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Abstract

We prove that random n-by-n Toeplitz (alternatively Hankel) matrices over F2 have rigidity

Ω( n3

r2 logn ) for rank r ≥
√
n, with high probability. This improves, for r = o(n/ log n log log n),

over the Ω(n2

r · log(n
r )) bound that is known for many explicit matrices.

Our result implies that the explicit trilinear [n]× [n]× [2n] function defined by F (x, y, z) =∑
i,j xiyjzi+j has complexity Ω(n3/5) in the multilinear circuit model suggested by Goldreich

and Wigderson (ECCC, 2013), which yields an exp(n3/5) lower bound on the size of the so-
called canonical depth-three circuits for F . We also prove that F has complexity Ω̃(n2/3) if the
multilinear circuits are further restricted to be of depth 2.

In addition, we show that a matrix whose entries are sampled from a 2−n-biased distribution
has complexity Ω̃(n2/3), regardless of depth restrictions, almost matching the O(n2/3) upper
bound for any matrix by Goldreich and Wigderson. We turn this randomized construction into
an explicit 4-linear construction with similar lower bounds, using the quadratic small-biased
construction of Mossel et al. (RS&A, 2006).
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1 Introduction

This paper concerns the construction of rigid matrices, a central open problem posed by Valiant
[Val77], and its application to lower bounds on canonical depth-three Boolean circuits (where
“canonical” is as defined by Goldreich and Wigderson [GW13]). In particular, we improve the
known lower bound on matrix rigidity, but the improvement is for a range of parameters that is
not the one motivated by Valiant’s problem, but rather the one that arises from [GW13]. Indeed,
this improvement resolves open problems posed by Goldreich and Wigderson [GW13].

1.1 Matrix Rigidity

The “Matrix Rigidity Problem” (i.e., providing explicit matrices of high rigidity) is one of the most
alluring problems in arithmetic circuits lower bounds. Introduced in 1977 by Valiant [Val77], the
problem was originally motivated by proving lower bounds for the computation of linear transfor-
mations. Loosely speaking, a matrix is called rigid if it cannot be written as a sum of a low rank
matrix and a sparse matrix. Needless to say, the actual definition specifies both parameters.

Definition 1.1 (Matrix Rigidity, [Val77]). A matrix A over a field F has rigidity s for rank r if
every matrix of rank at most r (over F) disagrees with A on more than s entries.

Valiant showed that any matrix with rigidity n1+δ for rank ω(n/ log log n), where δ is some
constant greater than 0, cannot be computed by a linear circuit of size O(n) and depth O(log n).
Valiant also proved that almost all n-by-n matrices, over a finite field F (e.g., the two-element field
F2), have rigidity Ω((n−r)2/ log n) for rank r. Since then, coming up with an explicit1 rigid matrix
has remained a challenge. The best techniques to date provide explicit n-by-n matrices of rigidity
n2

r log(nr ) for rank r (see [Lok09] for a survey about matrix rigidity).
To the best of our knowledge, this state of affairs also holds for “simple” randomized construc-

tions that use O(n) random bits. The common belief is that rigidity bounds for such randomized
constructions can be used for proving lower bounds for explicit computational problems that are
related to the original ones. For example, an adequate rigidity lower bound for random Toeplitz
(or Hankel) matrices2 would yield a lower bound on the complexity of computing explicit bilinear
transformations. Indeed, this is analogous to Andreev’s proof of formula lower bounds [And87],
where a lower bound for a randomized function is transformed into a lower bound for an explicit
function (which takes the random bits of the construction as part of its input). Our main result is
the following

Theorem 1.2 (on the rigidity of random Toeplitz/Hankel matrices). Let A ∈ Fn×n2 be a random
Toeplitz/Hankel matrix. Then, for every r ∈ [

√
n, n/32], with probability 1−o(1), the matrix A has

rigidity Ω( n3

r2 logn
) for rank r.

Our bounds are asymptotically better than Ω(n
2

r log(nr )) for rank r = o( n
logn·log logn), alas

Valiant’s original motivation refers to r > n/ log log n. For rank r = n0.5+ε, where ε ∈ (0, 0.5),

our bound yields a significant improvement (i.e., n3

r2
= n2−2ε � n1.5−ε = n2

r ), and this is actually
the range that is relevant for the project of Goldreich and Wigderson [GW13].

1For an infinite I ⊆ N, the sequence of matrices, {An}n∈I such that An is an n × n matrix, is called explicit if
there exists a poly(n)-time algorithm that on input n ∈ I outputs the matrix An (and outputs ⊥ if n 6∈ I).

2Recall that a Toeplitz matrix T = (Ti,j) has constant diagonals (i.e., Ti,j = Ti+1,j+1 for every i, j). Hankel
matrices are obtained by turning Toeplitz matrices upside down; that is, a Hankel matrix H = (Hi,j) has constant
skew-diagonals (i.e., Hi,j = Hi+1,j−1 for every i, j). Hence, any claim regarding one family translates to an equivalent
claim regarding the other family.
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1.2 The Project of Goldreich-Wigderson

The project started by Goldreich and Wigderson [GW13] provides another motivation for the
study of matrix rigidity. In fact, the problem of improving the rigidity bounds for random Toeplitz
matrices was posed explicitly there. Specifically, proving a rigidity bound of n1.5+Ω(1) for rank
n0.5+Ω(1) for random Toeplitz matrices was proposed there as a possible next step.

Lower Bounds for Depth Three Canonical Circuits. H̊astad [H̊as86] showed that any depth-
three Boolean circuit computing the n-way parity function must be of size at least exp(

√
n); to

date, H̊astad’s result is the best lower bound for an explicit function in the model of depth-three
Boolean circuits3. The work of Goldreich and Wigderson [GW13] put forward a model of depth three
canonical circuits, with the underlying long-term goal to exhibit better lower bounds for general
depth-three Boolean circuits. Canonical circuits are restricted type of such depth-three circuits,
which can be illustrated by considering the smallest known depth-three circuits for n-way parity.
The latter Õ(2

√
n)-size circuits are obtained by combining a CNF that computes a

√
n-way parity

with
√
n DNFs that compute

√
n-way parities of disjoint blocks of the input bits. The construction,

and its optimality by [H̊as86], suggests the following scheme for obtaining Boolean circuits that
compute multilinear functions. First, construct an arithmetic circuit that uses arbitrary multilinear
gates of parameterized arity, and then convert it to a Boolean circuit whose size is exponential in
the maximum between the arity and the number of gates in the arithmetic circuit. The arithmetic
model is outlined next.

Lower Bounds for Multilinear Circuits. Suppose we wish to compute a t-linear function that
depends on t blocks of inputs, x(1), . . . , x(t), each of length n; that is, the function is linear in each of
the x(j)’s. We consider circuits that use arbitrary multilinear gates of parameterized arity. That is,
the circuits are directed acyclic graphs, where each internal node computes a multilinear function of
its inputs. We further restrict our circuit such that each internal gate computes a multilinear formal
polynomial in the inputs x(1) . . . , x(t). We say that such a multilinear circuit is of AN-complexity4

m if m equals the maximum between the number of the circuit gates and the maximal arity of the
gates. For a multilinear function F , we denote by C(F ) the minimal AN-complexity of a multilinear
circuit which compute the function F . (We will abuse notation and refer to the AN-complexity of
a tensor/matrix as the AN-complexity of the corresponding multilinear function.)

In the example of parity, we have a bottom layer of
√
n gates each taking

√
n inputs and

computing their parity. Above these gates, we have a gate which takes the
√
n results and computes

their parity. Overall, we got a (multi)-linear circuit of AN-complexity
√
n+ 1.

Goldreich and Wigderson showed that any multilinear circuit of AN-complexity m yields a
depth-three Boolean circuit of size exp(m) computing the same function (see [GW13, Prop. 2.9]).
In fact, the Boolean circuits have much more structure, and are referred to by Goldreich and
Wigderson as canonical circuits. Thus, a preliminary step towards beating the exp(Ω(

√
n)) lower

bound on the size of depth-three Boolean circuits for explicit O(1)-linear functions,5 will be to beat
the Ω(

√
n) AN-complexity lower bound for such functions in the model of multilinear circuits.

Again, as in Valiant’s question, if we just ask about the existence of hard t-linear functions,
then most t-linear functions cannot be computed by a multilinear circuit of AN-complexity smaller
than (nt)t/(t+1): See [GW13, Thm. 4.1], which uses a counting argument. The more important and

3That is, circuits of unbounded fan-in OR and AND gates with leaves that are variables or their negations.
4where AN stands for Arity and Number of gates.
5Indeed, this suggestion presumes that there exist O(1)-linear functions that require depth-three Boolean circuits

of size exp(ω(
√
n)), which is also an open problem suggested in [GW13].
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challenging problem is to came up with an explicit t-linear function for which such bounds, or even
just ω(

√
n) lower bounds, can be proved.

Reduction to (Structured) Rigidity. Goldreich and Wigderson reduces the problem of prov-
ing lower bounds for bilinear circuits to the problem of rigidity [GW13, Sec. 4.2]. They show that if
a bilinear circuit is of AN-complexity m/2, then its corresponding matrix is not m3 rigid for rank m
(i.e., it can be expressed as a sum of an m3-sparse matrix and a matrix of rank at most m). Hence,
any matrix that has rigidity m3 for rank m corresponds to a bilinear function that cannot be com-
puted by a bilinear circuit of AN-complexity at most m/2. Furthermore, Goldreich and Wigderson
show that the sparse matrix arising from their reduction has an additional structure (to be spec-
ified later). This leads to a weaker notion of rigidity (see [GW13, Thm. 4.12] which establishes a
separation), called structured rigidity, for which it is potentially easier to prove lower bounds.

