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Abstract

We show that, assuming the (deterministic) Exponential Time Hypothesis, distinguishing
between a graph with an induced k-clique and a graph in which all k-subgraphs have density

at most 1 − ε, requires nΩ̃(log n) time. Our result essentially matches the quasi-polynomial
algorithms of Feige and Seltser [FS97] and Barman [Bar15b] for this problem, and is the first
one to rule out an additive PTAS for Densest k-Subgraph. We further strengthen this result by
showing that our lower bound continues to hold when, in the soundness case, even subgraphs

smaller by a near-polynomial factor (k′ = k ·2−Ω̃(log n)) are assumed to be at most (1−ε)-dense.
Our reduction is inspired by recent applications of the “birthday repetition” technique

[AIM14, BKW15]. Our analysis relies on information theoretical machinery and is similar in
spirit to analyzing a parallel repetition of two-prover games in which the provers may choose to
answer some challenges multiple times, while completely ignoring other challenges.
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1 Introduction

k-Clique is one of the most fundamental problems in computer science: given a graph, decide
whether it has a fully connected induced subgraph on k vertices. Since it was proven NP-complete
by Karp [Kar72], extensive research has investigated the complexity of relaxed versions of this
problem.

This work focuses on two natural relaxations of k-Clique which have received significant atten-
tion from both algorithmic and complexity communities: The first one is to relax “k”, i.e. looking
for a smaller subgraph:

Problem 1.1 (Approximate Max Clique, Informal). Given an n-vertex graph G, decide whether G
contains a clique of size k, or all induced cliques of G are of size at most δk for some 1 > δ(n) > 0.

The second natural relaxation is to relax the “Clique” requirement, replacing it with the more
modest goal of finding a subgraph that is almost a clique:

Problem 1.2 (Densest k-Subgraph with perfect completeness, Informal). Given an n-vertex graph
G containing a clique of size k, find an induced subgraphs of G of size k with (edge) density at least
(1−ε), for some 1 > ε > 0. (More modestly, given an n-vertex graph G, decide whether G contains
a clique of size k, or all induced k-subgraphs of G have density at most (1− ε)).

Today, after a long line of research [FGL+96, AS98, ALM+98, H̊as99, Kho01, Zuc07] we have
a solid understanding of the inapproximability of Problem 1.1. In particular, we know that it is
NP-hard to distinguish between a graph that has a clique of size k, and a graph whose largest
induced clique is of size at most k′ = δk for δ = 1/n1−ε [Zuc07]. The computational complexity of
the second relaxation (Problem 1.2) remained largely open. There are a couple of quasi-polynomial
algorithms that guarantee finding a (1− ε)-dense k subgraph in every graph containing a k-clique
[FS97, Bar15b]1, suggesting that this problem is not NP-hard. Yet we know neither polynomial-
time algorithms, nor general impossibility results for this problem.

In this work we provide a strong evidence that the aforementioned quasi-polynomial time algo-
rithms for Problem 1.2 [FS97, Bar15b] are essentially tight, assuming the (deterministic) Exponen-
tial Time Hypothesis (ETH), which postulates that any deterministic algorithm for 3SAT requires
2Ω(n) time [IP01]. In fact, we show that under ETH, both parameters of the above relaxations are
simultaneously hard to approximate:

Theorem 1.3 (Main Result). There exists a universal constant ε > 0 such that, assuming the
(deterministic) Exponential Time Hypothesis, distinguishing between the following requires time

nΩ̃(logn), where n is the number of vertices of G.

Completeness G has an induced k-clique; and

Soundness Every induced subgraph of G size k′ = k · 2−Ω( logn
log logn

)
has density at most 1− ε,

Our result has implications for two major open problems whose computational complexity
remained elusive for more than two decades: The (general) Densest k-Subgraph problem, and
the Planted Clique problem.

The Densest k-Subgraph problem, DkS (η, ε), is the same as (the decision version of) Prob-
lem 1.2, except that in the “completeness” case, G has a k-subgraph with density η, and in the

1Barman [Bar15b] approximates the Densest k-Bi-Subgraph problem. Densest k-Subgraph can be handled
via a simple modification [Bar15a].
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“soundness” case, every k-subgraph is of density at most ε, where η � ε. Since Problem 1.2 is
a special case of this problem, our main theorem can also be viewed as a new inapproximability
result for DkS (1, 1− ε). We remark that the aforementioned quasi-polynomial algorithms for the
“perfect completeness” regime completely break in the sparse regime, and indeed it is believed that
DkS

(
n−α, n−β

)
(for k = nε) in fact requires much more than quasi-polynomial time [BCV+12].

The best to-date algorithm for Densest k-Subgraph due to Bhaskara et. al, is guaranteed to find
a k-subgraph whose density is within an ∼ n1/4-multiplicative factor of the densest subgraph of
size k [BCV+12], and thus DkS (η, ε) can be solved efficiently whenever η � n1/4 · ε (this improved
upon a previous n1/3-approximation of Feige et. al [FKP01]). Making further progress on either
the lower or upper bound frontier of the problem is a major open problem.

Several inapproximability results for Densest k-Subgraph were known against specific classes
of algorithms [BCV+12] or under assumptions that are incomparable or stronger (thus giving weaker
hardness results) than ETH: NP *

⋂
ε>0 BPTIME

[
2n

ε]
[Kho06], Unique Games with expansion

[RS10], and hardness of random k-CNF [Fei02, AAM+11]. The most closely related result is by
Khot [Kho06], who shows that the Densest k-Subgraph problem has no PTAS unless SAT is
in randomized subexponential time. The result of [Kho06], as well as other aforementioned works,
focus on the sub-constant density regime, i.e. they show hardness for distinguishing between a
graph where every k-subgraph is sparse, and one where every k-subgraph is extremely sparse. In
contrast, our result has perfect completeness and provides the first additive inapproximability for
Densest k-Subgraph — the best one can hope for as per the upper bound of [Bar15b].

The Planted Clique problem is a special case of our problem, where the inputs come from a
specific distribution (G (n, p) versus G (n, p) + “a planted clique of size k”, where p is some constant,
typically 1/2). The Planted Clique Conjecture ([AAK+07, AKS98, Jer92, Kuc95, FK00, DGGP10])
asserts that distinguishing between the aforementioned cases for p = 1/2, k = o(

√
n) cannot be

done in polynomial time, and has served as the underlying hardness assumption in a variety of
recent applications including machine-learning and cryptography (e.g. [AAK+07, BBB+13, BR13])
that inherently use the average-case nature of the problem, as well as in reductions to worst-case
problems (e.g. [HK11, AAM+11, CLLR15, BPR+15b]).

The main drawback of average-case hardness assumptions is that many average-case instances
(even those of worst-case-hard problems) are in fact tractable. In recent years, the centrality of
the planted clique conjecture inspired several works that obtain lower bounds in restricted models
of computation [FGR+13, MPW15, DM15]. Nevertheless, a general lower bound for the average-
case planted clique problem appears out of reach for existing lower bound techniques. Therefore,
an important potential application of our result is replacing average-case assumptions such as the
planted-clique conjecture, in applications that do not inherently rely on the distributional nature
of the inputs (e.g., when the ultimate goal is to prove a worst-case hardness result). In such
applications, there is a good chance that planted clique hardness assumptions can be replaced with
a more “conventional” hardness assumption, such as the ETH, even when the problem has a quasi-
polynomial algorithm. Recently, such a replacement of the planted clique conjecture with ETH was
obtained for the problem of finding an approximate Nash equilibrium with approximately optimal
social welfare [BKW15].

