
Non-Malleable Extractors and Codes, with their Many
Tampered Extensions

Eshan Chattopadhyay∗ Vipul Goyal † Xin Li‡

March 21, 2016

Abstract

Randomness extractors and error correcting codes are fundamental objects in computer science. Re-
cently, there have been several natural generalizations of these objects, in the context and study of tam-
per resilient cryptography. These are seeded non-malleable extractors, introduced by Dodis and Wichs
[DW09]; seedless non-malleable extractors, introduced by Cheraghchi and Guruswami [CG14b]; and
non-malleable codes, introduced by Dziembowski, Pietrzak and Wichs [DPW10]. Besides being inter-
esting on their own, they also have important applications in cryptography, e.g, privacy amplification
with an active adversary, explicit non-malleable codes etc, and often have unexpected connections to
their non-tampered analogues [Li12b] [CZ15].

However, the known constructions are far behind their non-tampered counterparts. Indeed, the best
known seeded non-malleable extractor requires min-entropy rate at least 0.49 [Li12b]; while explicit
constructions of non-malleable two-source extractors were not known even if both sources have full
min-entropy, and was left as an open problem in [CG14b].

In this paper we make progress towards solving the above problems and other related generalizations.
Our contributions are as follows.

• We construct an explicit seeded non-malleable extractor for min-entropy k ≥ log2 n. This dra-
matically improves all previous results and gives a simpler 2-round privacy amplification protocol
with optimal entropy loss, matching the best known result in [Li15a]. In fact, we construct more
general seeded non-malleable extractors (that can handle multiple adversaries) which were used in
the recent construction of explicit two-source extractors for polylogarithmic min-entropy [CZ15].

• We construct the first explicit non-malleable two-source extractor for min-entropy k ≥ n− nΩ(1),
with output size nΩ(1) and error 2−nΩ(1)

, thus resolving the open question in [CG14b].

• We motivate and initiate the study of two natural generalizations of seedless non-malleable extrac-
tors and non-malleable codes, where the sources or the codeword may be tampered many times.
For this, we construct the first explicit non-malleable two-source extractor with tampering degree
t up to nΩ(1). By using the connection in [CG14b] and providing efficient sampling algorithms,
we obtain the first explicit non-malleable codes with tampering degree t up to nΩ(1), relative
rate nΩ(1)/n, and error 2−nΩ(1)

. We call these stronger notions one-many and many-many non-
malleable codes. This provides a stronger information theoretic analogue of a primitive known as
continuous non-malleable codes.

Our basic technique used in all of our constructions can be seen as inspired, in part, by the techniques
previously used to construct cryptographic non-malleable commitments.

∗Department of Computer Science, University of Texas at Austin. Research supported in part by NSF Grant CCF-1218723.
Research done in part while visiting MSR India and John Hopkins University. eshanc@cs.utexas.edu.
†Microsoft Research, India. vipul@microsoft.com
‡Department of Computer Science, John Hopkins University. lixints@cs.jhu.edu

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 75 (2015)

1 Introduction

Randomness extractors are fundamental objects in the study of randomness in computation. They are ef-
ficient algorithms that transform imperfect randomness into almost uniform random bits. Here we use the
standard model of weak random source to model imperfect randomness. The min-entropy of a random vari-
able X is defined as H∞(X) = minx∈Supp(X) log2(1/Pr[X = x]). For a source X supported on {0, 1}n,
we call X an (n,H∞(X))-source, and we say X has entropy rate H∞(X)/n.

As one can show that no deterministic extractor works for all weak random sources even with min-
entropy k = n − 1, randomness extractors are studied in two different settings. In one setting the extractor
is given a short independent uniform random seed, and these extractors are called seeded extractors. Infor-
mally, a seeded extractor Ext : {0, 1}n×{0, 1}d → {0, 1}m for min-entropy k and error ε takes as input any
(n, k) source X and a uniform seed S, and has the property that |Ext(X,S)− Um| < ε, where the distance
used is the standard statistical distance. If the output of the extractor is guaranteed to be close to uniform
even after seeing the value of the seed S, then it is called a strong seeded extractor. In the other setting
there is no such random seed, but the source is assumed to have some special structure. These extractors
are called seedless extractors (see Section 3 for formal definitions). A special kind of seedless extractors
that received a lot of attention is extractors for independent weak random sources. Here one can use the
probabilistic method to show that such extractors exist for only two independent sources (such extractors
are called two-source extractors).

Both kinds of extractors have been studied extensively, and shown to have many connections and ap-
plications in computer science. For example, seeded extractors can be used to simulate randomized al-
gorithms with access to only weak random sources, and are closely related to pseudorandom generators,
error-correcting code and expanders. Independent source extractors can be used to generate high quality
random bits for distributed computing and cryptography [KLRZ08], [KLR09], and are closely related to
Ramsey graphs and other seedless extractors.

In cryptographic applications, however, one faces a new situation where the inputs of an extractor may be
tampered by an adversary. For example, an adversary may tamper with the seed of a seeded extractor, or both
sources of a two-source extractor. In this case, one natural question is how the output of the tampered inputs
will depend on the output of the initial inputs. In order to be resilient to adversarial tampering, one natural
way is to require that original output of the extractor be (almost) independent of the tampered output. This
leads to the notion of non-malleable extractors, in both the seeded case and seedless case. These extractors
not only are interesting in their own rights, but also have important applications in cryptography.

Definition 1.1 (Tampering Funtion). For any function f : S → S, f has a fixed point at s ∈ S if f(s) = s.
We say f has no fixed points in T ⊆ S, if f(t) 6= t for all t ∈ T . f has no fixed points if f(s) 6= s for all
s ∈ S.

Seeded non-malleable extractors were introduced by Dodis and Wichs in [DW09], as a generalization
of strong seeded extractors.

Definition 1.2 (Non-malleable extractor). A function snmExt : {0, 1}n × {0, 1}d → {0, 1}m is a seeded
non-malleable extractor for min-entropy k and error ε if the following holds : If X is a source on {0, 1}n
with min-entropy k and A : {0, 1}n → {0, 1}n is an arbitrary tampering function with no fixed points, then

|snmExt(X,Ud) ◦ snmExt(X,A(Ud)) ◦ Ud − Um ◦ snmExt(X,A(Ud)) ◦ Ud| < ε

where Um is independent of Ud and X .

The original motivation for seeded non-malleable extractors is to study the problem of privacy amplifi-
cation with an active adversary. This is a basic problem in information theoretic cryptography, where two

1

parties want to communicate with each other to convert their shared secret weak random source X into
shared secret nearly uniform random bits. However, the communication channel is watched by an adversary
Eve, where we assume Eve has unlimited computational power and the two parties have local (non-shared)
uniform random bits.

In the case where Eve is passive (i.e., can only see the messages but cannot change them), this problem
can be solved by just applying a strong seeded extractor. However, in the case where Eve is active (i.e., can
arbitrarily change, delete and reorder messages), the problem becomes much more complicated. The major
goal here is to design a protocol that uses as few number of interactions as possible, and output a uniform
random string R that has length as close to H∞(X) as possible (the difference is called entropy loss). There
has been extensive research on this problem (we give more details in Section 1.4). Along the line, a major
progress was made by Dodis and Wichs [DW09], who showed that seeded non-malleable extractors can be
used to construct privacy amplification protocols with optimal round complexity and entropy loss.

This connection makes constructing non-malleable extractors a very promising approach to privacy
amplification. However, all known constructions of such extractors ([DLWZ14], [CRS14], [Li12a], [DY13],
[Li12b]) require the entropy of the weak source to be at least 0.49n. Moreover, all known constructions are
essentially based on known two-source extractors, and the entropy requirement is exactly the same as the
best known two-source extractor [Bou05].

In this work, we revive the original approach of constructing non-malleable extractors using alternating
extraction [DW09]. We dramatically improve all previous results and give explicit seeded non-malleable
extractors that work for any min-entropy k ≥ log2 n. We in fact consider a generalization, called as t-non-
malleable extractors (introduced by Cohen et al. [CRS14]), where there are t tampering functions acting on
the seed. We give explicit constructions of t-non-malleable extractors for min-entropy k = poly(t, log n).

We now discuss the seedless variant of non-malleable extractors. Cheraghchi and Guruswami [CG14b]
introduced seedless non-malleable extractors as a natural generalization of seeded non-malleable extrac-
tors. Furthermore, they found an elegant connection between seedless non-malleable extractors and non-
malleable codes, which are a generalization of error-correcting codes to handle a much larger class of tam-
pering functions (rather than just bit erasure or modification). Informally, non-malleable codes are w.r.t
a family of tampering functions F , and require that the decoding of any codeword that is tampered by a
function f ∈ F , is either the original message itself or something totally independent of the message (see
Section 1.1). Non-malleable codes have also been extensively studied recently (we provide more details
in Section 1.1), and Cheraghchi and Guruswami [CG14b] showed a universal way of constructing explicit
non-malleable codes by first constructing non-malleable seedless extractors.

In this paper we focus on one of the most interesting and well studied family of tampering functions,
where the function tampers the original message independently in two separate parts. This is called the
2-split-state model (see Section 1.1 for a formal discussion). The corresponding seedless non-malleable
extractor is then a generalization of two-source extractors, where both sources can be tampered. For ease
of presentation,we present a simplified definition here and we refer the reader to Section 4 for the formal
definition.

Definition 1.3 (Seedless 2-Non-Malleable Extractor). A function nmExt : {0, 1}n × {0, 1}n → {0, 1}m is
a seedless 2-non-malleable extractor at min-entropy k and error ε if it satisfies the following property: If X
and Y are independent (n, k)-sources and A = (f, g) is an arbitrary 2-split-state tampering function, such
that at least one of f and g has no fixed points, then

|nmExt(X,Y) ◦ nmExt(A(X,Y))− Um ◦ nmExt(f(X), g(Y))| < ε

where both Um’s refer to the same uniform m-bit string.

2

Again, the connection in [CG14b] makes constructing seedless 2-non-malleable extractors a very in-
teresting and promising approach to non-malleable codes in the 2-split-state model. However, no explicit
constructions of 2-non-malleable extractors were known even when both sources are perfectly uniform.
Indeed, finding an explicit construction of such extractors was left as an open problem in [CG14b], and
none of the known constructions of seeded non-malleable extractors seem to satisfy this stronger notion.
In this paper we solve this open problem and give the first explicit construction of 2-non-malleable ex-
tractors. Furthermore we show that given any output of the extractor, we can efficiently sample uniformly
from its pre-image. By the connection in [CG14b] this also gives explicit non-malleable codes in the above
mentioned well studied 2-split-state model.

We note that our results about non-malleable codes in the 2-split-state model do not improve the already
nearly optimal construction in the recent work of Aggarwal et al. [ADKO15]. However, our construction of
seedless 2-non-malleable extractors is of independent interest, and provides a more direct way to construct
non-malleable codes.1

Finally, as in the case of seeded non-malleable extractors [CRS14], we consider the situation where the
sources can be tampered many times. For this, we introduce a natural generalization of seedless 2-non-
malleable extractors which we call seedless (2, t)-non-malleable extractors (i.e., the sources are tampered t
times). Correspondingly, in the case of non-malleable codes we also consider the situation where a codeword
can be tampered many times. For this, we also introduce a natural generalization of non-malleable codes
which we call one-many non-malleable codes (see Section 1.1). We initiate the study of these two objects
in this paper and show that one-many non-malleable codes have several natural and interesting applications
in cryptography.

We present a simplified definition of seedless (2, t)-non-malleable extractors here, and refer the reader
to Section 4 for the formal definition.

Definition 1.4 (Seedless (2,t)-Non-Malleable Extractor). A function nmExt : {0, 1}n × {0, 1}n → {0, 1}m
is a seedless (2, t)-non-malleable extractor at min-entropy k and error ε if it satisfies the following property:
IfX and Y are independent (n, k)-sources andA1 = (f1, g1), . . . ,At = (ft, gt) are t arbitrary 2-split-state
tampering functions, such that for each i ∈ {1, . . . , t} at least one of fi and gi has no fixed points, then

|nmExt(X,Y), nmExt(A1(X,Y)), . . . , nmExt(At(X,Y))−
Um, nmExt(A1(X,Y)), . . . , nmExt(At(X,Y))| < ε,

where both Um’s refer to the same uniform m-bit string.

We provide explicit constructions of seedless (2, t)-non-malleable extractors for t up to nδ for a small
enough constant δ. Just as the connection between 2-non-malleable extractors and regular non-malleable
codes, we show that these extractors lead to explicit constructions of one-many non-malleable codes in the
2-split-state model. We note that as in the case of regular non-malleable codes, the construction based on (2,
t)-non-malleable extractors may not be the only way to construct one-many non-malleable codes. However,
it appears non-trivial to extend other existing constructions of non-malleable codes to satisfy this stronger
notion. We discuss this in more details in Section 1.3.

Subsequent Work In a recent work, Chattopadhyay and Zuckerman [CZ15] used our construction of
seeded t-non-malleable extractors as a key component for explicitly constructing two-source extractors for
polylogarithmic min-entropy. It was crucial to their construction that the min-entropy requirement and the
seed-length of our t-non-malleable extractor are both poly(t, log n).

1In [ADKO15], non-malleable codes in the 2-split-state model are constructed by giving efficient reductions from the 2-split-
state model to t-split-state model, and then using a known constructions of NM codes in the t-split-state model with almost optimal
parameters [CZ14].

3

1.1 Non-malleable codes

We introduce the notion of what we call one-many and many-many non-malleable codes, generalizing the
notion of non-malleable codes introduced by Dziembowski, Pietrzak and Wichs [DPW10]. Since the intro-
duction of non-malleable codes, there has been a flurry of recent work on finding explicit constructions, re-
sulting in applications to tamper-resilient cryptography [DPW10], robust versions of secret sharing schemes
[ADL14], and connections to the seemingly unrelated area of derandomization [CG14b]. We discuss prior
work in detail in Section 1.5.

We briefly motivate the notion of non-malleable codes. Traditional error-correcting codes encode a
message m into a longer codeword c enabling recovery of m even after part of c is corrupted. We can view
this corruption as a tampering function f acting on the codeword, where f is from some small allowable
family F of tampering functions. The strict requirement of retrieving the encoded message m imposes
restrictions on the kind of tampering functions that can be handled. One might hope to achieve a weaker
goal of only detecting errors, possibly with high probability. However the notion of error detection fails
to work with respect to the family of constant functions since one cannot hope to detect errors against a
function that always outputs some fixed codeword.

The notion of non-malleable codes is an elegant generalization of error-detecting codes. Informally, a
non-malleable code with respect to a tampering function family F is equipped with a randomized encoder
Enc and a deterministic decoder Dec such that Dec(Enc(m)) = m and for any tampering function f ∈
F the following holds: for any message m, Dec(f(Enc(m))) is either the message m or is ε-close (in
statistical distance) to a distribution Df independent of m. The parameter ε is called the error. Thus, in
some sense, either the message arrives correctly, or, the message is entirely lost and becomes gibberish. A
formal definition of non-malleable codes is given below.

First we define the replace function replace : {0, 1}∗×{0, 1}∗ → {0, 1}∗. If the second input to replace
is a single value s, replace all occurrences of same? in the first input with s and output the result. If the
second input to replace is a set (s1, . . . , sn), replace all occurrences of same?i in the first input with si for
all i and output the result.

Definition 1.5 (Coding schemes). Let Enc : {0, 1}k → {0, 1}n and Dec : {0, 1}n → {0, 1}k ∪ {⊥} be
functions such that Enc is a randomized function (i.e. it has access to a private randomness) and Dec is a
deterministic function. We say that (Enc,Dec) is a coding scheme with block length n and message length
k if for all s ∈ {0, 1}k, Pr[Dec(Enc(s)) = s] = 1 (the probability is over the randomness in Enc).

Definition 1.6 (Non-malleable codes). A coding scheme (Enc,Dec) with block length n and message length
k is a non-malleable code with respect to a family of tampering functions F ⊂ Fn and error ε if for every
f ∈ F there exists a random variable Df on {0, 1}k ∪{same?} which is independent of the randomness in
Enc such that for all messages s ∈ {0, 1}k, it holds that

|Dec(f(Enc(s)))− replace(Df , s)| ≤ ε

The rate of a non-malleable code C is given by k
n . Observe that to construct non-malleable codes, it is

still necessary to restrict the class of tampering functions. This follows since the tampering function could
then use the function Dec to decode the message m, get a message m′ by flipping all the bits in m, and
use the encoding function to pick any codeword in Enc(m′). However presumably, the class of tampering
functions can now be much richer than what was possible for error correction and error detection.

Tampering Multiple Codewords. Observe that the above definition envisions the adversary receiving a
single codeword Enc(s) and outputting a single tampered codeword f(Enc(s)). We refer to this as the

4

“one-one” setting. While indeed this is very basic, we argue that this does not capture scenarios where the
adversary may be getting multiple codewords as input or be allowed to output multiple codewords. As an
example, consider the following.

Say there is an auction where each party can submit its bid, and, the item goes to the highest bidder.
An honest party, wishing to bid for value s, encodes its bid using NM codes and sends Enc(s). This indeed
would prevent an adversary (which belongs to an appropriate class of tampering functions) from constructing
his own bid by tampering Enc(s) and coming up with Enc(s+ 1), which would completely compromise the
sanity of the auction process. However what if the adversary can submit two bids out of which exactly one
is guaranteed to be a winning bid? For example, the adversary can submit bids to r and 2s− r (for some r
not known to the adversary). This is not ruled out by NM codes!

Towards that end, we introduce a stronger notion which we call one-many NM codes. Intuitively, this
guarantees the following. Consider the set of codewords output by the adversary. We require that even the
joint distribution of the encoded value be independent of the value encoded in the input. A formal definition
is given below:

Definition 1.7 (One-Many Non-malleable codes). A coding scheme (Enc,Dec) with block length n and
message length k is a non-malleable code with respect to a family of tampering functions F ⊂ (Fn)t and
error ε if for every (f1, . . . ft) ∈ F , there exists a random variable D~f

on ({0, 1}k ∪ {same?})t which is
independent of the randomness in Enc such that for all messages s ∈ {0, 1}k, it holds that

|(Dec(f1(X)), . . . ,Dec(ft(X)))− replace(D~f
, s)| ≤ ε

Where X = Enc(s). We refer to t as the tampering degree of the non-malleable code.

Thus one-many non-malleable codes is a natural more robust version of the well studied notion of non-
malleable codes, and can be used in all applications of non-malleable codes in tamper-resilient cryptography
with this stronger form of security.

An expert in cryptography by now would have noticed this is analogous to the well studied notion of
one-many non-malleable commitments [PR08a]. Even though both notions deal with related concerns, we
note non-malleable codes and non-malleable commitment are fundamentally different objects with the latter
necessarily based on complexity assumptions. To start with, we prove a simple impossibility result for one-
many non-malleable codes (whereas for one-many non-malleable commitments, a corresponding positive
result is known [PR08a]).

Lemma 1.8. One-many non-malleable codes which work for any arbitrary tampering degree and ε < 1/4
cannot exist for a large class of tampering functions.

Proof. The class of tampering functions which we consider are the ones where each function is allowed to
read any one bit Xi of its choice from the input code X , and output a fresh encoding of Xi. Most natural
tampering functions (including split state ones [DPW10] [CG14a]) considered in the literature fall into this
class. Assume that the encoded value s has at least 4 possibilities (length 2 bits or higher). The case of a
single bit s is discussed later.

Recall that n is the length of the code. We set t = n. Let X = Enc(s) be the input codeword where
s is chosen at random. We consider n tampering functions where Fi simply reads Xi and outputs a fresh
encoding Wi = Enc(Xi). Now consider (Dec(f1(X)), . . . ,Dec(fn(X))). Observe that this is exactly the
bits of the string X . If the distinguisher applies the decode procedure on X , it will recover s. Now consider
any possible output (d1, . . . , dn) ofD~f

. Now note that there cannot exist di which is same?. This is because
otherwise it will be replaced by s (see Definition 1.7) which is at least 2 bits while Dec(Wi) is just a single

5

bit. This in turn implies that the value replace(D~f
, s) (from Definition 1.7) is independent of s and X . Thus

a distinguisher (given access to s) can easily have an advantage exceeding ε.
For a single bit s, we modify our tampering functions to encode two bits: Wi = Enc(Xi||0). Then again

we can argue that neither of di will be same? since then it will be replaced by s which is only one bit. This
in turn again implies that replace(D~f

, s) is independent of s and X . This concludes the proof.

We also introduce a natural generalization which we call many-many non-malleable codes. This refers
to the situation where the adversary is given multiple codewords as input.

Definition 1.9 (Many-Many Non-malleable codes). A coding scheme (Enc,Dec) with block length n and
message length k is a non-malleable code with respect to a family of tampering functions F ⊂ (Fn)t and
error ε if for every (f1, . . . ft) ∈ F , there exists a random variable D~f

on ({0, 1}k ∪{same?i}i∈[u])
t which

is independent of the randomness in Enc such that for all vector of messages (s1, . . . , su), si ∈ {0, 1}k, it
holds that

|(Dec(f1(~X)), . . . ,Dec(ft(~X)))− replace(D~f
, (s1, . . . , su))| ≤ ε

Where Xi = Enc(si) and ~X = (X1, . . . , Xu)

The following lemma relates one-many non-malleable codes to many-many non-malleable codes. This
lemma is analogous to a similar lemma for non-malleable commitments [PR08a].