Open Problems in Goldreich-Wigderson. One open problem posed by Goldreich and Wigder-
son is proving that random Toeplitz matrices have rigidity m3 (or just structured rigidity m3) for
rank m = n0.5+Ω(1). This would yield an AN-complexity lower bound of m for the corresponding
bilinear function (via the reduction in [GW13, Thm. 4.4])6 as well as a similar lower bound for the
following explicit trilinear function (via [GW13, Prop. 4.6]):

Ftet(x, y, z) =
∑

i1,i2,i3∈[n]:∑3
j=1 |ij−n/2|≤n/2

xi1yi2zi3 . (1)

1.3 Resolving the Foregoing Open Problems

We resolve the aforementioned open problem [GW13, Prob. 4.8] by proving that random Toeplitz

matrices have rigidity m3 for rank m = Θ( n3/5

log1/5 n
), with high probability. This follows from our

main theorem (Theorem 1.2) by choosing r = m. Furthermore, we can get rid of the logarithmic
factor in the Ω̃ notation, by proving a slightly better lower bound for structured rigidity.

Theorem 1.3 (on the structured rigidity of random Toeplitz/Hankel matrices). Let A ∈ Fn×n2 be
a random Toeplitz/Hankel matrix. Then, for every r ∈ [

√
n, n/32], the matrix A has structured

rigidity Ω(n3/r2) for rank r.

This implies (using [GW13, Thm. 4.10] and [GW13, Prop. 4.6]) that the AN-complexity of a
random Toeplitz matrix is Ω(n3/5), and ditto for the explicit trilinear function Ftet from Eq. (1).
This resolves Problems 4.7 and 4.2 in [GW13], resp. In addition, we show that another explicit
trilinear function has AN-complexity Ω(n3/5).

Corollary 1.4 (AN-complexity lower bound for an explicit trilinear function). Let F : {0, 1}n ×
{0, 1}n × {0, 1}2n → {0, 1} be the trilinear function defined by F (x, y, z) =

∑n
i=1

∑n
j=1 xiyjzi+j.

Then, C(F ) = Ω(n3/5).

New Challenges. The most natural question that arises from the foregoing results is to tighten
the lower bound; that is, to show that random Toeplitz matrices have AN-complexity Ω(n2/3)
as conjectured by [GW13]. This would be the best possible, since any bilinear function can be
computed by a bilinear circuit of AN-complexity O(n2/3); more generally, by [GW13, Thm. 3.1],

6For structured rigidity, we use [GW13, Thm. 4.10].
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for any t ≥ 2, any t-linear function can be computed by a t-linear circuit of AN-complexity
O((tn)t/(t+1)). Another natural follow up question is to exhibit an explicit O(1)-linear function
having AN-complexity Ω(nα) for some constant α > 3/5; of course, the larger α, the better. Our
progress on these open problems is captured by the following two results.

Theorem 1.5 (depth-two AN-complexity lower bound for random Toeplitz matrices). Let F be
a bilinear function that corresponds to a random Toeplitz matrix. Then, with probability 1 − o(1),
the function F cannot be computed by multilinear circuits of depth two having AN-complexity
n2/3/(log n)1/3.

Theorem 1.5 establishes the desired AN-complexity lower bound for random Toeplitz matri-
ces, but only for depth-two multilinear circuits. We note that the AN-complexity upper bound
of [GW13, Thm. 3.1] holds via depth-two circuits, and so Theorem 1.5 is almost optimal with re-
spect to depth-two multilinear circuits. Theorem 1.5 implies that the trilinear function F (x, y, z) =∑n

i=1

∑n
j=1 xiyjzi+j cannot be computed by multilinear circuits of depth two and AN-complexity

n2/3/(log n)1/3.

Theorem 1.6 (improved AN-complexity lower bound for 4-linear functions). There exists an ex-
plicit 4-linear function having AN-complexity Ω(n2/3/(log n)1/3).

Theorem 1.6 is proved by first showing that, with high probability, bilinear functions associated
with matrices that are sampled from a 2−n-biased sample space (over {0, 1}n2

) have AN-complexity
Ω̃(n2/3). Note that by the aforementioned upper bound, this lower bound is tight (up to logarithmic
factors). Next, we note that sampling such matrices can be done using O(n) random bits [NN93,
AGHP92, MST06], which matches the amount of randomness used for sampling a random Toeplitz
matrix. Furthermore, in the explicit small-biased construction of Mossel et al. [MST06], each bit in
the sampled string is a bilinear function of the random bits, allowing us to give an explicit 4-linear
function with AN-complexity Ω̃(n2/3).

1.4 Overview of the Proof of Theorem 1.2

We give an overview of the proof of Theorem 1.2 (for the case of Hankel matrices). Recall that we
wish to show that a random Hankel matrix has rigidity n3/r2 log n for rank r, with high probability.
Let A be a random n-by-n Hankel matrix, of the form Ai,j = ai+j for independent random bits
a2, . . . , a2n. Suppose that A can be expressed as a sum of an s-sparse matrix S and a matrix of rank
at most r. Consider a partition of A and S into (n/2r) · (n/2r) submatrices, each of size 2r × 2r,
such that a generic submatrix consists of 2r consecutive columns and 2r equally spaced rows (i.e.,
rows that are at distance n/2r apart). Then, there exists a pair of corresponding submatrices A′

and S′ such that S′ is of sparsity s′ = (2r)2

n2 · s (and, of course, A′ − S′ has rank at most r). Next,
we note that any of the above submatrices of A are of the form

A′ =


b1 b2 b3 . . . b2r
bk+1 bk+2 bk+3 . . . bk+2r

. . . . . . . . . . . . . . .
b(2r−1)k+1 b(2r−1)k+2 b(2r−1)k+3 . . . b(2r−1)k+2r


where k = n/2r (≤ 2r, by the assumption r ≥

√
n), and b1, . . . , b(2r−1)k+2r is a consecutive

subsequence of a2, . . . , a2n. Notice that A′ is a 2r× 2r submatrix that depends on (2r− 1)k+ 2r =
Θ(n) random bits.
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In our main lemma, we show that for any fixed matrix S′ (even if S′ is not sparse) the submatrix
matrix A′ − S′ is of rank greater than r with probability at least 1− 2−Ω(n), where the probability
is taken over the choice of A′ (equiv., over the choice of b1, . . . , b(2r−1)k+2r). Hence, taking a union

bound over all possible s′-sparse submatrices we get that, with probability at least 1−
(

2r·2r
s′

)
·2−Ω(n),

the submatrix A′ has rigidity s′ for rank r. Picking s = o( n3

r2 logn
) implies that s′ = o(n/ log n),

which completes the proof (by applying a union bound on all submatrices, and inferring that, with
high probability, matrix A is of rigidity s for rank r).

1.5 Organization

Our main results (i.e., Theorems 1.2 and 1.3 and Corollary 1.4) are proved in Section 3, which
follows a short preliminary section (Sec. 2). Next, Theorems 1.5 and 1.6 are proved, in two steps.
In Section 4 we identify structural properties of matrices that correspond to bilinear functions of
low AN (and AN2) complexity. These properties correspond to (even more) restricted notions of
structured rigidity, and in Section 5 we show that (with high probability) matrices drawn from
the two relevant distributions do not satisfy these properties. We conclude, with a technical digest
(Section 6.1) and a list of some open problems (Section 6.2).

2 Preliminaries

We denote by [n] = {1, . . . , n}. For n, k ∈ N, we denote by
(
n
≤k
)

=
∑k

i=0

(
n
i

)
, and use the bound(

n
≤k
)
≤ (2n)k. For a matrix A, we denote its i-th row by Ai, and its j-th column by A(j). We denote

by wt(A) the number of non-zero entries in the matrix A, and say that A is s-sparse if wt(A) = s.
A Hankel matrix over a field F is a square matrix with constant skew-diagonals; that is, any

matrix A ∈ Fn×n of the form Ai,j = ai+j for some a2, . . . , a2n ∈ F. A Toeplitz matrix over a field F
is a square matrix with constant diagonals, i.e. any matrix A ∈ Fn×n of the form Ai,j = ai−j for
some a−(n−1), . . . , an−1 ∈ F. Note that a Hankel matrix is an “upside-down” Toeplitz matrix.

Throughout the paper, unless specified otherwise, we talk about matrices over the field F2, and
matrix rank refers to its rank over F2.

Definition 2.1 (Structured Rigidity, [GW13, Def. 4.9]). We say that a matrix A has structured
rigidity (m1,m2,m3) for rank r if for every matrix R of rank at most r and for every X1, . . . Xm1 ,
Y1, . . . , Ym1 ⊆ [n] such that |X1| = · · · = |Xm1 | = m2 and |Y1| = · · · = |Ym1 | = m3 it holds that
A − R *

⋃m1
k=1 (Xk × Yk), where M ⊆ S means that all non-zero entries of the matrix M reside

in the set S ⊆ [n] × [n]. We say that a matrix A has structured rigidity m3 for rank r if A has
structured rigidity (m,m,m) for rank r.

Indeed, any matrix that has rigidity s for rank r, also has structured rigidity s for rank r, but
the other direction does not hold (see [GW13, Thm. 4.12]).

Definition 2.2. A multilinear circuit on t blocks of inputs x(1), . . . , x(t) ∈ {0, 1}n is a directed
acyclic graph whose nodes are associated with arbitrary multilinear gates such that any two gates
with directed paths from the same block of inputs are not multiplied together by another gate.

Definition 2.3 (the AN-complexity of multilinear circuits with general gates, [GW13, Def. 2.2]).
The arity of a multilinear circuit is the maximum arity of its (general) gates. The AN-complexity of
a multilinear circuit is the maximum between its arity and its number of gates (where we count only
the general gates and not the leaves, i.e., variables). The AN-complexity of a multilinear function F ,
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denoted C(F ), is the minimum AN-complexity of a multilinear circuit that computes F . The AN2-
complexity of a multilinear function F , denoted C2(F ), is the minimum complexity of a depth-two
multilinear circuit that computes F .

