To conclude, note that the
pair (x, y) ∈ C is violating for f , and that all other pairs in C are flat.

The actual proof. Let f /∈ Πn ∪ Fδ(Πn). The following lemma is used as the main step
towards establishing (in Corollary 5.9.2) that there exists a collection C of δ disjoint pairs in
[n] such that one of these pairs is a violating pair for f , and the other δ− 1 pairs are flat pairs
for f .

Lemma 5.9.1. Let [n] be a poset and Σ be an ordered set such that the width of [n] is at most n
2·|Σ| .

Then, for every f : [n]→ Σ, there exists a collection of disjoint flat pairs for f of size at least n
4 .

Proof. By Dilworth’s theorem [Dil50], and since the width of [n] is at most n
2·|Σ| , there exists

a partition of [n] into at most n
2·|Σ| monotone chains; that is, there exists a collectionM such

that |M| ≤ n
2·|Σ| that satisfies the following two conditions:

1. Every c ∈ M is a sequence c = (x1, ..., xnc) ⊆ [n] such that for every i ∈ [nc − 1] it holds
that xi < xi+1.

2. M is a partition of [n], in the sense that every x ∈ [n] appears in exactly one monotone
chain c ∈ M.

For a fixed function f , we construct a corresponding collection T of disjoint flat pairs
for f as follows. We go over the chains in M, in an arbitrary order, and collect disjoint flat
pairs for f , which we add to T , while processing each chain separately. For any fixed chain
c ∈ M, we partition c into |Σ| (non-consecutive) sub-chains such that f is constant on each
sub-chain; that is, the partition of c is the collection {cσ}σ∈Σ such that for every σ ∈ Σ it
holds that cσ = {x ∈ c : f (x) = σ}. Note that each of the sub-chains is a “monochromatic”
chain, and thus, every pair of elements in each sub-chain constitutes a flat pair. Accordingly,
we now try to partition every sub-chain into pairs of elements (failing to pair at most one
element in each sub-chain), and add these pairs to T .

46

Since we only insert flat pairs to T , and since M is a partition of the poset, the set T is
a collection of disjoint flat pairs. In addition, for every fixed chain c ∈ M, we fail to pair
at most |Σ| elements (i.e., at most one element per sub-chain). Therefore, for every chain
c ∈ M, we collect at least 1

2 · (|c| − |Σ|) flat pairs for T . Overall, we get at least

∑
c∈M

1
2
· (|c| − |Σ|) = 1

2
· (n− |Σ| · |M|) ≥ n

4

disjoint flat pairs for T . �

Corollary 5.9.2. Let [n], Σ and δ be as in Proposition 5.9. Then, for every f /∈ Πn, there exists a
collection C of δ disjoint pairs in [n] such that one pair in C is a violating pair for f , and the other
δ− 1 pairs are flat pairs for f .

Proof. Since f /∈ Πn, there exists a violating pair (x, y) for f . Relying on Lemma 5.9.1, there
exists a collection T of flat pairs for f such that |T | ≥ n

4 ≥ δ + 1. Since there are at most
two pairs in T that share a common element with (x, y), there exists a sub-collection T ′ ⊆ T
such that |T ′| = δ− 1 and C = T ′ ∪ {(x, y)} is a collection as required. �

Let C be a collection of disjoint pairs for f , as in Corollary 5.9.2. Observe that we can turn
every flat pair (x, y) ∈ C into a violating pair, by modifying the value of f at one input. By
doing so, we obtain a function h such that ∆(f , h) = |C| − 1 = δ− 1 and C is a collection of
disjoint violating pairs for h of size δ. The proposition will follow from the following claim.

Claim 5.9.3. For h : [n] → Σ, if there exists a collection C of disjoint violating pairs for h having
size ρ, then ∆(h, Πn) ≥ ρ.13

Proof. Let g ∈ Πn such that ∆(h, g) = ∆(h, Πn). If there exists a pair (x, y) ∈ C such that
h(x) = g(x) and h(y) = g(y), then (x, y) is a violating pair for g, which contradicts g ∈ Πn.
Hence, the symmetric difference between h and g includes at least one element from each
pair in C. Since the pairs in C are disjoint, we get that ∆(h, Πn) = ∆(h, g) ≥ |C|. �

Thus, it holds that h ∈ Fδ(Πn).

Detour: Boolean functions. We now show that in the case of |Σ| = 2 (i.e., for Boolean
functions over a poset [n]), the set of monotone functions is actually strongly Fδ-closed.
Although we are not aware of any implications of this fact with respect to property testing,
we find it interesting combinatorially: It asserts that any Boolean function that is not too far
from being monotone can be made farther from monotone by changing its value at a single
input.

The proof idea is similar to the proof of Proposition 5.9, but we will use an additional
lemma, which is specific for Boolean functions, and was proved in [FLN+02].

13A related claim was proved in [GGL+00, Prop 3]. However, they considered Boolean functions over the
hypercube, and defined violating pairs differently.

47

Proposition 5.10 (the set of monotone Boolean functions is strongly Fδ-closed). Let [n] be a partially
ordered set of width at most n

4 . Then, for every δ < n
8 , the set of monotone Boolean functions over [n]

is strongly Fδ-closed.

Proof. For a sufficiently large n, let Πn be the set of monotone Boolean functions over [n],
and let δ < n

8 . We will prove that Πn is strongly Fδ-closed, by relying on Proposition 4.6: For
f /∈ Πn ∪Fδ(Πn) we show a function f ′ such that ∆(f , f ′) = 1 and ∆(f ′, Πn) = ∆(f , Πn) + 1.
We will rely on the following lemma.

Lemma 5.10.1 (Lemma 4 in [FLN+02]). For f : [n] → {0, 1}, if ∆(f , Πn) ≥ ρ, then there exists a
collection of disjoint violating pairs for f having size ρ.

Combining Claim 5.9.3 and Lemma 5.10.1, we get the following corollary:

Corollary 5.10.2. For a Boolean function f : [n]→ {0, 1}, it holds that ∆(f , Πn) ≥ ρ if and only
if there exists a collection of disjoint violating pairs for f having size ρ.

Now, let f /∈ Πn ∪ Fδ(Πn). According to Corollary 5.10.2, there exists a collection V of
disjoint violating pairs for f , such that |V| = ∆(f , Πn) < δ. According to Lemma 5.9.1, there
exists a collection T of flat pairs for f such that |T | ≥ n

4 ≥ 2δ. The number of pairs in T
that share a common element with any pair in V is at most 2 · |V| < 2 · δ ≤ |T |. Hence,
there exists some pair (x, y) ∈ T such that V ∪ {(x, y)} is a collection of disjoint pairs. By
modifying the value of f on one input from (x, y), we can turn it into a violating pair. This
way, we obtain a function f ′ such that ∆(f , f ′) = 1, and there exists a collection of disjoint
violating pairs for f ′ of size |V|+ 1 = ∆(f , Πn) + 1. Relying on Corollary 5.10.2 again, we
get that ∆(f ′, Πn) = ∆(f , Πn) + 1.

Implications on testing. Proposition 5.9 implies the following:

Theorem 5.11 (Theorem 1.7, extended). Let {Pn}n∈N be a family of posets such that Pn = ([n],≤n)
for every n ∈ N, and let {Σn}n∈N be a family of ordered sets. Assume that for all sufficiently large
n, the width of Pn is at most n

2·|Σn| . Then, the problem of testing monotone functions from Pn to Σn is
equivalent to its dual problem.

In addition, the proof of Proposition 5.9 shows that for a poset Pn and a range Σn as in
Theorem 5.11, there always exist functions that are Ω(n)-far from being monotone. Thus,
according to Corollary 5.7, testing the dual problem with one-sided error requires Ω(n) queries.
Note that in the case of functions over the Boolean hypercube {0, 1}`, where n = 2`, this
lower bound is Ω(2`).

We explicitly state lower- and upper-bounds on the query complexity of testing func-
tions that are far from monotone over the Boolean hypercube {0, 1}`, relying on known results
regarding the standard problem. For Boolean functions, a recent upper bound of Õ(

√
`)

was given by by Khot, Minzer, and Safra [KMS15], and a lower bound of Ω(`1/2−o(1)) for
non-adaptive testers was proved by Chen et al. [CDST15]. For functions to a general range
Σ, a lower bound of Ω

(
min

{
|Σ|2, `

})
was proved by Blais, Brody, and Matulef [BBM12],

48

and an upper bound of O(`/ε) was proved by Chakrabarty and Seshadhri [CS13b]. Results
regarding testing functions that are far from monotone over general posets can be derived
relying on, e.g., [DGL+99, FLN+02, CS13b, CS14].

5.4 Testing distributions that are far from a known distribution

An important sub-field of property testing is the one of testing properties of distributions,
initiated by Batu et al. [BFR+13] (for recent surveys, see [Rub12, Can15]). In this context, a
tester gets independent samples from an input distribution, and tries to determine whether
the distribution has some property or is far from having the property.

A basic problem in this field is the one of testing whether a distribution is identical to a
known distribution. In this problem, a distribution D over [n] is predetermined and explicitly
known, and an ε-tester gets independent samples from a distribution I over [n]. The goal of
the tester is to determine, using as few samples as possible, whether I = D or I is ε-far from
D in the `1 norm; that is, whether ‖I−D‖1 = ∑i∈[n] |I(i)−D(i)| ≥ ε.

Note that the metric space for this problem is the standard simplex in Rn with the `1
norm, and that the distances satisfy δ ∈ [0, 2]. Accordingly, we slightly abuse Definition 2.1
in this section, by requiring that an ε-tester distinguish between Π and Fε(Π), and not
between Π and Fε·n(Π) (i.e., the proximity parameter for testing ε > 0 is the absolute
distance between “yes” instances and “no” instances, and not the relative distance between
them).

We consider the dual problem, in which, for a fixed D, an ε-tester needs to distinguish
between the case I ∈ Fε({D}) and the case I ∈ Fε(Fε({D})). The main question in this
section is for which families of distributions {Dn}n∈N, where Dn is a distribution over [n],
the problem of testing the property {{Dn}}n∈N is equivalent to its dual problem. More
explicitly, we ask for which families of distributions does it hold that for every sufficiently
small constant δ > 0 and every sufficiently large n, the singleton {Dn} is Fδ-closed (cf.
Definition 5.1).

While in Rn with the Euclidean metric, every singleton is Fδ-closed for every δ > 0, the
following proposition shows that the analogous fact is not true in the simplex with the `1
norm.

Proposition 5.12 (Proposition 1.8, extended). Let {Dn}n∈N be a distribution family such that for
every n ∈ N it holds that Dn(1) = 1− 1

n and for any i ∈ [n] \ {1} it holds that Dn(i) = 1
n·(n−1) .

Then, for every δ > 0 and sufficiently large n, it holds that Π = {Dn} is not Fδ-closed.

Proof. For δ > 0, let n ∈ N such that δ > 3
n . Relying on Condition (2) of Theorem 3.2, it

suffices to show a distribution X /∈ {Dn} ∪ Fδ({Dn}) such that there does not exist Z ∈
Fδ({Dn}) satisfying ∆(X, Z) < δ.

Let X be the distribution over [n] such that X(1) = 1 (and for every i > 1 it holds that
X(i) = 0). Then 0 < ∆(X, Dn) = 2/n < δ, implying that X /∈ {Dn} ∪ Fδ({Dn}). Let Z be any

49

distribution over [n]. If Z(1) > 1− 1
n , then ∑n

i=2 Z(i) < 1
n , and hence

∆(Z, Dn) = Z(1)−D(1) +
n

∑
i=2
|Z(i)−Dn(i)|

≤ 1
n
+

n

∑
i=2

Z(i) +
n

∑
i=2

Dn(i)

<
3
n

and thus ∆(Z, Dn) < δ, implying that Z /∈ Fδ({Dn}). This completes the proof in the case of
∆(Z, Dn) > 1− 1

n . Otherwise, Z(1) ≤ 1− 1
n . For this case we use the following fact:

Fact 5.12.1. For a, b ∈ R+ it holds that b− |b− a| ≥ −a.

Proof. Relying on the triangle inequality and on the fact that a, b ≥ 0, we get that

|b− a| ≤ |b|+ |a| = b + a

and by rearranging we get that b− |b− a| ≥ −a. �

Now, note that Z(1) ≤ Dn(1) < X(1), and therefore |Z(1) − X(1)| − |Z(1) −Dn(1)| =
X(1)−Dn(1) = 1

n . Hence, we get that

∆(Z, X)− ∆(Z, Dn) =
n

∑
i=1

(
|Z(i)− X(i)| − |Z(i)−Dn(i)|

)
=

1
n
+

n

∑
i=2

(
Z(i)−

∣∣∣Z(i)− 1
n(n− 1)

∣∣∣)
≥ 1

n
− (n− 1) · 1

n(n− 1)
(by Fact 5.12.1)

= 0 .

It follows that Z ∈ Fδ({Dn}) cannot satisfy ∆(Z, X) < δ (since in such a case ∆(Z, X)−
∆(Z, Dn) < 0).

Nevertheless, the following two propositions show that for many natural distributions,
the singleton induced by the fixed distribution is Fδ-closed for every sufficiently small δ > 0.
In these cases, the dual testing problem is equivalent to the original one. The first proposition
refers to distribution families {Dn}n∈N such that limn→∞ ‖Dn‖∞ = 0, whereas the second
refers to distribution families in which each support element has Ω(1) probability mass. We
start by proving the latter proposition, since the proof is much simpler and both proofs rely
on similar ideas.

Proposition 5.13 (distributions with bounded probabilistic mass on elements in their support). For
ρ > 0, let {Dn}n∈N be a distribution family such that for every n ∈ N and i ∈ [n] it holds that
either Dn(i) ≥ ρ or Dn(i) = 0. Then, for any δ ∈ (0, ρ) and every n ∈ N, the property Π = {Dn}
is Fδ-closed.

50

Proof. Let δ ∈ (0, ρ) and n ∈ N. We prove that Π = {Dn} is Fδ-closed, relying on Condi-
tion (2) of Theorem 3.2: For X /∈ {Dn} ∪ Fδ({Dn}), we show that there exists Z ∈ Fδ({Dn})
such that ∆(X, Z) < δ.

Since X 6= Dn and since X and Dn are distributions, there exist i, j ∈ [n] such that
X(i) > Dn(i) and X(j) < Dn(j). Since X /∈ Fδ({Dn}) it holds that

Dn(j)− X(j) ≤ ∆(X, Dn)

2
< ρ/2

and thus X(j) > Dn(j) − ρ/2 ≥ ρ/2, where the last inequality is by the hypothesis that
Dn(j) ≥ ρ. Similarly, X(i)−Dn(i) < ρ/2. Now, note that Dn(i) ≤ 1− ρ: This is the case
since if Dn is supported on a single element k ∈ [n] then Dn(i) = 0, and otherwise Dn is
supported on at least two elements each having mass at least ρ, and thus for every k ∈ [n] it
holds that Dn(k) ≤ 1− ρ. It follows that X(i) < 1− ρ/2.

Let ∆ = 1
2 · (δ− ∆(X, Dn)) and note that 0 < ∆ < ρ/2. We define Z as follows: Z(i) =

X(i) + ∆ < 1, and Z(j) = X(j)− ∆ > 0, and for every k /∈ {i, j} it holds that Z(k) = X(k).
Note that Z is a distribution, since the probabilistic mass of every i ∈ [n] is in [0, 1], and
∑i∈[n] Zi = ∑i∈[n] Xi = 1. Furthermore, ∆(Z, X) = 2 · ∆ < δ, and

∆(Z, Dn) = ∆(X, Dn) + |Z(i)−Dn(i)|+ |Z(j)−Dn(j)|
= ∆(X, Dn) + 2 · ∆
= δ

which implies that Z ∈ Fδ({Dn}), as needed.

The following proposition shows an arguably broader class of distributions that induce
Fδ-closed properties. Although the proof is technically more involved, the basic idea is sim-
ilar to the one in the proof of Proposition 5.13: For X /∈ {Dn} ∪ Fδ({Dn}), we explicitly
construct Z ∈ Fδ({Dn}) such that ∆(X, Z) < δ, by modifying X on carefully chosen coordi-
nates.

Proposition 5.14 (distributions with low `∞ norm induce Fδ-closed properties). Let {Dn}n∈N be a
family of distributions such that limn→∞ ‖Dn‖∞ = 0 (where ‖Dn‖∞ = maxi∈[n]{Prr∼Dn [r = i]}).
Then, for any δ ∈ (0, 1

4) and a sufficiently large n ∈N, the property Π = {Dn} is Fδ-closed.

Proof. Let δ ∈ (0, 1
4), and let n ∈ N be sufficiently large such that for every i ∈ [n] it

holds that Dn(i) ≤ δ
30 . We prove that Π = {Dn} is Fδ-closed, relying on Condition (2) of

Theorem 3.2: For every X /∈ {Dn} ∪Fδ({Dn}), we show that there exists Z ∈ Fδ({Dn}) such
that ∆(X, Z) < δ.

Throughout the proof we simplify the notation by denoting D = Dn. Also, for every

distribution X, we denote the probabilistic mass of i ∈ [n] under X by Xi
def
== X(i).

High-level overview. Let X /∈ {D} ∪ Fδ({D}), and denote ∆(X, D) = αδ, where α ∈ (0, 1).
We will show an explicit construction of a distribution Z that satisfies the following two
requirements:

51

1. ∆(Z, X) < δ.

2. ∆(Z, D)− ∆(X, D) ≥ (1− α) · δ.

Note that Requirement (2) is equivalent to the requirement that ∆(Z, D) ≥ δ (i.e., Z ∈
Fδ({Dn})). For the distribution Z that we construct, and every i ∈ [n], let

Change(i) = |Zi − Xi|
Farther(i) = |Zi −Di| − |Xi −Di|

In words, Change(i) is the magnitude of change made in the probabilistic mass of i ∈ [n],
and Farther(i) reflects how farther Z is from D, compared to the distance of X from D, in
i ∈ [n]. Thus, Requirement (1) is equivalent to the requirement that ∑i Change(i) < δ, and
Requirement (2) is equivalent to the requirement that ∑i Farther(i) ≥ (1− α) · δ. Intuitively,
when constructing Z, for every i ∈ [n] we want that Farther(i) be as large as possible,
compared to Change(i).

For the construction itself we will rely on the following lemma, which we prove:

Lemma 5.14.1. There exists a set LIGHT ⊆ [n] such that:

1. For every distribution Z and j ∈ LIGHT, if Zj ≤ min{Xj, 1
2 · Dj}, then

Farther(j) ≥ 1−α
1+α · Change(j).

2. The probabilistic mass of LIGHT under X is substantial; in particular,
Prj∼X [j ∈ LIGHT] > 1

2 .

(The term LIGHT is used since the elements in this set will have upper bounded probabilistic
mass; see the exact definition in the actual proof below).

In high level, our construction of Z is as follows. We first initiate Z = X, and let ∆ < δ
2 be

a parameter, which will be determined later. Since Z = X 6= D, there exists iUP ∈ [n] such that
ZiUP > DiUP . We increase the probabilistic mass of ZiUP by ∆, and since after the modification it
holds that ZiUP > XiUP > DiUP , we get that Farther(iUP) = Change(iUP). Now, according to the
aforementioned lemma, there exists a set S ⊆ LIGHT with overall probabilistic mass of more
than δ

2 > ∆. We thus decrease the overall probabilistic mass of Z in S by ∆, while ensuring
that for every j ∈ S it holds that Zj is sufficiently small, such that, according to the lemma,
after the decrease of mass it holds that Farther(j) ≥ 1−α

1+α · Change(j).
Since we changed an overall 2 · ∆ probabilistic mass of X to obtain Z, we get that

∑i∈[n] Change(i) = 2 · ∆ < δ. Also,

∑
i∈[n]

Farther(i) = Farther(iUP) + ∑
j∈S

Farther(j)

≥ Change(iUP) +
1− α

1 + α
·
(

∑
j∈S

Change(j)

)

=

(
1 +

1− α

1 + α

)
· ∆

52

and for ∆ ≥ 1
2 (1− α)(1 + α) · δ, this expression is at least (1− α) · δ.

