
On Being Far from Far
and on Dual Problems in Property Testing

Roei Tell ∗

October 19, 2017

Abstract

This work studies a new type of problems in property testing, called dual problems.
For a set Π in a metric space and δ > 0, denote by Fδ(Π) the set of elements that are
δ-far from Π. Then, in property testing, a δ-tester for Π is required to accept inputs from
Π and reject inputs from Fδ(Π). A natural dual problem is the problem of δ-testing the set
of “no” instances, that is Fδ(Π): A δ-tester for Fδ(Π) needs to accept inputs from Fδ(Π)
and reject inputs that are δ-far from Fδ(Π); that is, it rejects inputs from Fδ(Fδ(Π)).
When Π = Fδ(Fδ(Π)) the dual problem is essentially equivalent to the original one, but
this equality does not hold in general.

Many dual problems constitute appealing testing problems that are interesting by
themselves. In this work we derive lower bounds and upper bounds on the query com-
plexity of several classes of natural dual problems: These include dual problems of prop-
erties of functions (e.g., testing error-correcting codes and testing monotone functions),
of properties of distributions (e.g., testing equivalence to a known distribution), and of
various graph properties in the dense graph model and in the bounded-degree model.
We also show that testing any dual problem with one-sided error is either trivial or requires
a linear number of queries.

Keywords: Metric spaces, Property Testing, Dual Problems.

∗Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel.
Email: roei.tell@weizmann.ac.il

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 4 of Report No. 72 (2015)

Contents

1 Introduction 1
1.1 On the non-triviality of the notion of Fδ-closed sets 2
1.2 Dual problems in property testing . 3
1.3 A generalization: On being δ′-far from δ-far . 7
1.4 Our techniques . 8

2 Preliminaries 10

3 General results regarding the query complexity of dual problems 12
3.1 Testing dual problems with one-sided error . 12
3.2 Testing dual problems of error-correcting codes 14

4 Testing functions that are far from monotone 14
4.1 Monotone functions yield Fδ-closed sets . 14
4.2 Monotone Boolean functions yield strongly Fδ-closed sets 17

5 Testing distributions that are far from a known distribution 18
5.1 The dual problem is different from the original 18
5.2 Distribution families for which the dual problem is equivalent to the original . 19

6 Testing graphs that are far from having a property in the dense graph model 26
6.1 Testing the property of being far from k-colorable 26
6.2 Testing the property of being far from having a large clique 28
6.3 Testing the property of being far from isomorphic to a graph 29

7 Testing graphs that are far from having a property in the bounded-degree model 30
7.1 Testing the property of being far from connected 30
7.2 Testing the property of being far from cycle-free 43
7.3 Testing the property of being far from bipartite 46

8 A generalization: On being δ′-far from δ-far 46

9 Open questions 49

Appendix A Conditions for a set to be Fδ-closed 52

Appendix B Existence and prevalence of sets that are not Fδ-closed 59

Appendix C On the distance of points in Fδ(Fδ(Π)) from Π 61

Appendix D The mapping Π 7→ Fδ(Fδ(Π)) is a closure operator in P(Ω) 66

Appendix E Fδ-tight spaces 69

i

1 Introduction

Let (Ω, ∆) be a metric space, 1 let Π ⊆ Ω be a set in this space, and let δ > 0 be a distance
parameter. A natural object that we are frequently interested in is the set of points in Ω that
are δ-far from Π, denoted Fδ(Π) = {x ∈ Ω : ∆(x, Π) ≥ δ}. Viewing Fδ as an operator on the
power set of Ω, a natural question is what happens when applying the operator Fδ twice;
that is, what is the structure of sets of the form Fδ(Fδ(Π)) for some Π ⊆ Ω. One might
mistakenly expect that for any metric space Ω, set Π ⊆ Ω, and distance parameter δ > 0 it
holds that Fδ(Fδ(Π)) = Π. However, although it is always true that Π ⊆ Fδ(Fδ(Π)), it is
not necessarily true that Π = Fδ(Fδ(Π)). Furthermore, in some spaces, most notably in the
Boolean hypercube, the equality is even typically false (i.e., it is false for most subsets; see
Section 1.1). In fact, the study of sets of the form Fδ(Fδ(Π)) turns out to be quite complex.
To the best of our knowledge, this basic question has not been explored so far.

The study of sets of the form Fδ(Fδ(Π)) has an interesting application in theoretical
computer science, specifically in the context of property testing (see, e.g., [Gol10]). In prop-
erty testing, an ε-tester for Π ⊆ {0, 1}n is required to accept every input in Π, with high
probability, and reject every input in Fδ(Π), with high probability, where δ = ε · n refers
to absolute distance, and ε > 0 refers to the relative distance. 2 This constitutes a promise
problem, in which the set of “yes” instances is Π and the set of “no” instances is Fδ(Π).
One plausible question in this context is what is the relationship between the complexity of
ε-testing the set of “yes” instances Π and the complexity of the dual problem of ε-testing the
set of “no” instances Fδ(Π). In many cases, the “far set” (i.e., Fδ(Π)) actually constitutes a
natural property, making the corresponding dual problem an interesting testing problem by
itself (see elaboration in Section 1.2).

For any set Π ⊆ {0, 1}n and δ = ε · n, an ε-tester for the dual problem of Π is required to
accept every input in Fδ(Π), with high probability, and reject every input in Fδ(Fδ(Π)), with
high probability. Indeed, if Π = Fδ(Fδ(Π)), then the problem of ε-testing Π is essentially
equivalent to its dual problem. We call such sets Fδ-closed:

Definition 1.1 (Fδ-closed sets). For a metric space Ω, a parameter δ > 0, and a set Π ⊆ Ω, if
Π = Fδ(Fδ(Π)), then we say that Π is Fδ-closed in Ω.

However, as mentioned above, not all sets are Fδ-closed, and for some spaces and δ
parameters, most sets are actually not Fδ-closed. Moreover, in many cases it is unfortunately
non-obvious to determine whether Π is Fδ-closed or not.

Our contributions. In this work we introduce dual problems in property testing, motivate
their study, and obtain results regarding their complexity. We show that in general, testing
dual problems with one-sided error requires a linear number of queries, unless the problem

1Throughout the paper we will usually identify a metric space (Ω, ∆) with its set of elements Ω, in which
case the metric is implicit and denoted by ∆.

2Being consistent with the property testing literature, we let ε > 0 denote the relative (Hamming) distance.
In contrast, it is more convenient to analyze the δ-far operator while referring to absolute distance (denoted by
δ > 0). Note that the abstract indeed used different notations, merely for simplicity of presentation.

1

is trivial to begin with; this stands in sharp contrast to testing standard problems with one-
sided error. In addition, we determine the complexity of several specific natural dual problems,
corresponding to well-known testing problems; these dual problems include:

• Testing whether a string is far from being a codeword in an error-correcting code.

• Testing whether a function is far from being monotone.

• Testing whether a distribution is far from being uniform.

• Testing whether a graph is far from being k-colorable in the dense graph model.

• Testing whether a graph is far from being connected in the bounded-degree model.

• Testing whether a graph is far from being cycle-free in the bounded-degree model.

Some of these dual problems are essentially equivalent to their original problems (i.e., the
corresponding sets Πn ⊆ {0, 1}n are Fδ-closed, for δ = ε · n; see Definition 1.3), and in these
cases the query complexity of the dual is the same as the query complexity of the original.
However, other dual problems mentioned above are different from the original problems (i.e.,
Πn 6= Fδ(Fδ(Πn))), and sometimes even significantly different; in these cases we present a
tester for the dual problem, which is different from known testers for the original problem,
and sometimes also has higher query complexity. Beyond the immediate implications of
these results (of determining the complexity of specific problems), their proofs typically also
include structural results related to the relevant property.

Some of the specific aforementioned dual problems concern testing of natural properties
that are of independent interest. Moreover, the general questions underlying the current
work (“far-from-far” sets and dual testing problems) seem appealing both by themselves and
as extensions (or “duals”) of well-studied problems. In addition, as is the case when studying
standard property testing questions, the study of dual problems is not only algorithmic, but
in fact typically focuses on structural features of the property in question.

1.1 On the non-triviality of the notion of Fδ-closed sets

As mentioned above, one might mistakenly expect that for every Ω and δ, all sets will be Fδ-
closed. Indeed, for any metric space Ω, taking a value of δ such that δ ≤ infx 6=y∈Ω{∆(x, y)}
ensures that all sets are trivially Fδ-closed, whereas taking a value of δ such that δ >
supx,y{∆(x, y)} ensures that all non-trivial subsets are not Fδ-closed (since any Π 6= ∅ satis-
fies Fδ(Π) = ∅ and Fδ(Fδ(Π)) = Ω). However, for any metric space Ω and any δ in between
these two values there exist both Fδ-closed sets and sets that are not Fδ-closed.

Theorem 1.2 (non-triviality of the notion of Fδ-closed sets; see Theorem B.1). For any metric space
Ω, if δ ∈

(
infx 6=y{∆(x, y)}, supx 6=y{∆(x, y)}

)
, then there exists a non-trivial Π ⊆ Ω that is Fδ-

closed and a non-trivial Π′ ⊆ Ω that is not Fδ-closed.

2

In addition to the existence of sets that are not Fδ-closed, in some metric spaces such
sets are actually the typical case, rather than the exception. Most notably, in the Boolean
hypercube it holds that a (1− o(1))-fraction of the sets are not Fδ-closed. (This is the case
since for a random set Π ⊆ {0, 1}n and δ ≥ 3, with high probability it holds that Fδ(Π) = ∅.)
Furthermore, in contrast to what one might expect, points in Fδ(Fδ(Π)) might not even be
close to Π. In particular, there exist spaces Ω and sets Π ⊆ Ω such that some points in
Fδ(Fδ(Π)) \Π are relatively far from Π (i.e., almost δ-far from Π); such sets also exist in the
Boolean hypercube (see Proposition C.1).

A study of sets of the form Fδ(Fδ(Π)) appears in the appendices, and includes sufficient
and/or necessary conditions for a set to be Fδ-closed, proofs of the existence and prevalence
of sets that are not Fδ-closed, and results on the distance of points in Fδ(Fδ(Π)) from Π.

1.2 Dual problems in property testing

For a space Ω = Σn, and a set Π ⊆ Σn, and ε > 0, the standard property testing problem is
the one of ε-testing Π, and the corresponding dual problem is the one of ε-testing Fε·n(Π).

What is the meaning of dual testing problems? First, for some properties, the dual prob-
lem is an appealing property that is interesting by itself. Consider, for example, the set of
distributions that are far from uniform, the set of functions that are far from monotone, or the
set of graphs that are far from being connected. All these sets constitute natural properties,
and one might be interested in testing them. Secondly, in general, for every property Π the
dual problem is intuitively related to the original problem: It can be viewed as distinguishing
between inputs that any ε-tester for Π must reject, and inputs that need to be significantly
changed in order to be rejecetd by any ε-tester for Π. Thirdly, the query complexity of a testing
problem and of its dual problem are related (see Observation 1.4).

Similar to standard testing problems, in dual problems we are also interested in the
asymptotic complexity. That is, for a property Π = {Πn}n∈N such that Πn ⊆ Σn, we seek
either an asymptotic upper bound on the query complexity of ε-testing Fε·n(Πn) for every
ε > 0, or a lower bound for some value of ε > 0. Accordingly, for a property Π = {Πn}n∈N,
we will refer to the dual problem of the problem of testing Π, or in short to the dual problem of Π.

Definition 1.3 (dual problems that are equivalent to the original problems). For a set Σ, let Π =
{Πn}n∈N such that Πn ⊆ Σn. If for every sufficiently small ε > 0 and sufficiently large n it holds
that Πn is Fε·n-closed, then the problem of testing Π is equivalent to its dual problem. Otherwise,
the problem of testing Π is di�erent from its dual problem.

We stress that even if a standard testing problem Π is equivalent to its dual, it does not
imply that the standard problem is the “dual problem of its dual”. This is since the definition
of dual problems is inherently different than that of standard problems, with respect to the
dependence on the proximity parameter ε > 0. In particular, in standard problems, the sets
of “yes” instances {Πn}n∈N are fixed, and the sets of “no” instances {Fε·n(Πn)}n∈N depend
on the proximity parameter ε > 0; in contrast, in dual problems, both the sets of “yes”
instances {Fε·n(Πn)}n∈N and the sets of “no” instances {Fε·n(Fε·n(Πn))}n∈N depend on ε.

The query complexity of any dual problem is closely related to the query complexity of
its original problem. First, clearly, if the dual problem is equivalent to its original problem,

3

then their query complexities are identical. Secondly, since for every set Π ⊆ Σn and every
δ > 0 it holds that Π ⊆ Fδ(Fδ(Π)), an ε-tester for Fε·n(Π) always yields an ε-tester for Π,
by complementing the output of the tester.

Observation 1.4 (the query complexity of dual problems). The query complexity of a dual problem
is lower bounded by the query complexity of its original problem.

1.2.1 Testing dual problems with one-sided error

A preliminary general result is that testing dual problems with one-sided error requires a
linear number of queries (regardless of whether or not the dual problem is equivalent to
its original). Recall that in property testing, testers with one-sided error always accept “yes”
inputs; in the case of dual problems, these are testers that always accept inputs from Fε·n(Π).

Theorem 1.5 (testing dual problems with one-sided error). For a set Σ, let Π = {Πn}n∈N such
that Πn ⊆ Σn. Suppose that for all sufficiently large n it holds that Πn 6= ∅ and that there exist
inputs that are Ω(n)-far from Πn. Then, the query complexity of testing the dual problem of Π with
one-sided error is Ω(n).

A consequence of Theorem 1.5 is that testing dual problems with one-sided error is either
trivial or requires a linear number of queries. (Since testing a dual problem with one-sided
error and query complexity o(n) is possible only if the distance of every input from the prop-
erty is o(n), in which case both the original problem and its dual are trivial.) This fact stands
in sharp contrast to standard property testing problems: In standard property testing, for essen-
tially any sub-linear function q : N → N, there exists a property of Boolean functions such
that the query complexity of testing the property with one-sided error is Θ(q(n)) [GKNR12].

1.2.2 Dual problems in testing properties of functions

When testing properties of functions, we identify each function f : [n] → Σ with its evalu-
ation sequence, viewed as f ∈ Σn. The metric space is thus Σn, and the (absolute) distance
between two functions is the Hamming distance between their string representations in Σn;
equivalently, it is the number of inputs on which they disagree.

Many well-known properties of functions induce an error-correcting code with constant
relative distance in Σn (e.g., linearity testing [BLR90] and low-degree testing [RS96]). For all
such properties, the dual testing problem is equivalent to the original problem.

Theorem 1.6 (testing duals of error-correcting codes). For any error-correcting code with con-
stant relative distance, the problem of testing the code is equivalent to its dual problem.

A notable example of a property of functions that does not induce an error-correcting
code is the property of monotone functions, first considered for testing in [GGL+00]. For a
poset [n] and an ordered set Σ, a function f : [n] → Σ is monotone if for every x, y ∈ [n] such
that x ≤ y it holds that f (x) ≤ f (y). Nevertheless, the problem of testing this property is
also equivalent to its dual problem:

4

Theorem 1.7 (testing whether a function is far from monotone). The problem of testing monotone
Boolean functions over the Boolean hypercube is equivalent to its dual problem.

In fact, in Section 4 we prove a broad generalization of Theorem 1.7, as follows. For every
n ∈ N, consider functions from a poset ([n],≤) to a range Σn, and assume that the width of
the poset is at most n

2·|Σn| , where the width of a poset is the size of a maximum antichain in
it. In this case, the problem of testing monotone functions from [n] to Σn is equivalent to its
dual problem. Note that the width requirement is quite mild: In particular, an `-dimensional
hypercube has size n = 2` and width O(2`/

√
`) = o(n).

1.2.3 Dual problems in distribution testing

Turning to distribution testing [BFR+13], one well-known problem is as follows: Fixing a
predetermined distribution D over [n], an ε-tester gets independent samples from an input
distribution I, and its task is to determine whether I = D or I is ε-far from D in the `1 norm.
When considering the worst-case, over all families of distributions, the distribution identity
testing problem is different from its dual problem.

Proposition 1.8 (testing whether a distribution is far from a known distribution). There exists a
distribution family {Dn}n∈N such that the problem of testing whether an input distribution In is
identical to Dn is different from its dual problem.

However, for several specific (and natural) classes of distribution families, this problem
is equivalent to its dual problem. In particular,

Theorem 1.9 (testing whether a distribution is far from a predetermined distribution that has low `∞
norm). Let {Dn}n∈N be a family of distributions such that limn→∞ ‖Dn‖∞ = 0 (where ‖Dn‖∞ =
maxi∈[n]{Prr∼Dn [r = i]}). Then, the problem of testing whether an input distribution In is identical
to Dn is equivalent to its dual problem.

Theorem 1.9 implies that the problem of testing whether an input distribution is far from
being the uniform distribution is equivalent to its original problem. Some distribution families
that do not meet the condition of Theorem 1.9 also induce dual problems that are equivalent
to their original problems: In particular, this applies to distribution families that assign Ω(1)
probabilistic mass to every element in their support (see Proposition 5.4).

1.2.4 Dual problems in testing graph properties

When testing graph properties, we are interested in metric spaces in which the points are
graphs, and the absolute distance between two graphs is the size of the symmetric difference
of their edge-sets. A property of graphs is a set of graphs that is closed under taking isomor-
phisms of the graphs. We consider dual problems in two models of testing graph properties:
The dense graph model [GGR98] and the bounded-degree model [GR02]. In both models,
many well-known testing problems are different from their dual problems.

5

1.2.4.1 The dense graph model

In the dense graph model, an ε-tester queries the adjacency matrix of a graph over v vertices,
and tries to determine whether the graph has some property or ε · (v

2) edges need to be added
and/or removed from the edge-set of the graph in order for it to have the property.

One well-known problem in this model is that of testing whether a graph is k-colorable
(see [GGR98]). We consider the dual problem, of testing whether a graph is far from being
k-colorable. This problem is different from its original problem, but its query complexity is
nevertheless O(1), as is the case for the original problem.

Theorem 1.10 (testing whether a graph is far from being k-colorable). For any k ≥ 2, the problem
of testing whether a graph is k-colorable is different from its dual problem. Nevertheless, the query
complexity of the dual problem is O(1).

However, unlike the complexity of the original problem, the constant in the O(1) notation
in Theorem 1.10 might be huge; in particular, our upper-bound has a tower-type dependence
on the reciprocal of the proximity parameter. (This is the case since our proof relies on a result
by Fischer and Newman [FN07], which in turn relies on Szemerédi’s regularity lemma.)

The following proposition asserts that two other well-known problems in the dense graph
model are different from their dual problems. The first problem is testing, for ρ ∈ (0, 1),
whether a graph on v vertices has a clique of size ρ · v (see [GGR98]). The second is the graph
isomorphism problem (see [Fis05, FM08]): For an explicitly known graph G that is fixed in
advance, the problem consists of testing whether an input graph is isomorphic to G.

Proposition 1.11 (ρ-clique and graph isomorphism).

1. For any ρ ≤ 1
2 , the problem of testing whether a graph on v vertices has a clique of size ρ · v is

different from its dual problem.

2. There exist graph families {Gn}n∈N such that testing whether an input graph Hn is isomorphic
to Gn is different from its dual problem.

In contrast to the dual problem of k-colorability, we do not know what is the query
complexity of the two dual problems mentioned in Proposition 1.11.

1.2.4.2 The bounded-degree model

In the bounded-degree model [GR02] we are interested only in sparse graphs; in particular,
we assume that the degree of every vertex in an input graph is at most d, where typically
d = O(1). A testing scenario in this model is as follows. Given an input graph over n vertices,
we fix in advance an arbitrary ordering of the neighbors of each vertex in the graph. Then,
an ε-tester may issue queries of the form “who is the ith neighbor of u ∈ [n]?”, and needs to
determine whether the graph has some property or ε · d · n edges need to be added and/or
removed from the edge-set of the graph in order for it to have the property.

One well-known problem in this model is that of testing whether a graph is connected
(see [GR02]). We consider the dual problem, of testing whether a graph is far from being

6

connected. Interestingly, although the dual problem is “very different” from the original one
(in the sense that Fδ(Fδ(Πn)) contains graphs that are Ω(n)-far from being connected), the
query complexity of the dual problem is very close to that of the original problem.

Theorem 1.12 (testing whether a graph is far from being connected). For any d ≥ 3, the problem
of testing whether a graph is connected is different from its dual problem. Nevertheless, the query
complexity of the dual problem is poly(1/ε).

Another well-known problem in this model is testing cycle-free graphs (see [GR02]). We
consider the dual problem, of testing whether a graph is far from being cycle-free.

Theorem 1.13 (testing whether a graph is far from being cycle-free). For any d ≥ 3, the problem of
testing whether a graph is cycle-free (i.e., a forest) is different from its dual problem. Nevertheless, the
query complexity of the dual problem is poly(1/ε).

The well-known problem of testing bipartiteness in this model is also not equivalent to
its dual problem, but we do not know what its query complexity is.

Proposition 1.14 (testing whether a graph is far from bipartite). The problem of testing whether a
graph is bipartite is different from its dual problem.

1.3 A generalization: On being δ′-far from δ-far

So far, the dual problem of a property Π = {Πn}n∈N was defined using a single proximity
parameter ε > 0. This parameter ε > 0 determines both the “yes” inputs for testing (i.e.,
Fε·n(Πn)) and the distance of the “no” inputs from the “yes” inputs (i.e., it also determines
Fε·n(Fε·n(Πn)). A more general notion of dual testing problems is obtained by considering
two proximity parameters, ε > 0 and ε′ > 0, such that ε > 0 determines the “yes” inputs
for testing, and ε′ > 0 is the proximity parameter that determines the distance of the “no”
inputs form the “yes” inputs; that is, the generalized dual problem consists of distinguishing
between Fε·n(Πn) and Fε′·n(Fε·n(Πn)).

Generalized dual problems are actually more similar to standard testing problems, com-
pared to non-generalized dual problems. This is the case since we can fix ε > 0, and define
the generalized ε-dual problem as the problem of testing the fixed property {Fε·n(Πn)}n∈N

with an arbitrarily small proximity parameter ε′ > 0. 3 The latter definition is just the stan-
dard definition of property testing, for the fixed property {Fε·n(Πn)}n∈N. In Section 8 we
formalize this notion, and show the following (informally stated):

Theorem 1.15 (testers for generalized dual problems; informal). For every constant ε, ε′ > 0:

1. The query complexity of the generalized dual problem of k-colorable graphs in the dense graphs
model is F(ε, ε′), for some function F that does not depend on n.

2. The query complexity of the generalized dual problem of connected graphs in the bounded-degree
graphs model is poly (1/ min{ε′, ε}).

3When fixing ε > 0, and letting ε′ > 0 be arbitrary, we focus mainly on the setting of ε′ ≤ ε. This focus is
justified by the fact that the case of ε′ > ε reduces to the case of ε′ ≤ ε (see Observation 8.2).

7

3. The query complexity of the generalized dual problem of cycle-free graphs in the bounded-degree
graphs model is poly (1/ min{ε′, ε}).

1.4 Our techniques

In testing specific dual problems, we rely on one of two general techniques. We either show
that the dual problem is equivalent to the original problem (see Section 1.4.1); or, if the dual
problem is different from the original problem, we can sometimes reduce the dual problem
to the corresponding tolerant testing problem (see Section 1.4.2), and then either solve the
latter or rely on a known solution. In fact, in all cases where we reduce the dual problem to
tolerant testing, we are also able to reduce the generalized dual problem to tolerant testing,
and thus in these cases we also obtain a solution for the generalized dual problem.

1.4.1 Dual problems that are equivalent to the original problem

The first technique is showing that the dual problem is equivalent to the original. For a property
Π = {Πn}n∈N, this requires showing that for every sufficiently large n and sufficiently small
ε > 0, the set Πn is Fε·n-closed (as in Definition 1.3). While this is easy to see in the case
of error-correcting codes (which yields Theorem 1.6), 4 proving this for the set of mono-
tone functions (Theorem 1.7) and in the setting of distribution identity testing (Theorem 1.9)
requires proving various structural results about the corresponding sets.

To prove that the set of monotone functions from a poset [n] to a range Σ is Fε·n-closed,
assuming that the width of [n] is bounded (by n

2·|Σ|) and that ε > 0 is sufficiently small, we
show the following: It is possible to modify every function f that is neither monotone nor
(ε · n)-far from monotone to a function f ′ that is (ε · n)-far from monotone, by changing
value of the function at strictly less than ε · n points. The latter statement indeed implies that
the set of monotone functions is Fε·n-closed (see Fact 2.2); we stress that the statement is far
from trivial, and in particular it does not hold for a general set, and actually characterizes
the Fε·n-closed sets (so any set that is not Fε·n-closed does not satisfy such a property; see
Appendix A). To prove that such a modification (of f to f ′) is possible, we rely on the
following lemma: For every function f as above, there exists a collection of at least n/4 pairs
(x, y) such that all points in all pairs are distinct, and for every pair it holds that x < y and
f (x) = f (y) (see Lemma 4.1.1). The existence of such a collection allows us to modify f to a
function that is (ε · n)-far from monotone, by changing the value of the function at a single
point in each of ε · n− 1 pairs. For the special case of monotone Boolean functions, we use
an analogous structural lemma of Fischer et al. [FLN+02], in order to prove that the set of
monotone Boolean functions is Fε·n-closed in a stronger sense (see Proposition 4.3).

In the setting of distribution identity testing, we fix a distribution D over n elements, and
our goal is to show that the singleton {D}, which is the property to be tested in this setting, is
Fδ-closed. We stress that distribution testing is carried out over the simplex with the `1-norm,
and in this setting it is not true that every singleton is Fδ-closed (see Proposition 5.1). To show
that {D} is Fδ-closed, we show that if D has sufficiently small `∞ norm (or satisfies other

4Intuitively, this is because a code can be thought of as a collection of “isolated” singletons.

8

useful properties), then every distribution X 6= D that is not δ-far from D (in `1-norm) can be
modified to a distribution Z that is δ-far from D, by changing less than δ of the probabilistic mass
of X (i.e., the distance between X and Z is less than δ). As in the case of monotone functions,
this allows us to deduce that the singleton {D} is Fδ-closed (see Fact 2.2). The modification
procedure of X to Z is based on a low-level technical case-analysis that is somewhat involved;
a high-level overview appears in the proof of Proposition 5.2.

1.4.2 Reductions of (generalized) dual problems to tolerant testing

The second technique is useful when the dual problem is different from the original one.
In this case, for several properties we are able to prove that the dual problem reduces to
the corresponding tolerant testing problem. Tolerant testing, introduced by Parnas, Ron, and
Rubinfeld [PRR06], is the following problem: Given a set Πn, a parameter δ > 0 and α < 1,
the tolerant testing problem consists of distinguishing between inputs that are (α · δ)-close to
Πn and inputs that are δ-far from Πn. Reducing dual problems to tolerant testing problems
is done by showing that, for some α < 1, all points in Fδ(Fδ(Πn)) are (α · δ)-close to Πn. We
stress that dual problems do not reduce to tolerant testing in general (see Proposition C.1). Thus,
proving that a specific dual problem reduces to tolerant testing requires structural results
about the specific property at hand. Moreover, after reducing a dual problem to tolerant
testing problem, we still need to solve the tolerant testing problem itself. 5

A general useful result is that in order to reduce the dual problem of a property Π to the
corresponding tolerant testing problem, it suffices to show the following: Every input x that
is neither in the property Π nor far from Π can be modified to an input x′ such that ∆(x, x′)
is small, and ∆(x′, Π) ≥ ∆(x, Π) + 1; that is, x′ is farther (by one unit) from Π, compared to
x (see Proposition 2.5; for an example of a property Π in the dense graph model for which
such a statement does not hold, see Proposition C.1 and Remark C.2). In fact, this approach
also allows us to reduce the generalized dual problem to tolerant testing (see Proposition 8.3),
and thus we are also able to obtain testers for the generalized dual problem.

The case of k-colorability in the dense graph model is relatively straightforward: We
show that every graph G that is neither k-colorable nor (ε · n)-far from k-colorable can be
modified to a graph G′ that is farther from being k-colorable, by adding (k+1

2) edges to G.
This is possible because every such graph G contains an independent set on k + 1 vertices
(since G is not (ε · n)-far from k-colorable, and assuming that ε > 0 is sufficiently small; see
Lemma 6.2.1), and adding a clique on these k + 1 vertices yields G′ that is farther from being
k-colorable (see the proof of Proposition 6.2). We can then rely on the solution of Fischer and
Newman [FN07] for the tolerant testing problem of k-colorability (see Theorem 6.4).

In the case of connectivity in the bounded-degree model (with degree bound d), we first
prove a general result that fully characterizes the distance of a graph from being connected, in
terms of the number of various types of connected components in the graph. Specifically, we
say that a vertex has k free degrees if the degree of the vertex in the graph is d− k, and we say

5We note that there exist cases in which the tolerant testing problem is significantly more difficult than the
dual problem. For example, according to Theorem 1.9, the complexity of testing whether a distribution is far
from uniform is Θ(

√
n); however, the results of Valiant and Valiant [VV11] imply that the complexity of the

corresponding tolerant testing problem is Θ(n/ log(n)).