We also remark that, while showing hardness for Planted Clique from worst-case assumptions
seems beyond the reach of current techniques, our result can also be seen as circumstantial evidence
that this problem may indeed be hard. In particular, any polynomial time algorithm (if exists)
would have to inherently use the (rich and well-understood) structure of G (n, p).
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Techniques

Our simple construction is inspired by the “birthday repetition” technique which appeared recently
in [AIM14, BKW15, BPR15a]: given a 2CSP (e.g. 3COL), we have a vertex for each Ω̃ (

√
n)-tuple

of variables and assignments (respectively, 3COL vertices and colorings). We connect two vertices
by an edge whenever their assignments are consistent and satisfy all 2CSP constraints induced on
these tuples. In the completeness case, a clique consists of choosing all the vertices that correspond
to a fixed satisfying assignment. In the soundness case (where the value of the 2CSP is low),
the “birthday paradox” guarantees that most pairs of vertices vertices (i.e. two Ω̃ (

√
n)-tuples of

variables) will have a significant intersection (nonempty CSP constraints), thus resulting in lower
densities whenever the 2CSP does not have a satisfying assignment. In the language of two-prover
games, the intuition here is that the verifier has a “constant chance in catching the players in a lie
if thy are trying to cheat” in the game while not satisfying the CSP.

While our construction is simple, analyzing it is intricate. The main challenge is to rule out a
“cheating” dense subgraph that consists of different assignments to the same variables (inconsistent
colorings of the same vertices in 3COL). Intuitively, this is similar in spirit to proving a parallel
repetition theorem where the provers can answer some questions multiple times, and completely
ignore other questions. Continuing with the parallel repetition metaphor, notice that the challenge
is doubled: in addition to a cheating prover correlating her answers (the standard obstacle to
parallel repetition), each prover can now also correlate which questions she chooses to answer. Our
argument follows by showing that a sufficiently large subgraph must accumulate many non-edges
(violations of either 2CSP or consistency constraints). To this end we introduce an information
theoretic argument that carefully counts the entropy of choosing a random vertex in the dense
subgraph.

1.1 Open problems

There are several interesting open problems related to our work. We henceforth list four of them
that are of particular interest and potential applications.

Strengthening the inapproximability factor Our result states that it is hard to distinguish
between a graph containing a k-clique and a graph that does not contain a very dense (1 − δ)
k-subgraph. The latter (1 − δ) seems to be a limitation of our technique. None of the algorithms
we know (including the two quasi-polynomial time algorithms mentioned above) can distinguish
in polynomial time between a graph containing a k-clique and a graph that does not contain even
a slightly dense (δ) k-subgraph; for any constant δ > 0, and in fact even for some sub-constant
values of δ. Furthermore, there is evidence [AAM+11] that this problem may indeed be hard. This
naturally leads to the following problem.

Problem 1.4 (Hardness Amplification). Show that for every given constant δ > 0, distinguishing
between the following two cases is ETH-hard:

• There exists S ⊂ V of size k such that den(S) = 1.

• All S ⊂ V of size k have den(S) ≤ δ.

We remark that a similar amplification, from “clique versus dense” (den(S) = 1 vs. den(S) =
1 − δ) to “clique versus sparse” (den(S) = 1 vs. den(S) = δ), was shown by Alon et al. when the
“clique vs. dense” instance is drawn at random according to the planted clique model [AAM+11].
(Unfortunately, their techniques do not seem to apply to our hard instance.)
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An easier variant of Problem 1.4 is to show hardness for a large gap in the imperfect completeness
regime.

Problem 1.5 (Hardness Amplification - imperfect completeness). Show that there exist parameters
0 < ε� η < 1 for which distinguishing between the following two cases is ETH-hard:

• There exists S ⊂ V of size k such that den(S) ≥ η.

• All S ⊂ V of size k have den(S) ≤ ε.

We note that such gaps can be obtained from average-case hardness for a random k-CNF [AAM+11]
and from Unique Games with expansion [RS10].

Beyond quasi-polynomial hardness Another interesting challenge is to trade the perfect com-
pleteness in our main result for stronger notions of hardness. Indeed, there are substantial evidences
which suggest that the “sparse vs. very-sparse” regime (DkS (η, ε)) is much harder to solve. The
gap instance in [BCV+12] where all known linear and semidefinite programming techniques fail is
a very sparse instance and has integrality gap of Ω(n2/53−ε). In particular, every vertex has degree
n1/2+o(1), compared to almost linear average degree in our instance. Since no other algorithms suc-
ceed in this regime (even in quasi-polynomial time), it is natural to look for stronger lower bounds
on the running time.

Problem 1.6 (Trading-off perfect completeness for stronger lower bounds). Show that there exist
parameters 0 < ε < η � 1 for which distinguishing between the following two cases is NP-hard:

• There exists S ⊂ V of size k such that den(S) ≥ η.

• All S ⊂ V of size k have den(S) ≤ ε.

Finding Stable Communities The problem of finding Stable Communities is tightly related
to Densest k-Subgraph, and has received recent attention in the context of social networks and
learning theory [AGSS12, AGM13, BL13].

Definition 1.7 (Stable Communities [BBB+13]). Let α, β with β < α ≤ 1 be two positive
parameters. Given an undirected graph, G = (V,E), S ⊂ V is an (α, β)-cluster if S is :

1. Internally Dense: ∀i ∈ S, |N (i) ∩ S| ≥ α|S|.

2. Externally Sparse: ∀i /∈ S, |N (i) ∩ S| ≤ β|S|.

Currently, only planted clique based hardness is known.

Theorem 1.8 ([BBB+13]). For sufficiently small (constant) γ, finding a (1, 1 − γ) cluster is at
least as hard as Planted Clique.

As insinuated in the introduction, we believe it is plausible and interesting to see whether the
hardness assumption of the theorem above can be replaced with ETH.

Problem 1.9 (Hardness of Stable Communities). Show that for some α, β with β < α ≤ 1,
finding an (α, β)-cluster S is ETH-hard.
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2 Preliminaries

Throughout the paper we use den(S) ∈ [0, 1] to denote the density of subgraph S,

den(S) :=

∣∣(S × S) ∩ E∣∣
|S × S|

.

2.1 Information theory

In this section, we introduce information-theoretic quantities used in this paper. For a more thor-
ough introduction, the reader should refer to [CT12]. Unless stated otherwise, all log’s in this paper
are base-2.

Definition 2.1. Let µ be a probability distribution on sample space Ω. The Shannon entropy (or
just entropy) of µ, denoted by H(µ), is defined as H(µ) :=

∑
ω∈Ω µ(ω) log 1

µ(ω) .

Definition 2.2 (Binary Entropy Function). For p ∈ [0, 1], the binary entropy function is defined
as follows (with a slight abuse of notation) H(p) := −p log p− (1− p) log(1− p).

Fact 2.3 (Concavity of Binary Entropy). Let µ be a distribution on [0, 1], and let p ∼ µ. Then
H(Eµ [p]) ≥ Eµ [H(p)].

For a random variable A we shall write H(A) to denote the entropy of the induced distribution
on the support of A. We use the same abuse of notation for other information-theoretic quantities
appearing later in this section.

Definition 2.4. The Conditional entropy of a random variable A conditioned on B is defined as

H(A|B) = Eb(H(A|B = b)).

Fact 2.5 (Chain Rule). H(AB) = H(A) +H(B|A).

Fact 2.6 (Conditioning Decreases Entropy). H(A|B) ≥ H(A|BC).

Another measure we will use (briefly) in our proof is that of Mutual Information, which infor-
mally captures the correlation between two random variables.

Definition 2.7 (Conditional Mutual Information). The mutual information between two random
variable A and B, denoted by I(A;B) is defined as

I(A;B) := H(A)−H(A|B) = H(B)−H(B|A).

The conditional mutual information between A and B given C, denoted by I(A;B|C), is defined as

I(A;B|C) := H(A|C)−H(A|BC) = H(B|C)−H(B|AC).

The following is a well-known fact on mutual information.

Fact 2.8 (Data processing inequality). Suppose we have the following Markov Chain:

X → Y → Z

where X⊥Z|Y . Then I(X;Y ) ≥ I(X;Z) or equivalently, H(X|Y ) ≤ H(X|Z).
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Mutual Information is related to the following distance measure.