Lemma 1.10. One-many non-malleable codes with tampering degree t and error ε are also many-many
non-malleable codes for tampering degree t and error uε (where u is as in Definition 1.9).

Proof. This proof relies on a simple hybrid argument and the fact that all sources X1, . . . , Xu are indepen-
dent. We only provide a proof sketch here. Assume towards contradiction that there exists a one-many code
with error ε, which, under the many-many tampering adversary has error higher than u.ε. That is, the adver-
sary~(f) is given as input (X1, . . . , Xu) which are encodings of (s1, . . . , su) respectively. This is referred to
as the hybrid 0. Now consider the following hybrid experiment. In the i-th hybrid experiment, the code Xi

is changed to be an encoding of 0 (as opposed to be an encoding of si). We claim that in this experiment,
the error changes by at most ε. This is because otherwise we can construct a one-many tampering adversary
with error higher than ε. To construct such an adversary~(f i), each f ij has Xkk 6=i hardcoded in it and takes
Xi as input. This would show an adversary against which one-many non-malleable codes have an error
higher than ε.

By the time we reach (u−1)-th hybrid experiment, the error could only have reduced by at most (u−1)ε.
However in the (u−1)-th hybrid experiment, the error can at most be ε since it corresponds to the one-many
setting. Hence, the error in the hybrid 0 could have been at most u.ε. This concludes the proof.

Relation to Continuous Non-Malleable Codes A primitive related to one-many non-malleable codes
that we introduce, known as continuous non-malleable codes, was introduced by Faust et al. [FMNV14].
Informally, in a continuous non-malleable code, the codewords are allowed to be tampered multiple times
(without allowing fresh encoding of the message), with the additional guarantee that the tampering exper-
iment stops (called “self destruct”) whenever an error message is detected. This model is weaker than the
notion we consider since we do not allow for such a self-destruct option. However the work of [FMNV14]
allows for unbounded number of tamperings. On the other hand, their constructions are based on computa-
tional assumptions while ours are purely information-theoretic.

6

The work of Jafargholi and Wichs [JW15] studied variants of continuous non-malleable codes, depend-
ing on whether the tampering is persistent (i.e., the new tampering is on the current tampered version of
the codeword) or non-persistent (i.e., the tampering is always on the original codeword). Further [JW15]
considered variants depending on whether the self-destruct option is available.

It was shown in [FMNV14] that continuous non-malleable codes against unbounded tampering in the
non-persistent model cannot exist in the information theoretic setting. Subsequently, the work of [JW15]
proved the existence of continuous non-malleable codes against unbounded tampering in the persistent
model (with self-destruct) in the information theoretic setting. Following this, in a recent work Aggarwal,
Kazana and Ombreski [AKO15] provided explicit constructions of such codes.

Thus, our result on one-many non-malleable codes can be interpreted as an explicit construction of
continuous non-malleable codes in the non-persistent model (without self-destruct) against a bounded tam-
pering in the information-theoretic model. We note that as implied by the result of [FMNV14], one cannot
hope to handle unbounded tampering in this model in the information theoretic setting.

Non-malleable Codes in the Split-State Model An important and well studied family of tampering func-
tions (which is also relevant to the current work) is the family of tampering functions in the C-split-state
model, for C ≥ 2. In this model, each tampering function f is of the form (f1, . . . , fC) where fi ∈ Fn/C ,
and for any codeword x = (x1, . . . , xC) ∈ ({0, 1}n/C)C we define (f1, . . . , fC)(x1, . . . , xC) = (f1(x1),
. . . , fC(xC)). Thus each fi independently tampers a fixed partition of the codeword. Non-malleable codes
in this model can also be viewed as non-malleable secret sharing. This is because the strings (x1, . . . , xC)
can be seen as the shares of s and tampering each share individually does not allow one to “maul” the shared
secret s.

There has been a lot of recent work on constructing explicit and efficient non malleable codes in the
C-split-state model. Since C = 1 includes all of Fn, the best one can hope for is C = 2. A Monte-Carlo
construction of non-malleable codes in this model was given in the original paper on non-malleable codes
[DPW10] for C = 2 and then improved in [CG14a]. However, both of these constructions are inefficient.
For C = 2, these Monte-Carlo constructions imply existence of codes of rate close to 1

2 and corresponds
to the hardest case. On the other extreme, when C = n, it corresponds to the case of bit tampering where
each function fi acts independently on a particular bit of the codeword. By a recent line of work [DKO13]
[ADL14] [CG14b] [CZ14] [ADKO15], we now have almost optimal constructions of non-malleable codes
in the C-state-state model, for any C ≥ 2.

Many-many non-malleable secret sharing. Consider the example of non-malleable secret sharing [ADL14].
What if there are shares of multiple secrets which the adversary can tamper with? What if the adversary is
allowed to output shares of multiple secrets? For example, say there are two secret and two devices. Each
device stores one share of each of the secrets. Say that an adversary is able to tamper with the data stored on
each device individually (or infect each of them with a virus). Then, the current notion of one-one NM codes
does not rule out a non-trivial relationship between two resulting secrets and the two original secrets we start
with. It is conceivable that what we need here is a two-two non-malleable secret sharing. Our many-many
non-malleable codes directly lead to such a many-many non-malleable secret sharing scheme.

1.2 Summary of results

Our first main result is an explicit construction of a (2, t)-seedless non-malleable extractor. We note that
prior to this work, such a construction was not known for even t = 1 and full min-entropy.

7

Theorem 1. There exists a constant γ > 0 such that for all n > 0 and t ≤ nγ , there exists an efficient
seedless (2, t)-NM extractor at min-entropy n− nγ with error 2−n

Ω(1)
and output length m = nΩ(1).

Next, we show that it is possible to efficiently sample almost uniformly from the pre-image of any output
of this extractor. We prove this in Section 8. Combining this with Theorem 5.1 and a hybrid argument, we
immediately have the following result.

Theorem 2. There exists a constant γ > 0 such that for all n > 0 and t ≤ nγ , there exists an efficient
construction of one-many non-malleable codes in the 2-split state model with tampering degree t, relative
rate nΩ(1)/n, and error 2−n

Ω(1)
.

We next improve the min-entropy rate requirements of seeded non-malleable extractors. As mentioned
above, prior to this work, the best known such construction worked for min-entropy rate 0.499 [Li12b]. We
have the following result.

Theorem 3. There exists a constant c such that for all n > 0 and ε > 0, and k ≥ c log2
(
n
ε

)
, there exists

an explicit construction of a seeded non-malleable extractor snmExt : {0, 1}n × {0, 1}d → {0, 1}m, with
m = Ω(k) and d = O

(
log2

(
n
ε

))
.

We in fact have a more general result, and can handle t-adversarial functions in the seeded non-malleable
case as well, which improves the result of [CRS14]. As discussed above, such t-non-malleable extractors
was used in the recent constructions of two-source extractors for polylogarithmic min-entropy by Chattopad-
hyay and Zuckerman [CZ15]. We refer the reader to Section 7 for more details.

Combined with the protocol developed in [DW09], this immediately gives the following result about
privacy amplification, which matches the best known result in [Li15a] but has a simpler protocol.

Theorem 4. There exists a constant C such that for any ε > 0 with k ≥ C(log n+ log(1/ε))2, there exists
an explicit 2-round privacy amplification protocol with an active adversary for (n, k) sources, with security
parameter log(1/ε) and entropy loss O(log n+ log(1/ε)).

1.3 Other possible approaches to construct one-many non-malleable codes

Since a major part of this paper is devoted to constructing explicit seedless (2, t)-non-malleable extractors
(and providing efficient sampling algorithms for almost uniformly sampling from the pre-image of any
output), and one of the major motivation for such explicit extractors is to construct one-many non-malleable
codes in the 2-split-state model, a natural question is whether existing constructions of non-malleable codes
in the 2-split state model can be modified to satisfy the stronger notion of one-many non-malleable codes.

Our first observation is that not every construction of a one-one non-malleable code satisfies the stronger
notion of being a one-many non-malleable code. Intuitively this is because, say Enc and Dec are the encod-
ing and decoding function of some non-malleable code against some class of tampering functions F . Thus,
for f1, f2 ∈ F , and any message m, Dec(f1(Enc(m))) is close to Dfi , i = 1, 2. But it is possible this does
not rule out the possibility that, for instance Dec(f2(Enc(m))) = Dec(f1(Enc(m))) +m+ 1. Clearly, this
code is not non-malleable against two adversaries from F , and hence is not one-many.

We now take a specific example. Suppose C is a one-one NM code against 2-split-state adversaries. We
construct another code C′ where the message m is broken into m1 and m2 using additive secret sharing.
Then one encodes both m1 and m2 separately using the encoder of C (and includes both as part of the code,
each encoding being equally divided in two halves). It is easy to show that C′ is still one-one NM.

On the other hand, if the two adversaries act in the following way: one adversary can take the encoding
of m1 and put an encoding of 1 on his own. That will be the first output code (to message m1 + 1). Next,

8

the other adversary can take the encoding of m2 and put an encoding of 0 on its own. That will be second
output code (to message m2). Now it can be seen that the two output code sum to m + 1. Thus, C′ is not
one-many in the 2-split-state model.

It turns out that existing constructions of non-malleable codes in the split-state model either fail to satisfy
stronger notion of one-many, or at least it appears non-trivial to generalize the proofs of non-malleability
against multiple adversaries. We briefly discuss these approaches, and why it appears non-trivial to extend
them to handle multiple adversaries. A first approach could be to generalise the reductions in the recent work
of Aggarwal et al.[ADKO15], and possibly show that one-many non-malleable codes in the 2-split-state
model can be reduced to the problem of constructing one-many non-malleable codes in the bit-tampering
model. However, each known construction of a NM code in the bit-tampering model [CG14b] [AGM+14]
follows the general approach of starting out with an initial non-malleable code in the 2-split-state model
(which is also an NM code against bit-wise tampering) of possibly low rate, and then amplifies the rate
to almost optimal. Thus, it is not clear how to use this approach to construct one-many NM codes in the
2-split-state model.

Another approach could be to show that the non-malleable codes constructed by Aggarwal et al. [ADL14]
generalize to handle many adversaries. However, from a careful examination of their proof it turns out that it
is crucially used that the inner product function is an extractor for weak sources at min-entropy rate slightly
greater than 1

2 . It turns out that this fact is tailor made for exactly one adversary, and for handling t > 1
adversaries one needs that the inner product function is an extractor for min-entropy rate approximately 1

t+1 ,
which is not true. Thus, it is not clear how to extend their approach as well.

Finally, a third approach could be to extend the construction of the seedless non-malleable extractor for
10 sources in the work of Chattopadhyay and Zuckerman [CZ14]. However, from a careful examination of
the proof it follows that the crucial step of first constructing a seedless non-malleable condenser based on a
sum-product theorem fails to generalize when there are more than one adversary.

Thus, it appears that our new explicit constructions of seedless (2, t)-non-malleable extractors are a
necessity for constructing one-many non-malleable codes in the split-state model.

1.4 Related work on privacy amplification

As mentioned above, seeded non-malleable extractors were introduced by Dodis and Wichs in [DW09], to
study the problem of privacy amplification with an active adversary.

The goal is roughly as follows. We pick a security parameter s, and if the adversary Eve remains passive
during the protocol then the two parties should achieve shared secret random bits that are 2−s-close to
uniform. On the other hand, if Eve is active, then the probability that Eve can successfully make the two
parties output two different strings without being detected is at most 2−s. We refer the readers to [DLWZ14]
for a formal definition.

Here, while one can still design protocols for an active adversary, the major goal is to design a protocol
that uses as few number of interactions as possible, and output a uniform random string R that has length
as close to H∞(X) as possible (the difference is called entropy loss). When the entropy rate of X is large,
i.e., bigger than 1/2, there exist protocols that take only one round (e.g., [MW97], [DKRS06]). However
these protocols all have very large entropy loss. On the other hand, [DW09] showed that when the entropy
rate of X is smaller than 1/2, then no one round protocol exists; furthermore the length of R has to be at
least O(s) smaller than H∞(X). Thus, the natural goal is to design a two-round protocol with such optimal
entropy loss. There has been a lot of effort along this line [MW97], [DKRS06], [DW09], [RW03], [KR09],
[CKOR10], [DLWZ14], [CRS14], [Li12a], [Li12b]. However, all protocols before the work of [DLWZ14]
either need to use O(s) rounds, or need to incur an entropy loss of O(s2).

9

In [DW09], Dodis and Wichs showed that the previously defined seeded non-malleable extractor can be
used to construct 2-round privacy amplification protocols with optimal entropy loss. They further showed
that seeded non-malleable extractors exist when k > 2m + 3 log(1/ε) + log d + 9 and d > log(n − k +
1)+2 log(1/ε)+7. However, they were not able to construct such extractors. The first explicit construction
of seeded non-malleable extractors appeared in [DLWZ14], with subsequent improvements in [CRS14],
[Li12a], [DY13]. However, all these constructions require the entropy rate of the weak source to be bigger
than 1/2. In another paper, Li [Li12b] gave the first explicit non-malleable extractor that breaks this barrier,
which works for entropy rate 1/2−δ) for some constant δ > 0. This is the best known seeded non-malleable
extractor to date. Further, [Li12b] also showed a connection between seeded non-malleable extractors and
two-source extractors, which suggests that constructing explicit seeded non-malleable extractors with small
seed length for smaller entropy may be hard.

In a different line of work, Li [Li12a] introduced the notion of non-malleable condenser, which is a
weaker object than seeded non-malleable extractor. He then constructed explicit non-malleable condensers
for entropy as small as k = polylog(n) in [Li15a] and used them to give the first two-round privacy ampli-
fication protocol with optimal entropy loss, subject to the constraint that k ≥ s2.

1.5 Related work on non-malleable codes

We give a summary of known constructions of non-malleable codes. As remarked above, all known explicit
constructions of non-malleable codes in the information theoretic setting are in framework of what we call
as one-one non-malleable codes. That is, the adversary is only given as input a single code and outputs a
single code.

Since the introduction of non-malleable codes by Dziembowski, Pietrzak and Wichs [DPW10], the most
well studied model is the C-split-state model introduced above. By a recent line of work [DKO13] [ADL14]
[CG14b] [CZ14] [ADKO15], we now have almost optimal constructions of non-malleable codes in the C-
state-state model, for any C ≥ 2.

In the model of global tampering, Agrawal et al. [AGM+14] constructed efficient non-malleable codes
with rate 1 − o(1) against a class of tampering functions slightly more general than the family of permuta-
tions.

There were also some other conditional results. Liu and Lysyanskaya [LL12] constructed efficient con-
stant rate non-malleable codes in the split-state model against computationally bounded adversaries under
strong cryptographic assumptions. The work of Faust et al. [FMVW13] constructed almost optimal non-
malleable codes against the class of polynomial sized circuits in the CRS framework. [CCP12], [CCFP11],
[CKM11], and [FMNV14] considered non-malleable codes in other models.

The recent work of Chandran et al. [CGM+15] found interesting connections between non-malleable
codes in a model slightly more general than the split-wise model and non-malleable commitment schemes.

Organization

We give an overview of all our explicit constructions in Section 2. We introduce some preliminaries in
Section 3, and formally define seeded and seedless non-malleable extractors in Section 4. We use Section
5 to present the connection between seedless (2, t)-non-malleable extractors and one-many non-malleable
codes in the 2-split-state model. In Section 6, we present an explicit construction of a seedless (2, t)-non-
malleable extractor. An explicit construction of a seeded non-malleable extractor construction at polylog-
arithmic min-entropy is presented in Section 7. Finally, we use Section 8 to give efficient encoding and
decoding algorithms for the resulting one-many non-malleable codes.

10

2 Overview of Our Constructions

In this section, we give an overview of the main ideas involved in our constructions. The main ingredient
in all our constructions is an explicit seedless (2, t)-non-malleable extractor. Further, we give efficient
algorithms for almost uniformly sampling from the pre-image of any output of this extractor. The explicit
construction of many-many non-malleable codes in the 2-split state model with tampering degree t then
follow in a straightforward way using the connection via Theorem 5.1.

It turns out that by a simple modification of the construction of our seedless non-malleable extractor,
we also have an explicit construction of a seeded non-malleable extractor which works for any min-entropy
k ≥ log2 n. We will give an overview of how to achieve this as well.

2.1 A Seedless (2, t)-Non-Malleable Extractor

Let γ be a small enough constant and C a large enough one. Let t = nγ/C .
We construct an explicit function nmExt : {0, 1}n × {0, 1}n → {0, 1}m, m = nΩ(1) which satisfies the

following property: If X and Y be independent (n, n − nγ)-sources on {0, 1}n, and A1 = (f1, g1), . . . ,
At = (ft, gt) are arbitrary 2-split sate tampering functions such that for any i ∈ [t], at least one of fi or gi
has no fixed points, the following holds:

|nmExt(X,Y) ◦ nmExt(A1(X,Y)) ◦ . . . nmExt(At(X,Y))−
Um ◦ nmExt(A1(X,Y)) ◦ . . . nmExt(At(X,Y))| ≤ ε,

where ε = 2−n
Ω(1)

.
By a convex combination argument (Lemma 6.14), we show that if nmExt satisfies the property above,

then it is indeed a seedless (2, t)-non-malleable extractor (Definition 4.4).
We introduce some notation.
Notation: For any functionH , and V = H(X,Y), we use V (i) to denote the random variableH(Ai(X,

Y)). If Za, Za+1, . . . , Zb are random variables, we use Z[a,b] to denote the random variable (Za, . . . , Zb).
For any bit string z, let z{h} denote the symbol in the h’th co-ordinate of x. For a string x of length m, and
T ⊆ [m], let x{T} be the projection of x onto the co-ordinates indexed by T . For a string x of length m,
define the string Slice(x,w) to be the prefix of x with length w.

The high level idea of the non-malleable extractor is as follows. Initially we have two independent
sources (X,Y) and t tampered version {Ai(X,Y)}, which can depend arbitrarily on (X,Y). We would like
to gradually break the dependence of {Ai(X,Y)} on (X,Y), until at the end we get an output nmExt(X,Y)
which is independent of all {nmExt(Ai(X,Y))}.

Towards this end, we would first like to create a short tag (string) from (X,Y) that can distinguish from
{Ai(X,Y)}. More specifically, we will obtain a tag Z of length nΩ(1) from (X,Y), such that with high
probability Z is different from all {Z(i)} obtained from {Ai(X,Y)}. Next, we will run some iterative steps
of extraction from (X,Y), with each step based on one bit of Z. The crucial property we will have here is
that whenever we reach a bit of Z which is different from the corresponding bits of {Z(i), i ∈ S} for some
subset S ⊆ [t], in that particular step the output of our extraction from (X,Y) will be (close to) uniform
and independent of all the corresponding outputs obtained from {Ai(X,Y), i ∈ S}. Furthermore this will
remain true in all subsequent steps of extraction. Therefore, since Z is different from all {Z(i), i ∈ [t]}, we
know that at the end our output nmExt(X,Y) will be independent of all {nmExt(Ai(X,Y)), i ∈ [t]}. We
now elaborate about the two steps in more details below.

Step 1: Here we use the sources X and Y to obtain a tag Z, such that for each i ∈ [t], Z 6= Z(i) with

11

probability at least 1 − 2−n
Ω(1)

. Thus by a union bound with probability 1 − 2−n
Ω(1)

we have that Z is
different form all {Z(i), i ∈ [t]}. To obtain Z, we first take two small slices X1 and Y1 from the sources X
and Y respectively, with size at least 3nγ ; and use the strong inner product 2-source extractor IP to generate
an almost uniform random variable V = IP(X1, Y1). Now we take an explicit asymptotically good binary
linear error correcting code, and obtain encodings (E(X), E(Y)) of (X,Y) respectively. We now use V to
pseudorandomly sample nΩ(1) bits from E(X) to obtain X2, and we do the same thing to obtain Y2 from
E(Y). We use known constructions of an averaging sampler Samp [Zuc97] [Vad04] (see Definition 8.4) to
do this (in fact, we can even sample completely randomly since V is close to uniform).

Now define
Z = X1 ◦ Y1 ◦X2 ◦ Y2.

The length of Z is ` = nβ bits for some small constant β. Fix some i ∈ [t]. We claim that Z 6= Z(i) with
probability at least 1 − 2−n

Ω(1)
. To see this, assume without loss of generality that fi has no fixed points.

If X1 6= X
(i)
1 or Y1 6= Y

(i)
1 , then we have Z 6= Z(i). Now suppose X1 = X

(i)
1 and Y1 = Y

(i)
1 . Thus,

V = V (i). We fix X1, since IP is a strong extractor (Theorem 3.17), V is still close to uniform and now
it is a function of Y , and thus independent of X . Since X 6= X(i), by the property of the code, we know
that E(X) and E(X(i)) must differ in at least a constant fraction of co-ordinates. Thus, if we uniformly (or
pseudorandomly) sample nΩ(1) bits from these coordinates, then with probability 1 − 2−n

Ω(1)
the sampled

strings will be different.
We can now fix Z, {Z(i) : i ∈ [t]}, such that Z 6= Z(i) for any i. Since the size of each Z(i) is small,

we have that conditioned on this fixing, the sources X and Y are still independent and have min-entropy at
least n−O(t`) each (with high probability).