9

that a connected component (resp., the entire graph) has k free degrees if the sum of the free
degrees of the vertices in the component (resp., in the graph) is k. We show that the distance
of a graph from being connected is essentially a linear function of the number of connected
components of various free degrees in the graph, as well as the number of free degrees in
the entire graph (for precise details see Lemma 7.4 in Section 7.1.1).

Relying on this characterization, we then show how to modify every graph G that is
neither connected nor far from being connected to a graph G′ that is farther from being
connected, by modifying only O(d) edges in G (see the proof of Proposition 7.6). Finally, we
construct a tolerant tester for connectivity in the bounded-degree model with query complexity
O(1). This tester essentially estimates the distance of a graph from being connected, up to an
additive error of O(ε · n), using O(ε−3 · d) queries. The construction relies on our aforemen-
tioned characterization of the latter distance, and is a variation on the algorithm of Chazelle,
Rubinfeld, and Trevisan [CRT05] for estimating the number of connected components in a
graph (for a high-level description and precise details, see Section 7.1.3 and Theorem 7.7).

The last setting is the dual problem of testing cycle-free graphs in the bounded-degree
model. In this case, similarly to the previous proofs, we show how to modify every graph
G that is not far from being cycle-free to a graph G′ that is farther from being cycle-free, by
adding only two or three edges to the graph. Marko and Ron [MR06] already noted that the
distance of a graph G on n vertices from being cycle-free equals |E(G)|+ |C(G)| − n, where
|C(G)| is the number of connected components in G. Our modification of G to G′ is based
on a simple case analysis, and consists of either adding a triangle to the graph, or connecting
two vertices that are both in the same connected component (see Claim 7.9.1). We then rely
on the tolerant tester for this problem by Marko and Ron [MR06].

2 Preliminaries

2.1 Metric spaces

Throughout the paper we denote by Ω a set with at least two elements, and we usually
assume that it is equipped with a metric ∆ : Ω2 → [0, ∞), such that (Ω, ∆) is a metric space.
We will usually use shorthand notation, and identify the metric space (Ω, ∆) with its set of
elements Ω, and the metric ∆ will be implicit. We call a metric space Ω graphical when Ω
is the vertex-set of a connected undirected graph, such that for any x, y ∈ Ω it holds that
∆(x, y) is the length of a shortest path between x and y.

A special case of a graphical metric space is the Boolean hypercube, equipped with the
Hamming distance. We denote the n-dimensional Boolean hypercube by Hn, and for x, y ∈
Hn we denote by sd(x, y) the symmetric difference between x and y; that is, sd(x, y) = {i ∈
[n] : xi 6= yi}. Then ∆(x, y) = |sd(x, y)|. Also, for every x ∈ Hn, we denote by ‖x‖1 the
Hamming weight of x.

For any set Π ⊆ Ω, we denote its complement by Π def
== {x ∈ Ω : x /∈ Π}. Also, for any

x ∈ Ω and δ > 0 we denote the closed radius-δ ball around x by B[x, δ]
def
== {y : ∆(x, y) ≤ δ}

and the open radius-δ ball around x by B[x, δ)
def
== {y : ∆(x, y) < δ}.

10

2.2 The “δ-far” operator

Abusing the notation ∆, for x ∈ Ω and non-empty Π ⊆ Ω we let ∆(x, Π)
def
== infp∈Π{∆(x, p)}.

If ∆(x, Π) ≥ δ then we say that x is δ-far from Π. For any space Ω and δ > 0, we define the

δ-far operator Fδ : P(Ω)→ P(Ω) by Fδ(Π)
def
== {x : ∆(x, Π) ≥ δ} for any non-empty Π ⊆ Ω,

and Fδ(∅)
def
== Ω; that is, Fδ(Π) is the set of elements that are δ-far from Π.

2.3 Property testing

In property testing, we assume that Ω = Σn, for an arbitrary set Σ, and n ∈ N. To avoid
confusion, throughout the paper we will denote the (relative) proximity parameter for testing
by ε > 0, whereas the absolute distance between inputs will be denoted by δ > 0. Indeed, in
this case δ = ε · n.

Definition 2.1 (property testing). For a set Σ, a property Π = {Πn}n∈N such that Πn ⊆ Σn, and
parameter ε > 0, an ε-tester for Π is a probabilistic algorithm T that gets oracle access to x ∈ Σn,
in the sense that for any i ∈ [n] it can query for the ith symbol of x, and satisfies the following two
conditions:

1. If x ∈ Πn then Pr[Tx(1n) = 1] ≥ 2
3 .

2. If x ∈ Fε·n(Πn) then Pr[Tx(1n) = 0] ≥ 2
3 .

The query complexity of an ε-tester T for Π is a function q : N → N, such that for every
n ∈ N it holds that q(n) is the maximal number, over any x ∈ Σn and internal coin tosses of T, of
oracle queries that T makes. The query complexity of ε-testing Π is a function q : N→N such that
for every n ∈ N it holds that q(n) is the minimum, over all query complexities q′ of ε-testers for Π,
of q′(n).

We will sometimes slightly abuse Definition 2.1, by referring to ε-testers for Π ⊆ Σn,
where n is a generic integer (instead of referring to ε-testers for an infinite sequence Π =
{Πn}n∈N).

2.4 Sets of the form Fδ(Fδ(Π)) and Fδ-closed sets: Useful tools

We state several properties of sets of the form Fδ(FδΠ)) and of Fδ-closed sets, which will
be useful for us throughout the paper. The proofs of these properties, as well as the general
study of sets of the form Fδ(Fδ(Π)), is deferred to the appendices. One basic charaterization
of Fδ-closed sets that will be very useful for us is the following:

Fact 2.2 (Item 2 of Theorem A.2). For any Ω, δ > 0, and Π ⊆ Ω, it holds that Π is Fδ-closed if and
only if for every x /∈ Π ∪ Fδ(Π) there exists z ∈ Fδ(Π) such that ∆(z, x) < δ.

Loosely speaking, a necessary condition for a set Π in a graphical space to be Fδ-closed
is that it does not “enclose” some vertex x /∈ Π ∪ Fδ(Π) from “all sides”. In particular, the
following proposition shows that if Π is Fδ-closed, then every x /∈ Π ∪ Fδ(Π) is connected
to Fδ(Π) via a path that does not intersect Π (nor any vertex that is adjacent to Π).

11

Proposition 2.3 (see Proposition A.3). For a graphical Ω and δ ≥ 2, let Π ⊆ Ω be an Fδ-closed
set. Then, for every x /∈ Π ∪ Fδ(Π), there exists a path x = v0, v1, ..., vl = z such that z ∈ Fδ(Π),
and for every i ∈ [l] it holds that ∆(vi, Π) ≥ 2.

We now present a sufficient condition for a set in a graphical metric space to be Fδ-closed.
Loosely speaking, a set is strongly Fδ-closed if for any x /∈ Π ∪ Fδ(Π) there exist a neighbor
x′ of x that is farther from Π than x itself.

Definition 2.4 (strongly Fδ-closed sets). For a graphical Ω and δ > 0, a set Π ⊆ Ω is strongly
Fδ-closed if and only if for every x /∈ Π∪Fδ(Π) there exists a neighbor x′ of x such that ∆(x′, Π) =
∆(x, Π) + 1.

As is implied by the name, every strongly Fδ-closed set is also Fδ-closed (see Proposi-
tion A.6). The following condition, which also applies in graphical metric spaces, allows us to
upper-bound the distance of vertices in Fδ(Fδ(Π)) from Π.

Proposition 2.5 (see Proposition C.4). Let Ω be a graphical space, let Π ⊆ Ω, let δ ≥ 2, and let
δ′ ≤ δ. If there exists an integer m such that for every x /∈ Π ∪ Fδ(Π) there exists x′ satisfying
∆(x, x′) ≤ m and ∆(x′, Π) > ∆(x, Π), then Fδ′(Fδ(Π)) ⊆

{
y : ∆(y, Π) ≤ δ− δ′

m

}
.

In the context of property testing we are interested in a sequence Π = {Πn}n∈N, and in
distances of the form δ = ε · n, for a constant ε > 0. In this context, when Proposition 2.5
holds with parameters δ = ε · n and δ′ = ε′ · n and m = O(1), it follows that the distance of
vertices in Fε′·n(Fε·n(Πn)) from Πn is bounded away from ε · n by δ′/m = ε′·n

m = Ω(n). In
this case the dual problem of Πn reduces to the corresponding tolerant testing problem.

3 General results regarding the query complexity of dual problems

In this section we state and prove several preliminary general results about the query complex-
ity of dual problems. Specifically, we show a lower bound on testing dual problems with
one-sided error, and we observe that dual problems of error-correcting code are equivalent
to the original problems.

3.1 Testing dual problems with one-sided error

We first need to extend Definition 2.1, by defining two special types of testers. We then
extend Observation 1.4 (which asserted that testing a dual problem is at least as difficult as
testing the original problem) such that it will also apply to these two types of testers.

Definition 3.1. For any ε-tester T as in Definition 2.1,

1. If the probability in Condition (1) of Definition 2.1 (i.e., the probability that inputs in Π are
accepted) is 1, then we say that T has one-sided error.

2. If the probability in Condition (2) of Definition 2.1 (i.e., the probability that inputs in Fε·n(Π)
are rejected) is 1, then we say that T has perfect soundness.

12

Observation 3.2 (Observation 1.4, extended). The query complexity of a dual problem is lower
bounded by the query complexity of its original problem. Moreover, the query complexity of testing
a dual problem with one-sided error (resp., with perfect soundness) is lower bounded by the query
complexity of testing the original problem with perfect soundness (resp., with one-sided error).

We also need the following proposition, which appeared in our previous technical re-
port [Tel14, Apdx. A].

Proposition 3.3 (testing standard problems with perfect soundness). For a set Σ, let Π = {Πn}n∈N

such that Πn ⊆ Σn. Suppose that for all sufficiently large n it holds that Πn 6= ∅ and that there exist
inputs that are Ω(n)-far from Πn. Then, the query complexity of testing Π with perfect soundness
is Ω(n).

Proof. The main claim needed for the proof is the following, which asserts that the existence
of an (ε/2)-tester with perfect soundness and query complexity q(n) implies that every input
is (q(n) + (ε/2) · n)-close to the property.

Claim 3.3.1. For Π as in the hypothesis and any ε > 0, if there exists an ε-tester for Π with perfect
soundness and query complexity q, then for a sufficiently large n and every z ∈ Σn it holds that
∆(z, Πn) < q(n) + ε · n.

Proof. Let ε > 0, and assume that there exists an ε-tester T for Π with perfect soundness and
query complexity q. By the hypothesis, for a sufficiently large n it holds that Πn 6= ∅, and
hence there exists x ∈ Πn. Now, there exist random coins r such that the residual determin-
istic tester Tx(1n, r) (i.e., the deterministic tester obtained by fixing random coins r) accepts
after making q(n) queries. Denote the coordinates of these q(n) queries by (i1, i2, ..., iq(n)),
where we assume for simplicity and without loss of generality that T always makes exactly
q queries.

Note that every z′ ∈ Σn such that (z′i1 , z′i2 , ..., z′iq(n)
) = (xi1 , xi2 , ..., xiq(n)

) is accepted by the
residual deterministic tester with random coins r. Since T has perfect soundness, this implies
that every such z′ satisfies ∆(z′, Πn) < ε · n (since inputs that are (ε · n)-far must be rejected
with probability 1). Hence, for any z ∈ Σn, by changing the q(n) coordinates (zi1 , zi2 , ..., ziq(n)

)

to equal (xi1 , xi2 , ..., xiq(n)
), we obtain a string z′ such that ∆(z′, Πn) < ε · n. This implies that

every z ∈ Σn satisfies ∆(z, Πn) ≤ ∆(z, z′) + ∆(z′, Πn) < q(n) + ε · n. �

Now, by the hypothesis, for some ε > 0 and any sufficiently large n there exists z ∈ Σn

such that ∆(z, Πn) ≥ ε · n. For ε′ < ε, let T be an ε′-tester with perfect soundness for Π, and
denote its query complexity by q. Then, by Claim 3.3.1,

ε · n ≤ ∆(z, Πn) ≤ q(n) + ε′ · n

which implies that q(n) = Ω(n).

Theorem 1.5 follows immediately by combining Observation 3.2 and Proposition 3.3. It
follows that dual problems can be tested with one-sided error and o(n) queries only if the
distance of every input from the property is o(n). However, in this case both the original
problem and its dual are trivial to begin with.

13

3.2 Testing dual problems of error-correcting codes

In an n-dimensional hypercube, a code Π = {Πn}n∈N has constant relative distance ζ > 0 if
for every n ∈ N it holds that minx 6=y∈Πn{∆(x, y)} ≥ ζ · n. The following proposition implies
that for any code Π with constant relative distance ζ > 0, and any ε ≤ ζ

2 , it holds that Πn is
(strongly) Fε·n-closed.

Proposition 3.4 (codes with constant relative distance are Fε·n-closed). Let Πn ⊆ Σn and ζ > 0
such that |Πn| ≥ 2, and minx 6=y∈Πn{∆(x, y)} ≥ ζ · n. Then, for any ε ≤ ζ

2 , it holds that Πn is
strongly Fε·n-closed.

Proof. Let ε ≤ ζ
2 and let δ = ε · n. Let x /∈ Πn ∪ Fδ(Πn), and note that x is in the (δ− 1)-

neighborhood of exactly one p ∈ Πn. By changing x in one location i ∈ [n] such that xi = pi,
we obtain a neighbor x′ of x such that either x′ ∈ Fδ(Πn) (and ∆(x, Πn) = δ− 1), or x′ is still
in the (δ− 1)-neighborhood of p, in which case ∆(x′, Πn) = ∆(x′, p) = ∆(x, p) + 1.

Theorem 1.6 follows as a corollary of Proposition 3.4. Note that in cases where these
problems involve testing Boolean functions over {0, 1}`, the generated error-correcting code
is in {0, 1}2` . In particular, according to Theorem 1.5, the corresponding dual problems
cannot be tested with one-sided error and o(2`) queries.

4 Testing functions that are far from monotone

In this section we prove (a generalization of) Theorem 1.7, which asserts that the dual prob-
lem of monotonicity testing is, in many settings, equivalent to the original problem.

Let us first recall the setting for monotonicity testing, and introduce some notation. Let
[n] be a partially ordered set, 6 and let Σ be an ordered set. A function f : [n]→ Σ is monotone
if for every x, y ∈ [n] such that x ≤ y, it holds that f (x) ≤ f (y). Throughout the section, we
identify every function f : [n]→ Σ with a corresponding string f ∈ Σn. Recall the following
standard definitions: An antichain in a poset is a set of elements in the poset that are pairwise
incomparable; and the width of a poset is the size of a maximum antichain in it.

4.1 Monotone functions yield Fδ-closed sets

The main result needed to prove Theorem 1.7 is the following, which asserts that for many
posets [n] and ranges Σ, the set of monotone functions [n]→ Σ is Fδ-closed.

Proposition 4.1 (the set of monotone functions is Fδ-closed). Let [n] be a partially ordered set, and
let Σ be a finite ordered set such that the width of [n] is at most n

2·|Σ| . Then, for every δ < n
4 , the set

of monotone functions from [n] to Σ is Fδ-closed.

Proof. For a sufficiently large n ∈ N, denote the set of monotone functions from [n] to Σ
by Πn ⊆ Σn, and let δ < n

4 . To show that Πn is Fδ-closed, we rely on Fact 2.2: For every
f /∈ Πn ∪ Fδ(Πn), we show a function h ∈ Fδ(Πn) such that ∆(f , h) < δ.

6Similar to metric spaces, we usually identify a partially ordered set ([n],≤) with its set of elements [n], and
the order relation is implicit and denoted by ≤.

14

High-level overview. First, we define some terminology that we will need. For any f :
[n]→ Σ, we call (x, y) ∈ [n]× [n] a violating pair for f if x < y and f (x) > f (y). Observe that
f is monotone if and only if there are no violating pairs for f . Also, we call (x, y) ∈ [n]× [n]
a flat pair for f if x < y and f (x) = f (y). A collection of disjoint violating pairs for f is
a collection V of violating pairs such that for every (x1, y1) 6= (x2, y2) ∈ V it holds that
x1, x2, y1, y2 are distinct. A collection of disjoint flat pairs is defined analogously.

The proof idea is as follows. Let f /∈ Πn ∪ Fδ(Πn). First, let us assume that there exists a
collection C of δ disjoint pairs in [n], such that one pair in C is violating for f , and the other
δ− 1 pairs are flat for f . Then, observe that for every flat pair in C, we can change the value
of f at one input in the pair, thereby turning it into a violating pair (i.e., for a pair (x, y), if
f (x) = f (y) = maxσ∈Σ{σ}, we can set f (y) to be any other σ ∈ Σ, and otherwise, we can
set f (x) = maxσ∈Σ{σ}). Thus, by changing the value of f on one input in each flat pair in
C, we obtain h ∈ Σn such that ∆(h, f) = |C| − 1 = δ− 1 and that C is a collection of disjoint
violating pairs for h of size δ. The proposition follows since a function h that has a collection
of δ disjoint violating pairs satisfies ∆(h, Πn) ≥ δ (see Claim 4.1.3).

To prove that the collection C (of δ− 1 flat pairs and one violating pair) exists, we use the
fact that the width of [n] is bounded. In particular, we show that there exists a collection T of
n
4 disjoint flat pairs for f (see Lemma 4.1.1). Since f /∈ Πn, there exists at least one violating
pair (x, y) for f . This pair shares a common element with at most two pairs in T . Using
the fact that δ ≤ n

4 − 1, it follows that there exists T ′ ⊆ T such that C = T ′ ∪ {(x, y)} is a
collection of disjoint pairs, and |T ′| ≥ |T | − 2 = n

4 − 2 ≥ δ− 1. To conclude, note that the
pair (x, y) ∈ C is violating for f , and that all other pairs in C are flat.

The actual proof. Let f /∈ Πn ∪ Fδ(Πn). The following lemma is used as the main step
towards establishing (in Corollary 4.1.2) that there exists a collection C of δ disjoint pairs in
[n] such that one of these pairs is a violating pair for f , and the other δ− 1 pairs are flat pairs
for f .

Lemma 4.1.1. Let [n] be a poset and Σ be an ordered set such that the width of [n] is at most n
2·|Σ| .

Then, for every f : [n]→ Σ, there exists a collection of disjoint flat pairs for f of size at least n
4 .

Proof. By Dilworth’s theorem [Dil50], and since the width of [n] is at most n
2·|Σ| , there exists

a partition of [n] into at most n
2·|Σ| monotone chains; that is, there exists a collectionM such

that |M| ≤ n
2·|Σ| that satisfies the following two conditions:

1. Every c ∈ M is a sequence c = (x1, ..., xnc) ⊆ [n] such that for every i ∈ [nc − 1] it holds
that xi < xi+1.

2. M is a partition of [n], in the sense that every x ∈ [n] appears in exactly one monotone
chain c ∈ M.

For a fixed function f , we construct a corresponding collection T of disjoint flat pairs
for f as follows. We go over the chains in M, in an arbitrary order, and collect disjoint flat
pairs for f , which we add to T , while processing each chain separately. For any fixed chain

15

c ∈ M, we partition c into |Σ| (non-consecutive) sub-chains such that f is constant on each
sub-chain; that is, the partition of c is the collection {cσ}σ∈Σ such that for every σ ∈ Σ it
holds that cσ = {x ∈ c : f (x) = σ}. Note that each of the sub-chains is a “monochromatic”
chain, and thus, every pair of elements in each sub-chain constitutes a flat pair. Accordingly,
we now try to partition every sub-chain into pairs of elements (failing to pair at most one
element in each sub-chain), and add these pairs to T .

Since we only insert flat pairs to T , and since M is a partition of the poset, the set T is
a collection of disjoint flat pairs. In addition, for every fixed chain c ∈ M, we fail to pair
at most |Σ| elements (i.e., at most one element per sub-chain). Therefore, for every chain
c ∈ M, we collect at least 1

2 · (|c| − |Σ|) flat pairs for T . Overall, we get at least

∑
c∈M

1
2
· (|c| − |Σ|) = 1

2
· (n− |Σ| · |M|) ≥ n

4

disjoint flat pairs for T . �

Corollary 4.1.2. Let [n], Σ and δ be as in Proposition 4.1. Then, for every f /∈ Πn, there exists a
collection C of δ disjoint pairs in [n] such that one pair in C is a violating pair for f , and the other
δ− 1 pairs are flat pairs for f .

Proof. Since f /∈ Πn, there exists a violating pair (x, y) for f . Relying on Lemma 4.1.1, there
exists a collection T of flat pairs for f such that |T | ≥ n

4 ≥ δ + 1. Since there are at most
two pairs in T that share a common element with (x, y), there exists a sub-collection T ′ ⊆ T
such that |T ′| = δ− 1 and C = T ′ ∪ {(x, y)} is a collection as required. �

Let C be a collection of disjoint pairs for f , as in Corollary 4.1.2. Observe that we can turn
every flat pair (x, y) ∈ C into a violating pair, by modifying the value of f at one input. By
doing so, we obtain a function h such that ∆(f , h) = |C| − 1 = δ− 1 and C is a collection of
disjoint violating pairs for h of size δ. The proposition will follow from the following claim.

Claim 4.1.3. For h : [n] → Σ, if there exists a collection C of disjoint violating pairs for h having
size ρ, then ∆(h, Πn) ≥ ρ. 7

Proof. Let g ∈ Πn such that ∆(h, g) = ∆(h, Πn). If there exists a pair (x, y) ∈ C such that
h(x) = g(x) and h(y) = g(y), then (x, y) is a violating pair for g, which contradicts g ∈ Πn.
Hence, the symmetric difference between h and g includes at least one element from each
pair in C. Since the pairs in C are disjoint, we get that ∆(h, Πn) = ∆(h, g) ≥ |C|. �

Thus, it holds that h ∈ Fδ(Πn).

Proposition 4.1 implies the following:

7A related claim was proved in [GGL+00, Prop 3]. However, they considered Boolean functions over the
hypercube, and defined violating pairs differently.

16

Theorem 4.2 (Theorem 1.7, extended). Let {Pn}n∈N be a family of posets such that Pn = ([n],≤n)
for every n ∈ N, and let {Σn}n∈N be a family of ordered sets. Assume that for all sufficiently large
n, the width of Pn is at most n

2·|Σn| . Then, the problem of testing monotone functions from Pn to Σn is
equivalent to its dual problem.

In the special case of functions over the domain of the Boolean hypercube {0, 1}`, where
2` = n, Theorem 4.2 applies when the range satisfies |Σ| ≤

√
`/2. This is the case since,

by Sperner’s theorem, the width of the `-dimensional hypercube, which has the element-set
[n] = [2`], is (`

b`/2c) (and hence if |Σ| ≤
√
`/2, we get that the width satisfies (`

b`/2c) <
n√
`
≤

n
2·|Σ|). Thus, Theorem 1.7 follows from Theorem 4.2 as a special case.

In addition, the proof of Proposition 4.1 shows that for a poset Pn and a range Σn as
in Theorem 4.2, there always exist functions that are Ω(n)-far from being monotone. Thus
(using Theorem 1.5), testing the dual problem with one-sided error requires Ω(n) queries.

4.2 Monotone Boolean functions yield strongly Fδ-closed sets

We now show that in the case of |Σ| = 2 (i.e., for Boolean functions over a poset [n]), the
set of monotone functions is actually strongly Fδ-closed. This fact will be used in Section 8,
and is also interesting combinatorially: It asserts that any Boolean function that is not too far
from being monotone can be made farther from monotone by changing its value at a single
input. The proof idea is similar to the proof of Proposition 4.1, but we will use an additional
lemma, which is specific for Boolean functions, and was proved in [FLN+02].

Proposition 4.3 (the set of monotone Boolean functions is strongly Fδ-closed). Let [n] be a partially
ordered set of width at most n

4 . Then, for every δ < n
8 , the set of monotone Boolean functions over [n]

is strongly Fδ-closed.

Proof. For a sufficiently large n, let Πn be the set of monotone Boolean functions over [n],
and let δ < n

8 . We will rely on the following lemma.

Lemma 4.3.1 (Lemma 4 in [FLN+02]). For f : [n] → {0, 1}, if ∆(f , Πn) ≥ ρ, then there exists a
collection of disjoint violating pairs for f having size ρ.

Combining Claim 4.1.3 and Lemma 4.3.1, we get the following corollary:

Corollary 4.3.2. For a Boolean function f : [n] → {0, 1}, it holds that ∆(f , Πn) ≥ ρ if and only
if there exists a collection of disjoint violating pairs for f having size ρ.

Now, let f /∈ Πn ∪ Fδ(Πn). According to Corollary 4.3.2, there exists a collection V of
disjoint violating pairs for f , such that |V| = ∆(f , Πn) < δ. According to Lemma 4.1.1, there
exists a collection T of flat pairs for f such that |T | ≥ n

4 ≥ 2δ. The number of pairs in T
that share a common element with any pair in V is at most 2 · |V| < 2 · δ ≤ |T |. Hence,
there exists some pair (x, y) ∈ T such that V ∪ {(x, y)} is a collection of disjoint pairs. By
modifying the value of f on one input from (x, y), we can turn it into a violating pair. This
way, we obtain a function f ′ such that ∆(f , f ′) = 1, and there exists a collection of disjoint
violating pairs for f ′ of size |V|+ 1 = ∆(f , Πn) + 1. Relying on Corollary 4.3.2 again, we get
that ∆(f ′, Πn) = ∆(f , Πn) + 1.

17

5 Testing distributions that are far from a known distribution

In this section we prove Proposition 1.8, which asserts that the dual problem of distribution
testing is not equivalent to the original problem, in general; and Theorem 1.9 as well as
another result, which assert that for many specific natural distribution families the dual problem
nevertheless is equivalent to the original problem.

Let us first recall the setting of distribution testing (for excellent surveys see, e.g., [Rub12,
Can15]). In this context, a tester gets independent samples from an input distribution, and
tries to determine whether the distribution has some property or is far from having the
property. A basic problem in this field is the one of testing whether a distribution is identical
to a known distribution. In this problem, a distribution D over [n] is predetermined and
explicitly known, and an ε-tester gets independent samples from a distribution I over [n].
The goal of the tester is to determine, using as few samples as possible, whether I = D or I
is ε-far from D in the `1 norm; that is, whether ‖I−D‖1 = ∑i∈[n] |I(i)−D(i)| ≥ ε. 8

The main question in this section is for which distribution families it holds that the dual
identity testing problem is equivalent to the original problem. That is, we ask for which
families of distributions {Dn}n∈N it holds that for every sufficiently small constant δ > 0
and every sufficiently large n, the singleton {Dn} is Fδ-closed (cf. Definition 1.3).

5.1 The dual problem is different from the original

In Rn with the Euclidean metric, every singleton {Dn} is Fδ-closed for every δ > 0. Our first
observation is that the analogous fact is not true in the simplex with the `1 norm.

Proposition 5.1 (Proposition 1.8, extended). Let {Dn}n∈N be a distribution family such that for
every n ∈ N it holds that Dn(1) = 1− 1

n and for any i ∈ [n] \ {1} it holds that Dn(i) = 1
n·(n−1) .

Then, for every δ > 0 and sufficiently large n, it holds that Π = {Dn} is not Fδ-closed.

Proof. For δ > 0, let n ∈ N such that δ > 3
n . Relying on Fact 2.2, it suffices to show a

distribution X /∈ {Dn} ∪ Fδ({Dn}) such that there does not exist Z ∈ Fδ({Dn}) satisfying
∆(X, Z) < δ.

Let X be the distribution over [n] such that X(1) = 1 (and for every i > 1 it holds that
X(i) = 0). Then 0 < ∆(X, Dn) = 2/n < δ, implying that X /∈ {Dn} ∪ Fδ({Dn}). Let Z be any
distribution over [n]. If Z(1) > 1− 1

n , then ∑n
i=2 Z(i) < 1

n , and hence

∆(Z, Dn) = Z(1)−D(1) +
n

∑
i=2
|Z(i)−Dn(i)|

≤ 1
n
+

n

∑
i=2

Z(i) +
n

∑
i=2

Dn(i) ,

which is less than 3/n, and thus ∆(Z, Dn) < δ, implying that Z /∈ Fδ({Dn}).
8Note that the metric space for this problem is the standard simplex in Rn with the `1 norm, and that the

distances satisfy δ ∈ [0, 2]. Accordingly, we slightly abuse Definition 2.1 in this section, by requiring that an
ε-tester distinguish between Π and Fε(Π), and not between Π and Fε·n(Π) (i.e., the proximity parameter for
testing ε > 0 is the absolute distance between “yes” instances and “no” instances, and not the relative distance).