Definition 2.9 (Kullback-Leiber Divergence). Given two probability distributions µ1 and µ2 on the
same sample space Ω such that (∀ω ∈ Ω)(µ2(ω) = 0⇒ µ1(ω) = 0), the Kullback-Leibler Divergence
between is defined as (also known as relative entropy)

DKL

(
µ1

∥∥∥µ2

)
=
∑
ω∈Ω

µ1(ω) log
µ1(ω)

µ2(ω)
.

The connection between the mutual information and the Kullback-Leibler divergence is provided
by the following fact.

Fact 2.10. For random variables A,B, and C we have

I(A;B|C) = Eb,c
[
DKL

(
Abc

∥∥∥Ac)] .
2.2 2CSP and the PCP Theorem

In the 2CSP problem, we are given a graph G = (V,E) on |V | = n vertices, where each of the
edges (u, v) ∈ E is associated with some constraint function ψu,v : A× A → {0, 1} which specifies
a set of legal “colorings” of u and v, from some finite alphabet A (2 in the term “2CSP ” stands
for the “arity” of each constraint, which always involves two variables). Let us denote by ψ the
entire 2CSP instance, and define by OPT(ψ) the maximum fraction of satisfied constraints in the
associated graph G, over all possible assignments (colorings) of V .

The starting point of our reduction is the following version of the PCP theorem, which asserts
that it is NP-hard to distinguish a 2CSP instance whose value is 1, and one whose value is 1− η,
where η is some small constant:

Theorem 2.11 (PCP Theorem [Din07]). Given a 3SAT instance ϕ of size n, there is a polyno-
mial time reduction that produces a 2CSP instance ψ, with size |ψ| = n · polylog n variables and
constraints, and constant alphabet size such that

• (Completeness) If OPT(ϕ) = 1 then OPT(ψ) = 1.

• (Soundness) If OPT(ϕ) < 1 then OPT(ψ) < 1− η, for some constant η = Ω(1)

• (Balance) Every vertex in ψ has degree d for some constant d.

In the appendix, we describe in detail how to derive this formulation of the PCP Theorem from
that of e.g. [AIM14].

Notice that since the size of the reduction is near linear, ETH implies that solving the above
problem requires near exponential time.

Corollary 2.12. Let ψ be as in Theorem 2.11. Then assuming ETH, distinguishing between
OPT(ψ) = 1 and OPT(ψ) < 1− η requires time 2Ω̃(|ψ|).

3 Main Proof

3.1 Construction

Let ψ be the 2CSP instance produced by the reduction in Theorem 2.11, i.e. a constraint graph
over n variables with alphabet A of constant size. We construct the following graph Gψ = (V,E):
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• Let ρ :=
√
n log logn and k :=

(
n
ρ

)
.

• Vertices of Gψ correspond to all possible assignments (colorings) to all ρ-tuples of variables
in ψ, i.e V = [n]ρ× |A|ρ. Each vertex is of the form v = (yx1 , yx2 , . . . , yxρ) where {x1, . . . , xρ}
are the chosen variables of v, and yxi is the corresponding assignment to variable xi.

• If v ∈ V violates any 2CSP constraints, i.e. if there is a constraint on (xi, xj) in ψ which is
not satisfied by

(
yxi , yxj

)
, then v is an isolated vertex in Gψ.

• Let u = (yx1 , yx2 , . . . , yxρ) and v = (y′x′1
, y′x′2

, . . . , y′x′ρ). (u, v) ∈ E iff:

– (u, v) does not violate any consistency constraints: for every shared variable xi, the
corresponding assignments agree, yxi = y′xi ;

– and (u, v) also does not violate any 2CSP constraints: for every 2CSP constraint on(
xi, x

′
j

)
(if exists), the assignment

(
yxi , y

′
x′j

)
satisfy the constraint.

Notice that the size of our reduction (number of vertices of Gψ) is N =
(
n
ρ

)
· |A|ρ = 2Õ(

√
n).

Completeness If OPT(ψ) = 1, then Gψ has a k-clique: Fix a satisfying assignment for ψ, and
let S be the set of all vertices that are consistent with this assignment. Notice that |S| =

(
n
ρ

)
= k.

Furthermore its vertices do not violate any consistency constraints (since they agree with a single
assignment), or 2CSP constraints (since we started from a satisfying assignment).

4 Soundness

Suppose that OPT(ψ) < 1− η, and let ε0 > 0 be some constant to be determined later. We shall
show that for any subset S of size k′ = k · |V |−ε0/ log log |V |, den(S) < 1− δ, where δ is some constant
depending on η. The remainder of this section is devoted to proving the following theorem:

Theorem 4.1 (Soundness). If OPT(ψ) < 1 − η, then ∀S ⊂ V of size k′ = k · |V |−ε0/ log log |V |,
den(S) < 1− δ for some constant δ.

4.1 Setting up the entropy argument

Fix some subset S of size k′, and let v ∈R S be a uniformly chosen vertex in S (recall that v
is a vector of ρ coordinates, corresponding to labels for a subset of ρ chosen variables). Let Xi

denote the indicator variable associated with v such that Xi = 1 if the i’th variable appears in v
and 0 otherwise. We let Yi represent the coloring assignment (label) for the i’th variable whenever
Xi = 1, which is of the form l ∈ A. Throughout the proof, let

Wi−1 = X<i, Y<i

denote the i’th prefix corresponding to v. We can write :

H(Yi|Wi−1, Xi) = Pr[Xi = 0] ·H(Yi|Wi−1, Xi = 0) + Pr[Xi = 1] ·H(Yi|Wi−1, Xi = 1)

= Pr[Xi = 1] ·H(Yi|Wi−1, Xi = 1)

since H(Yi|Wi−1, Xi = 0) = 0. Notice that since (XY ) and v determine each other, and v was
uniform on a set of size |S| = k′, we have
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Observation 4.2. H(XY ) = log k′.

Thus, in total, the choice of challenge and the choice of assignments should contribute log k′ to
the entropy of v. If much of the entropy comes from the assignment distribution (conditioned on the
fixed challenge variables), we will show that S must have many consistency violations, implying that
S is sparse. If, on the other hand, almost all the entropy comes from the challenge distribution, we
will show that this implies many CSP constraint violations (implied by the soundness assumption).
From now on, we denote

αi := H(Xi|X<i, Y<i) and βi := H(Yi|X≤i, Y<i).

When conditioning on the i’th prefix, we shall write αi(wi−1) := H(Xi|X<i, Y<i = wi−1), and
similarly for βi(·). Also for brevity, we denote

qi := Pr[Xi = 1] and qi(wi−1) := Pr[Xi = 1|wi−1].

Prefix graphs

The consistency constraints induce, for each i, a graph over the prefixes: the vertices are the
prefixes, and two prefixes are connected by an edge if their labels are consistent. (We can ignore
the 2CSP constraints for now — the prefix graph will be used only in the analysis of the consistency
constraints.) Formally,

Definition 4.3 (Prefix graph). For i ∈ [n + 1] let the i-th prefix graph, Gi be defined over the
prefixes of length i− 1 as follows. We say that wi−1 is a neighbor of σi−1 if they do not violate any
consistency constraints. Namely, for all j < i, if Xj = 1 for both wi−1 and σi−1, then wi and σi
assign the same label Yj.

In particular, we will heavily use the following notation: let N (wi−1) be the prefix neighborhood
of wi−1; i.e. it is the set of all prefixes (of length i− 1) that are consistent with wi−1. For technical
issues of normalization, we let wi−1 ∈ N (wi−1), i.e. all the prefixes have self-loops.

Notice that Gn+1 is defined over the vertices of S (the original subgraph). The set of edges on
S is contained in the set of edges of Gn+1, since in the latter we only remove pairs that violated
consistency constraints (recall that we ignore the 2CSP constraints).

