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Abstract

Higher-order Fourier analysis, developed over prime fields, has been recently used in different
areas of computer science, including list decoding, algorithmic decomposition and testing. We
extend the tools of higher-order Fourier analysis to analyze functions over general fields. Using
these new tools, we revisit the results in the above areas.

(i) For any fixed finite field K, we show that the list decoding radius of the generalized Reed
Muller code over K equals the minimum distance of the code. Previously, this had been
proved over prime fields [BL14] and for the case when |K|−1 divides the order of the code
[GKZ08].

(ii) For any fixed finite field K, we give a polynomial time algorithm to decide whether a given
polynomial P : Kn → K can be decomposed as a particular composition of lesser degree
polynomials. This had been previously established over prime fields [Bha14, BHT15].

(iii) For any fixed finite fieldK, we prove that all locally characterized affine-invariant properties
of functions f : Kn → K are testable with one-sided error. The same result was known
when K is prime [BFH+13] and when the property is linear [KS08]. Moreover, we show
that for any fixed finite field F, an affine-invariant property of functions f : Kn → F, where
K is a growing field extension over F, is testable if it is locally characterized by constraints
of bounded weight.

1 Introduction

Fourier analysis over finite groups has played a central role in the development of theoretical
computer science. Examples of its applications are everywhere: analysis of random walks on
graphs [CDG87], fast integer multiplication algorithms [SS71], learning algorithms [KM93a], the
Kahn-Kalai-Linial theorem [KKL88], derandomization [NN93], tight inapproximability results using
probabilistically checkable proofs [Has01], social choice theory [MOO10], and coding theory [NS05].
See the surveys of De Wolf [dW08] and Štefankovič [Šte00].

Higher-order Fourier analysis is a recent generalization of some aspects of Fourier analysis.
Consider functions over the integers Z. While classical Fourier analysis over Z studies correlations
of functions with linear phases eiθn, higher-order Fourier analysis over Z analyzes the correlation of

∗Supported in part by a DST Ramanujan Fellowship.
†Research supported in part by NSF Grant CCF-1218723.

1

 

ISSN 1433-8092 

Electronic Colloquium on Computational Complexity, Report No. 77 (2015)



functions with polynomial phases such as eiθn
2
. The modern1 work on higher-order Fourier analysis

over Z began with the spectacular proof by Gowers of Szemerédi’s theorem [Gow98, Gow01], where
the Gowers norm was introduced, and with the ergodic theory work of Host and Kra [HK05].
Subsequently, Green, Tao and Ziegler through several works [GT08, GT10, GTZ11, GTZ12] largely
completed the research program of understanding the relationships between different aspects of
the theory over Z. This work was applied to solve several longstanding open problems in additive
number theory, including the celebrated result showing the existence of arbitarily long arithmetic
progressions in the primes [GT10]. The book [Tao12] by Tao on the subject surveys the current
state of knowledge.

In an influential article [Gre05], Green popularized the idea that it is useful to rephrase the
problems arising in additive number theory into problems on vector spaces over fixed finite fields.
The motivation was that many of the techniques in higher-order Fourier analysis over Z simplify
over finite fields, because of the presence of subspaces and of algebraic notions such as orthogonality
and linear independence. However, it was soon realized that these questions over finite fields are also
intrinsically interesting because of their connections to theoretical computer science. In particular,
the Gowers norm for functions on F

n for a finite prime field F is directly related to low-degree
testing, a problem intensely studied by computer scientists since the early 90’s.

Thanks to the sequence of works [GT09, KL08, TZ10, BTZ10, TZ12], the apparatus of higher-
order Fourier analysis over Fn for any fixed prime order field F is also now largely complete. The
theory has subsequently found several interesting applications in computer science that we detail
below and has become part of the mainstream theorist toolkit. However, in all of these applications,
the finite field in consideration was restricted to be a field of prime order, while the problems
themselves are interesting over general finite fields. In this work, we show how the techniques
of higher-order Fourier analysis continue to apply even when the underlying field is a non-trivial
extension of a prime order field.

1.1 Applications

In this section, we describe three different problems involving a finite field K, which previously had
been solved only when |K| was prime but which we can now solve for arbitrary finite K.

Throughout, let F be a fixed prime order field, and let K be a finite field that extends F. Let
q = |K|, p = |F| and q = pr for r > 0.

1.1.1 List-decoding Reed-Muller codes

The notion of list decoding was introduced by Elias [Eli57] and Wozencraft [Woz58] to decode error
correcting codes beyond half the minimum distance. The goal of a list decoding algorithm is to
produce all the codewords within a specified distance from the received word. At the same time one
has to find the right radius for which the number of such codewords is small, otherwise there is no
hope for the algorithm to be efficient. After the seminal results of Goldreich and Levin [GL89] and
Sudan [Sud97] which gave list decoding algorithms for the Hadamard code and the Reed-Solomon
code respectively, there has been tremendous progress in designing list decodable codes. See the
survey by Guruswami [Gur06, Gur04] and Sudan [Sud00].

List decoding has applications in many areas of computer science including hardness amplifi-
cation in complexity theory [STV01, Tre03], derandomization [Vad12], construction of hard core

1In retrospect, Weyl’s results on equidistribution of polynomial phases [Wey14] laid the foundations of this theory.

2



predicates from one way functions [GL89, AGS03], construction of extractors and pseudorandom
generators [TSZS01, SU05] and computational learning [KM93b, Jac97]. However, the largest ra-
dius up to which list decoding is tractable is still a fundamental open problem even for well studied
codes like Reed-Solomon (univariate polynomials) and Reed-Muller codes (multivariate polynomi-
als). The goal of this work is to analyse Reed-Muller codes over small fields (possible non prime)
and small degree.

Reed-Muller codes (RM codes) were discovered by Muller in 1954. Let d ∈ N. The RM
code RMK(n, d) is defined as follows. The message space consists of degree 6 d polynomials in n
variables over K and the codewords are evaluation of these polynomials on K

n. Let δq(d) denote
the normalized distance of RMK(n, d). Let d = a(q − 1) + b where 0 6 b < q − 1. We have

δK(d) =
1

qa

(

1−
b

q

)

.

RM codes are one of the most well studied error correcting codes. Many applications in computer
science involve low degree polynomials over small fields, namely RM codes. Given a received word
g : Kn → K the objective is to output the list of codewords (e.g. low-degree polynomials) that
lie within some distance of g. Typically we will be interested in regimes where list size is either
independent of n or polynomial in the block length qn.

Let Pd(K
n) denote the class of degree 6 d polynomials f : F

n → F. Let dist denote the
normalized Hamming distance. For RMK(n, d), η > 0, let

ℓF(n, d, η) := max
g:Fn→F

|{f ∈ Pd(F
n) : dist(f, g) 6 η}| .

Let LDRK(n, d) (short for list decoding radius) be the maximum ρ for which ℓK(n, d, ρ− ε) is upper
bounded by a constant depending only on ε, |K|, d for all ε > 0.

It is easy to see that LDRK(n, d) 6 δK(d). The difficulty lies in proving a matching lower
bound. We review some previous work next. The first breakthrough result was the celebrated work
of Goldreich and Levin [GL89] who showed that in the setting of d = 1 over F2 (Hadamard Codes)
LDRF2(n, 1) = δF2(1) = 1/2. Later, Goldreich, Rubinfield and Sudan [GRS00] generalized the field
to obtain LDRK(n, 1) = δK(1) = 1− 1/|K|. In the setting of d < |K|, Sudan, Trevisan and Vadhan
[STV01] showed that LDRK(n, d) > 1 −

√

2d/|K| improving previous work by Arora and Sudan
[AS03], Goldreich et al [GRS00] and Pellikaan and Wu [PW04]. Note that this falls short of the
upper bound which is δK(d).

In 2008, Gopalan, Klivans and Zuckerman [GKZ08] showed that LDRF2(n, d) = δF2(d).They
posed the following conjecture.

Conjecture 1.1 ([GKZ08]). For fixed d and finite field K, LDRK(n, d) = δK(d).

It is believed [GKZ08, Gop10] that the hardest case is the setting of small d. An important
step in this direction was taken in [Gop10] that considered quadratic polynomials and showed that
LDRK(n, 2) = δK(2) for all fields K and thus proved the conjecture for d = 2. Recently, Bhowmick
and Lovett [BL14] resolved the conjecture for prime K.