18

Otherwise, Z(1) ≤ 1− 1
n . Note that Z(1) ≤ Dn(1) < X(1), and therefore |Z(1)− X(1)| −

|Z(1)−Dn(1)| = X(1)−Dn(1) = 1
n . Hence, we get that

∆(Z, X)− ∆(Z, Dn) =
n

∑
i=1

(
|Z(i)− X(i)| − |Z(i)−Dn(i)|

)
=

1
n
+

n

∑
i=2

(
Z(i)−

∣∣∣Z(i)− 1
n(n− 1)

∣∣∣)
≥ 1

n
− (n− 1) · 1

n(n− 1)
,

which equals zero. (The last inequality is since for a, b ∈ R+ it holds that b− |b− a| ≥ −a,
because |b− a| ≤ |b|+ |a| = b + a.) It follows that Z ∈ Fδ({Dn}) cannot satisfy ∆(Z, X) < δ
(since in such a case ∆(Z, X)− ∆(Z, Dn) < 0).

5.2 Distribution families for which the dual problem is equivalent to the original

The following two propositions show that for many natural distribution families, the singleton
{Dn} is Fδ-closed for every sufficiently small δ > 0, and thus the dual testing problem is
equivalent to the original one. The first proposition refers to distribution families {Dn}n∈N

such that limn→∞ ‖Dn‖∞ = 0, whereas the second proposition refers to distribution families
in which each support element has Ω(1) probability mass.

Proposition 5.2 (distributions with low `∞ norm induce Fδ-closed properties). Let {Dn}n∈N be a
family of distributions such that limn→∞ ‖Dn‖∞ = 0 (where ‖Dn‖∞ = maxi∈[n]{Prr∼Dn [r = i]}).
Then, for any δ ∈ (0, 1

4) and a sufficiently large n ∈N, the property Π = {Dn} is Fδ-closed.

Proof. Let δ ∈ (0, 1
4), and let n ∈ N be sufficiently large such that for every i ∈ [n] it

holds that Dn(i) ≤ δ
30 . To prove that Π = {Dn} is Fδ-closed we rely on Fact 2.2: For

every X /∈ {Dn} ∪ Fδ({Dn}), we show that there exists Z ∈ Fδ({Dn}) such that ∆(X, Z) <
δ. Throughout the proof we simplify the notation by denoting D = Dn. Also, for every

distribution X, we denote the probabilistic mass of i ∈ [n] under X by Xi
def
== X(i).

High-level overview. Let X /∈ {D} ∪ Fδ({D}), and denote ∆(X, D) = αδ, where α ∈ (0, 1).
We will show an explicit construction of a distribution Z that satisfies the following two
requirements:

1. ∆(Z, X) < δ.

2. ∆(Z, D)− ∆(X, D) ≥ (1− α) · δ.

Note that Requirement (2) is equivalent to the requirement that ∆(Z, D) ≥ δ (i.e., Z ∈
Fδ({Dn})). For the distribution Z that we construct, and every i ∈ [n], let

Change(i) = |Zi − Xi|
Farther(i) = |Zi −Di| − |Xi −Di|

19

In words, Change(i) is the magnitude of change made in the probabilistic mass of i ∈ [n],
and Farther(i) reflects how farther Z is from D, compared to the distance of X from D, in
i ∈ [n]. Thus, Requirement (1) is equivalent to the requirement that ∑i Change(i) < δ, and
Requirement (2) is equivalent to the requirement that ∑i Farther(i) ≥ (1− α) · δ. Intuitively,
when constructing Z, for every i ∈ [n] we want that Farther(i) will be as large as possible,
compared to Change(i).

For the construction itself we will rely on the following lemma, which asserts the existence
of a set LIGHT ⊆ [n] with useful properties. (The name LIGHT is since the elements in this set
have upper bounded probabilistic mass; see the exact definition in the actual proof below.)

Lemma 5.2.1. There exists a set LIGHT ⊆ [n] such that:

1. For every distribution Z and j ∈ LIGHT, if Zj ≤ min{Xj, 1
2 ·Dj}, then Farther(j) ≥ 1−α

1+α ·
Change(j).

2. The probabilistic mass of LIGHT under X is substantial; in particular, Prj∼X [j ∈ LIGHT] > 1
2 .

In high level, our construction of Z is as follows. We first initiate Z = X, and let ∆ < δ
2 be

a parameter, which will be determined later. Since Z = X 6= D, there exists iUP ∈ [n] such that
ZiUP > DiUP . We increase the probabilistic mass of ZiUP by ∆, and since after the modification it
holds that ZiUP > XiUP > DiUP , we get that Farther(iUP) = Change(iUP). Now, according to the
aforementioned lemma, there exists a set S ⊆ LIGHT with overall probabilistic mass of more
than δ

2 > ∆. We thus decrease the overall probabilistic mass of Z in S by ∆, while ensuring
that for every j ∈ S it holds that Zj is sufficiently small, such that, according to the lemma,
after the decrease of mass it holds that Farther(j) ≥ 1−α

1+α · Change(j).
Since we changed an overall 2 · ∆ probabilistic mass of X to obtain Z, we get that

∑i∈[n] Change(i) = 2 · ∆ < δ. Also,

∑
i∈[n]

Farther(i) = Farther(iUP) + ∑
j∈S

Farther(j)

≥ Change(iUP) +
1− α

1 + α
·
(

∑
j∈S

Change(j)

)

=

(
1 +

1− α

1 + α

)
· ∆

and for ∆ ≥ 1
2 (1− α)(1 + α) · δ, this expression is at least (1− α) · δ.

Actually, we show two different constructions for Z, according to the distance of X from
D. These two different constructions are both of the form depicted above, but they differ in
their choice of ∆, and in the way they decrease the probabilistic mass in the set S. Note that
our analysis mandates that

1
2
(1− α)(1 + α) · δ ≤ ∆ <

δ

2
(5.1)

20

If α ≥ 2
3 (i.e., X is relatively far from D), then the interval for possible values of ∆ in

Eq. (5.1) is quite large. In this case we can set ∆ to be slightly larger than 1
2 (1− α)(1 + α) · δ,

and the construction of Z will be relatively simple. However, if α < 2
3 , the interval for ∆ in

Eq. (5.1) might be arbitrarily small. Actually, in this case we set ∆ = 1
2 (1− α)(1 + α) · δ, but

we need to be quite careful when decreasing mass from elements in S. Details follow.

The actual proof of Proposition 5.2. We start by proving the two items of Lemma 5.2.1 and
another technical fact. Let

LIGHT
def
==

{
j ∈ [n] : Xj ≤ (1 + 2αδ) ·Dj

}
Claim 5.2.2 (Item 1 in Lemma 5.2.1). For any distribution Z and j ∈ LIGHT, if Zj ≤ min{Xj, 1

2 ·
Dj}, then

Farther(j) ≥ 1− α

1 + α
· Change(j)

Proof. Let Z and j ∈ LIGHT such that Zj ≤ min{Xj, 1
2 ·Dj}. If Xj ≤ Dj, then

Farther(j) = |Zj −Dj| − |Xj −Dj| = Xj − Zj = Change(j)

and we are done.
Otherwise, it holds that Xj > Dj, and since j ∈ LIGHT, it follows that Dj < Xj ≤ (1 +

2αδ) · Dj. In particular, in this case Dj 6= 0. Note that Xj − Dj ≤ 2αδ · Dj, whereas since
Zj ≤ 1

2 ·Dj, it holds that Dj − Zj ≥ 1
2 ·Dj. Also recall that δ < 1

4 . Therefore,

Xj −Dj

Dj − Zj
≤

2αδ ·Dj

Dj/2
= 4αδ < α . (5.2)

Now, relying on Eq. (5.2), we deduce that

Xj − Zj = (Xj −Dj) + (Dj − Zj) < (1 + α) · (Dj − Zj) (5.3)

and thus we get that

Farther(j) = (Dj − Zj)− (Xj −Dj) (since Xj > Dj > Zj)

> (1− α) · (Dj − Zj) (according to (5.2))

>
1− α

1 + α
· (Xj − Zj) (according to (5.3))

=
1− α

1 + α
· Change(j) . �

Claim 5.2.3 (Item 2 in Lemma 5.2.1). It holds that ∑j∈LIGHT Xj ≥ 1
2 .

21

Proof. Let HEAVY = [n] \ LIGHT, and note that it suffices to prove that ∑i∈HEAVY Xi <
1
2 . For

every i ∈ HEAVY, it holds that Xi−Di > 2αδ ·Di (i.e., Di <
Xi−Di

2αδ). Let ∆+ def
== ∑i:Xi>Di

Xi−Di,

and note that ∆+ = ∆(X,D)
2 = αδ

2 . Also note that HEAVY ⊆ {i : Xi > Di}. It follows that

∑
i∈HEAVY

Xi = ∑
i∈HEAVY

(Xi −Di) + ∑
i∈HEAVY

Di

<

(
1 +

1
2αδ

)
· ∑

i∈HEAVY
(Xi −Di)

≤
(

1 +
1

2αδ

)
· ∆+ .

Recall that α < 1 and δ < 1
4 , and thus

(
1 + 1

2αδ

)
· ∆+ =

(1
2 +

1
4αδ

)
· αδ < 1

2 . �

Fact 5.2.4. For every i ∈ [n], there exists a set S ⊆ LIGHT \ {i} such that 1
3 · δ ≤ ∑j∈S Xj <

1
2 · δ.

Proof. According to Claim 5.2.3, and since every i ∈ [n] satisfies Di ≤ δ
30 , it follows that

∑j∈LIGHT\{i} Xj >
1
2 −

δ
30 > δ

3 . Also, for every j ∈ LIGHT it holds that

Xj ≤ (1 + 2αδ) ·Dj (since j ∈ LIGHT)

≤ (1 + 2αδ) · δ

30
(since Dj ≤ δ

30)

<
1
6
· δ . (since δ < 1

4)

We construct S by initiating S = ∅, and adding elements from LIGHT \ {i} to S until
∑j∈S Xj ≥ 1

3 · δ. Since ∑j∈LIGHT\{i} Xj >
δ
3 , there is sufficient probabilistic mass in LIGHT \ {i}

to construct a set S with ∑j∈S Xj ≥ 1
3 · δ. Also, since the mass of every element in LIGHT \ {i}

is at most 1
6 · δ, the construction yields a set S such that ∑j∈S Xj <

1
3 · δ +

1
6 · δ = 1

2 · δ. �

We now split the rest of the proof (of Proposition 5.2) into two cases, depending on
∆(X, D). In each case we prove the existence of a suitable Z using a different construction.

Case 1: Assuming ∆(X, D) ≥ 2
3 · δ. In this case α ≥ 2

3 , and we set ∆ such that it might be
slightly larger than the lower bound implied by Eq. (5.1). The construction of the distribution
Z is as follows.

Construction 5.2.5. (construction of the distribution Z when ∆(X, D) ≥ 2
3 · δ).

1. Let Z = X, and let:

(a) iUP = argmaxi∈[n]{Xi −Di}.

(b) S ⊆ LIGHT \ {iUP} such that 1
3 · δ ≤ ∑j∈S Xj <

1
2 · δ.

(c) ∆ = ∑i∈S Xi.

2. (increase ∆ mass) Set ZiUP = XiUP + ∆.

22

3. (decrease ∆ mass) For every j ∈ S set Zj = 0.

According to Fact 5.2.4, a suitable set S exists for Step (1b). Also, note that Z is a distri-
bution, since we obtained it by removing a probabilistic mass of ∆ from X at S, and adding
the same magnitude of mass to iUP. Since X 6= D, and iUP = argmaxi∈[n]{Xi − Di}, then
ZiUP > XiUP > DiUP , implying that Farther(iUP) = Change(iUP) = ∆. Furthermore, since for
every j ∈ S it holds that j and Z satisfy the conditions in Claim 5.2.2, then for every j ∈ S it
holds that Farther(j) ≥ 0. Thus,

∆(Z, D)− ∆(X, D) = Farther(iUP) + ∑
j∈S

Farther(j) ≥ Change(iUP)

and Change(iUP) = ∆ ≥ 1
3 · δ ≥ δ − ∆(X, D). It follows that ∆(Z, D) ≥ δ, implying that

Z ∈ Fδ({D}). Since we added and removed 2 · ∆ probabilistic mass from X to obtain Z, it
also holds that ∆(Z, X) = 2 · ∆ < δ.

Case 2: Assuming ∆(X, D) < 2
3 · δ. In this case α = ∆(X,D)

δ < 2
3 , and X might be arbitrarily

close to D. In the latter case, the interval for values of ∆ implied by Eq. (5.1) might be
arbitrarily small. We thus set ∆ to exactly match the lower bound of this interval. The
construction of the distribution Z is as follows.

Construction 5.2.6. (construction of the distribution Z when ∆(X, D) < 2
3 · δ).

1. Let Z = X and ∆ = 1
2 · (1− α) · (1 + α) · δ.

2. (increase ∆ mass) For iUP = argmaxi∈[n]{Xi −Di} set ZiUP = XiUP + ∆.

3. (decrease ∆ mass)

(a) Let S = ∅.

(b) While ∑j∈S Xj < ∆ do S← argmaxi∈LIGHT\(S∪{iUP}){Xi}.

(c) For every j ∈ S set Zj =
∑j∈S Xj−∆
|S| .

The following claim specifies conditions that Construction 5.2.6 satisfies, which we will
later rely on.

Claim 5.2.7. Construction 5.2.6 is well-defined, and it produces a distribution Z such that:

1. For iUP ∈ [n] it holds that ZiUP = XiUP + ∆ and XiUP > DiUP .

2. For S ⊆ LIGHT it holds that:

(a) ∑j∈S Xj − Zj = ∆.

(b) For every j ∈ S it holds that Zj ≤ min{Xj, 1
2 ·Dj}.

23

Before proving Claim 5.2.7, let us assume for a moment that it is correct, and see how it
implies that Z ∈ Fδ({D}) and ∆(X, Z) < δ. First, since ∆ = 1

2 (1− α)(1 + α) · δ < δ/2, it
holds that ∆(Z, X) = 2 · ∆ < δ. Now, since ZiUP > XiUP > DiUP , it follows that Farther(iUP) =
Change(iUP). Also, since for every j ∈ S it holds that j and Z satisfy the conditions in
Claim 5.2.2, it follows that Farther(j) ≥ 1−α

1+α · Change(j). Therefore,

∆(Z, D)− ∆(X, D) = Farther(iUP) + ∑
j∈S

Farther(j)

≥ Change(iUP) +
1− α

1 + α
·∑

j∈S
Change(j)

=

(
1− α

1 + α
+ 1
)
· ∆

= (1− α) · δ

which implies that ∆(Z, D) ≥ (1− α) · δ + ∆(X, D) = δ. Hence Z ∈ Fδ({D}) and ∆(Z, X) <
δ. To finish the proof it is thus left to prove Claim 5.2.7.

Proof of Claim 5.2.7. To see that Construction 5.2.6 is well-defined, note that according to
Fact 5.2.4 there is sufficient probability mass in LIGHT \ {iUP} in order for the loop in Step (3b)
of Construction 5.2.6 to complete successfully. Also, the first part of Condition (1) follows
since the probabilistic mass of iUP only changes in Step (2); and the second part of Condi-
tion (1) follows since X 6= D and by the definition of iUP.

Condition (2a) follows since

∑
j∈S

Xj − Zj =

(
∑
j∈S

Xj

)
− |S| ·

∑j∈S Xj − ∆
|S| = ∆ .

For Condition (2b), we first need the following fact.

Fact 5.3. For every j ∈ S it holds that ∑j′∈S Xj′ − ∆ < Xj.

Proof. Denote the last element that was inserted into S in Step (3b) by k, and note that Xk ≤
Xj. Assume towards a contradiction that ∑j′∈S Xj′ − ∆ ≥ Xj. It follows that ∑j′∈S Xj′ − Xk ≥
∑j′∈S Xj′ − Xj ≥ ∆. However, in this case, k would not have been added to S, since after the
previous-to-last iteration of Step (3b), the overall probabilistic mass of elements in S would
have already exceeded ∆. �

Now, let j ∈ S, and we show that Zj < min{Xj, 1
2 ·Dj}.

• Zj < Xj: Since Zj =
∑j′∈S Xj′−∆

|S| ≤ ∑j′∈S Xj′ − ∆ < Xj.

• Zj <
1
2 ·Dj: Recall that α < 2

3 , and thus ∆ > 1
2 ·

1
3 · δ = δ/6. Also, since S ⊆ LIGHT, for

every i ∈ S it holds that Xi ≤ (1 + 2 · αδ) ·Di ≤ δ
20 (where the second inequality relies

on the fact that Di ≤ δ
30 for every i ∈ [n], and on the fact that 2 · αδ < 1

2). It follows that

|S| ≥ ∆
maxi∈S{Xi}

>
δ/6
δ/20

> 3 .

24

Therefore,

Zj =
∑j′∈S Xj′ − ∆

|S| <
Xj

3
≤ 1 + 2αδ

3
·Dj

and note that 1+2αδ
3 < 1

3 +
1
6 = 1

2 .

Also, Z is a distribution, since by Conditions (1) and (2a) it holds that ∑i∈[n] Zi = 1, and
for every i ∈ [n] it holds that Zi ≥ 0. �

This completes the proof of Proposition 5.2.

The following proposition asserts that for distribution families {Dn}n∈N in which each
support element has Ω(1) probability mass it holds that {Dn} is Fδ-closed for every suffi-
ciently small δ > 0.

Proposition 5.4 (distributions with bounded probabilistic mass on elements in their support). For
ρ > 0, let {Dn}n∈N be a distribution family such that for every n ∈ N and i ∈ [n] it holds that
either Dn(i) ≥ ρ or Dn(i) = 0. Then, for any δ ∈ (0, ρ) and every n ∈ N, the property Π = {Dn}
is Fδ-closed.

Proof. Let δ ∈ (0, ρ) and n ∈ N. We prove that Π = {Dn} is Fδ-closed, relying on Fact 2.2:
For X /∈ {Dn} ∪ Fδ({Dn}), we show that there exists Z ∈ Fδ({Dn}) such that ∆(X, Z) < δ.

Since X 6= Dn and since X and Dn are distributions, there exist i, j ∈ [n] such that
X(i) > Dn(i) and X(j) < Dn(j). Since X /∈ Fδ({Dn}) it holds that

Dn(j)− X(j) ≤ ∆(X, Dn)

2
< ρ/2

and thus X(j) > Dn(j) − ρ/2 ≥ ρ/2, where the last inequality is by the hypothesis that
Dn(j) ≥ ρ. Similarly, X(i)−Dn(i) < ρ/2. Now, note that Dn(i) ≤ 1− ρ: This is the case
since if Dn is supported on a single element k ∈ [n] then Dn(i) = 0, and otherwise Dn is
supported on at least two elements each having mass at least ρ, and thus for every k ∈ [n] it
holds that Dn(k) ≤ 1− ρ. It follows that X(i) < 1− ρ/2.

Let ∆ = 1
2 · (δ− ∆(X, Dn)) and note that 0 < ∆ < ρ/2. We define Z as follows: Z(i) =

X(i) + ∆ < 1, and Z(j) = X(j)− ∆ > 0, and for every k /∈ {i, j} it holds that Z(k) = X(k).
Note that Z is a distribution, since the probabilistic mass of every i ∈ [n] is in [0, 1], and
∑i∈[n] Zi = ∑i∈[n] Xi = 1. Furthermore, ∆(Z, X) = 2 · ∆ < δ, and

∆(Z, Dn) = ∆(X, Dn) + |Z(i)−Dn(i)|+ |Z(j)−Dn(j)|
= ∆(X, Dn) + 2 · ∆
= δ

which implies that Z ∈ Fδ({Dn}), as needed.

The query complexity of the distribution testing problem is Θ̃(
√

n) (see, e.g., [Can15]). It
follows that the query complexity of the dual problem is lower bounded by Ω(

√
n). Also,

for every distribution family from the classes of distributions described in Propositions 5.2
and 5.4, the query complexity of the dual problem is Õ(

√
n).

25

6 Testing graphs that are far from having a property in the dense
graph model

The main result in this section is Theorem 1.10, which asserts that the dual problem of testing
k-colorability in the dense graph model is different than the original problem, but neverthe-
less the dual problem can be tested with O(1) queries. We also prove Proposition 1.11, which
asserts that the dual problems of testing the existence of a ρ-clique and of testing graph iso-
morphism are different from the original problems.

Let us first recall the setting of property testing in the dense graph model. The metric
space in this model consists of simple, undirected graphs, and the absolute distance between
two graphs on v vertices is the size of the symmetric difference between their edge sets. A
property of graphs is a set of graphs closed under taking isomorphisms of the graphs. A
graph on v vertices is represented by a corresponding string x ∈ {0, 1}n, where n = (v

2),
such that the ith edge is included in the graph if and only if xi = 1. A property of graphs
is accordingly denoted by Π = {Πn}n∈N , where N =

{
(v

2) : v ∈N
}

. The testing problem is
as follows: An ε-tester gets oracle access to x ∈ (v

2), corresponding to an input graph over v
vertices, and needs to decide whether the graph has the property, or whether it is ε · (v

2)-far
from any graph having the property.

6.1 Testing the property of being far from k-colorable

In this section we study the dual problem of k-colorability: For every ε > 0, we are interested
in the problem of ε-testing the set of graphs that are

(
ε · (v

2)
)
-far from being k-colorable, where

v is the number of vertices in the graph. We first show that this problem is different from its
original problem, and then show that its query complexity is O(1).

Proposition 6.1 (the set of k-colorable graphs is not Fδ-closed). For any k ≥ 2 and v ≥ k + 1,
let n = (v

2) and δ ≥ 2. Then, the set of graphs over v vertices that are k-colorable, denoted by
Πn ⊆ {0, 1}n, is not Fδ-closed.

Proof. We show a graph G such that ∆(G, Πn) = 1, and all neighbors of G are either in
Πn or adjacent to Πn. It follows that for every δ ≥ 2, there does not exist a path (i.e., a
sequence of graphs such that their bit-string representations induce a path in {0, 1}n) from G
to Fδ(Πn) such that every graph subsequent to G on the path is neither in Πn nor adjacent
to Πn. Relying on Proposition 2.3, this implies that Πn is not Fδ-closed.

Let G be a graph that contains a single clique on k + 1 vertices, and no other edges. Note
that G is not k-colorable, but that removing any edge from G turns G into a k-colorable
graph; thus, ∆(G, Πn) = 1. Now, let G′ be a graph that disagrees with G on a single edge
(i.e., ∆(G, G′) = 1); we want to prove that ∆(G′, Πn) ≤ 1. As mentioned, removing any edge
from G turns it into a k-colorable graph; thus, it suffices to show that any graph G′ obtained
by adding an edge to G satisfies ∆(G′, Πn) ≤ 1. To see this, note that any such graph is
comprised of a (k + 1)-clique (the same one that existed in G) and an additional edge; by
removing any edge from the clique, we obtain a k-colorable graph.

26

We now show that the query complexity of the dual problem of k-colorability is O(1). Loosely
speaking, our first step towards this result is to prove that graphs that are far-from-far from
being k-colorable are relatively close to being k-colorable. Specifically, for every sufficiently
small ε > 0 we show that there exists α ∈ (0, 1) such that for every sufficiently large n ∈ N
it holds that Fε·n(Fε·n(Πn)) ⊆

{
G : ∆(G, Πn) ≤ (α · ε) · n

}
. The meaning of this result is that

the dual problem of k-colorability reduces to the corresponding tolerant testing problem.

Proposition 6.2 (graphs that are far-from-far from being k-colorable are relatively close to being k-
colorable). Let Π = {Πn}n∈N be the property of k-colorable graphs, where Πn ⊆ {0, 1}n consists of
graphs over v vertices such that n = (v

2). Then, there exists α ∈ (0, 1) such that for every sufficiently
small ε > 0 and sufficiently large n ∈ N it holds that Fε·n(Fε·n(Πn)) ⊆

{
G : ∆(G, Πn) ≤

(α · ε) · n
}

.

Proof. We rely on Proposition 2.5, which implies the following: If there exists m = O(1) such
that every graph G satisfying ∆(G, Πn) < δ can be modified into a graph G′ that is farther
away from Πn, compared to G, by adding and/or removing at most m edges from G, then
the distance of any graph in Fδ(Fδ(Πn)) from Πn is at most

(
1− 1

m

)
· δ. It thus suffices to

show a way to modify every graph G that is not δ-far from being k-colorable into a graph G′

that is farther away from being k-colorable, with only O(1) changes.
Throughout the proof, it will be convenient to think of the number of vertices, denoted

by v, as the primary asymptotic parameter (recall that n = (v
2)). Let α =

(
1− 1

(k+1
2)

)
and

ε < 1
8·k2·(k+1) . For a sufficiently large v ∈ N, let n = (v

2) and δ = ε · n. According to
Proposition 2.5, it suffices to construct, for any graph G with v vertices satisfying ∆(G, Πn) <

δ, a corresponding graph G′ such that ∆(G, G′) < (k+1
2) and ∆(G′, Πn) ≥ ∆(G, Πn) + 1.

In the following arguments, given a graph G and a k-partition of its vertices, we say that
an edge (u, u′) is a violating edge if u and u′ are in the same cell of the partition. The distance
of G from being k-colorable is the minimum, over all k-partitions P of the vertices of G, of the
number of violating edges for P. We first prove that G has an independent set of size k + 1.

Lemma 6.2.1. Let G be a graph on v vertices satisfying ∆(G, Πn) < δ. Then, there exists an
independent set of size k + 1 in G.

Proof. Since the distance of G from being k-colorable is less than δ, there exists a k-partition of
the vertices of G with less than δ violating edges. Let U be the subgraph of G corresponding
to the biggest cell in this k-partition, and note that |U| ≥ v/k. The average degree of the
vertices in U is less than 2δ/|U| ≤ 2·ε·n

v/k < ε · k · v < |U|
8·(k+1) . Hence, at most half of the vertices

in U have degree more than |U|
4·(k+1) ; by dropping these vertices, we obtain a subgraph U′ such

that |U′| ≥ v
2·k , and every vertex in U′ has degree at most |U|

4·(k+1) ≤
|U′|

2·(k+1) .
Now, for i = 1, ..., k + 1, we choose a vertex in U′, and remove all of its neighbors from

U′. This process can indeed continue for k + 1 iterations, because after the ith iteration, the
number of vertices in the resulting subgraph is at least |U′| − i · |U′|

2·(k+1) . To conclude, observe
that the chosen k + 1 vertices form an independent set in G. �

27

Let G be a graph with v vertices such that ∆(G, Πn) < δ, and let I be an independent set
of size k + 1 in G. We modify G into G′ by adding (k+1

2) edges between all pairs of vertices
in I. To see that G′ is farther away from being k-colorable, compared to G, note that for any
k-partition P of the vertices of G, the number of violating edges for P in G′ is larger than the
number of violating edges for P in G. This is the case since at least two vertices in I are in
the same cell of P (because |I| = k + 1), forming a violating edge for P in G′, whereas no
edges were removed when modifying G to G′ (and thus all violating edges for P in G are
also violating edges for P in G′).

We now rely on a general result of Fischer and Newman [FN07], which asserts that in
the dense graph model, if a property Π is testable with O(1) queries, then the corresponding
tolerant testing problem can also be solved with O(1) queries. Since the original problem of
k-colorability can indeed be tested with O(1) queries [GGR98], the tolerant testing problem
can also be solved with O(1) queries, which implies (using Proposition 6.2) that the dual
problem can also be solved with O(1) queries.

Specifically, recall the following definition of tolerant testers and result from [FN07]. (The
definition replaces the standard pair of relative distances (ε, ε′) with one relative distance ε
and one multiplcative factor α < 1 such that ε′ = α · ε.)

Definition 6.3 ((α, ε)-estimation tester; see [FN07, Def. 2]). For a set Σ, and a property Π =
{Πn}n∈N such that Πn ⊆ Σn, and ε > 0, and α ∈ (0, 1), an (α, ε)-estimation tester for Π is a
probabilistic algorithm T that for every n ∈N and x ∈ Σn satisfies the following two conditions:

1. If ∆(x, Πn) ≤ α · ε · n, then Pr[Tx(1n) = 1] ≥ 2
3 .

2. If ∆(x, Πn) ≥ ε · n, then Pr[Tx(1n) = 0] ≥ 2
3 .

The query complexity of (α, ε)-estimation testers is defined analogously to Definition 2.1.

Theorem 6.4 (testing implies estimation in the dense graph model). Let Π be a property of graphs
in the dense graph model with query complexity O(1). Then, for every ε > 0 and α ∈ (0, 1), there
exists an (α, ε)-estimation tester for Π with query complexity O(1).

As mentioned above, Theorem 1.10 follows as a corollary of Proposition 6.2 and of Theo-
rem 6.4.

6.2 Testing the property of being far from having a large clique

In this section we show that the dual problem of testing ρ-clique is different from its original
problem. The dual problem is the following: For ρ ∈ (0, 1) and ε > 0, we are interested in
the problem of ε-testing the set of graphs that are

(
ε · (v

2)
)
-far from having a clique of size ρ · v,

where v is the number of vertices in the graph.

Proposition 6.5 (the set of graphs with a clique of size ρ · v is not Fδ-closed). For any ρ ∈
(
0, 1

2

]
,

and δ ≥ 2, and even v ≥ 4, the property of graphs on v vertices containing a clique of size ρ · v is not
Fδ-closed.

