
A Generalized Method for Proving
Polynomial Calculus Degree Lower Bounds∗

Mladen Mikša
KTH Royal Institute of Technology

Jakob Nordström
KTH Royal Institute of Technology

May 4, 2015

Abstract

We study the problem of obtaining lower bounds for polynomial calculus (PC) and polynomial
calculus resolution (PCR) on proof degree, and hence by [Impagliazzo et al. ’99] also on proof size.
[Alekhnovich and Razborov ’03] established that if the clause-variable incidence graph of a CNF
formula F is a good enough expander, then proving that F is unsatisfiable requires high PC/PCR
degree. We further develop the techniques in [AR03] to show that if one can “cluster” clauses and
variables in a way that “respects the structure” of the formula in a certain sense, then it is sufficient
that the incidence graph of this clustered version is an expander. As a corollary of this, we prove that
the functional pigeonhole principle (FPHP) formulas require high PC/PCR degree when restricted to
constant-degree expander graphs. This answers an open question in [Razborov ’02], and also implies
that the standard CNF encoding of the FPHP formulas require exponential proof size in polynomial
calculus resolution. Thus, while Onto-FPHP formulas are easy for polynomial calculus, as shown
in [Riis ’93], both FPHP and Onto-PHP formulas are hard even when restricted to bounded-degree
expanders.

1 Introduction

In one sentence, proof complexity studies how hard it is to certify the unsatifiability of formulas in con-
junctive normal form (CNF). In its most general form, this is the question of whether coNP can be
separated from NP or not, and as such it still appears almost completely out of reach. However, if one
instead focuses on concrete proof systems, which can be thought of as restricted models of (nondeter-
ministic) computation, then fruitful study is possible.

1.1 Resolution and Polynomial Calculus

Perhaps the most well-studied proof system in proof complexity is resolution [Bla37], in which one
derives new disjunctive clauses from a CNF formula until an explicit contradiction is reached, and for
which numerous exponential lower bounds on proof size have been shown (starting with [Hak85, Urq87,
CS88]). Many of these lower bounds can be established by instead studying the width of proofs, i.e.,
the size of a largest clause appearing in the proofs, and arguing that any resolution proof for a certain
formula must contain a large clause. It then follows from a result by Ben-Sasson and Wigderson [BW01]
that any resolution proof must also consist of very many clauses. Research since [BW01] has led to a
well-developed machinery for showing width lower bounds, and hence also size lower bounds.

The focus of the current paper is the slightly more general proof system polynomial calculus resolu-
tion (PCR). This proof system was introduced by Clegg et al. [CEI96] in a slightly weaker form that is
usually referred to as polynomial calculus (PC) and was later extended by Alekhnovich et al. [ABRW02].

∗This is the full-length version of the paper with the same title to appear in Proceedings of the 30th Annual Computational
Complexity Conference (CCC ’15).

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 78 (2015)

A GENERALIZED METHOD FOR PROVING PC DEGREE LOWER BOUNDS

In PC and PCR clauses are translated to multilinear polynomials over some (fixed) field F, and a CNF
formula F is shown to be unsatisfiable by proving that the constant 1 lies in the ideal generated by the
polynomials corresponding to the clauses of F . Here the size of a proof is measured as the number
of monomials in a proof when all polynomials are expanded out as linear combinations of monomials,
and the width of a clause corresponds to the (total) degree of the polynomial representing the clause.
Briefly, the difference between PC and PCR is that the latter proof system has separate formal variables
for positive and negative literals over the same variable. Thanks to this, one can encode wide clauses into
polynomials compactly regardless of the sign of the literals in the clauses, which allows PCR to simulate
resolution efficiently. With respect to the degree measure polynomial calculus and polynomial calculus
resolution are exactly the same, and furthermore the degree needed to prove in polynomial calculus that
a formula is unsatisfiable is at most the width required in resolution.

In a work that served, interestingly enough, as a precursor to [BW01], Impagliazzo et al. [IPS99]
showed that strong lower bounds on the degree of PC proofs are sufficient to establish strong size lower
bounds. The same proof goes through for PCR, and hence any lower bound on proof size obtained via a
degree lower bound applies to both PC and PCR. In this paper, we will therefore be somewhat sloppy in
distinguishing the two proof systems, sometimes writing “polynomial calculus” to refer to both systems
when the results apply to both PC and PCR.

In contrast to the situation for resolution after [BW01], the paper [IPS99] has not been followed by
a corresponding development of a generally applicable machinery for proving degree lower bounds. For
fields of characteristic distinct from 2 it is sometimes possible to obtain lower bounds by doing an affine
transformation from {0, 1} to the “Fourier basis” {−1,+1}, an idea that seems to have appeared first
in [Gri98, BGIP01]. For fields of arbitrary characteristic Alekhnovich and Razborov [AR03] developed
a powerful technique for general systems of polynomial equations, which when restricted to the standard
encoding of CNF formulas F yields that polynomial calculus proofs require high degree if the corre-
sponding bipartite clause-variable incidence graphs G(F) are good enough expanders. There are many
formula families for which this is not true, however. One can have a family of constraint satisfaction
problems where the constraint-variable incidence graph is an expander—say, for instance, for an unsat-
isfiable set of linear equations mod 2—but where each constraint is then translated into several clauses
when encoded into CNF, meaning that the clause-variable incidence graph G(F) will no longer be ex-
panding. For some formulas this limitation is inherent—it is not hard to see that an inconsistent system of
linear equations mod 2 is easy to refute in polynomial calculus over F2, and so good expansion for the
constraint-variable incidence graph should not in itself be sufficient to imply hardness in general—but
in other cases it would seem that some kind of expansion of this sort should still be enough, “morally
speaking,” to guarantee that the corresponding CNF formulas are hard.1

1.2 Pigeonhole Principle Formulas

One important direction in proof complexity, which is the reason research in this area was initiated
by Cook and Reckhow [CR79], has been to prove superpolynomial lower bounds on proof size for
increasingly stronger proof systems. For proof systems where such lower bounds have already been
obtained, however, such as resolution and polynomial calculus, a somewhat orthogonal research direction
has been to try to gain a better understanding of the strengths and weaknesses of a given proof system
by studying different combinatorial principles (encoded in CNF) and determining how hard they are to
prove for this proof system.

1In a bit more detail, what is shown in [AR03] is that if the constraint-variable incidence graph for a set of polynomial
equations is a good expander, and if these polynomials have high immunity—i.e., do not imply other polynomials of signif-
icantly lower degree—then proving that this set of polynomial equations is inconsistent in polynomial calculus requires high
degree. CNF formulas automatically have maximal immunity since a clause translated into a polynomial does not have any
consequences of degree lower than the width of the clause in question, and hence expansion of the clause-variable incidence
graph is sufficient to imply hardness for polynomial calculus. Any polynomial encoding of a linear equation mod 2 has a low-
degree consequence over F2, however—namely, the linear equation itself—and this is why [AR03] (correctly) fails to prove
lower bounds in this case.

2

1 Introduction

It seems fair to say that by far the most extensively studied such combinatorial principle is the pigeon-
hole principle. This principle is encoded into CNF as unsatisfiable formulas claiming thatm pigeons can
be mapped in a one-to-one fashion into n holes for m > n, but there are several choices exactly how to
do this encoding. The most basic pigeonhole principle (PHP) formulas have clauses saying that every
pigeon gets at least one pigeonhole and that no hole contains two pigeons. While these formulas are
already unsatisfiable for m ≥ n + 1, they do not a priori rule out that there might be “fat” pigeons re-
siding in several holes. The functional pigeonhole principle (FPHP) formulas perhaps correspond more
closely to our intuitive understanding of the pigeonhole principle in that they also contain functionality
clauses specifying that every pigeon gets exactly one pigeonhole and not more. Another way of making
the basic PHP formulas more constrained is to add onto clauses requiring that every pigeonhole should
get a pigeon, yielding so-called onto-PHP formulas. Finally, the most restrictive encoding, and hence
the hardest one when it comes to proving lower bounds, are the onto-FPHP formulas containing both
functionality and onto clauses, i.e., saying that the mapping from pigeons to pigeonholes is a perfect
matching. Razborov’s survey [Raz02] gives a detailed account of these different flavours of the pigeon-
hole principle formulas and results for them with respect to various proof systems—we just quickly
highlight some facts relevant to this paper below.

For the resolution proof system there is not much need to distinguish between the different PHP
versions discussed above. The lower bound by Haken [Hak85] for formulas with m = n + 1 pi-
geons can be made to work also for onto-FPHP formulas, and more recent works by Raz [Raz04a] and
Razborov [Raz03, Raz04b] show that the formulas remain exponentially hard (measured in the number
of pigeonholes n) even for arbitrarily many pigeons m.

Interestingly enough, for polynomial calculus the story is very different. The first degree lower
bounds were proven by Razborov [Raz98], but for a different encoding than the standard translation
from CNF, since translating wide clauses yields initial polynomials of high degree. Alekhnovich and
Razborov [AR03] proved lower bounds for a 3-CNF version of the pigeonhole principle, from which
it follows that the standard CNF encoding requires proofs of exponential size. However, as shown
by Riis [Rii93] the onto-FPHP formulas with m = n + 1 pigeons are easy for polynomial calculus.
And while the encoding in [Raz98] also captures the functionality restriction in some sense, it has re-
mained open whether the standard CNF encoding of functional pigeonhole principle formulas translated
to polynomials is hard (this question has been highlighted, for instance, in Razborov’s open problems
list [Raz15]).

Another way of modifying the pigeonhole principle is to restrict the choices of pigeonholes for each
pigeon by defining the formulas over a bipartite graph H = (U

.
∪ V,E) with |U | = m and |V | = n and

requiring that each pigeon u ∈ U goes to one of its neighbouring holes in N(u) ⊆ V . If the graph H
has constant left degree, the corresponding graph pigeonhole principle formula has constant width and a
linear number of variables, which makes it possible to apply [BW01, IPS99] to obtain exponential proof
size lower bounds from linear width/degree lower bounds. A careful reading of the proofs in [AR03]
reveals that this paper establishes linear polynomial calculus degree lower bounds (and hence exponential
size lower bounds) for graph PHP formulas, and in fact also graph Onto-PHP formulas, over constant-
degree expanders H . Razborov lists as one of the open problems in [Raz02] whether this holds also for
graph FPHP formulas, i.e., with functionality clauses added, from which exponential lower bounds on
polynomial calculus proof size for the general FPHP formulas would immediately follow.

1.3 Our Results

We revisit the technique developed in [AR03] for proving polynomial calculus degree lower bounds,
restricting our attention to the special case when the polynomials are obtained by the canonical translation
of CNF formulas.

Instead of considering the standard bipartite clause-variable incidence graph G(F) of a CNF for-
mula F (with clauses on the left, variables on the right, and edges encoding that a variable occurs in a
clause) we construct a new graph G′ by clustering several clauses and/or variables into single vertices,
reflecting the structure of the combinatorial principle the CNF formula F is encoding. The edges in this

3

A GENERALIZED METHOD FOR PROVING PC DEGREE LOWER BOUNDS

new graph G′ are the ones induced by the original graph G(F) in the natural way, i.e., there is an edge
from a left cluster to a right cluster in G′ if any clause in the left cluster has an edge to any variable in the
right cluster in G(F). We remark that such a clustering is already implicit in, for instance, the resolution
lower bounds in [BW01] for Tseitin formulas (which is essentially just a special form of unsatisfiable
linear equations) and graph PHP formulas, as well as in the graph PHP lower bound for polynomial
calculus in [AR03].

We then show that if this clustering is done in the right way, the proofs in [AR03] still go through
and yield strong polynomial calculus degree lower bounds when G′ is a good enough expander.2 It is
clear that this cannot work in general—as already discussed above, any inconsistent system of linear
equations mod 2 is easy to refute in polynomial calculus over F2, even though for a random instance of
this problem the clauses encoding each linear equation can be clustered to yield an excellent expanderG′.
Very informally (and somewhat incorrectly) speaking, the clustering should be such that if a cluster of
clauses F ′ on the left is a neighbour of a variable cluster V on the right, then there should exist an
assignment ρ to V such that ρ satisfies all of F ′ and such that for the clauses outside of F ′ they are either
satisfied by ρ or left completely untouched by ρ. Also, it turns out to be helpful not to insist that the
clustering of variables on the right should be a partition, but that we should allow the same variable to
appear in several clusters if needed (as long as the number of clusters for each variable is bounded).