Step 2: Here our goal is to gradually break the dependence of {Ai(X,Y)} on (X,Y), until at the end
we get an output nmExt(X,Y) which is independent of all {nmExt(Ai(X,Y))}. To achieve this, our cru-
cial observation is that while many other techniques in constructing non-malleable seeded extractors (such
as those in [DLWZ14], [CRS14], [Li12b] fail in the case where both sources are tampered, the powerful
technique of alternating extraction, introduced by Dziembowski and Pietrzak [DP07], still works. Thus,
we will be relying on this technique, which has been used a lot in recent studies of extractors and privacy
amplification [DW09], [Li12a], [Li12b], [Li13b], [Li13a], [Coh15], [Li15b]. We now briefly recall the de-
tails. The alternating extraction protocol is an interactive protocol between two parties, Quentin and Wendy,
using two strong seeded extractors Extq, Extw. Assume initially Wendy has a weak source X and Quentin
has another source Q and a short uniform random string S1.2 Suppose that X is independent of (Q,S1).
In the first round, Quentin sends S1 to Wendy, Wendy computes R1 = Extw(X,S1) and sends it back to
Quentin, and Quentin then computes S2 = Extq(Q,R1). Continuing in this way, in round i, Quentin sends
Si, Wendy computes the random variables Ri = Extw(X,Si) and sends it to Quentin, and Quentin then
computes the random variable Si+1 = Extq(Q,Ri). This is done for some u steps, and each of the random
variables Ri, Si is of length m. Thus, the following sequence of random variables is generated:

S1, R1 = Extw(X,S1), S2 = Extq(Q,R1), . . . , Su = Extq(Q,Ru−1), Ru = Extw(X,Su).

Also define the following look-ahead extractor:

laExt(X, (Q,S1)) = R1, . . . , Ru

Now suppose we have t tampered versions of X: X(1), . . . , X(t), which can depend on X arbitrarily; and
t tampered versions of (Q,S1): (Q(1), S

(1)
1), . . . , (Q(t), S

(t)
1), which can depend on (Q,S1) arbitrarily. Let

laExt(X, (Q,S1)) = R1, . . . , Ru, and for h ∈ [t], let laExt(X(h), (Q(h), S
(h)
1)) = R

(h)
1 , . . . , R

(h)
t . As

2In fact, S1 can be a slightly weak random source as well.

12

long as (X,X(1), . . . , X(t)) is independent of ((Q,S1), (Q(1), S
(1)
1), . . . , (Q(t), S

(t)
1)) and t, u,m are small

compared to the entropy of X and Q, one can use induction together with standard properties of strong
seeded extractors to show that the following holds: for any j ∈ [u],

Rj , {R(h)
i : i ∈ [j − 1], h ∈ [t]}, {(Q(h), S

(h)
1) : h ∈ [t]}

≈ Um, {R(h)
i : i ∈ [j − 1], h ∈ [t]}, {(Q(h), S

(h)
1) : h ∈ [t]}

Based on this property, we describe two different approaches to achieve our goal in Step 2. The first
approach was our initial construction, while the second approach is inspired by new techniques in a recent
work of Cohen [Coh15]. It turns out the second approach is simpler and more suitable for our application
to many-many non-malleable codes, thus we only provide the formal proof for the second approach in this
paper (see Section 6). Recall that the high level idea in both approaches is that we will proceed bit by bit
based on the previously obtained string Z, which is different from all {Z(i), i ∈ [t]}. Whenever we reach
a bit of Z which is different from the corresponding bits of {Z(i), i ∈ S} for some subset S ⊆ [t], in
that particular step the output of our extraction from (X,Y) will be (close to) uniform and independent of
all the corresponding outputs obtained from {Ai(X,Y), i ∈ S}. Furthermore this will remain true in all
subsequent steps of extraction. We will achieve this by running some alternating extraction protocol for
` times, where ` is the length of Z. Each time the alternating extraction will be between X and a new
(Qh, S1,h) obtained from Y , where we take S1,h to be a small slice of Qh.

Construction 1:3 Our first approach is based on a generalization of the techniques in [Li13a]. Here we
fist achieve an intermediate goal: whenever we reach a bit of Z which is different from the corresponding
bits of {Z(i), i ∈ S} for some subset S ⊆ [t], the output of our extraction from (X,Y) will have some
entropy conditioned on all the corresponding outputs obtained from {Ai(X,Y), i ∈ S}. Suppose at step h
(1 ≤ h ≤ `) we have obtained Qh from Y (in the first step we can take a small slice of Y to be Q1) and use
it to run an alternating extraction protocol with X . We run the alternating extraction for t + 2 rounds and
obtain outputs Rh,1, . . . , Rh,t+2. The crucial idea is to use the h’th bit of Z, to set a random variable Wh

as either (Rh,1, . . . , Rh,t+1) or Rh,t+2 (appended with an appropriate number of 0’s to make them the same
length).

Now consider the subset S ⊆ [t] where the h’th bit of Z is different from the h’th bit of {Z(i), i ∈ S}.
If Wh = (Rh,1, . . . , Rh,t+1) then for all i ∈ S, we have W (i)

h = R
(i)
h,t+2. Since S has at most t elements,

the size of {W (i)
h } is at most tm. Note that Wh has size (t + 1)m and is close to uniform. Thus Wh has

entropy roughly m conditioned on {W (i)
h , i ∈ S} (here we can ignore the appended 0’s in W (i)

h since they
won’t affect the entropy in Wh). On the other hand, if then Wh = Rh,t+2 then for all i ∈ S, we have
W

(i)
h = R

(i)
h,1, . . . , R

(i)
h,t+1. By the property of alternating extraction we have that Wh is close to uniform

conditioned on {W (i)
h , i ∈ S}.

We can now go from having conditional entropy to being conditional uniform, as follows. We first
convertWh into a somewhere random source by applying an optimal seeded extractor and trying all possible
choices of the seed. One can show that conditioned on previous random variables generated in our algorithm,
Wh is now a deterministic function of X and thus independent of Y and Qh. We now take another optimal
seeded extractor and use each row in this somewhere random source as a seed to extract a longer output
from Qh. In this way we obtain a new somewhere random source. If we choose parameters appropriately
we can ensure that the size of Wh is much smaller than the entropy of Qh, and thus the number of rows in
this new somewhere random source is much smaller than its row length. Therefore, by using an extractor
from [BRSW06] we can use this somewhere random source to extract a close to uniform output Vh from

3formal proofs of the claims in the sketch of Construction 1 are not provided in this paper.

13

X . Since Wh has entropy at least m conditioned on {W (i)
h , i ∈ S}, as long as the size of Vh is small, using

standard arguments one can show that Vh will be close to uniform conditioned on all {V (i)
h , i ∈ S}.

We now go into the next step of alternating extraction, where we will take a strong seeded extractor
and use Vh to extract a uniform string Qh+1 from Y . We will then use X and Qh+1 to do the alternating
extraction for next step. The point here is that whenever we have Vh is close to uniform conditioned on
all {V (i)

h , i ∈ S} for some S ⊆ [t], we can show that Qh+1 is close to uniform conditioned on all {Q(i)
h+1,

i ∈ S}. Thus in the next step of alternating extraction, we can first fix all {Q(i)
h+1, i ∈ S}, and then fix all

the {R(i)
h+1,j , i ∈ [S], j ∈ [t + 2]}, and all the {V (i)

h+1, i ∈ S} (these will now be deterministic functions of
X). Conditioned on this fixing Qh+1 is still close to uniform, and X still has a lot of entropy left (as long
as the size of each R(i)

h+1,j and V (i)
h+1 is small). Therefore, in this step Vh+1 will be close to uniform even

conditioned on all {V (i)
h+1, i ∈ S}, i.e., once we have independence it will continue to hold in subsequent

steps. Thus our goal is achieved.
Construction 2: Here we replace our approach in Construction 1 with a more direct approach, by using

the idea of “flip-flop” alternating extraction introduced in a recent paper by Cohen [Coh15], which is again
based on the techniques developed in [Li13a]. Again, assume we are now looking at the h’th bit of the tag
Z, and we have obtained Qh from Y .

Now each step of alternating extraction will consist of two sub steps of alternating extraction, with each
sub step taking two rounds. In the first sub step, we use X and Qh to perform an alternating extraction for
two rounds and outputRh,1, Rh,2. If the h’th bit of Z is 0, we take Vh = Rh,1; otherwise we take Vh = Rh,2.
Now we will take a strong seeded extractor Ext and use Vh to extract Qh = Ext(Y, Vh) from Y . We then
use Qh and X to perform the second sub step of alternating extraction, which again runs for two rounds and
outputs Rh,1, Rh,2. Now if the h’th bit of Z is 0, we take V h = Rh,2; otherwise we take V h = Rh,1. One
can see that this is indeed in a “flip-flop” manner.

The idea is as follows. Consider the h’th bit of Z, and let S ⊆ [t] be such that for all i ∈ S, we have
Z{h} 6= Z

(i)
{h}. Now consider the h’th step of alternating extraction. If Z{h} = 0, then in the first sub

step of alternating extraction, Vh = Rh,1; while for all i ∈ S, we have V (i)
h = R

(i)
h,2. Now it’s possible

that Vh depends on {V (i)
h , i ∈ S}, and thus Qh also depends on {Q(i)

h , i ∈ S}. However, when we go
into the second sub step of alternating extraction, we will choose V h = Rh,2; while for all i ∈ S, we have

V
(i)
h = R

(i)
h,1. Thus by the property of alternating extraction, we have that V h is close to uniform conditioned

on all {V (i)
h , i ∈ S}.

On the other hand, if Z{h} = 1, then in the first sub step of alternating extraction, Vh = Rh,2; while for

all i ∈ S, we have V (i)
h = R

(i)
h,1. Thus in this sub step, by the property of alternating extraction, we have that

Vh is close to uniform conditioned on all {V (i)
h , i ∈ S}. Therefore we also have that Qh is close to uniform

conditioned on all {Q(i)
h , i ∈ S}, and they are deterministic functions of Y given Vh and {V (i)

h , i ∈ S}.
Thus, when we go into the second sub step of alternating extraction, we can first fix all {Q(i)

h , i ∈ S} and
Qh is still close to uniform. Now all {V (i)

h , i ∈ S} will be deterministic functions of X , and thus we can
further fix them. As long as the size of each Rh,j is small, conditioned on this fixing X still has a lot of
entropy left. Therefore Qh can still be used to perform an alternating extraction with X , and this gives us
that V h = Rh,1 is close to uniform. That is, again we get that V h is close to uniform conditioned on all

{V (i)
h , i ∈ S}.
Once we have this property, we can go into the next step of alternating extraction. We will now take a

strong seeded extractor and use V h to extract Qh+1 from Y , and then use X and Qh+1 to perform the next

14

step of alternating extraction. Since V h is close to uniform conditioned on all {V (i)
h , i ∈ S}, we also have

that Qh+1 is close to uniform conditioned on all {Q(i)
h+1, i ∈ S}. Thus by the same argument above, we

can first fix all {Q(i)
h+1, i ∈ S} and all {V (i)

h+1, i ∈ S}, and conditioned on this fixing Qh+1 is still close to

uniform. Therefore Vh+1 will be close to uniform conditioned on all {V (i)
h+1, i ∈ S}. Thus, going into the

second sub step, we will also have that Qh+1 is close to uniform conditioned on all {Q(i)
h+1, i ∈ S}. Thus

again we can first fix all {Q(i)
h+1, i ∈ S} and all {V (i)

h+1, i ∈ S}, and conditioned on this fixing Qh+1 is still

close to uniform. Therefore we get that V h+1 is close to uniform conditioned on all {V (i)
h+1, i ∈ S}, i.e.,

once we have independence it will continue to hold in subsequent steps. Thus our goal is achieved.

2.2 An Explicit Seeded Non-Malleable Extractor for Polylogarithmic Min-Entropy

Let γ > 0 be a small constant. For any ε > 0, let k ≥ O
(
log2+γ

(
n
ε

))
, t ≤ kγ/2 and d = O

(
t2 log2(nε)

)
.

We construct a function snmExt : {0, 1}n × {0, 1}n → {0, 1}m, m = O
(
log
(
n
ε

))
, such that the following

holds: If X is a (n, k)-source, Y is an independent uniform seed of length d, and A1, . . . ,At are arbitrary
functions with no fixed points, then the following holds:

snmExt(X,Y), snmExt(X,A1(Y)), . . . , snmExt(X,At(y))

≈ε Um, snmExt(X,A1(Y)), . . . , snmExt(X,At(y))

We now describe our construction, which is essentially a simple modification of our seedless non-
malleable extractor construction.

Step 1: Let Y1 be a small slice of Y . Compute V = Ext(X,Y1), where Ext is a strong seeded extractor.
Now we use V to randomly sample bits from E(Y), where E is the encoder of an asymptotically good error
correcting code. Let the sampled bits be Y2. We define

Z = Y1 ◦ Y2

We show that with high probability Z 6= Z(i) for all i ∈ [t]. We provide a brief sketch of the argument.
Fix any i ∈ [t]. If Y1 6= Y

(i)
1 , then clearly Z 6= Z(i). Now suppose Y1 = Y

(i)
1 . We fix Y1, and since Ext

is a strong seeded extractor, it follows that V is still close to uniform, and is a deterministic function of X ,
thus independent of Y, {Y i, i ∈ [t]}. Therefore V can be used to sample bits from Y . Since Ai has no
fixed points, it follows that Y 6= Y (i). Thus E(Y) and E(Y (i)) must differ in at least a constant fraction of
coordinates. Therefore with high probability Y2 6= Y

(i)
2 . By a union bound, with high probability Z 6= Z(i)

for all i ∈ [t].
Step 2: As long as the size of (Y1, V, Y2) is small, we can show that conditioned on the fixing of these

variables,X and Y are still independent. Moreover bothX and Y only lose a small amount of entropy. Now
we can use any of Construction 1 and Construction 2 above to finish the extraction. The same argument will
show that at the end snmExt(X,Y) will be close to uniform conditioned on all {snmExt(A,Ai(Y)), i ∈ [t]}.

We refer the reader to Section 7 for more details.

Comparison to the LCB in [Coh15] Our second approach in constructing non-malleable two-source
extractors is inspired by the work of [Coh15]. Especially, we use the idea of “flip-flop” alternating extrac-
tion introduced there. However, there are also some differences between our construction and the “Local
Correlation Breaker” constructed in [Coh15], which are worth pointing out.

First, in our construction, both sources X and Y are tampered. This results in t random variables X(1),
. . . , X(t) that are arbitrarily correlated with X , and t random variables Y (1), . . . , Y (t) that are arbitrarily

15

correlated with Y . In contrast, in the case of Local Correlation Breaker constructed in [Coh15], there are
only correlated random variables with one source, while the other source is not tampered. In this sense, our
construction can actually be viewed as given a stronger version of the LCB.

Second, the way to obtain a string that distinguishes the correlated parts is quite different. In the case of
the LCB, one can simply use the index of each row in the somewhere random source. On the other hand, in
our case we do not have such an index, since the only access we have are the two sources X and Y . Thus,
we have to take extra efforts to create such a string from these two sources, by using error correcting codes
and random sampling.

Connection to cryptographic non-malleable commitments In our constructions, we first generate a
short “unique” tag from X and Y . Then, very roughly, our construction proceeds in multiple stage with
each stage dependent on a particular bit of the tag. Independence (or non-malleability) is achieved in a stage
where the corresponding bit of the tag is different from the tag for the tampered execution. This idea can be
seen as inspired partly from the literature on non-malleable commitments. In particular, the seminal paper
introducing non-malleability by Dolev, Dwork and Naor [DDN91] used such an idea. Further, observe that
in our construction we gain independence from a particular adversary in a single (unknown) stage (when the
bit in the tampered tag is 0 and the non-tampered bit is 1). Such ideas were also used in constructions of
non-malleable commitment protocols in works of Pass and Rosen [PR08b], and Goyal [Goy11].

2.3 Efficient Algorithms for Many-Many Non-Malleable Codes

The above construction gives a (2, t) non-malleable extractor. However, for our application to constructing
explicit many-many non-malleable codes, given any output of the extractor we need to efficiently sample
(almost) uniformly from its pre-image. To do this using the construction described above is highly non-
trivial. Therefore, in order to make it easy to efficiently sample from the pre-image of an output (i.e.,
“inverting” the extractor), we use additional ideas to modify the non-malleable extractor. We now briefly
describe the main ideas that we use. Recall that t is the number of tampered versions of the sources, and `
is the length of the string Z we obtained.

Idea 1: Since our construction of the (2, t) non-malleable extractor involves multiple steps of alternating
extraction, we need to first invert the extractors used in these steps. For this purpose, we will use linear
seeded strong extractors in all alternating extraction steps. A linear seeded strong extractor is an extractor
such that for any fixed seed, the output is a linear function of the input. Thus for any fixed seed, in order to
sample uniformly from an output’s pre-image, we can just sample uniformly according to a system of linear
equations, which can be done efficiently.

Idea 2: Next, we will divide the sources X and Y into blocks. In each step of alternating extraction,
we will also divide Qh and Qh into blocks. Then, whenever we use an extractor to extract from X , Qh or
Qh, we will use a completely new block of X , Qh or Qh. When we apply an extractor to Y to generate Qh
or Qh, we will also use completely new blocks of Y to do this. This ensures that we do not have to deal
with multiple compositions of extractors on the same string. That is, different applications of extractors are
used on different parts of the inputs; so to invert them we can invert each part separately. Note that each
alternating extraction takes at most 2 rounds, so it suffices to divide Qh and Qh into two blocks.

Here, we need to choose the parameters appropriately. Let the size of each Sh,j and Rh,j produced in
alternating extraction be roughly d, and the size of each block of Qh and Qh be nq. Since in the analysis of
each alternating extraction we need to fix O(t) tampered versions of (Sh,j , Sh,j) and (Rh,j , Rh,j), we need
to have nq ≥ Θ(td). Now in the analysis of the entire non-malleable extractor, we need to fixO(t) tampered
versions of Qh and Qh, and O(t`) tampered versions of (Sh,j , Sh,j). The total size of this is O(t`d). Thus

16

we can take all t, `, d to be some small enough nΩ(1) such that the total entropy loss of X and Y is some
small nΩ(1). Note that X and Y initially have almost full entropy. Therefore, we can divide X and Y into
O(`) blocks (or even O(t`) blocks, for a reason we will explain below), such that even conditioned on the
fixing of all {Sh,j , Rh,j , Sh,j , Rh,j , Qh, Qh} and all previous blocks, each block still has entropy rate say at
least 0.9 (this can be achieved as long as n/(t`)� t`d). This ensures that each time we apply an extractor,
we can use new blocks of X and Y .

Idea 3: However, there is one issue with inverting a linear seeded extractor. The problem is that the
pre-image size for different seeds may not be the same. For example, if we have a linear seeded extractor
that outputs m bits from an n-bit input, then one can show that for most seeds the pre-image size is 2n−m,
while for some seed the pre-image size can be 2n. If we first generate the seed uniformly and then sample
uniformly from the pre-image given each seed, then the overall distribution is not uniform over the entire
pre-image, due to the above mentioned size difference. To rectify this, we construct a new linear seeded
extractor iExt : {0, 1}n × {0, 1}d → {0, 1}m with m = d/2 that works for entropy rate 0.9 sources.
Moreover iExt has the property that given any output, for any fixed seed the pre-image size is the same.
The idea is as follows. We first take 0.1d bits from the seed and use an average sampler to sample 0.9d
distinct bits from the source. Since we are using a sampler and the source has entropy rate 0.9, an argument
in [Vad04] shows that with high probability conditioned on the 0.1d bits of the seed, the sampled 0.9d bits
from the source also has entropy rate roughly 0.9. Now we take the rest 0.9 bits of the seed and the sampled
0.9d bits from the source and apply the inner product two-source extractor (or just use leftover hash lemma),
which can output d/2 uniform random bits. Now the point is that given any output and any fixed seed, the
pre-image of the inner product part has the same size,4 and now the pre-image of any sampled bits also have
the same size (since the pre-image is just the sampled bits adding any possible choice of the other n− 0.9d
bits).

Note that each time we apply iExt, the output length becomes half of the seed length. Thus in the
alternating extraction if we start with seed length d, then after one sub step of alternating extraction, the
output length will become Ω(d) since the sub step takes at most 2 rounds. We will truncate the output if
necessary to keep it to be the same length, no matter we chooseRh,1 orRh,2 (since they have different sizes).
Now we need to use this output to extract Qh or Qh+1 from Y . Since the size of Qh or Qh+1 is Θ(td), we
will take Θ(t) new blocks from Y and apply iExt to them using the same seed, and then concatenate the
outputs. Since the blocks of Y form a block source, and iExt is a strong seeded extractor, one can show that
the concatenated outputs is close to uniform. We then do the same thing for the next sub step of alternating
extraction. Since we need to repeat alternating extraction for O(`) steps, we need to divide Y into O(t`)
blocks; while we can divide X into only O(`) blocks.