Unless stated otherwise, we always think of prefixes as weighted by their probabilities. Naturally,
we also define the weighted degree and weighted edge density of the prefix graph.

Definition 4.4 (Prefix degree and density). The prefix degree of wi−1 is given by:

deg(wi−1) =
∑

σi−1∈N (wi−1)

Pr[σi−1].

Similarly, we define the prefix density of Gi as:

den(Gi) =
∑
wi−1

∑
σi−1∈N (wi−1)

Pr[wi−1] · Pr[σi−1].

When it is clear from the context, we henceforth drop the prefix qualification, and simply refer
to the neighborhood or degree, etc., of wi−1.

Notice that in Gn+1, the probabilities are uniformly distributed. In particular, den(Gn+1) ≥
den(S), since, as we mentioned earlier, the set of edges in S is contained in that of Gn+1. Finally,
observe also that because we accumulate violations, the density of the prefix graphs is monotonically
non-increasing with i.

Observation 4.5.
den(G1) ≥ · · · ≥ den(Gn+1) ≥ den(S).
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Useful approximations

We use the following bounds on αi and βi many times throughout the proof:

Fact 4.6.
αi = E [H(qi(wi−1))] ≤ H(E [qi(wi−1)]) = H(qi)

Fact 4.7.
βi = E [βi(wi−1))] ≤ E [qi(wi−1) · log |A|] = qi log |A|

Proof. The bound on αi follows from concavity of entropy (Fact 2.3). For the second bound, observe
that βi is maximized by spreading qi mass uniformly over alphabet A.

We also recall some elementary approximations to logarithms and entropies that will be useful
in the analysis. The proofs are deferred to the appendix.

Fact 4.8. For k =
(
n
ρ

)
then,

log k = nH
(ρ
n

)
±O (log n) =

(
1

2
− o (1)

)
ρ log n

More useful to us will be the following bounds on log k′:

Fact 4.9. Let ε1 ≥ 5ε0, and k, k′, V, n, ρ as specified in the construction. Then,

log k′ ≥ max
{

log k, nH
(ρ
n

)}
− ε1 log k/ log n︸ ︷︷ ︸

≈ ε1
2
·ρ

.

In particular, this means that most indices i should contribute roughly H
( ρ
n

)
entropy to the

choice of v.

We will also need the following bound which relates the entropies of a very biased coin and a
slightly less biased one:

Fact 4.10. Let 1/n� |υ| � 1, then

H

(
1 + υ

n

)
= H

(
1

n

)
− υ

n
log

1

n
− (log e)

υ2

2n
+O

(
n−2

)
+O

(
υ3

n

)
4.2 Consistency violations

In this section, we show that if the entropy contribution of the assignments (
∑

iH(Yi|X≤i, Y<i)) is
large, there are many consistency violations between vertices, which lead to constant density loss.
First, we show that if H(Yi|X≤i, Y<i) > 5ε1 log k/ log n, then at least a constant fraction of such
entropy is concentrated on “good” variables.

Definition 4.11 (Good Variables). We say that an index i is good if

• αi ≥ H(qi)− 2qi log |A|

• βi ≥ 1
2ε1qi

where ε1 is a constant to be determined later in the proof.

9



Claim 4.12. For any constant ε1, if
∑

i βi > 5ε1 log k/ log n,∑
good i’s

q2
i ≥

(
1

5
ε1ρ

)2

/(n log2 |A|) = Ω(ρ2/n).

Proof. We want to show that many of the indices i have both a large αi and a large βi simultane-
ously. We can write∑

i∈[n]

(αi + βi) =
∑

i : αi+βi<H(qi)−qi log |A|

(αi + βi) +
∑

i : αi+βi≥H(qi)−qi log |A|

(αi + βi)

Using Facts 4.6 and 4.7, we have∑
i∈[n]

(αi + βi) ≤
∑

i : αi+βi<H(qi)−qi log |A|

(H (qi)− βi) +
∑

i : αi+βi≥H(qi)−qi log |A|

(H (qi) + βi) . (1)

Because the subgraph is of size k′, from the expansion of log k′ (Fact 4.9),∑
i∈[n]

(αi + βi) ≥ nH
(ρ
n

)
− ε1 log k/ log n ≥

∑
H (qi)− ε1 log k/ log n,

where the second inequality follows from the concavity of entropy. Plugging into (1), we have∑
i : αi+βi≥H(qi)−qi log |A|

βi ≥
∑

i : αi+βi<H(qi)−qi log |A|

βi − ε1 log k/ log n

=

∑
i

βi −
∑

i : αi+βi≥H(qi)−qi log |A|

βi

− ε1 log k/ log n

Rearranging, we get ∑
i : αi+βi≥H(qi)−qi log |A|

βi ≥
1

2

∑
i

βi − ε1 log k/ log n (2)

For all the i’s in the LHS summation, αi ≥ H (qi) − 2qi log |A| by Fact 4.7. From now on, we
will consider only i’s that satisfy this condition. Now, using the premise on

∑
i βi and (2) we have:

∑
i : αi≥H(qi)−2qi log |A|

βi ≥ (5/2− 1)ε1 log k/ log n ≥ 0.7ε1ρ,

where the second inequality follows from our approximation for log k (Fact 4.8).
We want to further restrict our attention to i’s for which βi is at least 1

2ε1qi (aka good i’s).
Note that the above inequality can be decomposed to∑

good i’s

βi +
∑

i : αi≥H(qi)−2qi log |A|
βi<

1
2
ε1qi

βi ≥ 0.7ε1ρ

Now via a simple sum bound, ∑
i : αi≥H(qi)−2qi log |A|

βi<
1
2
ε1qi

βi ≤
1

2
ε1

∑
i

qi =
1

2
ε1ρ

10



Rearranging, we get, ∑
good i’s

βi ≥
1

5
ε1ρ

By Cauchy-Schwartz we have: ∑
good i’s

β2
i ≥

(
1

5
ε1ρ

)2

/n

Finally, since βi ≤ qi log |A|,

∑
good i’s

q2
i ≥

(
1

5
ε1ρ

)2

/(n log2 |A|).

In the same spirit, we now define a notion of a “good” prefix. Intuitively, conditioning on a good
prefix leaves a significant amount of entropy on the i’th index. We also require that a good prefix
has a high prefix degree; that is, it has many neighbors it could potentially lose when revealing the
i-th label.

Definition 4.13 (Good Prefixes). We say wi−1 is a good prefix if

• i is good;

•
∑

σi−1∈N (wi−1) qi(σi−1) Pr[σi−1] ≥ (1− ε2)qi;

• βi(wi−1) ≥ ε3qi(wi−1)

where ε3 = (ε4 + κ) log |A|, with ε4 an an arbitrarily small constant that denotes the fraction of
assignments that disagree with the majority of the assignments, κ = Θ(1/ log |A|) factor, and ε2 a

constant that satisfies δ =
(

ε2
|A|2/ε2

)4
, with den(S) = 1− δ.

In the following claim, we show that these prefixes contribute some constant fraction of entropy,
assuming that our subset is dense.

Claim 4.14. If den(S) > 1 − δ, where δ =
(

ε2
|A|2/ε2

)4
and ε1 ≥ 4ε2 log |A| + 8ε3, then for every

good index i, it holds that ∑
good wi−1’s

Pr[wi−1]βi (wi−1) ≥ βi/4

Proof. We begin by proving that most prefixes satisfy the degree condition of Definition 4.13. Let
wi−1 be popular if i is a good variable and its degree in the prefix graph Gi is at least deg(wi−1) :=∑

σi−1∈N (wi−1) Pr[σi−1] ≥ 1 −
√
δ. Recall that den(Gi) ≥ den(S) ≥ (1 − δ) (by Observation 4.5).

Thus by Markov inequality, at most
√
δ-fraction of the prefixes are unpopular.