This extension of the lower bound method in [AR03] makes it possible to present previously obtained
polynomial calculus degree lower bounds in [AR03, GL10, MN14] in a unified framework. Moreover, it
allows us to prove the following new results:

1. If a bipartite graph H = (U ∪̇ V,E) with |U | = m and |V | = n is a boundary expander (a.k.a.
unique-neighbour expander), then the graph FPHP formula over H requires proofs of linear poly-
nomial calculus degree, and hence exponential polynomial calculus size.

2. Since FPHP formulas can be turned into graph FPHP formulas by hitting them with a restriction,
and since restrictions can only decrease proof size, it follows that FPHP formulas require proofs
of exponential size in polynomial calculus.

This fills in the last missing pieces in our understanding of the different flavours of pigeonhole principle
formulas with n+ 1 pigeons and n holes for polynomial calculus. Namely, while Onto-FPHP formulas
are easy for polynomial calculus, both FPHP formulas and Onto-PHP formulas are hard even when
restricted to expander graphs.

1.4 Organization of This Paper

After reviewing the necessary preliminaries in Section 2, we present our extension of the Alekhnovich–
Razborov method in Section 3. In Section 4, we show how this method can be used to rederive some
previous polynomial calculus degree lower bounds as well as to obtain new degree and size lower bounds
for functional (graph) PHP formulas. We conclude in Section 5 by discussing some possible directions
for future research.

2 Preliminaries

Let us start by giving an overview of the relevant proof complexity background. This material is standard
and we refer to, for instance, the survey [Nor13] for more details.

A literal over a Boolean variable x is either the variable x itself (a positive literal) or its negation ¬x
or x (a negative literal). We define x = x. We identify 0 with true and 1 with false. We remark that this is
the opposite of the standard convention in proof complexity, but it is a more natural choice in the context
of polynomial calculus, where “evaluating to true” means “vanishing.” A clause C = a1 ∨ · · · ∨ ak is a

2For a certain twist of the definition of expander that we do not describe in full detail here in order to keep the discussion at
an informal, intuitive level. The formal description is given in Section 3.1.

4

2 Preliminaries

disjunction of literals. A CNF formula F = C1 ∧ · · · ∧Cm is a conjunction of clauses. The width W(C)
of a clause C is the number of literals |C| in it, and the width W(F) of the formula F is the maximum
width of any clause in the formula. We think of clauses and CNF formulas as sets, so that order is
irrelevant and there are no repetitions. A k-CNF formula has all clauses of size at most k, where k is
assumed to be some fixed constant.

In polynomial calculus resolution the goal is to prove the unsatisfiability of a CNF formula by rea-
soning with polynomials from a polynomial ring F[x, x, y, y, . . .] (where x and x are viewed as distinct
formal variables) over some fixed field F. The results in this paper hold for all fields F regardless of char-
acteristic. In what follows, a monomial m is a product of variables and a term t is a monomial multiplied
by an arbitrary non-zero field element.

Definition 2.1 (Polynomial calculus resolution (PCR) [CEI96, ABRW02]). A polynomial calculus
resolution (PCR) refutation π : F `⊥ of a CNF formula F (also referred to as a PCR proof for F) over
a field F is an ordered sequence of polynomials π = (P1, . . . , Pτ), expanded out as linear combinations
of monomials, such that Pτ = 1 and each line Pi, 1 ≤ i ≤ τ , is either

• a monomial
∏
x∈L+ x ·

∏
y∈L− y encoding a clause

∨
x∈L+ x ∨

∨
y∈L− y in F (a clause axiom);

• a Boolean axiom x2 − x or complementarity axiom x+ x− 1 for any variable x;

• a polynomial obtained from one or two previous polynomials in the sequence by linear combina-
tion Q R

αQ+βR or multiplication Q
xQ for any α, β ∈ F and any variable x.

If we drop complementarity axioms and encode each negative literal x as (1 − x), the proof system is
called polynomial calculus (PC).

The size S (π) of a PC/PCR refutation π = (P1, . . . , Pτ) is the number of monomials in π (counted
with repetitions),3 the degree Deg(π) is the maximal degree of any monomial appearing in π, and the
length L(π) is the number τ of polynomials in π. Taking the minimum over all PCR refutations of a
formula F , we define the size SPCR(F ` ⊥), degree DegPCR(F ` ⊥), and length LPCR(F ` ⊥) of
refuting F in PCR (and analogously for PC).

We write Vars(C) and Vars(m) to denote the set of all variables appearing in a clause C or mono-
mial (or term) m, respectively and extend this notation to CNF formulas and polynomials by taking
unions. We use the notation 〈P1, . . . , Pm〉 for the ideal generated by the polynomials Pi, i ∈ [m]. That
is, 〈P1, . . . , Pm〉 is the minimal subset of polynomials containing all Pi that is closed under addition
and multiplication by any polynomial. One way of viewing a polynomial calculus (PC or PCR) refu-
tation is as a calculation in the ideal generated by the encodings of clauses in F and the Boolean and
complementarity axioms. It can be shown that such an ideal contains 1 if and only if F is unsatisfiable.

As mentioned above, we have DegPCR(F ` ⊥) = DegPC(F ` ⊥) for any CNF formula F . This
claim can essentially be verified by taking any PCR refutation of F and replacing all occurrences of y
by (1− y) to obtain a valid PC refutation in the same degree. Hence, we can drop the subscript from the
notation for the degree measure. We have the following relation between refutation size and refutation
degree (which was originally proven for PC but the proof of which also works for PCR).

Theorem 2.2 ([IPS99]). Let F be an unsatisfiable CNF formula of width W(F) over n variables. Then

SPCR(F `⊥) = exp

(
Ω

(
(Deg (F `⊥)−W(F))2

n

))
.

Thus, for k-CNF formulas it is sufficient to prove strong enough lower bounds on the PC degree of
refutations to establish strong lower bounds on PCR proof size.

3We remark that the natural definition of size is to count monomials with repetition, but all lower bound techniques known
actually establish slightly stronger lower bounds on the number of distinct monomials.

5

A GENERALIZED METHOD FOR PROVING PC DEGREE LOWER BOUNDS

Furthermore, it will be convenient for us to simplify the definition of PC so that axioms x2 − x
are always applied implicitly whenever possible. We do this by defining the result of the multipli-
cation operation to be the multilinearized version of the product. This can only decrease the degree
(and size) of the refutation, and is in fact how polynomial calculus is defined in [AR03]. Hence, from
now on whenever we refer to polynomials and monomials we mean multilinear polynomials and mul-
tilinear monomials, respectively, and polynomial calculus is defined over the (multilinear) polynomial
ring F[x, y, z, . . .]/〈x2 − x, y2 − y, z2 − z, . . .〉.

It might be worth noticing that for this modified definition of polynomial calculus it holds that any
(unsatisfiable) k-CNF formula can be refuted in linear length (and hence, in constrast to resolution, the
size of refutations, rather than the length, is the right measure to focus on). This is not hard to show, and
in some sense is probably folklore, but since it does not seem to be too widely known we state it for the
record and provide a proof.

Proposition 2.3. Any unsatisfiable k-CNF formula F has a (multilinear) polynomial calculus refutation
of length linear in the size of the formula F .

Proof. We show by induction how to derive polynomials Pj = 1 −
∏j
i=1(1 − Ci) in length linear in j,

where we identify the clause Ci in F =
∧m
i=1Ci with the polynomial encoding of this clause. The end

result is the polynomial Pm = 1−
∏m
i=1(1− Ci). As F is unsatisfiable, for every 0-1 assignment there

is at least one Ci that evaluates to 1 and hence Pm evaluates to 1. Thus, Pm is equal to 1 on all 0-1
assignments. However, it is a basic fact that every function f : {0, 1}n → F is uniquely representable
as a multilinear polynomial in F[x1, . . . , xn] (since the multilinear monomials span this vector space and
are linearly independent, they form a basis). Therefore, it follows that Pm is syntactically equal to the
polynomial 1.

The base case of the induction is the polynomial P1 that is equal to C1. To prove the induction step,
we need to show how to derive

Pj+1 = 1−
j+1∏
i=1

(1− Ci) = 1− (1− Cj+1)(1− Pj) = Pj + Cj+1 − Cj+1Pj (2.1)

from Pj and Cj+1 in a constant number of steps. To start, we derive Cj+1Pj from Pj , which can be
done with a constant number of multiplications and additions since the width/degree of Cj+1 is upper-
bounded by the constant k. We derive Pj+1 in two more steps by first taking a linear combination of Pj
and Cj+1Pj to get Pj − Cj+1Pj and then adding Cj+1 to this to obtain Pj − Cj+1Pj + Cj+1 = Pj+1.
The proposition follows.

We will also need to use restrictions. A restriction ρ on F is a partial assignment to the variables
of F . We use Dom(ρ) to denote the set of variables assigned by ρ. In a restricted formula F�ρ all clauses
satisfied by ρ are removed and all other clauses have falsified literals removed. For a PC refutation π
restricted by ρ we have that if ρ satisfies a literal in a monomial, then that monomial is set to 0 and
vanishes, and all falsified literals in a monomial get replaced by 1 and disappear. It is not hard to see that
if π is a PC (or PCR) refutation of F , then π�ρ is a PC (or PCR) refutation of F �ρ, and this restricted
refutation has at most the same size, degree, and length as the original refutation.

3 A Generalization of the Alekhnovich–Razborov Method for CNFs

Many lower bounds in proof complexity are proved by arguing in terms of expansion. One common
approach is to associate a bipartite graph G(F) with the CNF formula F with clauses on one side and
variables on the other and with edges encoding that a variable occurs in a clause (the so-called clause-
variable incidence graph mentioned in the introduction). The method we present below, which is an
extension of the techniques developed by Alekhnovich and Razborov [AR03] (but restricted to the special
case of CNF formulas), is a variation on this theme. As already discussed, however, we will need a
slightly more general graph construction where clauses and variables can be grouped into clusters. We
begin by describing this construction.

6

3 A Generalization of the Alekhnovich–Razborov Method for CNFs

3.1 A Generalized Clause-Variable Incidence Graph

The key to our construction of generalized clause-variable incidence graphs is to keep track of how
clauses in a CNF formula are affected by partial assignments.

Definition 3.1 (Respectful assignments and variable sets). We say that a partial assignment ρ respects
a CNF formula E, or that ρ is E-respectful, if for every clause C in E either Vars(C) ∩ Dom(ρ) = ∅
or ρ satisfies C. A set of variables V respects a CNF formula E if there exists an assignment ρ with
Dom(ρ) = V that respects E.

Example 3.2. Consider the CNF formula E = (x1 ∧ x2) ∧ (x1 ∧ x3) ∧ (x1 ∧ x4) ∧ (x1 ∧ x5) and the
subsets of variables V1 = {x1, x2, x3} and V2 = {x4, x5}. The assignment ρ2 to V2 setting x4 and x5
to true respects E since it satisfies the clauses containing these variables, and hence V2 is E-respectful.
However, V1 is notE-respectful since setting x1 will affect all clauses inE but cannot satisfy both x1∧x4
and x1 ∧ x5.

Definition 3.3 (Respectful satisfaction). Let F and E be CNF formulas and let V be a set of variables.
We say that F is E-respectfully satisfiable by V if there exists a partial assignment ρ with Dom(ρ) = V
that satisfies F and respects E. Such an assignment ρ is said to E-respectfully satisfy F .

Using a different terminology, Definition 3.1 says that ρ is an autarky for E, meaning that ρ satisfies
all clauses in E which it touches, i.e., that E �ρ⊆ E after we remove all satisfied clauses in E �ρ.
Definition 3.3 ensures that the autarky ρ satisfies the formula F .