Actually, we show two different constructions for Z, according to the distance of X from
D. These two different constructions are both of the form depicted above, but they differ in
their choice of ∆, and in the way they decrease the probabilistic mass in the set S. Note that
our analysis mandates that

1
2
(1− α)(1 + α) · δ ≤ ∆ <

δ

2
(5.1)

If α ≥ 2
3 (i.e., X is relatively far from D), then the interval for possible values of ∆ in

Eq. (5.1) is quite large. In this case we can set ∆ to be slightly larger than 1
2 (1− α)(1 + α) · δ,

and the construction of Z will be relatively simple. However, if α < 2
3 , the interval for ∆ in

Eq. (5.1) might be arbitrarily small. Actually, in this case we set ∆ = 1
2 (1− α)(1 + α) · δ, but

we need to be quite careful when decreasing mass from elements in S. Details follow.

The actual proof of Proposition 5.14. We start by proving the two items of Lemma 5.14.1
and another technical fact. Let

LIGHT
def
==

{
j ∈ [n] : Xj ≤ (1 + 2αδ) ·Dj

}
Claim 5.14.2 (Item 1 in Lemma 5.14.1). For any distribution Z and j ∈ LIGHT, if Zj ≤ min{Xj, 1

2 ·
Dj}, then

Farther(j) ≥ 1− α

1 + α
· Change(j)

Proof. Let Z and j ∈ LIGHT such that Zj ≤ min{Xj, 1
2 ·Dj}. If Xj ≤ Dj, then

Farther(j) = |Zj −Dj| − |Xj −Dj| = Xj − Zj = Change(j)

and we are done.
Otherwise, it holds that Xj > Dj, and since j ∈ LIGHT, it follows that Dj < Xj ≤ (1 +

2αδ) · Dj. In particular, in this case Dj 6= 0. Note that Xj − Dj ≤ 2αδ · Dj, whereas since
Zj ≤ 1

2 ·Dj, it holds that Dj − Zj ≥ 1
2 ·Dj. Also recall that δ < 1

4 . Therefore,

Xj −Dj

Dj − Zj
≤

2αδ ·Dj

Dj/2
= 4αδ < α . (5.2)

Now, relying on Eq. (5.2), we deduce that

Xj − Zj = (Xj −Dj) + (Dj − Zj) < (1 + α) · (Dj − Zj) (5.3)

and thus we get that

Farther(j) = (Dj − Zj)− (Xj −Dj) (since Xj > Dj > Zj)

> (1− α) · (Dj − Zj) (according to (5.2))

>
1− α

1 + α
· (Xj − Zj) (according to (5.3))

=
1− α

1 + α
· Change(j) . �

53

Claim 5.14.3 (Item 2 in Lemma 5.14.1). It holds that ∑j∈LIGHT Xj ≥ 1
2 .

Proof. Let HEAVY = [n] \ LIGHT, and note that it suffices to prove that ∑i∈HEAVY Xi <
1
2 . For

every i ∈ HEAVY, it holds that Xi−Di > 2αδ ·Di (i.e., Di <
Xi−Di

2αδ). Let ∆+ def
== ∑i:Xi>Di

Xi−Di,

and note that ∆+ = ∆(X,D)
2 = αδ

2 . Also note that HEAVY ⊆ {i : Xi > Di}. It follows that

∑
i∈HEAVY

Xi = ∑
i∈HEAVY

(Xi −Di) + ∑
i∈HEAVY

Di

<

(
1 +

1
2αδ

)
· ∑

i∈HEAVY
(Xi −Di)

≤
(

1 +
1

2αδ

)
· ∆+ .

Recall that α < 1 and δ < 1
4 , and thus

(
1 + 1

2αδ

)
· ∆+ =

(1
2 +

1
4αδ

)
· αδ < 1

2 . �

Fact 5.14.4. For every i ∈ [n], there exists a set S ⊆ LIGHT \ {i} such that 1
3 · δ ≤ ∑j∈S Xj <

1
2 · δ.

Proof. According to Claim 5.14.3, and since every i ∈ [n] satisfies Di ≤ δ
30 , it follows that

∑j∈LIGHT\{i} Xj >
1
2 −

δ
30 > δ

3 . Also, for every j ∈ LIGHT it holds that

Xj ≤ (1 + 2αδ) ·Dj (since j ∈ LIGHT)

≤ (1 + 2αδ) · δ

30
(since Dj ≤ δ

30)

<
1
6
· δ . (since δ < 1

4)

We construct S by initiating S = ∅, and adding elements from LIGHT \ {i} to S until
∑j∈S Xj ≥ 1

3 · δ. Since ∑j∈LIGHT\{i} Xj >
δ
3 , there is sufficient probabilistic mass in LIGHT \ {i}

to construct a set S with ∑j∈S Xj ≥ 1
3 · δ. Also, since the mass of every element in LIGHT \ {i}

is at most 1
6 · δ, the construction yields a set S such that ∑j∈S Xj <

1
3 · δ +

1
6 · δ = 1

2 · δ. �

We now split the rest of the proof (of Proposition 5.14) into two cases, depending on
∆(X, D). In each case we prove the existence of a suitable Z using a different construction.

Case 1: Assuming ∆(X, D) ≥ 2
3 · δ. In this case α ≥ 2

3 , and we set ∆ such that it might be
slightly larger than the lower bound implied by Eq. (5.1). The construction of the distribution
Z is as follows.

Construction 5.14.5. (construction of the distribution Z when ∆(X, D) ≥ 2
3 · δ).

1. Let Z = X, and let:

(a) iUP = argmaxi∈[n]{Xi −Di}.

(b) S ⊆ LIGHT \ {iUP} such that 1
3 · δ ≤ ∑j∈S Xj <

1
2 · δ.

(c) ∆ = ∑i∈S Xi.

54

2. (increase ∆ mass) Set ZiUP = XiUP + ∆.

3. (decrease ∆ mass) For every j ∈ S set Zj = 0.

According to Fact 5.14.4, a suitable set S exists for Step (1b). Also, note that Z is a
distribution, since we obtained it by removing a probabilistic mass of ∆ from X at S, and
adding the same magnitude of mass to iUP. Since X 6= D, and iUP = argmaxi∈[n]{Xi −Di},
then ZiUP > XiUP > DiUP , implying that Farther(iUP) = Change(iUP) = ∆. Furthermore, since
for every j ∈ S it holds that j and Z satisfy the conditions in Claim 5.14.2, then for every
j ∈ S it holds that Farther(j) ≥ 0. Thus,

∆(Z, D)− ∆(X, D) = Farther(iUP) + ∑
j∈S

Farther(j) ≥ Change(iUP)

and Change(iUP) = ∆ ≥ 1
3 · δ ≥ δ − ∆(X, D). It follows that ∆(Z, D) ≥ δ, implying that

Z ∈ Fδ({D}). Since we added and removed 2 · ∆ probabilistic mass from X to obtain Z, it
also holds that ∆(Z, X) = 2 · ∆ < δ.

Case 2: Assuming ∆(X, D) < 2
3 · δ. In this case α = ∆(X,D)

δ < 2
3 , and X might be arbitrarily

close to D. In the latter case, the interval for values of ∆ implied by Eq. (5.1) might be
arbitrarily small. We thus set ∆ to exactly match the lower bound of this interval. The
construction of the distribution Z is as follows.

Construction 5.14.6. (construction of the distribution Z when ∆(X, D) < 2
3 · δ).

1. Let Z = X and ∆ = 1
2 · (1− α) · (1 + α) · δ.

2. (increase ∆ mass) For iUP = argmaxi∈[n]{Xi −Di} set ZiUP = XiUP + ∆.

3. (decrease ∆ mass)

(a) Let S = ∅.

(b) While ∑j∈S Xj < ∆ do S← argmaxi∈LIGHT\(S∪{iUP}){Xi}.

(c) For every j ∈ S set Zj =
∑j∈S Xj−∆
|S| .

The following claim specifies conditions that Construction 5.14.6 satisfies, which we will
later rely on.

Claim 5.14.7. Construction 5.14.6 is well-defined, and it produces a distribution Z such that:

1. For iUP ∈ [n] it holds that ZiUP = XiUP + ∆ and XiUP > DiUP .

2. For S ⊆ LIGHT it holds that:

(a) ∑j∈S Xj − Zj = ∆.

(b) For every j ∈ S it holds that Zj ≤ min{Xj, 1
2 ·Dj}.

55

Before proving Claim 5.14.7, let us assume for a moment that it is correct, and see how
it implies that Z ∈ Fδ({D}) and ∆(X, Z) < δ. First, since ∆ = 1

2 (1− α)(1 + α) · δ < δ/2, it
holds that ∆(Z, X) = 2 · ∆ < δ. Now, since ZiUP > XiUP > DiUP , it follows that Farther(iUP) =
Change(iUP). Also, since for every j ∈ S it holds that j and Z satisfy the conditions in
Claim 5.14.2, it follows that Farther(j) ≥ 1−α

1+α · Change(j). Therefore,

∆(Z, D)− ∆(X, D) = Farther(iUP) + ∑
j∈S

Farther(j)

≥ Change(iUP) +
1− α

1 + α
·∑

j∈S
Change(j)

=

(
1− α

1 + α
+ 1
)
· ∆

= (1− α) · δ

which implies that ∆(Z, D) ≥ (1− α) · δ + ∆(X, D) = δ. Hence Z ∈ Fδ({D}) and ∆(Z, X) <
δ. To finish the proof it is thus left to prove Claim 5.14.7.

Proof of Claim 5.14.7. To see that Construction 5.14.6 is well-defined, note that according to
Fact 5.14.4 there is sufficient probability mass in LIGHT\ {iUP} in order for the loop in Step (3b)
of Construction 5.14.6 to complete successfully. Also, the first part of Condition (1) follows
since the probabilistic mass of iUP only changes in Step (2); and the second part of Condi-
tion (1) follows since X 6= D and by the definition of iUP.

Condition (2a) follows since

∑
j∈S

Xj − Zj =

(
∑
j∈S

Xj

)
− |S| ·

∑j∈S Xj − ∆
|S| = ∆ .

For Condition (2b), we first need the following fact.

Fact 5.15 For every j ∈ S it holds that ∑j′∈S Xj′ − ∆ < Xj.

Proof. Denote the last element that was inserted into S in Step (3b) by k, and note that Xk ≤
Xj. Assume towards a contradiction that ∑j′∈S Xj′ − ∆ ≥ Xj. It follows that ∑j′∈S Xj′ − Xk ≥
∑j′∈S Xj′ − Xj ≥ ∆. However, in this case, k would not have been added to S, since after the
previous-to-last iteration of Step (3b), the overall probabilistic mass of elements in S would
have already exceeded ∆. �

Now, let j ∈ S, and we show that Zj < min{Xj, 1
2 ·Dj}.

• Zj < Xj: Since Zj =
∑j′∈S Xj′−∆

|S| ≤ ∑j′∈S Xj′ − ∆ < Xj.

• Zj <
1
2 ·Dj: Recall that α < 2

3 , and thus ∆ > 1
2 ·

1
3 · δ = δ/6. Also, since S ⊆ LIGHT, for

every i ∈ S it holds that Xi ≤ (1 + 2 · αδ) ·Di ≤ δ
20 (where the second inequality relies

on the fact that Di ≤ δ
30 for every i ∈ [n], and on the fact that 2 · αδ < 1

2). It follows that

|S| ≥ ∆
maxi∈S{Xi}

>
δ/6
δ/20

> 3 .

56

Therefore,

Zj =
∑j′∈S Xj′ − ∆

|S| <
Xj

3
≤ 1 + 2αδ

3
·Dj

and note that 1+2αδ
3 < 1

3 +
1
6 = 1

2 .

Also, Z is a distribution, since by Conditions (1) and (2a) it holds that ∑i∈[n] Zi = 1, and
for every i ∈ [n] it holds that Zi ≥ 0. �

This completes the proof of Proposition 5.14.

Implications on testing. Proposition 5.14 implies the following:

Theorem 5.16 (Theorem 1.9, restated). Let {Dn}n∈N be a family of distributions such that
limn→∞ ‖Dn‖∞ = 0. Then, the problem of testing whether an input distribution In is identical
to Dn is equivalent to its dual problem.

In particular, the problem of testing whether an input distribution is uniform is equivalent
to its dual problem. Also, according to Proposition 5.13, for any distribution D such that the
probabilistic mass of each support element is Ω(1), the problem of testing whether an input
distribution I is identical to D is equivalent to its dual problem.

The query complexity of the distribution testing problem is Θ̃(
√

n). A lower bound of
Ω(
√

n) for testing whether an input distribution is uniform is well-known and not hard to
prove (see, e.g., [Can15, Sec 3.2.1]); and an upper bound of O(

√
n) was implicitly proved

by Goldreich and Ron in [GR00, GR02]. An upper bound of Õ(
√

n) for arbitrary distribu-
tions was proved by Batu et al. [BFF+01], and a fine-grained analysis was recently given by
Valiant and Valiant [VV14], who showed tight bounds on the complexity of this problem on
a distribution-by-distribution basis.

It follows that the query complexity of the dual problem is lower bounded by Ω(
√

n).
Also, for every distribution family from the classes of distributions described in Theorem 5.16
and in Proposition 5.13, the query complexity of the dual problem is Õ(

√
n), and is also

upper bounded by the finer upper bound given by [VV14].

5.5 Testing graphs that are far from having a property in the dense graph model

Property testing in the dense graph model was initiated by Goldreich, Goldwasser, and
Ron [GGR98]. The metric space in this model consists of simple, undirected graphs, and
the absolute distance between two graphs on v vertices is the size of the symmetric differ-
ence between their edge sets. A property of graphs is a set of graphs closed under taking
isomorphisms of the graphs.

In this model, a graph on v vertices is represented by a corresponding string x ∈ {0, 1}n,
where n = (v

2), such that the ith edge is included in the graph if and only if xi = 1. A property
of graphs is accordingly denoted by Π = {Πn}n∈N , where N =

{
(v

2) : v ∈N
}

. The testing
problem is as follows: An ε-tester gets oracle access to x ∈ (v

2), corresponding to an input

57

graph over v vertices, and needs to decide whether the graph has the property, or whether it
is ε · (v

2)-far from any graph having the property.
Loosely speaking, we show that the following dual problems in the dense graph model

are different from their original problems:

• k-colorability (cf., [GGR98]): Testing whether a graph is far from being k-colorable.

• ρ-clique (cf., [GGR98]): For ρ ∈ (0, 1), testing whether a graph on v vertices is far from
having clique of size ρ · v.

• Isomorphism testing (cf., [Fis05, FM08]): For a graph G that is explicitly known in
advance, testing whether an input graph H is far from being isomorphic to G.

Nevertheless, we show that the query complexity of testing whether a graph is far from
being k-colorable is O(1), where the O-notation hides a huge dependence on the proximity
parameter ε.

5.5.1 Dual problems and tolerant testing in the dense graph model

In this section we present a general result that can be used to prove that the query complexity
of some dual problems in the dense graph model is O(1). Loosely speaking, the argument
is as follows: Fischer and Newman [FN07] proved that if a property in the dense graph
model is testable with O(1) queries, then the corresponding tolerant testing problem is also
solvable with O(1) queries. Thus, in the dense graph model, if a property is testable with
O(1) queries, and its dual problem reduces to the tolerant testing problem (in the sense that
graphs in Fδ(Fδ(Π)) are relatively close to Π), then the dual problem is also testable with
O(1) queries. Details follow.

The following definition is an adaptation of the definition of tolerant testers (see [PRR06,
FN07]), which replaces the standard pair of relative distances (ε, ε′) with one relative distance
ε and one multiplcative factor α < 1 such that ε′ = α · ε.

Definition 5.17 ((α, ε)-estimation tester; cf. Definition 2.1, and [FN07, Def. 2]). For a set Σ, and
a property Π = {Πn}n∈N such that Πn ⊆ Σn, and ε > 0, and α ∈ (0, 1), an (α, ε)-estimation

tester for Π is a probabilistic algorithm T that for every n ∈ N and x ∈ Σn satisfies the following
two conditions:

1. If ∆(x, Πn) ≤ α · ε · n, then Pr[Tx(1n) = 1] ≥ 2
3 .

2. If ∆(x, Πn) ≥ ε · n, then Pr[Tx(1n) = 0] ≥ 2
3 .

The query complexity of (α, ε)-estimation testers is defined in the straightforward way,
analogously to Definition 2.1. Fischer and Newman [FN07] proved the following result.

Theorem 5.18 (testing implies estimation in the dense graph model). Let Π be a property of graphs
in the dense graph model with query complexity O(1). Then, for every ε > 0 and α ∈ (0, 1), there
exists an (α, ε)-estimation tester for Π with query complexity O(1).

58

The following is a corollary of Theorem 5.18 that is interesting in the context of dual
problems in the dense graph model.

Corollary 5.19 (a sufficient condition for a dual problem to be testable with O(1) queries). Let
Π = {Πn}n∈N be a property of graphs in the dense graph model with query complexity O(1). If for
every sufficiently small ε > 0 there exists α ∈ (0, 1) such that for every sufficiently large n it holds
that Fε·n(Fε·n(Πn)) ⊆ {x : ∆(x, Πn) ≤ (α · ε) · n}, then the query complexity of the dual problem
of Π is O(1).

Proof. For any ε > 0, let α ∈ (0, 1) such that for a sufficiently large n it holds that
Fε·n(Fε·n(Πn)) ⊆ {x : ∆(x, Πn) ≤ (α · ε) · n}. Since the query complexity of Π is O(1),
Theorem 5.18 implies that there exists an (α, ε)-estimation tester T for Π with query com-
plexity O(1). The point is that for a sufficiently large n it holds that T accepts, with high
probability, every x ∈ Σn such that ∆(x, Πn) ≤ (α · ε) · n, and rejects, with high probability,
every x ∈ Fε·n(Πn). Since Fε·n(Fε·n(Πn)) ⊆ {x : ∆(x, Πn) ≤ (α · ε) · n}, complementing the
output of T yields an ε-tester for Fε·n(Πn) with query complexity O(1).

Note that the tester for dual problems obtained by using Corollary 5.19 has two-sided error,
since the estimation tester given by [FN07] has a two-sided error. This two-sided error cannot
be eliminated; that is, Corollary 5.19 cannot yield a tester with one-sided error in general.
This is the case since there exist dual problems that are not trivial (i.e., such that Fδ(Πn) 6= ∅)
to which Corollary 5.19 applies (see, e.g., Proposition 5.21); but, according to Corollary 5.7,
testing such problems with one-sided error requires a linear number of queries.

5.5.2 Testing the property of being far from k-colorable in the dense graph model

In this section we study the dual problem of k-colorability: For every ε > 0, we are interested
in the problem of ε-testing the set of graphs that are

(
ε · (v

2)
)
-far from being k-colorable, where

v is the number of vertices in the graph. We first show that this problem is different from its
original problem, and then show that its query complexity is O(1), relying on Corollary 5.19.

Proposition 5.20 (the set of k-colorable graphs is not Fδ-closed). For any k ≥ 2 and v ≥ k + 1,
let n = (v

2) and δ ≥ 2. Then, the set of graphs over v vertices that are k-colorable, denoted by
Πn ⊆ {0, 1}n, is not Fδ-closed.

Proof. We rely on Proposition 4.1, which asserts that if Πn is Fδ-closed, then for every
G /∈ Πn ∪ Fδ(Πn) there exists a path (i.e., a sequence of graphs such that their bit-string
representations induce a path in {0, 1}n) from G to Fδ(Πn) such that every graph subse-
quent to G on the path is neither in Πn nor adjacent to Πn. In particular, we show a graph
G such that ∆(G, Πn) = 1, and all neighbors of G are either in Πn or adjacent to Πn. Thus,
for any δ ≥ 2, there does not exist a path as above from G /∈ Πn ∪ Fδ(Πn) to Fδ(Πn), which
implies that Πn is not Fδ-closed.

Let G be a graph that contains a single clique on k + 1 vertices, and no other edges. Note
that G is not k-colorable, but that removing any edge from G (i.e., removing an edge from
the (k + 1)-clique) turns G into a k-colorable graph. Thus, ∆(G, Πn) = 1.

