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Abstract
We study k-party set disjointness in the simultaneous message-passing model, and show that even if each element

i ∈ [n] is guaranteed to either belong to all k parties or to at most O(1) parties in expectation (and to at most
O(logn) parties with high probability), then Ω(nmin(log 1/δ, log k)/k) communication is required by any δ-error
communication protocol for this problem (assuming k = Ω(logn)).

We use the strong promise of our lower bound, together with a recent characterization of turnstile streaming
algorithms as linear sketches, to obtain new lower bounds for the well-studied problem in data streams of approximat-
ing the frequency moments. We obtain a space lower bound of Ω(n1−2/pε−2 logM log 1/δ) bits for any algorithm
giving a (1 + ε)-approximation to the p-th moment

∑n
i=1 |xi|

p of an n-dimensional vector x ∈ {±M}n with proba-

bility 1−δ, for any δ ≥ 2−o(n1/p). Our lower bound improves upon a prior Ω(n1−2/pε−2 logM) lower bound which
did not capture the dependence on δ, and our bound is optimal whenever ε ≤ 1/poly(logn). This is the first example
of a lower bound in data streams which uses a characterization in terms of linear sketches to obtain stronger lower
bounds than obtainable via the one-way communication model; indeed, our set disjointness lower bound provably
cannot hold in the one-way model.

1 Introduction
Set disjointness is one of the cornerstones of complexity theory. Throughout the years, this communication prob-
lem has played a key role in obtaining unconditional lower bounds in many models of computation, including proof
complexity, data streams, data structures and algorithmic game theory (see [CP10] and references therein). Many
variants of this problem were studied, starting with the standard two-party model (e.g., [KS92]) and recently in several
multiparty communication models ([She14, BEO+13, BO15]).

Motivated by streaming applications, we study a promise version of number-in-hand multiparty disjointness in the
public-coin simultaneous message passing model of communication (SMP). In this setting, there are k players each
with a bit string xi ∈ {0, 1}n, i ∈ [k] = {1, 2, . . . , k}, who are promised that their inputs satisfy one of the following
cases:

• (NO instance) for all j ∈ [n], the number of i ∈ [k] for which xij = 1 is distributed as Bin(k, 1/k), or

• (YES instance) there is a unique j∗ ∈ [n] for which xij∗ = 1 for all i ∈ [k], and for all j 6= j∗, the number of
i ∈ [n] for which xij = 1 is distributed as Bin(k, 1/k).

The players simultaneously send a message M i(xi, R) to a referee, where R is a public-coin that the players share.
The referee then outputs a function f(M1(x1, R), . . . ,Mk(xk, R), R), which should equal 1 if the inputs form a YES
instance, and equal 0 otherwise. Notice that if X ∼ Bin(k, 1/k), then Pr[X > `] ≤ (e/`)`, and so by a union bound
for all coordinates j in a NO instance, the number of i ∈ [k] for which Xi

j = 1 is O(log n/ log log n). Thus, for
k = Ω(log n/ log log n), and in fact k = nΩ(1) in our context below, NO and YES instances are distinguishable.

Our first contribution. We show an Ω(nmin(log 1/δ, log k)/k) total communication lower bound for any pro-
tocol which succeeds with probability at least 1 − δ in solving this promise problem in the public-coin SMP model
(Theorem 3.1 below).
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We then show how this result can be used to obtain strong space lower bounds in the turnstile data stream model. In
this model, an integer vector x is initialized to 0n and undergoes a long sequence of additive updates to its coordinates.
The t-th update in the stream has the form xi ← xi + δt, where δt is an arbitrary (positive or negative) integer. At the
end of the stream we are promised that x ∈ {−M,−M + 1, . . . ,M}n for some bound M which is typically assumed
to be at least n (and which we assume here).

Approximating the frequency moments Fp =
∑n
i=1 |xi|p is one of the most fundamental problems in data streams,

starting with the seminal work of Alon, Matias, and Szegedy [AMS99]. The goal is to output a number F̂p ∈ [(1 −
ε)Fp, (1 + ε)Fp] with probability at least 1 − δ using as little memory in bits as possible. It is known that for
0 < p ≤ 2, Θ(ε−1 log(M) log 1/δ) bits of space is necessary and sufficient [KNW10, JW13]. Ideas here have been
the basis of many other streaming algorithms and lower bounds, with connections to linear algebra [SW11, CDM+13]
and information complexity [CKW12, BGPW13].