Recall that we identify a CNF formula
∧m
i=1Ci with the set of clauses {Ci | i ∈ [m]}. In the rest of

this section we will switch freely between these two perspectives. We also change to the notation F for
the input CNF formula, to free up other letters that will be needed in notation introduced below.

To build a bipartite graph representing the CNF formula F , we will group the formula into subfor-
mulas (i.e., subsets of clauses). In what follows, we write U to denote the part of F that will form the left
vertices of the constructed bipartite graph, whileE denotes the part ofF which will not be represented in
the graph but will be used to enforce respectful satisfaction. In more detail, U is a family of subformulas
F of F where each subformula is one vertex on the left-hand side of the graph. We also consider the
variables of F to be divided into a family V of subsets of variables V . In our definition, U and V do not
need to be partitions of clauses and variables in F , respectively. This is not too relevant for U because
we will always define it as a partition, but it turns out to be useful in our applications to have sets in V
share variables. The next definition describes the bipartite graph that we build and distinguishes between
two types of neighbour relations in this graph.

Definition 3.4 (Bipartite (U ,V)E-graph). Let E be a CNF formula, U be a set of CNF formulas, and V
be a family of sets of variables V that respect E. Then the (bipartite) (U ,V)E-graph is a bipartite graph
with left vertices F ∈ U , right vertices V ∈ V , and edges between F and V if Vars(F) ∩ V 6= ∅. For
every edge (F, V) in the graph we say that F and V are E-respectful neighbours if F is E-respectfully
satisfiable by V . Otherwise, they are E-disrespectful neighbours.

We will often write (U ,V)E as a shorthand for the graph defined by U , V , and E as above. We
will also use standard graph notation and write N(F) to denote the set of all neighbours V ∈ V of a
vertex/CNF formula F ∈ U . It is important to note that the fact that F and V areE-respectful neighbours
can be witnessed by an assignment that falsfies other subformulas F ′ ∈ U \ {F}.

We can view the formation of the (U ,V)E-graph as taking the clause-variable incidence graph G(F)
of the CNF formula F , throwing out a part of F , which we denote E, and clustering the remaining
clauses and variables into U and V . The edge relation in the (U ,V)E-graph follows naturally from this
view, as we put an edge between two clusters if there is an edge between any two elements of these
clusters. The only additional information we need to keep track of is which clause and variable clusters
are E-respectful neighbours or not.

7

A GENERALIZED METHOD FOR PROVING PC DEGREE LOWER BOUNDS

Definition 3.5 (Respectful boundary). For a (U ,V)E-graph and a subset U ′ ⊆ U , the E-respectful
boundary ∂E(U ′) of U ′ is the family of variable sets V ∈ V such that each V ∈ ∂E(U ′) is anE-respectful
neighbour of some clause set F ∈ U ′ but is not a neighbour (respectful or disrespectful) of any other
clause set F ′ ∈ U ′ \ {F}.

It will sometimes be convenient to interpret subsets U ′ ⊆ U as CNF formulas
∧
F∈U ′

∧
C∈F C, and

we will switch back and forth between these two interpretations as seems most suitable. We will show
that a formula F =

∧
F∈U

∧
C∈F C ∧E = U ∧E is hard for polynomial calculus with respect to degree

if the (U ,V)E-graph has a certain expansion property as defined next.

Definition 3.6 (Respectful boundary expander). A (U ,V)E-graph is said to be an (s, δ, ξ, E)-respectful
boundary expander, or just an (s, δ, ξ, E)-expander for brevity, if for every set U ′ ⊆ U , |U ′| ≤ s, it holds
that |∂E(U ′)| ≥ δ|U ′| − ξ.

Note that an (s, δ, ξ, E)-respectful boundary expander is a standard bipartite boundary expander
except for two modifications:

• We measure expansion not in terms of the whole boundary but only in terms of the respectful
boundary4 as described in Definition 3.5.

• Also, the size of the boundary |∂E(U ′)| on the right does not quite have to scale linearly with the
size of the vertex set |U ′| on the left. Instead, we allow an additive loss ξ in the expansion. In our
applications, we can usually construct graphs with good enough expansion so that we can choose
ξ = 0, but for one of the results we present it will be helpful to allow a small slack here.

Before we state our main theorem we need one more technical definition, which is used to ensure
that there do not exist variables that appear in too many variable sets in V . We remark that the concept
below is also referred to as the “maximum degree” in the literature, but since we already have degrees of
polynomials and vertices in this paper we prefer a new term instead of overloading “degree” with a third
meaning.

Definition 3.7. The overlap of a variable x with respect to a family of variable sets V is ol(x,V) =
|{V ∈ V : x ∈ V }| and the overlap of V is ol(V) = maxx{ol(x,V)}, i.e., the maximum number of sets
V ∈ V containing any particular variable x.

Given the above definitions, we can state the main technical result in this paper as follows.

Theorem 3.8. Let F =
∧
F∈U

∧
C∈F C ∧ E = U ∧ E be a CNF formula for which (U ,V)E is an

(s, δ, ξ, E)-expander with overlap ol(V) = d, and suppose furthermore that for all U ′ ⊆ U , |U ′| ≤ s,
it holds that U ′ ∧ E is satisfiable. Then any polynomial calculus refutation of F requires degree strictly
greater than (δs− 2ξ)/(2d).

In order to prove this theorem, it will be convenient to review some algebra. We do so next.

3.2 Some Algebra Basics

We will need to compute with polynomials modulo ideals, and in order to do so we need to have an
ordering of monomials (which, as we recall, will always be multilinear).

Definition 3.9 (Admissible ordering). We say that a total ordering ≺ on the set of all monomials over
some fixed set of variables is admissible if the following conditions hold:

4Somewhat intriguingly, we will not see any disrespectful neighbours in our applications in Section 4, but the concept of
respectfulness is of crucial importance for the main technical result in Theorem 3.8 to go through. One way of seeing this is
to construct a (U ,V)E-graph for an expanding set of linear equations mod 2, where U consists of the (CNF encodings of) the
equations, V consists of one variable set for each equation containing exactly the variables in this equation, and E is empty.
Then this (U ,V)E-graph has the same boundary expansion as the constraint-variable incidence graph, but Theorem 3.8 does
not apply (which it should not do) since this expansion is not respectful.

8

3 A Generalization of the Alekhnovich–Razborov Method for CNFs

• If Deg(m1) < Deg(m2), then m1 ≺ m2.

• For any m1,m2, and m such that m1 ≺ m2 and Vars(m) ∩
(
Vars(m1) ∪Vars(m2)

)
= ∅, it

holds that mm1 ≺ mm2.

Two terms t1 = α1m1 and t2 = α2m2 are ordered in the same way as their underlying monomials m1

and m2.

One example of an admissible ordering is to first order monomials with respect to their degree and
then lexicographically. For the rest of this section we only need that ≺ is some fixed but arbitrary ad-
missible ordering, but the reader can think of the degree-lexicographical ordering without any particular
loss of generality. We write m1 4 m2 to denote that m1 ≺ m2 or m1 = m2.

Definition 3.10 (Leading, reducible, and irreducible terms). For a polynomial P =
∑

i ti, the leading
term LT (P) of P is the largest term ti according to≺. Let I be an ideal over the (multilinear) polynomial
ring F[x, y, z, . . .]/〈x2 − x, y2 − y, z2 − z, . . .〉. We say that a term t is reducible modulo I if there exists
a polynomial Q ∈ I such that t = LT (Q) and that t is irreducible modulo I otherwise.

The following fact is not hard to verify.

Fact 3.11. Let I be an ideal over F[x, y, z, . . .]/〈x2 − x, y2 − y, z2 − z, . . .〉. Then any multilinear
polynomial P ∈ F[x, y, z, . . .]/〈x2 − x, y2 − y, z2 − z, . . .〉 can be written uniquely as a sum Q + R,
where Q ∈ I and R is a linear combination of irreducible terms modulo I .

This is what allows us to reduce polynomials modulo an ideal in a well-defined manner.

Definition 3.12 (Reduction operator). Let P ∈ F[x, y, z, . . .]/〈x2 − x, y2 − y, z2 − z, . . .〉 be any mul-
tilinear polynomial and let I be an ideal over F[x, y, z, . . .]/〈x2 − x, y2 − y, z2 − z, . . .〉. The reduction
operator RI is the operator that when applied to P returns the sum of irreducible termsRI(P) = R such
that P −R ∈ I .

We conclude our brief algebra review by stating two observations that are more or less immediate,
but are helpful enough for us to want to highlight them explicitly.

Observation 3.13. For any two ideals I1, I2 such that I1 ⊆ I2 and any two polynomials P , P ′ it holds
that RI2(P ·RI1(P ′)) = RI2(PP ′).

Proof. Let
P ′ = Q′ +R′ (3.1)

for Q′ ∈ I1 and R′ a linear combination of irreducible terms over I1. Let

P ·RI1(P ′) = PR′ = Q+R (3.2)

for Q ∈ I2 and R a linear combination of irreducible terms over I2. Then

PP ′ = PQ′ + PR′ = PQ′ +Q+R (3.3)

where PQ′ +Q ∈ I2. By the uniqueness in Fact 3.11, we conclude that the equality RI2(PP ′) = R =
RI2(P ·RI1(P ′)) holds.

Observation 3.14. Suppose that the term t is irreducible modulo the ideal I and let ρ be any partial
assignment of variables in Vars(t) to values in F such that t�ρ 6= 0. Then t�ρ is also irreducible modulo I .

Proof. Let mρ be the product of all variables in t assigned by ρ and let α = mρ�ρ, where by assumption
we have α 6= 0. If there is a polynomial Q ∈ I such that LT (Q) = t �ρ, then α−1mρQ ∈ I and
LT (α−1mρQ) = t, contradicting that t is irreducible.

9

A GENERALIZED METHOD FOR PROVING PC DEGREE LOWER BOUNDS

3.3 Proof Strategy

Let us now state the lemma on which we base the proof of Theorem 3.8.

Lemma 3.15 ([Raz98]). Let F be any CNF formula and D ∈ N+ be a positive integer. Suppose that
there exists a linear operator R on multilinear polynomials over Vars(F) with the following properties:

1. R(1) 6= 0.

2. R(C) = 0 for (the translations to polynomials of) all axioms C ∈ F .

3. For every term t with Deg(t) < D and every variable x it holds that R(xt) = R(xR(t)).

Then any polynomial calculus refutation of F (and hence any PCR refutation of F) requires degree
strictly greater than D.

The proof of Lemma 3.15 is not hard. The basic idea is thatR will map all axioms to 0 by property 2,
and further derivation steps in degree at most D will yield polynomials that also map to 0 by property 3
and the linearity of R. But then property 1 implies that no derivation in degree at most D can reach
contradiction.

To prove Theorem 3.8, we construct a linear operator RG that satisfies the conditions of Lemma 3.15
when the (U ,V)E-graph G is an expander. First, let us describe how we make the connection between
polynomials and the given (U ,V)E-graph. We remark that in the rest of this section we will identify a
clause C with its polynomial translation and will refer to C as a (polynomial) axiom.

Definition 3.16 (Term and polynomial neighbourhood). The neighbourhood N(t) of a term t with
respect to (U ,V)E is N(t) = {V ∈ V | Vars(t)∩ V 6= ∅}, i.e., the family of all variable sets containing
variables mentioned by t. The neighbourhood of a polynomial P =

∑
i ti is N(P) =

⋃
iN(ti), i.e., the

union of the neighbourhoods of all terms in P .

To every polynomial we can now assign a family of variable sets V ′. But we are interested in the
axioms that are needed in order to produce that polynomial. That is, given a family of variable sets V ′,
we would like to identify the largest set of axioms U ′ that could possibly have been used in a derivation
that yielded polynomials P with Vars(P) ⊆

⋃
V ∈V ′ V . This is the intuition behind the next definition.5

Definition 3.17 (Polynomial support). For a given (U ,V)E-graph and a family of variable sets V ′ ⊆ V ,
we say that a subset U ′ ⊆ U is (s,V ′)-contained if |U ′| ≤ s and ∂E(U ′) ⊆ V ′.