59

Now, let G′ be a graph that disagrees with G on a single edge (i.e., ∆(G, G′) = 1). We
need to prove that ∆(G′, Πn) ≤ 1. As mentioned, removing any edge from G turns it into a k-
colorable graph; thus, it suffices to show that any graph G′ obtained by adding an edge to G
satisfies ∆(G′, Πn) ≤ 1. To see this, note that any such graph is comprised of a (k + 1)-clique
(the same one that existed in G) and an additional edge. By removing any edge from the
clique, we obtain a k-colorable graph. (This is true since after removing the edge, the vertices
of the (former) clique can be colored using k colors; and to extend this coloring to the rest of
the graph, note that the additional edge either connects a vertex from the clique and a vertex
from outside the clique, or connects two vertices from outside the clique. In both cases, we
can extend the k-coloring of the clique to a k-coloring of the rest of the graph.)

The query complexity of the dual problem. A tester for the original problem with query
complexity O(1) was given by Goldreich, Goldwasser, and Ron [GGR98]. Note that the
query complexity of testing whether a graph on v vertices is far from being k-colorable with
one-sided error is Ω(n) = Ω

(
(v

2)
)
. This is true since for every v ∈ N and n = (v

2) there exist
graphs over v vertices that are Ω(n)-far from being k-colorable (e.g., the complete graph),
and relying on Corollary 5.7.

We now show that the query complexity of the dual problem is also O(1). To do this, we rely
on Corollary 5.19: This requires proving that for every sufficiently small ε > 0 there exists
α ∈ (0, 1) such that for every sufficiently large n ∈ N it holds that Fε·n(Fε·n(Πn)) ⊆

{
G :

∆(G, Πn) ≤ (α · ε) · n
}

.

Proposition 5.21 (graphs that are far-from-far from being k-colorable are relatively close to being k-
colorable). Let Π = {Πn}n∈N be the property of k-colorable graphs, where Πn ⊆ {0, 1}n consists of
graphs over v vertices such that n = (v

2). Then, there exists α ∈ (0, 1) such that for every sufficiently
small ε > 0 and sufficiently large n ∈ N it holds that Fε·n(Fε·n(Πn)) ⊆

{
G : ∆(G, Πn) ≤

(α · ε) · n
}

.

Note that Corollary 5.19 only requires that for every (sufficiently small) ε > 0 there exists
α ∈ (0, 1) such that the statement holds, whereas Proposition 5.21 asserts that there exists a
single α ∈ (0, 1) that suffices for every (sufficiently small) ε > 0.

Proof. We rely on Corollary 4.15, which implies the following: If there exists m = O(1) such
that every graph G satisfying ∆(G, Πn) < δ can be modified into a graph G′ that is farther
away from Πn, compared to G, by adding and/or removing at most m edges from G, then
the distance of any graph in Fδ(Fδ(Πn)) from Πn is at most

(
1− 1

m

)
· δ. It thus suffices to

show a way to modify every graph G that is not δ-far from being k-colorable into a graph G′

that is farther away from being k-colorable, with only O(1) changes.
The intuition for the said modification procedure (of G to G′) is as follows. Since G is

not far from being k-colorable, there exists a k-partition of its vertices without too many
violating edges (i.e., without many edges inside the cells of the partition). Thus, there exists
a big subgraph (a cell in the partition) with few edges. Setting ε > 0 to be sufficiently small,
and assuming that the graph is sufficiently large, it follows that this subgraph contains an
independent set of size k + 1 (see Lemma 5.21.1). Adding edges between all pairs of vertices

60

in this independent set, we obtain a graph that is farther away from being k-colorable, having
added only (k+1

2) = O(1) edges to G. Details follow.

The actual proof. Throughout the proof, it will be convenient to think of the number of
vertices, denoted by v, as the primary asymptotic parameter (recall that n = (v

2)). Let

α =

(
1− 1

(k+1
2)

)
and ε < 1

8·k2·(k+1) . For a sufficiently large v ∈ N, let n = (v
2) and

δ = ε · n. According to Corollary 4.15, it suffices to construct, for any graph G with v
vertices satisfying ∆(G, Πn) < δ, a corresponding graph G′ such that ∆(G, G′) < (k+1

2) and
∆(G′, Πn) ≥ ∆(G, Πn) + 1.

In the following arguments, given a graph G and a k-partition of its vertices, we say that
an edge (u, u′) is a violating edge if u and u′ are in the same cell of the partition. The distance
of G from being k-colorable is the minimum, over all k-partitions P of the vertices of G, of the
number of violating edges for P. We first prove that G has an independent set of size k + 1.

Lemma 5.21.1. Let G be a graph on v vertices satisfying ∆(G, Πn) < δ. Then, there exists an
independent set of size k + 1 in G.

Proof. Since the distance of G from being k-colorable is less than δ, there exists a k-partition of
the vertices of G with less than δ violating edges. Let U be the subgraph of G corresponding
to the biggest cell in this k-partition, and note that |U| ≥ v/k. The average degree of the
vertices in U is less than 2δ/|U| ≤ 2·ε·n

v/k < ε · k · v < |U|
8·(k+1) . Hence, at most half of the vertices

in U have degree more than |U|
4·(k+1) ; by dropping these vertices, we obtain a subgraph U′ such

that |U′| ≥ v
2·k , and every vertex in U′ has degree at most |U|

4·(k+1) ≤
|U′|

2·(k+1) .
Now, for i = 1, ..., k + 1, we choose a vertex in U′, and remove all of its neighbors from

U′. This process can indeed continue for k + 1 iterations, because after the ith iteration, the
number of vertices in the resulting subgraph is at least |U′| − i · |U′|

2·(k+1) . To conclude, observe
that the chosen k + 1 vertices form an independent set in G. �

Let G be a graph with v vertices such that ∆(G, Πn) < δ, and let I be an independent set
of size k + 1 in G. We modify G into G′ by adding (k+1

2) edges between all pairs of vertices
in I. To see that G′ is farther away from being k-colorable, compared to G, note that for any
k-partition P of the vertices of G, the number of violating edges for P in G′ is larger than the
number of violating edges for P in G. This is the case since at least two vertices in I are in
the same cell of P (because |I| = k + 1), forming a violating edge for P in G′, whereas no
edges were removed when modifying G to G′ (and thus all violating edges for P in G are
also violating edges for P in G′).

By combining Proposition 5.21 and Corollary 5.19, we obtain the following:

Theorem 5.22 (a tester for the dual problem of k-colorability). For any k ≥ 2, the query complexity
of the dual problem of k-colorability in the dense graph model is O(1).

61

5.5.3 Testing the property of being far from having a large clique in the dense graph
model

In this section we study the dual problem of ρ-clique: For ρ ∈ (0, 1) and ε > 0, we are
interested in the problem of ε-testing the set of graphs that are

(
ε · (v

2)
)
-far from having a

clique of size ρ · v, where v is the number of vertices in the graph. We show that this problem
is different from its original problem.

Proposition 5.23 (the set of graphs with a clique of size ρ · v is not Fδ-closed). For any ρ ∈
(
0, 1

2

]
,

and δ ≥ 2, and even v ≥ 4, the property of graphs on v vertices containing a clique of size ρ · v is not
Fδ-closed.

Proof. For ρ ∈
(
0, 1

2

]
, and δ ≥ 2, and an even v ≥ 4, and n = (v

2), let Π ⊆ {0, 1}n be the set
of graphs containing a clique of size ρ · v. Similar to the proof of Proposition 5.20, we show
that Π is not Fδ-closed, relying on the necessary condition in Proposition 4.1. In particular,
we show a graph G such that ∆(G, Π) = 1, and all neighbors of G are either in Π or adjacent
to Π. It follows that there does not exist a path (i.e., a sequence of graphs such that their
bit-string representations induce a path in {0, 1}n) from G to Fδ(Π) such that every graph
subsequent to G on the path is neither in Π nor adjacent to Π. Relying on Proposition 4.1,
this implies that Π is not Fδ-closed.

Let G = (V, E) be as follows. We bisect V = V1 ∪ V2, and since ρ ≤ 1
2 and v = |V| is

even, it holds that |V1| = |V2| ≥ dρ · ve. We define G such that it contains two vertex-disjoint
“almost cliques” of size dρ · ve, one in V1 and the other in V2, where an “almost clique” is a
clique from which one edge is omitted. Other than the two “almost cliques”, G contains no
additional edges. Since G contains no clique of size ρ · v, it follows that G /∈ Π. Also, since
we can create such a clique in G by adding a single edge, it follows that ∆(G, Π) = 1. Now,
let G′ be neighbor of G. We wish to prove that ∆(G′, Π) ≤ 1.

• If G′ was obtained by adding an edge to G, then either G′ ∈ Π (if the edge completed
one of the two “almost cliques” to a clique), or, otherwise, we can add an edge to G′

that completes one of the “almost cliques” to a clique, in which case ∆(G′, Π) = 1.
Either way, ∆(G′, Π) ≤ 1.

• Otherwise, G′ was obtained by removing an edge from one of the “almost cliques”.
However, in this case we can still add an edge to the other “almost clique”, turning it
to a clique of size dρ · ve. Thus ∆(G′, Π) = 1.

Implications on testing. Similar to the problem of testing k-colorability, a tester for the orig-
inal problem of ρ-clique with query complexity O(1) was given by Goldreich, Goldwasser,
and Ron [GGR98]. However, in the case of ρ-clique it is not clear whether this upper bound
also holds for the dual problem. Nevertheless, according to Corollary 5.7, since for every
v ∈ N and n = (v

2) there exist graphs with v vertices that are Ω(n)-far from having clique
of size ρ · v (e.g., the graph with no edges), testing the dual problem with one-sided error
requires Ω(n) queries.

62

5.5.4 Testing the property of being far from isomorphic to a graph in the dense graph
model

The problem of testing graph isomorphism was introduced by Fischer [Fis05]. We study the
dual problem of a well-known version of this problem: In the dual problem, for a graph G
on v vertices that is predetermined and explicitly known in advance, the problem consists of
ε-testing the set of graphs that are

(
ε · (v

2)
)
-far from being isomorphic to G. We show that the

dual problem is different from the original problem.

Proposition 5.24 (graph families that induce properties that are not Fδ-closed). There exists a graph
family {Gn}n∈N such that for every δ ≥ 2 and n ∈ N , the property of graphs that are isomorphic to
Gn is not Fδ-closed.

Proof. For v ∈ N and n = (v
2), let Gn be a graph with v vertices and a single edge. We show

that for every δ ≥ 2, the set Πn ⊆ {0, 1}n of graphs that are isomorphic to Gn is not Fδ-
closed. Note that Πn is exactly the set of vectors with Hamming weight 1, since each of these
vectors represents a graph that is isomorphic to Gn, and all vectors representing graphs that
are isomorphic to a given graph have the same Hamming weight (since isomorphic copies of
a graph have the same number of edges). However, Πn = B[∅, 1] \ {∅} is a property that we
already considered in the proof of Proposition 4.21, where we proved that it is not F2-closed,
relying on Proposition 4.1: We showed that there does not exist a path from ∅ /∈ Πn ∪Fδ(Πn)
to Fδ(Πn).

Fischer and Matsliah proved [FM08] that the query complexity of this version of the
graph isomorphism is Θ̃(

√
v). We deduce that the query complexity of the dual problem is

lower bounded by Ω(
√

v). Also, according to Corollary 5.7, and since the testing problem is
not trivial, testing the dual problem with one-sided error requires Ω(n) queries.

5.6 Testing graphs that are far from having a property in the bounded-degree
model

Property testing in the bounded-degree model was initiated by Goldreich and Ron [GR02]. In
this model, we fix some function d : N → N, and the underlying metric space consists of
graphs over the vertex-set [n] such that the degree of every vertex in the graph is at most
d(n). Typically, we are interested in d = O(1). The absolute distance between a pair of
graphs in this model is the same as in the metric space of the dense graph model: The size
of the symmetric difference of their edge-sets.14

A property of graphs in this model is a set of of graphs closed under taking isomorphisms
of the graphs, and is denoted by Π = {Πn}n∈N such that Πn consists of graphs over the
vertex-set [n]. A testing scenario for a property is as follows: Given an input graph over
[n] with degree bound d, we fix in advance an arbitrary ordering of the neighbors of each
vertex in the graph. Then, an ε-tester may issue queries of the form “who is the ith neighbor
of u ∈ [n]?”, to be answered either by the name of the neighbor (if such exists), or by an

14In some sources, each edge is counted twice towards the distance. For simplicity, we avoid doing so.

63

indication that u has less than i neighbors. The tester needs to determine whether the graph
has the property or is (ε · d · n)-far from any graph having the property.

Loosely speaking, we show that the following dual problems in the bounded-degree
model are different from their original problems:

• Connectivity: For any d ≥ 3, testing whether a graph is far from being connected.

• Cycle-free graphs: For any d ≥ 3, testing whether a graph is far from being cycle-free.

• Bipartiteness: For any k ≥ 2 and d ≥ k + 1, testing whether a graph is far from being
bipartite.

Nevertheless, we show that the query complexity of testing whether a graph is far from
being connected and of testing whether a graph is far from being cycle-free is O(1), as is the case
for the corresponding original problems.

5.6.1 Testing the property of being far from connected in the bounded-degree model

In this section we study the dual problem of connectivity: For every ε > 0, we are interested
in the problem of ε-testing the set of graphs that are (ε · d · n)-far from being connected. We
show that this problem is different from its original problem, but that the query complexity
of the dual problem is nevertheless poly(1/ε), as is the case for the original problem.

Preliminaries. For d ≥ 2 and n ∈ N, we will be concerned with graphs with maximal
degree d over the vertex-set [n]. Similar to many texts discussing the bounded-degree model
(see, e.g., [GR02, Sec. 2] and [BOT02, Sec. 3]), we allow multiple edges and self-loops, and
define that adding a self-loop to a vertex increases its degree by 2. The set of connected
graphs in this space is denoted by Πn. For ε > 0 and δ = ε · d · n, the standard problem of
testing Πn consists of distinguishing between Πn and Fδ(Πn), and the dual problem consists
of distinguishing between Fδ(Πn) and Fδ(Fδ(Πn)).

High-level overview. Our starting point is a structural result, expressing the distance of a
graph from being connected in this space by a formula that consists of a weighted count of
the connected components of the graph and of the degrees of its vertices. This formula, which
is presented in Section 5.6.1.1, might be of independent interest. Then, in Section 5.6.1.2, we
use this formula to study the distance of graphs in Fδ(Fδ(Πn)) from Πn. First, we show
that Fδ(Fδ(Πn)) contains graphs that are not connected, and even graphs that are Ω(n)-far
from being connected. Nevertheless, the main point of Section 5.6.1.2 is that the distance of
graphs in Fδ(Fδ(Πn)) from being connected is at most (1− 1/4d) · δ. The latter fact implies
that graphs in Fδ(Fδ(Πn)) are significantly closer to being connected, compared to graphs
in Fδ(Πn); specifically, the distance gap is at least δ/4d = Ω(n).

It follows that in order to distinguish between graphs in Fδ(Πn) and graphs in Fδ(Fδ(Πn))
it suffices to estimate the distance of the graph from being connected in this space, up to an
additive error of Ω(n). In Section 5.6.1.3 we show that the latter task can be done, using

64

only O(1) queries.15 This fact relies again on the combinatorial formula from Section 5.6.1.1;
in particular, the formula only contains (weighted) counts of connected components and of
vertex degrees, and we show that such counts can be efficiently estimated, using variations
of known sampling algorithms.

Notation. For a graph G over [n] and i ∈ [n], we define the number of free degrees of i in G
to be fd(i) = d− deg(i). The number of free degrees of a connected component c in G is the
sum of the free degrees of its vertices; that is, fd(c) = ∑i∈c fd(i). The number of free degrees
of G is ∑i∈[n] fd(i). Also, for any k ∈ N, let Ck(G) be the set of connected components in G
with k free degrees; that is, Ck(G) = {c : fd(c) = k}. Also let Ck+(G) = {c : fd(c) ≥ k},
and let C(G) = C0+(G) be the set of all connected components in G. When G is clear from
context, we will usually use a short-hand notation, and denote Ck = Ck(G).

5.6.1.1 The distance of a graph from being connected in the bounded-degree model

The distance of a graph from being connected can be expressed using a formula that is based
on the number of connected components of various types (e.g., C0 and C2+) in the graph. We
first present this formula in the case when the degree bound d is even. In this special case
the formula simplifies to a nicer form. After that, we generalize the formula for any d ≥ 2.

Warm-up: Even degree bound d. For a graph G with maximal degree d, where d is even,
let

wc(G)
def
== 2 ·

∣∣C0(G)
∣∣+ ∣∣C2+(G)

∣∣− 1 (5.4)

be the weighted count of connected components in G. We will see (in Lemma 5.27) that
the weighted count of components in a graph equals the distance of the graph from being
connected. But let us first explain the intuition behind the formula.

Given a graph G that is not connected, how can we modify it into a connected graph
using the least number of edge modifications? If every component in the graph had at
least two free degrees, then we could connect all r components, by adding r− 1 edges (e.g.,
by considering an ordered sequence of the r components, and connecting vertices from each
pair of subsequent components in the sequence). However, components in C0 are “saturated”
with edges – we cannot add any more edges to vertices in them without violating the degree
bound d. Thus, to connect any such component to the rest of the graph, we must first remove
an edge from the component. The intuition for the formula in Eq. (5.4) is that it expresses the
number of edge changes to the components in C0 ∪ C2+ in the aforementioned modification
procedure (i.e.,

∣∣C0
∣∣+ (

∣∣C0
∣∣+ ∣∣C2+

∣∣− 1)).
Indeed, we did not account at all for components in C1. However, when d is even, it

holds that
∣∣C1
∣∣ = 0. This is the case since in a connected component c, the sum of vertex

15Marko and Ron [MR06] also considered the problem of estimating the distance of a graph from being con-
nected. However, they were interested in distances in the general sparse graphs model, whereas we are concerned
with distances in the bounded-degree model. The distance of a graph from being connected in both models can
be significantly different (see Lemma 5.28 and [MR06, Sec. 2.1]).

65

degrees cannot be d · |c| − 1, which (given that d is even) is an odd number. The treatment of
connected components in C1 is what will create complications later, in the case of a general
d.

Before formally proving that ∆(G, Πn) = wc(G), we first state and prove two auxiliary
claims, which will be of use also in the general case.

Claim 5.25. Let G be a graph with r > 1 connected components, and G′ ∈ Πn be a connected graph.
Then, there are at least r− 1 edges in G′ that do not exist in G.

Proof. Fix some connected component c1 in G. Since G′ is connected, there is at least one edge
in G′ between a vertex in c1 and a vertex in [n] \ c1, and this edge is missing in G. Denote by
c2 the connected component (in G) of the end-point of the said edge in [n] \ c1. Then, there
must be at least one edge in G′ connecting c1 ∪ c2 to [n] \ (c1 ∪ c2), and this edge is missing in
G. By iteratively applying this argument r− 1 times (such that for the tth iteration, we argue
that the vertices in

⋃
j∈[t] cj must be connected to [n] \ ⋃j∈[t] cj in G′), we get that r− 1 edges

in G′ are missing in G.

Claim 5.26. For d ≥ 2, let G be a graph with maximal degree d over [n], and let c ∈ C0(G). Then,
there exists an edge in c such that removing it does not disconnect c.

Proof. Let mst(c) be an arbitrary minimum spanning tree of c. The number of edges in mst(c)
is |c| − 1. Since fd(c) = 0 and d ≥ 2, the number of edges in c is 1

2 · d · |c| ≥ |c|. Thus, there
exists an edge in c that is not in mst(c), and removing it does not disconnect c.

We now prove that in the special case where d is even, the combinatorial formula in
Eq. (5.4) indeed expresses the distance of a graph from being connected.

Lemma 5.27. For an even d ≥ 2 and a sufficiently large n, every graph G with maximal degree d
over [n] that is not connected satisfies ∆(G, Πn) = wc(G).