Idea 4: Now given any output, our sampling strategy is as follows. We first uniformly generate X1

and Y1, from whom we can compute V = IP(X1, Y1). Then we know which bits of the codeword we are
sampling. We then uniformly generate these sampled bits X2, Y2 and thus we obtain Z. Once we have Z,
we will now uniformly generate all {Sh,j , Rh,j , Sh,j , Rh,j} produced in alternating extractions. Based on Z
and these variables, we can now generate all the blocks of X used and all the {Qh, Qh} by inverting iExt.
Finally, based on {Qh, Qh} we can generate all the blocks of Y used by again inverting iExt.

This almost works except for the following problem. The blocks ofX and Y generated must also satisfy
the linear equations imposed by X2, Y2, which are the bits sampled from the codewords of encodings of X
and Y by using a linear error correcting code. However, it is unclear what is the dependence between the
linear equations imposed by X2, Y2 and the other linear equations that we obtain earlier. Of course, if they
are linearly independent then we are in good shape.

To solve this problem, our crucial observation is that if ` is small and the number of blocks is large
4Except when the seed is 0, but we can deal with this by adding a 1 to both the source and the seed.

17

enough (say we divide the rest of X into O(`) blocks and the rest of Y into O(t`) blocks for a large enough
constant in O(·)), then the entire alternating extraction steps only consume say half of the bits of X and
Y . Thus, whatever linear equations we obtain from these steps are only imposing constraints to say the first
half bits of X and Y . Therefore, we can hope that the encodings of X and Y use all the bits of X and Y ,
and thus the linear equations imposed by these encodings will be linearly independent of the equations we
obtain from alternating extraction (i.e., the second half bits act as “free variables”).

We indeed succeed with this idea. More specifically, we are going to divide the rest of X and Y (the
parts excluding X1 and Y1, which has length n − nΩ(1)) into chunks of length b = dlog ne. We will now
view each chunk as an element in the field F2b . We then take say 0.9n bits and view it as a string in F0.9n/b.
We can now use Reed-Solomn code (RS-code for short) in F2b to encode this string into a codeword in F2b .
Note that 2b > n > 0.9n/b, so this encoding is feasible, and it has distance rate (2b − 0.9n/b)/(2b) > 0.9.
Now, instead of using V = IP(X1, Y1) to sample nΩ(1) bits, we will sample nΩ(1) field elements from the
encoding of X and Y , and then view them as bit strings. Since the RS-code has distance rate 0.9, again we
have that if two strings are different, then with probability 1−2−n

Ω(1)
, the sampled strings of their encodings

will also be different. Moreover, the sampled bit string now has length roughly nΩ(1) log n, which is still
small enough.

Now we can continue with our sampling strategy. As before we first generate all the blocks of X and Y
used in all alternating extraction steps. This only consists of the first half bits of X and Y . Now, any fixing
of these bits can be viewed equivalently as fixing the first 0.5n/b field elements in a message. Thus we are
still left with 0.4n/b free field elements, and we have nΩ(1) linear equations in F2b according to the RS-code.
As long as the number of free variables is larger than the number of equations (i.e., 0.4n/b > nΩ(1)), the
property of the RS-encoding ensures that this set of linear equations are linearly independent. Thus, for any
fixed first half bits of X and Y , the pre-image according to the linear equations imposed by the sampled bits
X2, Y2 has the same size.

Summary. Now we are basically done. Again, given any output, our sampling strategy is as follows.
We first uniformly generateX1 and Y1, from whom we can compute V = IP(X1, Y1). Then we know which
co-ordinates of the codeword we are sampling. We then uniformly generate these sampled bits X2, Y2 and
thus we obtain Z. Once we have Z, we will now uniformly generate all {Sh,j , Rh,j , Sh,j , Rh,j} produced in
alternating extractions. Based on Z and these variables, we can now generate all the blocks of X used and
all the {Qh, Qh} by inverting iExt. Based on {Qh, Qh} we can generate all the blocks of Y used by again
inverting iExt. Finally, we use the linear equations imposed by X2, Y2 to generate the rest of the bits in X
and Y .

To show that we are indeed sampling uniformly from the output’s pre-image, we will establish the
following two facts.
Fact 1: For any fixed Z = z, any choice of {sh,j , rh,j , sh,j , rh,j} gives the same pre-image size of (x, y).
This follows directly from the fact that our linear seeded extractor has the same pre-image size for any seed,
and the argument about the linear equations imposed by the RS-code above.
Fact 2: For different Z = z, and different choice of {sh,j , rh,j , sh,j , rh,j}, the pre-image size of (x, y) is
also the same. This follows because the “flip-flop” alternating extraction has a symmetric manner. More
specifically, no matter each bit of z is 0 or 1, we will use two sub steps of alternating extraction, with each
step taking two rounds of alternating extraction. Thus by symmetry no matter each bit of z is 0 or 1, the
pre-image size of the blocks of X and {qh, qh} is the same. Moreover, although depending on the h’th bit z,
we may choose either rh,1 or rh,2 (or either rh,1 or rh,2), we truncate them if necessary to the same size. So
when we generate the blocks of Y using them and {qh, qh}, the pre-image of the blocks of Y will also have
the same size. Thus, the pre-image size of the blocks of X and Y used for this bit is the same. Therefore,
for different Z = z and different {sh,j , rh,j , sh,j , rh,j}, the pre-image size is also the same.

18

Now the conclusion that we are sampling uniformly from the output’s pre-image follows from the above
two facts, and the observation that any (x, y) in the output’s pre-image produces exactly one sequence of
z, {sh,j , rh,j , sh,j , rh,j}.

3 Preliminaries

3.1 Notations

We use capital letters to denote distributions and their support, and corresponding small letters to denote a
sample from the source. Let [m] denote the set {1, 2, . . . ,m}, and Ur denote the uniform distribution over
{0, 1}r. For a string x of length m, define the string Slice(x,w) to be the prefix of length w of x. For any
i ∈ [m], let x{i} denote the symbol in the i’th co-ordinate of x, and for any T ⊆ [m], let x{T} denote the
projection of x to the co-ordinates indexed by T .

3.2 Min Entropy, Flat Distributions

The min-entropy of a source X is defined to be H∞(X) = mins∈support(X) {1/ log(Pr[X = s])}. A dis-
tribution (source) D is flat if it is uniform over a set S. A (n, k)-source is a distribution on {0, 1}n with
min-entropy k. It is a well known fact that any (n, k)-source is a convex combination of flat sources sup-
ported on sets of size 2k.

3.3 Statistical Distance, Convex Combination of Distributions and Probability Lemmas

Definition 3.1 (Statistical distance). Let D1 and D2 be two distributions on a set S. The statistical distance
between D1 and D2 is defined to be:

|D1 −D2| = max
T⊆S
|D1(T)−D2(T)| = 1

2

∑
s∈S
|Pr[D1 = u]− Pr[D2 = u]|

D1 is ε-close to D2 if |D1 −D2| ≤ ε.

Definition 3.2 (Convex combination). A distribution D on a set S is a convex combination of distributions
D1, . . . , Dl on S if there exists non-negative constants (called weights) w1, . . . , w` with

∑l
i=1wi = 1 such

that Pr[D = s] =
∑l

i=1wi ·Pr[Di = s] for all s ∈ S. We use the notation D =
∑l

i=1wi ·Di to denote the
fact that D is a convex combination of the distributions D1, . . . , D` with weights w1, . . . , w`.

Definition 3.3. For random variablesX and Y , we useX|Y to denote a random variable with distribution:
Pr[(X|Y) = x] =

∑
y∈support(Y) Pr[Y = y] · Pr[X = x|Y = y].

We record the following lemma which follows from the above definitions.

Lemma 3.4. Let X and Y be distributions on a set S such that X =
∑l

i=1wi ·Xi and Y =
∑l

i=1wi · Yi.
Then |X − Y | ≤

∑
iwi · |Xi − Yi|.

3.4 Seeded and Seedless Extractors

Definition 3.5 (Strong seeded extractor). A function Ext : {0, 1}n × {0, 1}d → {0, 1}m is called a strong
seeded extractor for min-entropy k and error ε if for any (n, k)-source X and an independent uniformly
random string Ud, we have

|Ext(X,Ud) ◦ Ud − Um ◦ Ud| < ε,

19

where Um is independent of Ud. Further if the function Ext(·, u) is a linear function over F2 for every
u ∈ {0, 1}d, then Ext is called a linear seeded extractor.

Definition 3.6 (Independent Source Extractor). A function IExt : ({0, 1}n)t → {0, 1}m is an extractor for
independent (n, k) sources that uses t sources and outputs m bits with error ε, if for any t independent
(n, k) sources X1, X2, · · · , Xt, we have

|IExt(X1, X2, · · · , Xt)− Um| ≤ ε.

In the special case where t = 2, we say IExt is a two-source extractor.

3.5 Conditional Min-Entropy

Definition 3.7. The average conditional min-entropy is defined as

H̃∞(X|W) = log
(
Ew←W

[
max
x

Pr[X = x|W = w]
])

= − logE
[
2−H∞(X|W=w)

]
We recall some results on conditional min-entropy from [DORS08].

Lemma 3.8 ([DORS08]). For any s > 0, Prw←W

[
H∞(X|W = w) ≥ H̃∞(X|W)− s

]
≥ 1− 2−s.

Lemma 3.9 ([DORS08]). If a random variableB can take at most ` values, then H̃∞(A|B) ≥ H∞(A)− `.

It is sometimes convenient to work with average case seeded extractors, where if a sourceX has average
case conditional min-entropy H̃∞(X|Z) ≥ k then the output of the extractor is uniform even when Z is
given.

Lemma 3.10 ([DORS08]). For any δ > 0, if Ext is a (k, ε)-extractor then it is also a (k + log
(

1
δ

)
, ε + δ)

average case extractor.

The following result on conditional min-entropy was proved in [MW97].

Lemma 3.11. Let X,Y be random variables such that the random variable Y takes at ` values. Then

Pr
y∼Y

[
H∞(X|Y = y) ≥ H∞(X)− log `− log

(
1

ε

)]
> 1− ε.

We also need the following lemma from [Li12b].

Lemma 3.12. Let X,Y be random variables with supports S, T ⊆ V such that (X,Y) is ε-close to a
distribution with min-entropy k. Further suppose that the random variable Y can take at most ` values.
Then

Pr
y∼Y

[
(X|Y = y) is 2ε1/2-close to a source with min-entropy k − log `− log

(
1

ε

)]
≥ 1− 2ε1/2.

3.6 Somewhere Random Sources

Definition 3.13. A source X is a t× k somewhere random source if it comprises of t rows on {0, 1}k such
that at least one of the rows is uniformly distributed. The rows may have arbitrary correlations among
themselves.

20

3.7 Some Known Extractor Constructions

We use explicit constructions of strong linear seeded extractors [Tre01] [RRV02].

Theorem 3.14 ([Tre01][RRV02]). For every n, k,m ∈ N and ε > 0 such that m ≤ k ≤ n, there exists an
explicit linear strong seeded extractor LSExt : {0, 1}n×{0, 1}d → {0, 1}m for min-entropy k, error ε, and
d = O

(
log2(n/ε)
log(k/m)

)
.

The following is an explicit construction of a strong seeded extractor with optimal parameters [GUV09].

Theorem 3.15. For any constant α > 0, and all integers n, k > 0 there exists a polynomial time computable
strong seeded extractor Ext : {0, 1}n×{0, 1}d → {0, 1}m with d = O(log n+ log(1

ε)) and m = (1−α)k.

We use the following strong seeded extractor constructed by Zuckerman [Zuc07] that achieves seed
length log(n) +O(log(1

ε)) to extract from any source with constant min-entropy.

Theorem 3.16 ([Zuc07]). For all constant α, δ, ε > 0 and for all n > 0 there exists an efficient construction
of a strong seeded extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m with m ≥ (1− α)n and D = 2d = O(n).

We recall a folklore construction of a two-source extractors based on the inner product function [CG88].
We include a proof for completeness.

Theorem 3.17 ([CG88]). For all m, r > 0, with q = 2m, n = rm, let X,Y be independent sources on Frq
with min-entropy k1, k2 respectively. Let IP be the inner product function over the field Fq. Then, we have:

|IP(X,Y), X − Um, X| ≤ ε, |IP(X,Y), Y − Um, Y | ≤ ε

where ε = 2
−(k1+k2−n−m)

2 .

Proof. Let X,Y be uniform on sets A,B ⊆ Frq respectively, with |A| = 2k1 and |B| = 2k2 . Let ψ be any
non-trivial additive character of the finite field Fq. For short, we use · to denote the standard inner product
over Fq. We have

∑
y∈B
|
∑
x∈A

ψ(x · y)| ≤ (|B|)
1
2

∑
y∈Frq

∑
x,x′∈A

ψ((x− x′) · y)

 1
2

≤ |B|
1
2

 ∑
x,x′∈A

∑
y∈Frq

ψ((x− x′) · y)

 1
2

where the first inquality follows by an application of the Cauchy-Schwartz inequality. Further, whenever
x 6= x′, we have ∑

y∈Frq

ψ((x− x′) · y) = 0.

Thus, continuing with our estimate, we have∑
y∈B
|
∑
x∈A

ψ(x · y)| ≤ |B|
1
2 (|A|qr)

1
2 = 2

n+k1+k2
2

21

Thus,
EY |EXψ(IP(X,Y))| ≤ 2

n−k1−k2
2

Using Vazirani’s XOR Lemma (see [Rao07] for a proof), it now follows that

|IP(X,Y), Y − Um, Y | ≤ 2
n+m−k1−k2

2

It can be similarly shown that |IP(X,Y), X − Um, X| ≤ 2
n+m−k1−k2

2 .

4 Seeded and Seedless Non-Malleable Extractors

We give formally introduce seedless (2, t)-non-malleable extractors in this section. We first recall the def-
inition of seeded t-non-malleable extractors from [CRS14], which generalizes the definition introduced in
[DW09].

Definition 4.1 (t-Non-malleable Extractor). A function snmExt : {0, 1}n × {0, 1}d → {0, 1}m is a seeded
t-non-malleable extractor for min-entropy k and error ε if the following holds : If X is a source on {0, 1}n
with min-entropy k and A1 : {0, 1}n → {0, 1}n, . . . ,At : {0, 1}n → {0, 1}n are arbitrary tampering
function with no fixed points, then

|snmExt(X,Ud) ◦ snmExt(X,A1(Ud)) ◦ . . . ◦ snmExt(X,At(Ud)) ◦ Ud
−Um ◦ snmExt(X,A1(Ud)) ◦ . . . ◦ snmExt(X,At(Ud)) ◦ Ud| < ε

where Um is independent of Ud and X .

We now proceed to define seedless non-malleable extractors, which were introduced by Cheraghchi and
Guruswami in [CG14b].

We need the following functions.

copy(x, y) =

{
x if x 6= same?

y if x = same?

copy(t)((x1, . . . , xt), (y1, . . . , yt)) = (copy(x1, y1), . . . , copy(xt, yt))

Definition 4.2 (Seedless Non-Malleable Extractor). A function nmExt : {0, 1}n → {0, 1}m is a seedless
non-malleable extractor with respect to a class of sources X and a family of tampering functions F with
error ε if for every distribution X ∈ X and every tampering function f ∈ F , there exists a random variable
DX,f on {0, 1}m ∪ {same?} which is independent of the source X such that

|nmExt(X) ◦ nmExt(f(X))− Um ◦ copy(DX,f , Um)| ≤ ε

where both Um’s refer to the same uniform m-bit string.

When the class of tampering functions are 2-split-state, the definition of seedless non-malleable extrac-
tors specializes as follows.

Definition 4.3 (Seedless 2-Non-Malleable Extractor). A function nmExt : {0, 1}n × {0, 1}n → {0, 1}m is
a seedless 2-non-malleable extractor at min-entropy k and error ε if it satisfies the following property: If X
and Y are independent (n, k)-sources and A = (f, g) is an arbitrary 2-split-state tampering function, then

22

there exists a random variable Df,g on {0, 1}m ∪ {same?} which is independent of the sources X and Y ,
such that

|nmExt(X,Y) ◦ nmExt(A(X,Y))− Um ◦ copy(Df,g, Um)| < ε

where both Um’s refer to the same uniform m-bit string.

In this work, we introduce the following natural generalization where the sources X,Y are tampered by
t tampering functions, each of which is from the 2-split-state family.

Definition 4.4 (Seedless (2,t)-Non-Malleable Extractor). A function nmExt : {0, 1}n × {0, 1}n → {0,
1}m is a seedless (2, t)-non-malleable extractor at min-entropy k and error ε if it satisfies the following
property: If X and Y are independent (n, k)-sources and A1 = (f1, g1), . . . ,At = (ft, gt) are t arbitrary
2-split-state tampering functions, then there exists a random variable D~f,~g

on ({0, 1}m ∪ {same?})t which
is independent of the sources X and Y , such that

|nmExt(X,Y), nmExt(A1(X,Y)), . . . , nmExt(At(X,Y))− Um, copy(t)(D~f,~g
, Um)| < ε

where both Um’s refer to the same uniform m-bit string.

5 Non-malleable codes via Seedless non-malleable extractors

The following theorem is a straightforward generalization of the connection found between non-malleable
codes and seedless non-malleable extractors [CG14b].

Theorem 5.1. Let nmExt : ({0, 1}n)2 → {0, 1}m be a polynomial time computable seedless (2, t)-non-
malleable extractor for min-entropy n with error ε. Then there exists a one-many non-malleable code with
an efficient decoder in the 2-split-state model with tampering degree t, block length = 2n, relative rate m

2n ,
and error = ε2mt+1.

The one-many non-malleable codes in the 2-split-state model is define in the following way: For any
message s ∈ {0, 1}m, the encoder Enc(s) outputs a uniformly random string from the set nmExt−1(s) ⊂ {0,
1}2n. For any codeword c ∈ {0, 1}2n, the decoder Dec outputs nmExt(c). Thus for the encoder to be
efficient, one need to sample almost uniform from nmExt−1(s).

6 An Explicit Seedless (2, t)-Non-Malleable Extractor

We first set up some tools that we use in our extractor construction.

6.1 Averaging Samplers

In our contsruction, we need to pseudorandomly sample a subset T in [n] such that it intersects any large
enough subset with high probability. It turns out that a stronger sampling problem has been extensively
studied with the following stronger requirement: For any function f : [n] → [0, 1], the average of f on the
sampled subset T is close to its actual mean with high probability. Such sampling procedures are known as
averaging samplers. We use the definition from [Vad04].

23

Definition 6.1 (Averaging sampler [Vad04]). A function Samp : {0, 1}r → [n]t is a (µ, θ, γ) averaging
sampler if for every function f : [n]→ [0, 1] with average value 1

n

∑
i f(i) ≥ µ, it holds that

Pr
i1,...,it←Samp(UR)

[
1

t

∑
i

f(i) ≤ µ− θ

]
≤ γ.

Samp has distinct samples if for every x ∈ {0, 1}r, the samples produced by Samp(x) are all distinct.

The following theorem proved by Zuckerman [Zuc97] essentially shows that seeded extractors are equiv-
alent to averaging samplers.

Theorem 6.2 ([Zuc97]). Let Ext : {0, 1}n×{0, 1}d → {0, 1}m be a strong seeded extractor for min-entropy
k and error ε. Let {0, 1}d = {s1, . . . , s2d}. Then Samp(x) = (Ext(x, s1) ◦ s1, . . . ,Ext(x, s2d) ◦ s2d) is a
(µ, θ, γ) averaging sampler with distinct samples for any µ > 0 , θ = ε and γ = 2k−n.

Using known constructions of strong seeded extractors, we have the following corollary.

Corollary 6.3. For any constants δSamp, νSamp > 0, there exist constants α, β < νSamp such that for all
n > 0 and any r ≥ nα there exists a polynomial time computable function Samp : {0, 1}r → [n]tSamp

tSamp = O(nβ) satisfying the following property: for any set S ⊂ [n] of size δSampn,

Pr[|Samp(Ur) ∩ S| ≥ 1] ≥ 1− 2−Ω(nα).

Further Samp has distinct samples.

Proof. We set the parameter α as follows. Let Ext : {0, 1}nα × {0, 1}d → {0, 1}m be the strong linear
seeded extractor for min-entropy k = nα

2 and error ε = δ
2 from Theorem 3.14. Thus t = 2d = O(nαc) for

some constant c. We choose α < νSamp small enough such that cα < νsamp (and set β = cα). The result
now follows by using Theorem 6.2.

6.2 Alternating Extraction

We recall the method of alternating extraction, which we use as a crucial component in our construction.
The alternating extraction protocol takes in two integer parameters u,m > 0. Assume that there are

two parties, Quentin with a source Q and a uniform seed S1 (which may be correlated with Q), and Wendy
with source W . Further suppose that (Q,S1) is kept as a secret from Wendy and W is kept a secret from
Quentin.The protocol is an interactive process between Quentin and Wendy, and runs for u steps.

Let Extq, Extw be strong seeded extractors. In the first step, Quentin sends S1 to Wendy, Wendy com-
putes R1 = Extw(X,S1) and sends it back to Quentin, and Quentin then computes S2 = Extq(Q,R1).
Continuing in this way, in step i, Quentin sends Si, Wendy computes the random variables Ri = Extw(X,
Si) and sends it to Quentin, and Quentin then computes the random variable Si+1 = Extq(Q,Ri). This
is done for u steps. Each of the random variables Ri, Si is of length m. Thus, the following sequence of
random variables is generated:

S1, R1 = Extw(X,S1), S2 = Extq(Q,R1), . . . , Su = Extq(Q,Ru−1), Ru = Extw(X,Su).