28

Proof. For ρ ∈
(
0, 1

2

]
, and δ ≥ 2, and an even v ≥ 4, and n = (v

2), let Π ⊆ {0, 1}n be the set
of graphs containing a clique of size ρ · v. Similarly to the proof of Proposition 6.1, it suffices
to show a graph G such that ∆(G, Π) = 1, and all neighbors of G are either in Π or adjacent
to Π (since we can then rely on Proposition 2.3 to deduce that Π is not Fδ-closed).

Let G = (V, E) be as follows. We bisect V = V1 ∪ V2, and since ρ ≤ 1
2 and v = |V| is

even, it holds that |V1| = |V2| ≥ dρ · ve. We define G such that it contains two vertex-disjoint
“almost cliques” of size dρ · ve, one in V1 and the other in V2, where an “almost clique” is a
clique from which one edge is omitted. Other than the two “almost cliques”, G contains no
additional edges. Since G contains no clique of size ρ · v, it follows that G /∈ Π. Also, since
we can create such a clique in G by adding a single edge, it follows that ∆(G, Π) = 1. Now,
let G′ be neighbor of G. We wish to prove that ∆(G′, Π) ≤ 1.

• If G′ was obtained by adding an edge to G, then either G′ ∈ Π (if the edge completed
one of the two “almost cliques” to a clique), or, otherwise, we can add an edge to G′

that completes one of the “almost cliques” to a clique, in which case ∆(G′, Π) = 1.
Either way, ∆(G′, Π) ≤ 1.

• Otherwise, G′ was obtained by removing an edge from one of the “almost cliques”.
However, in this case we can still add an edge to the other “almost clique”, turning it
to a clique of size dρ · ve. Thus ∆(G′, Π) = 1.

Since for every v ∈ N and n = (v
2) there exist graphs with v vertices that are Ω(n)-far

from having clique of size ρ · v (e.g., the graph with no edges), testing the dual problem of
k-colorability with one-sided error requires Ω(n) queries.

6.3 Testing the property of being far from isomorphic to a graph

In this section we show that the dual problem of testing graph isomorphism is different from
its original problem. For a graph G on v vertices that is predetermined and explicitly known
in advance, the dual problem consists of ε-testing the set of graphs that are

(
ε · (v

2)
)
-far from

being isomorphic to G.

Proposition 6.6 (graph families that induce properties that are not Fδ-closed). There exists a graph
family {Gn}n∈N such that for every δ ≥ 2 and n ∈ N , the property of graphs that are isomorphic to
Gn is not Fδ-closed.

Proof. For v ∈ N and n = (v
2), let Gn be a graph with v vertices and a single edge. We

will show that for every δ ≥ 2, the set Πn ⊆ {0, 1}n of graphs that are isomorphic to Gn is
not Fδ-closed. First note that Πn is exactly the set of vectors with Hamming weight 1 (i.e.,
Πn = B[∅, 1] \ {∅}); this is the case because each vector with Hamming weight 1 represents
a graph that is isomorphic to Gn, and all vectors representing graphs that are isomorphic to a
given graph have the same Hamming weight. To see that Πn is not Fδ-closed, note that any
path from ∅ /∈ Πn ∪ Fδ(Πn) must pass through Πn (i.e., through a vector with Hamming
weight 1). Relying on Proposition 2.3, Πn is not Fδ-closed.

29

Fischer and Matsliah proved [FM08] that the query complexity of this version of the graph
isomorphism is Θ̃(

√
v). Thus, the query complexity of the dual problem is lower bounded by

Ω(
√

v). Also, according to Theorem 1.5, and since the testing problem is not trivial, testing
the dual problem with one-sided error requires Ω(n) queries.

7 Testing graphs that are far from having a property in the bounded-
degree model

The main results in this section are Theorems 1.12 and 1.13, which assert that the dual prob-
lems of testing connectivity and of testing cycle-free graphs in the bounded-degree model
are both different from the original problems, but that both dual problems can nevertheless
be tested with O(1) queries. We also prove Proposition 1.14, which asserts that the dual
problem of testing bipartiteness in this model is not equivalent to the original problem.

Let us first recall the setting of property testing in the bounded-degree model. In this
model, we fix some function d : N→N, and the underlying metric space consists of graphs
over the vertex-set [n] such that the degree of every vertex in the graph is at most d(n).
Typically, we are interested in d = O(1). The absolute distance between a pair of graphs
in this model is the same as in the metric space of the dense graph model: The size of the
symmetric difference of their edge-sets. 9

A property of graphs in this model is a set of of graphs closed under taking isomorphisms
of the graphs, and is denoted by Π = {Πn}n∈N such that Πn consists of graphs over the
vertex-set [n]. A testing scenario for a property is as follows: Given an input graph over
[n] with degree bound d, we fix in advance an arbitrary ordering of the neighbors of each
vertex in the graph. Then, an ε-tester may issue queries of the form “who is the ith neighbor
of u ∈ [n]?”, to be answered either by the name of the neighbor (if such exists), or by an
indication that u has less than i neighbors. The tester needs to determine whether the graph
has the property or is (ε · d · n)-far from any graph having the property.

7.1 Testing the property of being far from connected

In this section we study the dual problem of connectivity: For every ε > 0, we are interested
in the problem of ε-testing the set of graphs that are (ε · d · n)-far from being connected. We
show that this problem is different from its original problem, but that the query complexity
of the dual problem is nevertheless poly(1/ε), as is the case for the original problem.

Preliminaries. For d ≥ 2 and n ∈ N, we will be concerned with graphs with maximal
degree d over the vertex-set [n]. Similar to many texts discussing the bounded-degree model
(see, e.g., [GR02, Sec. 2] and [BOT02, Sec. 3]), we allow multiple edges and self-loops, and
define that adding a self-loop to a vertex increases its degree by 2. The set of connected
graphs in this space is denoted by Πn. For ε > 0 and δ = ε · d · n, the standard problem of

9In some sources, each edge is counted twice towards the distance. For simplicity, we avoid doing so.

30

testing Πn consists of distinguishing between Πn and Fδ(Πn), and the dual problem consists
of distinguishing between Fδ(Πn) and Fδ(Fδ(Πn)).

High-level overview. Our starting point is a structural result, expressing the distance of
a graph from being connected in this space by a formula that consists of a weighted count
of the connected components of the graph and of the degrees of its vertices. This formula,
which is presented in Section 7.1.1, might be of independent interest. Then, in Section 7.1.2,
we use this formula to study the distance of graphs in Fδ(Fδ(Πn)) from Πn. First, we show
that Fδ(Fδ(Πn)) contains graphs that are not connected, and even graphs that are Ω(n)-far
from being connected. Nevertheless, the main point of Section 7.1.2 is that the distance of
graphs in Fδ(Fδ(Πn)) from being connected is at most (1− 1/4d) · δ. The latter fact implies
that graphs in Fδ(Fδ(Πn)) are significantly closer to being connected, compared to graphs
in Fδ(Πn); specifically, the distance gap is at least δ/4d = Ω(n).

It follows that in order to distinguish between graphs in Fδ(Πn) and graphs in Fδ(Fδ(Πn))
it suffices to estimate the distance of the graph from being connected in this space, up to an
additive error of Ω(n). In Section 7.1.3 we show that the latter task can be done, using only
O(1) queries. 10 This fact relies again on the combinatorial formula from Section 7.1.1; in
particular, the formula only contains (weighted) counts of connected components and of ver-
tex degrees, and we show that such counts can be efficiently estimated, using variations of
known sampling algorithms.

Notation. For a graph G over [n] and i ∈ [n], we define the number of free degrees of i in G
to be fd(i) = d− deg(i). The number of free degrees of a connected component c in G is the
sum of the free degrees of its vertices (i.e., fd(c) = ∑i∈c fd(i)), and the number of free degrees
of G is ∑i∈[n] fd(i). Also, for any k ∈ N, let Ck(G) be the set of connected components in G
with k free degrees; that is, Ck(G) = {c : fd(c) = k}. Also let Ck+(G) = {c : fd(c) ≥ k},
and let C(G) = C0+(G) be the set of all connected components in G. When G is clear from
context, we will usually use a short-hand notation, and denote Ck = Ck(G).

7.1.1 The distance of a graph from being connected in the bounded-degree model

The distance of a graph from being connected can be expressed using a formula that is based
on the number of connected components of various types (e.g., C0 and C2+) in the graph. We
first present this formula in the case when the degree bound d is even. In this special case
the formula simplifies to a nicer form. After that, we generalize the formula for any d ≥ 2.

10Marko and Ron [MR06] also considered the problem of estimating the distance of a graph from being con-
nected. However, they were interested in distances in the general sparse graphs model, whereas we are concerned
with distances in the bounded-degree model. The distance of a graph from being connected in both models can
be significantly different (see Lemma 7.4 and [MR06, Sec. 2.1]).

31

Warm-up: Even degree bound d. For a graph G with maximal degree d, where d is even,
let

wc(G)
def
== 2 ·

∣∣C0(G)
∣∣+ ∣∣C2+(G)

∣∣− 1 (7.1)

be the weighted count of connected components in G. We will see (in Lemma 7.3) that the
weighted count of components in a graph equals the distance of the graph from being con-
nected. But let us first explain the intuition behind the formula.

Given a graph G that is not connected, how can we modify it into a connected graph
using the least number of edge modifications? If every component in the graph had at
least two free degrees, then we could connect all r components, by adding r− 1 edges (e.g.,
by considering an ordered sequence of the r components, and connecting vertices from each
pair of subsequent components in the sequence). However, components in C0 are “saturated”
with edges – we cannot add any more edges to vertices in them without violating the degree
bound d. Thus, to connect any such component to the rest of the graph, we must first remove
an edge from the component. The intuition for the formula in Eq. (7.1) is that it expresses the
number of edge changes to the components in C0 ∪ C2+ in the aforementioned modification
procedure (i.e.,

∣∣C0
∣∣+ (

∣∣C0
∣∣+ ∣∣C2+

∣∣− 1)).
Indeed, we did not account at all for components in C1. However, when d is even, it

holds that
∣∣C1
∣∣ = 0. This is the case since in a connected component c, the sum of vertex

degrees cannot be d · |c| − 1, which (given that d is even) is an odd number. The treatment of
connected components in C1 is what will create complications later, in the case of a general
d.

Before formally proving that ∆(G, Πn) = wc(G), we first state and prove two auxiliary
claims, which will be of use also in the general case.

Claim 7.1. Let G be a graph with r > 1 connected components, and G′ ∈ Πn be a connected graph.
Then, there are at least r− 1 edges in G′ that do not exist in G.

Proof. Fix some connected component c1 in G. Since G′ is connected, there is at least one edge
in G′ between a vertex in c1 and a vertex in [n] \ c1, and this edge is missing in G. Denote by
c2 the connected component (in G) of the end-point of the said edge in [n] \ c1. Then, there
must be at least one edge in G′ connecting c1 ∪ c2 to [n] \ (c1 ∪ c2), and this edge is missing in
G. By iteratively applying this argument r− 1 times (such that for the tth iteration, we argue
that the vertices in

⋃
j∈[t] cj must be connected to [n] \ ⋃j∈[t] cj in G′), we get that r− 1 edges

in G′ are missing in G. �

Claim 7.2. For d ≥ 2, let G be a graph with maximal degree d over [n], and let c ∈ C0(G). Then,
there exists an edge in c such that removing it does not disconnect c.

Proof. Let mst(c) be an arbitrary minimum spanning tree of c. The number of edges in mst(c)
is |c| − 1. Since fd(c) = 0 and d ≥ 2, the number of edges in c is 1

2 · d · |c| ≥ |c|. Thus, there
exists an edge in c that is not in mst(c), and removing it does not disconnect c. �

We now prove that in the special case where d is even, the combinatorial formula in
Eq. (7.1) indeed expresses the distance of a graph from being connected.

32

Lemma 7.3. For an even d ≥ 2 and a sufficiently large n, every graph G with maximal degree d
over [n] that is not connected satisfies ∆(G, Πn) = wc(G).

Proof. Let G be a graph with maximal degree d over [n]. We first show that ∆(G, Πn) ≤
wc(G): We modify G to a connected graph, by adding and removing at most wc(G) edges. For
the modification, we first remove an edge from each connected component c ∈ C0; according
to Claim 7.2, this modification can be done without disconnecting any component in C0. As
explained above, since C1 = ∅, at this point all connected components have at least two free
degrees. Then, we add edges between the connected components in the graph; specifically,
fixing some arbitrary order of the components c0, c1, ..., cr, where r =

∣∣C0
∣∣+ ∣∣C2+

∣∣, we add
an edge between a vertex in ci that has free degrees and a vertex in ci+1 that has free degrees,
for every i ∈ [r]. The first step amounts to

∣∣C0
∣∣ edge removals, and the second step amounts

to
∣∣C0
∣∣+ ∣∣C2+

∣∣− 1 edge additions. Overall, we modified 2 ·
∣∣C0
∣∣+ ∣∣C2+

∣∣− 1 = wc(G) edges
in G to obtain a connected graph.

To show that ∆(G, Πn) ≥ wc(G), we fix an arbitrary connected graph G′ ∈ Πn, and show
that ∆(G, G′) ≥ wc(G). Relying on Claim 7.1, we deduce that there are

∣∣C0(G)
∣∣+ ∣∣C2+(G)

∣∣−
1 edges in G′ that do not exist in G. Now, for every c ∈ C0(G), there must be an edge
between its vertices (in G) that does not exist in G′ – otherwise, the component cannot be
connected to the rest of the graph in G′. Thus, the number of edges in G that do not exist in
G′ is at least

∣∣C0(G)
∣∣. Overall, the symmetric difference between the edge-sets of G and G′

is of size at least 2 ·
∣∣C0(G)

∣∣+ ∣∣C2+(G)
∣∣− 1 = wc(G). Thus, for every G′ ∈ Πn it holds that

∆(G, G′) ≥ wc(G), which implies that ∆(G, Πn) ≥ wc(G).

The case of a general degree bound d. As mentioned before, in the case of a general d it
does not necessarily hold that

∣∣C1
∣∣ = 0, and this fact complicates things. In the general case,

the weighted count of connected components in a graph G is defined as follows:

wc(G)
def
== 2 ·

∣∣C0∣∣+ ∣∣∣C1+
∣∣∣− 1 + max

{
0,
∣∣∣C1+

∣∣∣− 1−
⌈
fd(G)

2

⌉}
. (7.2)

First observe that when
∣∣C1
∣∣ = 0 (and in particular, when d is even), the formula in

Eq. (7.2) agrees with the formula in Eq. (7.1). This is true because in this case
∣∣C1+

∣∣ = ∣∣C2+
∣∣

and the value of the right-most expression in Eq. (7.2) is zero (because fd(G) ≥ 2 ·
∣∣C2+

∣∣,
which implies that

∣∣C2+
∣∣ − ⌈ fd(G)

2

⌉
≤ 0). The following lemma, which is the main result

in this section, asserts that wc(G) equals the distance of G from being connected also in the
general case.

Lemma 7.4. For any d ≥ 2 and n ∈ N, every graph G with maximal degree d over [n] that is not
connected satisfies ∆(G, Πn) = wc(G).

The proof of Lemma 7.4 relies mostly on ideas similar to the ideas in the proof of
Lemma 7.3, but it is significantly more tedious (reflecting the more complex expression for
wc(G)). Readers that are not interested in the technical details can safely skip the proof, and
continue reading from Section 7.1.2.

33

Proof of Lemma 7.4. Let us begin with a short overview of the proof. Given a graph G /∈ Πn,
we wish to show that ∆(G, Πn) = wc(G). To show that ∆(G, Πn) ≤ wc(G), we will present
an algorithm that modifies G to a connected graph by at most wc(G) edge removals and
additions. This algorithm will be a natural one, extending the basic algorithm (for the case
of an even d) described in the proof of Lemma 7.3. The analysis of the algorithm will be
relatively straightforward, but will involve some tedious calculations.

To show that ∆(G, Πn) ≥ wc(G), we will show that the symmetric difference of the edge-
set of G and of any G′ ∈ Πn is of size at least wc(G). This will be done relying on two simple
observations. The first, similar to the proof of Lemma 7.3, is that an edge must be removed
from any connected component in C0(G) in order to obtain a connected graph. The second
observation is that the number of free degrees in a graph must be non-negative, otherwise
it means that a vertex in the graph has violated the degree bound d. Thus, if adding to G
edges that are missing in order to make it connected causes its number of free degrees in the
graph to become negative, it follows that edges need to also be removed from G in order to
obtain a graph that does not violate the degree bound. For details, see Claim 7.4.2.

The actual proof. Let G /∈ Πn be a graph with maximal degree d over [n]. For technical
reasons, it will be useful to work with an equivalent definition for wc(G), as follows. Let

aux(G)
def
==

∣∣C1+
∣∣ − 1 −

⌈
fd(G)

2

⌉
be an auxiliary term; then, Eq. (7.2) is equivalent to the

following definition:

wc(G)
def
==

{
2 ·
∣∣C0
∣∣+ ∣∣C1+

∣∣− 1 aux(G) ≤ 0

2 · (|C| − 1)−
⌈
fd(G)

2

⌉
aux(G) > 0

. (7.3)

We first show that ∆(G, Πn) ≤ wc(G). In particular, we show that the following algorithm
modifies G to a connected graph, by adding and removing at most wc(G) edges.

Algorithm 1. On an input graph G /∈ Πn, do the following:

1. Remove an edge from every connected component in C0, without discon-
necting any of the components. (Recall that this is possible according to
Claim 7.2.)

2. Connect the components that now have 2 or more free degrees (i.e., all com-
ponents that were originally in C0 ∪ C2+). Specifically, fix an arbitrary order
of the components, c1, c2, ..., cr, and add an edge between ci and ci+1 for ev-
ery i ∈ [r− 1]. This does not violate the degree bound d, since after Step (1)
all these components have at least 2 free degrees.

3. At this point, the graph consists of a connected component that contains all
vertices that were originally in C0 ∪ C2+, which we call the main connected
component and denote by c0; and an additional collection of components,
that is C1. Execute the following loop: While fd(c0) > 0 and the graph is not
connected, take an arbitrary vertex i ∈ c0 such that fd(i) > 0, and connect i
to a suitable vertex in a connected component c 6= c0 such that fd(c) = 1.

34

4. If the previous step resulted in a connected graph, then we are done. Other-
wise, at this point the graph consists of the (extended) main component c0,
which now has no free degrees (i.e., fd(c0) = 0), and an additional collection
S ⊆ C1 of connected components. Split S into pairs of components, and for
each pair of components, do the following step: Remove an edge from c0,
thereby freeing two free degrees in c0 without disconnecting it (this is possi-
ble according to Claim 7.2, and since fd(c0) = 0 at this point); and connect
each of the pair of components to a vertex in c0 that now has a free degree
(thereby reducing the free degrees in c0 to zero again). If after finishing the
pairs in S there is a remainder of a single (unpaired) component, remove
another edge from c0 and connect the last component to c0.

When Algorithm 1 finishes its execution, the resulting graph is a connected graph that
does not violate the degree bound d. It is thus left to show that the number of edge modifi-
cations that Algorithm 1 makes is at most wc(G).

Claim 7.4.1. On any input graph G /∈ Πn, Algorithm 1 makes wc(G) edge modifications to G.

Proof. First note that in Step (1) we remove
∣∣C0
∣∣ edges, whereas in Step (2) we add

∣∣C0
∣∣+∣∣C2+

∣∣− 1 edges. In order to account for the number of modifications in Steps (3) and (4) we
need to make some preliminary calculations about the state of the graph when these steps of
the algorithm are executed. The actual count of the number of modifications in these steps
will be based on a case-analysis, depending on the said calculations.

In the description of Step (3), we defined a main component c0 that consists of all vertices
that originally resided in C0 ∪ C2+. We start by calculating the number of free degrees in c0
in the beginning of Step (3), which we denote by fd(St3)(c0). In the beginning of Step (2),
the vertices in c0 had ∑c∈C2+ fd(c) + 2 ·

∣∣C0
∣∣ free degrees; and during Step (2) we added∣∣C0

∣∣ + ∣∣C2+
∣∣ − 1 edges between the vertices of c0, lowering the free degrees of c0 by twice

this much. Therefore, in the beginning of Step (3) it holds that

fd(St3)(c0) = ∑
c∈C2+

fd(c) + 2 ·
∣∣C0∣∣− 2 ·

(∣∣C0∣∣+ ∣∣C2+∣∣− 1
)

= fd(G)−
∣∣∣C1
∣∣∣− 2 ·

∣∣C2+∣∣+ 2 . (7.4)

If fd(St3)(c0) ≥
∣∣C1
∣∣, then the loop in Step (3) will end when the graph is connected; and

otherwise, the loop will end after fd(St3)(c0) iterations, and we will continue to Step (4). In
the latter case, the number of additional components with a single free degree that remain

35

in the beginning of Step (4) is |S| =
∣∣C1
∣∣− fd(St3)(c0). Relying on Eq. (7.4), it follows that:⌈

|S|
2

⌉
=

⌈∣∣C1
∣∣− fd(St3)(c0)

2

⌉

=

⌈∣∣C1
∣∣− (fd(G)−

∣∣C1
∣∣− 2 ·

∣∣C2+
∣∣+ 2

)
2

⌉

=
∣∣∣C1+

∣∣∣− 1−
⌈
fd(G)

2

⌉
(7.5)

= aux(G) . (7.6)

We now count the number of modifications in Steps (3) and (4), based on a case analysis,
depending on whether fd(St3)(c0) ≥

∣∣C1
∣∣ (i.e., the algorithm has not executed Step (4)).

• Case 1: fd(St3)(c0) ≥
∣∣C1
∣∣. In this case, the loop in Step (3) ends after

∣∣C1
∣∣ iterations,

with all components in C1 being connected to the main component. The overall number
of modifications in this case equals 2 ·

∣∣C0
∣∣ + ∣∣C2+

∣∣ − 1 +
∣∣C1
∣∣ = 2 ·

∣∣C0
∣∣ + ∣∣C1+

∣∣ − 1.

Also, relying on the fact that
⌈
|C1|−fd(St3)(c0)

2

⌉
= aux(G) (by Eq. (7.6)) and on the fact

that fd(St3)(c0) ≥
∣∣C1
∣∣, it follows that aux(G) ≤ 0. According to Eq. (7.3), this implies

that wc(G) = 2 ·
∣∣C0
∣∣ + ∣∣C1+

∣∣ − 1. Thus, in this case, Algorithm 1 performed wc(G)
modifications to G.

• Case 2: fd(St3)(c0) <
∣∣C1
∣∣. In this case, the loop in Step (3) ends after fd(St3)(c0)

iterations, when fd(c0) = 0, and we continue to Step (4). In Step (4), we are left
with |S| =

∣∣C1
∣∣− fd(St3)(c0) > 0 components with a single free degree, alongside the

extended main component c0. For every pair of components in S, we remove one edge
and add two, and for a possible last remainder component, we remove an edge and
add an edge; this amounts to 3

2 ·
⌊
|S|
2

⌋
+ 2 ·

(⌈
|S|
2

⌉
−
⌊
|S|
2

⌋)
= |S|+

⌈
|S|
2

⌉
edges. Overall,

the number of modifications in this case is

2 ·
∣∣C0∣∣+ ∣∣C2+∣∣− 1 + fd(St3)(c0) + |S|+

⌈
|S|
2

⌉
= 2 ·

∣∣C0∣∣+ ∣∣∣C1
∣∣∣+ ∣∣C2+∣∣− 1 +

⌈
|S|
2

⌉
(|S| =

∣∣C1
∣∣− fd(St3)(c0))

= 2 ·
∣∣C0∣∣+ ∣∣∣C1+

∣∣∣− 1 +
(∣∣∣C1+

∣∣∣− 1−
⌈
fd(G)

2

⌉)
(by Eq. (7.5))

= 2 · (|C| − 1)−
⌈
fd(G)

2

⌉
.

Now, since |S| > 0, according to Eq. (7.6) it follows that aux(G) > 0, which (according
to Eq. (7.3)) implies that wc(G) = 2 · (|C| − 1)−

⌈
fd(G)

2

⌉
. Thus, in this case it also holds

that Algorithm 1 performed wc(G) modifications to G.

36

This completes the proof of Claim 7.4.1. �

For the other direction, we prove that for any graph G that is not connected it holds that
∆(G, Πn) ≥ wc(G).

Claim 7.4.2. Let G /∈ Πn. Then, for every connected graph G′ ∈ Πn it holds that ∆(G, G′) ≥
wc(G).

Proof. Our proof relies on a case analysis, according to the value of aux(G).

Case 1: aux(G) ≤ 0. According to Eq. (7.3), we have wc(G) = 2 ·
∣∣C0
∣∣+ ∣∣C1+

∣∣− 1. Relying
on Claim 7.1, there exist |C(G)| − 1 =

∣∣C0(G)
∣∣+ ∣∣C1+(G)

∣∣− 1 edges in G′ that do not exist
in G. Also, for every component c ∈ C0(G), there must exist an edge between its vertices (in
G) that does not exist in G′ – otherwise, the component cannot be connected to the rest of
the graph in G′. Thus, the number of edges in components in C0(G) that do not exist in G′

is at least
∣∣C0(G)

∣∣. Therefore, the symmetric difference between the edge-sets of G and of G′

is of size at least 2 ·
∣∣C0
∣∣+ ∣∣C1+

∣∣− 1 = wc(G), which finishes the first case.

Case 2: aux(G) > 0. According to Eq. (7.3), we have wc(G) = 2 · (|C(G)| − 1) −
⌈
fd(G)

2

⌉
.

Relying on Claim 7.1, there exist |C(G)| − 1 edges in G′ that do not exist in G. We now
show that there also exist many edges in G that do not exist in G′, relying on a count of free
degrees in G.

Consider the graph G′′, obtained by adding to G the said |C(G)| − 1 edges in G′ that do
not exist in G, disregarding the degree bound d. The number of free degrees in G′′ is:

fd(G′′) = fd(G)− 2 · (|C(G)| − 1) . (7.7)

Combining Eq. (7.7) with the assumption that aux(G) > 0, we get that fd(G′′) < 0:

0 < aux(G) =
∣∣∣C1+(G)

∣∣∣− 1−
⌈
fd(G)

2

⌉
≤ |C(G)| − 1− fd(G)

2

= −1
2
· fd(G′′) .

The fact that fd(G′′) < 0 implies that there exist vertices in G′′ that violate the degree
bound d. Since removing a single edge from G′′ creates two additional free degrees in the
graph, it follows that we need to remove at least

⌈
|fd(G′′)|

2

⌉
edges from G′′ in order to obtain

a graph in which the degree bound is not violated, and in particular in order to obtain the
graph G′. Thus, using Eq. (7.7), the number of edges in G′′ that do not exist in G′ is at least⌈

−fd(G′′)
2

⌉
= (|C(G)| − 1)−

⌈
fd(G)

2

⌉
.

37

Note that the aforementioned edges (that exist in G′′ but not in G′) are also edges in G
that do not exist in G′. This is the case since the only edges that exist in G′′ but not in G
are the ones that we added, which also exist in G′. Hence, overall, the size of the symmetric
difference between the edge-sets of G and of G′ is of size at least:

|C(G)| − 1 +
⌈
−fd(G′′)

2

⌉
= wc(G)

which implies that ∆(G, G′) ≥ wc(G), and finishes the second case. Hence, for every G′ ∈ Πn
it holds that ∆(G, G′) ≥ wc(G). �

Claim 7.4.2 implies that for every G /∈ Πn it holds that ∆(G, Πn) ≥ wc(G). This completes
the proof of Lemma 7.4.

7.1.2 Graphs that are far-from-far from being connected.

In this section we prove that Fδ(Fδ(Πn)) contains graphs that are not connected, and even
graphs that are Ω(n)-far from being connected. On the other hand, we show that the distance
of any such graph from being connected is at most

(
1− 1

4d

)
· δ.

Proposition 7.5 (the set of connected graphs is not Fδ-closed). For any d ≥ 3, and δ ≥ 2, and
sufficiently large n, the set of connected graphs Πn is not Fδ-closed. Moreover, for any d ≥ 6, and
ε > 0, and sufficiently large n, and δ = ε · d · n, it holds that Fδ(Fδ(Πn)) contains graphs that are
Ω(n)-far from Πn.

Proof. For the first part of the statement, similarly to the proofs of Propositions 6.1 and 6.5,
it suffices to show a graph G such that ∆(G, Πn) = 1, and all neighbors of G (i.e., graphs
that disagree with G on one edge) are either in Πn or adjacent to Πn. The graph G consists
of two disjoint cycles. Observe that G is not connected, but one can connect the two cycles
by adding an edge (since d ≥ 3); thus, ∆(G, Πn) = 1. However, after adding any edge to
G, or removing any edge from it, the resulting graph G′ still satisfies ∆(G′, Πn) ≤ 1: This is
since the addition of an edge or removal of an edge does not disconnect either of the two
cycles, and thus we can still connect the cycles by adding an edge between them. Relying on
Proposition 2.3, we deduce that Πn is not Fδ-closed.