Proof. Let G be a graph with maximal degree d over [n]. We first show that ∆(G, Πn) ≤
wc(G): We modify G to a connected graph, by adding and removing at most wc(G) edges. For
the modification, we first remove an edge from each connected component c ∈ C0; according
to Claim 5.26, this modification can be done without disconnecting any component in C0. As
explained above, since C1 = ∅, at this point all connected components have at least two free
degrees. Then, we add edges between the connected components in the graph; specifically,
fixing some arbitrary order of the components c0, c1, ..., cr, where r =

∣∣C0
∣∣+ ∣∣C2+

∣∣, we add
an edge between a vertex in ci that has free degrees and a vertex in ci+1 that has free degrees,
for every i ∈ [r]. The first step amounts to

∣∣C0
∣∣ edge removals, and the second step amounts

to
∣∣C0
∣∣+ ∣∣C2+

∣∣− 1 edge additions. Overall, we modified 2 ·
∣∣C0
∣∣+ ∣∣C2+

∣∣− 1 = wc(G) edges
in G to obtain a connected graph.

To show that ∆(G, Πn) ≥ wc(G), we fix an arbitrary connected graph G′ ∈ Πn, and
show that ∆(G, G′) ≥ wc(G). Relying on Claim 5.25, we deduce that there are

∣∣C0(G)
∣∣ +∣∣C2+(G)

∣∣− 1 edges in G′ that do not exist in G. Now, for every c ∈ C0(G), there must be an
edge between its vertices (in G) that does not exist in G′ – otherwise, the component cannot

66

be connected to the rest of the graph in G′. Thus, the number of edges in G that do not exist
in G′ is at least

∣∣C0(G)
∣∣. Overall, the symmetric difference between the edge-sets of G and G′

is of size at least 2 ·
∣∣C0(G)

∣∣+ ∣∣C2+(G)
∣∣− 1 = wc(G). Thus, for every G′ ∈ Πn it holds that

∆(G, G′) ≥ wc(G), which implies that ∆(G, Πn) ≥ wc(G).

The case of a general degree bound d. As mentioned before, in the case of a general d it
does not necessarily hold that

∣∣C1
∣∣ = 0, and this fact complicates things. In the general case,

the weighted count of connected components in a graph G is defined as follows:

wc(G)
def
== 2 ·

∣∣C0∣∣+ ∣∣∣C1+
∣∣∣− 1 + max

{
0,
∣∣∣C1+

∣∣∣− 1−
⌈
fd(G)

2

⌉}
. (5.5)

First observe that when
∣∣C1
∣∣ = 0 (and in particular, when d is even), the formula in

Eq. (5.5) agrees with the formula in Eq. (5.4). This is true because in this case
∣∣C1+

∣∣ = ∣∣C2+
∣∣

and the value of the right-most expression in Eq. (5.5) is zero (because fd(G) ≥ 2 ·
∣∣C2+

∣∣,
which implies that

∣∣C2+
∣∣ − ⌈ fd(G)

2

⌉
≤ 0). The following lemma, which is the main result

in this section, asserts that wc(G) equals the distance of G from being connected also in the
general case.

Lemma 5.28. For any d ≥ 2 and n ∈ N, every graph G with maximal degree d over [n] that is not
connected satisfies ∆(G, Πn) = wc(G).

The proof of Lemma 5.28 relies mostly on ideas similar to the ideas in the proof of
Lemma 5.27, but it is significantly more tedious (reflecting the more complex expression for
wc(G)). Readers that are not interested in the technical details can safely skip the proof, and
continue reading from Section 5.6.1.2.

Proof of Lemma 5.28. Let us begin with a short overview of the proof. Given a graph G /∈ Πn,
we wish to show that ∆(G, Πn) = wc(G). To show that ∆(G, Πn) ≤ wc(G), we will present
an algorithm that modifies G to a connected graph by at most wc(G) edge removals and
additions. This algorithm will be a natural one, extending the basic algorithm (for the case
of an even d) described in the proof of Lemma 5.27. The analysis of the algorithm will be
relatively straightforward, but will involve some tedious calculations.

To show that ∆(G, Πn) ≥ wc(G), we will show that the symmetric difference of the edge-
set of G and of any G′ ∈ Πn is of size at least wc(G). This will be done relying on two simple
observations. The first, similar to the proof of Lemma 5.27, is that an edge must be removed
from any connected component in C0(G) in order to obtain a connected graph. The second
observation is that the number of free degrees in a graph must be non-negative, otherwise
it means that a vertex in the graph has violated the degree bound d. Thus, if adding to G
edges that are missing in order to make it connected causes its number of free degrees in the
graph to become negative, it follows that edges need to also be removed from G in order to
obtain a graph that does not violate the degree bound. For details, see Claim 5.28.2.

67

The actual proof. Let G /∈ Πn be a graph with maximal degree d over [n]. For technical
reasons, it will be useful to work with an equivalent definition for wc(G), as follows. Let

aux(G)
def
==

∣∣C1+
∣∣ − 1 −

⌈
fd(G)

2

⌉
be an auxiliary term; then, Eq. (5.5) is equivalent to the

following definition:

wc(G)
def
==

{
2 ·
∣∣C0
∣∣+ ∣∣C1+

∣∣− 1 aux(G) ≤ 0

2 · (|C| − 1)−
⌈
fd(G)

2

⌉
aux(G) > 0

. (5.6)

We first show that ∆(G, Πn) ≤ wc(G). In particular, we show that the following algorithm
modifies G to a connected graph, by adding and removing at most wc(G) edges.

Algorithm 1. On an input graph G /∈ Πn, do the following:

1. Remove an edge from every connected component in C0, without discon-
necting any of the components. (Recall that this is possible according to
Claim 5.26.)

2. Connect the components that now have 2 or more free degrees (i.e., all com-
ponents that were originally in C0 ∪ C2+). Specifically, fix an arbitrary order
of the components, c1, c2, ..., cr, and add an edge between ci and ci+1 for ev-
ery i ∈ [r− 1]. This does not violate the degree bound d, since after Step (1)
all these components have at least 2 free degrees.

3. At this point, the graph consists of a connected component that contains all
vertices that were originally in C0 ∪ C2+, which we call the main connected
component and denote by c0; and an additional collection of components,
that is C1. Execute the following loop: While fd(c0) > 0 and the graph is not
connected, take an arbitrary vertex i ∈ c0 such that fd(i) > 0, and connect i
to a suitable vertex in a connected component c 6= c0 such that fd(c) = 1.

4. If the previous step resulted in a connected graph, then we are done. Other-
wise, at this point the graph consists of the (extended) main component c0,
which now has no free degrees (i.e., fd(c0) = 0), and an additional collection
S ⊆ C1 of connected components. Split S into pairs of components, and for
each pair of components, do the following step: Remove an edge from c0,
thereby freeing two free degrees in c0 without disconnecting it (this is possi-
ble according to Claim 5.26, and since fd(c0) = 0 at this point); and connect
each of the pair of components to a vertex in c0 that now has a free degree
(thereby reducing the free degrees in c0 to zero again). If after finishing the
pairs in S there is a remainder of a single (unpaired) component, remove
another edge from c0 and connect the last component to c0.

When Algorithm 1 finishes its execution, the resulting graph is a connected graph that
does not violate the degree bound d. It is thus left to show that the number of edge modifi-
cations that Algorithm 1 makes is at most wc(G).

68

Claim 5.28.1. On any input graph G /∈ Πn, Algorithm 1 makes wc(G) edge modifications to G.

Proof. First note that in Step (1) we remove
∣∣C0
∣∣ edges, whereas in Step (2) we add

∣∣C0
∣∣+∣∣C2+

∣∣− 1 edges. In order to account for the number of modifications in Steps (3) and (4) we
need to make some preliminary calculations about the state of the graph when these steps of
the algorithm are executed. The actual count of the number of modifications in these steps
will be based on a case-analysis, depending on the said calculations.

In the description of Step (3), we defined a main component c0 that consists of all vertices
that originally resided in C0 ∪ C2+. We start by calculating the number of free degrees in c0
in the beginning of Step (3), which we denote by fd(St3)(c0). In the beginning of Step (2),
the vertices in c0 had ∑c∈C2+ fd(c) + 2 ·

∣∣C0
∣∣ free degrees; and during Step (2) we added∣∣C0

∣∣ + ∣∣C2+
∣∣ − 1 edges between the vertices of c0, lowering the free degrees of c0 by twice

this much. Therefore, in the beginning of Step (3) it holds that

fd(St3)(c0) = ∑
c∈C2+

fd(c) + 2 ·
∣∣C0∣∣− 2 ·

(∣∣C0∣∣+ ∣∣C2+∣∣− 1
)

= fd(G)−
∣∣∣C1
∣∣∣− 2 ·

∣∣C2+∣∣+ 2 . (5.7)

If fd(St3)(c0) ≥
∣∣C1
∣∣, then the loop in Step (3) will end when the graph is connected; and

otherwise, the loop will end after fd(St3)(c0) iterations, and we will continue to Step (4). In
the latter case, the number of additional components with a single free degree that remain
in the beginning of Step (4) is |S| =

∣∣C1
∣∣− fd(St3)(c0). Relying on Eq. (5.7), it follows that:⌈

|S|
2

⌉
=

⌈∣∣C1
∣∣− fd(St3)(c0)

2

⌉

=

⌈∣∣C1
∣∣− (fd(G)−

∣∣C1
∣∣− 2 ·

∣∣C2+
∣∣+ 2

)
2

⌉

=
∣∣∣C1+

∣∣∣− 1−
⌈
fd(G)

2

⌉
(5.8)

= aux(G) . (5.9)

We now count the number of modifications in Steps (3) and (4), based on a case analysis,
depending on whether fd(St3)(c0) ≥

∣∣C1
∣∣ (i.e., the algorithm has not executed Step (4)).

• Case 1: fd(St3)(c0) ≥
∣∣C1
∣∣. In this case, the loop in Step (3) ends after

∣∣C1
∣∣ iterations,

with all components in C1 being connected to the main component. The overall number
of modifications in this case equals 2 ·

∣∣C0
∣∣ + ∣∣C2+

∣∣ − 1 +
∣∣C1
∣∣ = 2 ·

∣∣C0
∣∣ + ∣∣C1+

∣∣ − 1.

Also, relying on the fact that
⌈
|C1|−fd(St3)(c0)

2

⌉
= aux(G) (by Eq. (5.9)) and on the fact

that fd(St3)(c0) ≥
∣∣C1
∣∣, it follows that aux(G) ≤ 0. According to Eq. (5.6), this implies

that wc(G) = 2 ·
∣∣C0
∣∣ + ∣∣C1+

∣∣ − 1. Thus, in this case, Algorithm 1 performed wc(G)
modifications to G.

69

• Case 2: fd(St3)(c0) <
∣∣C1
∣∣. In this case, the loop in Step (3) ends after fd(St3)(c0)

iterations, when fd(c0) = 0, and we continue to Step (4). In Step (4), we are left
with |S| =

∣∣C1
∣∣− fd(St3)(c0) > 0 components with a single free degree, alongside the

extended main component c0. For every pair of components in S, we remove one edge
and add two, and for a possible last remainder component, we remove an edge and
add an edge; this amounts to 3

2 ·
⌊
|S|
2

⌋
+ 2 ·

(⌈
|S|
2

⌉
−
⌊
|S|
2

⌋)
= |S|+

⌈
|S|
2

⌉
edges. Overall,

the number of modifications in this case is

2 ·
∣∣C0∣∣+ ∣∣C2+∣∣− 1 + fd(St3)(c0) + |S|+

⌈
|S|
2

⌉
= 2 ·

∣∣C0∣∣+ ∣∣∣C1
∣∣∣+ ∣∣C2+∣∣− 1 +

⌈
|S|
2

⌉
(|S| =

∣∣C1
∣∣− fd(St3)(c0))

= 2 ·
∣∣C0∣∣+ ∣∣∣C1+

∣∣∣− 1 +
(∣∣∣C1+

∣∣∣− 1−
⌈
fd(G)

2

⌉)
(by Eq. (5.8))

= 2 · (|C| − 1)−
⌈
fd(G)

2

⌉
.

Now, since |S| > 0, according to Eq. (5.9) it follows that aux(G) > 0, which (according
to Eq. (5.6)) implies that wc(G) = 2 · (|C| − 1)−

⌈
fd(G)

2

⌉
. Thus, in this case it also holds

that Algorithm 1 performed wc(G) modifications to G.

This completes the proof of Claim 5.28.1. �

For the other direction, we prove that for any graph G that is not connected it holds that
∆(G, Πn) ≥ wc(G).

Claim 5.28.2. Let G /∈ Πn. Then, for every connected graph G′ ∈ Πn it holds that ∆(G, G′) ≥
wc(G).

Proof. Our proof relies on a case analysis, according to the value of aux(G).

Case 1: aux(G) ≤ 0. According to Eq. (5.6), we have wc(G) = 2 ·
∣∣C0
∣∣+ ∣∣C1+

∣∣− 1. Relying
on Claim 5.25, there exist |C(G)| − 1 =

∣∣C0(G)
∣∣+ ∣∣C1+(G)

∣∣− 1 edges in G′ that do not exist
in G. Also, for every component c ∈ C0(G), there must exist an edge between its vertices (in
G) that does not exist in G′ – otherwise, the component cannot be connected to the rest of
the graph in G′. Thus, the number of edges in components in C0(G) that do not exist in G′

is at least
∣∣C0(G)

∣∣. Therefore, the symmetric difference between the edge-sets of G and of G′

is of size at least 2 ·
∣∣C0
∣∣+ ∣∣C1+

∣∣− 1 = wc(G), which finishes the first case.

Case 2: aux(G) > 0. According to Eq. (5.6), we have wc(G) = 2 · (|C(G)| − 1) −
⌈
fd(G)

2

⌉
.

Relying on Claim 5.25, there exist |C(G)| − 1 edges in G′ that do not exist in G. We now
show that there also exist many edges in G that do not exist in G′, relying on a count of free
degrees in G.

70

Consider the graph G′′, obtained by adding to G the said |C(G)| − 1 edges in G′ that do
not exist in G, disregarding the degree bound d. The number of free degrees in G′′ is:

fd(G′′) = fd(G)− 2 · (|C(G)| − 1) . (5.10)

Combining Eq. (5.10) with the assumption that aux(G) > 0, we get that fd(G′′) < 0:

0 < aux(G) =
∣∣∣C1+(G)

∣∣∣− 1−
⌈
fd(G)

2

⌉
≤ |C(G)| − 1− fd(G)

2

= −1
2
· fd(G′′) .

The fact that fd(G′′) < 0 implies that there exist vertices in G′′ that violate the degree
bound d. Since removing a single edge from G′′ creates two additional free degrees in the
graph, it follows that we need to remove at least

⌈
|fd(G′′)|

2

⌉
edges from G′′ in order to obtain

a graph in which the degree bound is not violated, and in particular in order to obtain the
graph G′. Thus, using Eq. (5.10), the number of edges in G′′ that do not exist in G′ is at least⌈

−fd(G′′)
2

⌉
= (|C(G)| − 1)−

⌈
fd(G)

2

⌉
.

Note that the aforementioned edges (that exist in G′′ but not in G′) are also edges in G
that do not exist in G′. This is the case since the only edges that exist in G′′ but not in G
are the ones that we added, which also exist in G′. Hence, overall, the size of the symmetric
difference between the edge-sets of G and of G′ is of size at least:

|C(G)| − 1 +
⌈
−fd(G′′)

2

⌉
= wc(G)

which implies that ∆(G, G′) ≥ wc(G), and finishes the second case. Hence, for every G′ ∈ Πn
it holds that ∆(G, G′) ≥ wc(G). �

Claim 5.28.2 implies that for every G /∈ Πn it holds that ∆(G, Πn) ≥ wc(G). This com-
pletes the proof of Lemma 5.28.

5.6.1.2 Graphs that are far-from-far from being connected.

In this section we prove that Fδ(Fδ(Πn)) contains graphs that are not connected, and even
graphs that are Ω(n)-far from being connected. On the other hand, we show that the distance
of any such graph from being connected is at most

(
1− 1

4d

)
· δ.

Proposition 5.29 (the set of connected graphs is not Fδ-closed). For any d ≥ 3, and δ ≥ 2, and
sufficiently large n, the set of connected graphs Πn is not Fδ-closed. Moreover, for any d ≥ 6, and
ε > 0, and sufficiently large n, and δ = ε · d · n, it holds that Fδ(Fδ(Πn)) contains graphs that are
Ω(n)-far from Πn.

71

Proof. For the first part of the statement, we will rely on Proposition 4.1. Specifically, we will
show a graph G such that ∆(G, Πn) = 1, and all neighbors of G (i.e., graphs that disagree
with G on one edge) are either in Πn or adjacent to Πn. Thus, for any δ ≥ 2, there does not
exist a path from G /∈ Πn ∪ Fδ(Πn) to Fδ(Πn) such that any graph subsequent to G on the
path is neither in Πn nor adjacent to Πn. According to Proposition 4.1, this implies that Πn
is not Fδ-closed.

The graph G consists of two disjoint cycles. Observe that G is not connected, but one can
connect the two cycles by adding an edge (since d ≥ 3); thus, ∆(G, Πn) = 1. However, after
adding any edge to G, or removing any edge from it, the resulting graph G′ still satisfies
∆(G′, Πn) ≤ 1: This is since the addition of an edge or removal of an edge does not dis-
connect either of the two cycles, and thus we can still connect the cycles by adding an edge
between them. Relying on Proposition 4.1, we deduce that Πn is not Fδ-closed.

For the “moreover” part, we need the following definition. For m ∈ N, a connected
graph H is m-resilient if for any r ∈ N, splitting H into 1 + r connected components cannot
be done with less than m · r edge removals from H. The intuitive meaning of this definition
is that in order to split an m-resilient graph to two components, we need to remove m edges
from the graph, and to split either of these two components, we must remove an additional
m edges from that component (and so forth); that is, intuitively, whenever splitting an m-
resilient graph to connected components, each of the components is also m-resilient. Note
that the notion of m-resiliency extends the notion of m-edge-connectivity: The latter means
that the graph cannot be disconnected by removing less than m edges, whereas to achieve
the former, we wish that after disconnecting the graph, this feature will also be preserved in
each resulting connected component. An example for an m-resilient graph is a “multi-path”,
that is a path in which any two adjacent vertices are connected by m parallel edges.

Let d ≥ 6, let ε > 0, let n be sufficiently large, and let δ = ε · d · n. Our construction of
a graph G ∈ Fδ(Fδ(Πn)) such that ∆(G, Πn) = Ω(n) is as follows. The graph G consists of
δ
6 connected components that are each bd/2c-resilient and have maximal degree at most d
(e.g., each component is a “multi-path” as above). According to Claim 5.25, the distance of
G from being connected is at least δ

6 − 1 = Ω(n).
Now, let H ∈ Fδ(Πn). Relying on Lemma 5.28 and on Eq. (5.5), we have

δ ≤ ∆(H, Πn) = wc(H) ≤ 2 · |C .(H)|

and hence the number of connected components in H is at least δ
2 . Since G consists of

connected components that are bd/2c-resilient, creating additional δ
2 −

δ
6 = δ

3 connected

components in G requires the removal of at least
⌊

d
2

⌋
· δ

3 ≥ δ edges from G (where the
inequality is since d ≥ 6). Thus, the symmetric difference between the edge-sets of H and
G is of size at least δ, which implies that ∆(G, H) ≥ δ. It follows that G is δ-far from any
H ∈ Fδ(Πn), which implies that G ∈ Fδ(Fδ(Πn)).

Nevertheless, we now build on Lemma 5.28 to show that the distance of graphs in
Fδ(Fδ(Πn)) from Πn is (1−Ω(1)) · δ.

72

Proposition 5.30 (graphs that are far-from-far from being connected are relatively close to being
connected). Let d ≥ 2, let ε < 1

2·d , let n be a sufficiently large integer and let δ = ε · d · n. Then, for
every graph G ∈ Fδ(Fδ(Πn)), it holds that ∆(G, Πn) <

(
1− 1

4d

)
· δ.

Proof. We rely on Corollary 4.15, which asserts the following: If there exists m such that every
graph G satisfying ∆(G, Πn) < δ can be modified into a graph G′ that is farther away from
Πn, compared to G, by adding and/or removing at most m edges from G, then the distance
of graphs in Fδ(Fδ(Πn)) from Πn is at most

(
1− 1

m

)
· δ. It thus suffices to show a way to

modify every graph G that is not δ-far from being connected into a graph G′ that is farther
away from being connected, with only 4 · d changes.