Look-Ahead Extractor We define the following look-ahead extractor:

laExt(X, (Q,S1)) = R1, . . . , Ru

24

In our application of the alternating extraction protocol, the initial seed S1 is not guaranteed to be
uniform but only has high min-entropy5. We first prove a lemma which shows that strong seeded extractors
work even when the seed is not uniform but has high enough min-entropy.

Lemma 6.4. Let Ext : {0, 1}n × {0, 1}d → {0, 1}m be a strong seeded extractor for min-entropy k, and
error ε. Let X be a (n, k)-source and let Y be a source on {0, 1}d with min-entropy d− λ. Then,

|Ext(X,Y) ◦ Y − Um ◦ Y | ≤ 2λε.

Proof. Since Y is a source with min-entropy d − λ, we can assume it is uniform on a set A of size 2d−λ.
Thus

|Ext(X,Y) ◦ Y − Um ◦ Y | =
1

2d−λ

∑
y∈A
|Ext(X, y)− Um|

≤ 1

2d−λ

∑
y∈{0,1}d

|Ext(X, y)− Um|

≤ 1

2d−λ
2dε = 2λε

where the last inequality uses the fact that Ext is a strong seeded extractor.

Notation: If Za, Za+1, . . . , Zb are random variables, we use Z[a,b] to denote the random variable Za,
. . . , Zb.

We now prove a general lemma which establishes a strong property satisfied by the alternating extraction
protocol. The proof uses ideas from a result proved by Li on alternating extraction [Li13a], and in fact
generalizes this result.

Lemma 6.5. Let X be a (nw, kw)-source and let X(1), . . . , X(t) be random variables on {0, 1}nw that are
arbitrarily correlated with X . Let Y = (Q,S1), Y (1) = (Q(1), S

(1)
1), . . . , Y (t) = (Q(t), S

(t)
1) be arbitrarily

correlated random variables that are independent of (X,X(1), X(2), . . . , X(t)). Suppose that Q is a (nq,
kq)-source, S1 is a (m,m−λ)-source, Q(1), . . . , Q(t) are each on nq bits, and S(1), . . . , S(t) are each onm
bits. Let Extq,Extw be strong seeded extractors that extract m bits at min-entropy k with error ε and seed
lengthm. Let laExt be the look-ahead extractor for an alternating extraction protocol with parameters u,m,
with Extq,Extw being the strong seeded extractors used by Quentin and Wendy respectively. Let laExt(X,
Y) = R1, . . . , Ru and for j ∈ [t], laExt(X(j), Y (j)) = R

(j)
1 , . . . , R

(j)
u . If kw, kq ≥ k+u(t+1)m+2 log(1

ε),
then the following holds for each i ∈ [u]:

Ri, R[1,i−1], R
(1)
[1.i−1], . . . , R

(t)
[1,i−1], Q,Q

(1), . . . , Q(t) ≈εi Um, R[1,i−1], R
(1)
[1.i−1], . . . , R

(t)
[1,i−1], Q,Q

(1), . . . , Q(t)

where εi = O(uε+ 2λε).

Proof. We in fact prove the following stronger claim.

Claim 6.6. For each i ∈ [u] the following hold:

Ri, R[1,i−1], R
(1)
[1,i−1], . . . , R

(t)
[1,i−1], S[1,i], S

(1)
[1,i], . . . , S

(t)
[1,i], Q,Q

(1), . . . , Q(t)

≈εi Um, R[1,i−1], R
(1)
[1,i−1], . . . , R

(t)
[1,i−1], S[1,i], S

(1)
[1,i], . . . , S

(t)
[1,i], Q,Q

(1), . . . , Q(t)

5another way to handle this is to use the extractor from [Raz05], but we avoid this to ensure invertibility of the final extractor.

25

and

Si+1, S[1,i], S
(1)
[1,i], . . . , S

(t)
[1,i], R[1,i], R

(1)
[1,i], . . . , R

(t)
[1,i], X,X

(1), . . . , X(t)

≈εi+2ε Um, S[1,i], S
(1)
[1,i], . . . , S

(t)
[1,i], R[1,i], R

(1)
[1,i], . . . , R

(t)
[1,i], X,X

(1), . . . , X(t)

where εi = 4(i − 1)ε + 2λε. Further, conditioned on R[1,i−1], R
(1)
[1,i−1], . . . , R

(t)
[1,i−1], S[1,i], S

(1)
[1,i], . . . , S

(t)
[1,i],

(a) (X,X(1), . . . , X(t)) is independent from (Y, Y (1), . . . , Y (t)), (b) X,Q each have average conditional
min-entropy at least (u− i)(t+ 1)m+ k + 2 log

(
1
ε

)
and (c) Ri, R

(1)
i , . . . , R

(t)
i are deterministic functions

of (X,X(1), . . . , X(t)).

Proof. We prove this claim by induction on i.
Let i = 1. Since R1 = Extw(X,S1), and Extw is a strong-seeded extractor, it follows by Lemma 6.4

that Extw(X,S1), S1 ≈ε1 Um, S1, where ε1 = 2λε. Thus we can fix S1, and R1 is still ε1-close to uniform
on average. We note that R1 is a deterministic function of X . Since the random variables S(1)

1 , . . . , S
(t)
1 , Q,

Q(1), . . . , Q(t) are deterministic functions of Y, Y (1), . . . , Y (t) and thus uncorrelated with X , we have

R1, S1, S
(1)
1 , . . . , S

(t)
1 , Q,Q(1), . . . , Q(t) ≈ε1 Um, S1, S

(1)
1 , . . . , S

(t)
1 , Q,Q(1), . . . , Q(t).

We fix the random variables S1, S
(1)
1 , . . . , S

(t)
1 . By Lemma 3.9, the source Q has average conditional min-

entropy at least kq −m(t + 1) = k + (u − 1)m(t + 1) + 2 log
(

1
ε

)
after this fixing. Using Lemma 3.10

it follows that Extq is a (k + log
(

1
ε

)
, 2ε) strong average case extractor. We also note that R1, R

(1)
1 , . . . ,

R
(t)
1 are now deterministic functions of X,X(1), . . . , X(t). Thus recalling that S2 = Extq(Q,R1), we have

S2, R1 ≈(2ε+ε1) Um, R1, since R1 is ε1-close to uniform and using the fact that by Lemma 3.10 Extw is a
(k + log

(
1
ε

)
, 2ε) strong average case extractor. Thus on fixing R1, S2 is (2ε+ ε1)-close to Um on average

and is a deterministic function of Y . Since the random variables R(1)
1 , . . . , R

(t)
1 are deterministic functions

of X,X(1), . . . , X(t), we thus have

S2, S1, S
(1)
1 , S

(t)
1 , R1, R

(1)
1 , . . . , R

(t)
1 , X,X(1), . . . , X(t)

≈ε1+2ε Um, S1, S
(1)
1 , S

(t)
1 , R1, R

(1)
1 , . . . , R

(t)
1 , X,X(1), . . . , X(t)

Further, it still holds that (X,X(1), . . . , X(t)) is independent from (Y, Y (1), . . . , Y (t)). This proves the
base case of our induction.

Now suppose that the claim is true for i and we will prove it for i + 1. Fix the random variables
R[1,i−1], R

(1)
[1,i−1], . . . , R

(t)
[1,i−1], S[1,i], S

(1)
[1,i], . . . , S

(t)
[1,i]. By induction hypothesis, it follows that X,Q each

have average conditional min-entropy at least (u − i)m(t + 1) + k + 2 log
(

1
ε

)
after this fixing. We now

fix the random variables Ri, R
(1)
i , . . . , R

(t)
i (these random variables are deterministic functions of X,X(1),

. . . , X(t) by induction hypothesis). Thus by Lemma 3.9, the source X has conditional min-entropy at least
(u− i)(t+ 1)m+ k + 2 log

(
1
ε

)
− (t+ 1)m = (u− i− 1)(t+ 1)m+ k + 2 log

(
1
ε

)
after this fixing.

Since Si+1 = Extq(Q,Ri) is now independent of X and (εi + 2ε)-close to Um on average (by induction
hypothesis), it follows that Extw(X,Si+1), Si+1 ≈εi+4ε Um, Si+1. Thus on fixing Si+1, Ri+1 = Extw(X,
Si+1) is (εi + 4ε)-close to Um on average, and is a deterministic function of X . We also fix the random
variables S(1)

i+1, . . . , S
(t)
i+1. Since we have fixed the random variables R(1)

i , . . . , R
(t)
i , thus S(1)

i+1, . . . , S
(t)
i+1 are

deterministic functions of Y, Y (1), . . . , Y (t). Hence Ri+1 is still εi+1-close to uniform on average and a

26

deterministic function of X after this fixing. Thus,

Ri+1, R[1,i], R
(1)
[1,i], . . . , R

(t)
[1,i], S[1,i+1], S

(1)
[1,i+1], . . . , S

(t)
[1,i+1], Q,Q

(1), . . . , Q(t)

≈εi+1 Um, R[1,i], R
(1)
[1,i], . . . , R

(t)
[1,i], S[1,i+1], S

(1)
[1,i+1], . . . , S

(t)
[1,i+1], Q,Q

(1), . . . , Q(t).

The source Q has conditional min-entropy at least (u − i)(t + 1)m + k + 2 log
(

1
ε

)
− (t + 1)m =

(u− i− 1)(t+ 1)m+ k + 2 log
(

1
ε

)
.

Recall that Si+2 = Extq(Q,Ri+1). Since Extq is a (k+log
(

1
ε

)
, 2ε) strong average case extractor, it fol-

lows that Extq(Q,Ri+1), Ri+1 ≈εi+2+2ε Um. Since the random variables R(1)
i+1, . . . , R

(t)
i+1 are deterministic

functions of X,X(1), . . . , X(t) (recall that we have fixed S(1)
i+1, . . . , S

(t)
i+1), it follows that

Si+2, S[1,i+1], S
(1)
[1,i+1], . . . , S

(t)
[1,i+1], R[1,i+1], R

(1)
[1,i+1], . . . , R

(t)
[1,i+1], X,X

(1), . . . , X(t)

≈εi+1+2ε Um, S[1,i+1], S
(1)
[1,i+1], . . . , S

(t)
[1,i+1], R[1,i+1], R

(1)
[1,i+1], . . . , R

(t)
[1,i+1], X,X

(1), . . . , X(t).

Also, we maintain at each step that (X,X(1), . . . , X(t)) is independent from (Y, Y (1), . . . , Y (t)). This
completes the proof.

Remark 6.7. We note that if instead of using a strong seeded extractor to generateR1 (recallR1 = Extw(X,
S1)), we used the extractor constructed by Raz [Raz05], then the error achieved is O(uε).

6.3 Construction of Some Key Components

In this section, we construct functions which are key ingredients in all our explicit extractor constructions.
It is based on a new way of using the technique of alternating extraction, and is inspired by a recent elegant
work of Cohen [Coh15] on constructing local correlation breakers.

We define the following function which is inspired by the “flip-flop” method introduced by Cohen
[Coh15].

We now prove the following lemma.

Lemma 6.8. Let b, {b(h) : h ∈ [j]} be j + 1 bits such that for all h ∈ [j], b 6= b(h). Let X be a (nw, kw)-
source and let {X(h) : h ∈ [j]} be random variables on {0, 1}nw that are arbitrarily correlated with X .
Let Y, {Y (h) : h ∈ [j]} be arbitrarily correlated random variables that are independent of (X, {X(h) : h ∈
[j]}). Suppose that Y is a (ny, ky)-source, ky = ny − λ, each random variable in {Y (h) : h ∈ [j]} is on
ny bits. Let Qi be some function of Y on nq bits with min-entropy at least nq − λ, and for each h ∈ [j], let
Q(h) be an an arbitrary function of Y, {Y (a) : a ∈ [j]} on nq bits.

Let 2laExt be the function computed by Algorithm 1. Let 2laExt(X,Y,Qi, b) = Qi+1, and for h ∈ [j],
let 2laExt(X(h), Y (h), Q

(h)
i , b(h)) = Q

(h)
i+1. Suppose ky ≥ max{k, k1} + 10

(
jnq + jm+ log

(
1
ε

))
, kw ≥

k + 10
(
jm+ log

(
1
ε

))
, and nq ≥ k + 10jm+ 2 log(1

ε) + λ.

Then with probability at least 1 − ε′, where ε′ = O(2λε), over the fixing of the random variables Qi,
{Q(h)

i : h ∈ [j]}, Ri,1, Ri,2, {R(h)
i,1 , R

(h)
i,2 : h ∈ [j]}, Qi, {Q

(h)
i : h ∈ [j]}, Ri,1, Ri,2, {R

(h)
i,1 , R

(h)
i,2 : h ∈ [j]},

{Q(h)
i+1 : h ∈ [j]} : (a) Qi+1 is ε′-close to Unq and is a deterministic function of Y (b) The random

variables (X, {X(h) : h ∈ [j]}) and (Y, {Y (h) : h ∈ [j]}) are independent (c) X has min-entropy at least
kw − 10

(
jm+ log

(
1
ε

))
and Y has min-entropy at least ky − 10

(
jnq + jm+ log

(
1
ε

))
.

27

Algorithm 1: 2laExt(x, y, qi, b)
Input: Bit strings x, y, qi of length nw, ny, nq respectively, and a bit b.
Output: A bit string of length nq.
Subroutine: Let Extq : {0, 1}nq ×{0, 1}m → {0, 1}m be a strong seeded extractor set to extract from
min-entropy k with error ε and seed length m. Let Extw : {0, 1}nw × {0, 1}m → {0, 1}m be a strong
seeded extractor set to extract from min-entropy k with error ε and seed length d.
Let laExt : {0, 1}nw × {0, 1}nq+m → {0, 1}2m be the look ahead extractors defined in Section 6.2
for an alternating extraction protocol with parameters m,u = 2 (recall u is the number of steps in
the protocol, m is the length of each random variable that is communicated between the players), and
using Extq,Extw as the strong seeded extractors.
Let Ext : {0, 1}ny × {0, 1}m → {0, 1}nq be a strong seeded extractor set to extract from min-entropy
k1 with error ε.

1 Let si,1 = Slice(qi,m)
2 Let laExt(x, (qi, si,1)) = ri,1, ri,2
3 if b = 0, let qi = Ext(y, ri,1)
4 else let qi = Ext(y, ri,2)
5 endif
6 Let si,1 = Slice(qi,m).
7 Let laExt(x, (qi, si,1)) = ri,1, ri,2.
8 if b = 0, let qi+1 = Ext(y, ri,2)
9 else let qi+1 = Ext(y, ri,1)

10 endif
11 Ouput qi+1.

Proof. Notation: For any function H , if V = H(X,Y), let V (a) denote the random variable H(X(a),
Y (a)).

We split the proof into two cases, depending on b.
Case 1: Suppose b = 1. By Lemma 6.5, it follows that

Ri,2, {R(h)
i,1 : h ∈ [j]}, Qi, {Q(h)

i : h ∈ [j]}

≈ε1 Um, {R
(h)
i,1 : h ∈ [j]}, Qi, {Q(h)

i : h ∈ [j]}

, where ε1 = c2λε, for some constant c. Thus, we can fix {R(h)
i,1 : h ∈ [j]}, Qi, {Q(h)

i : h ∈ [j]}, and with
probability at least 1 − O(ε1), Ri,2 is O(ε1)-close to Um. Note that Ri,2 is now a deterministic function
of X . Further, by Lemma 3.11, Y loses min-entropy at most (j + 1)nq + log

(
1
ε

)
with probability at least

1 − ε due to this fixing. Since on fixing Qi, {Q(h)
i : h ∈ [j]}, the random variables {R(h)

i,1 : h ∈ [j]} are
deterministic function of X, {X(h) : h ∈ [j]}, the source X loses min-entropy at most jm + log

(
1
ε

)
with

probability at least 1 − ε due to this fixing. We now note that the random variables {Q(h)
i : h ∈ [j]} are

deterministic functions of Y, {Y (h) : h ∈ [j]}. Thus, we fix {Q(h)
i : h ∈ [j]}, and by Lemma 3.11, Y loses

min-entropy at most jnq + log
(

1
ε

)
with probability at least 1− ε due to this fixing. Since Ext extracts from

min-entropy k1, and ky was chosen large enough, it follows that the random variable Qi is (ε + ε1)-close
to Unq with probability at least 1 − O(ε1) even after the fixing. Further, we fix Ri,2 since Ext is a strong
seeded extractor, and by Lemma 3.11, X loses min-entropy at most m + log

(
1
ε

)
with probability at least

1 − ε due to this fixing. Thus Qi is now a deterministic function of Y . We now fix the random variables

28

{R(h)
i,2 : h ∈ [j]}, noting that they are deterministic functions of X and hence does not affect the distribution

of Qi. X loses min-entropy at most jm+ log
(

1
ε

)
with probability at least 1− ε due to this fixing.

We now note that the random variables {R(h)
i,1 , R

(h)
i,2 : h ∈ [j]} are deterministic function of X, {X((j)) :

j ∈ [h]} since we have fixed {Q(h)
i : h ∈ [j]}. Thus, we can fix {R(h)

i,1 , R
(h)
i,2 : h ∈ [j]} and X loses

min-entropy at most 2jm+ log
(

1
ε

)
with probability at least 1− ε. Thus it follows by Lemma 6.5 that |Ri,1,

Qi − Um, Qi| < ε + O(ε1). We fix Qi and Y loses min-entropy at most nq + log
(

1
ε

)
using Lemma 3.11.

Finally, we note that {Q(h)
i+1 : h ∈ [j]} is now a deterministic function of Y, {Y (h) : h ∈ [j]}. Thus, we can

fix {Q(h)
i+1 : h ∈ [j]} variables and Y loses min-entropy at most jnq + log

(
1
ε

)
with probability at least 1− ε

due to this fixing. Further, Ri,1 is now a deterministic function of X . It follows that Qi+1 is O(ε1 + ε)-close
to Unq since ky is chosen large enough. We further fix Ri,1 noting that Ext is a strong extractor and X loses
min-entropy at most m+ log

(
1
ε

)
with probability at least 1− ε due to this fixing.

Case 2: Now suppose b = 0. We fix the random variables Qi, {Q(h)
i : h ∈ [j]}. Conditioned on this fixing,

it follows by Lemma 6.5 that |Ri,1 − Um| < ε1, ε1 = O(2λε), with probability at least 1 − ε. Since Ext
is a strong seeded extractor (and ky is large enough) and Ri,1 is a deterministic function of X , it follows
that |Qi, R1,i − Unq , Ri,1| < ε + ε1 with probability at least ε. We fix Ri,1, and observe that Qi is now a

deterministic function of Y . We can now fix {R(h)
i,1 , R

(h)
i,2 : h ∈ [j]} since {R(h)

i,2 : h ∈ [j]} is a deterministic
function of X, {X(h) : h ∈ [j]}, and hence does not affect the distribution of Qi. As a result of these
fixings, it is clear that (X, {X(h) : h ∈ [j]}) is independent of (Yi, {Y (h) : h ∈ [j]}). Further X loses
min-entropy of at most 2(j + 1)m + log

(
1
ε

)
with probability at least 1 − ε, and Y loses min-entropy of at

most 2(j+ 1)nq + (j+ 1)m+ 3 log
(

1
ε

)
with probability at least 1− 3ε. Note that now Qi, {Q

(h)
i : h ∈ [j]}

are deterministic functions of Y, {Y (h) : h ∈ [j]}, and Qi is O(ε1)-close to Unq . By Lemma 6.5, it follows
that

Ri,2, {R
(h)
i,1 : h ∈ [j]}, Qi, {Q

(h)
i : h ∈ [j]} ≈ε2 Um, {R

(h)
i,1 : h ∈ [j]}, Qi, {Q

(h)
i : h ∈ [j]}

where ε2 = c(ε1 + ε + ε), for some constant c. Thus, we can fix {R(h)
i,1 : h ∈ [j]}, Qi, {Q

(h)
i : h ∈ [j]}

and with probability at least 1 − O(ε2), Ri,2 is O(ε2)-close to Um. Note that Ri,2 is now a deterministic
function of X . Further, by Lemma 3.11, Y loses min-entropy at most (j + 1)nq + log

(
1
ε

)
with probability

at least 1− ε due to this fixing. Since on fixing Qi, {Q
(h)
i : h ∈ [j]}, the random variables {R(h)

i,1 : h ∈ [j]}
are deterministic functions of X, {X(h) : h ∈ [j]}, the source X loses min-entropy at most jm + log

(
1
ε

)
with probability at least 1 − ε due to this fixing. We now note that the random variables {Q(h)

i+1 : h ∈ [j]}
are deterministic functions of Y, {Y (h) : h ∈ [j]}. Thus, we fix {Q(h)

i+1 : h ∈ [j]} and by Lemma 3.11, Y
loses min-entropy at most (j + 1)nq + log

(
1
ε

)
with probability at least 1 − ε due to this fixing. Since Ext

extracts from min-entropy k1, (and ky is large enough) it follows that random variable Qi+1 is O(ε2)-close
to Unq even after the fixing. Further, we fix Ri,2 since Ext is a strong seeded extractor, and by Lemma
3.11, X loses min-entropy m + log

(
1
ε

)
with probability at least 1 − ε due to this fixing. Further Qi+1 is

now a deterministic function of Y . Thus we can fix the random variables {R(h)
i,2 : h ∈ [j]} since they are

deterministic function sod X and does not affect the distribution of Qi+1. X loses min-entropy at most
m+ log

(
1
ε

)
with probability at least 1− ε due to this fixing. This completes the proof.