Theorem 2.4 ([GW13, Thm. 4.10]). If A is an n-by-n matrix that has structured rigidity m3 for
rank m, then the corresponding bilinear function F satisfies C(F ) ≥ m/2.

3 Main Results

We prove our results bottom-up, starting with the main lemma, as mentioned in the proof overview.

Lemma 3.1 (Main Lemma). Let m, k ∈ N, 16 ≤ k ≤ m. Let A ∈ Fm×m2 be the random matrix
a1 a2 a3 . . . am
ak+1 ak+2 ak+3 . . . ak+m

. . . . . . . . . . . . . . .
a(m−1)k+1 a(m−1)k+2 a(m−1)k+3 . . . a(m−1)k+m


where a1, . . . , a(m−1)k+m are uniform independent random bits, and let S ∈ Fm×m2 be some fixed

matrix. Then, PrA[rank(S +A) ≤ m/2] ≤ 2−km/16.

Note that for k = 1 the matrix in Lemma 3.1 is a random Hankel matrix, and for k = m it is a
totally random matrix. The requirement k ≥ 16 is not essential in the lemma; it is used to make
expressions nicer. For k ≥ 1 and rank r ≤ m/2 the proof gives PrA[rank(S+A) ≤ r] ≤

(
m
≤r
)
·2−mk/8.

Proof. For a fixed S and a random A as above, let B = S+A. If r = rank(B) ≤ m/2, then one can
construct a basis Bi1 , Bi2 , . . . , Bir of the row space of B by the following iterative process: Let i1 be
the first nonzero row of B, let i2 > i1 be the first row in B that is not spanned by row i1, let i3 > i2
be the first row in B that is not spanned by rows i1 and i2, etc. We get that i1 < i2 < · · · < ir and

1. For j < i1 the j-th row of B is the all zeroes row.

2. For it−1 < j < it the j-th row of B is spanned by rows i1, . . . , it−1 of B.

3. For ir < j the j-th row of B is spanned by rows i1, . . . , ir of B.

More concisely, denoting by I = {i1, . . . , ir}, we get

∀j ∈ [m] \ I : Bj ∈ span{Bi : i ∈ I, i < j} . (2)

We bound the probability that such a sequence I = {i1, . . . , ir} exists, where r ≤ m/2. We will
union bound over all possible sequences I, and for any fixed sequence of length at most m/2, we
shall show that (2) holds with very low probability. Given such a sequence I, let J = [m] − I be
its complement. Setting ∆ = dm/ke, we can select an increasing sequence of |J |/∆ indices in J
such that each two indices differ by at least ∆.7 Take j1 < j2 < · · · < jt to be such a sequence of
indices, where t ≥ |J |∆ ≥

m/2
dm/ke ≥

k
4 . For ` ∈ [t], let E` be the event that row j` is spanned by the

rows indexed by I ∩ [j` − 1]. Then,

Pr [Eq. (2) holds for I] ≤ Pr[E1, E2, . . . , Et] = Pr[E1] ·Pr[E2|E1] · · ·Pr[Et|E1, . . . , Et−1] (3)

7One can construct such a set greedily: choose the minimal index j in J , remove all indices in J ∩ [j, j + ∆− 1].
Repeat until J is empty.
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Next, we show that for each ` ∈ [t], we have Pr[E`|E1, . . . , E`−1] ≤ 2−m/2. However, instead of
conditioning on E1, . . . , E`−1, we shall condition on a set of the random bits, to be specified next,
that determine rows B1, . . . , Bj`−1

on one hand, but are independent from the random row Bj` on
the other hand. Since j` ≥ j`−1 + dm/ke by our design, we get (j` − 1)k ≥ (j`−1 − 1)k + m.
Hence, the random bits a1, . . . , a(j`−1)k, which determine B1, . . . , Bj`−1

, leave the random row
Bj` = (a(j`−1)k+1, . . . , a(j`−1)k+m) totally undetermined. Conditioning on the worst-case assign-
ment for the former random variables (under which E1, . . . , E`−1 holds) yields an upper bound
on Pr[E`|E1, . . . , E`−1]. Thus, it is enough to show that Pr[E`|a1, . . . , a(j`−1)k] ≤ 2−m/2 for any
possible fixed choice of values to a1, . . . , a(j`−1)k.

To avoid multiple subscripts, we set for the rest of the proof j , j`. Let us remark that after
fixing a1, . . . , a(j−1)k, rows 1, . . . , j −dm/ke are completely fixed, rows j −dm/ke+ 1, . . . , j − 1 are
partially fixed, and row j is entirely undetermined. Based on that, we shall show that

Pr[E`|a1, . . . , a(j−1)k] ≤ 2−m/2 . (4)

Let I ′ := I ∩ [j − 1], and fix a linear combination of the rows indexed by I ′, i.e.,
∑

i∈I′ ciBi, among

all 2|I
′| such linear combinations. We show that the probability that

Bj =
∑
i∈I′

ciBi . (5)

is 2−m. (This is similar, up to minor differences, to the folklore result that any fixed linear com-
bination of rows in a random Toeplitz matrix is distributed uniformly over Fm2 – see [Gol08,
Prop. 8.25]. We give the details for completeness.) The probability that the first bit of Bj
equals the first bit of the linear combination in (5) is exactly 1/2, since Bj,1 = Sj,1 + a(j−1)k+1,
and all entries {Bi,1}i∈I′ involve only bits from a1, . . . , a(j−2)k+1, which were already fixed (since
(j − 2)k + 1 ≤ (j − 1)k). Fixing a(j−1)k+1 such that equality on the first bit holds, the second bit
Bj,2 equals the resulting linear combination with probability 1/2 as well. This happens since Bj,2
equals Sj,2 + a(j−1)k+2, where a(j−1)k+2 wasn’t already fixed, and all entries {Bi,2}i∈I′ involve only
bits from a2, . . . , a(j−2)k+2, which were already fixed (since (j − 2)k + 2 ≤ (j − 1)k + 1). And so
on, every bit in the j-th row of B equals the resulting linear combination with probability 1/2,
conditioned on the fixing of the previous bits. Overall, Bj =

∑
i∈I′ ciBi with probability 2−m for

a fixed choice of coefficients {ci}i∈I′ .8 Taking a union bound over all possible coefficients {ci}i∈I′
gives Pr[E`|E1, . . . , E`−1] ≤ 2|I

′| · 2−m ≤ 2−m/2. Plugging this bound into Eq. (3) we get

Pr [Eq. (2) holds for I] ≤ Pr[E1] ·Pr[E2|E1] · · ·Pr[Et|E1, . . . , Et−1] ≤
(

2−m/2
)t
≤ 2−mk/8 .

where in the last inequality we used t ≥ k/4. Taking a union bound over all possible sequences I
of length at most m/2, whose number is definitely less than 2m, and using k ≥ 16, we get

Pr[rank(S +A) ≤ m/2] ≤ 2m · 2−mk/8 ≤ 2−mk/16 . �

We continue with our main theorem.

Theorem 3.2 (random Hankel matrices are rigid). Let A ∈ Fn×n2 be a random Hankel matrix
Ai,j = ai+j where a2, . . . , a2n are uniform independent random bits. Then, for every

√
n ≤ r ≤

n/32, with probability 1− o(1), the matrix A has rigidity n3

160r2 logn
for rank r.

8Alternatively, conditioned on a1, . . . , a(j−1)k and the choice of the linear combination, there exist exactly one
choice for a(j−1)k+1, . . . , a(j−1)k+m that satisfies Eq. (5).
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Before proving Theorem 3.2, we state an immediate corollary of it.

Corollary 3.3. Let A ∈ Fn×n2 be a random Hankel matrix. Then, there exists a universal constant
c > 0 such that for every ε > 0

1. With probability 1− o(1), the matrix A is cn2−2ε/ log n rigid for rank n1/2+ε.

2. With probability 1− o(1), the matrix A is m3 rigid for rank m = c · n3/5

log1/5 n
.

3. With probability 1− o(1), the matrix A is cn1+2ε/ log n rigid for rank n1−ε.

Proof of Theorem 3.2. Suppose towards contradiction that A can be represented as a sum of a
matrix R of rank at most r, and an s-sparse matrix S, where s ≤ n3/160r2 log n. Let m = 2r, and
assume for convenience that k = n/m is an integer. Consider the following partition of A’s entries
into (n/m)2 submatrices, each of dimension m×m. For i ∈ [n/m] and j ∈ [n/m], let

Ii = {i, i+ k, . . . , i+ (m− 1)k} , Jj = {(j − 1)m+ 1, (j − 1)m+ 2, . . . , jm} . (6)

Denote by Ai,j (Ri,j , Si,j , resp.) the matrix A (R, S, resp.) restricted to rows Ii and columns
Jj . See Figure 1 for an example of such a submatrix. The main observation is that for each

a2 a3 a4 a5 a6 a7 a8 a9

a3 a4 a5 a6 a7 a8 a9 a10

a4 a5 a6 a7 a8 a9 a10 a11

a5 a6 a7 a8 a9 a10 a11 a12

a6 a7 a8 a9 a10 a11 a12 a13

a7 a8 a9 a10 a11 a12 a13 a14

a8 a9 a10 a11 a12 a13 a14 a15

a9 a10 a11 a12 a13 a14 a15 a16


Figure 1: A submatrix A1,1 of the matrix A, for m = 4 and k = 2.

(i, j) ∈ [n/m]2, the matrix Ai,j is of the form needed by the main lemma. Another observation is
that since the submatrices Si,j partitions the sparse matrix S, one of them has sparsity at most
s′ , s·m2

n2 . In addition, since rank of a submatrix may only decrease, for every i, j, it holds that
rank(Ri,j) ≤ rank(R) ≤ r.

