A simple proof of the Isolation Lemma

Noam Ta-Shma*

May 7, 2015

Abstract

We give a new simple proof for the Isolation Lemma, with slightly better parameters, that also gives non-trivial results even when the weight domain m is smaller than the number of variables n.

1 The lemma and its proof

Let n, m be two natural numbers, $\mathcal{F} \subseteq \mathrm{P}([n])$, where $[n]=\{1, \ldots, n\}$ and $\mathrm{P}([n])$ is the set of all subsets of $[n]$. A weight function is a function $w:[n] \rightarrow[m]$. Given a weight function w, we extend it to sets by defining the weight of a set to be the sum of the weights of its elements, i.e., $w(S)=\sum_{x \in S} w(x)$.

Let $\min _{w}(\mathcal{F})$ be the family of sets with the smallest weight amongst \mathcal{F} with respect to w, i.e.,

$$
\min _{w}(\mathcal{F})=\{A \in \mathcal{F} \mid w(A) \text { is minimal }\} .
$$

When $\left|\min _{w}(\mathcal{F})\right|=1$ the minimum weight under w is attained uniquely.
Mulmuley, Vazirani and Vazirani [MVV87] proved:
Theorem 1. [MVV87] (The isolation lemma - original version) For every $\mathcal{F} \subseteq \mathrm{P}([n])$,

$$
\operatorname{Pr}_{w:[n] \rightarrow[m]}\left(\left|\min _{w}(\mathcal{F})\right|=1\right) \geq 1-\frac{n}{m}
$$

where the probability is over w that is uniformly distributed over all functions from $[n]$ to $[m]$.
We give a new proof for the isolation lemma with slightly better parameters. Unlike Theorem 1 our proof gives non-trivial results even when $m \leq n$:

Theorem 2. For every $\mathcal{F} \subseteq \mathrm{P}([n])$,

$$
\operatorname{Pr}_{w:[n] \rightarrow[m]}\left(\left|\min _{w}(\mathcal{F})\right|=1\right) \geq\left(1-\frac{1}{m}\right)^{n} .
$$

Proof. Fix a family $\mathcal{F} \subseteq \mathrm{P}([n])$. W.l.o.g. no set $S \in \mathcal{F}$ is a superset of another set $T \in \mathcal{F}$, as the weight of S is always strictly bigger than the weight of T and thus S never affects whether there is a unique minimum or not and therefor we can drop it.

Let $W=\{w:[n] \rightarrow[m]\}$ denote the set of all weight functions and $W_{>1}=\{w:[n] \rightarrow\{2, \ldots, m\}\}$ denote the set of all weight functions that assign each element a weight that is strictly larger than 1 . We

[^0]define a mapping $\phi: W_{>1} \rightarrow W$ as follows: given a weight function $w \in W_{>1}$, fix an arbitrary set $S_{0} \in \min _{w}(\mathcal{F})$ and define the weight function $w^{\prime}=\phi(w)$ to be:
\[

w^{\prime}(i)= $$
\begin{cases}w(i)-1 & \text { if } i \in S_{0} \\ w(i) & \text { otherwise }\end{cases}
$$
\]

We claim:
Claim 3. 1. If $w \in W_{>1}$ then $\left|\min _{\phi(w)}(\mathcal{F})\right|=1$
2. ϕ is one-to-one on $W_{>1}$.

Together, this shows that:

$$
\operatorname{Pr}_{w:[n] \rightarrow[m]}\left(\left|\min _{w}(\mathcal{F})\right|=1\right) \geq \frac{\left|\phi\left(W_{>1}\right)\right|}{|W|}=\frac{\left|W_{>1}\right|}{|W|}=\left(1-\frac{1}{m}\right)^{n}
$$

We are left with proving the claim. To see the first item in the claim, notice that for all $S \in \mathcal{F}$, $w^{\prime}(S)=w(S)-\left|S \cap S_{0}\right|$. Thus, for all $S_{0} \neq S \in \mathcal{F}$,

$$
w^{\prime}\left(S_{0}\right)=w\left(S_{0}\right)-\left|S_{0}\right| \leq w(S)-\left|S_{0}\right|<w^{\prime}(S)
$$

where the first inequality is because S_{0} gives minimal weight under w, and the second inequality is because the set S_{0} is not contained in any other set in \mathcal{F} and therefore $\left|S \cap S_{0}\right|<\left|S_{0}\right|$.

The second item in the claim follows from the first one. If $w \in W_{>1}$ then there is a unique set $S_{0} \in \mathcal{F}$ achieving minimum value under $w^{\prime}=\phi(w)$. If we take w^{\prime} and increment the weight it gives S_{0} we recover w. Thus, w^{\prime} determines w and ϕ is one-to-one on $W_{>1}$.

References

[MVV87] Ketan Mulmuley, Umesh V Vazirani, and Vijay V Vazirani. Matching is as easy as matrix inversion. In Proceedings of the nineteenth annual ACM symposium on Theory of computing, pages 345-354. ACM, 1987.

[^0]: ${ }^{*}$ Ironi D High School, Tel-Aviv, ISRAEL. Email: noam.tashma@gmail.com.