We now construct a function that is a crucial ingredient in our non-malleable extractor constructions.
(Recall that for any string z, we use z{h} to denote the symbol in the h’th co-ordinate of z.)

Lemma 6.9. Let z, z(1), . . . , z(t) each be ` bit strings such that for all i ∈ [t], z 6= z(i). Let X be a (nw,
kw)-source and let X(1), . . . , X(t) be random variables on {0, 1}nw that are arbitrarily correlated with X .

29

Algorithm 2: nmExt1(x, y, z)

Input: Bit strings x, y, z of length nw, ny, ` respectively.
Output: A bit string of length nq.

1 Let q1 = Slice(y, nq)
2 for h = 1 to ` do
3 qh+1 = 2laExt(x, y, qh, z{h})
4 end
5 Ouput q`+1.

Let Y, Y (1), , . . . , Y (t) be random variables on ny bits that are independent of (X,X(1), X(2), . . . , X(t)).
Suppose that Y is a (ny, ky)-source, ky = ny − λ.

Let nmExt1 be the function computed by Algorithm 2. Let nmExt1(X,Y, z) = Q`+1, and for h ∈ [t],
let nmExt1(X(h), Y (h), z(h)) = Q

(h)
`+1. Suppose ky ≥ max{k, k1} + 20`

(
tnq + tm+ log

(
1
ε

))
, kw ≥

k + 20`
(
tm+ log

(
1
ε

))
and nq ≥ k + 10tm+ 2 log(1

ε) + λ. Then, we have

Q`+1, Q
(1)
`+1, . . . , Q

(t)
`+1 ≈ε′ Unq , Q

(1)
`+1, . . . , Q

(t)
`+1

where ε′` = O((2λ + `)ε).

Proof. Notation: For any function H , if V = H(X,Y), let V (a) denote the random variable H(X(a),
Y (a)).

For h ∈ [`], define the sets

Indh = {i ∈ [t] : z{h} 6= z
(i)
{h}}, Indh = [t] \ Indh,

Ind[h] = ∪hi=1Indh, Ind[h] = [t] \ Ind[h].

We record a simple claim.

Claim 6.10. For each i ∈ [t], there exists h ∈ [`] such that i ∈ Indh.

Proof. Recall that we have fixed Z,Z(1), . . . , Z(t) such that Z 6= Z(i) for any i ∈ [t]. Thus it follows that
for each i ∈ [t], there exists some h ∈ [`] such that Z{h} 6= Z

(i)
{h}, and hence i ∈ Indh.

We now prove our main claim, which combined with Lemma 6.8 and a simple inductive argument proves
Lemma 6.9.

Claim 6.11. For any h ∈ {0, 1, . . . , `}, suppose the following holds:

With probability at least 1 − εh over the fixing of the random variables {Qi : i ∈ [h]}, {Q(j)
i : i ∈ [h],

j ∈ [t]}, {Ri,1, Ri,2 : i ∈ [h]}, {R(j)
i,1 , R

(j)
i,2 : i ∈ [h], j ∈ [t]}, {Qi : i ∈ [h]}, {Q(j)

i : i ∈ [h], j ∈ [t]}, {Ri,1,
Ri,2 : i ∈ [h]}, {R(j)

i,1 , R
(j)
i,2 : i ∈ [h], j ∈ [t]}, {Q(j)

i+1 : j ∈ Ind[h]}: (a) Qh+1 is εh-close to a source with

min-entropy at least nq − λ and is a deterministic function of Y (b) {Q(j)
h+1 : j ∈ Ind[h]} is a deterministic

function of Y, {Y (j) : j ∈ [t]} (c) The random variables (X, {X(j) : j ∈ [t]}) and (Y, {Y (j) : j ∈ [t]}) are
independent (d) X has min-entropy at least kw − 10h

(
tm+ log

(
1
ε

))
> k+ 10

(
tm+ log

(
1
ε

))
and Y has

min-entropy at least ky − 10h
(
tnq + tm+ log

(
1
ε

))
> max{k, k1}+ 10

(
tnq + tm+ log

(
1
ε

))
.

Then, the following holds:

30

Let εh+1 = εh + c2λε for some constant c. With probability at least 1 − εh+1 over the fixing of the
random variables {Qi : i ∈ [h + 1]}, {Q(j)

i : i ∈ [h + 1], j ∈ [t]}, {Ri,1, Ri,2 : i ∈ [h + 1]}, {R(j)
i,1 ,

R
(j)
i,2 : i ∈ [h + 1], j ∈ [t]}, {Qi : i ∈ [h + 1]}, {Q(j)

i : i ∈ [h + 1], j ∈ [t]}, {Ri,1, Ri,2 : i ∈ [h]}, {R(j)
i,1 ,

R
(j)
i,2 : i ∈ [h + 1], j ∈ [t]}, {Q(j)

i+1 : j ∈ Ind[h+1]}: (a) Qh+2 is εh+1-close to Unq and is a deterministic

function of Y (b) {Q(j)
h+2 : j ∈ Ind[h+1]} is a deterministic function of Y, {Y (j) : j ∈ [t]} (c) The random

variables (X, {X(j) : j ∈ [t]}) and (Y, {Y (j) : j ∈ [t]}) are independent (d) X has min-entropy at least
kw − 10(h+ 1)

(
tm+ log

(
1
ε

))
and Y has min-entropy at least ky − 10(h+ 1)

(
tm+ log

(
1
ε

))
.

Proof. We fix the random variables {Qi : i ∈ [h]}, {Q(j)
i : i ∈ [h], j ∈ [t]}, {Ri,1, Ri,2 : i ∈ [h]}, {R(j)

i,1 ,

R
(j)
i,2 : i ∈ [h], j ∈ [t]}, {Qi : i ∈ [h]}, {Q(j)

i : i ∈ [h], j ∈ [t]}, {Ri,1, Ri,2 : i ∈ [h]}, {R(j)
i,1 , R

(j)
i,2 : i ∈ [h],

j ∈ [t]}, {Q(j)
i+1 : j ∈ Ind[h]} such that (a), (b), (c), (d) holds (this happens with probability at least 1 − εh.

We also fix the random variables {R(j)

h+1,ψ1(z
(j)
h+1)

: j ∈ Ind[h]}, noting that they are deterministic functions

of X . Thus X has min-entropy at least kw − 10h
(
jm+ log

(
1
ε

))
− tm− log

(
1
ε

)
with probabilitiy at least

1− ε. Further, Q has min-entropy at least ky − 10h
(
tnq + tm+ log

(
1
ε

))
. The claim now follows directly

from Lemma 6.8.

To complete the proof of Lemma 6.9, we now note that the hypothesis of Claim 6.11 is indeed satisfied
when h = 0. Thus, by ` applications of Claim 6.11, it follows that the Q`+1 is ε′`-close to Unq , where
ε′` = O(2λε+ `ε). This follows since for all applications of Claim 6.11 except the first time, Qh is εh-close
to uniform, and hence the parameter λ = 0. This concludes the proof of Lemma 6.9.

6.4 An Explict Seedless (2, t)-Non-Malleable Extractor Construction

We are now ready to present our construction. We first set up the various ingredients developed so far with
appropriate parameters.

Subroutines and Parameters

1. Let γ be a small enough constant and C a large one. Let t = nγ/C .

2. Let n1 = nβ1 , β1 = 10γ. Let IP : {0, 1}n1×{0, 1}n1 → {0, 1}n2 , n2 = n1
10 , be the strong two-source

extractor from Theorem 3.17.

3. Let C be an explicit [nα , n,
1
10]-binary linear error correcting code with encoder E : {0, 1}n → {0,

1}
n
α . Such explicit codes are known, for example from the work of Alon et al. [ABN+92].

4. Let Samp : {0, 1}n2 →
[
n
α

]
be the sampler from Corollary 6.3 with parameters δSamp = 1

10 and
νSamp = β1. Let the number of samples tSamp = nβ2 . Thus, β2 ≤ β1.

5. Let ` = 2(nβ1 + nβ2). Thus ` ≤ n11γ .

6. We set up the parameters for the components used by 2laExt (computed by Algorithm 1) as follows.

(a) Let n3 = nβ3 , n4 = nβ4 , with β3 = 100γ and β4 = 50γ.
Let Extq : {0, 1}n3 × {0, 1}n4 → {0, 1}n4 be the strong seeded linear extractor from Theorem
3.14 set to extract from min-entropy kq = n3

4 with error ε = 2−Ω(nγq), γq = β4

2 . Thus, by

Theorem 3.14, we have that the seed length dq = O
(

log2(n3/ε)
log(kq/n4)

)
= O(n2γq) = n4.

31

Let Extw : {0, 1}n × {0, 1}n4 → {0, 1}n4 be the strong linear seeded extractor from Theorem
3.14 set to extract from min-entropy kw = n

2 with error ε = 2−Ω(nγq).

(b) Let laExt : {0, 1}n × {0, 1}n3 → {0, 1}2n4 be the look ahead extractor used by 2laExt (recall
that the parameters in the alternating extraction protocol are set asm = n4, u = 2 where u is the
number of steps in the protocol, m is the length of each random variable that is communicated
between the players, and Extq,Extw are the strong seeded extractors used in the protocol.).

(c) Let Ext : {0, 1}n × {0, 1}n4 → {0, 1}n3 be the linear strong seeded extractor from Theorem
3.14 set to extract from min-entropy n

2 with seed length n4 and error 2−Ω(nβ4/2).

7. Let nmExt1 be the function computed by Algorithm 2, which uses the function 2laExt set up as above.

Algorithm 3: nmExt(x,y)
Input: Bit strings x, y, each of length n.
Output: A bit string of length n4.

1 Let x1 = Slice(x, n1), y1 = Slice(y, n1). Compute v = IP(x, y).
2 Compute T = Samp(v) ⊂ [nα].
3 Let z = x1 ◦ x2 ◦ y1 ◦ y2 where x2 = (E(x)){T}, y2 = (E(y)){T}.
4 Output nmExt1(x, y, z).

We now state our main theorem.

Theorem 6.12. Let nmExt be the function computed by Algorithm 3. Then nmExt is a seedless (2, t)-non-
malleable extractor with error 2−n

Ω(1)
.

We establish the following two lemmas, from which the above theorem is direct.

Lemma 6.13. nmExt : {0, 1}n × {0, 1}n → {0, 1}n4 satisfies the following property Pn: If X,Y are
independent (n, n−nγ)-sources andA1 = (f1, g1), . . . ,At = (ft, gt) are arbitrary 2-split-state tampering
functions, such that for each i ∈ [t], at least one of fi, gi has no fixed points, then the following holds:

|nmExt(X,Y), nmExt(A1(X,Y)), . . . , nmExt(At(X,Y))−
Un4 , nmExt(A1(X,Y)), . . . , nmExt(At(X,Y))| ≤ ε,

where ε = 2−n
Ω(1)

.

Lemma 6.14. Suppose nmExt : {0, 1}n × {0, 1}n → {0, 1}n4 , satisfies property Pn (from Lemma 6.13).
Then, nmExt is a seedless (2, t)-non-malleable extractor with error (2−n

γ
+ ε)22t.

Notation: For any function H , if V = H(X,Y), let V (i) denote the random variable H(Ai(X,Y)).

Proof of Lemma 6.13. We begin by proving the following claim.

Claim 6.15. With probability at least 1− 2−n
Ω(1)

, Z 6= Z(i) for each i ∈ [t].

Proof. Pick an arbitrary i ∈ [t]. Without loss of generality, suppose fi has no fixed points. If X1 6= X
(i)
1

or Y1 6= Y
(i)

1 , then Z 6= Z(i). Now suppose X1 = X
(i)
1 and Y1 = Y

(i)
1 . We fix X1, and note that since

IP is a strong extractor (Theorem 3.17), V is 2−Ω(n1)-close to Un2 after this fixing (with probability at least
1− 2−Ω(n1)). Also note that V = V (i).

32

Since fi has no fixed points, it follows that sinceE is an encoder of a code with relative distance distance
1
10 , ∆(E(X), E(X(i))) ≥ n

10α . Let D = {j ∈
[
n
α

]
: E(X){j} 6= E(X(i)){j}}. Thus |D| ≥ n

10α . Using

Corollary 6.3, it follows that with probability at least 1−2−Ω(n1), |D∩Samp(V)| ≥ 1, and thus X2 6= X
(i)
2

(since Samp(V) = Samp(V (i))). This proves the claim.

We fix Z,Z(1), . . . , Z(t) such that Z 6= Z(i) for any i ∈ [t] (from the lemma above, this occurs with
probability 1 − 2−n

Ω(1)
). We note that by the Lemma 6.15 and Lemma 3.11, each of the sources X and Y

still has min-entropy at least n− nγ − (t+ 1)`− nγ/10 > n− n12γ with probability at least 1− 2−n
γ/10

.
Lemma 6.13 now follows directly from Lemma 6.9 by noting that the following hold by our choice of

parameters:

• n− n12γ > n
2 + 20(nβ1 + nβ2)(nγ/C(nβ3 + nβ4) + nβ4)

• nβ3 > 4
3(20tnβ4 + n12γ)

• 2n
12γ

2−Ω(nβ4/2) < 2−Ω(nβ4/4).

This concludes the proof.

Proof of Lemma 6.14. Let A1 = (f1, g1), . . . ,At = (ft, gt) be arbitrary 2-split-state adversaries. We parti-
tion {0, 1}n in two different ways based on the fixed points of the tampering functions.

For any R ⊆ [t], define

W (R) = {x ∈ {0, 1}n : fi(x) = x if i ∈ R, and fi(x) 6= x if i ∈ [t] \R}.

Similary, for any S ⊆ [t], define

V (S) = {y ∈ {0, 1}n : gi(y) = y if i ∈ S, and gi(y) 6= y if i ∈ [t] \ S}.

Thus the sets W (R), R ⊆ [t] defines a partition of {0, 1}n. Similarly V (S), S ⊆ [t] defines a partition of
{0, 1}n. For R,S ⊆ [t], let X(R) be a random variable uniform on W (R), and Y (S) be a random variable
uniform on V (S).

Let Un4 be uniform on {0, 1}n4 and independent of XR, Y S , for all R,S ⊆ [t].
Define

D
(R,S)
~f,~g

= (Un4 , Z
(R,S)
1 , . . . , Z

(R,S)
t)

where we define the random variable

Z
(R,S)
i =

{
nmExt(fi(X(R)), gi(Y

(S))) if i ∈ [t] \ (R ∩ S)

same? if i ∈ R ∩ S

Define the distribution:
D~f,~g

=
∑
R,S

αR,SD
(R,S)
~f,~g

, where αR,S = |W (R,S)||V (R,S)|

22n .
We first prove the following claim.

33

Claim 6.16. Let

∆R,S = αR,S |nmExt(X(R), Y (S)), nmExt(f1(X(R)), g1(Y (S))), . . . ,

nmExt(ft(X(R)), gt(Y
(S)))−D(R,S)

~f,~g
|.

Then, for every R,S ⊆ [t], ∆R,S ≤ 2−n
γ

+ ε.

Proof. If |W (R)| ≤ 2n−n
γ
, it follows that αR,S ≤ 2−n

γ
, and hence the claim follows. Thus, assume that

H∞(X(R)) ≥ n− nγ . Using a similar argument, we can assume that H∞(Y (S)) ≥ n− nγ .
Let R ∩ S = [t] \ (R ∩ S) = {i1, . . . , ij}. It follows that for any c ∈ R ∩ S, at least one the following

is true: (1) fc has no fixed points on W (R) (2) gc has no fixed points on V (S). Thus, invoking Lemma 6.13,
we have

|nmExt(X(R), Y (S)), nmExt(fi1(X(R)), gi1(Y (S))), . . . , nmExt(fij (X
(R)), gij (Y

(S)))

−Un4 , nmExt(fi1(X(R)), gi1(Y (S))), . . . , nmExt(fij (X
(R)), gij (Y

(S)))| ≤ ε

The claim now follows by observing that for each c ∈ R∩S, fc and gc are the identity functions on the sets
W (R) and V (S) respectively.

Let X,Y be independent and uniformly random on {0, 1}n. Thus, we have

|nmExt(X,Y), nmExt(A1(X,Y)), . . . , nmExt(At(X,Y))

−Un4 , copy(t)(D~f,~g
, Un4)| =

∑
R,S⊆[t]

∆R,S ≤ 22t(ε+ 2−n
γ
).

Thus nmExt is a (2, t)-non-malleable extractor with error (ε+ 2−n
γ
)22t.

7 An Explict Seeded Non-Malleable Extractor at Polylogarithmic Min-entropy

Subroutines and Parameters

1. Let γ be a small enough constant and C a large one. Let t, k, d be parameters such that t ≤ kγ/2.

2. Let n1 = log
(
tn
ε

)
. Let Exts : {0, 1}n × {0, 1}n1 → {0, 1}n1 be the strong seeded extractor from

Theorem 3.15 set to extract from min-entropy 2n1 and error 2−Ω(n1).

3. Let C be an explicit [dα , d,
1
10]-binary linear error correcting code with encoderE : {0, 1}d → {0, 1}

d
α .

Such explicit codes are known, for example from the work of Alon et al. [ABN+92].

4. Let ExtSamp : {0, 1}n1 × {0, 1}d1 → {0, 1}n2 be the strong seeded extractor from Theorem 3.16
set to extract from min-entropy n1

2 with error 1
20 and output length n2, such that N2D1 = d

α , where
N2 = 2n2 and D1 = 2d1 . Let {0, 1}d1 = {s1, . . . , sD1}. Define Samp : {0, 1}n1 → [dα]D1 as:
Samp(x) = (Ext(x, s1) ◦ s1, . . . ,Ext(x, sD1) ◦ sD1). By Theorem 3.16, we have D1 = c1n1, for
some constant c1.

5. Let ` = n1 +D1 = (c1 + 1)n1.

6. We set up the parameters for the components used by 2laExt (computed by Algorithm 1) as follows.

34

(a) Let n3 = c3t`, n4 = 10`, for some large enough constant c3.
Let Extq : {0, 1}n3 × {0, 1}n4 → {0, 1}n4 be the strong seeded extractor from Theorem 3.15
set to extract from min-entropy kq = n3

4 with error ε = 2−Ω(n4).
Let Extw : {0, 1}n×{0, 1}n4 → {0, 1}n4 be the strong seeded extractor from Theorem 3.15 set
to extract from min-entropy k

2 with error ε = 2−Ω(n4).
(b) Let laExt : {0, 1}n × {0, 1}n3+n4 → {0, 1}2n4 be the look ahead extractor used by 2laExt.

Recall that the parameters in the alternating extraction protocol are set as m = n4, u = 2
where u is the number of steps in the protocol, m is the length of each random variable that is
communicated between the players, and Extq,Extw are the strong seeded extractors used in the
protocol.

(c) Let Ext : {0, 1}d × {0, 1}n4 → {0, 1}n3 be the strong seeded extractor from Theorem 3.15 set
to extract from min-entropy d

2 with seed length n4 and error 2−Ω(n4).

7. Let nmExt1 be the function computed by Algorithm 2, which uses the function 2laExt set up as above.

8. Let n5 = k
100t . Let Ext1 : {0, 1}n×{0, 1}n4 → {0, 1}n5 be the strong seeded extractor from Theorem

3.15 set to extract from min-entropy k
4 with seed length n4, error 2−Ω(n4).

Algorithm 4: snmExt(x,y)
Input: Bit strings x, y, of length n, d respectively.
Output: A bit string of length n4.

1 y1 = Slice(y, n1). Compute v = Exts(x, y1).
2 Compute T = Samp(v) ⊂ [nα].
3 Let z = y1 ◦ y2 where y2 = (E(y)){T}.
4 Output Ext1(x, nmExt1(x, y, z)).

We now state our main theorem.

Theorem 7.1. Let snmExt : {0, 1}n × {0, 1}d → {0, 1}n5 be the function computed by Algorithm 4. Then
snmExt satisfies the following property: For any ε > 0, k ≥ C log2+γ

(
n
ε

)
, t ≤ kγ/2 and d ≥ Ct2 log2

(
n
ε

)
,

if X is a (n, k)-source, and Y is an independent and uniform distribution on {0, 1}d, and A1 . . . ,At are
arbitrary tampering functions, such that for each i ∈ [t], Ai has no fixed points, then the following holds:

|snmExt(X,Y), snmExt(X,A1(Y)), . . . , snmExt(X,At(Y)), Y−
Un5 , snmExt(X,A1(Y)), . . . , snmExt(X,At(Y)), Y | ≤ O(ε),

Notation: For any function H , if V = H(X,Y), let V (i) denote the random variable H(X,Ai(Y)).

Proof. We first prove the following claim.

Claim 7.2. With probability at least 1− ε, Z 6= Z(i) for each i ∈ [t].

Proof. Pick an arbitrary i ∈ [t]. If Y1 6= Y
(i)

1 , then we have Z 6= Z(i). Now suppose Y1 = Y
(i)

1 . We fix Y1,
and note that since Exts is a strong extractor (Theorem 3.17), B is 2−Ω(n1)-close to Un1 .