We define the polynomial s-support Sups(V ′) of V ′ with respect to (U ,V)E , or just s-support of V ′
for brevity, to be the union of all (s,V ′)-contained subsets U ′ ⊆ U , and the s-support Sups(t) of a term t
is defined to be the s-support of N(t).

We will usually just speak about “support” below without further qualifying this term, since the
(U ,V)E-graph G will be clear from context. The next observation follows immediately from Defini-
tion 3.17.

Observation 3.18. Support is monotone in the sense that if t ⊆ t′ are two terms, then it holds that
Sups(t) ⊆ Sups(t

′).

Once we have identified the axioms that are potentially involved in deriving P , we define the linear
operator RG as the reduction modulo the ideal generated by these axioms as in Definition 3.12. We will
show that under the assumptions in Theorem 3.8 it holds that this operator satisfies the conditions in
Lemma 3.15. Let us first introduce some notation for the set of all polynomials that can be generated
from some axioms U ′ ⊆ U .

5We remark that Definition 3.17 is a slight modification of the original definition of support in [AR03] that was proposed
by Yuval Filmus [Fil14].

10

3 A Generalization of the Alekhnovich–Razborov Method for CNFs

Definition 3.19. For a (U ,V)E-graph and U ′ ⊆ U , we write IE(U ′) to denote the ideal generated by the
polynomial axioms in U ′ ∧ E.6

Definition 3.20 ((U ,V)E-graph reduction). For a (U ,V)E-graph G, the (U ,V)E-graph reduction RG
on a term t is defined as RG(t) = RIE(Sups(t))

(t). For a polynomial P , we define RG(P) to be the linear
extension of the operator RG defined on terms.

Looking at Definition 3.20, it is not clear that we are making progress. On the one hand, we have
defined RG in terms of standard reduction operators modulo ideals, which is nice since there is a well-
developed machinery for such operators. On the other hand, it is not clear how to actually compute
using RG . The problem is that if we look at a polynomial P =

∑
i ti and want to compute RG(P), then

as we expand RG(P) =
∑

iRG(ti) we end up reducing terms in one and the same polynomial modulo
a priori completely different ideals. How can we get any sense of what P reduces to in such a case? The
answer is that if our (U ,V)E-graph is a good enough expander, then this is not an issue at all. Instead, it
turns out that we can pick a suitably large ideal containing the support of all the terms in P and reduce P
modulo this larger ideal instead without changing anything. This key result is proven in Lemma 3.25
below. To establish this lemma, we need to develop a better understanding of polynomial support.

3.4 Some Properties of Polynomial Support

A crucial technical property that we will need is that if a (U ,V)E-graph is a good expander in the sense of
Definition 3.6, then for small enough sets V ′ all (s,V ′)-contained subsets U ′ ⊆ U as per Definition 3.17
are of at most half of the allowed size.

Lemma 3.21. Let (U ,V)E be an (s, δ, ξ, E)-expander and let V ′ ⊆ V be such that |V ′| ≤ δs/2 − ξ.
Then it holds that every (s,V ′)-contained subset U ′ ⊆ U is in fact (s/2,V ′)-contained.

Proof. As |U ′| ≤ swe can appeal to the expansion property of the (U ,V)E-graph to derive the inequality
|∂E(U ′)| ≥ δ|U ′| − ξ. In the other direction, we can obtain an upper bound on the size of ∂E(U ′) by
noting that for any (s,V ′)-contained set U ′ it holds that |∂E(U ′)| ≤ |V ′|. If we combine these bounds
and use the assumption that |V ′| ≤ δs/2 − ξ, we can conclude that |U ′| ≤ s/2, which proves that U ′ is
(s/2,V ′)-contained.

Even more importantly, Lemma 3.21 now allows us to conclude that for a small enough subset V ′ on
the right-hand side of (U ,V)E it holds that in fact the whole polynomial s-support Sups(V ′) of V ′ on the
left-hand side is (s/2,V ′)-contained.

Lemma 3.22. Let (U ,V)E be an (s, δ, ξ, E)-expander and let V ′ ⊆ V be such that |V ′| ≤ δs/2 − ξ.
Then the s-support Sups(V ′) of V ′ with respect to (U ,V)E is (s/2,V ′)-contained.

Proof. We show that for any pair of (s,V ′)-contained sets U1,U2 ⊆ U their union U1 ∪ U2 is also
(s,V ′)-contained. First, by Lemma 3.21 we have |U1|, |U2| ≤ s/2 and hence |U1 ∪ U2| ≤ s. Second, it
holds that ∂E(U1), ∂E(U2) ⊆ V ′, which implies that ∂E(U1 ∪U2) ⊆ V ′, because taking the union of two
sets can only shrink the boundary. This establishes that U1 ∪ U2 is (s,V ′)-contained.

By induction on the number of (s,V ′)-contained sets we can conclude that the support Sups(V ′)
is (s,V ′)-contained as well, after which one final application of Lemma 3.21 shows that this set is
(s/2,V ′)-contained. This completes the proof.

What the next lemma says is, roughly, that if we reduce a term t modulo an ideal generated by a not
too large set of polynomials containing some polynomials outside of the support of t, then we can remove
all such polynomials from the generators of the ideal without changing the irreducible component of t.

6That is, IE(U ′) is the smallest set I of multilinear polynomials that contains all axioms in U ′ ∧E and that is closed under
addition of P1, P2 ∈ I and by multiplication of P ∈ I by any multilinear polynomial over Vars(U ∧ E) (where as before the
resulting product is implicitly multilinearized).

11

A GENERALIZED METHOD FOR PROVING PC DEGREE LOWER BOUNDS

Lemma 3.23. Let G be a (U ,V)E-graph and let t be any term. Suppose that U ′ ⊆ U is such that
U ′ ⊇ Sups(t) and |U ′| ≤ s. Then for any term t′ with N(t′) ⊆ N(Sups(t)) ∪N(t) it holds that if t′ is
reducible modulo IE(U ′), it is also reducible modulo IE(Sups(t)).

Proof. If U ′ is (s,N(t))-contained, then by Definition 3.17 it holds that U ′ ⊆ Sups(t) and there is noth-
ing to prove. Hence, assume U ′ is not (s,N(t))-contained. We claim that this implies that we can find
a subformula F ∈ U ′ \ Sups(t) with a neighbouring subset of variables V ∈

(
∂E(U ′) ∩N(F)

)
\N(t′)

in the respectful boundary of U ′ but not in the neighbourhood of t′. To argue this, note that since
|U ′| ≤ s it follows from Definition 3.17 that the reason U ′ is not (s,N(t))-contained is that there ex-
ist some F ∈ U ′ and some set of variables V ∈ N(F) such that V ∈ ∂E(U ′) \ N(t). Moreover,
the assumption U ′ ⊇ Sups(t) implies that such an F cannot be in Sups(t). Otherwise there would
exist an (s,N(t))-contained set U∗ such that F ∈ U∗ ⊆ Sups(t) ⊆ U ′, from which it would fol-
low that V ∈ ∂E(U ′) ∩ N(U∗) ⊆ ∂E(U∗) ⊆ N(t), contradicting V /∈ N(t). We have shown that
F /∈ Sups(t) ⊆ U ′ and V ∈ ∂E(U ′) ∩N(F), and by combining these two facts we can also deduce that
V /∈ N(Sups(t)), since otherwise V could not be contained in the boundary of U ′. In particular, this
means that V /∈ N(t′) ⊆ N(Sups(t)) ∪N(t), which establishes the claim made above.

Fixing F and V such that F ∈ U ′ \Sups(t) and V ∈
(
∂E(U ′)∩N(F)

)
\N(t′), our second claim is

that if F is removed from the generators of the ideal, it still holds that if t′ is reducible modulo IE(U ′),
then this term is also reducible modulo IE(U ′ \ {F}). Given this second claim we are done, since we
can then argue by induction over the elements in U ′ \ Sups(t) and remove them one by one to arrive at
the conclusion that every term t′ with N(t′) ⊆ N(Sups(t)) ∪ N(t) that is reducible modulo IE(U ′) is
also reducible modulo IE(Sups(t)), which is precisely what the lemma says.

We proceed to establish this second claim. The assumption that t′ is reducible modulo IE(U ′) means
that there exists a polynomial P ∈ IE(U ′) such that t′ = LT (P). Since P is in the ideal IE(U ′) it can be
written as a polynomial combination P =

∑
i PiCi of axioms Ci ∈ U ′ ∧ E for some polynomials Pi. If

we could hit P with a restriction that satisfies (and hence removes) F while leaving t′ and (U ′\{F})∧E
untouched, this would show that t′ is the leading term of some polynomial combination of axioms in
(U ′ \ {F}) ∧ E. This is almost what we are going to do.

As our restriction ρ we choose any assignment with domain Dom(ρ) = V that E-respectfully sat-
isfies F . Note that at least one such assignment exists since V ∈ ∂E(U ′) ∩ N(F) is an E-respectful
neighbour of F by Definition 3.5. By the choice of ρ it holds that F is satisfied, i.e., that all axioms
in F are set to 0. Furthermore, none of the axioms in U ′ \ {F} are affected by ρ since V is in the
boundary of U ′.7 As for axioms in E it is not necessarily true that ρ will leave all of them untouched,
but by assumption ρ respects E and so any axiom in E is either satisfied (and zeroed out) by ρ or is left
intact. It follows that P �ρ can be be written as a polynomial combination P �ρ=

∑
i

(
Pi�ρ

)
Ci, where

Ci ∈ (U ′ \ {F}) ∧ E, and hence P�ρ∈ IE(U ′ \ {F}).
To see that t′ is preserved as the leading term of P �ρ, note that ρ does not assign any variables in t′

since V /∈ N(t′). Hence, t′ = LT (P�ρ), as ρ can only make the other terms smaller with respect to ≺.
This shows that there is a polynomial P ′ = P �ρ∈ IE(U ′ \ {F}) with LT (P ′) = t′, and hence t′ is
reducible modulo IE(U ′ \ {F}). The lemma follows.

We need to deal with one more detail before we can prove the key technical lemma that it is possible
to reduce modulo suitably chosen larger ideals without changing the reduction operator, namely (again
roughly speaking) that reducing a term modulo an ideal does not introduce any new variables outside of
the generators of that ideal.

Lemma 3.24. Suppose that U∗ ⊆ U for some (U ,V)E-graph and let t be any term. Then it holds that
N
(
RIE(U∗)(t)

)
⊆ N(U∗) ∪N(t).

Proof. Let P = RIE(U∗)(t) be the polynomial obtained when reducing t modulo IE(U∗) and let V ∈ V
be any set such that V /∈ N(U∗) ∪N(t). We show that V /∈ N(P).

7Recalling the remark after Definition 3.4, we note that we can ignore here if ρ happens to falsify axioms in U \ U ′.

12

3 A Generalization of the Alekhnovich–Razborov Method for CNFs

By the definition of (U ,V)E-graphs there exists an assignment ρ to all of the variables in V that
respects E. Write t = Q + P with Q ∈ IE(U∗) and P a linear combination of irreducible monomials
as in Fact 3.11 and apply the restriction ρ to this equality. Note that t�ρ= t as V is not a neighbour of t.
Moreover, Q�ρ is in the ideal IE(U∗) because ρ does not set any variables in U∗ and every axiom in E
sharing variables with V is set to 0 by ρ. Thus, t can be written as t = Q′ + P �ρ, with Q′ ∈ IE(U∗).
As all terms in P are irreducible modulo IE(U∗), they remain irreducible after restricting P by ρ by
Observation 3.14. Hence, it follows that P �ρ= P by the uniqueness in Fact 3.11 and P cannot contain
any variable from V . This in turn implies that every set V ∈ N(P) is contained in N(U∗) ∪N(t).

Now we can state the formal claim that enlarging the ideal does not change the reduction operator if
the enlargement is done in the right way.