Our main result for list decoding is a resolution of Conjecture 1.1.

Theorem 1.1. Let K be a finite field. Let ε > 0 and d, n ∈ N. Then,

ℓK(d, n, δK(d)− ε) 6 c|K|,d,ε.
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Thus,
LDRK(n, d) = δK(d).

Remark 1.2 (Algorithmic Implications). Using the blackbox reduction of algorithmic list decoding
to combinatorial list decoding in [GKZ08] along with Theorem 1.1, for fixed finite fields, d and
ε > 0, we now have list decoding algorithms in both the global setting (running time polynomial in
|K|n) and the local setting (running time polynomial in nd).

1.1.2 Algorithmic polynomial decomposition

Consider the following family of properties of functions over a finite field K.

Definition 1.3. Given a positive integer k, a vector of positive integers ∆ = (∆1,∆2, . . . ,∆k) and
a function Γ : Kk → K, we say that a function P : Kn → K is (k,∆,Γ)-structured if there exist
polynomials P1, P2, . . . , Pk : Kn → K with each deg(Pi) 6 ∆i such that for all x ∈ K

n,

P (x) = Γ(P1(x), P2(x), . . . , Pk(x)).

The polynomials P1, . . . , Pk are said to form a (k,∆,Γ)-decomposition.

For instance, an n-variate polynomial over the field K of total degree d factors nontrivially
exactly when it is (2, (d− 1, d− 1), prod)-structured where prod(a, b) = a · b. We shall use the term
degree-structural property to refer to a property from the family of (k,∆,Γ)-structured properties.

The problem here is, for arbitrary fixed k,K, (∆),Γ, given a polynomial, decide efficiently if it is
degree structural and if yes, output the decomposition. An efficient algorithm for the above would
imply a (deterministic) poly(n)-time algorithm for factoring an n-variate polynomial of degree d
over K. Also, it implies a polynomial time algorithm for deciding whether a d-dimensional tensor
over K has rank at most r. Also, it would give polynomial time algorithms for a wide range
of problems not known to have non-trivial solutions previously, such as whether a polynomial of
degree d can be expressed as P1 · P2 + P3 · P4 where each P1, P2, P3, P4 are of degree d− 1 or less.

This problem was solved for prime K, satisfying d < |F| by Bhattacharyya [Bha14] and later
for all d and prime |K| by Bhattacharyya, Hatami and Tulsiani [BHT15].

Our main result in this line of work establishes this for all fixed finite fields.

Theorem 1.4. For every finite field K, positive integers k and d, every vector of positive integers
∆ = (∆1,∆2, . . . ,∆k) and every function Γ : Kk → K, there is a deterministic algorithm AK,d,k,∆,Γ

that takes as input a polynomial P : Kn → K of degree d that runs in time polynomial in n, and
outputs a (k,∆,Γ)-decomposition of P if one exists while otherwise returning NO.

1.1.3 Testing affine-invariant properties

The goal of property testing, as initiated by [BLR93, BFL91] and defined formally by [RS96,
GGR98], is to devise algorithms that query their input a very small number of times while correctly
deciding whether the input satisfies a given property or is “far” from satisfying it. A property is
called testable if the query complexity can be made independent of the size of the input.

More precisely, we use the following definitions. Let [R] denote the set {1, . . . , R}. Given a
property P of functions in {Kn → [R] | n ∈ Z>0}, we say that f : Kn → [R] is ε-far from P if

min
g∈P

Prx∈Kn [f(x) 6= g(x)] > ε,

and we say that it is ε-close otherwise.
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Definition 1.5 (Testability). A property P is said to be testable (with one-sided error) if there
are functions q : (0, 1) → Z>0, δ : (0, 1) → (0, 1), and an algorithm T that, given as input a
parameter ε > 0 and oracle access to a function f : Kn → [R], makes at most q(ε) queries to the
oracle for f , always accepts if f ∈ P and rejects with probability at least δ(ε) if f is ε-far from P.
If, furthermore, q is a constant function, then P is said to be proximity-obliviously testable (PO
testable).

The term proximity-oblivious testing is coined by Goldreich and Ron in [GR11]. As an example
of a testable (in fact, PO testable) property, let us recall the famous result by Blum, Luby and
Rubinfeld [BLR93] which initiated this line of research. They showed that linearity of a function
f : Kn → K is testable by a test which makes 3 queries. This test accepts if f is linear and rejects
with probability Ω(ε) if f is ε-far from linear.

Linearity, in addition to being testable, is also an example of a linear-invariant property. We say
that a property P ⊆ {Kn → [R]} is linear-invariant if it is the case that for any f ∈ P and for any K-
linear transformation L : Kn → K

n, it holds that f ◦L ∈ P. Similarly, an affine-invariant property
is closed under composition with affine transformations A : Kn → K

n (an affine transformation
A is of the form L + c where L is K-linear and c ∈ K). The property of a function f : Kn → K

being affine is testable by a simple reduction to [BLR93], and is itself affine-invariant. Other well-
studied examples of affine-invariant (and hence, linear-invariant) properties include Reed-Muller
codes [BFL91, BFLS91, FGL+96, RS96, AKK+05] and Fourier sparsity [GOS+09]. In fact, affine
invariance seems to be a common feature of most interesting properties that one would classify as
“algebraic”. Kaufman and Sudan in [KS08] made explicit note of this phenomenon and initiated a
general study of the testability of affine-invariant properties (see also [GK11]).

Our main theorem for testing is a very general positive result:

Theorem 1.6 (Main testing result). Let P ⊆ {Kn → [R]} be an affine-invariant property that is
t, w-lightly locally characterized, where t, R, w, and char(K) are fixed positive integers. Then, P is
PO testable with t queries.

We are yet to define several terms in the above claim, but as we will see, the weight restriction
is trivial when the field size is bounded. This yields the following characterization.

Theorem 1.7 (Testing result for fixed fields). Let P ⊆ {Kn → [R]} be an affine-invariant property,
where R ∈ Z

+ and field K are fixed. Then, P is PO testable with t queries if and only if P is t-locally
characterized.

Previously, [BFH+13] (building on [BCSX11, BGS10, BFL13]) proved Theorem 1.6 in the case
that K is of fixed prime order using higher-order Fourier analytic techniques. We note that other
recent results on 2-sided testability of affine-invariant properties over fixed prime-order fields [HL13,
Yos14] can also be similarly extended to non-prime fields but we omit their description here.

Local Characterizations For a PO testable property P ⊂ {Kn → [R]} of query complexity t, if
a function f : Kn → [R] does not satisfy P, then by Definition 1.5, the tester rejects f with positive
probability. Since the test always accepts functions with the property, there must be t points
a1, . . . , at ∈ K

n that form a witness for non-membership in P. These are the queries that cause the
tester to reject. Thus, denoting σ = (f(a1), . . . , f(at)) ∈ [R]t, we say that C = (a1, a2, . . . , at;σ)
forms a t-local constraint for P. This means that whenever the constraint is violated by a function
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g, i.e., (g(a1), . . . , g(at)) = σ, we know that g is not in P. A property P is t-locally characterized if
there exists a collection of t-local constraints C1, . . . , Cm such that g ∈ P if and only if none of the
constraints C1, . . . , Cm are violated. It follows from the above discussion that if P is PO testable
with q queries, then P is t-locally characterized.

For an affine-invariant property, constraints can be defined in terms of affine forms, since the
affine orbit of a constraint is also a constraint. So, we can describe each t-local constraint C as
(A1, . . . , At;σ), where for every i ∈ [t], Ai(X1, . . . , Xt) = X1 +

∑t
j=2 ci,jXj for some ci,j ∈ K is an

affine form over K. We define the weight wt of an element c ∈ K as
∑r

k=1 |ck|, where c is viewed as
an r-dimensional vector (c1, . . . , cr) with each ci in the base prime field2 F with respect to a fixed
arbitrary basis. The weight of an affine form Ai to be

∑m
j=2 wt(ci,j) for ci,j as above. A constraint

is said to be of weight w if all its affine forms are of weight at most w, and a property P is said
to be t, w-lightly localyl characterized if there exist t-local constraints C1, . . . , Cm, each of weight at
most w that characterize P.