We say that Ai,j is simple if it can be represented as a sum of an s′-sparse matrix and a matrix
of rank at most r. By the above discussion, A can be represented as S+R where S is s-sparse and
R is of rank at most r, only if there exists a submatrix Ai,j that is simple. We shall show that the
latter occurs with very low probability:

Pr
[
∃i, j : Ai,j is simple

]
≤
∑
i,j

Pr[Ai,j is simple] (Union Bound)

≤
∑
i,j

∑
S∈Fm×m

2 :
wt(S)≤s′

Pr[rank(Ai,j + S) ≤ m/2] (Union Bound)

≤
( n
m

)2
·
(
m2

≤ s′

)
· 2−mk/16 (Lemma 3.1)

< n2 · (2m2)s
′ · 2−n/16 . (km = n)

Finally, using s′ ≤ n
40 logn , which follows from s ≤ n3

160r2 logn
, we get that Pr[∃i, j : Ai,j is simple] =

o(1), which completes the proof. �
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Note that the proof works as long as the number of possibilities for an s′-sparse matrix Si,j

is smaller than 2n/16/n2. Our next theorem exploits the fact that there is a smaller number of
possibilities for submatrices of structured sparse matrices (as in Definition 2.1). In fact, this is the
only property of S that the foregoing proof uses. This yields the following improved bound.

Theorem 3.4 (random Hankel matrices are structured rigid). Let A ∈ Fn×n2 be a random Hankel
matrix. Then, for every

√
n ≤ r ≤ n/32, and s ≤ n3/1000r2, with probability 1− o(1), the matrix

A has structured rigidity s for rank r.

Before proving Theorem 3.4 we state three corollaries of it. The first corollary is immediate by
choosing r = n3/5.

Corollary 3.5. Let A ∈ Fn×n2 be a random Hankel matrix. Then, there exists a universal constant
c > 0 such that with probability 1− o(1), the matrix A has structured rigidity cn9/5 for rank n3/5.

The second corollary follows from the first corollary and Theorem 2.4.

Corollary 3.6. Let A ∈ Fn×n2 be a random Hankel matrix, and let F (x, y) =
∑n

i=1

∑n
j=1Ai,jxiyj.

Then, with probability 1− o(1), it holds that C(F ) = Ω(n3/5).

The last corollary shows that there exists an explicit trilinear form with AN-complexity Ω(n3/5).
This is the first improvement over the trivial Ω(

√
n) lower bound for explicit tensors, and in doing so

it solves Problem 4.2 from [GW13] in the affirmative. Goldreich and Wigderson [GW13, Prop. 4.6]
show that if some Toeplitz matrix have AN-complexity Ω(m), then Ftet defined in Eq. (1) has AN-
complexity Ω(m) has well. We follow their method, but present a simpler argument for a different
trilinear function.

Corollary 3.7. Let F : {0, 1}n × {0, 1}n × {0, 1}2n → {0, 1} be the trilinear function defined by
F (x, y, z) =

∑n
i=1

∑n
j=1 zi+jxiyj. Then, C(F ) = Ω(n3/5).

Proof. According to Corollary 3.6, there exists an Hankel matrix A, defined by some diagonal values
a2, . . . , a2n, such that the bilinear form

∑
i,j ai+jxiyj has AN-complexity Ω(n3/5).

Let C be a trilinear circuit computing F with minimal AN-complexity, and denote its complexity
by m. Fixing the values of the variables zi to ai, for all i ∈ {2, . . . , 2n}, we get a bilinear circuit in
x and y of AN-complexity at most m. Thus, m = Ω(n3/5). �

We return to prove Theorem 3.4.

Proof of Theorem 3.4. The proof follows the lines of the proof of Theorem 3.2. We let m = 2r,
k = n/m, and t = s1/3. We assume towards contradiction that A = S + R, where R is of rank
at most r, and S is a sum of t matrices S1, . . . , St ∈ Fn×n2 , such that the ones in each matrix S`
are a subset of some X` × Y`, where |X`|, |Y`| ≤ t. Denote by T the n-by-n matrix over F2 with
Ti,j = 1 iff (i, j) is contained in at least one X` × Y`. It is clear from T ’s definition that the ones
in S are a subset of the ones in T . As in Theorem 3.2, we partition A,R, S, and also T , to (n/m)2

submatrices, according to the partition of row indices I1, . . . , In/m and column indices J1, . . . , Jn/m,
defined as in the proof of Theorem 3.2 (see Eq. 6). For a random (i, j) ∈ [n/m]2, it holds that

E
i,j

[
wt(T i,j)

]
≤ t3 · m

2

n2
, E

i,j

[
t∑

`=1

|X` ∩ Ii|

]
≤ t · t · m

n
, E

i,j

[
t∑

`=1

|Y` ∩ Jj |

]
≤ t · t · m

n
. (7)
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We say that a submatrix T i,j is good if

wt(T i,j) ≤ 4t3 · m
2

n2
,

t∑
`=1

|X` ∩ Ii| ≤ 4t · t · m
n
,

t∑
`=1

|Y` ∩ Jj | ≤ 4t · t · m
n
. (8)

Using Markov’s inequality, each of the above three events happen with probability at least 3/4.
Using union bound (on the complement events) with probability at least 1/4 all events occur
simultaneously, making T i,j good.

Next, we count the number of possible good submatrices T i,j . Each such submatrix is uniquely
determined by the setsX ′1, . . . , X

′
t and Y ′1 , . . . , Y

′
t , whereX ′` = X`∩Ii and Y ′` = Y`∩Jj . Furthermore,

a collection (X ′1, ...., X
′
t) such that

∑
` |X ′`| ≤

4t2m
n corresponds to a set X ′ ⊆ Ii× [t] of size at most

4t2m
n such that (p, `) ∈ X ′ iff p ∈ X ′` (and similarly for (Y ′1 , . . . , Y

′
t )). Hence, the number of possible

good submatrices is at most∣∣∣∣{X ′ ⊆ Ii × [t] : |X ′| ≤ 4t2m

n

}∣∣∣∣2 =

(
mt

≤ 4t2m/n

)2

≤
(

(2mt)4t2m/n
)2
≤ n16t2m/n .

We say that Si,j is good if T i,j is good, and we say that Ai,j is simple if it is the sum of a good
Si,j and a matrix of rank at most r. Next, we count the number of possible good submatrices Si,j .
Since the ones of Si,j are a subset of the ones in T i,j , the number of possibilities for Si,j is at most

n16t2m/n · 2wt(T i,j) ≤ n16t2m/n · 24t3m2/n2
.

Using the bound on the number of possible good submatrices Si,j , we may bound the probability
that some Ai,j is simple:

Pr
[
∃i, j : Ai,j is simple

]
≤
∑
i,j

∑
Si,j good

Pr[rank(Ai,j + Si,j) ≤ m/2] (Union Bound)

≤
( n
m

)2
· n16t2m/n · 24t3m2/n2 · 2−mk/16 (Lemma 3.1)

Recall that m = 2r and k = n/m to get

Pr
[
∃i, j : Ai,j is simple

]
≤ 22 logn + 32 logn·t2r/n + 16t3r2/n2 − n/16 ,

which is o(1) for t3 ≤ n3

1000r2
and r ≥

√
n. �

Generalization to Larger Fields. The choice of field F2 was not crucial in the proofs of
Lemma 3.1, Theorem 3.2 and Theorem 3.4. One can syntactically replace the field size 2 by
any prime power q, keeping the proofs intact. Furthermore, in Theorem 3.2, we slightly benefit
from taking a larger field. For details see Appendix A.1.

4 The Structure of Matrices of Small Bilinear Circuits

In this section we shall further refine the structure of matrices associated with small bilinear circuits,
beyond the structure captured by Definition 2.1 and Theorem 2.4. We begin with the structure
that arises from depth-2 bilinear circuits, and then continue to the structure arising from general
bilinear circuits. Our analysis follows the proof of [GW13, Thm. 4.4], and it can be viewed as
relating to finer notions of structured rigidity (than the one of Definition 2.1). We then follow
the first part of the proof of Theorem 3.4, and find submatrices with corresponding (rigidity-like)
parameters.
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4.1 The Structure of Matrices Associated with Depth Two Bilinear Circuits

We say a row/column in a matrix is m-sparse if it contains at most m non-zero entries. Likewise,
a linear function `(x) (resp. `′(y)) is m-sparse if it depends on at most m entries in x (resp. y).
Lastly, recall that by Definition 2.3, C2(F ) is the minimal AN-complexity of a depth-two bilinear
circuit computing F .

Proposition 4.1 (Structure of functions computed by depth two bilinear circuits). If C2(F ) = m,
then F can be expressed as

m∑
i=1

L′i(x)Li(y) +

m∑
`=1

Q`(x, y)

where L1, . . . , Lm are m-sparse linear functions, L′1, . . . , L
′
m are general linear functions, and each

Q` is a bilinear function of at most m variables from x and at most m variables from y. The matrix
associated with F has the form

A = CLrow +
m∑
`=1

S` (9)

where C is a general n ×m matrix, Lrow is an m × n matrix with m-sparse rows, and each S` is
an n× n matrix whose ones reside in an m×m rectangle.

Proposition 4.1 is proved explicitly in the warm-up part of the proof of [GW13, Thm. 4.4].

4.2 The Structure of Matrices Associated with General Bilinear Circuits

Proposition 4.2 (Structure of functions computed by general bilinear circuits). If C(F ) = m, then
F can be expressed as

m∑
i=1

Li(x)L′i(y) +

m∑
i=1

M ′i(x)Mi(y) +

m∑
`=1

Q`(x, y)

where L1, . . . , Lm and M1, . . . ,Mm are m-sparse linear functions, L′1, . . . , L
′
m and M ′1, . . . ,M

′
m are

general linear functions, and each Q` is a bilinear function of at most m variables from x and at
most m variables from y. The matrix associated with F has the form

A = LcolB + CLrow +

m∑
`=1

S` (10)

where Lcol is an n×m matrix with m-sparse columns, B is a general m×n matrix, C is a general
n×m matrix, Lrow is an m× n matrix with m-sparse rows, and each S` is an n× n matrix whose
ones reside in an m×m rectangle.