Perhaps surprisingly, for p > 2 a polynomial (in n) amount of space is required [SS02, BYJKS04a, CKS03]. The
best known upper bound is due to Ganguly and achieves space

O(n1−2/pε−2 log n · log(M) log(1/δ))/min(log n, ε4/p−2))).

In the case that ε ≤ 1/poly(log n), this simplifies to O(n1−2/pε−2 logM log(1/δ)). On the other hand, if ε is a
constant, this simplifies to O(n1−2/p log n logM log(1/δ)). The latter complexity is also achieved by algorithms of
[AKO10, And]. The lower bound, on the other hand, for any ε, δ is only Ω(n1−2/pε−2 logM) [LW13]. A natural
question is whether there are algorithms using less space and achieving a high success probability, that is, if one
can do better than just repeating the constant probability data structure and taking a median of Θ(log 1/δ) indepen-
dent estimates. While there is some work on tightening the bounds in the context of linear sketches over the reals
[ANPW13a, LW13], these lower bounds do not yield lower bounds in the streaming setting; for more discussion on
this, see below.

Our Second Contribution. We show for any ε ∈ (0, 1), any δ ≥ 2−o(n
1/p), and constant p > 2, any algorithm

obtaining a (1 + ε)-approximation to Fp in the turnstile streaming model requires Ω(n1−2/pε−2 logM log(1/δ)) bits
of space (Theorem 6.1 below). Our lower bound is optimal for any ε ≤ 1/poly(log n). As argued in [LW13], this is
an important regime of parameters. Namely, if ε = 1%, we have that for, e.g., n = 232, ε−1 ≥ log n. Our result is a
direct strengthening of the Ω(n1−2/pε−2 logM) lower bound of [LW13] which cannot be made sensitive to the error
probability δ. Moreover, even for constant ε, our lower bound of Ω(n1−2/p log M log(1/δ)) bits improves prior work
by a log(1/δ) factor. We note that for constant ε, the upper bounds still have space O(n1−2/k log n logM log(1/δ))
bits, so while we obtain an improvement, there is still a gap in this case.

While the ultimate goal in this line of research is to obtain tight space bounds simultaneously for any ε, δ ∈ (0, 1)
and p > 2, our result is the first to obtain tight bounds simultaneously in ε and δ for a wide range of parameters. Our
proof technique is also quite different than previous work, and the first to bypass the limitations of one-way commu-
nication complexity. This is necessary since the problem considered in [LW13] has a protocol with information cost
O(n1−2/pε−2 logM) with 0 error probability, which can be compressed to a protocol with this amount of commu-
nication and exponentially small error probability. We give a description of this protocol in Appendix B and explain
why it implies the problem considered in [LW13] does not give stronger lower bounds.

Our Techniques. The key ingredient of our result is proving the aforementioned simultaneous communication
lower bound on the promise version of k-party set disjointness. To do so, we use the information complexity paradigm,
which allows one to reduce the problem, via a direct sum argument, to the δ-error SMP complexity of a primitive prob-
lem – the k-party AND function with the aforementioned promise. We lower bound the information complexity of
AND under the NO distribution (an independent bit ∼ Ber(1/k)), by asking how many independent messages (over
her private randomness) the player would need to send in order to convince one that her input is 0 or 1. We use the
product structure of Hellinger distance, and relate this quantity to the amount of information a single message of the
player reveals via the Maximum Likelihood Estimation principle. To obtain our stronger bound of Ω(n log(1/δ)/k)

for any δ ≥ 2−o(n
1/p), we restrict all players to have the same (randomized) message function. This assumption turns

out to be possible in our application, as we observe that linear sketches can in fact be simulated by symmetric SMP
protocols (see below).