Let Z(·) be the indicator variable for Wi−1 being popular. For the sake of contradiction, suppose
that more than ε2-fraction of the qi-mass is concentrated on unpopular prefixes, that is:∑

unpopular wi−1’s

Pr[wi−1]qi (wi−1) = Pr [Z(Wi−1) = 0] · Pr [Xi = 1 | Z(Wi−1) = 0] > ε2qi. (3)

11



We would like to argue that this condition implies that the distribution on the Xi’s is highly biased
by the conditioning on the (popularity of the) prefix; this in turn implies that αi, the expected
conditional entropy of Xi, must be low, contradicting the assumption that i is good. Indeed, by
data-processing inequality (Fact 2.8),

αi = H (Xi |Wi−1)

≤ H (Xi | Z(Wi−1))

= H (Xi)− I (Xi;Z(Wi−1)) (4)

Since we can write mutual information as expected KL-divergence (Fact 2.10), and KL-divergence
is non-negative, we get

I(Xi;Z(Wi−1)) = Exi
[
DKL

(
Z(Wi−1)|xi

∥∥∥Z(Wi−1)
)]

≥ qi · DKL

(
Pr[Z(Wi−1) = 1 |xi = 1]

∥∥∥Z(Wi−1) = 1
)

≥ qi · DKL

(
1− ε2

∥∥∥1−
√
δ
)

= qiDKL

(
ε2

∥∥∥√δ),
where the second inequality follows from the fact that for all good i’s, our degree assumption implies
Pr[Z(Wi−1)] ≥ (1 −

√
δ), and our assumption in (3) implies, via Bayes rule, that Pr[Z(Wi−1 =

0 | xi = 1] ≥ ε2, and therefore Pr[Wi−1 = 1 | xi = 1] ≤ 1 − ε2. Note that by our setting of
parameters 1−

√
δ > 1− ε2.

Plugging into (4) we have:

αi ≤ H (qi)− qiDKL

(
ε2

∥∥∥√δ). (5)

On the other hand, recall that since i is good, αi ≥ H (qi) − 2qi log |A|. Recall also that δ =(
ε2

|A|2/ε2

)4
, and therefore DKL

(
ε2

∥∥∥√δ) ≥ 2 log |A|. Thus, we get a contradiction to (3). From now
on we assume ∑

unpopular wi−1’s

Pr[wi−1]qi (wi−1) ≤ ε2qi. (6)

This implies that even if the assignment is uniform over the alphabet, the contribution to
∑
βi

from unpopular prefixes is small:∑
unpopular wi−1’s

Pr[wi−1]βi (wi−1) ≤
∑

unpopular wi−1’s

Pr[wi−1]qi (wi−1) log |A|

≤ ε2qi log |A| ≤ 1

4
ε1qi ≤

1

2
βi

where first inequality follows from Fact 4.7, second from (6), third from our setting of ε1 ≥
4ε2 log |A|, and fourth from βi ≥ 1

2ε1qi since i is good. Therefore,∑
popular wi−1’s

Pr[wi−1]βi (wi−1) = βi −
∑

unpopular wi−1’s

Pr[wi−1]βi (wi−1) ≥ βi/2

Using a similar argument, we show that for any popular wi−1, most of the qi mass is concentrated
on its neighbors. Consider any popular wi−1, and letNC (wi−1) denote the complement ofN (wi−1).
Then we can rewrite αi as:

αi =
∑

σi−1∈N (wi−1)

Pr[σi−1]αi (σi−1) +
∑

σi−1∈NC(wi−1)

Pr[σi−1]αi (σi−1)

12



Notice that since wi−1 is popular, NC (wi−1) has measure at most
√
δ. Thus, if an ε2-fraction of

the qi mass is concentrated on NC (wi−1), we once again (like in (5)) have

αi ≤ H (qi)− qiDKL

(
ε2

∥∥∥√δ),

which would again yield a contradiction to i being a good variable. Therefore every popular prefix
also satisfies the qi-weighted condition on the degree:∑

σi−1∈N (wi−1)

Pr[σi−1]qi (σi−1) ≥ (1− ε2) qi (7)

Recall that a prefix wi−1 is good if it also satisfies βi (wi−1) ≥ ε3 ·qi (wi−1). Fortunately, prefixes
that violate this condition (i.e. those with small βi (wi−1)), cannot account for much of the weight
on βi: ∑

βi(wi−1)<ε3qi(wi−1)

Pr[wi−1]βi (wi−1) ≤ ε3qi.

Since i is good and ε1 ≥ 8ε3, this implies:∑
good wi−1’s

Pr[wi−1]βi (wi−1) ≥ βi/2− ε3qi ≥ βi/4

since

ε3qi ≤
1

8
ε1qi ≤

1

4
βi

where last inequality follows from i being good.

Corollary 4.15. For every good index i,∑
good wi−1’s

Pr[wi−1]qi (wi−1) ≥ ε1

8 log |A|
qi.

Proof. ∑
good wi−1’s

Pr[wi−1]qi (wi−1) ≥
∑

good wi−1’s

Pr[wi−1]βi/ log |A| (Fact 4.7)

≥ βi/(4 log |A|) (Claim 4.14)

≥ ε1

8 log |A|
qi (Definition of good i)

With Claim 4.12 and Corollary 4.15, we are ready to prove the main lemma of this section:

Lemma 4.16 (Labeling Entropy Bound). If
∑

iH(Yi|X≤i, Y<i) > 5ε1 log k
logn , then den(S) < 1− δ.

Proof. Assume for a contradiction that den(S) ≥ 1−δ. For prefix wi−1, letDwi−1 denote the induced
distribution on labels to the i-th variable, conditioned on wi−1 and xi = 1. (If qi(wi−1) = 0, take
an arbitrary distribution.) After revealing each variable i, the loss in prefix density is given by the
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probability of “fresh violations”: the sum over all prefix edges (wi−1, σi−1) of the probability that
they assign different labels to the i-th variable:

den(Gi)−den(Gi+1) =
∑
wi−1

∑
σi−1∈N (wi−1)

(
Pr[wi−1] Pr[σi−1]qi(wi−1)qi(σi−1)

)
Pr

Yi∼Dwi−1

Y ′i∼Dσi−1

[Yi 6= Y ′i ] (8)

We now lower-bound PrDwi−1×Dσi−1
[Yi 6= Y ′i ] for good wi−1 (notice that we assume nothing

about σi−1). A simple calculation shows that for κ < 1/2, if

βi(wi−1) ≥ (κ log |A| − κ log κ− (1− κ) log(1− κ)) qi(wi−1),

then the probability mass (under D(wi−1)) on the most common label is at most 1 − κ. Observe
that this probability is an upper bound on PrDwi−1×Dσi−1

[Yi = Y ′i ]. For good wi−1, we indeed have

βi(wi−1) ≥ ε3qi(wi−1) ≥ (ε4 log |A| − ε4 log ε4 − (1− ε4) log(1− ε4)) qi(wi−1),

where the second inequality follows from choice of ε4. Therefore PrDwi−1×Dσi−1
[Yi 6= Y ′i ] ≥ ε4.

We now have, for every good index i,

den(Gi)− den(Gi+1) ≥
∑

good wi−1’s

∑
σi−1∈N (wi−1)

(
Pr[wi−1] Pr[σi−1]qi(wi−1)qi(σi−1)

)
ε4 (Eq. (8))

≥ ε4qi(1− ε2)
∑

good wi−1’s

Pr[wi−1]qi(wi−1) (Definition of good prefix)

≥ ε1ε4

10 log |A|
q2
i (Corollary 4.15 + ε2 < 0.2)

Finally, summing over all good i’s, we get a negative density for S, which is, of course, a
contradiction.