Since Ai has no fixed points, it follows that since E is an encoder of a code with relative distance
distance 1

10 , ∆(E(Y), E(Y (i))) ≥ d
10α . Let D = {j ∈

[
d
α

]
: E(Y){j} 6= E(Y (i)){j}}. Thus |D| ≥ d

10α .

Using Theorem 6.2, it follows that with probability at least 1− ε, |D ∩ Samp(V)| ≥ 1, and thus Y2 6= Y
(i)

2

(since Samp(V) = Samp(V (i))). The claim now follows by a simple union bound.

35

We fix Z,Z(1), . . . , Z(t) such that Z 6= Z(i) for any i ∈ [t] (from the lemma above, this occurs with
probability 1− ε). We note that by the Lemma 7.2 and Lemma 3.11, the source X has min-entropy at least
k − 2n1 and the source Y has min-entropy at least d− 2` with probability at least 1− ε.

Lemma 6.13 now follows directly from Lemma 6.9 by noting that the following hold by our choice of
parameters:

• d
2 > 20`(t(n3 + n4) + log(1

ε))

• k − 2n1 ≥ n3
4 + 20`(tn4 + log(1

ε))

• n3 − 2n1 ≥ 4
3(10tn4 + 2 log(1

ε))

This concludes the proof.

8 Efficient Encoding and Decoding Algorithms for One-Many Non-Malleable
Codes

In this section, we construct efficient algorithms for almost uniformly sampling from the pre-image of any
output of a modified version of the (2, t)-non-malleable extractor constructed in Section 6. Combining this
with Theorem 5.1 and Theorem 6.12 gives us efficient constructions of one-many non-malleable codes in
the 2-split state model, with tampering degree t = nΩ(1), relative rate nΩ(1)/n and error 2−n

Ω(1)
.

A major part of this section is on modifying the components used in the construction of nmExt (Algo-
rithm 3) so that the overall extractor is much simpler to analyze as a function, and this enables us to develop
efficient sampling algorithms from the pre-image. We present the modified extractor construction in Section
8.2. However, we first need to solve a simpler problem.

8.1 A New Linear Seeded Extractor

A crucial sub-problem that we have to solve is almost uniformly sampling from the pre-image of a lin-
ear seeded extractor in polynomial time. Towards this, we recall a well known property of linear seeded
extractors.

Lemma 8.1 ([Rao09]). Let Ext : {0, 1}n×{0, 1}d → {0, 1}m be a linear seeded extractor for min-entropy
k with error ε < 1

2 . Let X be an affine (n, k)-source. Then

Pr
u∼Ud

[|Ext(X,u)− Um| > 0] ≤ ε.

Definition 8.2. For any seeded extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m, any s ∈ {0, 1}d and r ∈ {0,
1}m, we define:

• Ext(·, s) : {0, 1}n → {0, 1}m to be the map Ext(·, s)(x) = Ext(x, s).

• Ext−1(r) to be the set {(x, y) ∈ {0, 1}n × {0, 1}d : Ext(x, y) = r}.

• Ext−1(·, s) to be the set {x : Ext(x, s) = r}.

We now present a natural way of sampling from pre-images of linear seeded extractors.

36

Claim 8.3. Let Ext : {0, 1}n×{0, 1}d → {0, 1}m be a linear seeded extractor for min-entropy k with error
ε < 2−1.5m. For any r ∈ {0, 1}m, consider the following efficient sampling procedure S which on input r
does the following: (a) Sample s ∼ Ud, (b) sample x uniformly from the subspace Ext(·, s)−1(r). (c) Output
(x, s). Let Dr be the distribution uniform on Ext−1(r), and let S(r) denote the distribution produced by S
on input r.

Then,
|S(r)−Dr| ≤ 2−Ω(m)

Proof. Define the sets:

Good = {s ∈ {0, 1}d : rank(Ext(·, s)) = m}, Bad = {0, 1}d \Good.

It follows by Lemma 8.1 that |Good| ≥ (1− ε)2d. Thus, for any s ∈ Good, |Ext(·, s)−1(r)| = 2n−m. Thus,
we have ∑

s∈Good
|Ext−1(·, s)(r)| ≥ 2d+n−m−1.

Further, for any s′ ∈ Bad, |Ext−1(·, s′)(r)| ≤ 2n, and hence∑
s′∈Bad

|Ext−1(·, s′)(r)| ≤ ε2d+n < 2d+n−1.5m.

Thus | ∪s′∈bad Ext−1(·, s′)(r)| < 2−0.5m|Ext−1(r)|. It now follows that

|S(r)−Dr| ≤ 2−0.4m

We note that ε must be o(2−m) for the above sampling procedure to work with low enough error. How-
ever, this would require a seed length of d = O(m2) (by Theorem 3.14). For each step of the alternating
extraction protocol the seed length then goes down by a quadratic factor, which is insufficient for our appli-
cation.

To get past this difficulty, we construct a new strong linear seeded extractor for high min-entropy sources
with the seed length close to the output length with the property that the size of the pre-image of any output
is the same for any fixing of the seed. Algorithm 5 provides this construction.

Parameters and Subroutines:

1. Let δ > 0 be any constant. Let d = nδ. Let d = d1 + d2, where d1 = nδ1 , δ > 10δ1. Let m = d/2.

2. Let Samp : {0, 1}d1 → [n]t, t = d2, be an (µ, θ, γ) averaging sampler with distinct samples, such
that µ = (δ−2τ)

log(1/τ) , θ = τ
log(1/τ) and γ = 2−Ω(d1), τ = 0.05.

3. Let IP : {0, 1}d2 × {0, 1}d2 → {0, 1}
d
2 be the strong 2-source extractor from Theorem 3.17.

Informally the construction of iExt is as follows. Given a uniform seed S, we use a slice S1 of S to
sample co-ordinates from the weak source X , and then apply a strong 2-source extractor (based on the
inner product function) to the source X1 (which is the projection of X to the sampled co-ordinates) and the
remaining bits S2 of S to extract d2 uniform bits.

The correctness of this procedure relies on the fact that by pseudorandomly sampling co-ordinates of
X and projecting X to these co-ordinates, the min-entropy rate is roughly the preserved for most choices

37

Algorithm 5: iExt(x,s)
Input: Bit strings x, s of length n, d respectively.
Output: A bit string of length m.

1 Let s1 = Slice(s, d1). Let s2 be the remaining d2 bits of s.
2 Let T = Samp(s1) ⊂ [n]. Let x1 = x{T}.
3 Output IP(x1, s2).

of the uniform seed [Zuc97] [Vad04] [Li12a]. Thus, we can fix S1, and the strong two-source extractor IP
now receives two independent inputs S2 and X2 with almost full min-entropy. Thus, the output is close to
uniform. Further we show that the number of linear constraints on the source X is the same for any fixing
of the seed. This allows us to show that size of the pre-image of any particular output is the same for any
fixing of the seed. We now formally prove these ideas.

We need the following theorem proved by Vadhan [Vad04].

Theorem 8.4 ([Vad04]). Let 1 ≥ δ ≥ 3τ > 0. Let Samp : {0, 1}r → [n]t be an (µ, θ, γ) averaging sampler
with distinct samples, such that µ = (δ−2τ)

log(1/τ) and θ = τ
log(1/τ) . If X is a (n, δn) source, then the random

variable (Ur, X{Samp(Ur)}) is (γ + 2−Ω(τn))-close to (Ur,W) where for every a ∈ {0, 1}r , the random
variable W |Ur = a is a (t, (δ − 3τ)t)-source.

Lemma 8.5. Let iExt be the function computed by Algorithm 5. If X is a (n, 0.9n) source and S is an
independent uniform seed on {0, 1}d, then the following holds:

|iExt(X,S), S − Um, S| < 2−n
Ω(1)

.

Further for any r ∈ {0, 1}m and any s ∈ {0, 1}d, |iExt(·, s)−1(r)| = 2n−m.

Proof. Using Theorem 8.4, it follows that X1 is 2−n
Ω(1)

-close to a source with min-entropy at least 0.8n for
any fixing of S1. Further, we note that after fixing S1, S2 and X1 are independent sources. We now think
of X1, S2 as sources in {0, 1}d2+1 by appending a 1 to both the sources, so that S2 6= ~0, and then apply the
inner product map. This results in an entropy loss of only 1. It now follows by Theorem 3.17 that

|iExt(X,S), S − Um, S| < 2−n
Ω(1)

.

It is easy to see that for any fixing of the seed S = s, iExt(·, s) is a linear map. Let X be uniform
on n bits. We note that for any fixing of S2 = s2, X1 lies in a subspace of dimension d2 − m over F2.
Further, the bits outside T have no restrictions placed on them. Thus the size of iExt(·, s)−1(r) is exactly
2d2−m+n−d2 = 2n−m. This completes the proof of the lemma.

Based on the above lemma, we construct an efficient procedure for sampling uniformly from the pre-
image of the function iExt.

Claim 8.6. Let iExt : {0, 1}n × {0, 1}d → {0, 1}m be the function computed by Algorithm 5. Then there
exists a polynomial time algorithm Samp1 that takes as input r ∈ {0, 1}m, and samples from a distribution
that is uniform on iExt−1(r).

Proof. It follows by Lemma 8.5 that for any fixing of the seed s, the size of the set iExt(·, s)−1(r) is exactly
2n−m. Thus we can use the following strategy: (a) Sample s ∼ Ud (b) Sample x uniformly random from
the subspace iExt(·, s)−1(r) (c) Output (x, s). It follows that each element in iExt−1(r) is picked with
probability exactly 1

2d
· 1

2n−m . Thus the output of our sampling procedure is indeed uniform on iExt−1(r).

38

8.2 A Modified Construction of the Seedless (2, t)-Non-Malleable Extractor

We first describe the high level ideas involved in modifying the construction of nmExt (Algorithm 3), before
presenting the formal construction.

• We use the linear seeded extractor iExt (Algorithm 5) for any seeded extractor used in the construction
of nmExt.

• Next we divide the sources X and Y into blocks of size n1−δ respectively for a small constant δ.
Since each of X and Y have almost full min-entropy, we now have two block sources, where each
block has almost full min-entropy conditioned on the previous blocks. The idea is to use new blocks
of X and Y for each round of alternating extraction in nmExt.

To implement this however, we need some care. Recall that the alternating extraction protocol is run
for two rounds between either X and Qh, or X and Qh in the function 2laExt. The idea now is to run
these two of alternating extraction by dividing Qh into two blocks, and using two new partitions of X
(each round being run by using a block from either X or Qh). Now to generate these Qh’s, we use a
O(t) blocks of Y , and for each block apply the strong seeded extractor iExt, using as seed the output
of the alternating extraction from the previous step, and finally concatenate the outputs. This works
because these O(t) blocks form a block source, and using the same seed to extract from all the blocks
is a well known technique of extracting from block sources.

• By appropriate setting of the lengths of the seeds in the alternating extraction, we ensure that each
block of X and Y still has min-entropy rate 1 − o(1) even after fixing all the intermediate seeds,
the random variables Qh, Qh and their tampered versions. This can be ensured since each of these
variables are of length at most nδ1 for some small constant δ1, and the number of adversaries is also
nΩ(1)).

• The above modification is almost sufficient for us to successfully sample from the pre-image of any
output. One final modification is to use a specific error correcting code (the Reed-Solomon code over
a field of size n + 1 with characteristic 2) in the initial step of the construction, when we encode
the sources and sample bits from it. We give some intuition as to why this is necessary. Since we
are using linear seeded extractors in the alternating extraction, by fixing the seeds we impose linear
restrictions on the blocks of X and Y . Now, if we fix the output of the initial sampling step (the
random variable Z in Algorithm 3), we are imposing more linear constraints on the blocks (assuming
we are using a linear code). Now, it is not clear if the constraints imposed by the linear seeded
extractor is independent from the constraints imposed by Z, and thus for different fixings of the Z
and the seeds the size of the pre-image of any output of the non-malleable extractor may be different.

To get past this difficulty, our idea is to first partition X and Y into slightly smaller blocks (which
does not affect the correctness of the extractor) such that at least half of the blocks are unused by the
alternating extraction steps. Now, we show that by using the Reed-Solomon code over F = F2log(n+1)

to encode the sources, fixing Z imposes linear constraints involving the variables from these unused
blocks, and we show that this is sufficient to argue that it is linearly independent of the restrictions
imposed by the alternating extraction part. We provide complete details of the sampling algorithms in
Section 8.3.

We now proceed to present the extractor construction. Recall that if Za, Za+1, . . . , Zb are random vari-
ables, we use Z[a,b] to denote the random variable Za, . . . , Zb.

Subroutines and Parameters (used by Algorithm 6, Algorithm 7, Algorithm 8)

39

1. Let γ be a small enough constant and C a large one. Let t = nγ/C .

2. Let n1 = nβ1 , β1 = 10γ. Let n2 = n − n1. Let IP1 : {0, 1}n1 × {0, 1}n1 → {0, 1}n3 , n3 = n1
10 be

the strong two-source extractor from Theorem 3.17.

3. Let F be the finite field F2log(n+1) . Let n4 = n2
log(n+1) . Let RS : Fn4 → Fn be the Reed-Solomon code

encoding n4 symbols of F to n symbols in F (we overload the use of RS, using it to denote both the
code and the encoder). Thus RS is a [n, n4, n− n4 + 1]n error correcting code.

4. Let Samp : {0, 1}n3 → [n]n5 be a (µ, 1
10 , 2

−nΩ(1)
) averaging sampler with distinct samples. By using

the strong seeded extractor from Theorem 3.15, we can set n5 = nβ2 , β2 < β1/2.

5. Let ` = 2(n1 + n5 log n) < 4nβ1 . Thus ` ≤ n11γ .

6. Let n6 = 50Ct`. Let IP2 : {0, 1}n6 × {0, 1}n6 → {0, 1}2nq , nq = 10Ct`, be the strong two-source
extractor from Theorem 3.17.

7. Let n7 = n− n1 − n6. Let nx = n7
8` . Let ny = n7

16Ct` . Thus nx, ny ≥ n1−15γ .

8. Let d1 = 80`.

9. Let iExt1 : {0, 1}nx × {0, 1}d1 → {0, 1}d2 , d2 = 40`, be the extractor computed by Algorithm 5.

10. Let iExt2 : {0, 1}nq × {0, 1}d2 → {0, 1}d3 , d3 = 20`, be the extractor computed by Algorithm 5.

11. Let iExt3 : {0, 1}nx × {0, 1}d3 → {0, 1}d4 , d4 = 10` be the extractor computed by Algorithm 5.

12. Let iExt4 : {0, 1}ny × {0, 1}d4 → {0, 1}d5 , d5 = 5`, be the extractor computed by Algorithm 5.

13. Let Ext : {0, 1}4Ctny × {0, 1}d4 → {0, 1}2nq be defined in the following way. Let v1, . . . , v4t be
strings, each of length ny. Define Ext(v1 ◦ . . . ◦ v4Ct, s) = iExt4(v1, s) ◦ . . . ◦ iExt4(v4Ct, s).

Algorithm 6: inmExt(x,y)
Input: Bit strings x, y, each of length n.
Output: A bit string of length m.

1 Let x1 = Slice(x, n1), y1 = Slice(y, n1). Compute ν = IP1(x, y).
2 Let x2, y2 be n2 length strings formed by cutting x1, y1 from x, y respectively.
3 Let T = Samp(ν) ⊂ [n].
4 Interpret x2, y2 as elements in Fn4 .
5 Let x2 = RS(x2), y2 = RS(y2).
6 Let x1 = (x2){T}, y1 = (y2){T}, interpreting x2, y2 ∈ Fn.
7 Let z = x1 ◦ x1 ◦ y1 ◦ y1, where z is interpreted as a binary string.
8 Interpret x2, y2 as binary strings.
9 Output inmExt1(x2, y2, z).

Theorem 8.7. Let inmExt be the function computed by Algorithm 7. Then inmExt is a seedless (2, t)-non-
malleable extractor with error 2−n

Ω(1)
.

40

Algorithm 7: inmExt1(x2, y2, z)

1 Let x3 = Slice(x2, n6), y3 = Slice(y2, n6). Let w, v be the remaining parts of x2, y2 respectively.
2 Let IP2(x3, y3) = (q1,1, q1,2), where each of q1,1, q1,2 is of length nq.
3 Let w1, . . . , w8` be an equal sized partition of the string w into 8` stings.
4 Let v1, . . . , v16t` be an equal sized partition of the string v into 16Ct` stings.
5 for h = 1 to ` do
6 (qh+1,1, qh+1,2) = 2ilaExt(v[8C(h−1)t+1,8Cht], w[4h−3,4h], qh,1, qh,2, h, z{h})

7 end
8 Ouput (q`+1,1, q`+1,2).

Algorithm 8: 2ilaExt(v[8C(h−1)t+1,8Cht], w[4h−3,4h], qh,1, qh,2, h, b)

1 Let sh,1 = Slice(qh,1, d1), rh,1 = Ext1(w4h−3, sh,1), sh,2 = Ext2(qh,2, rh,1),
rh,2 = Ext3(w4h−2, sh,2).

2 if b = 0 then
3 Let rh = Slice(rh,1, d4).
4 else
5 Let rh = rh,2
6 end
7 Let Ext(v[8C(h−1)t+1,8(h−1)t+4Ct], rh) = (qh,1, qh,2), where both qh,1, qh,2 are of length nq.
8 Let sh,1 = Slice(qh,1, d1), rh,1 = Ext1(w4h−1, sh,1), sh,2 = Ext2(qh,2, rh,1), rh,2 = Ext3(w4h, sh,2).
9 if b = 0 then

10 Let rh = rh,2.
11 else
12 Let rh = Slice(rh,1, d4).
13 end
14 Let Ext(v[8C(h−1)t+4Ct+1,8Cht], rh) = (qh+1,1, qh+1,2), where both qh+1,1, qh+1,2 are of length nq.
15 Ouput (qh+1,1, qh+1,2).

The proof of the above theorem is essentially the same as the proof provided in Section 6, and we do not
repeat it. The correctness of inmExt follows directly from the proof of Theorem 6.12, and the correctness
of the extractor iExt (Lemma 8.5), the fact that by our choice of parameters each block of X and Y still has
min-entropy rate at least 0.9 after appropriate conditioning of the intermediate random variables and their
tampered versions, and the fact that using the RS in place of a binary error correcting code does not affect
correctness of the procedure.

8.3 Efficiently Sampling from the Pre-Image of inmExt

Since the construction of the non-malleable extractor inmExt (Algorithm 6, Algorithm 7, Algorithm 8) is
composed of various sub-parts and sub-functions, we first argue about the invertibility of these parts and
then show a way to compose these sampling procedure to sample almost uniformly from the pre-image
of inmExt. We refer to all the variables, sub-routines and notations introduced in these algorithms while
developing the sampling procedures. Unless we state otherwise, by a subspace we mean a subspace over F2.

We first show how to sample uniformly from the pre-image of 2ilaExt (Algorithm 8), since it is a crucial
sub-part of inmExt. We have the following claim.

41

Claim 8.8. For any fixing of the variables {s1,i, r1,i, s1,i, r1,i : i ∈ {1, 2}}, and any b ∈ {0, 1} define the
set:

2ilaExt−1(q2,1, q2,2) = {(x3, y3, v[1,4Ct], w[1,4]) ∈ {0, 1}2n6+4Ctny+4nx :

2ilaExt(v[1,4Ct], w[1,4], q1,1, q1,2, b) = (q2,1, q2,2)}

There exists an efficient algorithm Samp2 that takes as input q2,1, q2,2, b, {s1,i, r1,i, s1,i, r1,i : i ∈ {1, 2}},
and samples uniformly from 2ilaExt−1(q2,1, q2,2).

Further, the set 2ilaExt−1(q2,1, q2,2) is a subspace over F2 of dimension d1, and its size does not depend
on the inputs to Samp2.

Proof. The general idea is that by fixing the seeds in the alternating extraction, each block of w takes
values independent of the fixing of the other blocks of w and the qi,j’s, and similarly the qi,j’s takes values
independent of each other and the blocks of w. We now formally prove this intuition.

Since, s1,1 is a slice of q1,1 it follows that q1,1 is restricted to the subspace of size 2nq−d1 . Since
r1,1 = iExt1(w1, s1,1), it follows that w1 is restricted to the set iExt1(·, s1,1)−1(r1,1). Further, it follows
by Lemma 8.5 that this is a subspace of size 2nx−d2 . Similar arguments show that q1,2 is restricted to the
subspace of dimension 2nq−d3 , and w2 is restricted to a subspace of dimension 2nx−d4 . Further, we note
that each of these variables have no correlation.

By repeating this argument for the next two rounds of alternating extraction, it follows that q1,1 is
restricted to a subspace of size 2nq−d1 , w3 is restricted to a subspace of size 2nx−d2 , q1,2 is restricted to a
subspace of size 2nq−d3 , and w4 is restricted to a subspace of size 2nx−d4 .

Further since (q2,1, q2,2) = Ext(v[4Ct+1,8t], r1) = iExt4(v4Ct+1, r1) ◦ . . . ◦ iExt4(v8Ct, r1), it follows by
an application of Lemma 8.5 that for any fixed q2,1, v[4Ct+1,6t] is restricted to a subspace of size 22Ct(ny−d5).
A similar argument shows that for any fixed q2,2, v[6Ct+1,8Ct] is restricted to a subspace of size 22Ct(ny−d5).