Proposition 4.2 is only implicit in the proof of [GW13, Thm. 4.4], and we include its proof in
Appendix A.2.

4.3 Substructures

In this subsection, similarly to the first part of the proof of Theorem 3.4, we find a submatrix (of a
matrix associated with a bilinear circuit) that has average rigidity-like parameters. Starting with
Proposition 4.2, for C(F ) = m, we write the matrix A associated with F as A = LcolB + CLrow +∑m

`=1 S` such that the non-zero entries of S` are a subset of X` × Y`, where |X`|, |Y`| ≤ m. Denote

11



by T =
⋃m
`=1X` × Y`, and note that |T | ≤ m3. Let I1, . . . , In/2m and J1, . . . , Jn/2m be some fixed

equipartition of the row indices and column indices of A, respectively, where each Ii and Jj is of
size 2m. This partition naturally defines (n/2m)2 submatrices as follows. For any (i, j) we denote
by Ai,j (resp. Si,j` ) the matrix A (resp. S`) restricted to rows Ii and columns Jj . For any i (resp.

j) we denote by Licol and Ci (resp. Bj and Ljrow) the matrices Lcol and C (resp,. B and Lrow)
restricted to Ii (resp. Jj). Then, one can write

Ai,j = LicolB
j + CiLjrow +

m∑
`=1

Si,j` , (11)

where Si,j` ⊆ T ∩(Ii×Jj). Next, we show that there exists a choice of (i, j) with favorable properties

(to be exploited in the next section) of the submatrices of Licol, L
j
row and on the subsets {X` ∩ Ii}`,

{Y` ∩ Jj}`, and T ∩ (Ii × Jj).

Proposition 4.3 (Structure of submatrix of matrices associated with small bilinear circuits). There

exists an (i, j) such that: (1) |T ∩(Ii×Jj)| ≤ 24m5

n2 , (2)
∑m

`=1 |X` ∩ Ii| ≤ 12m3

n , (3)
∑m

`=1 |Y` ∩ Jj | ≤
12m3

n , (4) wt(Licol) ≤
12m3

n , and (5) wt(Ljrow) ≤ 12m3

n .

If C2(F ) = m, then the same statement holds, except that we can replace Lcol and B with the
0n×m and 0m×n matrices, respectively.

Proof. For a uniformly random (i, j) ∈ [n/2m]2, it holds that

E
i,j

[|T ∩ (Ii × Jj)|] ≤ m3 · (2m)2

n2

E
i,j

[
m∑
`=1

|X` ∩ Ii|

]
≤ m ·m · 2m

n

E
i,j

[
m∑
`=1

|Y` ∩ Jj |

]
≤ m ·m · 2m

n

E
i,j

[wt(Licol)] ≤ m ·m · 2m

n

E
i,j

[wt(Ljrow)] ≤ m ·m · 2m

n

Using Markov’s inequality, each of the following “bad” events occur with probability at most 1/6

|T ∩ (Ii × Jj)| ≥ 6m3 · (2m)2

n2

m∑
`=1

|X` ∩ Ii| ≥ 6m ·m · 2m

n

m∑
`=1

|Y` ∩ Jj | ≥ 6m ·m · 2m

n

wt(Licol) ≥ 6m ·m · 2m

n

wt(Ljrow) ≥ 6m ·m · 2m

n

By union bound, with probability at least 1−5/6 over the choice of (i, j), none of the “bad” events
occur, which completes the proof. �
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We wish to express the structure captured by Eq. (11) in terms of linear equations on the entries
of the matrix Ai,j −

∑
` S

i,j
` . To do so we need the following definition.

Definition 4.4 (Orthogonal Complement of a Matrix). Let m ≤ n. If A is an n×m matrix, and
B is a (n−m)× n matrix of rank n−m such that BA = 0 then we say that B is a left orthogonal
complement of A. If A is an m×n matrix, and B is a n× (n−m) matrix of rank n−m such that
AB = 0 then we say that B is a right orthogonal complement of A.

It is well known that any matrix over a field has an orthogonal complement. Now, suppose
that Ai,j −

∑
` S`

i,j = LicolB
j + CiLjrow (as in Eq. (11)). Let D be an m × 2m matrix which is a

left orthogonal complement of Licol, and let E be an 2m ×m matrix which is a right orthogonal

complement of Ljrow. Then,

D · (Ai,j −
∑
`

S`
i,j) · E = 0m×m . (12)

In the case of depth-2 circuits we have Ai,j −
∑

` S`
i,j = CiLjrow. Using E, the right orthogonal

complement of Ljrow as above, we can write

(Ai,j −
∑
`

S`
i,j) · E = 02m×m . (13)

In the next section, we shall design tests based on Equations (12) and (13).

Remark: Note that there are many possible choices of an orthogonal complement of a given
matrix. Therefore, we shall refer to the left (right, resp.) orthogonal complement of A as some
canonical choice of a left (right, resp.) orthogonal complement of A, say the first such matrix
according to lexicographical order (over a finite field F).

5 Testing AN Complexity and AN2 Complexity

We would like to design a test such that matrices associated with (AN or AN2) complexity at most
m will surely pass the test, whereas the matrices we are interested in will fail it. (Since the test is
merely a mental experiment, i.e., we do not intend to actually run it, the test could be inefficient.)
The point is that any matrix on which the test fails must have complexity greater than m. We will
show that a random Toeplitz matrix, as well as a matrix whose entries are sampled from an 2−n-
biased distribution, will fail the test with overwhelming probability, thus proving complexity lower
bounds for such matrices. We will present two tests: One for AN-complexity failing most matrices
taken from a small-biased space, and one for AN2-complexity failing most Toeplitz matrices.

5.1 Lower Bounds for the AN-Complexity of Small-Biased Matrices

For i ∈ [n/2m] and j ∈ [n/2m], let9

Ii = {i, i+ (n/2m), . . . , i+ (2m− 1) · (n/2m)} ,
Jj = {(j − 1) · (2m) + 1, (j − 1) · (2m) + 2, . . . , j · (2m)} . (14)

9The specific choice for Ii and Jj is not crucial for our argument in this subsection, however it will be important
in the next subsection. Hence, since we need to pick some partition, we might as well choose this one.
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and denote by Ai,j the 2m-by-2m sub-matrix of A obtained by restricting A to rows Ii and columns
Jj . Consider the following test, where Ai,j is viewed as indexed by [2m]×[2m] rather than by Ii×Jj .

Test 1 AN-Complexity Test

Input: Matrix A ∈ Fn×n2 and parameter m ∈ [n]
1: for i = 1, . . . , n/2m and j = 1, . . . , n/2m do

2: for all subsets {Xi
`}m`=1 of [2m] such that

∑
` |Xi

`| ≤
12m3

n do

3: for all subsets {Y j
` }

m
`=1 of [2m] such that

∑
` |Y

j
` | ≤

12m3

n do

4: Let T :=
⋃m
`=1X

i
` × Y

j
` .

5: if |T | ≤ 24m5

n2 then

6: for all matrices Licol of dimension 2m×m and sparsity at most 12m3

n do
7: Let D be the left orthogonal complement of Licol.

8: for all matrices Ljrow of dimension m× 2m and sparsity at most 12m3

n do

9: Let E be the right orthogonal complement of Ljrow.
10: if there exists N ∈ F2m×2m

2 such that N ⊆ T , and D(Ai,j −N)E = 0m×m then
11: return “Pass”.
12: return “Fail”.

The following is an immediate corollary of Proposition 4.3 and Eq. (12).

Corollary 5.1. Every matrix associated with a bilinear circuit of AN-complexity at most m passes
Test 1 with parameter m.

In this subsection we consider a distribution of matrices whose entries are chosen from a small
biased sample space. Specifically, we shall use a sample space over strings of length N = n2 in order
to define n-by-n matrices. We shall show that almost all such matrices fail Test 1 with parameter
m. But we need a few preliminaries first.

Preliminaries. Recall the definition of an ε-biased distribution from [NN93].

Definition 5.2 (small-biased distribution). A distribution X over {0, 1}N is said to be ε-biased if
for every non-empty set S ⊆ [N ], it holds that∣∣∣∣ E

x∼X
[(−1)

∑
i∈S xi ]

∣∣∣∣ ≤ ε .
We shall use the following property of ε-biased distributions (implicit in [NN93]).

Lemma 5.3 ([AGHP92, Lem. 1]). Let X be an ε-biased distribution over {0, 1}N . Let `1, . . . , `t be
linearly independent linear functions on x1, . . . , xN . Then, the probability that all linear functions
equal 0 simultaneously is at most ε+ 2−t.

We shall also use the following simple fact from linear algebra.

Fact 5.4. Let t, n,m ∈ N such that t ≤ m ≤ n. Let `1, . . . , `t be a sequence of linearly independent
linear functions (over F) on x1, . . . , xn. Then, `1, . . . , `t span at least t −m linearly independent
functions that involve only the variables xm+1, . . . , xn.

Proof. Think of the linear functions as vectors in Fn, and let V = span{`1, . . . , `t}. Consider the
subspace U = span{em+1, . . . , en}, where ei ∈ Fn is the unit vector with 1 in the i-th coordinate
and 0 elsewhere. Then, dim(U ∩ V ) ≥ dim(U) + dim(V )− n = (n−m) + t− n = t−m, whereas
U ∩ V is the span of `1, . . . , `t that is supported only on the last n−m coordinates. �
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Actual Results. We are now ready to analyze the probability that a matrix sampled from a
small biased space passes Test 1. The core of the analysis refers to a single application of Step 10,
which refers to a specific choice of i, j, {Xi

`}m`=1, {Y
j
` }

m
`=1 as well as Licol, L

j
row (which in turn, fixes

D and E as well).