The intuition for the said modification procedure (of G to G′) is as follows. Recall that,
according to Lemma 5.28 and Eq. (5.5), the distance of a graph from being connected is
proportional to the number of its connected components, and (in some cases) inversely pro-
portional to the number of free degrees in the graph. Accordingly, to modify a graph G to a
graph that is farther away from being connected, we remove edges from G in order to isolate
a small connected component, and then, in order to decrease the number of free degrees
to its original value, we add edges within the new component as well as between vertices
of the original connected component (from which the new component was detached). This
modification procedure is depicted in the proof of the following claim.

Claim 5.30.1. For every G /∈ Fδ(Πn) there exists G′ such that ∆(G, G′) ≤ 4 · d and ∆(G′, Πn) ≥
∆(G, Πn) + 1.

Proof. First note that there exists a connected component c in G with at least 3 vertices. This is
the case since otherwise, the number of connected components in G is at least n/2 > ε · d · n
(because ε < 1

2·d), and relying on Claim 5.25, it follows that G is δ-far from being connected,
which contradicts the hypothesis.

Warm-up: When d is even. Let us first consider the case in which the degree bound d is
even; this case uses ideas similar to the ideas in the proof for the case of a general degree
bound d, but avoids many tedious technicalities. Recall that, according to Lemma 5.27,
in this case the distance of a graph H from being connected is ∆(H, Πn) = 2 ·

∣∣C0(H)
∣∣ +∣∣C2+(H)

∣∣− 1. To modify G into G′, we isolate two vertices i, j ∈ [n] from the aforementioned
connected component c, by removing all edges incident to them; and then add d multiple
edges between these two vertices. Overall, we removed at most 2 · d edges, and added d
edges, and so ∆(G, G′) ≤ 3 · d.

Compared to G, the modified graph G′ has an additional component with no free degrees
(the component {i, j}), and the vertices in c \ {i, j} have more free degrees. Thus, two cases
are possible: Either it is that c originally had free degrees in G (i.e., c ∈ C2+(G)), in which
case

∣∣C0(G′)
∣∣ = ∣∣C0(G)

∣∣+ 1 and
∣∣C2+(G′)

∣∣ ≥ ∣∣C2+(G)
∣∣; or it is the case that c originally had

no free degrees in G, in which case
∣∣C0(G′)

∣∣ = ∣∣C0(G)
∣∣ and

∣∣C2+(G′)
∣∣ ≥ ∣∣C2+(G)

∣∣+ 1. In
both cases it holds that ∆(G′, Πn) ≥ ∆(G, Πn) + 1.

The general case. For the case of a general degree bound d, we construct the graph G′

is as follows. Fix a connected component c with three or more vertices, and two vertices

73

i, j ∈ c. Remove all edges incident to i and to j from the graph, and add d multiple edges
between i and j. Thus, the component c has split to two non-empty sets: c0 = c \ {i, j} and
c1 = {i, j}. Now, note that the first removal step has increased the number of free degrees of
vertices in c0, by an amount denoted by m ≤ 2 · d (i.e., m is the number of edges in G that
connected i and j to vertices in c \ {i, j}). Consequently, at this point we can add bm/2c edges
between vertices in c0 (some of these edges might be multiple edges and/or self-loops). This
completes the modification of G to G′.

Overall, we removed at most 2 · d edges from G, and added at most 2 · d edges to it, to
obtain the graph G′; thus, ∆(G, G′) ≤ 4 · d. Therefore we only need to prove that ∆(G′, Πn) ≥
∆(G, Πn) + 1. To do this, we will track the changes made to the graph, and in particular the
changes to its number of free degrees and the changes to its connected components.

Fact 5.30.1.1. After the modification of G to G′, the number of free degrees in the graph has not
increased; that is, fd(G′) ≤ fd(G).

Proof. Denote by degG(i) and degG(j) the degrees of i and of j, respectively, in G (i.e., before
the modification), and note that

fd(G′)− fd(G) = m + degG(i) + degG(j)− 2 · bm/2c − 2 · d . (5.11)

If degG(i) + degG(j) < 2d, then the expression in Eq. (5.11) is at most zero. Otherwise,
if degG(i) = degG(j) = d, then m must be an even number. This is the case since, denoting
the number of edges (in G) between i and j by f , then 2d = deg(i) + deg(j) = m + 2 f ,
which implies that m = 2 · (d− f). Thus, in this case, 2 · bm/2c = m, which implies that the
expression in Eq. (5.11) equals zero. �

Let us see what happened to the connected components of G when modified to G′. The
only connected component in G that was changed is c, which was split into at least two
connected components: The component c1 = {i, j}, which has no free degrees in G′, and
the component or components containing the vertices in c0 = c \ {i, j}. Thus, there are
more connected components in G′, and at least one of them (i.e., c1) is without free degrees.
Combined with Fact 5.30.1.1, this will now allow us to prove that ∆(G′, Πn) ≥ ∆(G, Πn) + 1.

For any graph H, denote ϕ1(H) = 2 ·
∣∣C0(H)

∣∣+ ∣∣C1+(H)
∣∣− 1 and ϕ2(H)

def
==

∣∣C1+(H)
∣∣−

1−
⌈
fd(G)

2

⌉
. Then, according to Lemma 5.28, it holds that:

∆(H, Πn) = ϕ1(H) + max {0, ϕ2(H)} . (5.12)

We prove that ∆(G′, Πn) ≥ ∆(G, Πn) + 1 by relying on Eq. (5.12), and considering three
separate cases.

Case 1:
∣∣C0(G′)

∣∣ ≥ ∣∣C0(G)
∣∣+ 2. Note that

∣∣C1(G′)
∣∣ ≥ ∣∣C1(G)

∣∣− 1, since the only way for
G′ to have less components with free degrees, compared to G, is if the component c had free
degrees in G, but all the components that consist of vertices in c0 in G′ have no free degrees.
Relying on this fact, and on Fact 5.30.1.1, it follows that ϕ2(G′) ≥ ϕ2(G)− 1. However, since∣∣C0(G′)

∣∣ ≥ ∣∣C0(G)
∣∣+ 2, and relying again on the fact that

∣∣C1(G′)
∣∣ ≥ ∣∣C0(G)

∣∣− 1, it follows
that ϕ1(G′) ≥ ϕ1(G) + 3. Thus, ∆(G′, Πn)− ∆(G, Πn) ≥ 2.

74

Case 2:
∣∣C0(G′)

∣∣ = ∣∣C0(G)
∣∣. Since we know that an additional connected component with

no free degrees was created in G′ (i.e., the component c1), this case is possible only if the
component c was originally (i.e., in G) a component without free degrees, and after the
modification, the connected components that consist of vertices in c0 = c \ {i, j} all have
free degrees. Thus, in this case, it holds that

∣∣C1+(G′)
∣∣ ≥ ∣∣C1+(G)

∣∣ + 1. It follows that
ϕ1(G′) ≥ ϕ1(G) + 1, and, relying on Fact 5.30.1.1, that ϕ2(G′) > ϕ2(G). Overall, we get that
∆(G′, Πn)− ∆(G, Πn) ≥ ϕ1(G′)− ϕ1(G) ≥ 1.

Case 3:
∣∣C0(G′)

∣∣ = ∣∣C0(G)
∣∣+ 1. In this case it necessarily holds that

∣∣C1+(G′)
∣∣ ≥ ∣∣C1+(G)

∣∣.
To see that this is true, assume otherwise; it follows that c was a component with free
degrees in G, but that no component that consists of vertices in c0 has free degrees in G′.
However, this implies that there are at least two additional components without free degrees
in G′, compared to G (the component c1, and a component containing vertices in c0), which
contradicts the hypothesis of the current case. Therefore, it follows that ϕ1(G′) ≥ ϕ1(G) +
2, and (relying on Fact 5.30.1.1) that ϕ2(G′) ≥ ϕ2(G). Overall, we get that ∆(G′, Πn) ≥
∆(G, Πn) + 2. �

This completes the proof of Proposition 5.30.

A comment about non-simple graphs. Recall that in the preliminary definitions of the
current section (i.e., Section 5.6.1), we assumed that the space of graphs we are dealing
with also contains graphs with multiple edges and self-loops. Throughout Section 5.6.1.2,
we relied on the assumption that such non-simple graphs exist in our metric space. Most
notably, we relied on this assumption in Claim 5.30.1, which was the main step in proving
Proposition 5.30. We believe that it is possible to prove a claim similar to Claim 5.30.1,
and thus also obtain a result similar to Proposition 5.30, without relying on the existence of
non-simple graphs, but it was not our focus in this work.

5.6.1.3 The dual problem of connectivity in the bounded-degree model

Proposition 5.29 implies that the dual problem of connectivity in the bounded-degree model
is “very different” from its original problem, in the sense that Fδ(Fδ(Πn)) contains graphs
that are Ω(n)-far from Πn. However, Proposition 5.30 implies that there is a gap of 1

4d · δ =
Ω(n) between the distance of graphs in Fδ(Πn) from Πn and the distance of graphs in
Fδ(Fδ(Πn)) from Πn. Thus, to show a tester for the dual problem, it suffices to show that
the distance of a graph from Πn can be estimated using a small number of queries.

Relying on Lemma 5.28, for a given graph G, this is equivalent to estimating the following
quantity:

2 ·
∣∣C0∣∣+ ∣∣∣C1+

∣∣∣− 1 + max
{

0,
∣∣∣C1+

∣∣∣− 1−
⌈
fd(G)

2

⌉}
. (5.13)

We will see that each of the terms in Eq. (5.13) can be estimated up to an additive error of
γ · n, for any γ > 0, using only poly(1/γ) queries.

75

A preliminary discussion of the estimation algorithm. First note that the term fd(G) can
be estimated by straightforward sampling. This is the case since fd(G) = d · n−∑i∈[n] deg(i),
and the average degree of a vertex in the graph can be estimated, with high probability, by
outputting the average degree in a sample of uniformly chosen vertices.

It is thus left to handle the terms
∣∣C0
∣∣ and

∣∣C1+
∣∣; for simplicity, we focus on the term

∣∣C0
∣∣

(the term
∣∣C1+

∣∣ can be handled very similarly). The estimation algorithm for
∣∣C0
∣∣ is based

on the algorithm of Chazelle, Rubinfeld, and Trevisan [CRT05] for estimating the number
of connected components in a graph. In particular, for every vertex i ∈ [n], let c(i) be the
connected component in which i resides, and let

s(i) =

{
1
|c(i)| c(i) ∈ C0

0 c(i) /∈ C0
.

For a fixed component c ∈ C0, we have ∑i:c(i)=c s(i) = 1. Therefore, we get that ∑i∈[n] s(i) =∣∣C0
∣∣. Hence, to estimate

∣∣C0
∣∣, it suffices to estimate the average value of s(i), over all i ∈ [n].

Given a fixed i ∈ [n], we can compute s(i) using |c(i)| · d queries, by running a BFS from i,
and counting the number of free degrees in its connected component. When |c(i)| = O(1),
this requires only O(1) queries; but when |c(i)| is large, the BFS requires too much queries.
However, in the latter case, s(i) is very small; in this case, we can obtain a rough estimate of
s(i) by choosing a sufficiently small fixed value (actually, we just take the value zero). More
specifically, given an estimation parameter γ > 0, for any vertex i ∈ [n], let

s̃(i) =

{
s(i) if |c(i)| ≤ 1/γ

0 o.w.
.

Note that given a vertex i ∈ [n], we can exactly compute s̃(i) using d
γ queries. This is done

by performing a BFS, starting from i, and halting if we encountered more than 1
γ vertices in

the connected component of i (in which case it holds that s̃(i) = 0). Also note that for every
i ∈ [n] it holds that |s̃(i)− s(i)| < γ. Therefore,∣∣∣∣∣ ∑

i∈[n]
s̃(i)−

∣∣C0∣∣∣∣∣∣∣ ≤ ∑
i∈[n]
|s̃(i)− s(i)| < γ · n .

Thus, to estimate
∣∣C0
∣∣ up to an additive error of 2γ · n, with high probability, it suffices

to estimate the average value of s̃(i) over the vertices in the graph up to an additive error
of γ, with high probability. Relying on Chernoff’s inequality, the latter can be done by
uniformly sampling O(γ−2) vertices, computing the s̃ value of each vertex (using d

γ queries),
and outputting the average s̃ value of vertices in the sample. The query complexity of this
estimation procedure is O(γ−2 · d

γ) = O(γ−3 · d). The same holds for
∣∣C1+

∣∣.
The tester itself. Let us spell out the tester for the dual problem of connectivity that is
obtained by combining the above estimation algorithms.

76

Theorem 5.31 (a tester for the dual problem of connectivity). Let d ≥ 2, let ε < 1
2·d , let n be a

sufficiently large integer and let δ = ε · d · n. Then, there exists an algorithm with query complex-
ity O

(
ε−3 · d

)
that accepts, with high probability, every graph in Fδ(Πn), and rejects, with high

probability, every graph in Fδ(Fδ(Πn)).

Proof. Given an input graph G over the vertex-set [n], the algorithm estimates ∆(G, Πn), such
that with high (constant) probability, the estimated value is correct up to an additive error
of δ

8·d = ε
8 · n. It then accepts G if and only if the estimated value is at least

(
1− 1

8·d
)
· δ.

The correctness of the algorithm follows from Proposition 5.30. The query complexity of
the algorithm is simply the query complexity of the estimation procedure: To estimate the
average degree of a vertex in the graph up to an error of O(ε · n), we perform O(ε−2 · d)
queries; and to estimate each of the two terms

∣∣C0(G)
∣∣ and

∣∣C1+(G)
∣∣ up to an error of

O(ε · n), we perform O(ε−3 · d) queries.

5.6.2 Testing the property of being far from cycle-free in the bounded-degree model

In this section we study the dual problem of testing cycle-free graphs: For every ε > 0,
we are interested in the problem of ε-testing the set of graphs that are (ε · d · n)-far from
being cycle-free. We show that this problem is different from its original problem, but that
the query complexity of the dual problem is nevertheless poly(1/ε), as is the case for the
original problem.

Preliminaries. For d ≥ 2 and n ∈ N, we will be concerned with graphs with maximal
degree d over the vertex-set [n]. For a graph G over [n], let E(G) be the edge-set of G, and
let C(G) be the set of connected components in G. Similar to other texts discussing the
problem of testing cycle-free graphs in this model (see, e.g. [GR02, Sec. 4] and [MR06, Sec.
5]), we consider only simple graphs. The set of cycle-free graphs in this space is denoted by
Πn. For ε > 0 and δ = ε · d · n, the standard problem of testing Πn consists of distinguishing
between Πn and Fδ(Πn), and the dual problem consists of distinguishing between Fδ(Πn)
and Fδ(Fδ(Πn)).

High-level overview. Our starting point is two results of Marko and Ron [MR06, Sec. 5]
about cycle-free graphs in the bounded-degree model. Specifically, they observed that the
distance of a graph from being cycle-free in this model is ∆(G, Πn) = |E(G)|+ |C(G)| − n,
and proved that given an input graph G, this quantity can be estimated, up to an Ω(n)
additive error, using only O(1) queries.

Our contribution primarily consists of the analysis of the distance of graphs in Fδ(Fδ(Πn))
from being cycle-free. Specifically, we show that there exist graphs in Fδ(Fδ(Πn)) that are not
cycle-free (i.e., that Πn is not Fδ-closed), but on the other hand, that the distance of graphs
in Fδ(Fδ(Πn)) from being cycle-free is at most 2

3 · δ. The latter fact implies that graphs in
Fδ(Fδ(Πn)) are significantly closer to being connected, compared to graphs in Fδ(Πn); in
particular, the distance gap is at least δ/3 = Ω(n). It follows that the dual problem can be
solved by using the algorithm of [MR06] to estimate the distance of an input graph from the
property.

77

Proposition 5.32 (the set of cycle-free graphs is not Fδ-closed). For any d ≥ 2, and δ ≥ 2, and
sufficiently large n, the set of cycle-free graphs Πn is not Fδ-closed.

Proof. We will rely on Proposition 4.1. Specifically, we will show a graph G such that
∆(G, Πn) = 1, and all neighbors of G (i.e., graphs that disagree with G on one edge) are
either in Πn or adjacent to Πn. Thus, for any δ ≥ 2, there does not exist a path from
G /∈ Πn ∪ Fδ(Πn) to Fδ(Πn) such that any graph subsequent to G on the path is neither in
Πn nor adjacent to it. According to Proposition 4.1, this implies that Πn is not Fδ-closed.

The graph G over [n] consists of a single triangle and of additional n− 3 isolated vertices.
The graph is not cycle-free, but can be made cycle-free by removing a single edge from
the triangle; thus, ∆(G, Πn) = 1. However, note that adding any edge to G yields a graph
G′ such that ∆(G′, Πn) ≤ 1: This is the case since any additional edge either connects an
additional vertex to the triangle, or connects two isolated vertices (recall that the metric
space is comprised only of simple graphs); in both cases, removing an edge from the original
triangle turns G′ into a cycle-free graph. Relying on Proposition 4.1, we deduce that Πn is
not Fδ-closed.

We now show that the distance of graphs in Fδ(Fδ(Πn)) from being cycle-free is never-
theless at most 2

3 · δ.

Proposition 5.33 (graphs that are far-from-far from being cycle-free are relatively close to being cycle-
free). For d ≥ 3, let ε < 1

12·d2 , let n be a sufficiently large integer, and let δ = ε · d · n. Then, for every
G ∈ Fδ(Fδ(Πn)) it holds that ∆(G, Πn) ≤ 2

3 · δ.

Proof. We rely on Corollary 4.15, which implies the following: If every graph G that is not
δ-far from Πn can be modified into a graph G′ that is farther away from Πn, compared to
G, by adding at most three edges to G, then the distance of graphs in Fδ(Fδ(Πn)) from Πn
is at most 2

3 · δ. It thus suffices to show how to modify every graph that is not δ-far from
being cycle-free into a graph that is farther away from being cycle-free by adding at most
three edges to the original graph. This modification procedure is depicted in the proof of the
following claim.

Claim 5.33.1. For every G /∈ Fδ(Πn) there exists G′ such that ∆(G, G′) ≤ 3 and ∆(G′, Πn) =
∆(G, Πn) + 1.

Proof. Our proof is based on a case analysis, depending on the number of connected compo-
nents in G. Specifically, if |C(G)| is not too large (i.e., |C(G)| ≤ n

6·d), we will show that there
exist two non-adjacent vertices with degree at most d− 1 in the same connected component
in the graph. Connecting the two vertices by an edge yields G′ as required. Otherwise, if
|C(G)| is large (i.e., |C(G)| > n

6·d), we will show that there exist three non-adjacent vertices
with degree at most one in the graph. Adding edges between three such vertices, creating a
new triangle in the graph, yields G′ as required.

For the proof itself, first note that, since ∆(G, Πn) = |E(G)| + |C(G)| − n, and since
∆(G, Πn) ≤ δ = ε · d · n, we get that

|E(G)| = ∆(G, Πn) + n− |C(G)| < (1 + ε · d) · n− |C(G)| . (5.14)

Then, the two cases of the proof are as follows.

78

Case 1: |C(G)| ≤ n
6·d . Denote the number of vertices with degree d in G by m. Then, relying

on Eq. (5.14), we get that

m · d ≤ ∑
i∈[n]

deg(i) = 2 · |E(G)| < (2 + 2 · ε · d) · n .

It follows that m <
(2

d + 2 · ε
)
· n, and since d ≥ 3 and ε < 1

12·d2 < 1
6 , we get that m < 5

6 · n.
Therefore, there exist more than n/6 vertices with degree at most d− 1 in the graph. Hence,
the expected number of vertices with degree at most d− 1 in a uniformly chosen connected
component in the graph is n−m

|C(G)| >
n/6

n/6d = d. Since the inequality is strict, it follows that
there exists a connected component in which there are at least d + 1 vertices that each have
degree at most d− 1. At least two of these vertices are not adjacent; connecting them by an
edge yields a graph G′ such that |C(G′)| = |C(G)| and |E(G′)| = |E(G)|+ 1. It follows that
∆(G′, Πn) = ∆(G, Πn) + 1.