Finally, since IP1(x3, y3) = (q1,1, q1,2), it follows that for any fixed x3, q1,1, q1,2, the variable y3 lies in
a subspace of size 2n6−log(2nq) since by fixing the variables x3, q1,1, q1,2, we are restricting y3 to a subspace

of dimension
(

n6
log(2nq)

− 1
)

over the field F2log(2nq) .

It is clear from the arguments that we did not use any specific values of the inputs given to the algorithm
Samp1 (including the value of the bit b) to argue about the size of 2ilaExt−1(q2,1, q2,2). Also note that each
of x3, y3, v[1,4Ct], w[1,4] is restricted to some subspace. Since 2ilaExt−1(q2,1, q2,2) is the cartesian product
of these subspaces, it follows that it is a subspace over F2. Thus the lemma now follows since we can
efficiently sample from a given subspace.

Using arguments very similar to the above claim, we obtain the following result.

Claim 8.9. For any h ∈ {2, . . . , `}, any fixing of the variables {sh,i, rh,i, sh,i, rh,i : i ∈ {1, 2}}, and any
b ∈ {0, 1} define the set:

2ilaExt−1(qh+1,1, qh+1,2) = {(v[8C(h−1)t−4Ct+1,8C(h−1)t+4Ct], w[4h−3,4h]) ∈ {0, 1}8Ctny+4nx :

2ilaExt(v[8C(h−1)t+1,8Cht], w[4h−3,4h], q1,1, q1,2, b) = (qh+1,1, qh+1,2)}.

There exists an efficient algorithm Samph+1 that takes as input qh+1,1, qh+1,2, b, {sh,i, rh,i, sh,i, rh,i : i ∈
{1, 2}}, and samples uniformly from 2ilaExt−1(qh+1,1, qh+1,2).

Further, 2ilaExt−1(qh+1,1, qh+1,2) is a subspace over F2, and its size does not depend on the inputs to
Samph+1.

42

We now show a way of efficiently sampling from the pre-image of the function inmExt1 (Algorithm 7).

Claim 8.10. For any string α ∈ {0, 1}`, and any fixing of the variables {sh,i, rh,i, sh,i, rh,i : h ∈ [`], i ∈ {1,
2}} define the set:

inmExt−1
1 (q`+1,1, q`+1,2) = {(x2, y2) ∈ {0, 1}2n2 : inmExt1(x2, y2, α) = (q`+1,1, q`+1,2)}.

There exists an efficient algorithm Sampnm1
that takes as input {sh,i, rh,i, sh,i, rh,i : h ∈ [`], i ∈ {1, 2}}, α,

q`+1,1, q`+1,2, and samples uniformly from inmExt−1
1 (q`+1,1, q`+1,2).

Further, inmExt−1
1 (q`+1,1, q`+1,2) is a subspace over F2, and its size does not depend on the inputs to

Sampnm1
.

Proof. We observe that once we fix all the seeds {sh,i, rh,i, sh,i, rh,i : h ∈ [`], i ∈ {1, 2}}, for different
h ∈ [`], the blocks (v[8C(h−1)t−4Ct+1,8C(h−1)t+4Ct], w[4h−3,4h]) can be sampled independently. Thus, by
using the algorithms {Samph+1 : h ∈ `} from Claim 8.8 and Claim 8.9, we sample the variable x3, y3,
w[1,4], v[1,4Ct], {v[8C(h−1)t−4Ct+1,8C(h−1)t+4Ct], w[4h−3,4h] : h ∈ [`]}.

Finally, since Ext(v[8C(`−1)t+4Ct+1,8C`t], r`) = (q`+1,1, q`+1,2), it follows by the arguments in Lemma
8.8, that the block v[8C(`−1)t+4Ct+1,8C`t)] is restricted to a subspace of size 24Ct(ny−d5). Thus, we can
efficiently sample this block as well.

Further the variable w[4`+1,8`] is unused by the algorithm inmExt1, and hence takes all values in {0,
1}4`nx . Similarly the variable v[8C`t+1,16C`t] is unused by the algorithm inmExt1 and hence takes all values
in {0, 1}8Ct`. Thus, we sample these variables as uniform strings of the appropriate length.

Since x2, y2 are concatenations of the various blocks sampled above, we can indeed sample efficiently
from a distribution uniform on {(x2, y2) ∈ {0, 1}2n2 : inmExt(x, y, α) = (q`+1,1, q`+1,2)}. Further since
by Claim 8.8 and Claim 8.9, the size of the pre-images of each of the blocks generated do not depend on the
inputs (and is also a subspace), it follows that 2inmExt−1

1 (q`+1,1, q`+1,2) is a subspace, and its size does not
depend on the inputs to Sampnm1

.

We now proceed to construct an algorithm to uniformly sample from the pre-image of any output of the
function inmExt (Algorithm 6), which will yield the required efficient encoder for the resulting one-many
non-malleable codes.

Claim 8.11. For any fixing of the variable z = x1◦x1◦y1◦y1 and the variables {sh,i, rh,i, sh,i, rh,i : h ∈ [`],
i ∈ {1, 2}}, define the set:

inmExt−1(q`+1,1, q`+1,2) = {(x, y) ∈ {0, 1}2n : inmExt(x, y) = (q`+1,1, q`+1,2)}.

There exists an efficient algorithm Sampnm that takes as input {sh,i, rh,i, sh,i, rh,i : h ∈ [`], i ∈ {1, 2}}, z,
q`+1,1, q`+1,2, and samples uniformly from inmExt−1(q`+1,1, q`+1,2).

Further, inmExt−1(q`+1,1, q`+1,2) is a subspace over F2, and its size does not depend on the inputs to
Sampnm.

Proof. We fix the variables x1 and y1. Let T = Samp(ν) = {t1, . . . , tn5}. We now think of x2 as an
element in Fn4 , F = F2log(n+1) . Let x2 = (x2,1, . . . , x2,n4), where each x2,i is in F. Recall that the n4 × n
generator matrix G of the code RS is the following:

G =

1 1 · · · 1
α1 α2 · · · αn
...

...
. . .

...
αn4−1

1 αn4−1
2 · · · αn4−1

n

43

where α1, . . . , αn are distinct non-zero field elements of F.
Let

GT =

1 1 · · · 1
αt1 αt2 · · · αtn5

...
...

. . .
...

αn4−1
t1

αn4−1
t2

· · · αn4−1
tn5

Since x1 = RS(x2){T}, we have the following identity:(

x2,1 · · · x2,n4

)
GT = x1 (1)

Thus, for any fixing of x1, the variable x2 is restricted to a subspace of dimension (n4 − n5) over the field
F.

Now, let j ∈ [n4] be such that (x2,1, . . . , x2,j) is the string (x3, w[1,4`]), and (x2,j+1, . . . , x2,n4) is the
string w[4`+1,8`]. Clearly, (n4 − j) log n = 4`nx, and thus by our choice of parameters it follows that
j = n4 − 4`nx

logn = n4
2 + n6

log(n+1) <
2n4
3 < n4 − n5.

We further note since any n5×n5 sub-matrix ofGT has full rank (since it is the Vandermonde’s matrix),
it follows by the rank-nullity thorem that any j × n5 sub-matrix of GT has null space of dimension exactly
j − n5. Thus for any λ ∈ Fn5 , the equation:

(
x2,j+1 · · · x2,n4

)
αjt1 αjt2 · · · αjtn5

...
...

. . .
...

αn4−1
t1

αn4−1
t2

· · · αn4−1
tn5

 = x1 + λ (2)

has exactly |F|(j−n5) solution.
Thus, for any fixing of the variables, x2,1, . . . , x2,j , equation (1) has exactly |F|j−n5 solutions. In other

words, for any fixing of x3, w[1,4`], x1, the variable w[4`+1,8`] is restricted to a subspace, and the size of
the subspace does not depend on the fixing of x3, w[1,4`], x1. Using, a similar argument, we can show that
for any fixing of y3, v[1,8Ct`], y1, the variable v[8Ct`+1,16Ct`] is restricted to a subspace, and the size of the
subspace does not depend on the fixing of y3, v[1,8Ct`], y1.

Now consider any fixing of the variables {sh,i, rh,i, sh,i, rh,i : h ∈ [`], i ∈ {1, 2}}, z. As proved in
the Claim 8.10, we can efficiently sample the variables x3, w[1,4`], y3, v[1,8Ct`]. By the above argument, the
variables v[4`+1,8`] and w[8Ct`+1,16Ct`] now lie in a subspace, and hence we can efficiently sample these
variables as well. Thus we have an efficient procedure Sampnm for uniformly sampling (x, y) from the set
inmExt−1(q`+1,1, q`+1,2) .

It also follows by Claim 8.10, that the total size of the pre-image of the variables x3, w[1,4`], y3, v[1,8Ct`]

does not depend on z or the variables {sh,i, rh,i, sh,i, rh,i : h ∈ [`], i ∈ {1, 2}}. Further, for any fixing of
x3, w[1,4`], y3, v[1,8Ct`], z, as argued above, the variables v[4`+1,8`] and w[8Ct`+1,16Ct`] now lie in a subspace,
whose size does not depend on the fixed variables. Thus, overall the size of the total pre-image of x, y does
not depend on the inputs to Sampnm.

We now state the main result of this section.

Theorem 8.12. There exists an efficient procedure that given an input (q`+1,1, q`+1,2) ∈ {0, 1}nq×{0, 1}nq ,
samples uniformly from the set {(x, y) : inmExt(x, y) = (q`+1,1, q`+1,2)}.

Proof. We use the following simple strategy.

44

1. Uniformly sample the variables z, {sh,i, rh,i, sh,i, rh,i : h ∈ [`], i ∈ {1, 2}},

2. Use the variables sampled in Step (1) as input to the algorithm Sampnm to sample (x, y).

The correctness of this procedure follows directly from Claim 8.11, since it was proved that for any fixing
of the variables of Step 1, the size of pre-image of inmExt is the same.

Acknowledgments

The first author would like to thank his advisor, David Zuckerman, for his constant guidance and encour-
agement.

References

[ABN+92] Noga Alon, Jehoshua Bruck, Joseph Naor, Moni Naor, and Ron M. Roth. Construction of
asymptotically good low-rate error-correcting codes through pseudo-random graphs. IEEE
Transactions on Information Theory, 38:509–516, 1992.

[ADKO15] D. Aggarwal, Y. Dodis, T. Kazana, and M. Obremski. Non-malleable reductions and applica-
tions. To appear in STOC, 2015.

[ADL14] Divesh Aggarwal, Yevgeniy Dodis, and Shachar Lovett. Non-malleable codes from additive
combinatorics. In STOC, 2014.

[AGM+14] Shashank Agrawal, Divya Gupta, Hemanta K. Maji, Omkant Pandey, and Manoj Prabhakaran.
Explicit non-malleable codes resistant to permutations. Cryptology ePrint Archive, Report
2014/316, 2014. http://eprint.iacr.org/.

[AKO15] Divesh Aggarwal, Tomasz Kazana, and Maciej Obremski. Inception makes non-malleable
codes stronger. Cryptology ePrint Archive, Report 2015/1013, 2015. http://eprint.
iacr.org/.

[Bou05] J. Bourgain. More on the sum-product phenomenon in prime fields and its applications. Inter-
national Journal of Number Theory, 01(01):1–32, 2005.

[BRF13] Dan Boneh, Tim Roughgarden, and Joan Feigenbaum, editors. Symposium on Theory of Com-
puting Conference, STOC’13, Palo Alto, CA, USA, June 1-4, 2013. ACM, 2013.

[BRSW06] Boaz Barak, Anup Rao, Ronen Shaltiel, and Avi Wigderson. 2 source dispersers for no(1)

entropy and Ramsey graphs beating the Frankl-Wilson construction. In Proceedings of the
38th Annual ACM Symposium on Theory of Computing, 2006.

[CCFP11] Hervé Chabanne, Gérard D. Cohen, Jean-Pierre Flori, and Alain Patey. Non-malleable codes
from the wire-tap channel. CoRR, abs/1105.3879, 2011.

[CCP12] Hervé Chabanne, Gérard D. Cohen, and Alain Patey. Secure network coding and non-malleable
codes: Protection against linear tampering. In ISIT, pages 2546–2550, 2012.

[CG88] Benny Chor and Oded Goldreich. Unbiased bits from sources of weak randomness and proba-
bilistic communication complexity. SIAM Journal on Computing, 17(2):230–261, 1988.

45

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/

[CG14a] Mahdi Cheraghchi and Venkatesan Guruswami. Capacity of non-malleable codes. In ITCS,
pages 155–168, 2014.

[CG14b] Mahdi Cheraghchi and Venkatesan Guruswami. Non-malleable coding against bit-wise and
split-state tampering. In TCC, pages 440–464, 2014.

[CGM+15] Nishanth Chandran, Vipul Goyal, Pratyay Mukherjee, Omkant Pandey, and Jalaj Upadhyay.
Block-wise non-malleable codes. IACR Cryptology ePrint Archive, 2015:129, 2015.

[CKM11] SeungGeol Choi, Aggelos Kiayias, and Tal Malkin. Bitr: Built-in tamper resilience. In
DongHoon Lee and Xiaoyun Wang, editors, Advances in Cryptology ASIACRYPT 2011, vol-
ume 7073 of Lecture Notes in Computer Science, pages 740–758. 2011.

[CKOR10] N. Chandran, B. Kanukurthi, R. Ostrovsky, and L. Reyzin. Privacy amplification with asymp-
totically optimal entropy loss. In Proceedings of the 42nd Annual ACM Symposium on Theory
of Computing, pages 785–794, 2010.

[Coh15] Gil Cohen. Local correlation breakers and applications to three-source extractors and mergers.
2015.

[CRS14] Gil Cohen, Ran Raz, and Gil Segev. Non-malleable extractors with short seeds and applications
to privacy amplification. SIAM Journal on Computing, 43(2):450–476, 2014.

[CZ14] Eshan Chattopadhyay and David Zuckerman. Non-malleable codes against constant split-state
tampering. In Proceedings of the 55th Annual IEEE Symposium on Foundations of Computer
Science, pages 306–315, 2014.

[CZ15] Eshan Chattopadhyay and David Zuckerman. Explicit two-source extractors and resilient func-
tions. Technical Report TR15-119, ECCC, 2015.

[DDN91] Danny Dolev, Cynthia Dwork, and Moni Naor. Non-malleable cryptography. In Proceedings
of the Twenty-third Annual ACM Symposium on Theory of Computing, STOC ’91, pages 542–
552, New York, NY, USA, 1991. ACM.

[DKO13] Stefan Dziembowski, Tomasz Kazana, and Maciej Obremski. Non-malleable codes from two-
source extractors. In CRYPTO (2), pages 239–257, 2013.

[DKRS06] Y. Dodis, J. Katz, L. Reyzin, and A. Smith. Robust fuzzy extractors and authenticated key
agreement from close secrets. In Advances in Cryptology — CRYPTO ’06, 26th Annual Inter-
national Cryptology Conference, Proceedings, pages 232–250, 2006.

[DLWZ14] Yevgeniy Dodis, Xin Li, Trevor D. Wooley, and David Zuckerman. Privacy amplification and
non-malleable extractors via character sums. SIAM Journal on Computing, 43(2):800–830,
2014.

[DORS08] Y. Dodis, R. Ostrovsky, L. Reyzin, and A. Smith. Fuzzy extractors: How to generate strong
keys from biometrics and other noisy data. SIAM Journal on Computing, 38:97–139, 2008.

[DP07] Stefan Dziembowski and Krzysztof Pietrzak. Intrusion-resilient secret sharing. In Proceedings
of the 48th Annual IEEE Symposium on Foundations of Computer Science, FOCS ’07, pages
227–237, Washington, DC, USA, 2007. IEEE Computer Society.

[DPW10] Stefan Dziembowski, Krzysztof Pietrzak, and Daniel Wichs. Non-malleable codes. In ICS,
pages 434–452, 2010.

46

[DW09] Yevgeniy Dodis and Daniel Wichs. Non-malleable extractors and symmetric key cryptography
from weak secrets. In STOC, pages 601–610, 2009.

[DY13] Yevgeniy Dodis and Yu Yu. Overcoming weak expectations. In 10th Theory of Cryptography
Conference, 2013.

[FMNV14] Sebastian Faust, Pratyay Mukherjee, Jesper Buus Nielsen, and Daniele Venturi. Continuous
non-malleable codes. In TCC, pages 465–488, 2014.

[FMVW13] Sebastian Faust, Pratyay Mukherjee, Daniele Venturi, and Daniel Wichs. Efficient non-
malleable codes and key-derivation for poly-size tampering circuits. IACR Cryptology ePrint
Archive, 2013:702, 2013.

[Goy11] Vipul Goyal. Constant round non-malleable protocols using one way functions. In Proceedings
of the Forty-third Annual ACM Symposium on Theory of Computing, STOC ’11, pages 695–
704, New York, NY, USA, 2011. ACM.

[GUV09] Venkatesan Guruswami, Christopher Umans, and Salil Vadhan. Unbalanced expanders and
randomness extractors from Parvaresh-Vardy codes. Journal of the ACM, 56(4), 2009.

[JW15] Zahra Jafargholi and Daniel Wichs. Tamper detection and continuous non-malleable codes.
In Theory of Cryptography - 12th Theory of Cryptography Conference, TCC 2015, Warsaw,
Poland, March 23-25, 2015, Proceedings, Part I, pages 451–480, 2015.

[KLR09] Yael Kalai, Xin Li, and Anup Rao. 2-source extractors under computational assumptions and
cryptography with defective randomness. In Proceedings of the 50th Annual IEEE Symposium
on Foundations of Computer Science, pages 617–628, 2009.

[KLRZ08] Yael Tauman Kalai, Xin Li, Anup Rao, and David Zuckerman. Network extractor protocols. In
Proceedings of the 49th Annual IEEE Symposium on Foundations of Computer Science, pages
654–663, 2008.

[KR09] B. Kanukurthi and L. Reyzin. Key agreement from close secrets over unsecured channels. In
EUROCRYPT 2009, 28th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, 2009.

[Li12a] Xin Li. Design extractors, non-malleable condensers and privacy amplification. In Proceedings
of the 44th Annual ACM Symposium on Theory of Computing, pages 837–854, 2012.

[Li12b] Xin Li. Non-malleable extractors, two-source extractors and privacy amplification. In Pro-
ceedings of the 53rd Annual IEEE Symposium on Foundations of Computer Science, pages
688–697, 2012.

[Li13a] Xin Li. Extractors for a constant number of independent sources with polylogarithmic min-
entropy. In Proceedings of the 54th Annual IEEE Symposium on Foundations of Computer
Science, pages 100–109, 2013.

[Li13b] Xin Li. New independent source extractors with exponential improvement. In Boneh et al.
[BRF13], pages 783–792.

[Li15a] Xin Li. Non-malleable condensers for arbitrary min-entropy, and almost optimal protocols for
privacy amplification. In 12th Theory of Cryptography Conference, 2015.

47

[Li15b] Xin Li. Three-source extractors for polylogarithmic min-entropy. 2015.

[LL12] Feng-Hao Liu and Anna Lysyanskaya. Tamper and leakage resilience in the split-state model.
In CRYPTO, pages 517–532, 2012.

[MW97] Ueli Maurer and Stefan Wolf. Privacy amplification secure against active adversaries. In
Advances in Cryptology — CRYPTO ’97, volume 1294, pages 307–321, August 1997.

[PR08a] Rafael Pass and Alon Rosen. Concurrent nonmalleable commitments. SIAM J. Comput.,
37(6):1891–1925, 2008.

[PR08b] Rafael Pass and Alon Rosen. New and improved constructions of nonmalleable cryptographic
protocols. SIAM Journal on Computing, 38(2):702–752, 2008.

[Rao07] Anup Rao. An exposition of Bourgain’s 2-source extractor. Electronic Colloquium on Compu-
tational Complexity (ECCC), 14(034), 2007.

[Rao09] Anup Rao. Extractors for low-weight affine sources. In Proceedings of the 24th Annual IEEE
Conference on Computational Complexity, 2009.

[Raz05] Ran Raz. Extractors with weak random seeds. In Proceedings of the 37th Annual ACM Sym-
posium on Theory of Computing, pages 11–20, 2005.

[RRV02] Ran Raz, Omer Reingold, and Salil Vadhan. Extracting all the randomness and reducing the
error in trevisan’s extractors. JCSS, 65(1):97–128, 2002.

[RW03] Renato Renner and Stefan Wolf. Unconditional authenticity and privacy from an arbitrarily
weak secret. In Advances in Cryptology — CRYPTO ’03, 23rd Annual International Cryptol-
ogy Conference, Proceedings, pages 78–95, 2003.

[Tre01] Luca Trevisan. Extractors and pseudorandom generators. Journal of the ACM, pages 860–879,
2001.

[Vad04] Salil P. Vadhan. Constructing locally computable extractors and cryptosystems in the bounded-
storage model. J. Cryptology, 17(1):43–77, 2004.

[Zuc97] David Zuckerman. Randomness-optimal oblivious sampling. Random Structures and Algo-
rithms, 11:345–367, 1997.

[Zuc07] David Zuckerman. Linear degree extractors and the inapproximability of max clique and chro-
matic number. Theory of Computing, pages 103–128, 2007.

48

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