Theorem 1.6 asserts that if P has a light local characterization, then it is testable. There can
exist many local characterizations of a property, and for the theorem to apply, it is only necessary
that one such characterization be of bounded weight. Moreover, we can choose the basis with which
to describe K over F. On the other hand, some restriction in addition to local characterization is
needed, as Ben-Sasson et al. [BMSS11] show that there exist affine-invariant locally characterized
properties of functions f : F2n → F2 that require super-constant query complexity to test.

Another interesting observation is that if a property has a local characterization of bounded
weight, then it has a local single orbit characterization, in the language of [KS08]. For linear3 affine-
invariant properties, [KS08] shows that any local single orbit characterized property is testable.
Hence, our result is weaker than [KS08] in this aspect, though our Theorem 1.6 allows non-linear
properties. It is an interesting open question as to whether dual-BCH codes and, more generally,
sparse affine-invariant codes that were shown to be locally single orbit characterized in [KL05]
and [GKS12] respectively also have local characterizations of bounded weight. It is also an open
problem to describe a testable property P ⊆ {F2n → F2} that does not have a local characterization
of bounded weight.

1.2 Our Techniques

1.2.1 New Ingredients

Our starting point is the observation that K is an r-dimensional vector space over F. Thus, we can
view a function Q : Kn → K as determined by a collection of functions P1, . . . , Pr : K

n → F where
K

n is viewed as F
rn. In view of this, we define the notion of an additive polynomial. A function4

P : Kn → F is said to have additive degree d if for all h1, . . . , hd+1 ∈ K
n, Dh1 · · ·Dhd+1

P ≡ 0, where
(DhP )(x) = P (x + h) − P (x). Additive polynomials are exactly the non-classical polynomials of
[TZ12] when the domain is Frn. Moreover, if Q : Kn → K has degree d (in the usual sense of having
a monomial with degree d), then Tr(αQ) has additive degree 6 d for any α ∈ K where Tr : K → F

denotes the trace function.

2If x ∈ F, |x| is the obvious element of {0, 1, . . . , |F| − 1}.
3These are properties of functions f : Kn → F, where F is a subfield of K, for which f, g ∈ P implies αf + βg ∈ P

for any α, β ∈ F.
4To deal with low characteristics, we will actually use a slightly general definition valid for functions mapping to

the torus R/Z.
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Therefore, we can directly write any polynomial P : Kn → K in terms of additive polynomials
and then import all of the results shown in [TZ12] for non-classical polynomials to our setting!
Unfortunately, we are not done. The reason is that our applications require, in addition to additive
structure, some of the multiplicative structure of K, which is lost when we view K as Fr.

To see why, recall the question of testing affine-invariant properties. When K is of bounded
order, we can view any one-sided test as examining the restriction of the input function on a random
K-dimensional affine subspace of Kn, for some constant integer K. In other words, the test will
evaluate the input function at elements of the set H = {x +

∑K
i=1 aiyi : a1, . . . , aK ∈ K} for some

x, y1, . . . , yK ∈ K. Clearly, H is not an affine subspace of Frn. An important component of the
higher-order Fourier analytic approach is to show that any “sufficiently pseudorandom” collection
of polynomials is equidistributed on H, and the proof of this fact in [BFH+13] crucially uses that
H is a subspace of a vector space over a prime field. In our work, we show a strong equidistribution
theorem (Theorem 3.3) that holds when H is an affine subspace of Kn.

A different place where multiplicative structure rears its head is a key Degree Preserving Lemma
of [BFH+13]. Informally, it states that if P1, . . . , PC form a “sufficiently pseudorandom” collection
of polynomials and F (x) = Γ(P1(x), . . . , PC(x)) is a polynomial of degree d where Γ is an arbitrary
composition function, then for any other collection of polynomials Q1, . . . , QC where deg(Qi) 6

deg(Pi) for every i, G(x) = Γ(Q1(x), . . . , QC(x)) also has degree 6 d. The lemma is crucially used
for the analysis of the Reed-Muller list decoding bound in [BL14] and the polynomial decomposition
algorithm in [Bha14, BHT15]. Its proof goes via showing that if all (d+ 1) iterated derivatives of
F : Kn → K vanish, then so must all (d + 1) iterated derivatives of G : Kn → K. However, when
|K| is non-prime, all (d + 1) iterated derivates of a function G : Kn → K may vanish without the
degree being 6 d; consider for example the polynomial xp which vanishes after only 2 derivatives.

We resolve this issue by giving a different and more transparent proof of the Degree Preserving
Lemma, which actually holds in a much more general setting (Theorem 3.4). Using the above
notation, we prove that if F : K

n → K satisfies some locally characterized property P, then
G : Kn → K does also. Since due to a work of Kaufman and Ron [KR06], we know that degree
is locally characterized, our desired result follows. Our new proof uses our strong equidistribution
theorem on affine subspaces of Kn.

An interesting point to note is that both the equidistribution theorem and the degree preserving
lemma work only assuming that the field characteristic is constant and that the involved affine
constraints are of bounded weight, without any assumption on the field size.

1.2.2 Reed-Muller codes

For a received word g : K
n → K our goal is to upper bound |{f ∈ Pd : dist(f, g) 6 η}|, where

η = δK(d) − ε for some η > 0 and Pd is the class {Q : K
n → K : deg(Q) 6 d}. The proof

technique is similar in structure as [BL14]. We apply the weak regularity lemma (Corollary 4.1) to
the received word g : Kn → K and reduce the problem to a structured word g′ : Kn → K. More
specifically, whenever dist(f, g) 6 η, we have dist(f, g′) 6 η+ ε/2. From here, we first express each
function f : Kn → K as a linear combination of functions f ′ : Kn → F. It can be then shown that
the analysis in [BL14] works for functions f ′ : Kn → F. A naive recombination of the f ′ : Kn → F

to f : Kn → K gives us useful bounds only when d < char(|F|). To circumvent this problem, we
use our improved degree preserving theorem. This is crucial to our analysis as the technique of
[BL14] can be used only to analyze the additive degree of polynomials which is not enough for the
argument to work for arbitrary d and |K|.
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1.2.3 Polynomial decomposition

The algorithm and its analysis follows the lines of [Bha14, BHT15]. Given a polynomial P : Kn → K

(where |K| is bounded), we consider the collection of additive polynomials {Tr(α1P ), . . . ,Tr(αrP )}
where α1, . . . , αr ∈ K are linearly independent. We regularize this collection into a pseudorandom
additive polynomial factor and set one variable to 0 such that the degrees of the polynomials do
not change. We then recursively solve the problem on n − 1 variables and then apply a lifting
procedure to get a decomposition for the original problem. A naive analysis of the lifting procedure
over non-prime fields requires that deg(P ) < char(F). In order to get around this, we use our
improved degree preserving theorem which applies for arbitrary degrees.

1.2.4 Testing affine-invariant properties

Suppose P ⊆ {Kn → [R]} is a locally characterized affine-invariant property (where R and char(K)
are bounded but n|K| is growing). Our proof follows the lines of [BGS10, BFL13, BFH+13]. Suppose
f is far from P. We first identify a low-rank function close to f in an appropriate Gowers norm
which also contains the violation that f contains. Here, low rank is with respect to a collection
B of additive polynomials. We then investigate the distribution of B on the affine constraint that
f violates. Since these are affine with respect to K

n, we need to use our strong equidistribution
theorem. The rest of the proof proceeds along the same lines as [BFH+13].

Because the proof of Theorem 1.6 is very analogous to that in [BFH+13] (except for the use
of additive polynomials and the new equidistribution theorem) and requires significant additional
notation, we omit it here.

2 Preliminaries

Let N denote the set of positive integers. For n ∈ N, let [n] := {1, 2, . . . , n}. We use y = x ± ε to
denote y ∈ [x− ε, x+ ε]. For n ∈ N, and x, y ∈ C

n, let 〈x, y〉 :=
∑n

i=1 xiyi where a is the conjugate
of a. Let ‖x‖2 :=

√

〈x, x〉.
Let T denote the torus R/Z. This is an abelian group under addition. Let e : T → C be the

function e(x) = e2πix. For an integer k > 0, let Uk := 1
pk
Z/Z. Note that Uk is a subgroup of T.

Let ι : F → U1 be the bijection ι(a) = |a|
p (mod 1).