Lemma 5.5 (core of the analysis of Test 1). Fix i, j, {Xi
`}m`=1 and {Y j

` }
m
`=1 that pass the check of

Step 5, and fix Licol and Ljrow (which in turn, fixes D and E as well). Then, a matrix A whose
entries are sampled from an ε-biased distribution satisfies the condition in Step 10 with probability
at most

ε+ 2−m
2+24m5/n2

.

Proof. For a fixed choice of i, j, {Xi
`}m`=1, {Y

j
` }

m
`=1, L

i
col and Ljrow as above, we consider a specific

submatrix of dimension 2m× 2m of A, denoted Ai,j . Note that the corresponding left (resp. right)
orthogonal complement of Licol (resp. Ljrow) is a m-by-2m (resp. 2m-by-m) matrix of rank m,
denoted by D (resp. E). Recall that Ai,j is a submatrix whose entries are sampled according to an
ε-biased distribution. Our goal is to show that the equation D(Ai,j−N)E = 0 (checked in Step 10)
implies a lot of linearly independent linear equations on the entries of Ai,j .

Let Z be a 2m × 2m matrix of (2m)2 Boolean variables, where we will later take Z to be
Ai,j −N . Interpret the equations DZE = 0m×m as m2 linear equations on the (2m)2 variables in
Z. For i ∈ [m] and j ∈ [m], we have an equation of the form DiZE

(j) = 0, where Di is the i-th
row of D and E(j) is the j-th column of E. We can write

DiZE
(j) =

2m∑
k=1

2m∑
`=1

Di,kZk,`E`,j =
∑
k,`

(Di ⊗ E(j))k,`Zk,`;

that is, the coefficients of the equation are the tensor product of the vector Di with the vector E(j).
Thinking of these m2 linear equations on (2m)2 variables as a big matrix of dimension m2× (2m)2,
we note that this matrix of linear equations is the tensor product of D and E>, since the (i, j) row
equals to Di ⊗ E(j) (viewed as a (2m)2-bit long vector).

It is a known fact that the rank of the tensor product of any two matrices is the product of
their rank; hence, we get rank(D ⊗ E>) = rank(D) · rank(E>) = m2. In other words, we have a
linearly independent set of m2 linear equations on the variables Z. However, we want to get linear
equations over the variables of A, where Z = A−N . Say that Zk,` is a noisy variable if (k, `) ∈ T .
It will be enough to show that there are many independent linear equations which involve only
non-noisy variables of the matrix. Since the number of noisy variables is |T |, by Fact 5.4 we can
find at least m2 − |T | independent linear equations that do not involve noisy variables.

Overall, we got m2 − |T | independent linear equations on Ai,j . By Lemma 5.3, a submatrix
Ai,j whose entries are sampled according to an ε-biased distribution satisfies all m2−|T | equations
with probability at most ε+ 2−m

2+|T |. Lastly, the fact that {Xi
`}m`=1 and {Y j

` }
m
`=1 passed the check

of Step 5 means that |T | ≤ 24m5/n2, which finishes the proof.
�

Theorem 5.6 (Almost all ε-biased matrices have high AN-complexity). A matrix A whose entries
are sampled from an ε biased distribution fails Test 1 with parameter m (which implies that the
corresponding bilinear function has AN-complexity greater than m), with probability at least

1−
( n

2m

)2
·
(

2m2

≤ 12m3/n

)4

·
(
ε+ 2−m

2+24m5/n2
)
.
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In particular, for ε = 2−n and m = n2/3

10(logn)1/3
, this probability is at least 1− 2−n/2, for sufficiently

large n.

Proof. We use a union bound over all possible i, j, {Xi
`}m`=1, {Y

j
` }

m
`=1, L

i
col and Ljrow that can be

selected by the test, and employ Lemma 5.5 for each possibility. The number of options for choosing

(i, j) is (n/2m)2; the number of options for choosing {Xi
`}m`=1 (resp., {Y j

` }
m
`=1) is at most

(
2m2

≤12m3/n

)
;

the number of options for choosing Licol (resp., Ljrow) is at most
(

2m2

≤12m3/n

)
. �

5.2 Lower Bounds for the AN2-Complexity of Random Toeplitz Matrices

The following is a degenerate version of Test 1. Recall the definition of Ii and Jj from Eq. (14),
and the definition of Ai,j .

Test 2 AN-2-Complexity Test

Input: Matrix A ∈ Fn×n2 and parameter m ∈ [n]
1: for i = 1, . . . , n/2m and j = 1, . . . , n/2m do

2: for all subsets {Xi
`}m`=1 of [2m] such that

∑
` |Xi

`| ≤
12m3

n do

3: for all subsets {Y j
` }

m
`=1 of [2m] such that

∑
` |Y

j
` | ≤

12m3

n do

4: Let T :=
⋃m
`=1X

i
` × Y

j
` .

5: if |T | ≤ 24m5

n2 then

6: for all matrices Ljrow of dimension m× 2m and sparsity at most 12m3

n do

7: Let E be the right orthogonal complement of Ljrow.
8: if there exists N ∈ F2m×2m

2 such that N ⊆ T , and (Ai,j −N)E = 02m×m then
9: return “Pass”.

10: return “Fail”.

The following is an immediate corollary of Proposition 4.3 and Eq. (13).

Corollary 5.7. Every matrix associated with a bilinear circuit of AN2-complexity at most m passes
Test 2 with parameter m.

Lemma 5.8 (core of the analysis of Test 2). Fix i, j, {Xi
`}m`=1 and {Y j

` }
m
`=1 that pass the check of

Step 5, and fix Ljrow (which in turn, fixes E as well). Then, a random Hankel matrix A satisfies
the condition in Step 8 with probability at most

2−n/2+6m3/n

Proof. For a fixed choice of i, j, {Xi
`}m`=1, {Y

j
` }

m
`=1 and Ljrow, we consider a specific submatrix of

dimension 2m× 2m of A, denoted Ai,j . Note that the corresponding right orthogonal complement
of Ljrow is a 2m-by-m matrix of rank m, denoted by E. By the definition of Ii and Jj in Eq. (14),
Ai,j is of the form

a1 a2 a3 . . . a2m

ak+1 ak+2 ak+3 . . . ak+2m

. . . . . . . . . . . . . . .
a(2m−1)k+1 a(2m−1)k+2 a(2m−1)k+3 . . . a(2m−1)k+2m


where k = n/(2m) and a1, . . . , a(2m−1)k+2m are uniform independent random bits. Our goal will
be to show that the equation (Ai,j − N) · E = 02m×m implies a lot of linearly independent linear
equations on the random variables a1, . . . , a(2m−1)k+2m.
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First think of a generic 2m × 2m matrix Z as a matrix of (2m)2 variables, and interpret the
equations ZE = 02m×m as linear equations on Z. For each row ` ∈ [2m], we have m equations
corresponding to Z`E = 01×m, which are linearly independent. Denote by T` the intersection of T
with the indices corresponding to the `-th row of the submatrix, i.e. T` = T ∩ ({`} × [2m]). Say
that Z`,`′ is a noisy variable if (`, `′) ∈ T . By Fact 5.4, we can get at least m − |T`| independent
linear equations on the `-th row of Z that do not involve noisy variables. Summing over all `’s we
have at least

∑2m
`=1 (m− |T`|) = 2m2 − |T | independent linear equations that do not involve the

noisy entries of the matrix, and such that each equation involves only variables from one row of
Z. Take Z = Ai,j − N ; since we got equations on Z that do not involve noisy entries, these are
actually equations on Ai,j as well.

The main difficulty is that we want to exhibit linearly independent linear equations on the
variables a1, . . . a(2m−1)k+2m, but the equations we got may not be linearly independent once we
identify multiple entries in the matrix Ai,j with the same variable.10 To solve this issue, we shall look
for a set of equations which remains linearly independent after this identification. Let n` = m−|T`|
be number of linearly independent equations we got on the `-th row. Let s = d(2m)2/ne, and
consider all rows starting from some index r ∈ [s], and taking jumps of s. Then, by the pigeon-hole
principle there exists a r ∈ [s] such that∑

`:`≡r mod s

n` ≥ (2m2 − |T |)/s .

A key point is that by our choice of s, the `-th row and the (` + s)-th row of Ai,j depend on

disjoint sets of random variables, since s · k ≥ (2m)2

n · n
2m = 2m. Thus, the sets of variables out of

a1, . . . , a(2m−1)k+2m that participate in rows with index in {` : ` ≡ r mod s} are pairwise disjoint,
and the equations we got on these rows are linearly independent as equations over the variables
a1, . . . , a(2m−1)k+2m. Since we got at least (2m2−|T |)/s independent linear equations on completely

random bits, all equations hold simultaneously with probability at most 2(−2m2+|T |)/s. The fact that
{Xi

`}m`=1 and {Y j
` }

m
`=1 passed the check in Step 5 means that |T | ≤ 24m5/n2, and using s = 2m2/n,

we get a probability bound of 2(−2m2+24m5/n2)· n
4m2 , which completes the proof. �

Theorem 5.9 (Almost all random Hankel matrices have high AN2-complexity). A random Hankel
matrix A fails Test 2 with parameter m (which implies it has direct complexity at least m) with
probability at least

1−
( n

2m

)2
·
(

2m2

≤ 12m3/n

)3

· 2−n/2+6m3/n
.

In particular, for m = n2/3

10(logn)1/3
, this probability is at least 1− 2−n/4, for large enough n.