For the “moreover” part, we need the following definition. For m ∈ N, a connected
graph H is m-resilient if for any r ∈ N, splitting H into 1 + r connected components cannot
be done with less than m · r edge removals from H. The intuitive meaning of this definition
is that in order to split an m-resilient graph to two components, we need to remove m edges
from the graph, and to split either of these two components, we must remove an additional
m edges from that component (and so forth); that is, intuitively, whenever splitting an m-
resilient graph to connected components, each of the components is also m-resilient. Note
that the notion of m-resiliency extends the notion of m-edge-connectivity: The latter means
that the graph cannot be disconnected by removing less than m edges, whereas to achieve
the former, we wish that after disconnecting the graph, this feature will also be preserved in

38

each resulting connected component. An example for an m-resilient graph is a “multi-path”,
that is a path in which any two adjacent vertices are connected by m parallel edges.

Let d ≥ 6, let ε > 0, let n be sufficiently large, and let δ = ε · d · n. Our construction of
a graph G ∈ Fδ(Fδ(Πn)) such that ∆(G, Πn) = Ω(n) is as follows. The graph G consists of
δ
6 connected components that are each bd/2c-resilient and have maximal degree at most d
(e.g., each component is a “multi-path” as above). According to Claim 7.1, the distance of G
from being connected is at least δ

6 − 1 = Ω(n).
Now, let H ∈ Fδ(Πn). Relying on Lemma 7.4 and on Eq. (7.2), we have

δ ≤ ∆(H, Πn) = wc(H) ≤ 2 · |C .(H)|

and hence the number of connected components in H is at least δ
2 . Since G consists of

connected components that are bd/2c-resilient, creating additional δ
2 −

δ
6 = δ

3 connected

components in G requires the removal of at least
⌊

d
2

⌋
· δ

3 ≥ δ edges from G (where the
inequality is since d ≥ 6). Thus, the symmetric difference between the edge-sets of H and
G is of size at least δ, which implies that ∆(G, H) ≥ δ. It follows that G is δ-far from any
H ∈ Fδ(Πn), which implies that G ∈ Fδ(Fδ(Πn)).

Nevertheless, building on Lemma 7.4, we now show that the distance of graphs in
Fδ(Fδ(Πn)) from Πn is (1−Ω(1)) · δ.

Proposition 7.6 (graphs that are far-from-far from being connected are relatively close to being con-
nected). Let d ≥ 2, let ε < 1

2·d , let n be a sufficiently large integer and let δ = ε · d · n. Then, for
every graph G ∈ Fδ(Fδ(Πn)), it holds that ∆(G, Πn) <

(
1− 1

4d

)
· δ.

Proof. Relying on Proposition 2.5, it suffices to show a way to modify every graph G that is
not δ-far from being connected into a graph G′ that is farther away from being connected,
with only 4 · d changes. The intuition for the modification procedure (of G to G′) is as
follows. Recall that, according to Lemma 7.4 and Eq. (7.2), the distance of a graph from
being connected is proportional to the number of its connected components, and (in some
cases) inversely proportional to the number of free degrees in the graph. Accordingly, to
modify a graph G to a graph that is farther away from being connected, we remove edges
from G in order to isolate a small connected component, and then, in order to decrease the
number of free degrees to its original value, we add edges within the new component as well
as between vertices of the original connected component (from which the new component
was detached). This modification procedure is depicted in the proof of the following claim.

Claim 7.6.1. For every G /∈ Fδ(Πn) there exists G′ such that ∆(G, G′) ≤ 4 · d and ∆(G′, Πn) ≥
∆(G, Πn) + 1.

Proof. First note that there exists a connected component c in G with at least 3 vertices. This is
the case since otherwise, the number of connected components in G is at least n/2 > ε · d · n
(because ε < 1

2·d), and relying on Claim 7.1, it follows that G is δ-far from being connected,
which contradicts the hypothesis.

39

Warm-up: When d is even. Let us first consider the case in which the degree bound d is
even; this case uses ideas similar to the ideas in the proof for the case of a general degree
bound d, but avoids many tedious technicalities. Recall that, according to Lemma 7.3, in this
case the distance of a graph H from being connected is ∆(H, Πn) = 2 ·

∣∣C0(H)
∣∣+ ∣∣C2+(H)

∣∣−
1. To modify G into G′, we isolate two vertices i, j ∈ [n] from the aforementioned connected
component c, by removing all edges incident to them; and then we add d multiple edges
between these two vertices. Overall, we removed at most 2 · d edges, and added d edges, and
so ∆(G, G′) ≤ 3 · d.

Compared to G, the modified graph G′ has an additional component with no free degrees
(the component {i, j}), and the vertices in c \ {i, j} have more free degrees. Thus, two cases
are possible: Either it is that c originally had free degrees in G (i.e., c ∈ C2+(G)), in which
case

∣∣C0(G′)
∣∣ = ∣∣C0(G)

∣∣+ 1 and
∣∣C2+(G′)

∣∣ ≥ ∣∣C2+(G)
∣∣; or it is the case that c originally had

no free degrees in G, in which case
∣∣C0(G′)

∣∣ = ∣∣C0(G)
∣∣ and

∣∣C2+(G′)
∣∣ ≥ ∣∣C2+(G)

∣∣+ 1. In
both cases it holds that ∆(G′, Πn) ≥ ∆(G, Πn) + 1.

The general case. For the case of a general degree bound d, we construct the graph G′

is as follows. Fix a connected component c with three or more vertices, and two vertices
i, j ∈ c. Remove all edges incident to i and to j from the graph, and add d multiple edges
between i and j. Thus, the component c has split to two non-empty sets: c0 = c \ {i, j} and
c1 = {i, j}. Now, note that the first removal step has increased the number of free degrees of
vertices in c0, by an amount denoted by m ≤ 2 · d (i.e., m is the number of edges in G that
connected i and j to vertices in c \ {i, j}). Consequently, at this point we can add bm/2c edges
between vertices in c0 (some of these edges might be multiple edges and/or self-loops). This
completes the modification of G to G′.

Overall, we removed at most 2 · d edges from G, and added at most 2 · d edges to it, to
obtain the graph G′; thus, ∆(G, G′) ≤ 4 · d. Therefore we only need to prove that ∆(G′, Πn) ≥
∆(G, Πn) + 1. To do this, we will track the changes made to the graph, and in particular the
changes to its number of free degrees and the changes to its connected components.

Fact 7.6.1.1. After the modification of G to G′, the number of free degrees in the graph has not
increased; that is, fd(G′) ≤ fd(G).

Proof. Denote by degG(i) and degG(j) the degrees of i and of j, respectively, in G (i.e., before
the modification), and note that

fd(G′)− fd(G) = m + degG(i) + degG(j)− 2 · bm/2c − 2 · d . (7.8)

If degG(i) + degG(j) < 2d, then the expression in Eq. (7.8) is at most zero. Otherwise, if
degG(i) = degG(j) = d, then m must be an even number. This is the case since, denoting
the number of edges (in G) between i and j by f , then 2d = deg(i) + deg(j) = m + 2 f ,
which implies that m = 2 · (d− f). Thus, in this case, 2 · bm/2c = m, which implies that the
expression in Eq. (7.8) equals zero. �

Let us see what happened to the connected components of G when modified to G′. The
only connected component in G that was changed is c, which was split into at least two

40

connected components: The component c1 = {i, j}, which has no free degrees in G′, and
the component or components containing the vertices in c0 = c \ {i, j}. Thus, there are
more connected components in G′, and at least one of them (i.e., c1) is without free degrees.
Combined with Fact 7.6.1.1, this will now allow us to prove that ∆(G′, Πn) ≥ ∆(G, Πn) + 1.

For any graph H, denote ϕ1(H) = 2 ·
∣∣C0(H)

∣∣+ ∣∣C1+(H)
∣∣− 1 and ϕ2(H)

def
==

∣∣C1+(H)
∣∣−

1−
⌈
fd(H)

2

⌉
. Then, according to Lemma 7.4, it holds that:

∆(H, Πn) = ϕ1(H) + max {0, ϕ2(H)} . (7.9)

We prove that ∆(G′, Πn) ≥ ∆(G, Πn) + 1 by relying on Eq. (7.9), and considering three
separate cases.

Case 1:
∣∣C0(G′)

∣∣ ≥ ∣∣C0(G)
∣∣+ 2. First note that

∣∣C1+(G′)
∣∣ ≥ ∣∣C1+(G)

∣∣− 1, since the mod-
ification of G to G′ is equivalent to the removal of one connected component (i.e., of c) and
the addition of two or more connected components (i.e., of c1 and of the components con-
taining the vertices in c \ {i, j}). Relying on this fact, and on Fact 7.6.1.1, it follows that
ϕ2(G′) ≥ ϕ2(G)− 1. However, since

∣∣C0(G′)
∣∣ ≥ ∣∣C0(G)

∣∣+ 2, and relying again on the fact
that

∣∣C1+(G′)
∣∣ ≥ ∣∣C1+(G)

∣∣− 1, it follows that ϕ1(G′) ≥ ϕ1(G) + 3. Thus, by Eq. (7.9), it holds
that ∆(G′, Πn)− ∆(G, Πn) ≥ 2.

Case 2:
∣∣C0(G′)

∣∣ = ∣∣C0(G)
∣∣. Since we know that an additional connected component with

no free degrees was created in G′ (i.e., the component c1), this case is possible only if the
component c was originally (i.e., in G) a component without free degrees, and after the
modification, the connected components that consist of vertices in c0 = c \ {i, j} all have
free degrees. Thus, in this case, it holds that

∣∣C1+(G′)
∣∣ ≥ ∣∣C1+(G)

∣∣ + 1. It follows that
ϕ1(G′) ≥ ϕ1(G) + 1, and, relying on Fact 7.6.1.1, that ϕ2(G′) > ϕ2(G). Overall, we get that
∆(G′, Πn)− ∆(G, Πn) ≥ ϕ1(G′)− ϕ1(G) ≥ 1.

Case 3:
∣∣C0(G′)

∣∣ = ∣∣C0(G)
∣∣+ 1. In this case it necessarily holds that

∣∣C1+(G′)
∣∣ ≥ ∣∣C1+(G)

∣∣.
To see that this is true, assume otherwise; it follows that c was a component with free
degrees in G, but that no component that consists of vertices in c0 has free degrees in G′.
However, this implies that there are at least two additional components without free degrees
in G′, compared to G (the component c1, and a component containing vertices in c0), which
contradicts the hypothesis of the current case. Therefore, it follows that ϕ1(G′) ≥ ϕ1(G) +
2, and (relying on Fact 7.6.1.1) that ϕ2(G′) ≥ ϕ2(G). Overall, we get that ∆(G′, Πn) ≥
∆(G, Πn) + 2. �

This completes the proof of Proposition 7.6.

A comment about non-simple graphs. Recall that in the preliminary definitions of the
current section (i.e., Section 7.1), we assumed that the space of graphs we are dealing with
also contains graphs with multiple edges and self-loops. Throughout Section 7.1.2, we relied

41

on the assumption that such non-simple graphs exist in our metric space. Most notably, we
relied on this assumption in Claim 7.6.1, which was the main step in proving Proposition 7.6.
We believe that it is possible to prove a claim similar to Claim 7.6.1, and thus also obtain a
result similar to Proposition 7.6, without relying on the existence of non-simple graphs, but
it was not our focus in this work.

7.1.3 The dual problem of connectivity in the bounded-degree model

Proposition 7.5 implies that the dual problem of connectivity in the bounded-degree model is
“very different” from its original problem, in the sense that Fδ(Fδ(Πn)) contains graphs that
are Ω(n)-far from Πn. However, Proposition 7.6 implies that there is a gap of 1

4d · δ = Ω(n)
between the distance of graphs in Fδ(Πn) from Πn and the distance of graphs in Fδ(Fδ(Πn))
from Πn. Thus, to show a tester for the dual problem, it suffices to show that the distance of
a graph from Πn can be estimated using a small number of queries.

Relying on Lemma 7.4, for a given graph G, this is equivalent to estimating the following
quantity:

2 ·
∣∣C0∣∣+ ∣∣∣C1+

∣∣∣− 1 + max
{

0,
∣∣∣C1+

∣∣∣− 1−
⌈
fd(G)

2

⌉}
. (7.10)

We will see that each of the terms in Eq. (7.10) can be estimated up to an additive error of
γ · n, for any γ > 0, using only poly(1/γ) queries.

A preliminary discussion of the estimation algorithm. First note that the term fd(G) can
be estimated by straightforward sampling. This is the case since fd(G) = d · n−∑i∈[n] deg(i),
and the average degree of a vertex in the graph can be estimated, with high probability, by
outputting the average degree in a sample of uniformly chosen vertices.

It is thus left to handle the terms
∣∣C0
∣∣ and

∣∣C1+
∣∣; for simplicity, we focus on the term

∣∣C0
∣∣

(the term
∣∣C1+

∣∣ can be handled very similarly). The estimation algorithm for
∣∣C0
∣∣ is based

on the algorithm of Chazelle, Rubinfeld, and Trevisan [CRT05] for estimating the number
of connected components in a graph. In particular, for every vertex i ∈ [n], let c(i) be the
connected component in which i resides, and let

s(i) =

{
1
|c(i)| c(i) ∈ C0

0 c(i) /∈ C0
.

For a fixed component c ∈ C0, we have ∑i:c(i)=c s(i) = 1. Therefore, we get that ∑i∈[n] s(i) =∣∣C0
∣∣. Hence, to estimate

∣∣C0
∣∣, it suffices to estimate the average value of s(i), over all i ∈ [n].

Given a fixed i ∈ [n], we can compute s(i) using |c(i)| · d queries, by running a BFS from i,
and counting the number of free degrees in its connected component. When |c(i)| = O(1),
this requires only O(1) queries; but when |c(i)| is large, the BFS requires too much queries.
However, in the latter case, s(i) is very small; in this case, we can obtain a rough estimate of
s(i) by choosing a sufficiently small fixed value (actually, we just take the value zero). More

42

specifically, given an estimation parameter γ > 0, for any vertex i ∈ [n], let

s̃(i) =

{
s(i) if |c(i)| ≤ 1/γ

0 o.w.
.

Note that given a vertex i ∈ [n], we can exactly compute s̃(i) using d
γ queries. This is done

by performing a BFS, starting from i, and halting if we encountered more than 1
γ vertices in

the connected component of i (in which case it holds that s̃(i) = 0). Also note that for every
i ∈ [n] it holds that |s̃(i)− s(i)| < γ. Therefore,∣∣∣∣∣ ∑

i∈[n]
s̃(i)−

∣∣C0∣∣∣∣∣∣∣ ≤ ∑
i∈[n]
|s̃(i)− s(i)| < γ · n .

Thus, to estimate
∣∣C0
∣∣ up to an additive error of 2γ · n, with high probability, it suffices

to estimate the average value of s̃(i) over the vertices in the graph up to an additive error
of γ, with high probability. Relying on Chernoff’s inequality, the latter can be done by
uniformly sampling O(γ−2) vertices, computing the s̃ value of each vertex (using d

γ queries),
and outputting the average s̃ value of vertices in the sample. The query complexity of this
estimation procedure is O(γ−2 · d

γ) = O(γ−3 · d). The same holds for
∣∣C1+

∣∣.
The tester itself. Let us spell out the tester for the dual problem of connectivity that is
obtained by combining the above estimation algorithms.

Theorem 7.7 (a tester for the dual problem of connectivity). Let d ≥ 2, let ε < 1
2·d , let n be a

sufficiently large integer and let δ = ε · d · n. Then, there exists an algorithm with query complex-
ity O

(
ε−3 · d

)
that accepts, with high probability, every graph in Fδ(Πn), and rejects, with high

probability, every graph in Fδ(Fδ(Πn)).

Proof. Given an input graph G over the vertex-set [n], the algorithm estimates ∆(G, Πn),
such that with high (constant) probability, the estimated value is correct up to an additive
error of δ

8·d = ε
8 · n. It then accepts G if and only if the estimated value is at least

(
1− 1

8·d
)
· δ.

The correctness of the algorithm follows from Proposition 7.6. The query complexity of
the algorithm is simply the query complexity of the estimation procedure: To estimate the
average degree of a vertex in the graph up to an error of O(ε · n), we perform O(ε−2 · d)
queries; and to estimate each of the two terms

∣∣C0(G)
∣∣ and

∣∣C1+(G)
∣∣ up to an error of

O(ε · n), we perform O(ε−3 · d) queries.

7.2 Testing the property of being far from cycle-free

In this section we study the dual problem of testing cycle-free graphs: For every ε > 0,
we are interested in the problem of ε-testing the set of graphs that are (ε · d · n)-far from
being cycle-free. We show that this problem is different from its original problem, but that
the query complexity of the dual problem is nevertheless poly(1/ε), as is the case for the
original problem.

43

Preliminaries. For d ≥ 2 and n ∈ N, we will be concerned with graphs with maximal
degree d over the vertex-set [n]. For a graph G over [n], let E(G) be the edge-set of G, and
let C(G) be the set of connected components in G. Similar to other texts discussing the
problem of testing cycle-free graphs in this model (see, e.g. [GR02, Sec. 4] and [MR06, Sec.
5]), we consider only simple graphs. The set of cycle-free graphs in this space is denoted by
Πn. For ε > 0 and δ = ε · d · n, the standard problem of testing Πn consists of distinguishing
between Πn and Fδ(Πn), and the dual problem consists of distinguishing between Fδ(Πn)
and Fδ(Fδ(Πn)).

High-level overview. Our starting point is two results of Marko and Ron [MR06, Sec. 5]
about cycle-free graphs in the bounded-degree model. Specifically, they observed that the
distance of a graph from being cycle-free in this model is ∆(G, Πn) = |E(G)|+ |C(G)| − n,
and proved that given an input graph G, this quantity can be estimated, up to an Ω(n)
additive error, using only O(1) queries.

Our contribution primarily consists of the analysis of the distance of graphs in Fδ(Fδ(Πn))
from being cycle-free. Specifically, we show that there exist graphs in Fδ(Fδ(Πn)) that are
not cycle-free (i.e., that Πn is not Fδ-closed), but on the other hand, the distance of graphs
in Fδ(Fδ(Πn)) from being cycle-free is at most 2

3 · δ. The latter fact implies that graphs in
Fδ(Fδ(Πn)) are significantly closer to being cycle-free, compared to graphs in Fδ(Πn); in
particular, the distance gap is at least δ/3 = Ω(n). It follows that the dual problem can be
solved using the algorithm of [MR06] to estimate the distance of a graph from the property.

Proposition 7.8 (the set of cycle-free graphs is not Fδ-closed). For any d ≥ 2, and δ ≥ 2, and
sufficiently large n, the set of cycle-free graphs Πn is not Fδ-closed.

Proof. Similarly to the proofs of Propositions 6.1, 6.5, and 7.5, it suffices to show a graph G
such that ∆(G, Πn) = 1, and all neighbors of G (i.e., graphs that disagree with G on one edge)
are either in Πn or adjacent to Πn (since we can then rely on Proposition 2.3 to deduce that
Πn is not Fδ-closed for every δ ≥ 2). The graph G over [n] consists of a single triangle and of
additional n− 3 isolated vertices. The graph is not cycle-free, but can be made cycle-free by
removing a single edge from the triangle; thus, ∆(G, Πn) = 1. However, note that adding any
edge to G yields a graph G′ such that ∆(G′, Πn) ≤ 1: This is the case since any additional
edge either connects an additional vertex to the triangle, or connects two isolated vertices
(recall that the metric space is comprised only of simple graphs); in both cases, removing an
edge from the original triangle turns G′ into a cycle-free graph.

We now show that the distance of graphs in Fδ(Fδ(Πn)) from being cycle-free is never-
theless at most 2

3 · δ.

Proposition 7.9 (graphs that are far-from-far from being cycle-free are relatively close to being cycle-
free). For d ≥ 3, let ε < 1

12·d2 , let n be a sufficiently large integer, and let δ = ε · d · n. Then, for every
G ∈ Fδ(Fδ(Πn)) it holds that ∆(G, Πn) ≤ 2

3 · δ.

Proof. Relying on Proposition 2.5, it suffices to show how to modify every graph that is not
δ-far from being cycle-free into a graph that is farther away from being cycle-free, by adding

44

at most three edges to the original graph. This modification procedure is depicted in the proof
of the following claim.

Claim 7.9.1. For every G /∈ Fδ(Πn) there exists G′ such that ∆(G, G′) ≤ 3 and ∆(G′, Πn) =
∆(G, Πn) + 1.

Proof. Our proof is based on a case analysis, depending on the number of connected compo-
nents in G. Specifically, if |C(G)| is not too large (i.e., |C(G)| ≤ n

6·d), we will show that there
exist two non-adjacent vertices with degree at most d− 1 in the same connected component
in the graph. Connecting the two vertices by an edge yields G′ as required. Otherwise, if
|C(G)| is large (i.e., |C(G)| > n

6·d), we will show that there exist three non-adjacent vertices
with degree at most one in the graph. Adding edges between three such vertices, creating a
new triangle in the graph, yields G′ as required.

For the proof itself, first note that, since ∆(G, Πn) = |E(G)| + |C(G)| − n, and since
∆(G, Πn) ≤ δ = ε · d · n, we get that

|E(G)| = ∆(G, Πn) + n− |C(G)| < (1 + ε · d) · n− |C(G)| . (7.11)

Then, the two cases of the proof are as follows.

Case 1: |C(G)| ≤ n
6·d . Denote the number of vertices with degree d in G by m. Then, relying

on Eq. (7.11), we get that

m · d ≤ ∑
i∈[n]

deg(i) = 2 · |E(G)| < (2 + 2 · ε · d) · n .

It follows that m <
(2

d + 2 · ε
)
· n, and since d ≥ 3 and ε < 1

12·d2 < 1
6 , we get that m < 5

6 · n.
Therefore, there exist more than n/6 vertices with degree at most d− 1 in the graph. Hence,
the expected number of vertices with degree at most d− 1 in a uniformly chosen connected
component in the graph is n−m

|C(G)| >
n/6

n/6d = d. Since the inequality is strict, it follows that
there exists a connected component in which there are at least d + 1 vertices that each have
degree at most d− 1. At least two of these vertices are not adjacent; connecting them by an
edge yields a graph G′ such that |C(G′)| = |C(G)| and |E(G′)| = |E(G)|+ 1. It follows that
∆(G′, Πn) = ∆(G, Πn) + 1.

Case 2: |C(G)| > n
6·d . Relying on the hypothesis of the case and on Eq. (7.11), we get that

|E(G)| <
(

1 + ε · d− 1
6 · d

)
· n .

Now, since ε < 1
12·d2 , it follows that |E(G)| <

(
1− 1

12·d
)
· n, which implies that there exist

Ω(n) vertices with degree at most one in the graph. For a sufficiently large n, it follows
that there exist at least three non-adjacent vertices in the graph with degree at most one.
To construct G′, we add edges between these three vertices (i.e., we add a triangle on these
vertices). This yields a graph that does not violate the degree bound (since d ≥ 3) and
that satisfies |C(G′)| ≥ |C(G)| − 2 and |E(G′)| = |E(G)| + 3. It follows that ∆(G′, Πn) ≥
∆(G, Πn) + 1. �

45

This completes the proof of Proposition 7.9.

Proposition 7.9 implies that there is a gap of δ/3 = Ω(n) between the distance of graphs
in Fδ(Πn) from Πn and the distance of graphs in Fδ(Fδ(Πn)) from Πn. Thus, to distinguish
between graphs in Fδ(Πn) and graphs in Fδ(Fδ(Πn)), it suffices to estimate the distance of
an input graph from Πn, up to an additive error of 1

6 · δ = ε·d
6 · n. Using the algorithm of

Marko and Ron [MR06, Sec. 5], this can be done using O(ε−3 · d−3) queries. Thus, we have
the following result:

Theorem 7.10 (a tester for the dual problem of testing cycle-free graphs). Let d ≥ 3, let ε < 1
12·d2 ,

let n be a sufficiently large integer and let δ = ε · d · n. Then, there exists an algorithm with query
complexity O

(
ε−3 · d−3) that accepts, with high probability, every graph in Fδ(Πn), and rejects,

with high probability, every graph in Fδ(Fδ(Πn)).

7.3 Testing the property of being far from bipartite

In this section we study the dual problem of bipartiteness, and, more generally, of testing
k-colorability: For k ≥ 2 and every ε > 0, we are interested in the problem of ε-testing
the set of graphs that are (ε · d · n)-far from being k-colorable. We show that this problem is
different from its original problem. Similar to the problem of testing cycle-free graphs (i.e.,
to Section 7.2), in the current section we also consider only simple graphs.

Proposition 7.11 (the set of k-colorable graphs with degree bound d is not Fδ-closed). For any k ≥ 2,
and d ≥ k + 1, and sufficiently large n ∈ N, and δ ≥ 2, the set of k-colorable graphs over [n] with
degree bound d, denoted by Πn, is not Fδ-closed.

Proof. Similarly to the proofs of Propositions 6.1, 6.5, 7.5, and 7.8, it suffices to show a graph
G such that ∆(G, Πn) = 1, and all neighbors of G are either in Πn or adjacent to Πn (since
we can then rely on Proposition 2.3 to deduce that Πn is not Fδ-closed for every δ ≥ 2). The
construction of G is identical to the one in the proof of Proposition 6.1: The graph G contains
a single (k + 1) clique alongside n− (k + 1) isolated vertices. In the proof of Proposition 6.1
we showed that adding or removing an edge from G yields a graph that is either k-colorable,
or adjacent to the set of k-colorable graphs. To conclude the proof, we observe that all graphs
involved in the proof do not violate the degree degree bound d.

For k = 2 (i.e., testing bipartiteness), the query complexity of the original k-colorability
problem is Θ̃(

√
n): The lower bound was shown in [GR02] and the upper bound in [GR99].

Therefore, the query complexity of the dual problem is lower bounded by Ω(
√

n). For k = 3,
the original problem requires Ω(n) queries [BOT02], and thus so does the dual problem.

8 A generalization: On being δ′-far from δ-far

In this section we study a more general notion of dual testing problems. Given a property
Π, we consider two proximity parameters, ε > 0 and ε′ > 0, such that ε > 0 determines the
“yes” inputs for testing, and ε′ > 0 is the proximity parameter that determines the distance

46

of the “no” inputs from the “yes” inputs. That is, given ε, ε′ > 0, the generalized dual
problem consists of distinguishing between Fε·n(Πn) and Fε′·n(Fε·n(Πn)). The main result
in this section is Theorem 1.15, which asserts the existence of testers (with query complexity
that only depends on ε and on ε′) for three generalized dual problems.

Our formal definition of generalized dual problems, which is presented below, coincides
with the standard notion of property testing, and is thus more natural in that context than the
non-generalized notion of dual problems (which we have used so far). Specifically, given a
set Π = {Πn}n∈N and a parameter ε > 0, we will consider the generalized ε-dual problem of
Π, which is just the problem of testing the fixed property {Fε·n(Πn)}n∈N with an arbitrarily
small proximity parameter, denoted by ε′ > 0. More formally:

Definition 8.1 (generalized dual problems). For a set Σ, and Π = {Πn}n∈N such that Πn ⊆ Σn,
and two parameters ε, ε′ > 0, an ε′-tester for the generalized ε-dual problem of Π is a probabilistic
algorithm T that gets oracle access to x ∈ Σn and satisfies the following two conditions:

1. If x ∈ Fε·n(Πn) then Pr[Tx(1n) = 1] ≥ 2
3 .

2. If x ∈ Fε′·n(Fε·n(Πn)) then Pr[Tx(1n) = 0] ≥ 2
3 .

The query complexity of a generalized dual problem is defined in the natural way, and is a function of
ε, ε′, and n.

When ε′ > ε, it is possible that Fε′·n(Fε·n(Πn)) does not contain Πn, and it might even be
that Fε′·n(Fε·n(Πn)) = ∅ (e.g., consider a “pathological” example in which Πn ⊆ {0, 1}n, and
|Fε·n(Πn)| > 1, and ε′ = 1). Even if that does not happen, the following observation asserts
that when ε′ > ε, the problem of distinguishing Fε·n(Πn) from Fε′·n(Fε·n(Πn)) reduces to
our standard notion of dual testing problems.

Observation 8.2 (ε′ > ε reduces to ε′ = ε). Let Π = {Πn}n∈N such that the query complexity of
the dual problem of Π is q(n, ε) (i.e., for every ε > 0 and n ∈ N, a tester can distinguish between
Fε·n(Πn) and Fε·n(Fε·n(Πn)) using q(n, ε) queries). Then, for every ε′ > ε > 0, the problem of
distinguishing Fε·n(Πn) from Fε′·n(Fε·n(Πn)) can be solved using q(n, ε) queries.

Proof. For every n ∈ N and ε′ > ε, observe that Fε′·n(Fε·n(Πn)) ⊆ Fε·n(Fε·n(Πn)), since
every input that is (ε′ · n)-far from Fε·n(Πn) is also (ε · n)-far from Πn. Thus, an algo-
rithm that distinguishes Fε·n(Πn) from Fε·n(Fε·n(Πn)) also distinguishes Fε·n(Πn) from
Fε′·n(Fε·n(Πn)).