Fix a prime field F = Fp, and let K = Fq where q = pr for a positive integer r. We denote by
Tr : K → F the trace function:

Tr(x) = x+ xp + xp
2
+ · · ·+ xp

r−1

Recall that {x → Tr(ax) : a ∈ K} is in bijection with the set of all linear maps from K to F. Also,
we use | · | to denote the obvious map from F to {0, 1, . . . , p− 1}. We will need the following useful
fact.

Proposition 2.1 (Dual basis). For any r linearly independent elements α1, . . . , αr ∈ K, there exist
β1, β2, . . . , βr in K such that any x ∈ K equals

∑r
i=1 βiTr(αix).

Given a basis, i.e. collection of r linearly independent field elements, α = (α1, . . . , αr), we
define wtα : K → Z to be wtα(c) =

∑r
i=1 |Tr(αic)|.
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2.1 Affine forms and constraints

A linear form on k variables is a vector L = (w1, w2, . . . , wk) ∈ K
k that is interpreted as a function

from (Kn)k to K
n via the map (x1, . . . , xk) 7→ w1x1 + w2x2 + · · · + wkxk. A linear form L =

(w1, w2, . . . , wk) is said to be affine if w1 = 1. From now, linear forms will always be assumed to
be affine. Given a basis α = (α1, . . . , αr), we define wtα of a linear form L = (w1, . . . , wk) to be
∑k

i=2 wtα(wi).
We specify a partial order � among affine forms, with respect to a basis α = (α1, . . . , αr). We

say (w1, . . . , wk) �α (w′
1, . . . , w

′
k) if |Tr(αjwi)| 6 |Tr(αjw

′
i)| for all i ∈ [k], j ∈ [r].

Definition 2.2 (Affine constraints). An affine constraint of size m on k variables is a tuple A =
(L1, . . . , Lm) of m affine forms L1, . . . , Lm over F on k variables, where: L1(x1, . . . , xk) = x1.
Moreover, it is said to be weight-closed if there exists a basis α = (α1, . . . , αr) such that for any
affine form L belonging to A, if L′ �α L, then L′ also belongs to A.

Observe that a weight-closed affine constraint is of bounded size if and only if all its affine forms
are of bounded weight with respect to some α.

2.2 Polynomials, Degrees and Derivatives

A function P : Kn → K is a polynomial of degree d if for all d1, . . . , dn > 0 such that
∑

i di 6 d,
there exists cd1,...,dn ∈ K such that:

P (x1, . . . , xn) =
∑

d1,...,dn∈Z+:
d1+···+dn6d

cd1,...,dnx
d1
1 xd22 · · ·xdnn

We use the notion of additive degree for functions mapping to T. Given a function f : Kn → T,
its additive derivative in direction h ∈ K

n is Dhf : Kn → T, given by

Dhf(x) = f(x+ h)− f(x).

Definition 2.3 (Additive Polynomials). A function P : Kn → T is a polynomial of additive degree
d if for all x, h1, h2, . . . , hd+1 ∈ K

n, we have

Dh1Dh2 · · ·Dhd+1
P (x) = 0. (1)

A function of bounded additive degree is called an additive polynomial.

For functions P mapping to T, deg(P ) denotes its additive degree. Note that we can in-
terpret P : K

n → T as a function P ′ : F
nr → T with the same additive degree by setting

P (x1, . . . , xn) = P ′(Tr(α1x1), . . . ,Tr(α1x1), . . . ,Tr(α1xn), . . . ,Tr(α1xn)), using Proposition 2.1.
By this identification, additive polynomials are exactly the same as the non-classical polynomi-
als introduced by Tao and Ziegler [TZ12]. As a consequence, we have the following:

Lemma 2.4 (Lemma 1.7 of [TZ12]). P : Kn → T is a polynomial of additive degree d if and only
if it can be written in the form:

P (x1, . . . , xn) = α+
∑

k>0

∑

06di,j<p ∀i∈[n],j∈[r]:
0<

∑n
i=1

∑r
j=1 di,j6d−k(p−1)

cd1,1,...,dn,r ,k
∏n

i=1

∏r
j=1 |Tr(αjxi)|

di,j

pk+1
(mod 1)
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where α ∈ T and cd1,1,...,dn,r
∈ {0, 1, . . . , p− 1} are uniquely determined. The maximum k for which

there is a nonzero cd1,1,...,dn,r ,k is the depth of P . Note that depth(P ) 6
⌊

d−1
p−1

⌋

and that P takes on

at most pdepth(P )+1 distinct values.

For a function f : Kn → C, define the multiplicative derivative in direction h ∈ K
n to be be

∆hf(x) = f(x+ h) · f(x).

2.3 Locally Characterized Properties

As described in the introduction, by a locally characterized property, we informally mean a property
for which non-membership can be certified by a finite sized witness. Specifically for affine-invariant
properties, we define:

Definition 2.5 (Locally characterized properties).

An induced affine constraint of size m on ℓ variables is a pair (A, σ) where A is an affine
constraint of size m on ℓ variables and σ ∈ [R]m.

Given such an induced affine constraint (A, σ), a function f : Kn → [R] is said to be (A, σ)-
free if there exist no x1, . . . , xℓ ∈ K

n such that (f(L1(x1, . . . , xℓ)), . . . , f(Lm(x1, . . . , xℓ))) = σ.
On the other hand, if such x1, . . . , xℓ exist, we say that f induces (A, σ) at x1, . . . , xℓ.

Given a (possibly infinite) collection A = {(A1, σ1), (A2, σ2), . . . , (Ai, σi), . . . } of induced
affine constraints, a function f : K

n → [R] is said to be A-free if it is (Ai, σi)-free for
every i > 1. The size of A is the size of the largest induced affine constraint in A.

Additionally, A = {(A1, σ1), (A2, σ2), . . . , (AK , σK)} is a W -light affine system if there exists
a basis α = (α1, . . . , αr) such that wtα(A

i) 6 W for all i ∈ [K].

A property P ⊆ {Kn → [R]} is said to be K,W -lightly locally characterized if it is equivalent
to A-freeness for some W -light affine system A whose size is 6 K.

We recall that Kaufman and Ron [KR06] show that:

Theorem 2.6 ([KR06]). The property Pd = {P : K
n → K : deg(P ) 6 d} is q⌈(d+1)/(q−q/p)⌉,

pr ⌈(d+ 1)/(q − q/p)⌉-lightly locally characterized.

2.4 Factors and Rank

Next, we define a polynomial factor which forms the basis for much of higher order Fourier analysis.

Definition 2.7 (Factor). A polynomial factor B is a sequence of additive polynomials P1, . . . , PC :
K

n → T. We also identify it with the function B : Kn → T
C mapping x to (P1(x), . . . , PC(x)). An

atom of B is a preimage B−1(y) for some y ∈ T
C . When there is no ambiguity, we will in fact

abuse notation and identify an atom of B with the common value B(x) of all x in the atom.
The partition induced by B is the partition of Kn given by

{

B−1(y) : y ∈ T
C
}

. The complexity
of B, denoted |B|, is the number of defining polynomials C. The order of B, denoted ‖B‖, is the
total number of atoms in B. The degree of B is the maximum additive degree among its defining
polynomials P1, . . . , PC .

10



Note that due to Lemma 2.4, if B is defined by polynomials P1, . . . , PC ,

‖B‖ =

C
∏

i=1

pdepth(Pi)+1

Definition 2.8 (Rank). Let d ∈ N and P : Kn → T. Then rankd(P ) is defined as the smallest
integer k such that there exist functions P1, . . . , Pk : K

n → T of additive degree 6 d − 1 and
a function Γ : Tk → T such that P (x) = Γ(P1(x), . . . , Pk(x)). If d = 1, then the rank is 0 if
P is a constant function and is ∞ otherwise. If P is a polynomial of additive degree d, then
rank(P ) = rankd(P ).

Definition 2.9 (Rank and Regularity of Polynomial Factor). Let B be a polynomial factor de-
fined by the sequence P1, . . . , Pc : K

n → T with respective depths k1, . . . , kc. Then, the rank
of B is min(a1,...,ac) rank(

∑c
i=1 aiPi) where the minimum is over (a1, . . . , ac) ∈ Z

c such that (a1
mod pk1+1, . . . , ac mod pkc+1) 6= (0, . . . , 0) .