A Reduction to Streaming: To lower bound the space complexity of a streaming algorithm we need a way of
relating it to the communication cost of a protocol for this disjointness problem. We use a recent result of Li, Nguyen,
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and Woodruff [LNW14] showing there is a near-optimal streaming algorithm for any problem in the turnstile model
which can be implemented by maintaining A · x in the stream, where A is a matrix with poly(n)-bounded integer
entries, and A is sampled from a fixed set of O(n logm) hardwired matrices. In [LNW14] near-optimal meant up to
an O(log n) multiplicative factor in space, which would not suffice here. However, their proof shows if one maintains
A · x mod q, where q is a vector of integers one for each coordinate (which depends on A but not on x), then this
is optimal up to a constant factor (we prove this formally in Section 5). Notice that this need not be optimal for a
specific family of streams, such as those arising in our communication game, though we use the fact that by results
in [LNW14] an algorithm which succeeds with good probability for any fixed stream has this form, and therefore we
can assume this form in our reduction. This implies a public-coin simultaneous protocol since the players can use the
public coin to choose an (A, q) pair, then each communicate A · xi mod q to the referee, who can combine these
(using linearity) to obtain A · (

∑k
i=1 x

i) mod q. This simulation also implies all players have the same message
function, even conditioned on the public coin.

We stress that the use of a public-coin simultaneous communication model is essential for our result, as there is an
O(n/k) total communication upper bound with exponentially small error probability in the one-way communication
model (similar to the multi-round 2-player protocol of Håstad and Wigderson [HW07], which may also be derivable
from [BKSV14], we prove this formally in Appendix C).

Given this reduction, one of the player’s messages must be Ω(n log(1/δ)/k2) bits long, which lower bounds the
space complexity of the streaming algorithm. By setting k = εn1/p, and by having the referee add n1/pej∗ to the
stream, where ej∗ is the standard unit vector in direction j∗, one can show with probability 1 − δ, YES and NO
instances differ by a (1 + ε)-factor in Fp(x). This is true even given our relaxed definition of disjointness, in which
we allow some coordinates to be as large as Θ(log n/ log log n), provided the average of the k-th powers of these
coordinates is Θ(1).

We are not done though, as we seek an extra logM factor in the lower bound, and for this we superimpose
Θ(logM) independent copies of this problem at different scales, in a similar way as done for communication prob-
lems in previous work [LW13], and ask the referee to solve a random scaling. There are some technical differences
needed to execute this approach in the high (1− δ) probability regime.

Related Work: We summarize the previous work on the frequency moments problem in Table 1. A few papers
[ANPW13b, PW12, LW13] study the “sketching model” of Fp-estimation in which the underlying vector x is in
Rn, rather than in the discrete set {−M,−M + 1, . . . ,M}n. The goal is to design a distribution over linear maps
A : Rn → Rs, for some s� n, so that for any fixed vector x ∈ Rn, one can (1 + ε)-approximate ‖x‖pp with constant
probability by applying an estimation procedureE : Rs → R toAx. We want the smallest s for a given ε and n. Lower
bounds in the sketching model do not imply lower bounds in the turnstile model; this is even true given the recent work
[LNW14] characterizing turnstile streaming algorithms as linear sketches. The main issue is that dimension lower
bounds in the sketching model are shown for input vectors over the reals, while it is conceivable that a linear sketch
with fewer dimensions does in fact exist if the input is restricted to be in the integer box {−M,−M+1, . . . ,M+1}n.
For instance, the inner product of x with the single vector (1, 1/(M + 1), 1/(M + 1)2, . . . , 1/(M + 1)n−1) is enough
to recover x, so a sketching dimension of s = 1 suffices. What we are really interested in is a linear sketch with
polynomially bounded integer entries, and it is an open question to transport dimension lower bounds in the sketching
model to space lower bounds in the turnstile streaming model.

Other related work is that of Jayram and Woodruff [JW13] which gives lower bounds in terms of δ for Fp for
p ≤ 2. This regime, as mentioned, is fundamentally different and the communication problems there are based on
two-player gap-Hamming and Index problems, which have hard product distributions. In contrast we study multi-
player communication problems under non-product distributions.

There is also work on direct sums by Molinaro, Woodruff, and Yaroslavtsev [MWY13], which shows that for some
problems, solving all n copies of the problem simultaneously with probability 2/3, is as hard as solving each copy
independently with probability 1−1/n. The techniques in that paper do not seem to apply here, since we are interested
in solving an OR rather than all copies, and so the output reveals a lot less information about the inputs. As observed
in [BCK+14], there is a quite substantial difference in solving the OR versus all copies of a problem.

As for the communication problem we study, we note that Braverman and Oshman [BO15] recently obtained a
tight Ω(n log k+ k) lower bound on the unbounded-round number-in-hand communication complexity of the k-party
set disjointness function. Of course, this lower bound applies in particular to simultaneous protocols and is much
stronger than the one proven in this paper (Ω (n · log(1/δ)/k)). However, this stronger lower bound holds only for
distributions which (vastly) violate the promise required for our streaming application, and therefore their lower bound
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is useless in our context.