We thus focus on the case of ε′ ≤ ε. Our main results in this section are obtained by
reducing generalized dual problems to tolerant testing problems. We say that a generalized dual
problem reduces to the corresponding tolerant testing problem if for every ε′ ≤ ε, the distance
of inputs in Fε′·n(Fε·n(Πn)) from Πn is bounded away from ε · n; specifically, if for every
sufficiently small ε > 0 and every ε′ ≤ ε there exists α ∈ (0, 1), which may depend on ε and
on ε′, such that for every sufficiently large n it holds that Fε′·n(Fε·n(Πn)) ⊆ {y : ∆(y, Πn) ≤
α · ε · n}.

47

Proposition 8.3 (generalized dual problems that reduce to tolerant testing). The following problems
reduce to their corresponding tolerant testing problems:

1. The generalized dual problem of any error-correcting code with constant relative distance.

2. The generalized dual problem of monotone Boolean functions over the Boolean hypercube.

3. The generalized dual problem of k-colorable graphs in the dense graph model.

4. The generalized dual problem of connected graphs in the bounded-degree graphs model.

5. The generalized dual problem of cycle-free graphs in the bounded-degree graphs model.

Proof. All the metric spaces corresponding to properties in Proposition 8.3 are graphical, and
thus we restrict our discussion to graphical metric spaces. Fix a property Πn, and let ε, ε′ > 0.
Relying on Proposition 2.5, if there exists m = O(1) such that for every input x that is not
(ε · n)-far from Πn there exists an input x′ that is farther from Πn such that ∆(x, x′) ≤ m, then
the distance of inputs in Fε′·n(Fε·n(Πn)) from Πn is at most ε · n− ε′·n

m =
(

1− ε′

ε·m

)
· ε · n.

Hence, in order to reduce a generalized ε-dual problem to the corresponding tolerant testing
problem, it suffices to show the above (and set α = 1− ε′

ε·m).
For Items (1) and (2), we use the fact that the corresponding properties are strongly

Fε·n-closed for a sufficiently small ε > 0 (see Propositions 3.4 and 4.3, respectively), which
corresponds to the case of m = 1. Item (3) is proved by observing that (in the proof of Propo-
sition 6.2) we showed that for every graph G that is not (ε · n)-far from being k-colorable,
there exists a graph G′ that is farther from being k-colorable, compared to G, such that
∆(G, G′) = O(1). Items (4) and (5) follow from Claim 7.6.1 and Claim 7.9.1, respectively.

Relying on Proposition 8.3 and on several previous results regarding standard dual prob-
lems, we obtain the following upper bounds on the query complexity of generalized dual
problems.

Corollary 8.4 (testers for generalized dual problems; Theorem 1.15, restated).

1. The query complexity of the generalized dual problem of k-colorable graphs in the dense graphs
model is F(ε, ε′), for some function F that does not depend on n.

2. The query complexity of the generalized dual problem of connected graphs in the bounded-degree
graphs model is poly (1/ min{ε′, ε}).

3. The query complexity of the generalized dual problem of cycle-free graphs in the bounded-degree
graphs model is poly (1/ min{ε′, ε}).

Proof. Relying on Proposition 8.3, the query complexity of all three problems is upper
bounded by the query complexity of their corresponding tolerant testing problems. Specif-
ically, in the proof of Proposition 8.3 we showed that the query complexity of the dual
problems is upper bounded by the query complexity of distinguishing between Fε·n(Πn)

and {y : ∆(y, Πn) ≤ α · ε · n}, where α = 1− ε′

ε·O(1) = 1−Ω(ε′/ε).

48

The upper bound in Item (1) follows due to the tolerant tester by Fischer and New-
man [FN07]; for a discussion of its query complexity, see [FN07, Sec. 7]. For Item (2) we can
use the estimation algorithm presented in Section 7.1.3; and similarly, for Item (3) we can use
the estimation algorithm by Marko and Ron [MR06, Sec. 5]. The query complexity of both
estimation algorithms is poly(1/ρ), where ρ is the algorithm’s additive error in estimating
the relative distance from Πn. In both cases (corresponding to Items (2) and (3)), the dif-
ference between the relative distance of “yes” instances from Πn and the relative distance of
“no” instances from Πn is ε− α · ε = Ω(ε′). Hence, setting ρ = O(ε′), we obtain testers for
the corresponding generalized dual problems with query complexity poly(1/ε′).

9 Open questions

In the current work we were able to prove one general lower bound on dual testing problems,
and several specific upper bounds. However, many interesting and natural general questions
that concern dual testing problems are left without answer. In this section we suggest a
few of these questions, which we suspect might lead towards better understanding of dual
testing problems and of “far-from-far” sets.

9.1 Can the query complexity of a dual problem be significantly higher than that
of the original problem?

Recall that the (two-sided error) query complexity of a dual problem is lower bounded by
the query complexity of the original problem. A natural question is thus:

Question 1. Does there exist a property such that the query complexity of its dual problem
is significantly higher than that of the original problem?

Note that one of the upper bounds for a dual problem given in this work (i.e., the dual
problem of k-colorability in the dense graph model) is significantly higher than the known
upper bound for the corresponding original problem. 11

9.2 Upper bounds for dual problems without reductions to tolerant testing

All the testers we presented for dual problems that are different than the original problems
relied on reductions to tolerant testing. Thus, these testers do not fully exploit the structure
of “far-from-far” sets, but rather only use the fact that “far-from-far” inputs are sufficiently
close to the property. Hence, we ask:

Question 2. Does there exist a tester for a natural dual problem (that is different than the
original problem) that uses significantly fewer queries than the corresponding tolerant tester?

11The original problem is testable using poly(1/ε) queries [GGR98], whereas the upper bound for the dual
problem is a function that has a tower-type dependency on ε. The latter is the complexity of the tolerant tester
by Fischer and Newman [FN07], which relies on Szemerédi’s regularity lemma.

49

Note that when the dual problem is equivalent to the original problem, the dual problem
might indeed be easier to test than the corresponding tolerant testing problem (e.g., in the
case of testing whether a distribution is uniform; see Footnote 5).

9.3 Do all graph partition problems reduce to tolerant testing?

Proposition 6.2 asserts that the dual problem of k-colorability in the dense graph model
reduces to the corresponding tolerant testing problem. The property of k-colorability is a
special case of the general graph partition problem (see, e.g., [GGR98, Sec. 1.2.3.1]), but we were
unable to prove an analogous result for the general graph partition problem.

Question 3. Does the general graph partition problem in the dense graph model reduce to
tolerant testing?

Recall that (according to Proposition C.1 and Remark C.2), not all dual problems in the
dense graph model reduce to tolerant testing. An initial step towards answering Question 3
might be answering it for the special case of the property of graphs having a large clique (see
Proposition 1.11).

Acknowledgments

The author thanks his advisor, Oded Goldreich, for suggesting the core questions and ob-
servations leading to this work, and for his guidance and support during the research and
writing process. The author is grateful to Neta Atzmon for several helpful observations and
discussions regarding “far-from-far” sets and dual property testing problems, and for her
valuable comments on a draft of this paper. The author thanks Gil Cohen for a helpful dis-
cussion regarding decomposition of posets to monotone chains, and Clément Canonne for
useful discussions and suggestions. The author also thanks anonymous reviewers for helpful
suggestions. This research was partially supported by the Israel Science Foundation (grant
No. 671/13).

References

[BFR+13] Tuğkan Batu, Lance Fortnow, Ronitt Rubinfeld, Warren D. Smith, and Patrick
White. Testing closeness of discrete distributions. Journal of the ACM, 60(1):4:1–
4:25, 2013.

[BLR90] Manuel Blum, Michael Luby, and Ronitt Rubinfeld. Self-testing/correcting with
applications to numerical problems. Journal of Computer and System Sciences,
47:549–595, 1990.

[BOT02] Andrej Bogdanov, Kenji Obata, and Luca Trevisan. A lower bound for testing
3-colorability in bounded-degree graphs. In Proc. 43rd Annual IEEE Symposium on
Foundations of Computer Science (FOCS), pages 93–102, 2002.

50

[Can15] Clément Canonne. Your data is big. But is it blue? Electronic Colloquium on
Computational Complexity: ECCC, 22:63, 2015.

[CRT05] Bernard Chazelle, Ronitt Rubinfeld, and Luca Trevisan. Approximating the
minimum spanning tree weight in sublinear time. SIAM Journal of Computing,
34(6):1370–1379, 2005.

[Dil50] Robert P. Dilworth. A decomposition theorem for partially ordered sets. Annals
of Mathematics (2), 51:161–166, 1950.

[Fis05] Eldar Fischer. The difficulty of testing for isomorphism against a graph that is
given in advance. SIAM Journal of Computing, 34(5):1147–1158, 2005.

[FLN+02] Eldar Fischer, Eric Lehman, Ilan Newman, Sofya Raskhodnikova, Ronitt Rubin-
feld, and Alex Samorodnitsky. Monotonicity testing over general poset domains.
In Proc. 34th Annual ACM Symposium on Theory of Computing (STOC), pages 474–
483, 2002.

[FM08] Eldar Fischer and Arie Matsliah. Testing graph isomorphism. SIAM Journal of
Computing, 38(1):207–225, 2008.

[FN07] Eldar Fischer and Ilan Newman. Testing versus estimation of graph properties.
SIAM Journal of Computing, 37(2):482–501, 2007.

[GGL+00] Oded Goldreich, Shafi Goldwasser, Eric Lehman, Dana Ron, and Alex Samorod-
nitsky. Testing monotonicity. Combinatorica, 20(3):301–337, 2000.

[GGR98] Oded Goldreich, Shafi Goldwasser, and Dana Ron. Property testing and its con-
nection to learning and approximation. Journal of the ACM, 45(4):653–750, 1998.

[GKNR12] Oded Goldreich, Michael Krivelevich, Ilan Newman, and Eyal Rozenberg. Hi-
erarchy theorems for property testing. Computational Complexity, 21(1):129–192,
2012.

[GM12] Gary Gordon and Jennifer McNulty. Matroids: A Geometric Introduction. Cam-
bridge University Press, 2012.

[Gol10] Oded Goldreich, editor. Property Testing - Current Research and Surveys, volume
6390 of Lecture Notes in Computer Science. Springer, 2010.

[GR99] Oded Goldreich and Dana Ron. A sublinear bipartiteness tester for bounded
degree graphs. Combinatorica, 19(3):335–373, 1999.

[GR02] Oded Goldreich and Dana Ron. Property testing in bounded degree graphs.
Algorithmica, 32(2):302–343, 2002.

[KD06] Jörg Koppitz and Klaus Denecke. M-Solid Varieties of Algebras (Advances in Math-
ematics). Springer-Verlag New York, Inc., 2006.

51

[MR06] Sharon Marko and Dana Ron. Distance approximation in bounded-degree and
general sparse graphs. In Proc. 10th International Workshop on Randomization and
Approximation Techniques in Computer Science (RANDOM), pages 475–486, 2006.

[PRR06] Michal Parnas, Dana Ron, and Ronitt Rubinfeld. Tolerant property testing and
distance approximation. Journal of Computer and System Sciences, 72(6):1012–1042,
2006.

[RS96] Ronitt Rubinfeld and Madhu Sudan. Robust characterizations of polynomials
with applications to program testing. SIAM Journal of Computing, 25(2):252–271,
1996.

[Rub12] Ronitt Rubinfeld. Taming big probability distributions. ACM Crossroads, 19(1):24–
28, 2012.

[Tel14] Roei Tell. Deconstructions of reductions from communication complexity to
property testing using generalized parity decision trees. Electronic Colloquium
on Computational Complexity: ECCC, 21:115, 2014.

[vdV93] Marcel L.J. van de Vel. Theory of Convex Structures. North-Holland Mathematical
Library. Elsevier Science, 1993.

[VV11] Gregory Valiant and Paul Valiant. Estimating the unseen: an n/log(n)-sample
estimator for entropy and support size, shown optimal via new clts. In Proc. 43rd
Annual ACM Symposium on Theory of Computing (STOC), pages 685–694, 2011.

Appendix A Conditions for a set to be Fδ-closed

In this appendix we characterize the sets that are Fδ-closed in any metric space, and present
sufficient and necessary conditions for a set to be Fδ-closed in graphical metric spaces

A.1 Characterizations of Fδ-closed sets in general metric spaces

Intuitively, we expect that any set will be far from being far from itself; that is, we expect
every set Π to satisfy Π ⊆ Fδ(Fδ(Π)). This is indeed the case:

Fact A.1 (a set is always far from being far from itself). For any space Ω, δ > 0, and Π ⊆ Ω, it holds
that Π ⊆ Fδ(Fδ(Π)).

Proof. Assume towards a contradiction that there exists x ∈ Π \ Fδ(Fδ(Π)). Since x /∈
Fδ(Fδ(Π)), there exists z ∈ Fδ(Π) such that ∆(x, z) < δ. However, since x ∈ Π, then
∆(z, Π) ≤ ∆(z, x) < δ, which contradicts z ∈ Fδ(Π).

However, not every set Π satisfies Π = Fδ(Fδ(Π)) (i.e., not every set is Fδ-closed). The
following theorem presents several equivalent characterizations of the Fδ-closed sets for any
fixed Ω and δ. After the proof we discuss the meaning of some of these characterizations.

52

Theorem A.2 (characterizations of Fδ-closed sets). For any Ω, δ > 0, and Π ⊆ Ω, the following
statements are equivalent:

1. Π is Fδ-closed (i.e., Π = Fδ(Fδ(Π))).

2. For every x /∈ Π ∪ Fδ(Π) there exists z ∈ Fδ(Π) such that ∆(z, x) < δ.

3. There exists Π′ ⊆ Ω such that Π = Fδ(Fδ(Π′)).

4. There exists Π′′ ⊆ Ω such that Π = Fδ(Π′′).

5. There exists Π′′ ⊆ Ω such that Π =
⋂

x∈Π′′ Fδ({x}).

6. There exists Π′′ ⊆ Ω such that Π = Ω \⋃x∈Π′′ B[x, δ).

Proof. For the proof we will need the following two facts:

Fact A.2.1 (far-sets are intersections of sets that are far from singletons). For any Ω, δ > 0 and
Π ⊆ Ω it holds that Fδ(Π) =

⋂
x∈Π Fδ({x}).

Proof. For any z ∈ Ω it holds that z ∈ Fδ(Π) if and only if z is δ-far from every x ∈ Π, which
holds if and only if z ∈ Fδ({x}) for every x ∈ Π. �

Fact A.2.2 (downwards monotonicity of Fδ). For any Ω, δ > 0 and A, B ⊆ Ω, if A ⊆ B, then
Fδ(A) ⊇ Fδ(B).

Proof. Relying on Fact A.2.1,

Fδ(A) =
⋂

a∈A

Fδ({a}) ⊇
⋂
b∈B

Fδ({b}) = Fδ(B) �

We now prove the equivalences of Conditions (1)−(4).

(1) =⇒ (2) Since Π is Fδ-closed, every x /∈ Π satisfies x /∈ Fδ(Fδ(Π)). Equivalently, every
x /∈ Π satisfies ∆(x,Fδ(Π)) < δ. Thus, for every x /∈ Π, there exists z ∈ Fδ(Π) such that
∆(x, z) < δ. In particular, this holds for every x /∈ Π ∪ Fδ(Π).

(2) =⇒ (1) For any x ∈ Ω, if there exists z ∈ Fδ(Π) such that ∆(x, z) < δ, then x /∈
Fδ(Fδ(Π)). Combining this fact with the hypothesis, we deduce that Π ∪ Fδ(Π)∩Fδ(Fδ(Π)) =
∅. Also, since δ > 0 it holds that Fδ(Π) ∩ Fδ(Fδ(Π)) = ∅.

Now observe that Ω = Π ∪ Fδ(Π) ∪ Π ∪ Fδ(Π). Since we showed that Fδ(Fδ(Π)) ∩
Fδ(Π) = ∅ and Fδ(Fδ(Π)) ∩Π ∪ Fδ(Π) = ∅ it follows that Fδ(Fδ(Π)) ⊆ Π. By Fact A.1 it
holds that Π ⊆ Fδ(Fδ(Π)), and therefore Π = Fδ(Fδ(Π)).

(1) =⇒ (3) Follows by setting Π′ = Π, since Π = Fδ(Fδ(Π)).

(3) =⇒ (4) Follows by setting Π′′ = Fδ(Π′), since Π = Fδ(Fδ(Π′)) = Fδ(Π′′).

53

(4) =⇒ (1) Let Π = Fδ(Π′′) for some Π′′ ⊆ Ω. By Fact A.1 it holds that Π′′ ⊆ Fδ(Fδ(Π′′)),
whereas by Fact A.2.2, we get that Π = Fδ(Π′′) ⊇ Fδ(Fδ(Fδ(Π′′))) = Fδ(Fδ(Π)). Using
Fact A.1 again, we know that Π ⊆ Fδ(Fδ(Π)), and thus Π = Fδ(Fδ(Π)).

(4)⇐⇒ (5) By Fact A.2.1.

(5) ⇐⇒ (6) Follows since for any x ∈ Ω it holds that Fδ({x}) = Ω \ B[x, δ), and by De-
Morgan’s laws.

Condition (2) in Theorem A.2 is the basic technical tool that we use in the paper to
evaluate whether sets are Fδ-closed. Note that Condition (2) is in fact a collection of local
conditions, where by “local” we mean that each condition depends only on a ball of radius
2δ in Ω. Note that Condition (5) implies that any intersection of Fδ-closed sets is Fδ-closed.
In addition, Condition (6) provides another appealing interpretation for Fδ-closed sets: The
Fδ-closed sets are exactly the sets obtained by starting from the entire space Ω and removing
any union of balls from the potentially small collection {B[x, δ)}x∈Ω.

The equivalence of Conditions (3) and (4) implies that {Fδ(Fδ(Π))}Π⊆Ω = {Fδ(Π)}Π⊆Ω,
and that the operator Fδ is a bijection between these two collections. (This is since the
collection {Fδ(Fδ(Π))}Π⊆Ω is the image of {Fδ(Π)}Π⊆Ω under Fδ; and by Condition (4),
every set of the form Fδ(Π) is Fδ-closed, which implies that the collection {Fδ(Π)}Π⊆Ω is
also the image of {Fδ(Fδ(Π))}Π⊆Ω under Fδ.)

A.2 Conditions for a set to be Fδ-closed in graphical metric spaces

We now focus only on graphical metric spaces, which are connected undirected graphs,
equipped with the shortest path metric. Since the distances in such spaces are integer-
valued, we assume throughout the section that δ ∈ N. As an initial observation, note that
for any graphical Ω it holds that minx 6=y∈Ω{∆(x, y)} = 1. Note that in any space Ω, if
δ ≤ minx 6=y∈Ω{∆(x, y)}, then all sets in Ω are Fδ-closed (since Fδ(Π) = Π for any set Π).
Thus, in every graphical space, all sets are F1-closed. Accordingly, in this section we are
mainly interested in integer values of δ ≥ 2.

Loosely speaking, a necessary condition for a set Π in a graphical space to be Fδ-closed
is that it does not “enclose” some vertex x /∈ Π ∪ Fδ(Π) from “all sides”. In particular, the
following proposition shows that if Π is Fδ-closed, then every x /∈ Π ∪ Fδ(Π) is connected
to Fδ(Π) via a path that does not intersect Π (nor any vertex that is adjacent to Π).

Proposition A.3 (sets that “enclose” some vertex are not Fδ-closed). For a graphical Ω and δ ≥ 2, let
Π ⊆ Ω be an Fδ-closed set. Then, for every x /∈ Π∪Fδ(Π), there exists a path x = v0, v1, ..., vl = z
such that z ∈ Fδ(Π), and for every i ∈ [l] it holds that ∆(vi, Π) ≥ 2.

Note that x = v0 itself may be adjacent to Π, and the requirement is that the vertices
subsequent to x in the path to Fδ(Π) will neither be in Π nor adjacent to Π.

54

Proof of Proposition A.3. Let Ω and δ ≥ 2. The key observation is that, for every set Π (not
necessarily an Fδ-closed set) and every x /∈ Π ∪Fδ(Π), a shortest path from x to Π does not
intersect Fδ(Π) nor any vertex adjacent to Fδ(Π).

Fact A.3.1. For a graphical Ω, and δ ≥ 2, let Π ⊆ Ω be a set (not necessarily an Fδ-closed set).
Then, for every x /∈ Π ∪ Fδ(Π) and a shortest path from x to Π, every vertex v subsequent to x on
the path satisfies ∆(v,Fδ(Π)) ≥ 2.

Proof. Let x /∈ Π ∪ Fδ(Π), and let p ∈ Π such that ∆(x, Π) = ∆(x, p). Let P be a shortest
path from x to p. Since P is a shortest path, for every vertex v subsequent to x on the path it
holds that v is closer to p than x; since x /∈ Fδ(Π), we get that, ∆(v, p) ≤ ∆(x, p)− 1 ≤ δ− 2.
Thus, every neighbor v′ of v satisfies ∆(v′, Π) ≤ ∆(v, Π) + 1 ≤ δ − 1, which implies that
v′ /∈ Fδ(Π). It follows that ∆(v,Fδ(Π)) ≥ 2. �

Now, let Π be an Fδ-closed set, and let Π′ = Fδ(Π). Then, Π = Fδ(Π′), which implies
that Π′ ∪ Fδ(Π′) = Π ∪ Fδ(Π). According to Fact A.3.1, for every x /∈ Π′ ∪ Fδ(Π′) =
Π ∪ Fδ(Π), a shortest path from x to Π′ = Fδ(Π) does not intersect Fδ(Π′) = Π nor any
vertex adjacent to Π.

The condition in Proposition A.3 is not sufficient to deduce that a set is Fδ-closed. To
see this, consider the graph depicted in Figure 1 and δ = 3. Let Π = {p}, and note that
F3({p}) = {z}. Each vertex v1, ..., v4 /∈ {p} ∪ F3({p}) has a path starting from itself and
reaching z such that the path does not intersect p or any of its neighbors. Thus, {p} meets
the necessary condition implied by Proposition A.3. However, since F3(F3({p})) = {p, v1},
it follows that {p} is not F3-closed.

p v3

v4 z

v2v1Π = {p}

F3(Π) = {z}

Figure 1: The singleton {p} is not F3-closed, although the necessary condition stated in
Proposition A.3 is satisfied.

We now demonstrate that the condition implied by Proposition A.3 is not sufficient for a
set to be Fδ-closed even when the metric space is the Boolean hypercube.

Proposition A.4 (the condition in Proposition A.3 is not sufficient to be Fδ-closed in the hypercube).
For n ≥ 3, let Hn be the n-dimensional Boolean hypercube. Then, there exists a set Π ⊆ Hn such that
for every 4 ≤ δ ≤ n− 1:

1. For every x /∈ Π ∪ Fδ(Π) there exists a path p = v0, v1, ...x = vr, ..., vl = z such that for
every i ∈ [l] it holds that ∆(vi, Π) ≥ 2.

2. Π is not Fδ-closed.

55

Proof. For the proof it will be convenient to identify every vertex v ∈ {0, 1}n of Hn with the
corresponding subset of [n]; that is, the subset {i ∈ [n] : vi = 1}. Let

Π =
{
{1}, {2}, ..., {n− 2}

}
and let 4 ≤ δ ≤ n− 1.

To prove the first statement, for any x /∈ Π ∪ Fδ(Π), we show a path satisfying the
requirements. First note that since Π ⊆ {v : |v| = 1}, for any w such that |w| ≥ 2 it holds
that ∆(w, Π) ≥ |w| − 1, since we need to remove at least |w| − 1 elements from w to reach Π.
In particular, this implies that:

• For every w such that |w| ≥ 3 it holds that ∆(w, Π) ≥ 2.

• ∆([n], Π) ≥ n− 1, and since δ ≤ n− 1 we get that [n] ∈ Fδ(Π).

Combining these two facts, we deduce that if |x| ≥ 2, then there exists a path from x to
[n] ∈ Fδ(Π) such that every vertex v subsequent to x in the path satisfies ∆(v, Π) ≥ 2: This
path is obtained by just adding elements to x (in arbitrary order). It is thus left to show that
for every x /∈ Π ∪ Fδ(Π) such that |x| ≤ 1 there exists a path from x to Fδ(Π) that does not
intersect Π nor vertices adjacent to Π. Note that it suffices to show such a path from x to x′

such that |x′| = 2.
Now, the only vertices that satisfy both |x| ≤ 1 and x /∈ Π ∪ Fδ(Π) are ∅, {n− 1}, and

{n}. For ∅, we take the path ∅, {n}, {n− 1, n}, and indeed {n} and {n− 1, n} are neither in
Π nor adjacent to Π. Similarly, for {n} we take the path {n}, {n− 1, n}, whereas for {n− 1}
we take the path {n− 1}, {n− 1, n}. This completes the proof of Item (1).

To show that Π is not Fδ-closed, we rely on Condition (2) of Theorem A.2. Note that
∆(∅, Π) = 1, and hence ∅ /∈ Π ∪ Fδ(Π). We will show that for every z ∈ Fδ(Π) it holds
that ∆(z, ∅) ≥ δ. Assume towards a contradiction that there exists z ∈ Fδ(Π) such that
∆(z, ∅) ≤ δ− 1, which implies that |z| ≤ δ− 1.

• If |z| ≤ δ − 2, then we can remove all elements from z, and add the element 1, to
obtain {1} ∈ Π. Therefore ∆(z, Π) ≤ ∆(z, {1}) ≤ |z|+ 1 ≤ δ− 1, which contradicts
z ∈ Fδ(Π).

• If |z| = δ − 1 ≥ 3, since
⋃

p∈Π p = [n] \ {n, n − 1}, it follows that z intersects the
set

⋃
p∈Π p. Thus, for some p ∈ Π, it holds that z ∩ p 6= ∅, and since Π only contains

singletons, it follows that z∩ p = p. By removing the δ− 2 elements that are not in z∩ p
from z, we obtain p ∈ Π, meaning that ∆(z, Π) ≤ ∆(z, p) ≤ δ− 2, which contradicts
z ∈ Fδ(Π).

Having shown that Π is not Fδ-closed, the proposition follows.

We now present a sufficient condition for a set in a graphical metric space to be Fδ-closed.
Recall that a set is strongly Fδ-closed if for any x /∈ Π ∪ Fδ(Π) there exist a neighbor x′ of x
that is farther from Π than x itself.

56

Definition A.5 (strongly Fδ-closed sets; Definition 2.4, restated). For a graphical Ω and δ > 0, a
set Π ⊆ Ω is strongly Fδ-closed if and only if for every x /∈ Π ∪ Fδ(Π) there exists a neighbor x′

of x such that ∆(x′, Π) = ∆(x, Π) + 1.

Proposition A.6 (strongly Fδ-closed sets are Fδ-closed). Let Ω be a graphical space, let δ > 0, and
let Π ⊆ Ω be a strongly Fδ-closed set. Then, Π is Fδ-closed.

Proof. We will show that for every x /∈ Π∪Fδ(Π) there exists z ∈ Fδ(Π) such that ∆(x, z) =
δ − ∆(x, Π) < δ, and rely on Item (2) of Theorem A.2 to deduce that Π is Fδ-closed. Let
x /∈ Π ∪ Fδ(Π) and denote x0 = x. By the hypothesis, x0 has a neighbor x1 such that
∆(Π, x1) = ∆(Π, x0) + 1. If ∆(x1, Π) = δ we are done, since this implies that ∆(x, Π) = δ− 1
and hence ∆(x, x1) = 1 = δ−∆(x, Π). Otherwise, note that x1 /∈ Π∪Fδ(Π), since ∆(x1, Π) >
∆(x0, Π) > 0, and hence we can apply the hypothesis again to obtain a neighbor x2 of x1
such that ∆(x2, Π) = ∆(x1, Π) + 1. Repeatedly applying this step, in the ith application we
have that ∆(xi, Π) = ∆(x, Π) + i and ∆(xi, x) = i. As long as i < δ−∆(x, Π) we can continue
applying the step, since ∆(xi, Π) = ∆(x, Π) + i < δ, and hence xi /∈ Π ∪ Fδ(Π), and so we
rely on the hypothesis to obtain xi+1. When i = δ− ∆(x, Π) we get that ∆(xδ−∆(x,Π), Π) = δ
and ∆(xδ−∆(x,Π), x) = δ− ∆(x, Π), which is what we wanted.

The condition in Definition 2.4 is more convenient to evaluate in some cases than the
conditions in Theorem A.2: When one seeks to prove that a set is strongly Fδ-closed, and
given a vertex x /∈ Π ∪Fδ(Π), one does not need to reason about Fδ(Π), but only to find an
immediate neighbor of x that is farther away from Π than x. Unfortunately, being strongly
Fδ-closed is not a necessary condition for being Fδ-closed.