Case 2: |C(G)| > n
6·d . Relying on the hypothesis of the case and on Eq. (5.14), we get that

|E(G)| <
(

1 + ε · d− 1
6 · d

)
· n .

Now, since ε < 1
12·d2 , it follows that |E(G)| <

(
1− 1

12·d
)
· n, which implies that there exist

Ω(n) vertices with degree at most one in the graph. For a sufficiently large n, it follows
that there exist at least three non-adjacent vertices in the graph with degree at most one.
To construct G′, we add edges between these three vertices (i.e., we add a triangle on these
vertices). This yields a graph that does not violate the degree bound (since d ≥ 3) and
that satisfies |C(G′)| ≥ |C(G)| − 2 and |E(G′)| = |E(G)| + 3. It follows that ∆(G′, Πn) ≥
∆(G, Πn) + 1. �

This completes the proof of Proposition 5.33.

Proposition 5.33 implies that there is a gap of δ/3 = Ω(n) between the distance of graphs
in Fδ(Πn) from Πn and the distance of graphs in Fδ(Fδ(Πn)) from Πn. Thus, to distinguish
between graphs in Fδ(Πn) and graphs in Fδ(Fδ(Πn)), it suffices to estimate the distance of
an input graph from Πn, up to an additive error of 1

6 · δ = ε·d
6 · n. Using the algorithm of

Marko and Ron [MR06, Sec. 5], this can be done using O(ε−3 · d−3) queries. Thus, we have
the following result:

Theorem 5.34 (a tester for the dual problem of testing cycle-free graphs). Let d ≥ 3, let ε < 1
12·d2 ,

let n be a sufficiently large integer and let δ = ε · d · n. Then, there exists an algorithm with query
complexity O

(
ε−3 · d−3) that accepts, with high probability, every graph in Fδ(Πn), and rejects,

with high probability, every graph in Fδ(Fδ(Πn)).

79

5.6.3 Testing the property of being far from bipartite in the bounded-degree model

In this section we study the dual problem of bipartiteness, and, more generally, of testing
k-colorability: For k ≥ 2 and every ε > 0, we are interested in the problem of ε-testing
the set of graphs that are

(
ε · (n

2)
)
-far from being k-colorable. We show that this problem is

different from its original problem. Similar to the problem of testing cycle-free graphs (i.e.,
to Section 5.6.2), in the current section we also consider only simple graphs.

Proposition 5.35 (the set of k-colorable graphs with degree bound d is not Fδ-closed). For any k ≥ 2,
and d ≥ k + 1, and sufficiently large n ∈ N, and δ ≥ 2, the set of k-colorable graphs over [n] with
degree bound d, denoted by Πn, is not Fδ-closed.

Proof. Similar to the proof of Proposition 5.32, it suffices to show a graph G such that
∆(G, Πn) = 1, and all neighbors of G are either in Πn or adjacent to Πn. Relying on Proposi-
tion 4.1, this implies that Πn is not Fδ-closed.

The construction of G is identical to the one in the proof of Proposition 5.20: The graph
G contains a single (k + 1) clique alongside n − (k + 1) isolated vertices. In the proof of
Proposition 5.20 we showed that adding or removing an edge from G yields a graph that
is either k-colorable, or adjacent to the set of k-colorable graphs. To conclude the proof, we
observe that all graphs involved in the proof do not violate the degree degree bound d.

Proposition 5.35 implies that the dual problem of testing k-colorability in the bounded-
degree model is different from the original problem. For k = 2 (i.e., testing bipartiteness), the
query complexity of the original problem is Θ̃(

√
n): The lower bound was shown in [GR02]

and the upper bound in [GR99]. Therefore, the query complexity of the dual problem is
lower bounded by Ω(

√
n). For k = 3, the original problem requires Ω(n) queries [BOT02],

and thus so does the dual problem.

5.7 A generalization: On being δ′-far from δ-far

In this section we study a more general notion of dual testing problems. Given a property
Π, we consider two proximity parameters, ε > 0 and ε′ > 0, such that ε > 0 determines the
“yes” inputs for testing, and ε′ > 0 is the proximity parameter that determines the distance of
the “no” inputs from the “yes” inputs. That is, given ε, ε′ > 0, the generalized dual problem
consists of distinguishing between Fε·n(Πn) and Fε′·n(Fε·n(Πn)).

Our formal definition of generalized dual problems, which is presented below, coincides
with the standard notion of property testing, and is thus more natural in that context than the
non-generalized notion of dual problems (which we have used so far). Specifically, given a
set Π = {Πn}n∈N and a parameter ε > 0, we will consider the generalized ε-dual problem of
Π, which is just the problem of testing the fixed property {Fε·n(Πn)}n∈N with an arbitrarily
small proximity parameter, denoted by ε′ > 0. More formally:

Definition 5.36 (generalized dual problems). For a set Σ, and Π = {Πn}n∈N such that Πn ⊆ Σn,
and two parameters ε, ε′ > 0, an ε′-tester for the generalized ε-dual problem of Π is a probabilistic
algorithm T that gets oracle access to x ∈ Σn and satisfies the following two conditions:

80

1. If x ∈ Fε·n(Πn) then Pr[Tx(1n) = 1] ≥ 2
3 .

2. If x ∈ Fε′·n(Fε·n(Πn)) then Pr[Tx(1n) = 0] ≥ 2
3 .

The query complexity of a generalized dual problem is defined in the natural way, and is a function of
ε, ε′, and n.

When ε′ > ε, it is possible that Fε′·n(Fε·n(Πn)) does not contain Πn, and it might even be
that Fε′·n(Fε·n(Πn)) = ∅ (e.g., consider a “pathological” example in which Πn ⊆ {0, 1}n, and
|Fε·n(Πn)| > 1, and ε′ = 1). Even if that does not happen, the following observation asserts
that when ε′ > ε, the problem of distinguishing Fε·n(Πn) from Fε′·n(Fε·n(Πn)) reduces to
our standard notion of dual testing problems.

Observation 5.37 (ε′ > ε reduces to ε′ = ε). Let Π = {Πn}n∈N such that the query complexity of
the dual problem of Π is q(n, ε) (i.e., for every ε > 0 and n ∈ N, a tester can distinguish between
Fε·n(Πn) and Fε·n(Fε·n(Πn)) using q(n, ε) queries). Then, for every ε′ > ε > 0, the problem of
distinguishing Fε·n(Πn) from Fε′·n(Fε·n(Πn)) can be solved using q(n, ε) queries.

Proof. For every n ∈ N and ε′ > ε, observe that Fε′·n(Fε·n(Πn)) ⊆ Fε·n(Fε·n(Πn)), since
every input that is (ε′ · n)-far from Fε·n(Πn) is also (ε · n)-far from Πn. Thus, an algo-
rithm that distinguishes Fε·n(Πn) from Fε·n(Fε·n(Πn)) also distinguishes Fε·n(Πn) from
Fε′·n(Fε·n(Πn)).

We thus focus on the case of ε′ ≤ ε. Our main results in this section are obtained by
reducing generalized dual problems to tolerant testing problems. We say that a generalized dual
problem reduces to the corresponding tolerant testing problem if for every ε′ ≤ ε, the distance
of inputs in Fε′·n(Fε·n(Πn)) from Πn is bounded away from ε · n; specifically, if for every
sufficiently small ε > 0 and every ε′ ≤ ε there exists α ∈ (0, 1), which may depend on ε and
ε′, such that for every sufficiently large n it holds that Fε′·n(Fε·n(Πn)) ⊆ {y : ∆(y, Πn) ≤
α · ε · n}.

Proposition 5.38 (generalized dual problems that reduce to tolerant testing). The following problems
reduce to their corresponding tolerant testing problems:

1. The generalized dual problem of any error-correcting code with constant relative distance.

2. The generalized dual problem of monotone Boolean functions over the Boolean hypercube.

3. The generalized dual problem of k-colorable graphs in the dense graph model.

4. The generalized dual problem of connected graphs in the bounded-degree graphs model.

5. The generalized dual problem of cycle-free graphs in the bounded-degree graphs model.

Proof. All the metric spaces corresponding to properties in Proposition 5.38 are graphical,
and thus we restrict our discussion to graphical metric spaces. Fix a property Πn, and let
ε, ε′ > 0. According to Proposition 4.14, if there exists m = O(1) such that for every input
x that is not (ε · n)-far from Πn there exists an input x′ that is farther from Πn such that

81

∆(x, x′) ≤ m, then the distance of inputs in Fε′·n(Fε·n(Πn)) from Πn is at most ε · n− ε′·n
m =(

1− ε′

ε·m

)
· ε · n. Hence, in order to reduce a generalized ε-dual problem to the corresponding

tolerant testing problem, it suffices to show the above and set α = 1− ε′

ε·m .
For Items (1) and (2), we use the fact that the corresponding properties are strongly

Fε·n-closed for every sufficiently small ε > 0 (see Propositions 4.17 and 5.10, respectively),
which corresponds to the case of m = 1 (see discussion after Proposition 4.14). Item (3) is
proved by observing that (in the proof of Proposition 5.21) we showed that for every graph
G that is not (ε · n)-far from being k-colorable, there exists a graph G′ that is farther from
being k-colorable, compared to G, such that ∆(G, G′) = O(1). Items (4) and (5) follow from
Claim 5.30.1 and Claim 5.33.1, respectively.

Relying on Proposition 5.38 and on several previous results regarding standard dual
problems, we obtain the following upper bounds on the query complexity of generalized
dual problems.

Corollary 5.39 (testers for generalized dual problems; Theorem 1.15, restated).

1. The query complexity of the generalized dual problem of k-colorable graphs in the dense graphs
model is F(ε, ε′), for some function F that does not depend on n (see Footnote (4)).

2. The query complexity of the generalized dual problem of connected graphs in the bounded-degree
graphs model is poly (1/ min{ε′, ε}).

3. The query complexity of the generalized dual problem of cycle-free graphs in the bounded-degree
graphs model is poly (1/ min{ε′, ε}).

Proof. Relying on Proposition 5.38, the query complexity of all three problems is upper
bounded by the query complexity of their corresponding tolerant testing problems. Specif-
ically, in the proof of Proposition 5.38 we showed that the query complexity of the dual
problems is upper bounded by the query complexity of distinguishing between Fε·n(Πn)

and {y : ∆(y, Πn) ≤ α · ε · n}, where α = 1− ε′

ε·O(1) = 1−Ω(ε′/ε).
The upper bound in Item (1) follows due to the tolerant tester by Fischer and New-

man [FN07]; for a discussion of its query complexity, see [FN07, Sec. 7]. For Item (2) we
can use the estimation algorithm presented in Section 5.6.1.3; and similarly, for Item (3) we
can use the estimation algorithm by Marko and Ron [MR06, Sec. 5]. The query complexity
of both estimation algorithms is poly(1/ρ), where ρ is the algorithm’s additive error in esti-
mating the relative distance from Πn. In both cases (corresponding to Items (2) and (3)), the
difference between the relative distance of “yes” instances from Πn and the relative distance
of “no” instances from Πn is ε− α · ε = Ω(ε′). Hence, setting ρ = O(ε′), we obtain testers
for the corresponding generalized dual problems with query complexity poly(1/ε′).

6 Open questions

In the current work we were able to prove one general lower bound on dual testing problems,
and several specific upper bounds. However, many interesting and natural general questions

82

that concern dual testing problems are left without answer. In this section we suggest a
few of these questions, which we suspect might lead towards better understanding of dual
testing problems and of “far-from-far” sets.

Can the query complexity of a dual problem be significantly higher than that of the origi-
nal problem? Recall that the (two-sided error) query complexity of a dual problem is lower
bounded by the query complexity of the original problem. A natural question is thus:

Question 1. Does there exist a property such that the query complexity of its dual problem
is significantly higher than that of the original problem?

Note that one of the upper bounds for a dual problem given in this work (i.e., testing
k-colorability in the dense graph model) is significantly higher than the known upper bound
for the corresponding original problem.16 Needless to say, a gap between the query complex-
ity of a dual problem and the query complexity of the original problem might either involve
a different dependency on n or a different dependency on the proximity parameter ε.

Do all natural dual problems reduce to tolerant testing? Recall that (in Proposition 3.15)
we presented an example of an artificial property of Boolean strings whose dual problem
does not reduce to tolerant testing. However, it is not clear whether this happens for natural
properties (e.g., for properties that are closed to specific types of invariances, such as graph
properties or affine-invariant properties). One specific setting that might be convenient for
tackling this question is the dense graph model.

Question 2. Do the dual problems of all graph properties in the dense graph model reduce
to tolerant testing?

An initial step towards answering the foregoing question might be answering it for the
special case of general graph partition problems (see [GGR98, Sec. 1.2.3.1]). An even more
modest step might be answering it for the property of graphs having a large clique (see
Proposition 1.11). We mention that, relying on the results by Fischer and Newman [FN07],
an affirmative answer to Question 2 would imply that a property in the dense graph model
is testable with O(1) queries if and only if its dual problem is testable with O(1) queries.

Upper bounds for dual problems without reductions to tolerant testing. All the testers we
presented for dual problems that are different than the original problems relied on reductions
to tolerant testing. Thus, these testers do not fully exploit the structure of “far-from-far” sets,
but rather only use the fact that “far-from-far” inputs are sufficiently close to the property.
Hence, we ask:

Question 3. Does there exist a tester for a natural dual problem (that is different than the
original problem) that uses significantly fewer queries than the corresponding tolerant tester?

16The original problem is testable using poly(1/ε) queries [GGR98], whereas the upper bound for the dual
problem is a function that has a tower-type dependency on ε. The latter is the complexity of the tolerant tester
by Fischer and Newman [FN07], which relies on Szemerédi’s regularity lemma.

83

Note that when the dual problem is equivalent to the original problem, the dual problem
might indeed be easier to test than the corresponding tolerant testing problem (e.g., in the
case of testing whether a distribution is uniform; see Section 1.4).

Acknowledgments

The author thanks his advisor, Oded Goldreich, for suggesting the core questions and ob-
servations leading to this work, and for his guidance and support during the research and
writing process. The author is grateful to Neta Atzmon for several helpful observations and
discussions regarding “far-from-far” sets and dual property testing problems, and for her
valuable comments on a draft of this paper. The author thanks Gil Cohen for a helpful dis-
cussion regarding decomposition of posets to monotone chains, and Clément Canonne for
useful discussions and suggestions. The author also thanks two anonymous reviewers for
helpful suggestions. This research was partially supported by the Israel Science Foundation
(grant No. 671/13).

References

[ACCL07] Nir Ailon, Bernard Chazelle, Seshadhri Comandur, and Ding Liu. Estimating
the distance to a monotone function. Random Structures & Algorithms, 31(3):371–
383, 2007.

[AKK+03] Noga Alon, Tali Kaufman, Michael Krivelevich, Simon Litsyn, and Dana Ron.
Testing low-degree polynomials over GF(2). In Proc. 7th International Workshop
on Randomization and Approximation Techniques in Computer Science (RANDOM),
pages 188–199, 2003.

[BBM12] Eric Blais, Joshua Brody, and Kevin Matulef. Property testing lower bounds via
communication complexity. Computational Complexity, 21(2):311–358, 2012.

[BCGSM12] Jop Briët, Sourav Chakraborty, David García-Soriano, and Arie Matsliah. Mono-
tonicity testing and shortest-path routing on the cube. Combinatorica, 32(1):35–
53, 2012.

[BCH+96] Mihir Bellare, Don Coppersmith, Johan Håstad, Marcos Kiwi, and Madhu Su-
dan. Linearity testing in characteristic two. IEEE Transactions on Information
Theory, 42(6, part 1):1781–1795, 1996.

[BFF+01] Tugkan Batu, Eldar Fischer, Lance Fortnow, Ravi Kumar, Ronitt Rubinfeld, and
Patrick White. Testing random variables for independence and identity. In Proc.
42nd Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages
442–451, 2001.

[BFR+13] Tuğkan Batu, Lance Fortnow, Ronitt Rubinfeld, Warren D. Smith, and Patrick
White. Testing closeness of discrete distributions. Journal of the ACM, 60(1):4:1–
4:25, 2013.

84

[BGLR93] Mihir Bellare, Shafi Goldwasser, Carsten Lund, and Alexander Russell. Efficient
probabilistically checkable proofs and applications to approximations. In Proc.
25th Annual ACM Symposium on Theory of Computing (STOC), pages 294–304,
1993.

[BK12] Eric Blais and Daniel M. Kane. Tight bounds for testing k-linearity. In Proc. 16th
International Workshop on Randomization and Approximation Techniques in Computer
Science (RANDOM), pages 435–446, 2012.

[BLR90] Manuel Blum, Michael Luby, and Ronitt Rubinfeld. Self-testing/correcting with
applications to numerical problems. Journal of Computer and System Sciences,
47:549–595, 1990.

[BO10] Eric Blais and Ryan O’Donnell. Lower bounds for testing function isomorphism.
In Proc. 25th Annual IEEE Conference on Computational Complexity (CCC), pages
235–246, 2010.

[BOT02] Andrej Bogdanov, Kenji Obata, and Luca Trevisan. A lower bound for testing
3-colorability in bounded-degree graphs. In Proc. 43rd Annual IEEE Symposium
on Foundations of Computer Science (FOCS), pages 93–102, 2002.

[BS94] Mihir Bellare and Madhu Sudan. Improved non-approximability results. In
Proc. 26th Annual ACM Symposium on Theory of Computing (STOC), pages 184–
193, 1994.

[Can15] Clément Canonne. Your data is big. But is it blue? Electronic Colloquium on
Computational Complexity: ECCC, 22:63, 2015.

[CDST15] Xi Chen, Anindya De, Rocco A. Servedio, and Li-Yang Tan. Boolean function
monotonicity testing requires (almost) n1/2 non-adaptive queries. In Proc. 47th
Annual ACM Symposium on Theory of Computing (STOC), 2015.

[CRT05] Bernard Chazelle, Ronitt Rubinfeld, and Luca Trevisan. Approximating the
minimum spanning tree weight in sublinear time. SIAM Journal of Computing,
34(6):1370–1379, 2005.

[CS13a] Deeparnab Chakrabarty and C. Seshadhri. A o(n) monotonicity tester for
Boolean functions over the hypercube. In Proc. 45th Annual ACM Symposium
on Theory of Computing (STOC), pages 411–417, 2013.

[CS13b] Deeparnab Chakrabarty and C. Seshadhri. Optimal bounds for monotonicity
and Lipschitz testing over hypercubes and hypergrids. In Proc. 45th Annual
ACM Symposium on Theory of Computing (STOC), pages 419–428, 2013.

[CS14] Deeparnab Chakrabarty and C. Seshadhri. An optimal lower bound for mono-
tonicity testing over hypergrids. Theory of Computing, 10:453–464, 2014.

85

[CST14] Xi Chen, Rocco A. Servedio, and Li-Yang Tan. New algorithms and lower
bounds for monotonicity testing. In Proc. 55th Annual IEEE Symposium on Foun-
dations of Computer Science (FOCS), pages 286–295, 2014.

[DGL+99] Yevgeniy Dodis, Oded Goldreich, Eric Lehman, Sofya Raskhodnikova, Dana
Ron, and Alex Samorodnitsky. Improved testing algorithms for monotonicity.
In Proc. 3rd International Workshop on Randomization and Approximation Techniques
in Computer Science (RANDOM), pages 97–108, 1999.

[Dil50] Robert P. Dilworth. A decomposition theorem for partially ordered sets. Annals
of Mathematics (2), 51:161–166, 1950.

[DLM+07] Ilias Diakonikolas, Homin K. Lee, Kevin Matulef, Krzysztof Onak, Ronitt Rubin-
feld, Rocco A. Servedio, and Andrew Wan. Testing for concise representations.
In Proc. 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS),
pages 549–558, 2007.

[DLM+11] Ilias Diakonikolas, Homin K. Lee, Kevin Matulef, Rocco A. Servedio, and An-
drew Wan. Efficiently testing sparse GF(2) polynomials. Algorithmica, 61(3):580–
605, 2011.