Lemma 3.25. Let G be a (U ,V)E-graph and let t be any term. Suppose that U ′ ⊆ U is such that
U ′ ⊇ Sups(t) and |U ′| ≤ s. Then it holds that RIE(U ′)(t) = RIE(Sups(t))

(t).

Proof. We prove that RIE(U ′)(t) = RIE(Sups(t))
(t) by applying the contrapositive of Lemma 3.23.

Recall that this lemma states that any term t′ with N(t′) ⊆ N(Sups(t)) ∪ N(t) that is reducible
modulo IE(U ′) is also reducible modulo IE(Sups(t)). Since every term t′ in RIE(Sups(t))

(t) is ir-
reducible modulo IE(Sups(t)) and since by applying Lemma 3.24 with U∗ = Sups(t) we have that
N(t′) ⊆ N(Sups(t)) ∪ N(t), it follows that t′ is also irreducible modulo IE(U ′). This shows that
RIE(U ′)(t) = RIE(Sups(t))

(t) as claimed, and the lemma follows.

3.5 Putting the Pieces in the Proof Together

Now we have just a couple of lemmas left before we can prove Theorem 3.8, which as discussed above
will be established by appealing to Lemma 3.15.

Lemma 3.26. Let (U ,V)E be an (s, δ, ξ, E)-expander with overlap ol(V) = d. Then for any term t with
Deg(t) ≤ (δs− 2ξ)/(2d) it holds that |Sups(t)| ≤ s/2.

Proof. Because of the bound on the overlap ol(V) we have that the size of N(t) is bounded by δs/2− ξ.
An application of Lemma 3.22 now yields the desired bound |Sups(t)| ≤ s/2.

Lemma 3.27. Let (U ,V)E be an (s, δ, ξ, E)-expander with overlap ol(V) = d. Then for any term t with
Deg(t) < b(δs − 2ξ)/(2d)c, any term t′ occurring in RIE(Sups(t))

(t), and any variable x, it holds that
RIE(Sups(xt

′))(xt
′) = RIE(Sups(xt))

(xt′).

Proof. We prove the lemma by showing that Sups(xt
′) ⊆ Sups(xt) and that |Sups(xt)| ≤ s, which

then allows us to apply Lemma 3.25. To prove that Sups(xt
′) is a subset of Sups(xt), we will show that

Sups(xt
′) ∪ Sups(xt) is (s,N(xt))-contained in the sense of Definition 3.17. From this it follows that

Sups(xt
′) ⊆ Sups(xt

′) ∪ Sups(xt) = Sups(xt).
Towards this goal, as Deg(t′) ≤ Deg(t) we first observe that we can apply Lemma 3.26 to deduce

that |Sups(xt′)| ≤ s/2 and |Sups(xt)| ≤ s/2, and hence |Sups(xt′) ∪ Sups(xt)| ≤ s, which satisfies
the size condition for containment. It remains to show that ∂E

(
Sups(xt

′) ∪ Sups(xt)
)
⊆ N(xt). From

Lemma 3.24 we have that N(t′) ⊆ N(Sups(t)) ∪ N(t). As N(xt′) = N(x) ∪ N(t′) and Sups(t) ⊆
Sups(xt) by the monotonicity in Observation 3.18, it follows that

N(xt′) = N(x) ∪N(t′) ⊆ N(x) ∪N(Sups(t)) ∪N(t) ⊆ N(Sups(xt)) ∪N(xt) . (3.4)

If we now consider the E-respectful boundary of the set Sups(xt
′) ∪ Sups(xt), it holds that

∂E
(
Sups(xt

′) ∪ Sups(xt)
)

=

=
(
∂E
(
Sups(xt

′)
)
\N (Sups(xt))

)
∪
(
∂E (Sups(xt)) \N

(
Sups(xt

′)
))

⊆
(
N
(
xt′
)
\N (Sups(xt))

)
∪
(
N (xt) \N

(
Sups(xt

′)
))

⊆ N (xt) ,

(3.5)

13

A GENERALIZED METHOD FOR PROVING PC DEGREE LOWER BOUNDS

where the first line follows from the boundary definition in Definition 3.5, the second line follows by
the property of s-support that ∂E(Sups(xt)) ⊆ N(xt), and the last line follows from (3.4). Hence,
Sups(xt

′) ∪ Sups(xt) is (s,N(xt))-contained.
As discussed above, we can now apply Lemma 3.25 to reach the desired conclusion that the equality

RIE(Sups(xt
′))(xt

′) = RIE(Sups(xt))
(xt′) holds.

Now we can prove our main technical theorem.

Proof of Theorem 3.8. Recall that the assumptions of the theorem are that we have a (U ,V)E-graph for
a CNF formula F =

∧
F∈U F ∧ E such that (U ,V)E is an (s, δ, ξ, E)-expander with overlap ol(V) = d

and that furthermore for all U ′ ⊆ U , |U ′| ≤ s, it holds that
∧
F∈U ′ F ∧E is satisfiable. We want to prove

that no polynomial calculus derivation from
∧
F∈U F ∧ E = U ∧ E of degree at most (δs − 2ξ)/(2d)

can reach contradiction.
First, if removing all axiom clauses from U ∧ E with degree strictly greater than (δs− 2ξ)/(2d)

produces a satisfiable formula, then the lower bound trivially holds. Otherwise, we can remove these
large-degree axioms and still be left with a (U ,V)E-graph that satisfies the conditions above. In order to
see this, let us analyze what happens to the (U ,V)E-graph if an axiom is removed from the formula.

Removing axioms from E only relaxes the conditions on respectful satisfiability while keeping all
edges in the graph, so the conditions of the theorem still hold. In removing axioms from U we have
two cases: either we remove all axioms from some subformula F ∈ U or we remove only a part of this
subformula. In the former case, it is clear that we can remove the vertex F from the structure without
affecting any of the conditions. In the latter case, we claim that any set V ∈ V that is an E-respectful
neighbour of F remains an E-respectful neighbour of the formula F ′ in which large degree axioms have
been removed. Clearly, the same assignments to V that satisfy F also satisfy F ′ ⊆ F . Also, V must still
be a neighbour of F ′, for otherwise F ′ would not share any variables with V , which would imply that
no assignment to V could satisfy F ′ and hence F . This would contradict the assumption that V is an
E-respectful neighbour of F . Hence, we conclude that removal of large-degree axioms can only improve
the E-respectful boundary expansion of the (U ,V)E-graph.

Thus, let us focus on a (U ,V)E-graph G that has all axioms of degree at most (δs − 2ξ)/(2d). We
want to show that the operator RG from Definition 3.20 satisfies the conditions of Lemma 3.15, from
which Theorem 3.8 immediately follows. We can note right away that the operator RG is linear by
construction.

To prove that RG(1) = RIE(Sups(1))
(1) 6= 0, we start by observing that the size of the s-support of 1

is upper-bounded by s/2 according to Lemma 3.26. Using the assumption that for every subset U ′ of U ,
|U ′| ≤ s, the formula U ′ ∧ E is satisfiable, it follows that 1 is not in the ideal IE(Sups(1)) and hence
RIE(Sups(1))

(1) 6= 0.
We next show that RG(C) = 0 for any axiom clause C ∈ U ∧ E (where we recall that we identify a

clause C with its translation into a linear combination of monomials). By the preprocessing step above
it holds that the degree of C is bounded by (δs − 2ξ)/(2d), from which it follows by Lemma 3.26 that
the size of the s-support of every term in C is bounded by s/2. Since C is the polynomial encoding
of a clause, the leading term LT (C) contains all the variables appearing in C.8 Hence, the s-support
Sups(LT (C)) of the leading term contains the s-support of every other term in C by Observation 3.18
and we can use Lemma 3.25 to conclude that RG(C) = RIE(Sups(LT (C)))(C). If C ∈ E, this means we
are done because IE(Sups(LT (C))) contains all of E, implying that RG(C) = 0.

For C ∈ U we cannot immediately argue that C reduces to 0, since (in contrast to [AR03]) it is not
immediately clear that Sups(LT (C)) contains C. The problem here is that we might worry that C is part
of some subformula F ∈ U for which the boundary ∂E(F) is not contained in N(LT (C)) = Vars(C),
and hence there is no obvious reason why C should be a member of any (s,N(LT (C)))-contained
subset of U . However, in view of Lemma 3.25 (applied, strictly speaking, once for every term in C)
we can choose some F ∈ U such that C ∈ F and add it to the s-support Sups(LT (C)) to obtain a set

8We remark that this is the only place in the proof where we are using that C is (the encoding of) a clause.

14

3 A Generalization of the Alekhnovich–Razborov Method for CNFs

U ′ = Sups(LT (C)) ∪ {F} of size |U ′| ≤ s/2 + 1 ≤ s such that RIE(Sups(LT (C)))(C) = RIE(U ′)(C).
Since IE(U ′) contains C as a generator we conclude that RG(C) = RIE(U ′)(C) = 0 also for C ∈ U .9

It remains to prove the last property in Lemma 3.15 stating thatRG(xt) = RG(xRG(t)) for any term t
such that Deg(t) < b(δs− 2ξ)/(2d)c. We can see that this holds by studying the following sequence of
equalities:

RG(xRG(t)) =
∑

t′∈RG(t)

RG(xt′)
[
by linearity

]
=

∑
t′∈RG(t)

RIE(Sups(xt
′))(xt

′)
[
by definition of RG

]
=

∑
t′∈RG(t)

RIE(Sups(xt))
(xt′)

[
by Lemma 3.27

]
= RIE(Sups(xt))

(xRG(t))
[
by linearity

]
= RIE(Sups(xt))

(xRIE(Sups(t))
(t))

[
by definition of RG

]
= RIE(Sups(xt))

(xt)
[
by Observation 3.13

]
= RG(xt)

[
by definition of RG

]
Thus, RG satisfies all the properties of Lemma 3.15, from which the theorem follows.

Let us next show that if the slack ξ in Theorem 3.8 is zero, then the condition that U ′∧E is satisfiable
for sufficiently small U ′ is already implied by the expansion.

Lemma 3.28. If a (U ,V)E-graph is an (s, δ, 0, E)-expander and Vars(U ∧ E) =
⋃
V ∈V V , then for

any U ′ ⊆ U , |U ′| ≤ s, the formula U ′ ∧ E is satisfiable.

Proof. Let U ′ ⊆ U be any subset of size at most s. First, we show that we can find a subset V ′ ⊆ N(U ′)
and an assignment ρ to the set of variables

⋃
V ∈V ′ V such that ρ E-respectfully satisfies U ′. We do this

by induction on the number of formulas in U ′. As the (U ,V)E-graph is an (s, δ, 0, E)-expander it follows
that |∂E(U ′)| ≥ δ|U ′| > 0 for any non-empty subset U ′ and hence there exists a formula F ∈ U ′ and
a variable set V ′ such that V ′ is an E-respectful neighbour of F and is not a neighbour of any formula
in U ′ \ {F}. Therefore, there is an assignment ρ to the variables in V ′ that E-respectfully satisfies F .
By the induction hypothesis there also exists an assignment ρ′ that E-respectfully satisfies U ′ \ {F} and
does not assign any variables in V ′ as V ′ /∈ N(U ′ \ {F}). Hence, by extending the assignment ρ′ to the
variables in V ′ according to the assignment ρ, we create an assignment to the union of variables in some
subset of N(U ′) that E-respectfully satisfies U ′.

We now need to show how to extend this to an assignment satisfying alsoE. To this end, let ρU ′ be an
assignment that E-respectfully satisfies U ′ and assigns the variables in

⋃
V ∈V ′ V for some V ′ ⊆ N(U ′).