To see this, consider the graph depicted in Figure 2, with δ = 3. Let Π = {p}, and note
that Fδ({p}) = {z}, and Fδ(Fδ({p})) = Fδ({z}) = {p}. Hence {p} is Fδ-closed. However,
the vertex b does not lie on a shortest path between {p} and {z}, and thus {p} is not strongly
Fδ-closed.

p v1 v2 z

bΠ = {p}

F3(Π) = {z}

Figure 2: The singleton {p} is F3-closed but not strongly F3-closed.

Moreover, being strongly Fδ-closed is not a necessary condition for being Fδ-closed even
in the special case where the graph is the Boolean hypercube.

Proposition A.7 (Fδ-closed sets that are not strongly Fδ-closed). For n ≥ 9 and 4 ≤ δ ≤ n
2 such

that δ− 1 divides n, there exist sets in the Boolean hypercube that are Fδ-closed but are not strongly
Fδ-closed.

Proof. Similar to the proof of Proposition A.4, in the current proof it will be convenient to
identify every vertex v ∈ {0, 1}n with the corresponding subset of [n] that v indicates (i.e.,

57

the set {i : vi = 1}). Also recall that for x, y ∈ {0, 1}n we denote by sd(x, y) the symmetric
difference between x and y, and that ∆(x, y) = |sd(x, y)|.

Let n ∈N and δ be as in the hypothesis. The set Π is an equipartition of [n] to n/(δ− 1)
sets, each of cardinality δ− 1; specifically,

Π = {{1, ..., δ− 1}, {δ, ..., 2 · δ− 2}, ..., {n− δ + 2, ..., n}} .

We will first show that Π is not strongly Fδ-closed, and then show that Π is Fδ-closed.

Claim A.7.1. Π is not strongly Fδ-closed.

Proof. Note that ∆(∅, Π) = δ− 1 ∈ (0, δ), and hence ∅ /∈ Π ∪ Fδ(Π); we show that ∅ has
no neighbor that is farther from Π than ∅ itself. Note that the neighbors of ∅ are singletons.
Since

⋃
p∈Π p = [n], for every singleton x′ there exists p ∈ Π such that p ∩ x′ 6= ∅, which

implies that ∆(x′, Π) ≤ ∆(x′, p) ≤ δ− 2. It follows that ∆(x′, Π) < ∆(∅, Π). Thus, Π is not
strongly Fδ-closed. �

To prove that Π is Fδ-closed we will need the following two facts:

Fact A.7.2 (all sets of size at least 2 · δ − 1 are in Fδ(Π)). There exists z ⊆ [n] satisfying |z| ≥
2 · δ− 1, and for any such z it holds that z ∈ Fδ(Π).

Proof. Since 2 · δ − 1 ≤ n there exist sets of cardinality 2 · δ − 1. Every such set z satisfies
z ∈ Fδ(Π), since Π ⊆ {v : |v| = δ− 1}, and since we need to remove at least δ elements from
z to obtain a set of cardinality δ− 1. �

Fact A.7.3 (there exist sets of size 3 that are in Fδ(Π)). There exists z ⊆ [n] such that |z| = 3 and
for every p ∈ Π it holds that |z ∩ p| ≤ 1. For any such z it holds z ∈ Fδ(Π).

Proof. To see that z as in the statement exists, note that n
δ−1 > 2, and hence there exist at least

three distinct subsets in Π. A suitable z is comprised of three elements, each from one of
those three distinct subsets in Π. For such a set z it holds that

|sd(z, p)| = |(z ∪ p) \ (z ∩ p)|
= |z|+ |p| − 2 · |z ∩ p|
≥ 3 + (δ− 1)− 2 · 1
= δ

and thus ∆(z, Π) ≥ δ. �

It is thus left to show that Π is Fδ-closed. To do this we rely on Condition (2) from
Theorem A.2: For x /∈ Π ∪ Fδ(Π) we show that there exists z ∈ Fδ(Π) such that ∆(x, z) ≤
δ− 1.

Let x /∈ Π ∪ Fδ(Π). First, relying on Fact A.7.2 and on the hypothesis that x /∈ Fδ(Π),
it follows that |x| < 2 · δ − 1. Now, if |x| ∈ [δ, 2 · δ − 1), then we can add (2 · δ − 1) − |x|
elements from [n] \ x to x, thereby obtaining a subset z of cardinality |z| = 2 · δ− 1 satisfying

58

∆(x, z) = (2 · δ − 1) − |x| ≤ δ − 1. Relying on Fact A.7.2, again, it holds that z ∈ Fδ(Π).
Hence the condition holds.

We are left with the case of |x| ≤ δ− 1. In this case we show that it is possible to modify
x to a subset as in Fact A.7.3 (i.e., a subset z such that |z| = 3 and |z ∩ p| ≤ 1 for every
p ∈ Π), by at most δ− 1 actions of adding elements to x or removing elements from it. Since
such z is in Fδ(Π), once we show this it will follow that there exists z ∈ Fδ(Π) such that
∆(x, z) ≤ δ− 1.

Recall that for x /∈ Π ∪ Fδ(Π) such that |x| ≤ δ− 1, we wish to present a set z such that
∆(x, z) ≤ δ− 1, and |z| = 3, and for every p ∈ Π it holds that |z ∩ p| ≤ 1. Also recall that, as
mentioned in the proof of Fact A.7.3, since n

δ−1 > 2, there exist at least three distinct subsets
in Π. We proceed by a case analysis:

• If x = ∅, then we can reach a suitable z with three actions (which is less than δ ≥ 4) by
adding one element from each of three distinct subsets in Π.

• If x intersects with a single subset p ∈ Π, then it holds that |x| = |x ∩ p| ≤ δ − 2,
otherwise x = p ∈ Π, contradicts x /∈ Π. Therefore we can remove |x| − 1 ≤ δ − 3
arbitrary elements from x, and then add to x two elements from two distinct subsets
p1, p2 6= p from Π, thereby reaching a suitable z with at most δ− 1 actions.

• If x intersects with k ≥ 2 subsets of Π, denote these subsets by {p1, ..., pk}. We start by
removing all elements from x, except for a single element from p1 and a single element
from p2. Since |x| ≤ δ− 1 we performed at most δ− 3 actions so far. We now add to
x an element from a subset p3 ∈ Π such that p3 6= p1, p2, thereby reaching a suitable z
with at most δ− 2 actions.

Appendix B Existence and prevalence of sets that are not Fδ-closed

The focus of this appendix is on proving the existence, and in some sense the abundance,
of sets that are not Fδ-closed. First, we will demonstrate the generality of the phenomenon
of sets that are not Fδ-closed, by showing that for any metric space in which not all points
are equidistant and any δ that is not “too extreme” there exist non-trivial sets that are Fδ-
closed and non-trivial sets that are not Fδ-closed. Next, we will lower bound the number of
sets that are not Fδ-closed in two special cases: One is when we assume some conditions on
the structure of the metric space and the other is in the Boolean hypercube.

Let us now consider a fixed Ω, and delineate two “extreme” settings for δ that collapse
Π 7→ Fδ(Fδ(Π)) to a trivial operator. On the one hand, if δ > supx,y∈Ω{∆(x, y)}, then
Fδ(Fδ(Π)) = Ω for any non-empty set Π (since Fδ(Π) = ∅), in which case all non-trivial
sets are not Fδ-closed. On the other hand, if δ ≤ infx 6=y∈Ω{∆(x, y)}, then Fδ(Fδ(Π)) = Π for
any set Π (since Fδ(Π) = Π), in which case all sets are Fδ-closed. Thus, disregarding for a
moment the “boundary case” in which δ = supx 6=y{∆(x, y)}, we restrict our investigation to

59

settings of δ such that

δ ∈
(

inf
x 6=y∈Ω

{∆(x, y)}, sup
x,y∈Ω

{∆(x, y)}
)

. (B.1)

Needless to say, if neither the supremum nor the infimum exist, then Eq. (B.1) poses
no restriction at all on δ. It turns out that for every δ that satisfies Eq. (B.1), there exists a
non-trivial Π ⊆ Ω that is Fδ-closed and a non-trivial Π′ ⊆ Ω that is not Fδ-closed.

Theorem B.1 (Theorem 1.2, restated). For any Ω, if δ > 0 satisfies Eq. (B.1), then there exists a
non-trivial Π ⊆ Ω that is Fδ-closed and a non-trivial Π′ ⊆ Ω that is not Fδ-closed.

Proof. Since δ < supx,y∈Ω{∆(x, y)} there exist x, y ∈ Ω such that ∆(x, y) ≥ δ. Let Π =

Fδ({x}), and note that Π /∈ {∅, Ω} since x /∈ Π and y ∈ Π. By Condition (4) of Theorem A.2
it holds that Π is Fδ-closed.

Now, since δ > infx 6=y∈Ω{∆(x, y)} there exist x′, y′ ∈ Ω such that ∆(x′, y′) < δ. Let Π′ =
Ω \ {x′}, and note that Π′ /∈ {∅, Ω} since x′ /∈ Π′ and y′ ∈ Π′. Since ∆(x′, Π′) ≤ ∆(x′, y′) < δ
it follows that x′ /∈ Fδ(Π′), and thus Fδ(Π′) = ∅ and Fδ(Fδ(Π′)) = Ω 6= Π′. Therefore Π′

is not Fδ-closed.

For spaces in which the supremum in Eq. (B.1) is attained (e.g., finite metric spaces)
such non-trivial sets exist if and only if δ ∈

(
infx 6=y∈Ω{∆(x, y)}, maxx,y∈Ω{∆(x, y)}

]
. (Note

that now the right boundary of the interval is closed.) This is the case because when δ =
maxx,y∈Ω{∆(x, y)}, where the maximal distance is attained between u, v ∈ Ω, we have the
Fδ-closed set Π = Fδ({u}) 6= ∅ (similar to the proof of Theorem B.1).

Theorem B.1 implies that for any Ω and δ > 0 that satisfies Eq. (B.1) there exist non-trivial
Fδ-closed sets and non-trivial sets that are not Fδ-closed. The following proposition assumes
slightly stricter conditions on the structure of Ω with respect to a parameter δ, and under
these conditions yields a lower bound on the number of sets that are not Fδ-closed.

Proposition B.2 (lower bound on the number of sets that are not Fδ-closed). Let Ω be a metric
space and δ > 0. Assume that for n ∈ N and m ≥ 2 there exist x1, ..., xn ∈ Ω such that for every
i 6= j ∈ [n] it holds that ∆(xi, xj) ≥ 2δ and 2 ≤ |B[xi, δ)| ≤ m. Then, the probability that a
uniformly chosen random set is Fδ-closed is at most (1− 2−m)

n.

Proof. By the hypothesis, for any i ∈ [n] it holds that |B[xi, δ)| ≥ 2. Therefore, if we choose
Π such that Π ∩ B[xi, δ) = B[xi, δ) \ {xi}, we get a set such that xi /∈ Π and B[xi, δ) ∩Π 6= ∅
and B[xi, δ) ∩Fδ(Π) = ∅. According to Item (2) of Theorem A.2, such a set is not Fδ-closed,
regardless of the way the set is defined in the rest of Ω. Therefore it suffices to lower bound
the probability that a random set will be of this form in any of the n balls of radius δ whose
existence is guaranteed by the hypothesis.

For any fixed i ∈ [n], the probability that a uniformly chosen Π satisfies Π ∩ B[xi, δ) =
B[xi, δ) \ {xi} is 2−|B[xi ,δ)|. Since, by the hypothesis, it holds that |B[xi, δ)| ≤ m, then this
probability is lower bounded by 2−m. Thus, the probability that Π ∩ B[xi, δ) 6= B[xi, δ) \ {xi}
is at most 1 − 2−m. Also note that by the hypothesis, for any i 6= j ∈ [n] it holds that

60

∆(xi, xj) ≥ 2δ, and hence B[xi, δ)∩ B[xj, δ) are disjoint, implying that the events Π∩ B[xi, δ) 6=
B[xi, δ) \ {xi} for all i ∈ [n] are independent. Therefore, the probability that for every i ∈ [n]
it holds that Π ∩ B[xi, δ) 6= B[xi, δ) \ {xi} is upper bounded by (1− 2−m)n. It follows that
probability that the set is Fδ-closed is at most (1− 2−m)n.

If the collection of balls in Proposition B.2 satisfies n ≥ 2m, then we get that the majority
of sets in Ω are not Fδ-closed. However, the lower bound in Proposition B.2 is far from tight
for some spaces. In particular, in the special case of the Boolean hypercube, Proposition B.3
presents a tighter lower bound, relying on a simple argument tailored to this specific case.

Proposition B.3 (most sets in the Boolean hypercube are not Fδ-closed). For the n-dimensional
Boolean hypercube Hn and δ ≥ 3, the probability that a uniformly chosen Π ⊆ Hn is Fδ-closed is at
most 2−Ω(n2).

Proof. First observe that any Π that satisfies Π 6= Hn and Fδ(Π) = ∅ is not Fδ-closed. We
show that a uniformly chosen random Π satisfies both conditions with very high probability.

For any z ∈ Hn it holds that z ∈ Fδ(Π) if and only if B[z, δ− 1] ∩Π = ∅. For a fixed
z ∈ Hn this happens with probability 2−|B[z,δ−1]|, and since since δ ≥ 3 this expression is
upper bounded by 2−(1+n+(n

2)) = 2−Ω(n2). By union-bounding over all z ∈ Hn, the probability
that there exists some z ∈ Fδ(Π) is at most 2n−Ω(n2). Also, the probability that Π = Hn is
2−2n

. Thus the probability that a random set is Fδ-closed is at most

2n−Ω(n2) + 2−2n
= 2−Ω(n2) .

Appendix C On the distance of points in Fδ(Fδ(Π)) from Π

One might mistakenly think that even in cases where Π 6= Fδ(Fδ(Π)) (i.e., Π is not Fδ-
closed), all points in Fδ(Fδ(Π)) are, in some sense, close to Π. Indeed, since for any δ > 0 it
holds that Fδ(Fδ(Π)) ∩ Fδ(Π) = ∅, the points in Fδ(Fδ(Π)) cannot be δ-far from Π. In the
current appendix we ask how far from Π can points in Fδ(Fδ(Π)) be, in general metric spaces
as well as in graphical metric spaces. In particular, we show that points in Fδ(Fδ(Π)) can be
almost δ-far from Π; an asymptotic version of the foregoing statement (see next) implies, in
particular, that not all dual problems reduce to tolerant testing.

In the context of property testing, a typical setting involves a sequence Π = {Πn}n∈N

such that Πn ⊆ {0, 1}n, and the distance of interest is δ = ε · n, for a small constant ε > 0.
Recall that, as mentioned in Section 1.4, the dual testing problem of Π = {Πn}n∈N reduces
to the problem of tolerant testing if for every sufficiently small ε > 0 it holds that the distance
of points in Fε·n(Fε·n(Πn)) is bounded away from ε · n. We now show a property Π for
which this does not happen. That is, we show a single fixed set Π = {Πn}n∈N such that for
every small ε it holds that points in Fε·n(Fε·n(Πn)) are not close to Πn (actually, we show
that the latter holds for an infinite sequence of ε’s that tends to zero).

Proposition C.1 (a dual problem that does not reduce to tolerant testing). There exists Π =
{Πn}n∈N, where Πn ⊆ {0, 1}n, that satisfies the following. For every ε = 2−k such that k ≥ 2, and
sufficiently large n, there exists x ∈ Fε·n(Fε·n(Πn)) such that ∆(x, Πn) ≥ ε · n− 2.

61

Proof. Let us start by describing the intuition behind our construction. Fix any ε > 0. The
basic observation is that if Πn contains all the strings of Hamming weight `, for some ` ∈ [n],
and all the strings of Hamming weight roughly h = `+ 2 · (ε · n− 1), and Πn does not contain
any string of Hamming weight in between these two values, then Fε·n(Fε·n(Πn)) contains a
string whose distance from Πn is at least ε · n− 2 (see Lemma C.1.2). Intuitively, this is the
case since a string x of Hamming weight h+`

2 is, on the one hand, far from being far from Πn
(since all strings of Hamming weight in between ` and h are not (ε · n)-far from Πn, which
implies that any shortest path from x to Fε·n(Πn) passes through Πn); but x is, on the other
hand, not close to Πn (since ∆(x, Πn) ≈ ε · n− 1). See Figure 3 for a graphical illustration.

For any ε > 0, if Πn is as above (i.e., Πn contains all strings with Hamming weight ` or h
and no string with Hamming weight in between these values), then we say that Πn exhibits
a disruptive pattern for ε. Thus, it suffices to construct Π = {Πn} such that for every ε = 2−k

and sufficiently large n it holds that Πn exhibits a disruptive pattern for ε.
Accordingly, for any n, we construct Πn such that it exhibits many disruptive patterns

at once, for many values of ε. Fixing any n, we first define roughly log(n) pairwise-disjoint
subsets of {0, 1}n, which we call regions. Specifically, for any 1 < k < log(n), the region that
corresponds to k includes all strings with relative Hamming weight more than 1− 2−(k−2)

and at most 1− 2−(k−1). Since the region that corresponds to k contains strings with about
2−(k−1) different weights, we can define Πn in this region such that it exhibits a disruptive
pattern for ε = 2−k. Hence, for any fixed ε = 2−k and n ≥ exp(k) it holds that Πn contains a
disruptive pattern for ε. Details follow.

The actual proof. We start by defining a disruptive pattern for ε > 0, and proving that it
indeed yields a string in Fε·n(Fε·n(Πn)) whose distance from Πn is ε · n−O(1).

Definition C.1.1 (disruptive pattern for ε). Let ε > 0 and n ∈ N such that ε · n ≥ 2. We say
that Πn ⊆ {0, 1}n exhibits a disruptive pattern for ε if there exist `, h ∈ [n] such that h − ` =
2 · (bε · nc − 1), and the following hold:

1. Πn contains all strings with Hamming weight `, and all strings with Hamming weight h.

2. Πn does not contain any string with Hamming weight w such that ` < w < h.

Lemma C.1.2. Let ε > 0 and n ∈ N such that ε · n ≥ 2. If Πn ⊆ {0, 1}n exhibits a disruptive
pattern for ε, then Fε·n(Fε·n(Πn)) contains a string x such that ∆(x, Πn) ≥ ε · n− 2.

Proof. Let `, h ∈ [n] as in Definition C.1.1, and denote by B the set of strings with Hamming
weight w such that ` < w < h. We will show that any string x ∈ B with Hamming weight
h+`

2 is, on one hand, in Fε·n(Fε·n(Πn)), and is, on the other hand, (ε · n− 2)-far from Πn.
First note that there exists a string with Hamming weight `+h

2 . This is the case because
h− ` = 2 · (bε · nc − 1) ≥ 2 (by our hypothesis that ε · n ≥ 2). Let x be such a string, and
observe that x ∈ B. The lemma follows from the following two facts:

1. The distance of x from Πn is at least ε · n− 2. This is the case because B ∩Πn = ∅ (by
our hypothesis), and thus any path from x to Πn has to pass through some u /∈ B such

62

Fε·n(Πn)

h + ε · n

h = `+ 2 · (ε · n− 1)

x
(`+ h)/2

`

Fε·n(Πn)

`− ε · n

H
am

m
in

g
w

ei
gh

t
{0, 1}n

Figure 3: Graphical illustration of a disruptive pattern for ε = 1/8. The rhombus represents
{0, 1}n such that lower points inside the rhombus are strings with low Hamming weight,
and higher points are strings with high Hamming weight. The set Πn consists of all strings
with Hamming weight ` = n/2 or h = 3/4n− 2, and thus Fε·n(Πn) is contained in the gray
areas. The string x satisfies x ∈ Fε·n(Fε·n(Πn)) as well as ∆(x, Πn) =

h−`
2 = ε · n− 1.

that u has a neighbor in B. However, any such u has Hamming weight either ` or h,
and thus u ∈ Πn. It follows that ∆(x, Πn) =

h−`
2 = bε · nc − 1 ≥ ε · n− 2.

2. The distance of x from Fε·n(Πn) is more than ε · n. To see that this holds, first note
that B ∩ Fε·n(Πn) = ∅ (because for every y ∈ B, we can flip at most h−`

2 < ε · n bits
in y, to obtain a string with Hamming weight ` or h). Thus, every path from x to
Fε·n(Πn) has to pass through some u /∈ B such that u has a neighbor in B; but any
such u has Hamming weight ` or h, and thus u ∈ Πn. The length of any such path is
∆(x, u) + ∆(u,Fε·n(Πn)) ≥ 1 + ε · n, and hence ∆(x,Fε·n(Πn)) ≥ 1 + ε · n. �

For every n ∈ N, in order to define Πn ⊆ {0, 1}n, we first define the pairwise-disjoint
regions in {0, 1}n. For each k ∈ {2, ..., blog(n)c − 1} we will have a corresponding region in
{0, 1}n, which is denoted byRn

k and defined as follows: The regionRn
k is the set of all strings

with relative Hamming weight more than 1− 2−(k−2) and at most 1− 2−(k−1); that is,

Rn
k =

{
x ∈ {0, 1}n : 1− 2−(k−2) <

‖x‖1
n
≤ 1− 2−(k−1)

}
,

63

where ‖x‖1 is the Hamming weight of x. First, observe that for any n, the regions in {0, 1}n

are indeed pairwise-disjoint.

Fact C.1.3 (the regions are pairwise-disjoint). For every n ∈N, the regions in {0, 1}n, corresponding
to different values of k ∈ {2, ..., blog(n)c − 1}, are pairwise-disjoint.

Proof. For any k, k′ ∈ {2, ..., blog(n)c − 1} such that k′ > k, the maximal Hamming weight of
a string in Rn

k is
⌊(

1− 2−(k−1)
)
· n
⌋

, whereas the minimal Hamming weight of a string in

Rn
k′ is

⌊(
1− 2−(k

′−2)
)
· n
⌋
+ 1 ≥

⌊(
1− 2−(k−1)

)
· n
⌋
+ 1. �

For any n ∈ N, we define Πn as follows. First, Πn includes all strings that are outside
the regions in {0, 1}n (i.e., the all-zero string is included in Πn, and so are all strings with
Hamming weight more than

(
1− 2−(blog(n)c−2)

)
· n). 12 Now, relying on Fact C.1.3, we can

define Πn independently in each of the pairwise-disjoint regions. For k ∈ {2, ..., blog(n)c −
1}, we will define Πn in Rn

k such that it exhibits a disruptive pattern for ε = 2−k. Specifically,
we define Πn such that it contains all the strings with minimal Hamming weight inRn

k , where
this minimal weight is denoted by `n

k , and Πn contains all strings in Rn
k with Hamming

weight at least `n
k + 2 · (

⌊
2−k · n

⌋
− 1), and Πn does not contain any string with Hamming

weight in between these two values. Let us now verify that Πn indeed exhibits a disruptive
pattern for ε = 2−k in Rn

k .

Claim C.1.4 (Πn exhibits a disruptive patterns). For any 2 ≤ k ≤ blog(n)c − 1 it holds that Πn
exhibits a disruptive pattern for ε = 2−k.

Proof. Let k be as in the hypothesis, and let εk = 2−k. First observe that εk · n ≥ 2 (because
k ≤ blog(n)c− 1). Next, denote by `n

k the minimal Hamming weight of a string inRn
k , and by

hn
k the maximal Hamming weight of a string inRn

k ; then, it holds that hn
k − `n

k ≥ 2 · (εk · n− 1),
because:

hn
k − `n

k =
⌊(

1− 2−(k−1)
)
· n
⌋
−
(⌊(

1− 2−(k−2)
)
· n
⌋
+ 1
)

≥
(

1− 2−(k−1)
)
· n− 1−

((
1− 2−(k−2)

)
· n + 1

)
= 2−(k−1) · n− 2
= 2 · (εk · n− 1) .

In particular, for ` = `n
k there exists h ≤ hn

k such that h− ` = 2 · (bεk · nc − 1), and Rn
k

contains all strings with Hamming weight w ∈ [`, h]. By the definition of Πn, it holds that Πn
contains all strings with Hamming weight `, and all strings with Hamming weight h, and no
string with Hamming weight in between these two values. According to Definition C.1.1, it
holds that Πn contains a disruptive pattern for εk = 2−k. �

Let Π = ∪n∈NΠn. For any fixed ε = 2−k, where k ≥ 2, and any n ≥ 2k+1, by combining
Claim C.1.4 and Lemma C.1.2, we deduce that there exists a string in Fε·n(Fε·n(Πn)) whose
distance from Πn is at least ε · n− 2. Proposition C.1 follows.

12The choice to include these strings in Πn is arbitrary, and does not affect the proof.

64

Remark C.2. The property constructed in the proof of Proposition C.1 can be presented as a
property of graphs in the dense graph model (see Section 1.2.4 for a definition of the latter).
For any n ∈N, the set Πn constructed in the proof is of the form “all strings with Hamming
weight in Wn”, where Wn is a set of weights. Relying on a natural bijection between strings
and graphs, Πn corresponds to the set of all graphs over v vertices (such that n = (v

2)) with
number of edges in Wn. The point is that Πn is closed under taking graph isomorphisms,
and is thus a graph property.

Another mistaken intuition is that even when Fδ(Fδ(Π)) contains points that are far from
Π, not all points in Fδ(Fδ(Π)) are so (i.e., Fδ(Fδ(Π)) also contains points that are closer to
Π). The following proposition demonstrates that this is not the case: There exist spaces and
sets in which all points in Fδ(Fδ(Π)) are either in Π or almost δ-far from Π.

Proposition C.3 (all points in Fδ(Fδ(Π)) \Π might be almost δ-far from Π). For every odd integer
δ ≥ 3, there exist Ω and Π ⊆ Ω such that Π is not Fδ-closed, and every x ∈ Fδ(Fδ(Π)) \Π satisfies
∆(x, Π) = δ− 1.

Proof. For an odd integer δ ≥ 3, let Ω be a graph that is a simple path of length δ− 1. We
call this path the base path, and denote its vertices by v0, v1, ..., vδ−1. Now add to Ω another
simple path, this time of length (δ− 1)/2 + 1, starting from v(δ−1)/2. We call this path the
additional path, and denote its vertices by v(δ−1)/2 = z0, z1, ..., z(δ−1)/2+1. The only vertex
belonging to both the base path and the additional path is v(δ−1)/2 = z0, and the two paths
are edge-disjoint.

v0 v1 vδ−1v(δ−1)/2 = z0

z1

z(δ−1)/2+1Π = {v0}

Fδ(Π) = {z(δ−1)/2+1}

Fδ(Fδ(Π)) = {v0, vδ−1}

Figure 4: The space Ω.

Let Π = {v0}. For every vertex vi on the base path, it holds that ∆(vi, Π) = i < δ.
Also, for every vertex zi on the additional path it holds that ∆(zi, Π) = ∆(zi, z0) + ∆(z0, Π) =
i + (δ− 1)/2. Thus, the only vertex that is δ-far from Π is z(δ−1)/2+1, implying that Fδ(Π) =
{z(δ−1)/2+1}.

Now, note that for every vertex zi on the additional path it holds that ∆(zi,Fδ(Π)) =

65

(δ− 1)/2 + 1− i < δ. Also, for every vertex vi on the original path it holds that

∆(vi,Fδ(Π)) = ∆(vi, v(δ−1)/2) + ∆(z0, z(δ−1)/2+1) =

∣∣∣∣i− δ− 1
2

∣∣∣∣+(δ− 1
2

+ 1
)

and thus Fδ(Fδ(Π)) = {v0, vδ−1}. Therefore, only vδ−1 satisfies vδ−1 ∈ Fδ(Fδ(Π)) \Π, and
it holds that ∆(vδ−1, Π) = δ− 1.

We now turn our attention to graphical metric spaces, and show a sufficient condition for
deducing that the distance of vertices in Fδ(Fδ(Π)) is bounded away from δ.

Proposition C.4. Let Ω be a graphical space, let Π ⊆ Ω, let δ ≥ 2, and let δ′ ≤ δ. If there
exists an integer m such that for every x /∈ Π ∪ Fδ(Π) there exists x′ satisfying ∆(x, x′) ≤ m and
∆(x′, Π) > ∆(x, Π), then Fδ′(Fδ(Π)) ⊆

{
y : ∆(y, Π) ≤ δ− δ′

m

}
.

Proof. We will show that if ∆(y, Π) > δ − δ′

m , then y /∈ Fδ′(Fδ(Π)). This will be done by
showing a path y0, ..., yt of length less than δ′ such that y = y0 and yt ∈ Fδ(Π). Specifically,
we start with y = y0, and proceed in iterations, where in iteration i we begin at vertex yi and
rely on the hypothesis to obtain yi+1 that is farther away from Π, compared to yi, such that
the distance between yi and yi+1 is at most m. After at most t = δ− ∆(y, Π) iterations, we
obtain yt such that ∆(yt, Π) ≥ t + ∆(y0, Π) = δ and ∆(y, yt) ≤ m · t = m · (δ− ∆(y, Π)) < δ′

(where the last inequality holds because ∆(y, Π) > δ− δ′

m).

A special case of Proposition C.4 is when a set is strongly Fδ-closed. Specifically, for a
graphical space Ω and δ ≥ 2, if Π ⊆ Ω is strongly Fδ-closed, then for every δ′ ≤ δ the
condition in Proposition C.4 is met with m = 1, which implies that Fδ′(Fδ(Π)) ⊆ {y :
∆(y, Π) ≤ δ− δ′}.