[Fis05] Eldar Fischer. The difficulty of testing for isomorphism against a graph that is
given in advance. SIAM Journal of Computing, 34(5):1147–1158, 2005.

[FLN+02] Eldar Fischer, Eric Lehman, Ilan Newman, Sofya Raskhodnikova, Ronitt Rubin-
feld, and Alex Samorodnitsky. Monotonicity testing over general poset domains.
In Proc. 34th Annual ACM Symposium on Theory of Computing (STOC), pages 474–
483, 2002.

[FM08] Eldar Fischer and Arie Matsliah. Testing graph isomorphism. SIAM Journal of
Computing, 38(1):207–225, 2008.

[FN07] Eldar Fischer and Ilan Newman. Testing versus estimation of graph properties.
SIAM Journal of Computing, 37(2):482–501, 2007.

[GGL+00] Oded Goldreich, Shafi Goldwasser, Eric Lehman, Dana Ron, and Alex Samorod-
nitsky. Testing monotonicity. Combinatorica, 20(3):301–337, 2000.

[GGR98] Oded Goldreich, Shafi Goldwasser, and Dana Ron. Property testing and its
connection to learning and approximation. Journal of the ACM, 45(4):653–750,
1998.

[GHS15] Alan Guo, Elad Haramaty, and Madhu Sudan. Robust testing of lifted codes
with applications to low-degree testing. Electronic Colloquium on Computational
Complexity: ECCC, 22:43, 2015.

[GKNR12] Oded Goldreich, Michael Krivelevich, Ilan Newman, and Eyal Rozenberg. Hi-
erarchy theorems for property testing. Computational Complexity, 21(1):129–192,
2012.

86

[GM12] Gary Gordon and Jennifer McNulty. Matroids: A Geometric Introduction. Cam-
bridge University Press, 2012.

[Gol10a] Oded Goldreich. On testing computability by small width OBDDs. In Proc. 14th
International Workshop on Randomization and Approximation Techniques in Computer
Science (RANDOM), pages 574–587, 2010.

[Gol10b] Oded Goldreich, editor. Property Testing - Current Research and Surveys, volume
6390 of Lecture Notes in Computer Science. Springer, 2010.

[GR99] Oded Goldreich and Dana Ron. A sublinear bipartiteness tester for bounded
degree graphs. Combinatorica, 19(3):335–373, 1999.

[GR00] Oded Goldreich and Dana Ron. On testing expansion in bounded-degree
graphs. Electronic Colloquium on Computational Complexity: ECCC, 7:20, 2000.

[GR02] Oded Goldreich and Dana Ron. Property testing in bounded degree graphs.
Algorithmica, 32(2):302–343, 2002.

[Guo15] Alan Guo. Group homomorphisms as error correcting codes. Electronic Journal
of Combinatorics, 22(1):14, 2015.

[HSS13] Elad Haramaty, Amir Shpilka, and Madhu Sudan. Optimal testing of multivari-
ate polynomials over small prime fields. SIAM Journal of Computing, 42(2):536–
562, 2013.

[JPRZ09] Charanjit S. Jutla, Anindya C. Patthak, Atri Rudra, and David Zuckerman. Test-
ing low-degree polynomials over prime fields. Random Structures and Algorithms,
35(2):163–193, 2009.

[KD06] Jörg Koppitz and Klaus Denecke. M-Solid Varieties of Algebras (Advances in Math-
ematics). Springer-Verlag New York, Inc., 2006.

[KLX10] Tali Kaufman, Simon Litsyn, and Ning Xie. Breaking the ε-soundness bound of
the linearity test over GF(2). SIAM Journal of Computing, 39(5):1988–2003, 2010.

[KMS15] Subhash Khot, Dor Minzer, and Muli Safra. On monotonicity testing and
boolean isoperimetric type theorems. Electronic Colloquium on Computational
Complexity: ECCC, 22:11, 2015.

[KR06] Tali Kaufman and Dana Ron. Testing polynomials over general fields. SIAM
Journal of Computing, 36(3):779–802, 2006.

[LR01] Eric Lehman and Dana Ron. On disjoint chains of subsets. Journal of Combinato-
rial Theory. Series A, 94(2):399–404, 2001.

[MR06] Sharon Marko and Dana Ron. Distance approximation in bounded-degree and
general sparse graphs. In Proc. 10th International Workshop on Randomization and
Approximation Techniques in Computer Science (RANDOM), pages 475–486, 2006.

87

[PRR06] Michal Parnas, Dana Ron, and Ronitt Rubinfeld. Tolerant property testing and
distance approximation. Journal of Computer and System Sciences, 72(6):1012–1042,
2006.

[RRS+12] Dana Ron, Ronitt Rubinfeld, Muli Safra, Alex Samorodnitsky, and Omri Wein-
stein. Approximating the influence of monotone boolean functions in o(

√
n)

query complexity. ACM Transactions on Computation Theory, 4(4):11, 2012.

[RS96] Ronitt Rubinfeld and Madhu Sudan. Robust characterizations of polynomials
with applications to program testing. SIAM Journal of Computing, 25(2):252–271,
1996.

[Rub12] Ronitt Rubinfeld. Taming big probability distributions. ACM Crossroads,
19(1):24–28, 2012.

[Tel14] Roei Tell. Deconstructions of reductions from communication complexity to
property testing using generalized parity decision trees. Electronic Colloquium
on Computational Complexity: ECCC, 21:115, 2014.

[Vad12] Salil P. Vadhan. Pseudorandomness. Foundations and Trends in Theoretical Com-
puter Science. Now Publishers, 2012.

[vdV93] Marcel L.J. van de Vel. Theory of Convex Structures. North-Holland Mathematical
Library. Elsevier Science, 1993.

[VV11] Gregory Valiant and Paul Valiant. Estimating the unseen: an n/log(n)-sample
estimator for entropy and support size, shown optimal via new clts. In Proc. 43rd
Annual ACM Symposium on Theory of Computing (STOC), pages 685–694, 2011.

[VV14] Gregory Valiant and Paul Valiant. An automatic inequality prover and instance
optimal identity testing. In Proc. 55th Annual ACM Symposium on Theory of Com-
puting (STOC), pages 51–60, 2014.

88

Appendix A: Additional results regarding the operator Π 7→ Fδ(Fδ(Π))

Following Proposition 3.5, in this appendix we explore additional properties of the operator
Π 7→ Fδ(Fδ(Π)). More precisely, we prove that Π 7→ Fδ(Fδ(Π)) does not admit some
properties in general, and thus does not belong to some specific classes of closure operators.
In particular, we show that Π 7→ Fδ(Fδ(Π)) is not the convex hull operator in Euclidean
spaces, is not a Kuratowski (topological) closure operator, and does not satisfy the axioms
of closure operators from matroid theory. In the end of the appendix we repay a debt from
Section 3.2, by including a proof for Proposition 3.6.

Before proving these results, let us point to an interesting property that Π 7→ Fδ(Fδ(Π))
does admit: Namely, Π 7→ Fδ(Fδ(Π)) is the composition of another operator with itself; that
is, Π 7→ Fδ(Fδ(Π)) is the composed operator Fδ ◦ Fδ. Moreover, the collection of closed
sets under Π 7→ Fδ(Fδ(Π)) is identical to the image of the composed operator (since by
Theorem 3.2, it holds that {Fδ(Π)}Π⊆Ω = {Fδ(Fδ(Π))}Π⊆Ω). This property seems distinct
amongst the closure operators we are familiar with.

A.1 Properties that Π 7→ Fδ(Fδ(Π)) does not admit

The convex hull operator in Euclidean spaces maps any set to the unique minimal convex
set containing it. The following claim states that in Euclidean spaces the operator Π 7→
Fδ(Fδ(Π)) is not the convex hull operator.

Claim A.1 (Π 7→ Fδ(Fδ(Π)) is not the convex hull operator). There exists a set Π ⊆ Rn such that
Π 7→ Fδ(Fδ(Π)) is not the convex hull of Π.

Proof. Let Π = {x, y} such that ∆(x, y) > 2δ. Note that the convex hull of Π contains the
entire line segment between x and y. However, there exists a point z on this line segment
such that ∆(z, x) ≥ δ and ∆(z, y) ≥ δ. Thus, z ∈ Fδ(Π), which implies that z /∈ Fδ(Fδ(Π)).
It follows that the line segment between x and y is not contained in Fδ(Fδ(Π)), and thus
Fδ(Fδ(Π)) is not the convex hull of Π.

Closure operators in topology are called Kuratowski closure operators, and satisfy the three
conditions in Definition 3.4 as well as the following additional condition: For Π, Π′ ⊆ Ω
it holds that cl(Π) ∪ cl(Π′) = cl(Π ∪Π′). However, Π 7→ Fδ(Fδ(Π)) does not satisfy this
condition in general.

Claim A.2 (Π 7→ Fδ(Fδ(Π)) is not a Kuratowski closure operator). There exists a space Ω and
δ > 0 such that the operator Π 7→ Fδ(Fδ(Π)) does not satisfy the Kuratowski axioms.

Proof. Let Ω be a graph that is a simple path x1 − x2 − x3, and let δ = 2. Consider Π = {x1}
and Π′ = {x3}. Then Fδ(Fδ(Π)) = Π and Fδ(Fδ(Π′)) = Π′; but Fδ(Fδ(Π ∪Π′)) = Ω 6=
Fδ(Fδ(Π)) ∪ Fδ(Fδ(Π′)).

Closure operators in matroid theory (see, e.g., [GM12]) satisfy the three conditions in Def-
inition 3.4 as well as an additional fourth condition. We now define this fourth condition,
and show that the operator Π 7→ Fδ(Fδ(Π)) does not satisfy it in general.

89

Definition A.3 (MacLane-Steinitz exchange property). A closure operator cl : P(Ω) → P(Ω)
satisfies the MacLane-Steinitz exchange property if it meets the following condition: If there exist
Π ⊆ Ω and x, y ∈ Ω such that x ∈ cl(Π ∪ {y}) \ cl(Π), then y ∈ cl(Π ∪ {x}).

Claim A.4 (Π 7→ Fδ(Fδ(Π)) does not satisfy the MacLane-Steinitz exchange property). There
exists a space Ω and δ > 0 such that the operator Π 7→ Fδ(Fδ(Π)) does not satisfy the MacLane-
Steinitz exchange property.

Proof. Let Ω be a graph that is a simple path x− y− z, and let δ = 2 and Π = ∅. Note that
Fδ(Fδ(Π)) = Π = ∅, and Fδ(Fδ(Π ∪ {y})) = Ω 3 x, which implies that x ∈ Fδ(Fδ(Π ∪
{y})) \ Fδ(Fδ(Π)). However, it holds that Fδ(Fδ(Π ∪ {x})) = {x} 63 y.

A.2 Proof of Proposition 3.6 from Section 3.2

In general, a closure operator maps any set Π to the unique smallest closed set containing
Π. Proposition 3.6 from Section 3.2 asserts that this is indeed the case in the special case of
the operator Π 7→ Fδ(Fδ(Π)). For convenience, we now include a proof for the proposition.

Proposition A.5 (Proposition 3.6, restated). For any Ω, δ > 0 and Π ⊆ Ω it holds that

Fδ(Fδ(Π)) =
⋂

Π′ :Fδ(Fδ(Π′))⊇Π

Fδ(Fδ(Π′))

Proof. We follow the standard proof that for any closure operator cl it holds that cl(Π) =⋂
Π′ :cl(Π′)⊇Π cl(Π′). This standard proof relies on the fact that for general closure operators,

the intersection of closed sets is closed; in the specific case of Π 7→ Fδ(Fδ(Π)), this fact
follows immediately from Condition (5) in Theorem 3.2, and was mentioned in the discussion
after the proof of Theorem 3.2.

Let I = {Fδ(Fδ(Π′)) : Π′ ⊆ Ω ∧ Fδ(Fδ(Π′)) ⊇ Π}. We seek to prove that

Fδ(Fδ(Π)) =
⋂

Φ∈I
Φ

To see that Fδ(Fδ(Π)) ⊇ ⋂
Φ∈I Φ, note that by Condition (1) of Definition 3.4 it holds that

Π ⊆ Fδ(Fδ(Π)), and thus Fδ(Fδ(Π)) ∈ I . For the other direction, to see that Fδ(Fδ(Π)) ⊆⋂
Φ∈I Φ, note that any Φ ∈ I satisfies Π ⊆ Φ; and thus

Π ⊆
⋂

Φ∈I
Φ (A.1)

Relying on Condition (2) of Definition 3.4 and on Eq. (A.1), we get that

Fδ(Fδ(Π)) ⊆ Fδ

(
Fδ

(⋂
Φ∈I

Φ

))
(A.2)

Since every Φ ∈ I is of the form Fδ(Fδ(Π′)) for some Π′ ⊆ Ω, it holds that every
Φ ∈ I is Fδ-closed. Relying on the fact that the intersection of Fδ-closed sets is Fδ-closed,

90

we get that
⋂

Φ∈I Φ is Fδ-closed. It follows that Fδ (Fδ (
⋂

Φ∈I Φ)) =
⋂

Φ∈I Φ, and relying on
Eq. (A.2), we get that

Fδ(Fδ(Π)) ⊆
⋂

Φ∈I
Φ .

Appendix B: Sets with “holes” are not Fδ-closed

Recall that Proposition 4.1 presents a condition that is necessary for a set in a graphical space
to be Fδ-closed: That for every x /∈ Π ∪ Fδ(Π) there exists a path from x to Fδ(Π) that does
not intersect Π nor any vertices adjacent to Π. In this appendix we show a condition that is
equivalent to the one in Proposition 4.1. Intuitively, we show that a set that contains a “small
hole” is not Fδ-closed. Since this statement is still quite vague, we now describe it in further
detail.

For any Ψ ⊆ Ω, let the vertex boundary of Ψ be ∂Ψ = {x ∈ Ψ : ∃y ∈ Ω \ Ψ, ∆(x, y) = 1};
that is, ∂Ψ consists of all vertices in Ψ with neighbors outside of Ψ. Also, the interior of Ψ is
Ψ \ ∂Ψ, and consists of all vertices in Ψ such that all their neighbors are in Ψ. We now use
these notations to describe a set Π with a “hole” in it. Consider some neighborhood Ψ ⊆ Ω
such that two conditions hold: First, the interior of Ψ contains vertices that are not in Π; and
second, the vertex boundary of Ψ satisfies ∂Ψ ⊆ Π. Thus, the interior of Ψ is “enclosed” by
Π. In such a case we think of the interior of Ψ as a “hole” in Π, and of Ψ as a neighborhood
of Ω in which Π contains a “hole”. Figure 6 presents an example for such a case.

Ψp1

p2

p3

p4 h1 h2

Ψ = {p1, ..., p4, h1, h2}

p1, ..., p4 ∈ Π

h1, h2 /∈ Π

Figure 6: An example for a neighborhood Ψ in a graph and a set Π such that Π contains a
“hole” in Ψ. The vertices p1, ..., p4 constitute ∂Ψ, and note that ∂Ψ ⊆ Π. The vertices h1, h2
constitute the interior of Ψ, and are not in Π. We think of the interior of Ψ (i.e., of {h1, h2})
as a “hole” in Π.

We now formally define what it means for a set Π to have a “hole of diameter δ − 1”.
Note that in the examples described so far we required that ∂Ψ ⊆ Π; that is, that Π fully
“encloses” the interior of Ψ. In the definition itself we relax this requirement, and only
require that every z ∈ ∂Ψ is adjacent to Π.

Definition B.1 (sets with “holes of diameter δ− 1”). For a graphical Ω, δ ≥ 2 and Π ⊆ Ω, assume
that there exists Ψ ⊆ Ω such that the following hold:

91

1. (the interior of Ψ is “enclosed” by Π) Every z ∈ ∂Ψ satisfies ∆(z, Π) ≤ 1.

2. (the interior of Ψ contains a vertex not in Π) There exists x ∈ Ψ \ ∂Ψ such that x /∈ Π.

3. (the interior of Ψ is “(δ− 1)-covered” by Π) Every x ∈ Ψ satisfies ∆(x, Π) ≤ δ− 1.

Then we say that Π has a hole of diameter δ− 1 in Ψ.

We now show that a set has a “hole of diameter δ− 1” if and only if it does not satisfy
the necessary condition for a set to be Fδ-closed that was presented in Proposition 4.1. Thus,
sets that have a “hole of diameter δ− 1” are not Fδ-closed. The existence of such a “hole”
might be convenient to prove in some cases, since it only requires arguing about Π in a
neighborhood Ψ of Ω, and not about Fδ(Π).

Proposition B.2 (the condition of not having “holes of diameter δ− 1” is equivalent to the condition
in Proposition 4.1). For a graphical Ω and δ ≥ 2 it holds that Π ⊆ Ω has a “hole of diameter
δ − 1”, as in Definition B.1, if and only if there exists x /∈ Π ∪ Fδ(Π) such that for every path
x = v0, v1, ..., vl = z, where z ∈ Fδ(Π), there exists i ∈ [l] such that ∆(vi, Π) ≤ 1.

Proof. In one direction, assume that for Π ⊆ Ω and δ > 0 there exists Ψ ⊆ Ω such that Ψ
and δ satisfy conditions of Definition B.1. By Condition (2) of Definition B.1, there exists
x ∈ Ψ \ (Π ∪ ∂Ψ). By Condition (3) of Definition B.1, it holds that Ψ ∩ Fδ(Π) = ∅, and thus
x /∈ Fδ(Π). We show that x /∈ Π ∪ Fδ(Π) satisfies the conditions of Proposition 4.1 (i.e.,
every path from x to Fδ(Π) intersects Π or a vertex adjacent to Π).

Let x = v0, v1, ..., vl = z ∈ Fδ(Π) be a path from x to Fδ(Π). Since Ψ ∩ Fδ(Π) = ∅, it
follows that Fδ(Π) ⊆ Ψ. In particular, z /∈ Ψ, and thus the path from x to z passes through
∂Ψ. Let i ∈ {0, ..., l} such that vi ∈ ∂Ψ. Since x /∈ ∂Ψ it follows that vi 6= x, hence i ∈ [l]. By
Condition (1) of Definition B.1, it holds that ∆(vi, Π) ≤ 1.

For the other direction, let x /∈ Π ∪ Fδ(Π) such that for every path x = v0, v1, ..., vl = z,
where z ∈ Fδ(Π), there exists i ∈ [l] such that ∆(vi, Π) ≤ 1. We construct Ψ that satisfies the
conditions of Definition B.1, as follows. Let P be the collection of all finite paths that start
from x and end in some vertex in Fδ(Π); note that these paths are not necessarily simple,
and thus P is an infinite collection. For every path x = v0, v1, ..., vl = z ∈ Fδ(Π) in P , let
vi be the first vertex in the path that satisfies vi 6= x and ∆(vi, Π) ≤ 1. We define the path’s
truncation to be all vertices vj in the path such that j ≤ i. We define Ψ be the set of all vertices
that are in truncations of paths in P .

To see that Condition (1) of Definition B.1 holds, assume towards a contradiction that
there exists v ∈ ∂Ψ such that ∆(v, Π) > 1. Since v ∈ Ψ, there exists a path x = v0, v1, ..., vr =
v, vr+1, ..., z ∈ Fδ(Π) such that for every i ∈ [r] it holds that ∆(vi, Π) > 1. However, this
implies that for any neighbor v′ of v there exists a path x = v0, v1, ..., vr = v, v′, v, vr+1, ..., z
such that for every i ∈ [r] it holds that ∆(vi, Π) > 1, which implies that v′ is in the truncation
of that path. Thus v′ ∈ Ψ. Since all of v’s neighbors are in Ψ, it cannot be that v ∈ ∂Ψ.

To see that the vertex x that exists according to our hypothesis satisfies Condition (2) of
Definition B.1, note that by the hypothesis x /∈ Π, and that by the definition of Ψ it holds
that x ∈ Ψ. Furthermore, since each of x’s neighbors is in the truncation of some path from x

92

to Fδ(Π) (e.g., a path from x to the neighbor, back to x, and then to Fδ(Π)), it follows that
all of x’s neighbors are in Ψ, hence x /∈ ∂Ψ. Therefore x ∈ Ψ \ (Π ∪ ∂Ψ).