By another induction over the size |V ′′\V ′| of families V ′′ ⊇ V ′, we show that there is an assignment ρV ′′
to the variables

⋃
V ∈V ′′ V that E-respectfully satisfies U ′ for every V ′ ⊆ V ′′ ⊆ V . When V ′′ = V ′, we

just take the assignment ρU ′ . We want to show that for any V ′ ∈ V\V ′′ we can extend ρV ′′ to the variables
in V ′ so that the new assignment E-respectfully satisfies U ′. As V ′ respects E, there is an assignment
ρV ′ to the variables V ′ that satisfies all affected clauses in E. We would like to combine ρV ′ and ρV ′′
into one assignment, but this requires some care since the intersection of the domains V ′ ∩

(⋃
V ∈V ′′ V

)
could be non-empty. Consider therefore the subassignment ρ∗V ′ of ρV ′ that assigns only the variables in
V ′ \

(⋃
V ∈V ′′ V

)
. We claim that extending ρV ′′ by ρ∗V ′ creates an assignment that respects E. This is

because every clause in E that has a variable in V ′ and was not already satisfied by ρV ′′ cannot have
variables in V ′ ∩

(⋃
V ∈V ′′ V

)
(if so, ρV ′′ would have been E-disrespectful) and hence every such clause

must be satisfied by the subassignment ρ∗V ′ .

9Actually, a slighly more careful argument reveals that C is always contained in Sups(LT (C)). This is so since for any
F ∈ U with C ∈ F it holds that any neighbours in N(F) \ N(LT (C)) have to be disrespectful, and so such an F always
makes it into the support. However, the reasoning gets a bit more involved, and since we already needed to use Lemma 3.25
anyway we might as well apply it once more here.

15

A GENERALIZED METHOD FOR PROVING PC DEGREE LOWER BOUNDS

Thus, we can find an assignment to all the variables ∪V ∈VV that E-respectfully satisfies U ′. As V
includes all the variables in E it means that E is also fully satisfied. Hence, U ′ ∧E is satisfiable and the
lemma follows.

This allows us to conclude this section by stating the following version of Theorem 3.8 for the most
commonly occuring case with standard expansion without any slack.

Corollary 3.29. Suppose that (U ,V)E is an (s, δ, 0, E)-expander with overlap ol(V) = d such that
Vars(U ∧ E) =

⋃
V ∈V V . Then any polynomial calculus refutation of the formula

∧
F∈U F ∧E requires

degree strictly greater than δs/(2d).

Proof. This follows immediately by plugging Lemma 3.28 into Theorem 3.8.

4 Applications

In this section, we demonstrate how to use the machinery developed in Section 3 to establish degree
lower bounds for polynomial calculus. Let us warm up by reproving the bound from [AR03] for CNF
formulas F whose clause-variable incidence graphs G(F) are good enough expanders. We first recall
the expansion concept used in [AR03] for ordinary bipartite graphs.

Definition 4.1 (Bipartite boundary expander). A bipartite graph G = (U ∪̇ V,E) is a bipartite
(s, δ)-boundary expander if for every set of vertices U ′ ⊆ U, |U ′| ≤ s, it holds that |∂(U ′)| ≥ δ|U ′|,
where the boundary ∂(U ′) =

{
v ∈ V : |N(v) ∩ U ′| = 1

}
consists of all vertices on the right-hand

side V that have a unique neighbour in U ′ on the left-hand side.

We can simply identify the (U ,V)E-graph with the standard clause-variable incidence graph G(F)
to recover the degree lower bound in [AR03] as stated next.

Theorem 4.2 ([AR03]). For any CNF formula F and any constant δ > 0 it holds that if the clause-
variable incidence graph G(F) is an (s, δ)-boundary expander, then the polynomial calculus degree
required to refute F in polynomial calculus is Deg (F `⊥) > δs/2.

Proof. To choose G(F) as our (U ,V)E-graph, we set E to be the empty formula, U to be the set of
clauses of F interpreted as one-clause CNF formulas, and V to be the set of variables partitioned into
singleton sets. As E is an empty formula every set V respects it. Also, every neighbour of some
clause C ∈ U is an E-respectful neighbour because we can set the neighbouring variable so that the
clause C ∈ U is satisfied. Under this interpretation G(F) is an (s, δ, 0, E)-expander, and hence by
Corollary 3.29 the degree of refuting F is greater than δs/2.

As a second application, which is more interesting in the sense that the (U ,V)E-graph is nontrivial,
we show how the degree lower bound for the ordering principle formulas in [GL10] can be established
using this framework. For an undirected (and in general non-bipartite) graph G, the graph ordering
principle formula GOP(G) says that there exists a totally ordered set of |V (G)| elements where no
element is minimal, since every element/vertex v has a neighbour u ∈ N(v) which is smaller according
to the ordering. Formally, the CNF formula GOP(G) is defined over variables xu,v, u, v ∈ V (G), u 6= v,
where the intended meaning of the variables is that xu,v is true if u < v according to the ordering, and
consists of the following axiom clauses:

xu,v ∨ xv,w ∨ xu,w u, v, w ∈ V (G), u 6= v 6= w 6= u (transitivity) (4.1a)

xu,v ∨ xv,u u, v ∈ V (G), u 6= v (anti-symmetry) (4.1b)

xu,v ∨ xv,u u, v ∈ V (G), u 6= v (totality) (4.1c)∨
u∈N(v)

xu,v v ∈ V (G) (non-minimality) (4.1d)

16

4 Applications

We remark that the graph ordering principle on the complete graph Kn on n vertices is the (linear)
ordering principle formula LOPn (also known as a least number principle formula, or graph tautology in
the literature), for which the non-minimality axioms (4.1d) have width linear in n. By instead considering
graph ordering formulas for graphs G of bounded degree, one can bring the initial width of the formulas
down so that the question of degree lower bounds becomes meaningful.

To prove degree lower bounds for GOP(G) we need the following extension of boundary expansion
to the case of non-bipartite graphs.

Definition 4.3 (Non-bipartite boundary expander). A graph G = (V,E) is an (s, δ)-boundary ex-
pander if for every subset of vertices V ′ ⊆ V (G), |V ′| ≤ s, it holds that |∂(V ′)| ≥ δ|V ′|, where the
boundary ∂(V ′) =

{
v ∈ V (G) \V ′ :

∣∣N(v)∩V ′
∣∣ = 1

}
is the set of all vertices in V (G) \V ′ that have

a unique neighbour in V ′.

We want to point out that the definition of expansion used by Galesi and Lauria in [GL10] is
slightly weaker in that they do not require boundary expansion but just vertex expansion (measured
as |N(V ′) \ V ′| for vertex sets V ′ with |V ′| ≤ s), and hence their result is slightly stronger than what
we state below in Theorem 4.4. With some modifications of the definition of E-respectful boundary in
(U ,V)E-graphs it would be possible to match the lower bound in [GL10], but it would also make the
definitions more cumbersome and so we choose not to do so here.

Theorem 4.4 ([GL10]). For a non-bipartite graph G that is an (s, δ)-boundary expander it holds that
Deg (GOP(G) `⊥) > δs/4.

Proof. To form the (U ,V)E-graph for GOP(G), we let E consist of all transitivity axioms (4.1a), anti-
symmetry axioms (4.1b), and totality axioms (4.1c). The non-minimality axioms (4.1d) viewed as sin-
gleton sets form the family U , while V is the family of variable sets Vv for each vertex v containing all
variables that mention v, i.e., Vv = {xu,w | u,w ∈ V (G), u = v or w = v}.

For a vertex u, the neighbours of a non-minimality axiom Fu =
∨
v∈N(u) xv,u ∈ U are variable

sets Vv where v is either equal to u or a neighbour of u in G. We can prove that each Vv ∈ N(Fu) is an
E-respectful neighbour of Fu (although the particular neighbour Vu will not contribute in the proof of
the lower bound). If v 6= u, then setting all the variables xv,w ∈ Vv to true and all the variables xw,v ∈ Vv
to false (i.e., making v into the minimal element of the set) satisfies Fu as well as all the affected axioms
in E. If v = u, we can use a complementary assignment to the one above (i.e., making v = u into the
maximal element of the set) to E-respectfully satisfy Fu. Observe that this also shows that all Vv ∈ V
respect E as required by Definition 3.4.

By the analysis above, it holds that the boundary ∂(V ′) of some vertex set V ′ in G yields the
E-respectful boundary ∂E

(⋃
u∈V ′ Fu

)
⊇ {Vv | v ∈ ∂(V ′)} in (U ,V)E . Thus, the expansion parameters

for (U ,V)E are the same as those for G and we can conclude that (U ,V)E is an (s, δ, 0, E)-expander.
Finally, we note that while V is not a partition of the variables of GOP(G), the overlap is only

ol(V) = 2 since every variable xu,v occurs in exactly two sets Vu and Vv in V . Hence, by Corollary 3.29
the degree of refuting GOP(G) is greater than δs/4.

With the previous theorem in hand, we can prove (a version of) the main result in [GL10], namely
that there exists a family of 5-CNF formulas witnessing that the lower bound on size in terms of degree
in Theorem 2.2 is essentially optimal. That is, there are formulas over N variables that can be refuted
in polynomial calculus (in fact, in resolution) in size polynomial in N but require degree Ω

(√
N
)
. This

follows by plugging expanders with suitable parameters into Theorem 4.4. By standard calculations (see,
for example, [HLW06]) one can show that there exist constants γ, δ > 0 such that randomly sampled
graphs on n vertices with degree at most 5 are (γn, δ)-boundary expanders in the sense of Definition 4.3
with high probability. By Theorem 4.4, graph ordering principle formulas on such graphs yield 5-CNF
formulas over Θ

(
n2
)

variables that require degree Ω(n). Since these formulas have polynomial calculus
refutations in size O

(
n3
)

(just mimicking the resolution refutations constructed in [Stå96]), this shows
that the bound in Theorem 2.2 is essentially tight. The difference between this bound and [GL10] is that

17

A GENERALIZED METHOD FOR PROVING PC DEGREE LOWER BOUNDS

since a weaker form of expansion is required in [GL10] it is possible to use 3-regular graphs, yielding
families of 3-CNF formulas.

Let us now turn our attention back to bipartite graphs and consider different flavours of pigeonhole
principle formulas. We will focus on formulas over bounded-degree bipartite graphs, where we will
convert standard bipartite boundary expansion as in Definition 4.1 into respectful boundary expansion as
in Definition 3.6. For a bipartite graph G = (U ∪̇V,E) the axioms appearing in the different versions of
the graph pigeonhole principle formulas are as follows:∨

v∈N(u)

xu,v u ∈ U (pigeon axioms) (4.2a)

xu,v ∨ xu′,v v ∈ V, u, u′ ∈ N(v), u 6= u′, (hole axioms) (4.2b)

xu,v ∨ xu,v′ u ∈ U, v, v′ ∈ N(u), v 6= v′ (functionality axioms) (4.2c)∨
u∈N(v)

xu,v v ∈ V (onto axioms) (4.2d)

The “plain vanilla” graph pigeonhole principle formula PHPG is the CNF formula over variables
{xu,v | (u, v) ∈ E} consisting of clauses (4.2a) and (4.2b); the graph functional pigeonhole principle
formula FPHPG contains the clauses of PHPG and in addition clauses (4.2c); the graph onto pigeon-
hole principle formula Onto-PHPG contains PHPG plus clauses (4.2d); and the graph onto functional
pigeonhole principle formula Onto-FPHPG consists of all the clauses (4.2a)–(4.2d).

We obtain the standard versions of the PHP formulas by considering graph formulas as above over the
complete bipartite graph Kn+1,n. In the opposite direction, for any bipartite graph G with n+ 1 vertices
on the left and n vertices on the right we can hit any version of the pigeonhole principle formula
over Kn+1,n with the restriction ρG setting xu,v to false for all (u, v) /∈ E(G) to recover the corre-
sponding graph pigeonhole principle formula over G. When doing so, we will use the observation from
Section 2 that restricting a formula can only decrease the size and degree required to refute it.

As mentioned in Section 1, it was established already in [AR03] that good bipartite boundary ex-
pandersG yield formulas PHPG that require large polynomial calculus degree to refute. We can reprove
this result in our language—and, in fact, observe that the lower bound in [AR03] works also for the onto
version Onto-PHPG—by constructing an appropriate (U ,V)E-graph. In addition, we can generalize
the result in [AR03] slightly by allowing some additive slack ξ > 0 in the expansion in Theorem 3.8.
This works as long as we have the guarantee that no too small subformulas are unsatisfiable.