1− den(S) ≥ den(G1)− den(Gn+1) (Observation 4.5)

=
∑
i

den(Gi)− den(Gi+1) (telescoping sum)

≥
∑

good i’s

den(Gi)− den(Gi+1)

≥
∑

good i’s

(
ε1ε4

10 log |A|

)
q2
i

≥
(

ε3
1ε4

250 log3 |A|

)
ρ2/n = Ω(ρ2/n). (Claim 4.12)

4.3 2CSP violation

Intuitively, if
∑

iH(Xi|X<i, Y<i) is large, then the subgraph approximately corresponds to assign-

ments to all subsets in
(

[n]
ρ

)
. More specifically, in this section we show that most of the constraints

appear approximately as frequently as we expect. Since in any assignment, a constant fraction
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of them must be violated, this implies (eventually) that a constant fraction of the edges have a
violated constraint.

First, we show that most of the variables appear approximately as frequently as we expect by
showing that most of them are “typical.”

Definition 4.17 (Typical variables). Prefix wi−1 is typical if

(1− ε5) · ρ/n < Pr[Xi = 1|wi−1] < (1 + ε5) · ρ/n,

where ε5 is some constant such that
(

log e
8

)
ε4

5 > 14ε1.

Similarly, we say that variable xi is typical if∑
typical wi−1’s

Pr[wi−1] ≥ 1− ε5

Claim 4.18. If
∑

iH(Xi|X<i, Y<i) ≥
(

1− 6ε1
logn

)
log k = log k − Θ(ρ), then all but at most ε5n

variables are typical.

Proof. Assume by contradiction that there are ε5n atypical variables. That is ε5n/2 variables xi
appear with probability at least (1 + ε5) ·ρ/n (or at most (1− ε5) ·ρ/n) for an (ε5/2)-fraction of the
prefixes wi−1. Now, subject only to this constraint and maintaining the correct expected number of
variables in each vertex, the entropy is maximized by spreading the

(
ε3

5/4
)
-loss in frequency evenly

across all other prefixes and variables. That is on the atypical prefixes, labels are assigned with

probability (1 + ε5) ρ/n, and with probability
(

1− ε35/4

1−ε25/4

)
ρ/n on the rest. Thus,

∑
i

H(Xi|X<i, Y<i) <
ε2

5

4
n ·H ((1 + ε5) ρ/n) +

(
1− ε2

5

4

)
nH

((
1− ε3

5/4

1− ε2
5/4

)
ρ/n

)
Recall from Fact 4.10 the expansion of the entropy function:

H

(
1 + υ

n

)
= H

(
1

n

)
− υ

n
log

1

n
−
(

log e

2

)
υ2

n
+O

(
n−2

)
+O

(
υ3

n

)
Therefore,∑
i

H(Xi|X<i, Y<i) <
ε2

5

4
n

[
H
(ρ
n

)
− ε5

ρ

n
log

ρ

n
−
(

log e

2

)
ρ

n
· ε2

5 +O

((ρ
n

)2
)

+O
(ρ
n
ε3

5

)]
+

(
1− ε2

5

4

)
n

[
H
(ρ
n

)
+

(
ε3

5/4

1− ε2
5/4

)
ρ

n
log

ρ

n
+O

((ρ
n

)2
)

+O
(ρ
n
ε6

5

)]
= n

[
H
(ρ
n

)
−
(

log e

8

)
ρ

n
· ε4

5 +O

((ρ
n

)2
)

+O
(ρ
n
ε5

5

)]
Recall that −2 log ρ

n < log n. Thus for
(

log e
8

)
ε4

5 > 14ε1, we have that(
log e

8

)
ρ

n
· ε4

5 −O
((ρ

n

)2
)
−O

(ρ
n
ε5

5

)
>
ρ

n
· 12ε1 > −

ρ

n
log

ρ

n
· 24ε1/ log n > (12ε1/ log n)H

(ρ
n

)
and therefore,∑

i

H(Xi|X<i, Y<i) < (1− 12ε1/ log n)nH
(ρ
n

)
< (1− 6ε1/ log n) log k,

15



where the second inequality follows from Fact 4.8. Thus we have reached a contradiction. Notice

that the
(

log e
8

)
ρ
n · ε

4
5 term of missing entropy is symmetric (but not the negligible higher order

terms); i.e. the same derivation can be used to show a contradiction when many variables appear
with probability less than (1− ε5) ρ/n.

Definition 4.19. Let I(u, v) be defined as the number of (i, j) pairs such that

• In the original 2CSP instance ψ, there exists an edge (constraint) between typical variables
xi and xj.

• Xi = 1 for u and Xj = 1 for v.

• ui−1 and vj−1 are typical prefixes, where ui−1 denotes the prefix represented by u for X<i, Y<i,
similarly for vj−1.

Intuitively, I(u, v) is the number of “tests” of 2CSP-constraints between vertices u, v, when
restricting to typical prefixes and variables. We now use the properties of typical prefixes and
constraints to show that I(u, v) behaves “nicely”.

Claim 4.20. Eu,v [I (u, v)] ≥ (1− ε7) ρ2/n and Eu,v
[
I2 (u, v)

]
≤ (1 + 2ε7) d4 (Eu,v [I (u, v)])2,

where ε7 is some constant ε7 ≥ 6ε5 + Θ(ε2
5).

Proof. For any i, j ∈ [n], we say that i ∈ N 2CSP (j) if there is a constraint on (xi, xj). For the
proof of this claim, we also abuse notation and denote i ∈ v when i is typical, vi−1 is a typical
prefix, and Xi = 1 for v. We also say that i ∈ N (u) if i is a typical variable, i ∈ N 2CSP (j), and
j ∈ u (for some j ∈ [n]). (Do not confuse this notation with prefix neighborhood in the prefix
graph.) We can now lower bound the expectation of I (u, v) as:

Eu,v [I (u, v)] ≥ Eu

 ∑
i∈N (u)

Pr
v

[i ∈ v]


Notice that this bound may not be tight since any i ∈ v can potentially have d neighbors in u.
Thus our upper bound is:

Eu,v [I (u, v)] ≤ d · Eu

 ∑
i∈N (u)

Pr
v

[i ∈ v]


By definition of typical variables, for each typical i, i ∈ v with probability at least (1− ε5)2 ρ/n;

thus,

Eu,v [I (u, v)] ≥ Eu

 ∑
i∈N (u)

(1− ε5)2 ρ/n

 = (1− ε5)2 ρ/n · Eu [|N (u)|] (9)

All but ε5n variables are typical, so all but 2ε5n variables are typical and have at least one typical
neighbor. We restrict our attention to the set of such variables and fix one typical neighbor for
each; this neighbor appears in u with probability at least (1− ε5)2 ρ/n. Therefore,

Eu [|N (u)|] ≥ (1− 2ε5)n ·
(
(1− ε5)2ρ/n

)
≥ (1− 4ε5)ρ (10)

Combining (9) and (10), we get the desired bound:

Eu,v [I (u, v)] ≥
(

(1− ε5)2 ρ/n
)

(1− 4ε5)ρ ≥ (1− ε7) ρ2/n. (11)
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Similarly, for the variance we have

Eu,v
[
I2 (u, v)

]
≤ d2 · Eu,v

 ∑
i∈v∩N (u)

1

2

= d2 · Eu,v

 ∑
i 6=j∈v∩N (u)

1 +
∑

i∈v∩N (u)

1


≤ d2 · Eu

2
∑

i<j∈N (u)

Pr
v

[i ∈ v] Pr
v

[j ∈ v | i ∈ v]

+ d2 · Eu,v [I (u, v)] .

Since for every prefix, each variable receives a typical assignment with probability at most (1 + ε5) ·
ρ/n, we have that

Eu,v
[
I2 (u, v)

]
≤ 2d2 · Eu

 ∑
i<j∈N (u)

((1 + ε5) · ρ/n)2

+ d2 · Eu,v [I (u, v)]

≤ ((1 + ε5) · ρ/n)2 · 2d2 · Eu
(
|N (u) |

2

)
+ d2 · Eu,v [I (u, v)] (12)

We would like to bound Eu
(N (u)

2

)
.