To see that Condition (3) of Definition B.1 holds, first note that by the hypothesis x /∈
Fδ(Π). Now, let z ∈ Ψ such that z 6= x, and we show that z /∈ Fδ(Π). By the definition of Ψ
it holds that z is in the truncation of some path from x to Fδ(Π). Denote the prefix of such a
path, leading from x to z, by x = v0, v1, ..., vl = z, and note that for every i ∈ [l − 1] it holds
that ∆(vi, Π) > 1 (since this is a prefix of a truncation of a path). However, if z ∈ Fδ(Π), then
this prefix is a path from x to Fδ(Π) without a vertex in the path that is in Π or adjacent to
Π, which contradicts the hypothesis. Therefore z /∈ Fδ(Π).

Appendix C: Examples of Fδ-tight spaces

Recall that in Section 4.1.3 we defined Fδ-tight spaces as follows:

Definition C.1 (Definition 4.8, restated). For a graphical space Ω and δ > 0, we say that Ω is
Fδ-tight if every Fδ-closed set in Ω is also strongly Fδ-closed.

In this appendix we prove that several specific graphs (or, more accurately, graph families)
are Fδ-tight for every δ > 0. In particular, we prove the following proposition:

Proposition C.2 (Proposition 4.11, extended). The following graphs are Fδ-tight, for every δ > 0:

1. Any graph on n ≥ 2 vertices with diameter at most 2 (and in particular, a complete graph on
n ≥ 2 vertices).

2. A path on n ≥ 2 vertices.

3. A cycle on n ≥ 2 vertices.

4. A 2× n grid (i.e., a grid with two rows and n columns), for any n ≥ 2.

5. A circular ladder graph on 2n ≥ 4 vertices; that is, the graph that is comprised of two cycles on
n vertices such that for every i ∈ [n], the ith vertices in both cycles are connected by an edge.

Recall that in Section 4.1.3 we showed that every graphical space is F1-tight and F2-
tight, and is Fδ-tight for values of δ larger than the diameter of the graph. Item (1) of
Proposition C.2 follows as a corollary. We now prove Items (2) and (3). An intuitive reason
that a single proof suffices for both the path and the cycle is that being Fδ-closed (resp.,
strongly Fδ-closed) is a local phenomenon, and the local neighborhoods in both graphs are
very similar.

Proposition C.3 (Items (2) and (3) of Proposition C.2). Let Gn be either a simple path on n ≥ 2
vertices or a cycle on n ≥ 2 vertices. Then, for every δ > 0 it holds that Gn is Fδ-tight.

Proof. It suffices to prove that Gn is Fδ-tight for δ ≥ 3. Let δ ≥ 3, and let Π ⊆ Gn be an
Fδ-closed set. We prove that Π is strongly Fδ-closed, relying on Proposition 4.6: For every
x /∈ Π ∪ Fδ(Π), we show a neighbor x′ of x such that ∆(x′, Π) = ∆(x, Π) + 1.

93

Let x /∈ Π ∪ Fδ(Π). According to Corollary 4.2, there exists a path from x to Π that does
not intersect Fδ(Π), and a path from x to Fδ(Π) that does not intersect Π. Without loss of
generality, we can assume that both are simple paths. Now, note that a simple path from x to
any set can only be one of two paths: The path obtained by walking from x constantly to one
direction, and the path obtained by walking from x constantly to the other direction. Thus,
in one of these paths, the first vertex from Π ∪ Fδ(Π) that we encounter is from Π, and in
the other, the first vertex from Π ∪ Fδ(Π) that we encounter is from Fδ(Π) (otherwise there
would not exist two paths as in Corollary 4.2).

Let x′ be the neighbor of x to the side in which the first vertex from Π ∪ Fδ(Π) that we
encounter is from Fδ(Π). To see that ∆(x′, Π) = ∆(x, Π) + 1, note that a shortest path from
x′ to Π can be one of two paths: The path obtained by walking constantly to the direction of
x, and the path obtained by walking constantly to other direction. When walking constantly
to the direction of x, the first vertex subsequent to x′ on the path is x itself; such a path is
necessarily longer than a shortest path from x to Π. Conversely, when going to the other
direction, the first vertex from Π∪Fδ(Π) that we encounter is from Fδ(Π); since the distance
of such a vertex from Π is at least δ, such a path is of length at least δ ≥ ∆(x, Π) + 1 (where
the inequality is since x /∈ Fδ(Π)). It follows that ∆(x′, Π) = ∆(x, Π) + 1.

One can view a simple path on n vertices as a grid with one row and n columns; that is,
view the n-path as the 1× n grid. A consequent natural question is the following:

Is the n× n grid Fδ-tight for every δ > 0?

We present an initial step towards answering this question. In particular, the following
proposition asserts that the graph with two rows and n columns (i.e., the 2× n grid) is also
Fδ-tight for every δ > 0. Similar to the proof of Proposition C.3, a nearly identical proof
applies both to the 2× n grid and to the circular ladder graph on 2n vertices.

Proposition C.4 (Items (4) and (5) of Proposition C.2). Let G2,n be either the 2 × n grid or the
circular ladder graph on 2n vertices. Then, for every δ > 0 it holds that G2,n is Fδ-tight.

The following proof of Proposition C.4 is quite tedious. In particular, the proof relies on
elementary arguments and case analyses that are, in our opinion, not insightful. We hope to
find a more insightful proof in the future.

Proof of Proposition C.4. We prove the claim for the case in which G2,n is the 2× n grid. The
proof for the circular ladder graph is nearly identical, but slightly more cumbersome in terms
of notation; we will explicitly note the single place in which there is a minor difference. For
i ∈ {1, 2}, we denote the vertices in the ith row of G2,n by vi,1, ..., vi,n. Also, we define the left
and right directions in the graph in the natural way (i.e., within a fixed row i ∈ {1, 2}, the
left direction is towards vi,1, and the right direction is towards vi,n).

Note that it suffices to prove that G2,n is Fδ-tight for δ ≥ 3. Let δ ≥ 3, and let Π ⊆ G2,n
be an Fδ-closed set. We show that Π is strongly Fδ-closed, relying on Proposition 4.6: For
x /∈ Π ∪ Fδ(Π), we show a neighbor x′ of x such that ∆(x′, Π) = ∆(x, Π) + 1. Without loss
of generality, assume that x = v1,j, for j ∈ [n].

94

High-level overview. The proof is based on a case analysis. In particular, it consists of three
cases, depending on the neighborhood of x. The first case is when the vertex beneath x (i.e.,
the vertex v2,j) is in Fδ(Π). In this case, the vertex beneath x is a neighbor of x that is farther
from Π (since x /∈ Fδ(Π)). The second case is when the vertex beneath x is in Π. In this case,
since Π is Fδ-closed, Proposition 4.1 implies that there exists a path from x to Fδ(Π) such
that any vertex subsequent to x on the path is neither in Π nor adjacent to Π. The vertex
immediately subsequent to x on the path is a neighbor of x that is farther from Π (since, in
this case, x is adjacent to v2,j ∈ Π).

The third and last case, in which the vertex beneath x is not in Π ∪ Fδ(Π), will be the
main focus of our proof. In this case, we will rely on Corollary 4.2 to show that when walking
constantly from x to one horizontal direction (say, to the left), we reach a column in which
there is a vertex from Π before reaching any column in which there is a vertex from Fδ(Π);
and when walking constantly from x to the other horizontal direction (say, to the right), we
reach a column in which there is a vertex from Fδ(Π) before reaching any column in which
there is a vertex from Π. We prove that the neighbor of x to the right (i.e., to the direction
in which we reach a column with a vertex from Fδ(Π)) is farther from Π, compared to
x. The proof of the latter fact will rely on a more fine-grained case analysis as well as on
Condition (2) of Theorem 3.2.

The actual proof. The overview showed how to handle the cases in which v2,j ∈ Π or
v2,j ∈ Fδ(Π). Thus, we focus on proving the case in which

v2,j /∈ Π ∪ Fδ(Π) . (C.1)

We start by limiting our analysis to a local neighborhood in the graph G2,n, and introduc-
ing some additional notation. These will rely on the following observation:

Claim C.4.1. There exists a column to the left of column j with a vertex from Π ∪ Fδ(Π), and a
column to the right of column j with a vertex from Π ∪ Fδ(Π). Moreover, the first such column that
we encounter when walking from x to one direction (i.e., to the left or to the right) contains a vertex
from Π, and the first such column that we encounter when walking from x to the other direction
contains a vertex from Fδ(Π).

Proof. Since Π is Fδ-closed, and relying on Corollary 4.2, there exists a path from x to Π
(resp., to Fδ(Π)) such that any vertex subsequent to x on the path is neither in Fδ(Π) (resp.,
in Π) nor adjacent to Fδ(Π) (resp., to Π). Also note that column j does not contain a vertex
from Π∪Fδ(Π) (since x = v1,j /∈ Π∪Fδ(Π), and relying on Eq. (C.1)). Thus, both paths that
exist according to Corollary 4.2 end in columns either to the right or to the left of column j.

Now, observe that a column in the graph cannot contain one vertex from Π and another
vertex from Fδ(Π) (since δ ≥ 3, and the vertices in the column are adjacent). Also note that if
a column contains a vertex from a set Π′, then any path going through the column intersects
Π′ or a vertex adjacent to Π′. Therefore, the path from x to Π cannot intersect a column in
which there is a vertex from Fδ(Π), and the path from x to Fδ(Π) cannot intersect a column
in which there is a vertex from Π. The claim follows. �

95

Denote by jR ∈ [n] the first column to the right of column j such that one of the vertices
in the column is in Π ∪ Fδ(Π); that is, jR = min{j′ > j : ∃i ∈ {1, 2}, vi,j′ ∈ Π ∪ Fδ(Π)}.
Similarly, denote jL = max{j′ < j : ∃i ∈ {1, 2}, vi,j′ ∈ Π∪Fδ(Π)}. Also, denote by iR the row
of the vertex in column jR that is in Π ∪ Fδ(Π) (or iR = 1, if both vertices in column jR are
in Π ∪ Fδ(Π)); that is, iR = min{i ∈ {1, 2} : vi,jR ∈ Π ∪ Fδ(Π)}. Denote iL in an analogous
way. Without loss of generality, assume that viL,jL ∈ Π and that viR,jR ∈ Fδ(Π). The rest of
the proof will focus only on columns jL, ..., jR in the graph.17

Now, let x′ = v1,j+1 be the vertex to the right of x (indeed, it is possible that x′ = v1,jR ,
in case jR = j + 1). We will prove that ∆(x′, Π) = ∆(x, Π) + 1. Figure 7 depicts the relevant
part of the graph, reflecting some of our assumptions and notations at this point.

x x′

jL j j + 1 jR

viL,jL ∈ Π

x, v2,j /∈ Π ∪ Fδ(Π)

viR,jR ∈ Fδ(Π)

Figure 7: The relevant part of the graph G2,n, reflecting our assumptions and notations at this
point (as well as an additional, unjustified assumption that jR 6= j + 1). Note that columns
jL + 1, ..., jR − 1 do not contain vertices from Π ∪ Fδ(Π).

Before proceeding, let us define one more term. For any two vertices vi′,j′ and vi′′,j′′ in
the graph, a path from vi′,j′ to vi′′,j′′ is called a straight simple path if it is comprised of a
shortest path from vi′,j′ to vi′,j′′ , and then (if i′ 6= i′′) a step from vi′,j′′ to vi′′,j′′ . That is, we first
walk “within the row”, and then, if needed, conclude with a step to the other row. We will
frequently rely on the following simple observation: If there exists a path of length k between
two vertices in the graph, then there exists a straight simple path of length k between the
vertices. Thus, for any vertex vi′,j′ and set Π′ ⊆ G2,n, to prove that ∆(vi′,j′ , Π′) ≥ k, it suffices to
prove that any straight simple path from vi′,j′ to Π′ is of length at least k.

To prove that ∆(x′, Π) = ∆(x, Π) + 1, we show that any straight simple path from x′ to
Π is of length at least ∆(x, Π) + 1. Note that, since v2,j+1 /∈ Π, such a path starts by walking
from x′ either to the left or to the right (where v2,j+1 /∈ Π is since the first column to the right
of column j with a vertex from Π∪Fδ(Π) contains a vertex from Fδ(Π), so it cannot contain
a vertex from Π).

Any straight simple path from x′ to Π that starts by walking to the left passes through
x, and is therefore longer than a shortest path from x to Π. Hence, to prove that ∆(x′, Π) =
∆(x, Π) + 1, it suffices to show that any straight simple path from x′ to Π that starts by

17In the case of the circular ladder graph, the argument is slightly different in terms of notation. Assume that
the vertices of the graph are organized in two rows of n vertices, similar to the grid, such that the left-most
and right-most vertices in each row are adjacent. In this case, it is possible that j ∈ {1, n}, and thus it does not
necessarily hold that jR > j and jL < j. However, since the rest of the proof will depend only on columns jL, ..., jR
in the graph, we may assume without loss of generality that jL < j < jR. This is the only place in which the
proofs for the grid and for the circular ladder graphs differ.

96

walking to the right is of length at least ∆(x, Π) + 1. Note that such a path passes through
v1,jR , since there are no vertices from Π ∪ Fδ(Π) in columns j, ..., jR − 1. Thus, the length of
such a path is at least

∆(x′, v1,jR) + ∆(v1,jR , Π) . (C.2)

Since x /∈ Fδ(Π), it holds that ∆(x, Π) + 1 ≤ δ. Thus, the value of the expression in
Eq. (C.2) can be smaller than ∆(x, Π) + 1 only if it is at most δ − 1. However, note that
∆(v1,jR , Π) ≥ δ − 1, since there is a vertex from Fδ(Π) in column jR. Thus, the value of
the expression in Eq. (C.2) is smaller than ∆(x, Π) + 1 only if the following conditions hold:
∆(x, Π) = δ− 1, and x′ = v1,jR (i.e., jR = j + 1), and ∆(x′, Π) = δ− 1. We prove that this case,
in fact, does not happen. More specifically, we prove that if ∆(x, Π) = δ− 1, and jR = j + 1,
and ∆(x′, Π) = δ− 1, then Π is not Fδ-closed, which is a contradiction.

Claim C.4.2. Assuming that v2,j /∈ Π ∪ Fδ(Π), and viL,jL ∈ Π, and ∆(x, Π) = δ− 1, and jR =
j + 1, and ∆(x′, Π) = δ− 1, it follows that Π is not Fδ-closed.

Assume, for a moment, that Claim C.4.2 holds. Then, the expression in Eq. (C.2) is lower
bounded by ∆(x, Π) + 1, which implies that any straight simple path from x′ to Π that starts
by walking to the right is of length at least ∆(x, Π)+ 1. It follows that ∆(x′, Π) = ∆(x, Π)+ 1,
which finishes the current and last case (in which v2,j /∈ Π∪Fδ(Π)), and concludes the proof.
Thus, to conclude the proof it is just left to prove Claim C.4.2.

Proof of Claim C.4.2. First note that since column jR = j+ 1 contains a vertex from Fδ(Π), and
∆(x′, Π) = δ− 1, it follows that v2,j+1 ∈ Fδ(Π). Figure 8 depicts columns jL, ..., j + 1 = jR of
the graph, reflecting our assumptions at this point.

x x′

jL j jR=
j+1

viL,jL ∈ Π

∆(x, Π) = ∆(x′, Π) = δ− 1

v2,j /∈ Π ∪ Fδ(Π)

v2,j+1 ∈ Fδ(Π)

Figure 8: Columns jL, ..., j + 1 = jR of the graph G2,n, reflecting our assumptions at this point.

Fact C.4.2.1. From the hypothesis of Claim C.4.2 it follows that j− jL = δ− 1.

Proof. To see that j− jL ≥ δ− 1, note that:

• If v1,jL ∈ Π, then, since ∆(x, Π) = δ− 1, we get that δ− 1 = ∆(x, Π) ≤ ∆(x, v1,jL) =
j− jL.

• If v1,jL /∈ Π, then v2,jL ∈ Π (since one of the vertices in column jL is in Π). In this case,
the distance of v2,jL ∈ Π from v2,j+1 ∈ Fδ(Π) is at least δ. Thus, δ ≤ ∆(v2,jL , v2,j+1) =
j + 1− jL, which implies that j− jL ≥ δ− 1.

97

To see that j− jL ≤ δ− 1, assume otherwise, and note that it implies that ∆(x, Π) ≥ δ,
which contradicts x /∈ Fδ(Π). This is true since any straight simple path from x to Π that
starts by walking to the right passes through x′; since ∆(x′, Π) = δ − 1, such a path is of
length at least ∆(x, x′) + ∆(x′, Π) = δ. Conversely, any straight simple path from x to Π that
starts by walking to the left passes through v1,jL ; if indeed j− jL ≥ δ, then such a path is of
length at least ∆(x, v1,jL) + ∆(v1,jL , Π) ≥ δ. �

To show that Π is not Fδ-closed, we rely on Condition (2) of Theorem 3.2: We show a
vertex v′ /∈ Π ∪ Fδ(Π) such that there does not exist z ∈ Fδ(Π) satisfying ∆(v′, z) < δ. In
particular, let v′ = v1,jL+1 be the vertex to the right of v1,jL . Since there are no vertices from
Π∪Fδ(Π) in columns jL + 1, ..., j, it holds that v′ /∈ Π∪Fδ(Π). We show that ∆(v′,Fδ(Π)) ≥
δ, which implies that there does not exist z ∈ Fδ(Π) satisfying ∆(v′, z) < δ.

Fact C.4.2.2. From the hypothesis of Claim C.4.2 it follows that ∆(v′,Fδ(Π)) ≥ δ.

Proof. Note that v2,jL+1 /∈ Fδ(Π), since columns jL + 1, ..., j do not contain vertices from
Π ∪ Fδ(Π). Thus, any straight simple path from v′ to Fδ(Π) starts by walking either to the
left or to the right. Any path that starts by walking from v′ to the left goes through v1,jL . Since
a vertex in column jL is in Π, it holds that ∆(v1,jL , Π) ≤ 1, and thus ∆(v1,jL ,Fδ(Π)) ≥ δ− 1.
Hence, any straight simple path from v′ to Fδ(Π) that starts by walking to the left is of length
at least ∆(v′, v1,jL) + ∆(v1,jL ,Fδ(Π)) ≥ δ.

Conversely, any straight simple path from v′ to Fδ(Π) that starts by walking to the right
passes through x′ (since there are no vertices from Π∪Fδ(Π) in columns jL + 1, ..., j). Relying
on Fact C.4.2.1, and on the fact that x′ /∈ Fδ(Π) (since ∆(x′, Π) = δ− 1), any such path is of
length at least ∆(v′, x′) + ∆(x′,Fδ(Π)) = (j + 1)− (jL + 1) + 1 = δ. �

By Condition (2) of Theorem 3.2, it follows that Π is not Fδ-closed, which concludes the
proof of Claim C.4.2. �

As mentioned in the discussion after the statement of Claim C.4.2, the proof of the latter
concludes the proof of Proposition C.4.

98

	Introduction
	On the non-triviality of the notion of F-closed sets
	Dual problems in property testing
	F-closed sets and the operator F(F())
	Our techniques

	Preliminaries
	Sets of the form F(F()) and F-closed sets
	Characterizations of F-closed sets
	Detour: The mapping F(F()) is a closure operator in P()
	Existence and prevalence of sets that are not F-closed
	On the distance of points in F(F()) from

	Evaluating whether a set is F-closed in two special cases
	Graphical spaces and strongly F-closed sets
	The Boolean hypercube and list-decodable codes

	Dual problems in property testing
	General results regarding the query complexity of dual problems
	Testing duals of error-correcting codes
	Testing functions that are far from monotone
	Testing distributions that are far from a known distribution
	Testing graphs that are far from having a property in the dense graph model
	Testing graphs that are far from having a property in the bounded-degree model
	A generalization: On being '-far from -far

	Open questions
	Acknowledgments
	References
	Appendix Additional results regarding the operator F(F())
	Properties that F(F()) does not admit
	Proof of Proposition 3.6 from Section 3.2

	Appendix Sets with ``holes'' are not F-closed
	Appendix Examples of F-tight spaces