Theorem 4.5. Suppose that G = (U ∪̇ V,E) is a bipartite graph with |U | = n and |V | = n − 1 and
that δ > 0 is a constant such that

• for every set U ′ ⊆ U of size |U ′| ≤ s there is a matching of U ′ into V , and

• for every set U ′ ⊆ U of size |U ′| ≤ s it holds that |∂(U ′)| ≥ δ|U ′| − ξ.

Then Deg (Onto-PHPG `⊥) > δs/2− ξ.

Proof sketch. The (U ,V)E-graph for PHPG is formed by taking U to be the set of pigeon axioms (4.2a),
E to consist of the hole axioms (4.2b) and onto axioms (4.2d), and V to be the collection of variable sets
Vv = {xu,v | u ∈ N(v)} partitioned with respect to the holes v ∈ V . It is straightforward to check that
this (U ,V)E-graph is isomorphic to the graph G and that all neighbours in (U ,V)E are E-respectful (for∨
v∈N(u) xu,v ∈ U and Vv for some v ∈ N(u), apply the partial assignment sending pigeon u to hole v

and ruling out all other pigeons in N(v) \ {u} for v). Moreover, using the existence of matchings for
all sets of pigeons U ′ of size |U ′| ≤ s we can prove that every subformula U ′ ∧ E is satisfiable as long
as |U ′| ≤ s. Hence, we can apply Theorem 3.8 to derive the claimed bound. We refer to the upcoming
full-length version of [MN14] for the omitted details.

Theorem 4.5 is the only place in this paper where we use non-zero slack for the expansion. The
reason that we need slack is so that we can establish lower bounds for another type of formulas, namely

18

4 Applications

the subset cardinality formulas studied in [Spe10, VS10, MN14]. A brief (and somewhat informal)
description of these formulas is as follows. We start with a 4-regular bipartite graph to which we add an
extra edge between two non-connected vertices. We then write down clauses stating that each degree-4
vertex on the left has at least 2 of its edges set to true, while the single degree-5 vertex has a strict majority
of 3 incident edges set to true. On the right-hand side of the graph we encode the opposite, namely that
all vertices with degree 4 have at least 2 of its edges set to false, while the vertex with degree 5 has at
least 3 edges set to false. A simple counting argument yields that the CNF formula consisting of these
clauses must be unsatisfiable. Formally, we have the following definition (which strictly speaking is a
slightly specialized case of the general construction, but again we refer to [MN14] for the details).

Definition 4.6 (Subset cardinality formulas [VS10, MN14]). Suppose that G = (U ∪̇ V,E) is a bipar-
tite graph that is 4-regular except that one extra edge has been added between two unconnected vertices
on the left and right. Then the subset cardinality formula SC (G) over G has variables xe, e ∈ E, and
clauses:

• xe1 ∨ xe2 ∨ xe3 for every triple e1, e2, e3 of edges incident to any u ∈ U ,

• xe1 ∨ xe2 ∨ xe3 for every triple e1, e2, e3 of edges incident to any v ∈ V .

To prove lower bounds on refutation degree for these formulas we use the standard notion of vertex
expansion on bipartite graphs, where all neighbours on the left are counted and not just unique neighbours
as in Definition 4.1.

Definition 4.7 (Bipartite expander). A bipartite graph G = (U ∪̇V,E) is a bipartite (s, δ)-expander if
for each vertex set U ′ ⊆ U, |U ′| ≤ s, it holds that |N(U ′)| ≥ δ|U ′|.

The existence of such expanders with appropriate parameters can again be established by straightfor-
ward calculations (as in, for instance, [HLW06]).

Theorem 4.8 ([MN14]). Suppose that G = (U ∪̇ V,E) is a 4-regular bipartite
(
γn, 52 + δ

)
-expander

for |U | = |V | = n and some constants γ, δ > 0, and let G′ be obtained from G by adding an arbitrary
edge between two unconnected vertices in U and V . Then refuting the formula SC (G′) requires degree
Deg (SC (G′) `⊥) = Ω(n), and hence size SPCR(SC (G′) `⊥) = exp

(
Ω(n)

)
.

Proof sketch. The proof is by reducing to graph PHP formulas and applying Theorem 4.5 (which of
course also holds with onto axioms removed). We fix some complete matching inG, which is guaranteed
to exist in regular bipartite graphs, and then set all edges in the matching as well as the extra added edge
to true. Now the degree-5 vertex v∗ on the right has only 3 neighbours and the constraint for v∗ requires
all of these edges to be set to false. Hence, we set these edges to false as well which makes v∗ and its
clauses vanish from the formula. The restriction leaves us with n vertices on the left which require that
at least 1 of the remaining 3 edges incident to them is true, while the n− 1 vertices on the right require
that at most 1 out of their incident edges is true. That is, we have restricted our subset cardinality formula
to obtain a graph PHP formula.

As the original graph is a (γn, 52 + δ)-expander, a simple calculation can convince us that the new
graph is a boundary expander where each set of vertices U ′ on the left with size |U ′| ≤ γn has boundary
expansion |∂(U ′)| ≥ 2δ|U ′| − 1. Note the additive slack of 1 compared to the usual expansion condi-
tion, which is caused by the removal of the degree-5 vertex v∗ from the right. Now we can appeal to
Theorem 4.5 (and Theorem 2.2) to obtain the lower bounds claimed in the theorem.

Let us conclude this section by presenting our new lower bounds for the functional pigeonhole prin-
ciple formulas. As a first attempt, we could try to reason as in the proof of Theorem 4.5 (but adding
the axioms (4.2c) and removing axioms (4.2d)). The naive idea would be to modify our (U ,V)E-graph
slightly by substituting the functionality axioms for the onto axioms in E while keeping U and V the
same. This does not work, however—although the sets Vv ∈ V are E-respectful, the only assignment
that respects E is the one that sets all variables xu,v ∈ Vv to false. Thus, it is not possible to satisfy any

19

A GENERALIZED METHOD FOR PROVING PC DEGREE LOWER BOUNDS

of the pigeon axioms, meaning that there are no E-respectful neighbours in (U ,V)E . In order to obtain
a useful (U ,V)E-graph, we instead need to redefine V by enlarging the variable sets Vv, using the fact
that V is not required to be a partition. Doing so in the appropriate way yields the following theorem.

Theorem 4.9. Suppose that G = (U ∪̇ V,E) is a bipartite (s, δ)-boundary expander with left degree
bounded by d. Then it holds that refuting FPHPG in polynomial calculus requires degree strictly greater
than δs/(2d). It follows that if G is a bipartite (γn, δ)-boundary expander with constant left degree
and γ, δ > 0, then any polynomial calculus (PC or PCR) refutation of FPHPG requires size exp(Ω(n)).

Proof. We construct a (U ,V)E-graph from FPHPG as follows. We let the set of clauses E consist of
all hole axioms (4.2b) and functionality axioms (4.2c). We define the family U to consist of the pigeon
axioms (4.2a) interpreted as singleton CNF formulas. For the variables we let V = {Vv | v ∈ V }, where
for every hole v ∈ V the set Vv is defined by

Vv =
{
xu′,v′

∣∣u′ ∈ N(v) and v′ ∈ N(u′)
}
. (4.3)

That is, to build Vv we start with the hole v on the right, consider all pigeons u′ on the left that can go
into this hole, and finally include in Vv for all such u′ the variables xu′,v′ for all holes v′ incident to u′.
We want to show that (U ,V)E as defined above satisfies the conditions in Corollary 3.29.

Note first that every variable set Vv respects the clause set E since setting all variables in Vv to false
satisfies all clauses in E mentioning variables in Vv. It is easy to see from (4.3) that when a hole v is a
neighbour of a pigeon u, the variable set Vv is also a neighbour in the (U ,V)E-graph of the corresponding
pigeon axiom Fu =

∨
v∈N(u) xu,v. These are the only neighbours of the pigeon axiom Fu, as each Vv

contains only variables mentioning pigeons in the neighbourhood of v. In other words, G and (U ,V)E
share the same neighbourhood structure.

Moreover, we claim that every neighbour Vv of Fu is anE-respectful neighbour. To see this, consider
the assignment ρu,v that sets xu,v to true and the remaining variables in Vv to false. Clearly, Fu is satisfied
by ρu,v. All axioms in E not containing xu,v are either satisfied by ρu,v or left untouched, since ρu,v
assigns all other variables in its domain to false. Any hole axiom xu,v ∨xu′,v in E that does contain xu,v
is satisfied by ρu,v since xu′,v ∈ Vv for u′ ∈ N(v) by (4.3) and this variable is set to false by ρu,v. In
the same way, any functionality axiom xu,v ∨ xu,v′ containing xu,v is satisfied since the variable xu,v′ is
in Vv by (4.3) and is hence assigned to false. Thus, the assignment ρu,v E-respectfully satisfies Fu, and
so Fu and Vv are E-respectful neighbours as claimed.

Since our constructed (U ,V)E-graph is isomorphic to the original graphG and all neighbour relations
are respectful, the expansion parameters ofG trivially carry over to respectful expansion in (U ,V)E . This
is just another way of saying that (U ,V)E is an (s, δ, 0, E)-expander.

To finish the proof, note that the overlap of V is at most d. This is so since a variable xu,v appears
in a set Vv′ only when v′ ∈ N(u). Hence, for all variables xu,v it holds that they appear in at most
|N(u)| ≤ d sets in V . Now the conclusion that any polynomial calculus refutation of FPHPG requires
degree greater than δs/(2d) can be read off from Corollary 3.29. In addition, the exponential lower
bound on the size of a refutation of FPHPG when G is a (γn, δ)-boundary expander G with constant
left degree follows by plugging the degree lower bound into Theorem 2.2.

It is not hard to show (again we refer to [HLW06] for the details) that there exist bipartite graphs with
left degree 3 which are (γn, δ)-boundary expanders for γ, δ > 0 and hence our size lower bound for poly-
nomial calculus refutations of FPHPG can be applied to them. Moreover, if |U | = n+ 1 and |V | = n,
then we can identify some bipartite graph G that is a good expander and hit FPHPn+1

n = FPHPKn+1,n

with a restriction ρG setting xu,v to false for all (u, v) /∈ E to obtain FPHPn+1
n �ρG= FPHPG. Since

restrictions can only decrease refutation size, it follows that size lower bounds for FPHPG apply also to
FPHPn+1

n , yielding the second lower bound claimed in Section 1.3.

Theorem 4.10. Any polynomial calculus or polynomial calculus resolution refutation of (the standard
CNF encoding of) the functional pigeonhole principle FPHPn+1

n requires size exp(Ω(n)).

20

5 Concluding Remarks

5 Concluding Remarks

In this work, we extend the techniques developed by Alekhnovich and Razborov [AR03] for proving
degree lower bounds on refutations of CNF formulas in polynomial calculus. Instead of looking at the
clause-variable incidence graph G(F) of the formula F as in [AR03], we allow clustering of clauses and
variables and reason in terms of the incidence graph G′ defined on these clusters. We show that the CNF
formula F requires high degree to be refuted in polynomial calculus whenever this clustering can be
done in a way that “respects the structure” of the formula and so that the resulting graph G′ has certain
expansion properties.

This provides us with a unified framework within which we can reprove previously established de-
gree lower bounds in [AR03, GL10, MN14]. More importantly, this also allows us to obtain a degree
lower bound on the functional pigeonhole principle defined on expander graphs, solving an open prob-
lem from [Raz02]. It immediately follows from this that the (standard CNF encodings of) the usual
functional pigeonhole principle formulas require exponential proof size in polynomial calculus resolu-
tion, resolving a question on Razborov’s problems list [Raz15] which had (quite annoyingly) remained
open. This means that we now have an essentially complete understanding of how the different vari-
ants of pigeonhole principle formulas behave with respect to polynomial calculus in the standard setting
with n+ 1 pigeons and n holes. Namely, while Onto-FPHP formulas are easy, both FPHP formulas and
Onto-PHP formulas are exponentially hard in n even when restricted to bounded-degree expanders.