Proof. We use a union bound over all the
(
n

2m

)2·( 2m2

≤12m3/n

)3
possible ways to pick i, j, {Xi

`}m`=1, {Y
j
` }

m
`=1

and Ljrow, and employ Lemma 5.8 to bound each possibility. �

Explicit 3-Linear Functions with C2 = Ω̃(n2/3). The following is a corollary of Theorem 5.9.

Corollary 5.10. Let F : {0, 1}n × {0, 1}n × {0, 1}2n → {0, 1} be the trilinear function defined by
F (x, y, z) =

∑n
i=1

∑n
j=1 zi+jxiyj. Then, C2(F ) = Ω(n2/3/ log1/3 n).

We omit the proof, since it is identical to that of Corollary 3.7.

10In fact, we cannot expect this set of equations to be linearly independent simply because there are too many
equations (i.e., more equations than variables).
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5.3 Explicit 4-Linear Functions with AN-Complexity Ω̃(n2/3)

We show that based on the ε-biased generator of Mossel, Shpilka and Trevisan [MST06] (described
next), the AN-complexity lower bound for the randomized bilinear function in Theorem 5.6 yields
a similar lower bound on an explicit 4-linear function.

To describe Mossel et al.’s construction, we begin with some preliminaries. Let N be a natural
number, denote by F = GF (2N ), and suppose we have an explicit representation of F as the
quotient F2[x]/(p(x)) where p(x) is an irreducible polynomial over F2 of degree N . We remark that

for N = 2 · 3k, the polynomial p(x) may be chosen to be x2·3k + x3k + 1 (cf. [LN97, Ex. 3.96]).11

Then, 1, x, x2, . . . , xN−1 is a basis for GF (2N ) over F2. The map φ : F→ F defined by φ : z 7→ z · x
is a linear transformation over F2, thus may be represented by a matrix A ∈ FN×N2 . The Frobenius
transformation ϕ : F → F defined by ϕ : z 7→ z2 is also a linear transformation over F2, thus may
be represented by a matrix B ∈ FN×N2 . Given the polynomial p(x), the matrix A (resp. B) can
be computed in poly(N) time by writing the images of the basis elements φ(1), φ(x), . . . , φ(xN−1)
(resp. ϕ(1), ϕ(x), . . . , ϕ(xN−1)) as polynomials modulo p(x).

The generator of Mossel et al. is given 2N input bits c1, . . . , cN and d1, . . . , dN , and outputs
N ·n bits where 1 ≤ n ≤ N , such that each output bit is a bilinear function in c = (c1, . . . , cN ) and
d = (d1, . . . , dN ). The output of the generator on vectors c, d ∈ FN2 is the N ·n bits gi,j = c>(AiBj)d
for i ∈ {0, . . . , N − 1} and j ∈ {0, . . . , n− 1}. Mossel et al. [MST06] proved that this is an ε-bias
generator.

Theorem 5.11 ([MST06, Thm. 6]). The bias of any non-trivial linear combination of the gi,js is

at most 2−
N−n

2 .

Corollary 5.12. Let N = 2 · 3k and let A and B be the explicit matrices as above for the field
GF (2N ). Let n = N/3 and let F : {0, 1}n × {0, 1}n × {0, 1}N × {0, 1}N be the multilinear function
defined by F (a, b, c, d) =

∑n−1
i=0

∑n−1
j=0 aibj · (cTAiBjd). Then, C(F ) = Ω(n2/3/ log1/3 n).

Proof. For a fixed value of c and d, denote by Fc,d the bilinear function defined by Fc,d(a, b) =
F (a, b, c, d). By Theorem 5.11 for a random c, d the random matrix Fc,d is an n-by-n matrix
whose entries are drawn from an ε-bias distribution, for ε = 2−(N−n)/2 = 2−(3n−n)/2 = 2−n.
By Theorem 5.6, this means that there exists a choice for c and d under which Fc,d satisfies

C(Fc,d) ≥ Ω(n2/3/ log1/3 n), for a large enough n (in fact, at least 1− 2−n/2 fraction of the choices
have this property). By the fact that the AN-complexity of F is at least as large as the AN-
complexity of Fc,d (see the proof of Corollary 3.7), we get C(F ) ≥ Ω(n3/2/ log1/3 n). �

6 Digest and Open Problems

6.1 Digest

It is well known that random matrices have high rank; specifically, a random m-by-m has rank at
least m/2 with probability at least 1−exp(−Ω(m2)). Our basic strategy is to obtain similar bounds
for pseudorandom matrices, where the bound is “similar” in the sense that it is exponentially (in
the randomness complexity) close to 1. We restrict ourselves to randomness complexity O(n), since
we aim at replacing the random bits by auxiliary inputs, making the construction explicit (to ensure
multilinearity, we also use the fact that the sampled matrix is multilinear in the randomness). This
means that we can afford a union bound over exp(n)-many events.

11For general N , it is not known how to find such a polynomial p(x) without advice or randomness [KKS15].

18



The first instantiation of our strategy appears in the proof of Theorem 3.2, where we handle
random Toeplitz matrices. Firstly, we consider a partition of the random n-by-n matrix into m-by-
m matrices such that each submatrix depends on Θ(n) random bits. Next, using Lemma 3.1 and a
union bound over all m-by-m matrices that are s′-sparse, we prove that (with high probability) all
submatrices have rigidity s′ = Ω(n/ log n) for rank m/2. It follows that a random Toeplitz matrix
has rigidity (n/m)2 ·s′ = Ω̃(n3/m2) for rank m/2, which yields new results for any m ∈ [n0.51, n0.99].
A slightly better result is obtained for structured rigidity, since in this case we may consider slightly
less sparse matrices.

A more radical saving appears in Section 5, where the structured rigidity is exploited much
further. Here we are considering a number of bad events that exceeds exp(O(n)), whereas our
randomness complexity is still O(n). This is done by “covering” these bad events by a “net” of
exp(n) bad super-events and taking a union bound on the latter (partially explicitly and partially
implicitly). Firstly, since we start with restricted notions of structured rigidity (which suffice for our
application), we can upper bound the number of linear dependencies (in the 2m-by-2m submatrix)
by exp(n) (rather than by exp(m2)). Secondly, relying on structured rigidity, we cover all relevant
s′′-sparse 2m-by-2m matrices by exp(n) such matrices, where s′′ = m2/poly log(n) and T covers S
if the non-zero entries of S are a subset of the non-zero entries of T . Finally, rather than considering
the probability that some m2 linear equations involving the elements of R + S hold, where R is a
pseudorandom matrix and S is a fixed matrix, we consider all matrices covered by some matrix T
simultaneously. We do so by considering the probability that some m2−s′′ related linear equations
involving only the elements of R hold, where the latter equations are obtained by eliminating the
variables corresponding to non-zero entries of T from the former equations. We stress that the final
step accounts for more than 2s

′′
sparse matrices, whereas the amount of randomness is O(n)� s′′.

6.2 Open Problems

Our work brings up a lot of natural open problems; some of which are stated next. We state all
problems in the affirmative, although we actually do not know whether or not they can be resolved
in that direction.

Random Toeplitz matrices. While Theorem 1.5 provides an almost tight lower bound on the
AN2-complexity of the corresponding bilinear functions, their AN-complexity remains undeter-
mined: Theorem 1.3 asserts a Ω(n0.6) lower bound, whereas [GW13, Thm. 3.1] states an O(n2/3)
upper bound.

Open Problem 6.1 (tight AN-complexity lower bound for random Toeplitz matrices). Prove
that, with high probability, bilinear functions that correspond to random Toeplitz matrices have
AN-complexity Ω(n2/3).

The above would be resolved by proving the following rigidity bound12

Open Problem 6.2 (rigidity of random Toeplitz matrices). Prove that, with high probability,
random Toeplitz matrices have rigidity Ω(n2) for rank Ω(n2/3).

A similar challenge holds with respect to matrices sampled from an 2−n-biased distribution. In
fact, it may be easier to settle the following –

12Indeed, a bound on structured rigidity (or even on the restricted notions of structured rigidity considered in
Section 4) would suffice.
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Open Problem 6.3 (rigidity of small-biased distribution of matrices). Prove that, with high prob-
ability, a matrix sampled from an 2−n-biased sample space has rigidity Ω(n2) for rank Ω(n2/3).

Recall that the proof of Theorem 1.6 establishes an almost tight lower bound on the AN-
complexity of the corresponding bilinear functions, but this is done via a much more restricted
notion of rigidity. We also mention that it is easy to prove that these matrices have rigidity
Ω̃(n3/r2) for rank r ∈ [

√
n, n/32] (by degenerating the proof of Theorem 3.2).13

Explicit matrices and bilinear functions. Our lower bounds refer to distributions over n-by-n
matrices that are generated using O(n) random bits, and we obtain explicit multilinear functions
by using these random bits as auxiliary variables (hence these functions are trilinear or four-linear,
depending on the way the distribution is generated). The begging challenges are to get rid of the
randomness.

Open Problem 6.4 (AN-complexity lower bound for explicit bilinear function). For any α ∈
(0.5, 2/3], present an explicit bilinear function that has AN-complexity Ω(nα).

Needless to say, the larger α, the better. Even an AN2-complexity lower bound would be
welcome. Problem 6.4 would be resolved by proving the following rigidity bound

Open Problem 6.5 (rigidity of some explicit matrices). For any α ∈ (0.5, 2/3], present an explicit
matrix that has rigidity Ω(n3α) for rank Ω(nα).

As noted in Section 1.1, this rigidity challenge refers to a range of parameters that differs from
the standard one.

Higher AN-complexity lower bounds. Theorem 1.6 provides an AN-complexity lower bound
of Ω(n2/3/(log n)1/3) for some explicit 4-linear function. This is not necessarily tight, since by [GW13,
Thm. 3.1] any t-linear function has AN2-complexity O((tn)t/(t+1)). More importantly, we wish to
surpass the aforementioned lower bound.