Given a polynomial factor B and a non decreasing function r : Z+ → Z
+, B is r-regular if B is

of rank at least r(|B|).

Definition 2.10 (Semantic and Syntactic refinement). Let B and B′ be polynomial factors. A
factor B′ is a syntactic refinement of B, denoted by B′ �syn B if the set of polynomials defining B
is a subset of the set of polynomials defining B′. It is a semantic refinement, denoted by B′ �sem B
if for every x, y ∈ K

n, B′(x) = B′(y) implies B(x) = B(y). Clearly, a syntactic refinement is also a
semantic refinement.

Our next lemma is the workhorse that allows us to convert any factor into a regular one.

Lemma 2.11 (Polynomial Regularity Lemma). Let r : Z+ → Z
+ be a non-decreasing function and

d > 0 be an integer. Then, there is a function C
(r,d)

2.11 : Z+ → Z
+ such that the following is true.

Suppose B is a factor defined by polynomials P1, . . . , PC : Kn → T of additive degree at most d.
Then, there is an r-regular factor B′ consisting of polynomials Q1, . . . , QC′ : Kn → T of additive

degree 6 d such that B′ �sem B and C ′ 6 C
(r,d)

2.11(C).

Moreover, if B is itself a refinement of some polynomial factor B̂ that has rank > (r(C ′) +C ′),
then additionally B′ will be a syntactic refinement of B̂.

Proof. Follows directly from Lemma 2.18 of [BFH+13] by identifying K
n with F

rn. �

In fact, the regularization process of Lemma 2.11 can be implemented in time O(nd+1) [BHT15].

2.5 Gowers norm and the inverse theorem

Definition 2.12. The bias of a function f : Kn → C is defined as bias(f) = |Ex∈Kn f(x)|. For
P : Kn → T, we use bias(P ) to denote bias(e(P )).

The Gowers norm of a function measures the bias of its iterated derivative. Precisely:

Definition 2.13 (Gowers norm). Given a function f : Kn → C and an integer d > 1, the Gowers
norm of order d for f is given by

‖f‖Ud =

∣

∣

∣

∣

E
h1,...,hd,x∈Kn

[(∆h1∆h2 · · ·∆hd
f)(x)]

∣

∣

∣

∣

1/2d

.

If P : Kn → T, ‖P‖Ud denotes ‖e(P )‖Ud .
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Note that as ‖f‖U1 = bias(f) the Gowers norm of order 1 is only a semi-norm. However for
d > 1, it is not difficult to show that ‖ · ‖Ud is indeed a norm.

There is a tight connection between additive polynomials and Gowers norms. In one direction,
it is a straightforward consequence of the monotonicity of the Gowers norm (‖f‖Ud 6 ‖f‖Ud+1) and
invariance of the Gowers norm with respect to modulation by lower degree polynomials (‖f‖Ud+1 =
‖f · e(P )‖Ud+1 for polynomials P of additive degree 6 d) that if f : Kn → C is δ-correlated with a
polynomial P of additive degree 6 d, meaning

|E
x
f(x)e(−P (x))| > δ

for some δ > 0, then
‖f‖Ud+1 > δ.

In the other direction, we have the following “Inverse theorem for the Gowers norm”.

Theorem 2.14 (Theorem 1.11 of [TZ12]). Suppose δ > 0 and d > 1 is an integer. There exists an
ε = ε2.14(δ, d) such that the following holds. For every function f : Kn → C with ‖f‖∞ 6 1 and
‖f‖Ud+1 > δ, there exists a polynomial P : Kn → T of additive degree 6 d that is ε-correlated with
f , meaning

∣

∣

∣

∣

E
x∈Kn

f(x)e(−P (x))

∣

∣

∣

∣

> ε.

We can be more explicit when f = e(P ) for an additive polynomial P .

Theorem 2.15 (Theorem 1.20 of [TZ12]). Suppose δ > 0 and d > 1 is an integer. There exists
an r = r2.15(δ, d) such that the following holds. If a polynomial P : Kn → T with additive degree d
satisfies ‖P‖Ud > δ, then rank(P ) 6 r.

3 New Tools

3.1 Equidistribution of regular factors

Our results in this section imply that a regular polynomial factor is “as random as possible”, subject
to the additive degree and depth bounds of its defining polynomials. Let us start with the following
simple observation.

Lemma 3.1. Given ε > 0, let B be a polynomial factor of degree d > 0, complexity C and rank
r3.1(d, ε), defined by a sequence of additive polynomials P1, . . . , PC : Kn → T having respective
depths k1, . . . , kC . Suppose α = (α1, . . . , αC) ∈ Uk1+1 × · · · × UkC+1. Then:

Prx[B(x) = α] =
1

‖B‖
± ε.

Proof. This is standard. See for example Lemma 3.2 of [BFH+13]. �

In our applications though, we will often need not just B(x) to be nearly uniformly distributed
but the tuple (B(x) : x ∈ H) for a set H ⊆ K

n to be nearly uniformly distributed. In particular,
we consider the case when H is an affine subspace of Kn. The following lemma is key.
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Lemma 3.2 (Near orthogonality). Let A = (L1, . . . , Lm) be a weight-closed affine constraint of

bounded size on ℓ variables. Suppose B is a polynomial factor of degree d and rank > r(2.15)(d, δ),
defined by the sequence of additive polynomials P1, . . . , Pc : Kn → T. Let Λ = (λij)i∈[c],j∈[m] be a
tuple of integers. Define:

PΛ(x1, . . . , xk) =
∑

i∈[c],j∈[m]

λijPi(Lj(x1, . . . , xℓ)).

Then one of the following is true.

1. For every i ∈ [c], it holds that
∑

j∈[m] λijQi(Lj(·)) ≡ 0 for all polynomials Qi : K
n → T with

the same additive degree and depth as Pi. Clearly, this implies PΛ ≡ 0.

2. PΛ 6≡ 0. Moreover, bias(PΛ) 6 δ.

Proof. For j ∈ [m], let (wj,1, . . . , wj,ℓ) ∈ K
ℓ denote the affine form given by Lj . Note that wj,1 = 1.

Suppose α = (α1, . . . , αr) is the basis with respect to which the affine forms are weight-closed.
For each i, we do the following. If for some j, we have5 wtα(Lj) > deg(λi,jPi), λi,j 6= 0, then

using Proposition 2.1, Lj(x1, . . . , xℓ) = x1 +
∑ℓ

i=2 (
∑r

k=1 ui,k · βk)xi where β is the dual basis to
α, each ui,k ∈ [0, p− 1] and

∑

i,k ui,k > deg(λi,jPi). Using Equation (1), we can replace λi,jPi(Lj)
by a Z-linear combination of Pi(Lj′) where Lj′ �α Lj until no such j exists. This is where we
use the fact that the affine constraint is weight-closed. Suppose the new coefficients are denoted
by (λ′

i,j). If the λ′
i,j are all zero, then for every i ∈ [c] individually,

∑

j∈[m] Pi(Lj(x1, . . . , xℓ)) ≡ 0.
Indeed,

∑

j∈[m]Qi(Lj(x1, . . . , xℓ)) ≡ 0 for any Qi with the same additive degree and depth, as the

transformation from λi,j to λ′
i,j did not use any other information about Pi.

Else some λ′
i,j 6= 0. Also, wtα(Lj) 6 deg(λ′

i,jPi). Then we show the second part of the lemma,
that is |E[e(PΛ(x1, . . . , xk)]| 6 δ.

Suppose without loss of generality that the following is true.

λ′
i,1 6= 0 for some i ∈ [C].

L1 is maximal in the sense that for every j 6= 1, either λ′
i,j = 0 for all i ∈ [C] or wtα(wj,s) <

wtα(w1,s) for some s ∈ [ℓ].

For a = (a1, . . . , aℓ) ∈ K
ℓ and y ∈ K

n and P : Kn → T, define

Da,yP (x1, . . . , xℓ) = P (x1 + a1y, . . . , xℓ + aℓy)− P (x1, . . . , xℓ).

Then
Da,y(Pi ◦ Lj)(x1, . . . , xℓ) = (DLj(a)yPi)(Lj(x1, . . . , xℓ)).