Eu
(
N (u)

2

)
=

∑
i<j

∑
k∈N 2CSP (i)

∑
l∈N 2CSP (j)

Pr
u

[k ∈ u] Pr
u

[l ∈ u | k ∈ u]

=
∑
i<j

∑
k∈N 2CSP (i)

l∈N 2CSP (j)

and k<l

Pr
u

[k ∈ u] Pr
u

[l ∈ u | k ∈ u] (13)

+
∑
i<j

∑
k∈N 2CSP (i)

l∈N 2CSP (j)

and k>l

Pr
u

[l ∈ u] Pr
u

[k ∈ u | l ∈ u] (14)

+
∑
i<j

∑
k∈N 2CSP (i)∩N 2CSP (j)

Pr
u

[k ∈ u] (15)

For the first two summands, we can use the condition on the prefixes to conclude that

(13) + (14) ≤
(
n

2

)
d2 ((1 + ε5) · ρ/n)2

Whereas to bound the third summand we first change the order of summation:

(15) =
∑
k

Pr
u

[k ∈ u] ·
∣∣{(i, j) : i 6= j and k ∈ N 2CSP (i) ∩N 2CSP (j)

}∣∣
≤ ((1 + ε5) · ρ)

(
d

2

)
= O (ρ)

Summing the last two inequalities, we have

2 · Eu
(
|N (u)|

2

)
≤ d2 ((1 + ε5) · ρ)2 +O (ρ) ≤ (1 + ε5)3 d2ρ2
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Plugging back into (12):

Eu,v
[
I2 (u, v)

]
≤ (1 + ε5)5 d4ρ4/n2 + d2 · Eu,v [I (u, v)]

Using (11) and the fact that ρ =
√
n log log n�

√
n, this gives

Eu,v
[
I2 (u, v)

]
≤ d4(1 + ε5)5

1− ε7
(Eu,v [I (u, v)])2 + d2 · Eu,v [I (u, v)]

≤ (1 + 2ε7) d4 (Eu,v [I (u, v)])2

It will also be convenient to count the number of tests between a pair of variables.

Definition 4.21. For any pair of typical (i, j) ∈ ψ, let I>(i, j) be defined as the number of (u, v) ∈
(S × S) pairs such that

• Xi = 1 for u and Xj = 1 for v.

• ui−1 and vj−1 are typical prefixes, where ui−1 denotes the prefix represented by u for X<i, Y<i,
similarly for vj−1.

We now have two ways to count the total number of tests between typical prefixes to typical
variables:

Observation 4.22.
∑

(u,v)∈(S×S) I(u, v) =
∑

(i,j)∈ψ I>(i, j).

Furthermore, since i and j are typical, the number of tests between also behaves “nicely”:

Observation 4.23. For every typical (i, j) ∈ ψ, we have I>(i, j) ∈ |S|2ρ2/n2
[

(1− ε5)4 , (1 + ε5)2
]
.

Proof.

I>(i, j) =
∑

typical ui−1’s

|S| · Pr[ui−1] Pr [Xi = 1 | ui−1]
∑

typical vj−1’s

|S| · Pr [vj−1] Pr [Xj = 1 | vj−1]

∈ |S|2ρ2/n2
[

(1− ε5)4 , (1 + ε5)2
]

Armed with these Claims 4.18 and 4.20 and Observations 4.22 and 4.23, we are now ready to
prove the main lemma of this section. Recall that the soundness of the 2CSP we started with is
1− η for a small constant η.

Lemma 4.24. If
∑

iH(Xi|X<i, Y<i) ≥
(

1− 6ε1
logn

)
log k, then δ(S) < 1 − δ, where δ <

ε26
d4(1+2ε7)

and ε6 = (η/2− ε5)
(
1/|A|2

) (1−ε5)4

(1+ε5)2
.

Proof. Let the mode assignment be the assignment A : [n]→ Σ which assigns to each variable xi its
most common typical assignment (i.e. assignment after a typcial prefix), breaking ties arbitrarily.
In particular, at least 1/|A| of the typical assignments for xi are equal to A (i). Of course, this
assignment cannot satisfy more than a (1− η)-fraction of the constraints in the original 2CSP;
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after removing the ε5n atypical variables, (η/2− ε5) dn constraints out of the dn/2 constraints
must still be unsatisfied.

Recall that the number of tests for each constraint over typcial variables, I>(i, j), is approxi-

mately the same for every pair of (i, j) — up to a (1−ε5)4

(1+ε5)2
-multiplicative factor (Observation 4.23).

Therefore, the total fraction of tests over unsatisfied constraints, out of all tests, is approximately
proportional to the fraction of unsatisfied constraints:

∑
typcial, unsatisfied (i, j)’s

I>(i, j) ≥ (1− ε5)4

(1 + ε5)2 ·
∣∣{typical, unsatisfied (i, j)’s

}∣∣∣∣{typical (i, j) ∈ ψ
}∣∣ ·

∑
(i,j)∈ψ

I>(i, j)

≥ (1− ε5)4

(1 + ε5)2 ·
(η/2− ε5) dn

dn/2
·
∑

(i,j)∈ψ

I>(i, j)

=
(1− ε5)4

(1 + ε5)2 · (η − 2ε5) ·
∑

(u,v)∈(S×S)

I(u, v) (Observation 4.22)

For each such pair (i, j), on at least a 1/|A|2-fraction of the tests both variables receive the
mode assignment, so the constraint is violated2. Thus the total number of violations is at least

ε6
∑

(u,v)∈(S×S) I (u, v) (where ε6 = (η/2− ε5)
(
1/|A|2

) (1−ε5)4

(1+ε5)2
).

Finally, we show that so many violations cannot concentrate on less than a δ-fraction of the
pairs u, v ∈ S; otherwise:

∑
(u,v)∈(S×S)\E

I2 (u, v) ≥ 1

δ |S|2

 ∑
(u,v)∈(S×S)\E

I (u, v)

2

(Cauchy-Schwartz)

≥ 1

δ |S|2

ε6

∑
(u,v)∈(S×S)

I (u, v)

2

=
|S|2ε2

6

δ
(Eu,v [I (u, v)])2 ;

yet by Claim 4.20,∑
(u,v)∈(S×S)\E

I2 (u, v) ≤
∑

(u,v)∈S×S

I2 (u, v) ≤ (1 + 2ε7) d4|S|2 (Eu,v [I (u, v)])2 .

Thus we have a contradiction since d4(1 + 2ε7) < ε2
6/δ by our setting of δ. Therefore we have

2CSP-violations in more than a δ-fraction of the pairs u, v ∈ S.

With Lemma 4.16 and Lemma 4.24, we can now complete the proof of Theorem 4.1.

Theorem 4.1 (Soundness). If OPT(ψ) < 1 − η, then ∀S ⊂ V of size k′ = k · |V |−ε0/ log log |V |,
den(S) < 1− δ for some constant δ.

Proof. Recall that
∑

i αi + βi = log k′ ≥ (1 − ε1
logn) log k by Fact 4.9. If

∑
i βi > ( 5ε1

logn) log k,

then by Lemma 4.16, δ(S) < 1 − δ. Otherwise, if
∑

i αi > (1 − 6ε1
logn) log k, by Lemma 4.24,

δ(S) < 1− δ.
2We remark that a more careful analysis of the expected number of violations would allow one to save an |A|2-factor

in the value of ε6. Since it does not qualitatively affect the result, we opt for the simpler analysis.
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A PCP theorem

Theorem 2.11 (PCP Theorem [Din07]). Given a 3SAT instance ϕ of size n, there is a polyno-
mial time reduction that produces a 2CSP instance ψ, with size |ψ| = n · polylog n variables and
constraints, and constant alphabet size such that

• (Completeness) If OPT(ϕ) = 1 then OPT(ψ) = 1.

• (Soundness) If OPT(ϕ) < 1 then OPT(ψ) < 1− η, for some constant η = Ω(1)

• (Balance) Every vertex in ψ has degree d for some constant d.