Appendix D The mapping Π 7→ Fδ(Fδ(Π)) is a closure operator in
P(Ω)

The notion of closure operators (or hull operators; see, e.g., [KD06, Chp. 2] or [vdV93, Chp. 1])
is prevalent in many mathematical fields, including algebra, topology, matroid theory, and
computational geometry. We show that the operator Π 7→ Fδ(Fδ(Π)) is a closure operator
on Ω, a statement that gives some structure to the relationship between Π and Fδ(Fδ(Π)).

Definition D.1 (closure operators). A closure operator on a set Ω is an operator cl : P(Ω)→ P(Ω)
such that for any Π, Π′ ⊆ Ω it holds that

1. (extensive) Π ⊆ cl(Π).

2. (upwards monotone) Π ⊆ Π′ =⇒ cl(Π) ⊆ cl(Π′).

3. (idempotent) cl(cl(Π)) = cl(Π).

66

Proposition D.2 (Π 7→ Fδ(Fδ(Π)) is a closure operator). For any Ω and δ > 0 it holds that
Π 7→ Fδ(Fδ(Π)) is a closure operator on Ω.

Proof. Axiom (1) follows from Fact A.1. Axiom (2) follows by applying Fact A.2.2 twice to
the expression Π ⊆ Π′. Axiom (3) is essentially the requirement that for any set Π it holds
that F (4)

δ (Π) = F (2)
δ (Π) (i.e., four applications of Fδ on Π are equivalent to two applications);

or, equivalently, that any set of the form Fδ(Fδ(Π)) is Fδ-closed. The latter statement follows
from Condition (3) in Theorem A.2.

A closure operator is characterized by the collection of closed sets {cl(Π)}Π⊆Ω. In par-
ticular, the collection of closed sets under the operator Π 7→ Fδ(Fδ(Π)) is {Fδ(Fδ(Π))}Π⊆Ω,
which according to Theorem A.2 is exactly the collection of Fδ-closed sets. In general, any
closure operator maps any set Π to its closure, which is the unique smallest closed set con-
taining Π. The following proposition substantiates that this is indeed the case in the special
case of the operator Π 7→ Fδ(Fδ(Π)): The proposition states that Fδ(Fδ(Π)) is the intersec-
tion of all Fδ-closed sets containing Π. Since Fδ(Fδ(Π)) is itself an Fδ-closed set, this implies
that Fδ(Fδ(Π)) it the unique Fδ-closed set that contains Π, and that this set is minimal (i.e.,
does not contain any other Fδ-closed set containing Π).

Proposition D.3 (Fδ(Fδ(Π)) is the unique minimal Fδ-closed set containing Π). For any Ω, δ > 0
and Π ⊆ Ω it holds that

Fδ(Fδ(Π)) =
⋂

Π′ :Fδ(Fδ(Π′))⊇Π

Fδ(Fδ(Π′))

Proof. We follow the standard proof that for any closure operator cl it holds that cl(Π) =⋂
Π′ :cl(Π′)⊇Π cl(Π′). This standard proof relies on the fact that for general closure operators,

the intersection of closed sets is closed; in the specific case of Π 7→ Fδ(Fδ(Π)), this fact fol-
lows immediately from Condition (5) in Theorem A.2, and was mentioned in the discussion
after the proof of Theorem A.2.

Let I = {Fδ(Fδ(Π′)) : Π′ ⊆ Ω ∧ Fδ(Fδ(Π′)) ⊇ Π}. We seek to prove that

Fδ(Fδ(Π)) =
⋂

Φ∈I
Φ

To see that Fδ(Fδ(Π)) ⊇ ⋂
Φ∈I Φ, note that by Condition (1) of Definition D.1 it holds that

Π ⊆ Fδ(Fδ(Π)), and thus Fδ(Fδ(Π)) ∈ I . For the other direction, to see that Fδ(Fδ(Π)) ⊆⋂
Φ∈I Φ, note that any Φ ∈ I satisfies Π ⊆ Φ; and thus

Π ⊆
⋂

Φ∈I
Φ (A.1)

Relying on Condition (2) of Definition D.1 and on Eq. (A.1), we get that

Fδ(Fδ(Π)) ⊆ Fδ

(
Fδ

(⋂
Φ∈I

Φ

))
(A.2)

67

Since every Φ ∈ I is of the form Fδ(Fδ(Π′)) for some Π′ ⊆ Ω, it holds that every
Φ ∈ I is Fδ-closed. Relying on the fact that the intersection of Fδ-closed sets is Fδ-closed,
we get that

⋂
Φ∈I Φ is Fδ-closed. It follows that Fδ (Fδ (

⋂
Φ∈I Φ)) =

⋂
Φ∈I Φ, and relying on

Eq. (A.2), we get that

Fδ(Fδ(Π)) ⊆
⋂

Φ∈I
Φ .

For an intuitive grasp of closure operators one may think of the convex hull of a body
in Euclidean geometry or of the topological closure of a set in a topological space. We warn,
however, that in some fields additional conditions are added to the basic three in Defini-
tion D.1, resulting in special classes of closure operators; the operator Π 7→ Fδ(Fδ(Π)) does
not necessarily belong to these special classes of operators. In particular, as shown next,
Π 7→ Fδ(Fδ(Π)) is not the convex hull operator in Euclidean spaces, is not a topological
(i.e., Kuratowski) closure operator, and does not satisfy the conditions of closure operators
used in matroid theory.

The convex hull operator in Euclidean spaces maps any set to the unique minimal convex
set containing it. The following claim states that in Euclidean spaces the operator Π 7→
Fδ(Fδ(Π)) is not the convex hull operator.

Claim D.4 (Π 7→ Fδ(Fδ(Π)) is not the convex hull operator). There exists a set Π ⊆ Rn such that
Π 7→ Fδ(Fδ(Π)) is not the convex hull of Π.

Proof. Let Π = {x, y} such that ∆(x, y) > 2δ. Note that the convex hull of Π contains the
entire line segment between x and y. However, there exists a point z on this line segment
such that ∆(z, x) ≥ δ and ∆(z, y) ≥ δ. Thus, z ∈ Fδ(Π), which implies that z /∈ Fδ(Fδ(Π)).
It follows that the line segment between x and y is not contained in Fδ(Fδ(Π)), and thus
Fδ(Fδ(Π)) is not the convex hull of Π.

Closure operators in topology are called Kuratowski closure operators, and satisfy the three
conditions in Definition D.1 as well as the following additional condition: For Π, Π′ ⊆ Ω
it holds that cl(Π) ∪ cl(Π′) = cl(Π ∪Π′). However, Π 7→ Fδ(Fδ(Π)) does not satisfy this
condition in general.

Claim D.5 (Π 7→ Fδ(Fδ(Π)) is not a Kuratowski closure operator). There exists a space Ω and
δ > 0 such that the operator Π 7→ Fδ(Fδ(Π)) does not satisfy the Kuratowski axioms.

Proof. Let Ω be a graph that is a simple path x1− x2− x3, and let δ = 2. Consider Π = {x1}
and Π′ = {x3}. Then Fδ(Fδ(Π)) = Π and Fδ(Fδ(Π′)) = Π′; but Fδ(Fδ(Π ∪Π′)) = Ω 6=
Fδ(Fδ(Π)) ∪ Fδ(Fδ(Π′)).

Closure operators in matroid theory (see, e.g., [GM12]) satisfy the three conditions in Def-
inition D.1 as well as an additional fourth condition. We now define this fourth condition,
and show that the operator Π 7→ Fδ(Fδ(Π)) does not satisfy it in general.

68

Definition D.6 (MacLane-Steinitz exchange property). A closure operator cl : P(Ω) → P(Ω)
satisfies the MacLane-Steinitz exchange property if it meets the following condition: If there exist
Π ⊆ Ω and x, y ∈ Ω such that x ∈ cl(Π ∪ {y}) \ cl(Π), then y ∈ cl(Π ∪ {x}).

Claim D.7 (Π 7→ Fδ(Fδ(Π)) does not satisfy the MacLane-Steinitz exchange property). There
exists a space Ω and δ > 0 such that the operator Π 7→ Fδ(Fδ(Π)) does not satisfy the MacLane-
Steinitz exchange property.

Proof. Let Ω be a graph that is a simple path x− y− z, and let δ = 2 and Π = ∅. Note that
Fδ(Fδ(Π)) = Π = ∅, and Fδ(Fδ(Π ∪ {y})) = Ω 3 x, which implies that x ∈ Fδ(Fδ(Π ∪
{y})) \ Fδ(Fδ(Π)). However, it holds that Fδ(Fδ(Π ∪ {x})) = {x} 63 y.

Finally, let us point to an interesting property that Π 7→ Fδ(Fδ(Π)) does admit: Namely,
Π 7→ Fδ(Fδ(Π)) is the composition of another operator with itself; that is, Π 7→ Fδ(Fδ(Π))
is the composed operator Fδ ◦ Fδ. Moreover, the collection of closed sets under Π 7→
Fδ(Fδ(Π)) is identical to the image of the composed operator (since by Theorem A.2, it
holds that {Fδ(Π)}Π⊆Ω = {Fδ(Fδ(Π))}Π⊆Ω). This property seems distinct amongst the
closure operators we are familiar with.

Appendix E Fδ-tight spaces

Recall that in general metric spaces and for a general δ > 0, being strongly Fδ-closed is not a
necessary condition for being Fδ-closed (as demonstrated in Figure 2 and Proposition A.7).
However, there exist graphs and values of δ > 0 for which this sufficient condition is also
necessary. We call such spaces Fδ-tight; that is

Definition E.1 (Fδ-tight spaces). For a graphical space Ω and δ > 0, we say that Ω is Fδ-tight if
every Fδ-closed set in Ω is also strongly Fδ-closed.

Thus, in Fδ-tight spaces, a set is Fδ-closed if and only if it is strongly Fδ-closed. In the
current appendix we present an initial exploration of this notion. We first observe that every
graph is F1-tight (since every set is both Fδ-closed and strongly Fδ-closed for δ = 1, because
the condition in Definition 2.4 holds vacuously). The following proposition asserts that every
graph is also F2-tight.

Proposition E.2 (all graphs are F2-tight). Every graphical space is F2-tight.

Proof. Let Π ⊆ Ω be a set that is F2-closed. Relying on Definition 2.4, we show that every
x /∈ Π ∪ F2(Π) lies on a 2-path from Π to F2(Π); that is, x has a neighbor in F2(Π). Since
Π is F2-closed, by Proposition A.3, every x /∈ Π ∪ F2(Π) lies on a path to F2(Π) such that
every vertex v subsequent to x in the path satisfies ∆(v, Π) ≥ 2. Thus, the vertex subsequent
to x on the path is a neighbor of x in F2(Π).

However, not all graphical spaces are F3-tight, as demonstrated by the example in Fig-
ure 2. Nevertheless, every graphical space is Fδ-tight for values of δ that are larger than

69

the diameter of the graph (since every Π ⊆ Ω satisfies Fδ(Π) = ∅ and Fδ(Fδ(Π)) = Ω,
and therefore the only Fδ-closed set is Π = Ω, which is also strongly Fδ-closed). A natural
consequent question is therefore:

For which graphs G and values of δ ∈ [3, diam(G)] does it hold that G is Fδ-tight?

As an initial step towards tackling this question, we show several simple graph families
that are Fδ-tight for every δ > 0.

Proposition E.3 (graphs that are Fδ-tight for every δ > 0). The following graphs are Fδ-tight, for
every δ > 0:

1. A complete graph on n ≥ 2 vertices.

2. A path on n ≥ 2 vertices.

3. A cycle on n ≥ 2 vertices.

4. A 2× n grid (i.e., a grid with two rows and n columns), for any n ≥ 2.

5. A circular ladder graph on 2n ≥ 4 vertices; that is, the graph that is comprised of two cycles on
n vertices such that for every i ∈ [n], the ith vertices in both cycles are connected by an edge.

Item (1) of Proposition E.3 follows as a corollary of the fact that every graphical space is
Fδ-tight for values of δ larger than the diameter of the graph. To prove the other items of
Proposition E.3 we will first need the following corollary of Proposition A.3, of Fact A.3.1,
and of Item (4) of Theorem A.2.

Corollary E.4 (a corollary of Proposition A.3). For a graphical Ω, and δ ≥ 2, let Π ⊆ Ω be an
Fδ-closed set. Then, for every x /∈ Π∪Fδ(Π), there exists a path v0, v1, ..., vm = x, ..., vl such that:

1. v0 ∈ Π, and for every i ∈ [0, m− 1] it holds that ∆(vi,Fδ(Π)) ≥ 2.

2. vl ∈ Fδ(Π), and for every i ∈ [m + 1, l] it holds that ∆(vi, Π) ≥ 2.

We now prove Items (2) and (3) of Proposition E.3. An intuitive reason that a single proof
suffices for both the path and the cycle is that being Fδ-closed (resp., strongly Fδ-closed) is
a local phenomenon, and the local neighborhoods in both graphs are very similar.

Proposition E.5 (Items (2) and (3) of Proposition E.3). Let Gn be either a simple path on n ≥ 2
vertices or a cycle on n ≥ 2 vertices. Then, for every δ > 0 it holds that Gn is Fδ-tight.

Proof. It suffices to prove that Gn is Fδ-tight for δ ≥ 3. Let δ ≥ 3, let Π ⊆ Gn be an Fδ-closed
set, and let x /∈ Π ∪ Fδ(Π). According to Corollary E.4, there exists a path from x to Π that
does not intersect Fδ(Π), and a path from x to Fδ(Π) that does not intersect Π. Without loss
of generality, we can assume that both are simple paths. Now, note that a simple path from
x to any set can only be one of two paths: The path obtained by walking from x constantly
to one direction, and the path obtained by walking from x constantly to the other direction.
Thus, in one of these paths, the first vertex from Π ∪ Fδ(Π) that we encounter is from Π,

70

and in the other, the first vertex from Π∪Fδ(Π) that we encounter is from Fδ(Π) (otherwise
there would not exist two paths as in Corollary E.4).

Let x′ be the neighbor of x to the side in which the first vertex from Π ∪ Fδ(Π) that we
encounter is from Fδ(Π). To see that ∆(x′, Π) = ∆(x, Π) + 1, note that a shortest path from
x′ to Π can be one of two paths: The path obtained by walking constantly to the direction of
x, and the path obtained by walking constantly to other direction. When walking constantly
to the direction of x, the first vertex subsequent to x′ on the path is x itself; such a path is
necessarily longer than a shortest path from x to Π. Conversely, when going to the other
direction, the first vertex from Π∪Fδ(Π) that we encounter is from Fδ(Π); since the distance
of such a vertex from Π is at least δ, such a path is of length at least δ ≥ ∆(x, Π) + 1 (where
the inequality is since x /∈ Fδ(Π)). It follows that ∆(x′, Π) = ∆(x, Π) + 1.

One can view a simple path on n vertices as a grid with one row and n columns; that is,
view the n-path as the 1× n grid. A consequent natural question is the following:

Is the n× n grid Fδ-tight for every δ > 0?

We present an initial step towards answering this question. In particular, the following
proposition asserts that the graph with two rows and n columns (i.e., the 2× n grid) is also
Fδ-tight for every δ > 0. Similar to the proof of Proposition E.5, a nearly identical proof
applies both to the 2× n grid and to the circular ladder graph on 2n vertices.

Proposition E.6 (Items (4) and (5) of Proposition E.3). Let G2,n be either the 2 × n grid or the
circular ladder graph on 2n vertices. Then, for every δ > 0 it holds that G2,n is Fδ-tight.

Proof. We prove the claim for the case in which G2,n is the 2× n grid. The proof for the
circular ladder graph is nearly identical, but slightly more cumbersome in terms of notation;
we will explicitly note the single place in which there is a minor difference. For i ∈ {1, 2},
we denote the vertices in the ith row of G2,n by vi,1, ..., vi,n. Also, we define the left and right
directions in the graph in the natural way (i.e., within a fixed row i ∈ {1, 2}, the left direction
is towards vi,1, and the right direction is towards vi,n).

Note that it suffices to prove that G2,n is Fδ-tight for δ ≥ 3. Let δ ≥ 3, let Π ⊆ G2,n
be an Fδ-closed set, and let x /∈ Π ∪ Fδ(Π). We will show a neighbor x′ of x such that
∆(x′, Π) = ∆(x, Π) + 1. Without loss of generality, assume that x = v1,j, for j ∈ [n].

High-level overview. The proof is based on a case analysis. In particular, it consists of three
cases, depending on the neighborhood of x. The first case is when the vertex beneath x (i.e.,
the vertex v2,j) is in Fδ(Π). In this case, the vertex beneath x is a neighbor of x that is farther
from Π (since x /∈ Fδ(Π)). The second case is when the vertex beneath x is in Π. In this case,
since Π is Fδ-closed, Proposition A.3 implies that there exists a path from x to Fδ(Π) such
that any vertex subsequent to x on the path is neither in Π nor adjacent to Π. The vertex
immediately subsequent to x on the path is a neighbor of x that is farther from Π (since, in
this case, x is adjacent to v2,j ∈ Π).

The third and last case, in which the vertex beneath x is not in Π ∪ Fδ(Π), will be the
main focus of our proof. In this case, we will rely on Corollary E.4 to show that when

71

walking constantly from x to one horizontal direction (say, to the left), we reach a column in
which there is a vertex from Π before reaching any column in which there is a vertex from
Fδ(Π); and when walking constantly from x to the other horizontal direction (say, to the
right), we reach a column in which there is a vertex from Fδ(Π) before reaching any column
in which there is a vertex from Π. We prove that the neighbor of x to the right (i.e., to the
direction in which we reach a column with a vertex from Fδ(Π)) is farther from Π, compared
to x. The proof of the latter fact will rely on a more fine-grained case analysis as well as on
Condition (2) of Theorem A.2.

The actual proof. The overview showed how to handle the cases in which v2,j ∈ Π or
v2,j ∈ Fδ(Π). Thus, we focus on proving the case in which

v2,j /∈ Π ∪ Fδ(Π) . (E.1)

We start by limiting our analysis to a local neighborhood in the graph G2,n, and introduc-
ing some additional notation. These will rely on the following observation:

Claim E.6.1. There exists a column to the left of column j with a vertex from Π ∪ Fδ(Π), and a
column to the right of column j with a vertex from Π ∪ Fδ(Π). Moreover, the first such column that
we encounter when walking from x to one direction (i.e., to the left or to the right) contains a vertex
from Π, and the first such column that we encounter when walking from x to the other direction
contains a vertex from Fδ(Π).

Proof. Since Π is Fδ-closed, and relying on Corollary E.4, there exists a path from x to Π
(resp., to Fδ(Π)) such that any vertex subsequent to x on the path is neither in Fδ(Π) (resp.,
in Π) nor adjacent to Fδ(Π) (resp., to Π). Also note that column j does not contain a vertex
from Π∪Fδ(Π) (since x = v1,j /∈ Π∪Fδ(Π), and relying on Eq. (E.1)). Thus, both paths that
exist according to Corollary E.4 end in columns either to the right or to the left of column j.

Now, observe that a column in the graph cannot contain one vertex from Π and another
vertex from Fδ(Π) (since δ ≥ 3, and the vertices in the column are adjacent). Also note that if
a column contains a vertex from a set Π′, then any path going through the column intersects
Π′ or a vertex adjacent to Π′. Therefore, the path from x to Π cannot intersect a column in
which there is a vertex from Fδ(Π), and the path from x to Fδ(Π) cannot intersect a column
in which there is a vertex from Π. The claim follows. �

Denote by jR ∈ [n] the first column to the right of column j such that one of the vertices
in the column is in Π ∪ Fδ(Π); that is, jR = min{j′ > j : ∃i ∈ {1, 2}, vi,j′ ∈ Π ∪ Fδ(Π)}.
Similarly, denote jL = max{j′ < j : ∃i ∈ {1, 2}, vi,j′ ∈ Π∪Fδ(Π)}. Also, denote by iR the row
of the vertex in column jR that is in Π ∪ Fδ(Π) (or iR = 1, if both vertices in column jR are
in Π ∪ Fδ(Π)); that is, iR = min{i ∈ {1, 2} : vi,jR ∈ Π ∪ Fδ(Π)}. Denote iL in an analogous
way. Without loss of generality, assume that viL,jL ∈ Π and that viR,jR ∈ Fδ(Π). The rest of
the proof will focus only on columns jL, ..., jR in the graph.13

13In the case of the circular ladder graph, the argument is slightly different in terms of notation. Assume that
the vertices of the graph are organized in two rows of n vertices, similar to the grid, such that the left-most

72

Now, let x′ = v1,j+1 be the vertex to the right of x (indeed, it is possible that x′ = v1,jR ,
in case jR = j + 1). We will prove that ∆(x′, Π) = ∆(x, Π) + 1. Figure 5 depicts the relevant
part of the graph, reflecting some of our assumptions and notations at this point.

x x′

jL j j + 1 jR

viL,jL ∈ Π

x, v2,j /∈ Π ∪ Fδ(Π)

viR,jR ∈ Fδ(Π)

Figure 5: The relevant part of the graph G2,n, reflecting our assumptions and notations at this
point (as well as an additional, unjustified assumption that jR 6= j + 1). Note that columns
jL + 1, ..., jR − 1 do not contain vertices from Π ∪ Fδ(Π).

Before proceeding, let us define one more term. For any two vertices vi′,j′ and vi′′,j′′ in
the graph, a path from vi′,j′ to vi′′,j′′ is called a straight simple path if it is comprised of a
shortest path from vi′,j′ to vi′,j′′ , and then (if i′ 6= i′′) a step from vi′,j′′ to vi′′,j′′ . That is, we first
walk “within the row”, and then, if needed, conclude with a step to the other row. We will
frequently rely on the following simple observation: If there exists a path of length k between
two vertices in the graph, then there exists a straight simple path of length k between the
vertices. Thus, for any vertex vi′,j′ and set Π′ ⊆ G2,n, to prove that ∆(vi′,j′ , Π′) ≥ k, it suffices to
prove that any straight simple path from vi′,j′ to Π′ is of length at least k.

To prove that ∆(x′, Π) = ∆(x, Π) + 1, we show that any straight simple path from x′ to
Π is of length at least ∆(x, Π) + 1. Note that, since v2,j+1 /∈ Π, such a path starts by walking
from x′ either to the left or to the right (where v2,j+1 /∈ Π is since the first column to the right
of column j with a vertex from Π∪Fδ(Π) contains a vertex from Fδ(Π), so it cannot contain
a vertex from Π).

Any straight simple path from x′ to Π that starts by walking to the left passes through
x, and is therefore longer than a shortest path from x to Π. Hence, to prove that ∆(x′, Π) =
∆(x, Π) + 1, it suffices to show that any straight simple path from x′ to Π that starts by
walking to the right is of length at least ∆(x, Π) + 1. Note that such a path passes through
v1,jR , since there are no vertices from Π ∪ Fδ(Π) in columns j, ..., jR − 1. Thus, the length of
such a path is at least

∆(x′, v1,jR) + ∆(v1,jR , Π) . (E.2)

Since x /∈ Fδ(Π), it holds that ∆(x, Π) + 1 ≤ δ. Thus, the value of the expression in
Eq. (E.2) can be smaller than ∆(x, Π) + 1 only if it is at most δ − 1. However, note that
∆(v1,jR , Π) ≥ δ − 1, since there is a vertex from Fδ(Π) in column jR. Thus, the value of

and right-most vertices in each row are adjacent. In this case, it is possible that j ∈ {1, n}, and thus it does not
necessarily hold that jR > j and jL < j. However, since the rest of the proof will depend only on columns jL, ..., jR
in the graph, we may assume without loss of generality that jL < j < jR. This is the only place in which the
proofs for the grid and for the circular ladder graphs differ.

73

the expression in Eq. (E.2) is smaller than ∆(x, Π) + 1 only if the following conditions hold:
∆(x, Π) = δ− 1, and x′ = v1,jR (i.e., jR = j + 1), and ∆(x′, Π) = δ− 1. We prove that this case,
in fact, does not happen. More specifically, we prove that if ∆(x, Π) = δ− 1, and jR = j + 1,
and ∆(x′, Π) = δ− 1, then Π is not Fδ-closed, which is a contradiction.

Claim E.6.2. Assuming that v2,j /∈ Π ∪ Fδ(Π), and viL,jL ∈ Π, and ∆(x, Π) = δ− 1, and jR =
j + 1, and ∆(x′, Π) = δ− 1, it follows that Π is not Fδ-closed.

Assume, for a moment, that Claim E.6.2 holds. Then, the expression in Eq. (E.2) is lower
bounded by ∆(x, Π) + 1, which implies that any straight simple path from x′ to Π that starts
by walking to the right is of length at least ∆(x, Π)+ 1. It follows that ∆(x′, Π) = ∆(x, Π)+ 1,
which finishes the current and last case (in which v2,j /∈ Π∪Fδ(Π)), and concludes the proof.
Thus, to conclude the proof it is just left to prove Claim E.6.2.

Proof of Claim E.6.2. First note that since column jR = j+ 1 contains a vertex from Fδ(Π), and
∆(x′, Π) = δ− 1, it follows that v2,j+1 ∈ Fδ(Π). Figure 6 depicts columns jL, ..., j + 1 = jR of
the graph, reflecting our assumptions at this point.

x x′

jL j jR=
j+1

viL,jL ∈ Π

∆(x, Π) = ∆(x′, Π) = δ− 1

v2,j /∈ Π ∪ Fδ(Π)

v2,j+1 ∈ Fδ(Π)

Figure 6: Columns jL, ..., j + 1 = jR of the graph G2,n, reflecting our assumptions at this point.

Fact E.6.2.1. From the hypothesis of Claim E.6.2 it follows that j− jL = δ− 1.

Proof. To see that j− jL ≥ δ− 1, note that:

• If v1,jL ∈ Π, then, since ∆(x, Π) = δ− 1, we get that δ− 1 = ∆(x, Π) ≤ ∆(x, v1,jL) =
j− jL.

• If v1,jL /∈ Π, then v2,jL ∈ Π (since one of the vertices in column jL is in Π). In this case,
the distance of v2,jL ∈ Π from v2,j+1 ∈ Fδ(Π) is at least δ. Thus, δ ≤ ∆(v2,jL , v2,j+1) =
j + 1− jL, which implies that j− jL ≥ δ− 1.

To see that j− jL ≤ δ− 1, assume otherwise, and note that it implies that ∆(x, Π) ≥ δ,
which contradicts x /∈ Fδ(Π). This is true since any straight simple path from x to Π that
starts by walking to the right passes through x′; since ∆(x′, Π) = δ − 1, such a path is of
length at least ∆(x, x′) + ∆(x′, Π) = δ. Conversely, any straight simple path from x to Π that
starts by walking to the left passes through v1,jL ; if indeed j− jL ≥ δ, then such a path is of
length at least ∆(x, v1,jL) + ∆(v1,jL , Π) ≥ δ. �

74

To show that Π is not Fδ-closed, we rely on Condition (2) of Theorem A.2: We show a
vertex v′ /∈ Π ∪ Fδ(Π) such that there does not exist z ∈ Fδ(Π) satisfying ∆(v′, z) < δ. In
particular, let v′ = v1,jL+1 be the vertex to the right of v1,jL . Since there are no vertices from
Π∪Fδ(Π) in columns jL + 1, ..., j, it holds that v′ /∈ Π∪Fδ(Π). We show that ∆(v′,Fδ(Π)) ≥
δ, which implies that there does not exist z ∈ Fδ(Π) satisfying ∆(v′, z) < δ.

Fact E.6.2.2. From the hypothesis of Claim E.6.2 it follows that ∆(v′,Fδ(Π)) ≥ δ.

Proof. Note that v2,jL+1 /∈ Fδ(Π), since columns jL + 1, ..., j do not contain vertices from
Π ∪ Fδ(Π). Thus, any straight simple path from v′ to Fδ(Π) starts by walking either to the
left or to the right. Any path that starts by walking from v′ to the left goes through v1,jL . Since
a vertex in column jL is in Π, it holds that ∆(v1,jL , Π) ≤ 1, and thus ∆(v1,jL ,Fδ(Π)) ≥ δ− 1.
Hence, any straight simple path from v′ to Fδ(Π) that starts by walking to the left is of length
at least ∆(v′, v1,jL) + ∆(v1,jL ,Fδ(Π)) ≥ δ.

Conversely, any straight simple path from v′ to Fδ(Π) that starts by walking to the right
passes through x′ (since there are no vertices from Π∪Fδ(Π) in columns jL + 1, ..., j). Relying
on Fact E.6.2.1, and on the fact that x′ /∈ Fδ(Π) (since ∆(x′, Π) = δ− 1), any such path is of
length at least ∆(v′, x′) + ∆(x′,Fδ(Π)) = (j + 1)− (jL + 1) + 1 = δ. �

By Condition (2) of Theorem A.2, it follows that Π is not Fδ-closed, which concludes the
proof of Claim E.6.2. �

As mentioned in the discussion after the statement of Claim E.6.2, the proof of the latter
concludes the proof of Proposition E.6.

75

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