Let ∆ = wtα(L1) 6 d. Define a1, . . . , a∆ be the set of vectors of the form (−w, 0, . . . , 1, 0, . . . , 0)
where 1 is in the ith coordinate for i ∈ [2, ℓ] and for all w ∈ K satisfying 0 6 wtα(w) < wtα(w1,i).
Note that 〈L1, ak〉 6= 0 for k ∈ [∆] but for any j > 1 there exists some k ∈ [∆] such that 〈Lj , ak〉 = 0.
Thus,

E
y1,...,y∆,x1,...,xℓ

[

e
(

(Da∆,y∆ . . . Da1.y1PΛ)(x1, . . . , xℓ)
)]

=

∥

∥

∥

∥

∥

C
∑

i=1

λ′
i,1Pi

∥

∥

∥

∥

∥

2∆

U∆

.

The rest of the analysis is same as Theorem 3.3 in [BFH+13] and we skip it here. �

5Here, deg(·) refers to the additive degree.
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We can now use Lemma 3.2 to prove our result on equidistribution of regular factors over affine
subspaces of Kn.

Theorem 3.3. Let ε > 0 Let B be a polynomial factor defined by polynomials P1, . . . , Pc : K
n → T

with respective additive degrees d1, . . . , dc ∈ Z
+ and depths k1, . . . , kc ∈ Z

>0. Suppose B has rank
at least r(2.15)(d, ε) where d = max(d1, . . . , dc). Let A = (L1, . . . , Lm) be a weight-closed affine
constraint. For every i ∈ [c], define Λi to be the set of tuples (λ1, . . . , λm) ∈ [0, pki+1 − 1] such that
∑m

j=1 λjQi(Lj(·)) ≡ 0 for all polynomials Qi with the same additive degree and depth as Pi.
Consider (αi,j : i ∈ [c], j ∈ [m]) ∈ T

cm such that for every i ∈ [c] and for every (λ1, . . . , λm) ∈ Λi,
∑m

j=1 λjαi,j = 0. Then:

Prx1,...,xℓ∈Kn [B(Lj(x1, . . . , xℓ)) = (α1,j , . . . , αc,j) ∀j ∈ [m]] =

∏c
i=1 |Λi|

‖B‖m
± ε

Proof.

Prx1,...,xℓ∈Kn [B(Lj(x1, . . . , xℓ)) = (α1,j , . . . , αc,j) ∀j ∈ [m]]

= E
x1,...,xℓ





∏

i,j

1

pki+1

pki+1−1
∑

λi,j=0

e(λi,j(Pi(Lj(x1, . . . , xℓ))− αi,j))





=

(

∏

i

p−(ki+1)

)m
∑

(λi,j)

∈
∏

i,j [0,p
ki+1−1]

e



−
∑

i,j

λi,jαi,j



E



e





∑

i,j

λi,jPi(Lj(x1, . . . , xℓ))









= p−m
∑c

i=1(ki+1) ·

(

c
∏

i=1

|Λi| ± εpm
∑c

i=1(ki+1)

)

The last line is due to the observation that from Lemma 3.2,
∑c

i=1

∑m
j=1 λi,jPi(Lj(x1, . . . , xℓ)) ≡ 0

if and only if for every i ∈ [c], (λi,1, . . . , λi,m) ∈ Λi (mod pki+1). So,
∑

i,j λi,jPi(Lj(·)) is identically
0 for

∏

i |Λi| many tuples (λi,j) and for those tupes,
∑

i,j λi,jαi,j = 0 also.
�

Note that in Theorem 3.3, if ε is a constant, m needs to be bounded for the claim to be
non-trivial, which in turn requires that the affine forms in L be of bounded weight.

3.2 Preservation of Locally Characterized Properties

Theorem 3.4. Let P ⊂ {Kn → K} be a K,W -lightly locally characterized property. For an
integer d, suppose P1, . . . , Pc : Kn → T are polynomials of additive degree 6 d, forming a factor
of rank > r3.4(d,K), and Γ : Tc → K is a function such that F : Kn → K defined by F (x) =
Γ(P1(x), . . . , Pc(x)) satisfies P.

For every collection of additive polynomials Q1, . . . , Qc : Kn → T with deg(Qi) 6 deg(Pi) and
depth(Qi) 6 depth(Pi) for all i ∈ [c], if G : Kn → K is defined by G(x) = Γ(Q1(x), . . . , Qc(x)),
then G ∈ P too.

Proof. For the sake of contradiction, suppose G /∈ P. Then, for a weight-closed affine constraint
consisting of K ′ linear forms L1, . . . , LK′ , there exist x1, . . . , xℓ such that (G(L1(x1, . . . , xℓ)), . . . ,
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G(LK′(x1, . . . , xℓ))) which form a witness to G 6∈ P. Note that K ′ is a function of only K and W
because the affine forms characterizing P can be made weight 6 W by a choice of basis for K over
F and then completed into a weight-closed constraint. So, there exists x1, . . . , xℓ ∈ K

n such that
the tuple B = (Qi(Lj(x1, . . . , xℓ)) : j ∈ [K ′], i ∈ [c]) ∈ T

cK′
is a proof of the fact that G 6∈ P.

Now we argue that there exist x′1, . . . , x
′
ℓ such that (Pi(Lj(x

′
1, . . . , x

′
ℓ)) : i ∈ [c], j ∈ [K]) equals

B, thus showing that F 6∈ P , a contradiction. Notice that B satisfies the conditions required of α
in Theorem 3.3. So by Theorem 3.3,

Prx′
1,...,x

′
ℓ

[(

Pi(Lj(x
′
1, . . . , x

′
ℓ) : i ∈ [c], j ∈ [K]

)

= B
]

> 0

if the rank of the factor formed by P1, . . . , Pc is more than r(2.15)
(

d, 1
2‖B‖K

)

, where ‖B‖ =

p
∑c

i=1(depth(Pi)+1). �

In our applications, we will use Theorem 3.4 for the property of having bounded degree, which
is lightly locally characterized by Theorem 2.6.

4 List decoding of RM codes

We state the following corollary which we need in the proof to follow. We only state a special case
of it which is enough.

Corollary 4.1 (Corollary 3.3 of [BL14]). Let g : K → K, ε > 0. Then there exist c 6 1/ε2

functions h1, h2, . . . , hc ∈ RMK(n, d) such that for every f ∈ RMK(n, d), there is a function Γf :
K

c → K such that

Prx[Γf (h1(x), . . . , hc(x)) = f(x)] > Prx[g(x) = f(x)]− ε.

Theorem 1.1 (Restated). Let K = Fq be an arbitrary finite field. Let ε > 0 and d, n ∈ N.
Then,

ℓK(d, n, δK(d)− ε) 6 cq,d,ε.

Proof. We follow the proof structure in [BL14]. Let g : Kn → K be a received word. Suppose
Pr[g(x) = f(x)] > 1 − δK(d) + ε. Apply Corollary 4.1 with approximation parameter ε/2 gives
H0 = {h1, . . . , hc} ⊆ RMK(n, d), c 6 4/ε2 such that, for every f ∈ RMK(n, d), there is a function
Γf : Kc → K satisfying

Pr[Γf (h1(x), h2(x), . . . , hc(x)) = f(x)] > Pr[g(x) = f(x)]− ε/2 > 1− δK(d) + ε/2.

Let α1, α2, . . . , αr be an arbitrary basis for K over F. Let δ(d) := δK(d). By Proposition 2.1,

Pr[Γ′
f (Tr(αihj(x)) : 1 6 i 6 r, 1 6 j 6 c) = F (Tr(αif(x)) : 1 6 i 6 r)] > 1− δ(d) + ε/2,

where Γ′
f : Frc → K and F : Fr → K. From here onwards, we identify F with U1. Let H =

{Tr(αihj(x)) : 1 6 i 6 r, 1 6 j 6 c} and HF = {Tr(αif(x)) : 1 6 i 6 r)}.

Let r1, r2 : N → N be two non decreasing functions to be specified later, and let C
(2.11)
r,d be as

given in Lemma 2.11. We will require that for all m > 1,

r1(m) > r2(C
(2.11)
r2,d

(m+ 1)) + C
(2.11)
r2,d

(m+ 1) + 1. (2)
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As a first step, we r1-regularize H by Lemma 2.11. This gives an r1-regular factor B
′ of degree

at most d, defined by polynomials H1, . . . , Hc : Kn → T, c′ 6 C
(2.11)
r1,d

(cr) and rank(B′) > r1(c
′).