Open Problem 6.6 (AN-complexity lower bounds for explicit multilinear functions). For any
α ∈ (2/3, 1), present an explicit O(1)-linear function that has AN-complexity Ω(nα).

By the strategy outlined in Section 5.3, it suffices to meet this challenge with a random tensor
of constant dimension sampled using O(n) random bits, provided that its entries may be expressed
as O(1)-linear functions in the random bits. Here too, even an AN2-complexity lower bound would
be welcome.

13Specifically, Lemma 3.1 can be replaced by a simpler proof that refers to an m-by-m submatrix whose entries

are taken from an 2−n-biased distribution over {0, 1}m
2

. In this case, it is easy to bound the probability that the
submatrix has rank at most r = m/2 ≤ m− (n/m) by

(
m
r

)
· (2r)n/m · (2−(n/m)·m + 2−n), where the bound holds by

considering n/m rows that depend on at most r other rows (which cover the row basis). Using r = m/2, we get a
probability bound of 2m · 2n/2 · 2−n+1. For the rest of the proof, one may select an arbitrary partition of the n-by-n
matrix to m-by-m submatrices, since any such partition will yield submatrices as above.
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Appendices

A.1 Generalization to Larger Fields

As stated in Section 3, the choice of field F2 was not crucial in the proofs of Lemma 3.1, Theorem 3.2
and Theorem 3.4. One can syntactically replace the field size 2 by any prime power q, keeping the
proofs intact. Furthermore, in Theorem 3.2, we slightly benefit from taking a larger field. We state
the generalized theorems and point to the improvements over Theorem 3.2.

Lemma A.1 (Main Lemma for Fq). Let m, k ∈ N, 16 ≤ k ≤ m. Let A ∈ Fm×mq be the random
matrix 

a1 a2 a3 . . . am
ak+1 ak+2 ak+3 . . . ak+m

. . . . . . . . . . . . . . .
a(m−1)k+1 a(m−1)k+2 a(m−1)k+3 . . . a(m−1)k+m


where a1, . . . , a(m−1)k+m are uniform scalars from Fq, and let S ∈ Fm×mq be some fixed matrix.

Then, PrA[rank(S +A) ≤ m/2] ≤ q−km/16.

The proof of Lemma A.1 is identical to the original proof of Lemma 3.1, replacing 2 with q.

Theorem A.2 (random Hankel matrices over Fq are rigid). Let A ∈ Fn×nq be a random Hankel
matrix Ai,j = ai+j where a2, . . . , a2n are uniform independent scalars from Fq. Then, for every√
n ≤ r ≤ n/32, with probability 1 − o(1), the matrix A has rigidity n3

80r2 logq(qn2)
for rank r. In

particular, if q ≥ nΩ(1), then we get rigidity Ω(n
3

r2
) for rank r.

Proof. We highlight the difference from the proof of Theorem 3.2. When considering the probability
that A is simple we can write

Pr
[
∃i, j : Ai,j is simple

]
≤
∑
i,j

Pr[Ai,j is simple] (Union Bound)

≤
∑
i,j

∑
S∈Fm×m

q :
wt(S)≤s′

Pr[rank(Ai,j + S) ≤ m/2] (Union Bound)

≤
( n
m

)2
·
(
m2

s′

)
· qs′ · q−mk/16 (Lemma A.1)

< n2 · (m2q)s
′ · q−n/16

Using s′ ≤ n
20 logq(qm2)

, which follows from s ≤ n3

80r2 logq(qn2)
, we get Pr[∃i, j : Ai,j is simple] = o(1),

which completes the proof. �

Theorem A.3 (random Hankel matrices over Fq are structured rigid). Let A ∈ Fn×nq be a random
Hankel matrix. Then, for every

√
n ≤ r ≤ n/32 and s ≤ n3/1000r2, with probability 1 − o(1), the

matrix A has structured rigidity s for rank r.

The proof of Theorem A.3 is identical to the original proof of Theorem 3.4, replacing 2 with q.
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A.2 The Structure of Matrices Associated with General Bilinear Circuits

The following proof is essentially given in [GW13, Thm. 4.4], although the result is not spelled out.
We give it here for completeness.

Proposition A.4 (Proposition 4.2, restated). If C(F ) = m, then F can be expressed as

m∑
i=1

Li(x)L′i(y) +

m∑
i=1

M ′i(x)Mi(y) +

m∑
`=1

Q`(x, y) (15)

where L1, . . . , Lm and M1, . . . ,Mm are m-sparse linear functions, L′1, . . . , L
′
m and M ′1, . . . ,Mm are

general linear functions, and each Q` is a bilinear function of at most m variables from x and at
most m variables from y. The matrix associated with F has the form

A = LcolB + CLrow +
m∑
`=1

S` (16)

where Lcol is an n×m matrix with m-sparse columns, B is a general m×n matrix, C is a general
n×m matrix, Lrow is an m× n matrix with m-sparse rows, and each S` is an n× n matrix whose
ones reside in an m×m rectangle.

Proof. We are given a multilinear circuit computing F of AN-complexity m, and we wish to show
that we can write F as in Eq. (15). The deduction of Eq. (16) from Eq. (15) is obvious.

We perform simplification rules on the circuit. Let F1, . . . ,Fm denote the gates of the circuits,
where Fm is the output gate. For any i < m, if Fj appears as a free term in Fi (i.e., the i-th gate
adds Fj to its output), then we can “delay” this addition by feeding Fj to the gates that are fed by
Fi, and performing the addition there. If Fj was only added to Fi we omit Fj from Fi (i.e., omit the
edge feeding Fj into the i-th gate).14 We repeat this simplification rule until one cannot perform it
anymore. Since the circuit is a directed acyclic graph, the process will stop. Call a gate an x-gate
(resp. y-gate) if there are directed paths only from the x variables (resp. y variables) to this gate,
and call it an xy-gate if there are paths both from x and from y. Recall that by multilinearity
(Definition 2.2) an x-gate (resp. y-gate) cannot be multiplied by another x-gate (resp. y-gate), and
an xy-gate cannot be multiplied at all. We observe that after the transformation the circuit is of
height at most 3 (where the height of a gate is the longest path from an input variable to it). This
is shown as follows.

• Next to the inputs (i.e., at height 1) we have either x-gates (resp. y-gates) computing linear
functions in x (resp. y) on m variables, or xy-gates computing a bilinear function on m
variables from both x and y.

• For i < m, if Fi is at height 2, then it must be an xy-gate, since by the simplification rules it
must multiply two of its inputs, and these inputs must come from different blocks of variables.

• By the same reasoning, if Fi is of height 3, then it must be the output gate (i.e., i = m), since
otherwise it must be fed by an xy-gate of height 2, which cannot be added nor multiplied.

14The condition account for the case that Fi does not compute a homogeneous polynomial. In that case it is
possible that the value of Fj appears in the output of Fi both as a free term and as a factor in a product with some
other gate or variables (e.g., F2(x, y) = x7 · F1(y) + x2y3 + F1(y)).
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We shall express the functions computed by gates at heights 1, 2, and finally by the output gate.
Height-1 Gates: Denote by L1, . . . , Lk (resp., M1, . . . ,Mk′) the linear functions computed

by x-gates (resp. y-gates) at height 1. Denote by Qi(x, y) the bilinear function computed by an
xy-gate Fi at height 1. Each of Li,Mi and Qi computes a function that depends on at most m
variables from x and at most m variables from y.

Height-2 Gates: Each xy-gate Fi (which is not the output gate) at height 2 is fed with x-gates,
y-gates and variables (we may assume that it is not fed by xy-gates by the simplification rule). It
computes a sum of products of terms in x and terms in y; we break these products according to
whether or not each term is a gate or an input variable. For any linear function Lj(x), we gather
all linear functions in y and all variables in y that are multiplied by Lj in the computation of gate
Fi; this gives a general (not necessarily sparse) linear function in y, denoted Li,j(y). For any linear
function Mj(y), we gather all variables from x that are multiplied by Mj to get a linear function
in x, denoted by Mi,j(x). Letting Qi(x, y) be the bilinear function with all variable by variable
products, we get

Fi(x, y) =

k∑
j=1

Lj(x)Li,j(y) +

k′∑
j=1

Mi,j(x)Mj(y) +Qi(x, y) , (17)

where Qi depends on at most m variables from x and at most m variables from y.
Output Gate: If the output gate is at height 2, then we are done. Otherwise, we may assume

that the output gate is only fed by xy-gates, since if it is fed by some other gates (or variables)
then their contribution (multiplied by other gates or variables) can be computed by an auxiliary
xy-gate (of height 2) that feeds the output gate. Hence, the output gate computes the sum of at
most m gates, each of which computes a bilinear function as in Eq. (17), where this also covers
xy-gates of height 1 (since they also compute a function of this very form). Overall, we get that

F (x, y) =

m∑
i=1

 k∑
j=1

Lj(x)Li,j(y) +

k′∑
j=1

Mi,j(x)Mj(y) +Qi(x, y)


=

k∑
j=1

Lj(x) ·

(
m∑
i=1

Li,j(y)

)
+

k′∑
j=1

(
m∑
i=1

Mi,j(x)

)
·Mj(y) +

m∑
i=1

Qi(x, y)

Letting L′j(y) =
∑m

i=1 Li,j(y) and M ′j(x) =
∑m

i=1Mi,j(x), we get

F (x, y) =
k∑
j=1

Lj(x)L′j(y) +
k′∑
j=1

M ′j(x)Mj(y) +
m∑
i=1

Qi(x, y)

where the Lj ’s are m-sparse linear functions in x, the L′j ’s are general linear functions in y, the
M ′j ’s are general linear functions in x, the Mj ’s are m-sparse linear functions in y, and each Qi is
a bilinear function that depends on at most m variables in x and y. �
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