Fp Algorithm Space Complexity
[IW05] O(n1−2/pε−O(1) logO(1) n log(M))

[BGKS06] O(n1−2/pε−2−4/p log n log2(M))

[MW10] O(n1−2/pε−O(1) logO(1) n log(M))
[AKO10] O(n1−2/pε−2−6/p log n log(M))
[BO10] O(n1−2/pε−2−4/p log n · g(p, n) log(M))
[And] O(n1−2/p log n log(M)ε−O(1))

[Gan11], Best upper bound O(n1−2/pε−2 log n · log(M)/min(log n, ε4/p−2)))
[AMS99] Ω(n1−5/p)
[Woo04] Ω(ε−2)

[BYJKS04a] Ω(n1−2/p−γε−2/p), any constant γ > 0
[CKS03] Ω(n1−2/pε−2/p)

[WZ12] Ω(n1−2/pε−4/p/ logO(1) n)
[Gan12] Ω(n1−2/pε−2/ log n)
[LW13] Ω(n1−2/pε−2 log(M))

Table 1: Results are in bits and for constant p > 2. The results are stated for constant probability; all results can
be made to achieve 1 − δ success probability by repeating the data structure independently O(log 1/δ) times and
taking the median of estimates; this blows up the space by a multiplicative O(log 1/δ) factor. Here, g(p, n) =
minc constant gc(n), where g1(n) = log n, gc(n) = log(gc−1(n))/(1 − 2/p). We start the upper bound timeline
with [IW05], since that is the first work which achieved an exponent of 1 − 2/p for n. For earlier works which
achieved worse exponents for n, see [AMS99, CK04, Gan04a, Gan04b]. We note that [AMS99] initiated the problem
and obtained an O(n1−1/pε−2 log(M)) bound in the insertion-only model (see also [BO12, BKSV14] for work in the
insertion model).

Organization. We begin by introducing the formal definitions, complexity measures and information-theoretic
tools used in our proofs. In Section 3 we prove the simultaneous communication lower bound on k-party Disjointness
(Theorem 3.1). In Sections 5 we describe and analyze the “augmented” multiparty Disjointness communication prob-
lem we eventually use for the streaming application. In Section 4 we describe the aforementioned result of [LNW14],
asserting that linear sketches have near-optimal space complexity in the turnstile streaming model. Section contains
the reduction to frequency moments and the proof of the main streaming lower bound (Theorem 6.1).

2 Preliminaries
For M ∈ N, we use the shorthands [M ] to denote the set {1, 2, . . . ,M}, and [−M,M ]n to denote the set {−M, . . .
, 0, . . . ,M}n. We typically use bold capital letters for random variables, and calligraphic letters to sets (for example,
X ∈ X represents a random variable with support X ). For a random variable X and a probability distribution µ, we
write X ∼ µ to denote a random variable distributed according to µ. In particular, we use the notation X ∼ B(p) to
denote a Bernoulli-distributed random variable, taking the value 1 with probability p and 0 with probability 1− p. We
write X ⊥ Y to denote statistical independence between two random variables. All logarithms are in base 2 unless
otherwise stated.

We use the following distance measures in our arguments.

Definition 2.1 (Total Variation distance and Hellinger distance). The Total Variation distance between two probability
distributions P,Q over the same universe U is ∆(P,Q) := supA |P (A)−Q(A)|, whereA ranges over all measurable
events in the probability space.
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The (squared) Hellinger distance between P and Q is denoted as

h2(P,Q) = 1−
∑
x∈U

√
P (x)Q(x) =

1

2
·
∑
x∈U

(√
P (x)−

√
Q(x)

)2

.

By a slight abuse of notation, we sometimes use the above distance measures with random variables instead of
their underlying distributions. For example, if A,B are two random variables in the joint probability space p(a, b),
then ∆(A,B) = ∆(p(a), p(b)), and h(A,B) = h(p(a), p(b)).

The following properties and relationships between distance measures will be used throughout the paper. For
missing proofs see [BYJKS04b] (Appendix A) and references therein.