We denote H′ = {H1, . . . , Hc′}. Let depth(Hi) = ki for i ∈ [c′]. Let Gf : ⊗c′
i=1Uki+1 → U1 be

defined such that
Γf (h1(x), . . . , hc(x)) = Gf (h

′
1(x), . . . , h

′
c′(x)).

Next, we will show that f is measurable with respect to H′ and this would upper bound the
number of such polynomials by c′(q, d, ε) independent on n.

Fix such a polynomial f . Call Fi = Tr(αif). Appealing again to Lemma 2.11, we r2-
regularize Bf := B′

⋃

HF . We get an r2-regular factor B′′ �syn B′ defined by the collection
H′′ = {H1, . . . , Hc′ , H

′
1, . . . , H

′
c′′}. Note that it is a syntactic refinement of B′ as by our choice

of r1,

rank(B′) > r1(c
′) > r2(C

(2.11)
r2,d

(c′ + 1)) + C
(2.11)
r2,d

(c′ + 1) + 1 > r2(|B
′′|) + |B′′|+ 1.

We will choose r2 such that for all m > 1,

r2(m) = max






r
(3.1)
d







ε/4
(

p
⌊ d−1
p−1

⌋+1
)m






, r

(3.4)
d (m)






. (3)

Since each Fi is measurable with respect to B′′, there exists F ′ : S → U1 such that

f(x) = F ′(H1(x), . . . , Hc′(x), H
′
1(x), . . . , H

′
c′′(x)).

Summing up, we have

Pr[G(H1(x), H2(x), . . . , Hc′(x)) = F ′(H1(x), . . . , Hc′(x), H
′
1(x), . . . , H

′
c′′(x))] > 1− δ(d) + ε/2.

We next show that we can have each polynomial in the factor have a disjoint set of inputs. This
would simplify the analysis considerably.

Claim 4.2. Let xi, yj, i ∈ [c′], j ∈ [c′′] be pairwise disjoint sets of n ∈ N variables each. Let
n′ = n(c′ + c′′). Let f̃ : Kn′

→ K and g̃ : Kn′
→ K be defined as

f̃(x) = F (H1(x
1), . . . , Hc′(x

c′), H ′
1(y

1), . . . , H ′
c′′(y

c′′))

and
g̃(x) = G(H ′

1(x
1), . . . , Hc′(x

c′)).

Then deg(f̃) 6 d and

∣

∣

∣Prx∈Fn′ [f̃(x) = g̃(x)]−Prx∈Fn [f(x) = Gf (h
′
1(x), h

′
2(x), . . . , h

′
c(x))]

∣

∣

∣ 6 ε/4.

Proof. The bound deg(f̃) 6 deg(f) 6 d follows from Lemma 3.4 since r2(|H
′′|) > r

(3.4)
d (|H′′|). To

establish the bound on Pr[f̃ = g̃], for each s ∈ S let

p1(s) = Prx∈Fn [(h′1(x), . . . , h
′
c′(x), h

′′
1(x), . . . , h

′′
c′′(x)) = s].
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Applying Lemma 3.1 and since our choice of r2 satisfies rank(H′′) > r
(3.1)
d (ε/4|S|), we have that

p1 is nearly uniform over S,

p1(s) =
1± ε/4

|S|
.

Similarly, let

p2(s) = Prx1,...,xc′ ,y1,...,yc
′′
∈Fn [(h

′
1(x

1), . . . , h′c′(x
c′), h′′1(y

1), . . . , h′′c′′(y
c′′)) = s].

Note that the rank of the collection of polynomials {h′1(x
1), . . . , h′c′(x

c′), h′′1(y
1), . . . , h′′c′′(y

c′′)} de-
fined over Fn′

cannot be lower than that of H′′. Applying Lemma 3.1 again gives

p2(s) =
1± ε/4

|S|
.

For s ∈ S, let s′ ∈ ⊗c′
i=1Uki+1 be the restriction of s to first c′ coordinates, that is, s′ = (s1, . . . , sc′).

Thus

Prx∈Fn′ [f̃(x) = g̃(x)] =
∑

s∈S

p2(s)1F (s)=Gf (s′)

=
∑

s∈S

p1(s)1F (s)=Gf (s′) ± ε/4

= Prx∈Fn [f(x) = Gf (h
′
1(x), h

′
2(x), . . . , h

′
c(x))]± ε/4.

�

So, we obtain that

Prx∈Fn′ [f̃(x) = g̃(x)] > Prx∈Fn [f(x) = Gf (h
′
1(x), . . . , h

′
c′(x))]− ε/4 > 1− δ(d) + ε/4.

Next, we need the following variant of the Schwartz-Zippel lemma from [BL14].

Claim 4.3. Let d, n1, n2 ∈ N. Let f1 : Kn1+n2 → K and f2 : Kn1 → K be such that deg(f1) 6 d
and

Pr[f1(x1, . . . , xn1+n2) = f2(x1, . . . , xn1)] > 1− δ(d)

Then, f1 does not depend on xn1+1, . . . , xn1+n2.

With claim 4.3 applied to f1 = f̃ , f2 = g̃, n1 = nc′, n2 = nc′′. We obtain that f̃ does not depend
on y1, . . . , yc

′′
. Hence,

f̃(x1, . . . , xc
′

, y1, . . . , yc
′′

) = F (H ′
1(x

1), . . . , H ′
c′(x

c′), C1, . . . , Cc′′)

where Cj = H ′′
j (0) for j ∈ [c′′]. If we substitute x1 = . . . = xc

′
= x we get that

f(x) = F (H ′
1(x), . . . , H

′
c′(x), H

′′
1 (x), . . . , H

′′
c′′(x)) = F (H ′

1(x), . . . , H
′
c′(x), C1, . . . , Cc′′),

which shows that f is measurable with respect to H′, as claimed.
�
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5 Polynomial decomposition

Definition 5.1. Given k ∈ N and ∆ = (∆1, . . . ,∆k) ∈ N
k and a function Γ : Kk → K, a function

P : Kn → K is (k,∆,Γ)-structured if there exist polynomials P1, . . . , Pk : Kn → K with deg(Pi) 6 ∆i

such that for x ∈ K
n, we have

P (x) = Γ(P1(x), . . . , Pk(x)).

The polynomials P1, . . . , Pk form a (k,∆,Γ)-decomposition.

The main result we prove is the following.

Theorem 5.2. Let k ∈ N. For every ∆ = (∆1, . . . ,∆k) ∈ N
k and every function Γ : Kk → K, there

is a randomized algorithm A that on input P : Kn → K of degree d, runs in time polyq,k,∆(n
d+1)

and outputs a (k,∆,Γ)-decomposition of P if one exists while otherwise returning NO.

We first show that the notion of rank is robust to hyperplane restrictions over nonprime fields.
More precisely, we have the following.

Lemma 5.3. Let P : Kn → T be an additive polynomial such that rank(P ) > r. Let H be a
hyperplane in K

n. Then the restriction of P to H has rank at least r − q.

Proof. Without loss of generality, let H be defined by x1 = 0. Let P ′ : Kn−1 → T be the restriction
of P defined by P ′(y) = P (0y). Let π : Kn → K

n−1 be the map π(x1x2 . . . xn) = x2 . . . xn. Let
P ′′ : Kn → T be defined by P ′′(x) = P (x) − P ′ ◦ π. Then P ′′(x) = 0 for x ∈ H. For i ∈ K \ {0},
let hi = (i, 0, . . . , 0). Then, for y ∈ H, define Rj : K

n → T by

Rj(y) = P ′′(y + hj) = (Dhj
P ′′)(y).

Note that deg(Rj) 6 d− 1. Now, since P (x) = P ′′(x) + P ′ ◦ π(x), we have

P (x) = Γ(P ′ ◦ π, x1, {Ry(x) : y ∈ F}).

Now, if rank(P ′) 6 r, then rank(P ′ ◦π) 6 r and hence rank(P ) 6 r+q. This finishes the proof. �

We now start with the proof of Theorem 5.2.

Proof. Let R1 : N → N be defined as R1(m) = R2(c
(R1,d)

2.11 (m + k)) + c
(R1,d)

2.11 (m + k) + q where
R2 : N → N will be specified later.