Proof. We start with the following version of PCP of near linear size.

Theorem A.1 ([Din07], version as in [AIM14]). Given a 3SAT instance ϕ of size n, there is a
polynomial time reduction that produces a 3SAT instance ξ, with size |ξ| = n · polylog n variables
and constraints such that

• (Completeness) If OPT(ϕ) = 1 then OPT(ξ) = 1.

• (Soundness) If OPT(ϕ) < 1 then OPT(ξ) < 1− ε, for some constant 0 < ε < 1/8

• (Balance) Every clause of ψ involves exactly 3 variables, and every variable of ψ appears in
exactly d clauses, for some constant d.
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We use the following definition to reduce ξ given by Theorem A.1 to a 2CSP instance ψ.

Definition A.2 ([AIM14], Clause/Variable game). Given a 3SAT instance ξ with n variables
x1, . . . xn and m clauses C1, . . . , Cm, the clause/variable game Gξ is defined as follows: Referee
chooses an index i ∈ m uniformly at random, then chooses j ∈ [n] uniformly at random conditioned
on xj or xj appearing in Ci as a literal. He sends i to Alice and j to Bob. Referee accepts if and
only if

• Alice sends back a satisfying assignment to the variables in Ci.

• Bob sends back a value for xj that agrees with the value sent by Alice.

In particular, we can think of following explicit reduction.

1. X = [m] represents clauses; Y = [n] represents variables; A = {0, 1}3 represents assignment
to all 3 variables in a clause; B = {0, 1} represents assignment to a singleton variable.

2. (i, j) ∈ E if xj or xj appears in ith clause (Ci).

3. V(i,j) checks for the following :

• Assignment on i ∈ [m] indeed satisfies the clause Ci and,

• Assignment on i ∈ [m] agrees with the assignment on j ∈ [n].

The size blowup is indeed only constant, since we have linear number of vertices, and constant
alphabet size. Also any vertex in X has degree 3, and any vertex in Y has degree d since we we
started with Dinur’s PCP. Completeness follows by assigning satisfying assignment for 3SAT to
this 2CSP. Soundness follows from the following claim:

Claim A.3 ([AIM14]). OPT(ξ) ≤ 1− ε, then OPT(ψ) ≤ 1− ε/3

Proof. Consider fixing an assignment x on Y ’s. By our assumption on ξ, this violates the clause Ci
with probability at least ε over i. And if x violates Ci, regardless of assignments on X, at least one
out of 3 edges of i ∈ X is not satisfied. Therefore, at least ε/3-fraction of the edges are violated,
thus OPT(ψ) ≤ 1− ε/3.

Now we add trivial constraints (i.e. always satisfying edges) between vertices in X to make the
overall graph of ψ d-regular. (we lose bipartite property, which is not necessary in our reduction)
Take a regular graph on X with degree d − 3. Add the edges with constraints on them as trivial
constraints to our 2CSP instance ψ generated via the reduction. Now the graph is indeed d-regular,
completeness is preserved since we only added trivial constraints. For soundness, we know that
there are now total 3|X| + d−3

2 |X| edges. Among them d−3
2 |X| are always satisfied. Out of 3|X|

edges, at most 1−ε/3 fraction of them are satisfied, i.e. (3−ε)|X| edges. So the fraction of satisfied
edges is at most :

OPT(ψ) ≤
(3− ε)|X|+ d−3

2 |X|
3|X|+ d−3

2 |X|
=
d+ 3− 2ε

d+ 3
≤ 1− ε

d
= 1− η
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B Useful approximations

We recall some elementary approximations to logarithms and entropies that will be useful in the
analysis.

Fact B.1. (Fact 4.8) If k =
(
n
ρ

)
then,

log k = nH
(ρ
n

)
±O (log n) =

(
1

2
− o (1)

)
ρ log n

Proof. By Stirling’s approximation, we have

log n! = n log n− (log e)n+O (log n)

Therefore the total entropy is given by

log k = log

(
n

ρ

)
= log n!− log ρ!− log (n− ρ)!

= n log n− ρ log ρ− (n− ρ) log (n− ρ)±O (log n)

= nH
(ρ
n

)
±O (log n) ,

For small ε, we have

log (1 + ε) = (log e)

(
ε− ε2

2
+O

(
ε3
))

;

and in particular,

log
n− ρ
n

= O
(
−ρ
n

)
Therefore,

log k = ρ · log
n

ρ
+ (n− ρ) · log

n

n− ρ
+O (log n)

= ρ ·
(

1

2
− o (1)

)
log n+ (n− ρ) ·O

(ρ
n

)
+O (log n)

=

(
1

2
− o (1)

)
ρ log n

More useful to us will be the following bounds on log k′:

Fact B.2. (Fact 4.9) Let ε1 ≥ 5ε0, and k, k′, V, n, ρ as specified in the construction. Then,

log k′ ≥ max
{

log k, nH
(ρ
n

)}
− ε1 log k/ log n.

In particular, this means that most indices i should contribute roughly H
( ρ
n

)
entropy to the

choice of v.
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Proof. Observing that since k =
(
n
ρ

)
, we have

log |V | = log

(
n

ρ

)
+ ρ log |A| = (1 + o(1)) log k. (16)

We also have that

log log |V | = log(1 + o(1)) + log log k > log ρ >
1

2
log n; (17)

where the first inequality follows from Fact 4.8, and the second from the definition of ρ.
Finally, we have

log k′ = log k − ε0 log |V |/ log log |V |

≥ log k − ε0(1 + o(1)) log k/
1

2
log n (Using (16) and (17))

≥ log k − 1

2
ε1 log k/ log n (Using ε1 ≥ 5ε0)

Using Fact 4.8 completes the proof.

We will also need the following bound which relates the entropies of a very biased coin and a
slightly less biased one:

Fact B.3. (Fact 4.10)

H

(
1 + υ

n

)
= H

(
1

n

)
− υ

n
log

1

n
− (log e)

υ2

2n
+O

(
n−2

)
+O

(
υ3

n

)
Proof. By definition,

H

(
1 + υ

n

)
= −

(
1 + υ

n

)
log

(
1 + υ

n

)
−
(

1− 1 + υ

n

)
log

(
1− 1 + υ

n

)
In order to relate this quantity to H

(
1
n

)
, we rewrite as:

H

(
1 + υ

n

)
= − 1

n
log

1

n
− υ

n
log

1

n
−
(

1 + υ

n

)
· log (1 + υ)︸ ︷︷ ︸

(log e)(υ−υ2/2+O(υ3))

−
(

1− 1

n

)
log

(
1− 1

n

)
+ υ

1

n
log

(
1− 1

n

)
︸ ︷︷ ︸

O(n−2)

−
(

1−
(

1 + υ

n

))
· log

(
1−

(
1+υ
n

)
1− 1

n

)
︸ ︷︷ ︸

(log e)(−(υ/n)−O(υ/n2))

= H

(
1

n

)
− υ

n
log

1

n
− (log e)

υ2

2n
+O

(
n−2

)
+O

(
υ3

n

)

C Small constants in the proof of Theorem 4.1

To help verify the correctness of the proof, we concentrate all the definitions of the small ε’s used
in the following list:
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• ε0 ≤ ε1/5

• ε1 ≥ 4ε2 log |A|+ 8ε3

• ε2: ε2 < 0.2, δ =
(

ε2
|A|2/ε2

)4

• ε3 ≥ ε4 log |A| − ε4 log ε4 − (1− ε4) log(1− ε4)

• ε4 = ω(n/ρ2)

• ε5:
(

log e
8

)
ε4

5 > 14ε1

• ε6: ε6 = (η/2− ε5)
(
1/|A|2

) (1−ε5)4

(1+ε5)2
and d4(1 + 2ε7) < ε2

6/δ

• ε7: ε7 ≥ 6ε5 + Θ(ε2
5)
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