Fact 2.2 (Product structure of Hellinger distance). LetP := P1, . . . , Pt,Q := Q1, . . . , Qt be two product distributions
over the same universe, (i.e., P (x) =

∏
i Pi(xi), Q(x) =

∏
iQi(xi)). Then h2(P,Q) = 1−

∏t
i=1

(
1− h2(Pi, Qi)

)
.

Lemma 2.3 (Hellinger vs. Total Variation). For any two distributions P,Q it holds that

h2(P,Q) ≤ ∆(P,Q) ≤ h(P,Q) ·
√

2− h2(P,Q).

Corollary 2.4. If ∆(P,Q) ≥ 1− α, then h2(P,Q) ≥ 1− 2
√
α.

Proof. Rearranging the RHS inequality of Lemma 2.3 and substituting x := h2(P,Q), C := ∆(P,Q), we get the
following quadratic equation: x2 − 2x+ C2 ≤ 0. Solving this equation for x yields

h2(P,Q) = x ≥ 1−
√

1− C2 = 1−
√

(1 + C)(1− C) ≥ 1− 2
√

1− C ≥ 1− 2
√
α,

where the last two inequalities follow since 1− α ≤ C = ∆(P,Q) ≤ 1.

We will need the following fact about the moments of sums of independent random variables (For a proof see
[Lat97] Corollary 3).

Lemma 2.5 (Moments of sums of independent random variables). Let X1, X2, . . . , Xn be independent non-negative
random variables, and define X :=

∑n
i=1Xi, ∆`(X) :=

(∑
i E[X`

i ]
)1/`

. Then for every m > 1,(
E[X`]

)1/` ≤ K · m

logm
·max {∆2(X),∆m(X)} ,

where K > 0 is a universal constant.

Lemma 2.6 (Chebychev inequality for higher moments). For any λ > 0 andm ≥ 2, it holds that Pr [|X − E[X]| > λ · σm(X)] ≤
1
λm , where σm(X) := (E[|X − E[X]|m])

1
m .

Fact 2.7. If x ≤ ε, then log(1− x) ≥ − x
1−ε . (The proof follows by the known inequality log(1 + y) ≥ 1− 1/y).

2.1 Information Theory
We will use basic tools from information theory. For proofs and elaboration on the facts below we refer the reader
to an excellent monograph by Cover and Thomas [CT91]. The entropy of a random variable X ∼ µ with support X
is defined as H(X) :=

∑
x∈X µ(x) log(1/µ(x)). A special case used in this paper is the binary entropy H(p) :=

p log(1/p) + (1− p) log(1/(1− p)), for p ∈ (0, 1). Notice that for a Bernoulli random variable X ∼ B(p), H(X) =
H(p). The following fact can be proved directly.

Fact 2.8 (Binary entropy). ∀p ∈ [0, 1/2] , H(p) ≤ p log(e/p) ≤ 2p log(1/p).

The (conditional) Mutual Information between two random variables A,B in the joint probability space µ(a, b, c) is

Iµ(A;B|C) := H(A|C)−H(A|BC) = H(B|A)−H(B|AC).

When the distribution µ is clear from the context, we omit the subscript and simply write I(A;B). One of the basic
and most useful properties of mutual information is the chain rule:
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Fact 2.9 (Chain Rule for Mutual Information). Let A,B,C,D be jointly distributed random variables. Then

I(AB;C|D) = I(A;C|D) + I(B;C|AD).

The following lemma asserts that if a random variable Y = g(X) allows one to reconstructX with high probability,
then Y must “consume” most of the entropy of X:

Lemma 2.10 (Fano’s Inequality). Let X be a random variable chosen from domain X according to distribution µX ,
and Y be a random variable chosen from domain Y according to distribution µY . Then for any reconstruction
function g : Y −→ X with error εg , it holds that H(X|Y ) ≤ H(εg) + εg log(|X | − 1).

Lemma 2.11. LetA,B,C,D be jointly distributed random variables. IfA andD are conditionally independent given
C, then it holds that I(A;B|C) ≤ I(A;B|CD).

Proof. We apply the chain rule twice. On one hand, we have

I(A;BD|C) = I(A;B|C) + I(A;D|CB) ≥ I(A;B|C)

since mutual information is nonnegative. On the other hand,

I(A;BD|C) = I(A;D|C) + I(A;B|CD) = I(A;B|CD)

since I(A;D|C) = 0 by the independence assumption on A and D. Combining both equations completes the proof.