Let α1, . . . , αr be an arbitrary basis for K over F. By Proposition 2.1, P (x) =
∑

i βiTr(αiP (x))
for the dual basis β1, . . . , βr. Set fi(x) = Tr(αiP (x)). Identifying F with U1 we treat fi : K

n → T.
Regularize {f1, . . . , fr} using the algorithm of [BHT15] to find R1-regular B = {g1, . . . , gC : Kn →

T} where C 6 c
(R1,d)

2.11 (r). So, fi(x) = Gi(g1(x), . . . , gC(x)) and P (x) =
∑

i αiGi(g1(x), . . . , gC(x)).
Thus, if n 6 Cd, then we are done by a brute force search.

Else, n > Cd. For each gi, pick a monomial mi with degree deg(Pi). Then there is i0 ∈ [n] such
that xi0 does not appear in any gi. Set g′i := gi|xi0 = 0. Let B′ be the factor defined by the g′is.
Note that deg(g′i) = deg(gi) and depth(g′i) = depth(gi). Also, by Lemma 5.3, B′ is R1 − q-regular.

Now, using recursion, we solve the problem on n − 1 variables. That is, decide if for P ′ :=
P |xi0 = 0 is (k,∆,Γ)-structured. If P ′ is not, then P is not either, so we are done. Else, suppose
the algorithm does not output NO.
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Say
P ′(x) = Γ(S1(x), . . . , Sk(x)) = Γ′(Tr(αjSi(x)) : i ∈ [k], j ∈ [r]),

where
Γ′(aij : i ∈ [k], j ∈ [r]) = Γ(

∑

j

βiaij : i ∈ [k]).

Note that while Γ : Kk → K, we have Γ′ : Fkr → K. Let B1 be the factor formed by {Tr(αjSi)}. Via
the algorithm of [BHT15], regularize B′ ∪ B1 using R2 : N → N and we get a syntactic refinement
B′ ∪ B′

1 by the choice of R1. Let B
′
1 = {s′1, . . . , s

′
D}. where

Tr(αjSi) = Gij(g
′
i, s

′
j : i ∈ [C], j ∈ [D]).

Choose R2 large enough such that the map induced by B′ ∪ B′
1 is surjective. Now, fix any ℓ ∈ [r].

Then,
Tr(αℓP

′) = Gℓ(g
′
1, . . . , g

′
C) = Fℓ(Gij(g

′
i, s

′
j)),

where Fℓ = Tr(αℓΓ
′). Thus, for a1, . . . , aC , b1, . . . bD ∈ F,

Gℓ(a1, . . . , aC) = Fℓ(Gij(a1, . . . , bD) : i ∈ [C], j ∈ [D]).

Substituting, ai = gi(x) and bj = 0 we have

Tr(αℓP ) = Gℓ(g1, . . . , gC) = Fℓ(Gij(gi, 0)).

Now,
Tr(αℓP ) = Tr(αℓΓ(Qi : i ∈ [k])),

where Qi(x) =
∑r

j=1 αjGij(g
′
i, . . . , 0).

Since, this is true for all ℓ ∈ [r], we have

P (x) = Γ(Q1(x), . . . , Qk(x)).

where Qi is defined as above. This finishes the proof. �
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11(3):465–588, 2001. 2

[GR11] Oded Goldreich and Dana Ron. On proximity oblivious testing. SIAM J. Comput.,
40(2):534–566, 2011. 5

[Gre05] Ben Green. Finite field models in additive combinatorics. In Bridget S Webb, editor,
Surveys in combinatorics 2005, pages 1–27. Cambridge Univ. Press, 2005. 2

[GRS00] O. Goldreich, R. Rubinfeld, and M. Sudan. Learning polynomials with queries: The
highly noisy case. SIAM J. Discrete Math., 13(4):535–570, 2000. 3

[GT08] Ben Green and Terence Tao. An inverse theorem for the Gowers U3-norm. Proc. Edin.
Math. Soc., 51:73–153, 2008. 2

[GT09] B. Green and T. Tao. The distribution of polynomials over finite fields, with applications
to the gowers norms. Contrib. Discrete Math, 4(2):1–36, 2009. 2

[GT10] Ben Green and Terence Tao. Linear equations in primes. Ann. of Math., 171:1753–1850,
2010. 2

21



[GTZ11] Ben Green, Terence Tao, and Tamar Ziegler. An inverse theorem for the Gowers U4-
norm. Glasgow Math. J., 53(1):1–50, 2011. http://arxiv.org/abs/0911.5681. 2

[GTZ12] Ben Green, Terence Tao, and Tamar Ziegler. An inverse theorem for the Gowers U s+1-
norm. Ann. of Math., 176(2):1231–1372, 2012. 2

[Gur04] V. Guruswami. List Decoding of Error-Correcting Codes, volume 3282 of Lecture Notes
in Computer Science. Springer, 2004. 2

[Gur06] V. Guruswami. Algorithmic Results in List Decoding, volume 2 of Foundations and
Trends in Theoretical Computer Science. Now Publishers, 2006. 2

[Has01] Johan Hastad. Some optimal inapproximability results. Journal of the ACM (JACM),
48(4):798–859, 2001. 1

[HK05] Bernard Host and Bryna Kra. Nonconventional ergodic averages and nilmanifolds. Ann.
of Math., 161(1):397–488, 2005. 2

[HL13] Hamed Hatami and Shachar Lovett. Estimating the distance from testable affine-
invariant properties. In Proc. 54th Annual IEEE Symposium on Foundations of Com-
puter Science, pages 237–242. IEEE, 2013. 5

[Jac97] J. Jackson. An efficient membership-query algorithm for learning DNF with respect to
the uniform distribution. Journal of Computer and System Sciences, 55:414–440, 1997.
3

[KKL88] Jeff Kahn, Gil Kalai, and Nathan Linial. The influence of variables on boolean functions.
In Proc. 29th Annual IEEE Symposium on Foundations of Computer Science, pages 68–
80, 1988. 1

[KL05] Tali Kaufman and Simon Litsyn. Almost orthogonal linear codes are locally testable.
In Proc. 46th Annual IEEE Symposium on Foundations of Computer Science, pages
317–326. IEEE, 2005. 6

[KL08] Tali Kaufman and Shachar Lovett. Worst case to average case reductions for polyno-
mials. In Proc. 49th Annual IEEE Symposium on Foundations of Computer Science,
pages 166–175, 2008. 2

[KM93a] D. Koller and N. Megiddo. Constructing small sample spaces satisfying given con-
straints. In Proc. 25th Annual ACM Symposium on the Theory of Computing, pages
268–277, 1993. 1

[KM93b] E. Kushilevitz and Y. Mansour. Learning decision trees using the Fourier spectrum.
SIAM Journal of Computing, 22(6):1331–1348, 1993. 3

[KR06] Tali Kaufman and Dana Ron. Testing polynomials over general fields. SIAM J. on
Comput., 36(3):779–802, 2006. 7, 10

[KS08] Tali Kaufman and Madhu Sudan. Algebraic property testing: the role of invariance. In
Proc. 40th Annual ACM Symposium on the Theory of Computing, pages 403–412, 2008.
1, 5, 6

22

http://arxiv.org/abs/0911.5681


[MOO10] Elchanan Mossel, Ryan ODonnell, and Krzysztof Oleszkiewicz. Noise stability of func-
tions with low influences: Invariance and optimality. Ann. of Math., 171(1), 2010.
1

[NN93] Joseph Naor and Moni Naor. Small-bias probability spaces: efficient constructions and
applications. SIAM J. on Comput., 22(4):838–856, 1993. Earlier version in STOC’90.
1

[NS05] Michael Navon and Alex Samorodnitsky. On delsarte’s linear programming bounds for
binary codes. In Proc. 46th Annual IEEE Symposium on Foundations of Computer
Science, pages 327–338, 2005. 1

[PW04] R. Pellikaan and X. Wu. List decoding of q-ary Reed-Muller codes. IEEE Transactions
on Information Theory, 50(4):679–682, 2004. 3

[RS96] Ronitt Rubinfeld and Madhu Sudan. Robust characterizations of polynomials with
applications to program testing. SIAM J. on Comput., 25:252–271, 1996. 4, 5

[SS71] Arnold Schönhage and Volker Strassen. Schnelle multiplikation grosser zahlen. Com-
puting, 7:281–292, 1971. 1
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