A natural next step would be to see if this generalized framework can also be used to attack other
interesting formula families which are known to be hard for resolution but for which there are currently
no lower bounds in polynomial calculus. In particular, can our framework or some modification of it
prove a lower bound for refuting the formulas encoding that a graph does not contain an independent set
of size k, which were proven hard for resolution in [BIS07]? Or what about the formulas stating that a
graph is k-colorable, for which resolution lower bounds were established in [BCMM05]?

Returning to the pigeonhole principle, we now understand how different encodings behave in poly-
nomial calculus when we have n + 1 pigeons and n holes. But what happens when we increase the
number of pigeons? For instance, do the formulas become easier if we have n2 pigeons and n holes?
(This is the point where lower bound techniques based on degree break down.) What about arbitrary
many pigeons? In resolution these questions are fairly well understood, as witnessed by the works of
Raz [Raz04a] and Razborov [Raz01, Raz03, Raz04b], but as far as we are aware they remain wide open
for polynomial calculus.

Finally, we want to point out an intriguing contrast between our work and that of Alekhnovich and
Razborov. As discussed in the introduction, the main technical result in [AR03] is that when the incidence
graph of a set of polynomial equations is expanding and the polynomials are immune, i.e., have no low-
degree consequences, then refuting this set of equations is hard with respect to polynomial calculus
degree. Since clauses of width w have maximal immunity w, it follows that for a CNF formula F
expansion of the clause-variable incidence graph G(F) is enough to imply hardness. A natural way
of interpreting our work would be to say that we simply extend this result to a slightly more general
constraint-variable incidence graph. On closer inspection, however, this analogy seems to be misleading,
and since we were quite surprised by this ourselves we want to elaborate briefly on this.

For the functional pigeonhole principle, the pigeon and functional axioms for a pigeon u taken to-
gether imply the polynomial equation

∑
v∈N(u) xu,v = 1 (summing over all holes v ∈ N(u) to which

the pigeon u can fly). Since this is a degree-1 consequence, it shows that the pigeonhole axioms in FPHP
formulas have lowest possible immunity modulo the set E consisting of hole and functionality axioms.
Nevertheless, our lower bound proof still works, and only needs expansion of the constraint-variable
graph although the immunity of the constraints is non-existent.

On the other hand, the constraint-variable incidence graph of a random set of parity constraints is
expanding asymptotically almost surely, and since over fields of characteristic distinct from 2 parity
constraints have high immunity (see, for instance, [Gre00]), the techniques in [AR03] can be used to
prove strong degree lower bounds in such a setting. However, it seems that our framework of respectful
boundary expansion is inherently unable to establish this result. The problem is that (as discussed in the

21

A GENERALIZED METHOD FOR PROVING PC DEGREE LOWER BOUNDS

footnote after Definition 3.6) it is not possible to group variables together in such a way as to ensure
respectful neighbourhood relations. At a high level, it seems that the main ingredient needed for our
technique to work is that clauses/polynomials and variables can be grouped together in such a way that
the effects of assignments to a group of variables can always be contained in a small neighbourhood of
clauses/polynomials, which the assignments (mostly) satisify, and do not propagate beyond this neigh-
bourhood. Functional pigeonhole principle formulas over bounded-degree graphs have this property,
since assigning a pigeon u to a hole v only affects the neighbouring holes of u and the neighbouring
pigeons of v, respectively. There is no such way to contain the effects locally when one starts satisfying
individual equations in an expanding set of parity constraints, however, regardless of the characteristic
of the underlying field.

In view of this, it seems that our techniques and those of [AR03] are closer to being orthogonal rather
than parallel. It would be desirable to gain a deeper understanding of what is going on here. In particular,
in comparison to [AR03], which gives clear, explicit criteria for hardness (is the graph expanding? are the
polynomials immune?), our work is less explicit in that it says that hardness is implied by the existence
of a “clustered clause-variable incidence graph” with the right properties, but gives no guidance as to
if and how such a graph might be built. It would be very interesting to find more general criteria of
hardness that could capture both our approach and that of [AR03], and ideally provide a unified view of
these lower bound techniques.

Acknowledgements

We are grateful to Ilario Bonacina, Yuval Filmus, Nicola Galesi, Massimo Lauria, Alexander Razborov,
and Marc Vinyals for numerous discussions on proof complexity in general and polynomial calculus
degree lower bounds in particular. We want to give a special thanks to Massimo Lauria for several
insightful comments on an earlier version of this work, which allowed us to simplify the construction (and
improve the parameters in the results) considerably, and to Alexander Razborov for valuable remarks on
a preliminary version of this manuscript that, in particular, helped to shed light on the similarities with
and differences from the techniques in [AR03]. Finally, we are thankful for the feedback provided by the
anonymous CCC ’15 referees and participants of the Dagstuhl workshop 15171 Theory and Practice of
SAT Solving in April 2015.

The authors were funded by the European Research Council under the European Union’s Seventh
Framework Programme (FP7/2007–2013) / ERC grant agreement no. 279611. The second author was
also supported by Swedish Research Council grants 621-2010-4797 and 621-2012-5645.

References

[ABRW02] Michael Alekhnovich, Eli Ben-Sasson, Alexander A. Razborov, and Avi Wigderson. Space
complexity in propositional calculus. SIAM Journal on Computing, 31(4):1184–1211,
2002. Preliminary version appeared in STOC ’00.

[AR03] Michael Alekhnovich and Alexander A. Razborov. Lower bounds for polynomial calculus:
Non-binomial case. Proceedings of the Steklov Institute of Mathematics, 242:18–35, 2003.
Available at http://people.cs.uchicago.edu/˜razborov/files/misha.
pdf. Preliminary version appeared in FOCS ’01.

[BCMM05] Paul Beame, Joseph C. Culberson, David G. Mitchell, and Cristopher Moore. The
resolution complexity of random graph k-colorability. Discrete Applied Mathematics,
153(1-3):25–47, December 2005.

[BGIP01] Samuel R. Buss, Dima Grigoriev, Russell Impagliazzo, and Toniann Pitassi. Linear gaps
between degrees for the polynomial calculus modulo distinct primes. Journal of Com-

22

http://people.cs.uchicago.edu/~razborov/files/misha.pdf
http://people.cs.uchicago.edu/~razborov/files/misha.pdf

References

puter and System Sciences, 62(2):267–289, March 2001. Preliminary version appeared in
CCC ’99.

[BIS07] Paul Beame, Russell Impagliazzo, and Ashish Sabharwal. The resolution complexity
of independent sets and vertex covers in random graphs. Computational Complexity,
16(3):245–297, October 2007.

[Bla37] Archie Blake. Canonical Expressions in Boolean Algebra. PhD thesis, University of
Chicago, 1937.

[BW01] Eli Ben-Sasson and Avi Wigderson. Short proofs are narrow—resolution made sim-
ple. Journal of the ACM, 48(2):149–169, March 2001. Preliminary version appeared in
STOC ’99.

[CEI96] Matthew Clegg, Jeffery Edmonds, and Russell Impagliazzo. Using the Groebner basis algo-
rithm to find proofs of unsatisfiability. In Proceedings of the 28th Annual ACM Symposium
on Theory of Computing (STOC ’96), pages 174–183, May 1996.

[CR79] Stephen A. Cook and Robert Reckhow. The relative efficiency of propositional proof sys-
tems. Journal of Symbolic Logic, 44(1):36–50, March 1979.

[CS88] Vašek Chvátal and Endre Szemerédi. Many hard examples for resolution. Journal of the
ACM, 35(4):759–768, October 1988.

[Fil14] Yuval Filmus. On the Alekhnovich–Razborov degree lower bound for the polynomial cal-
culus. Manuscript. Available at http://www.cs.toronto.edu/˜yuvalf/AlRa.
pdf, 2014.

[GL10] Nicola Galesi and Massimo Lauria. Optimality of size-degree trade-offs for polynomial
calculus. ACM Transactions on Computational Logic, 12:4:1–4:22, November 2010.

[Gre00] Frederic Green. A complex-number Fourier technique for lower bounds on the mod-m
degree. Computational Complexity, 9(1):16–38, January 2000.

[Gri98] Dima Grigoriev. Tseitin’s tautologies and lower bounds for Nullstellensatz proofs. In
Proceedings of the 39th Annual IEEE Symposium on Foundations of Computer Science
(FOCS ’98), pages 648–652, November 1998.

[Hak85] Armin Haken. The intractability of resolution. Theoretical Computer Science,
39(2-3):297–308, August 1985.

[HLW06] Shlomo Hoory, Nathan Linial, and Avi Wigderson. Expander graphs and their applications.
Bulletin of the American Mathematical Society, 43(4):439–561, October 2006.

[IPS99] Russell Impagliazzo, Pavel Pudlák, and Jiřı́ Sgall. Lower bounds for the polynomial calcu-
lus and the Gröbner basis algorithm. Computational Complexity, 8(2):127–144, 1999.

[MN14] Mladen Mikša and Jakob Nordström. Long proofs of (seemingly) simple formulas. In Pro-
ceedings of the 17th International Conference on Theory and Applications of Satisfiability
Testing (SAT ’14), volume 8561 of Lecture Notes in Computer Science, pages 121–137.
Springer, July 2014.

[Nor13] Jakob Nordström. Pebble games, proof complexity and time-space trade-offs. Logical
Methods in Computer Science, 9:15:1–15:63, September 2013.

[Raz98] Alexander A. Razborov. Lower bounds for the polynomial calculus. Computational Com-
plexity, 7(4):291–324, December 1998.

23

http://www.cs.toronto.edu/~yuvalf/AlRa.pdf
http://www.cs.toronto.edu/~yuvalf/AlRa.pdf

A GENERALIZED METHOD FOR PROVING PC DEGREE LOWER BOUNDS

[Raz01] Alexander A. Razborov. Improved resolution lower bounds for the weak pigeonhole prin-
ciple. Technical Report TR01-055, Electronic Colloquium on Computational Complexity
(ECCC), July 2001.

[Raz02] Alexander A. Razborov. Proof complexity of pigeonhole principles. In 5th International
Conference on Developments in Language Theory, (DLT ’01), Revised Papers, volume 2295
of Lecture Notes in Computer Science, pages 100–116. Springer, July 2002.

[Raz03] Alexander A. Razborov. Resolution lower bounds for the weak functional pigeonhole prin-
ciple. Theoretical Computer Science, 1(303):233–243, June 2003.

[Raz04a] Ran Raz. Resolution lower bounds for the weak pigeonhole principle. Journal of the ACM,
51(2):115–138, March 2004. Preliminary version appeared in STOC ’02.

[Raz04b] Alexander A. Razborov. Resolution lower bounds for perfect matching principles. Journal
of Computer and System Sciences, 69(1):3–27, August 2004. Preliminary version appeared
in CCC ’02.

[Raz15] Alexander Razborov. Possible research directions. List of open problems (in proof
complexity and other areas) available at http://people.cs.uchicago.edu/

˜razborov/teaching/, 2015.

[Rii93] Søren Riis. Independence in Bounded Arithmetic. PhD thesis, University of Oxford, 1993.

[Spe10] Ivor Spence. sgen1: A generator of small but difficult satisfiability benchmarks. Journal of
Experimental Algorithmics, 15:1.2:1.1–1.2:1.15, March 2010.

[Stå96] Gunnar Stålmarck. Short resolution proofs for a sequence of tricky formulas. Acta Infor-
matica, 33(3):277–280, May 1996.

[Urq87] Alasdair Urquhart. Hard examples for resolution. Journal of the ACM, 34(1):209–219,
January 1987.

[VS10] Allen Van Gelder and Ivor Spence. Zero-one designs produce small hard SAT instances.
In Proceedings of the 13th International Conference on Theory and Applications of Sat-
isfiability Testing (SAT ’10), volume 6175 of Lecture Notes in Computer Science, pages
388–397. Springer, July 2010.

24

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

http://people.cs.uchicago.edu/~razborov/teaching/
http://people.cs.uchicago.edu/~razborov/teaching/