2.2 Multiparty Communication and Information Complexity in the SMP Model
We use the framework of communication complexity in the Simultaneous Message-Passing model:

Definition 2.12 (Multiparty SMP Model). Let P be a k-ary relation with domain X k := X1 × X2 × . . . × Xk and
range Z . In the SMP communication model, k parties receive inputs X1,X2, . . .Xk, jointly distributed according
to some prior distribution µ, and are allowed to share a public random tape R. Each of the players simultaneously
sends a message Mj(Xj , R) to an external party called the referee , and the referee needs to output an answer
v = v(M1(X1, R), . . . ,Mk(Xk, R), R) such that v = 1 iff (X1, . . .Xk) ∈ P .

The communication cost of an SMP protocol π is the sum of the (worst-case) lengths of its messages ‖π‖ :=∑
j∈[k] |Mj |. For a fixed error parameter δ > 0, the distributional SMP communication complexity of a function

f , denoted ~Dδµ(f), is the communication complexity of the cheapest deterministic SMP protocol which computes f
correctly with error at most δ under input distribution µ.

The randomized SMP communication complexity of f , denoted ~Rδ(f), denotes the communication of the cheapest
(public-coin) randomized SMP protocol which computes f correctly with error at most δ on any input x ∈ X k, under
the randomness of the protocol (R).

By Yao’s minimax theorem, ~Rδ(f) = maxµ ~D
δ
µ(f), and therefore it suffices to prove our lower bound for some

“hard” distribution µ in the distributional model.

Remark 2.13. To facilitate our proof techniques, we will sometimes need to give the referee an auxiliary input as well.
In the distributional model, this input is jointly distributed with the inputs of the k players. The referee’s answer is
then a function of the k messages he receives as well as his own input. As a convention, in our definitions we typically
ignore this artificial feature of the model, and include it implicitly.

We also use the notion of (external) Information Cost of a communication protocol. Informally, the external
information cost of an SMP protocol is the average amount of (Shannon) information the referee learns about the k
player’s inputs, by observing the transcript of the messages he receives. More formally, the external information cost
of a protocol π with respect to inputs X1, . . .Xk ∼ µ is defined as

ICµ(π) := Iµ(π;X1, . . .Xk).

Again, when the distribution µ is clear from the context, we omit the subscript and simply write I(π;X1, . . .Xk).
The external information complexity of f under µ is the least amount of information the players need to disclose to the
referee about their inputs under µ, if their SMP protocol is required to solve f on every input with high probability:

ICδµ(f) := infπ: ∀ (x1, . . . , xk) ∈ Xk Prπ [π(x1, . . . , xk) 6= f(x1, . . . , xk)] ≤ δ ICµ(π).

6



Remark 2.14. (a) The requirement in the definition above that π is correct everywhere , i.e., even outside the support
of the distribution µ, is crucial: Our lower bounds will rely on analyzing the information cost of protocols under
“trivial” distributions, and the only reason these lower bounds will be meaningful (in particular, non-zero) is that these
protocols are required to succeed uniformly. (b) We remark that, unlike communication complexity, the usage of
private randomness may be crucial to achieve low information cost, and therefore we assume π is randomized even
against a fixed prior distribution µ.

Since one bit of communication can never reveal more than one bit of information, the external information cost
of a protocol is always upper bounded by its communication:

Fact 2.15. For any (k-party) communication protocol π and any distribution µ , ‖π‖ ≥ ICµ(π).

A special class of communication protocols are protocols in which players are restricted to use the same function
when sending their messages to the referee. This class will be relevant to our streaming application (Theorem 6.1).

Definition 2.16 (Symmetric SMP protocols). A k-party SMP protocol π is called symmetric if for any fixed input
X = x and fixing of the public randomness R = r,

M1(x, r) = M2(x, r) = . . . = Mk(x, r).

For a function f , we denote the distributional and randomized communication complexity of f with respect to sym-
metric SMP protocols by by ~DSYM,δ

µ (f) and ~RSYM
δ (f). Similarly, we denote by ICSYM,δ

µ (f) the (external) information
complexity of f with respect to symmetric SMP protocols.

3 Multiparty SMP Complexity of Set-Disjointness
In this section we prove our lower bound on the SMP communication complexity of the k-party Set-Disjointness
function. We will prove the following theorem.

Theorem 3.1 (SMP complexity of multiparty Set-Disjointness). For any δ ≥ n · 2−k,

~Rδ(Disj
n
k ) ≥ Ω

(
n · min{log(1/δ), log k}

k

)
.

~RSYM
δ (Disjnk ) ≥ Ω

(
n ·min

{
log(1/δ)

k
, log k

})
.

Recall the k-party Set-Disjointness problem is defined as follows:

Definition 3.2 (Disjnk ). Denote by Disjnk the multiparty Set-Disjointness problem in which k players each receive an
n-dimensional input vector Xj = {Xj,i}ni=1 (where Xj,i ∈ {0, 1}). By the end of the protocol, the referee needs to
distinguish between the following cases:

• (The “NO” case) ∀ i ∈ [n],
∑
jXj,i < k, or

• (The “YES” case) ∃ i ∈ [n] for which
∑
jXj,i = k.

Denote ANDk(x1, x2, . . . , xk) :=
∧k
j=1 xj . Note that

Disjnk (X1, . . . ,Xk) =

n∨
i=1

ANDk (X1,i, . . . ,Xk,i) .

We start by defining a “hard” distribution for Disjnk which still satisfies the promise (gap) required for our streaming
application. Consider the distribution η on n-bit string inputs, defined by the following process.

The distribution η:
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• For each i ∈ [n], j ∈ [k] set Xj,i ∼ B(1/k), independently at random.

• Pick a uniformly random coordinate I ∈R [n].

• Pick Z ∈R {0, 1}. If Z = 1, set all the values Xj,I to 1, for all j ∈ [k]
(If Z = 0, keep all coordinates as before.).

• The referee receives the index I (this feature will only be used in Section 6).

Denote by η0 the distribution of η | “Z = 0”, and by µ0 the projection of η0 on a single coordinate (this is well
defined since the distribution over all coordinates is i.i.d). In particular, notice that η0 = µn0 is a product distribution,
and for every i ∈ [n], Prµ0

[Xi,j = 1 for all j ∈ [k]] = (1/k)k. Thus, by a union bound over all n coordinates and
our assumption on δ,

Pr
µn0

[Disjnk (X1, . . . ,Xk)] ≤ n · (1/k)k ≤ n · 2−k ≤ δ. (1)

Remark 3.3. Notice that the “NO” distribution η0 contains (w.h.p) coordinates i ∈ [n] for which� 1 players (in fact,
Ω(log n) of them) possess the i’th coordinate. This feature is a by-product of the product structure of η0, which will
be crucial to our construction and analysis. To best of our knowledge, this is the first paper to show that distributions
with such property (where disjoint instances in the support have ω(1) overlapping items in a coordinate, instead of
just 1) are still powerful enough to prove lower bounds on the frequency moments problem.

3.1 Direct sum and the SMP complexity of ANDk

To prove Theorem 3.1, we first use a direct sum argument, asserting that under product distributions, solving set dis-
jointness is essentially equivalent to solving n copies of the 1-bit ANDk function. The following direct sum argument
is well known (See e.g., [BYJKS04a]):

Lemma 3.4 (Direct sum for Disjnk ). ∀ δ ≥ n · 2−k, ICδη0(Disjnk ) ≥ n · IC2δ
µ0

(ANDk).

We defer the proof of this claim to Section A of the appendix. With Claim 3.4 in hand, it suffices to prove that any
(randomized) SMP protocol solving ANDk with error at most δ, must have a large information cost under µ0 . This is
the content of the next theorem, which is one of our central technical contributions.

Theorem 3.5. For every δ > 0,

ICδµ0
(ANDk) ≥ Ω

(
min

{
log 1/δ

k
,

log k

k

})

ICSYM,δ
µ0

(ANDk) ≥ Ω

(
min

{
log 1/δ

k
, log k

})
.

Proof. Let π be a (randomized) SMP protocol which solves ANDk(X1, . . . ,Xk) for all inputs in {0, 1}k with success
probability at least 1 − δ. For the rest of the analysis, we fix the public randomness of the protocol. Indeed, proving
the lower bound for every fixing of the tape suffices as the chain rule for mutual information implies ICµ0

(π) =

ER[ICµ0
(πR)]. For each player j ∈ [k], let Mj denote the transcript of player j’s message, and let M j

0 := Mj |“Xj =

0”, M j
1 := Mj |“Xj = 1” (note that if π is further a symmetric protocol, then M j

0 and M j
1 are the same for every

player j ∈ [k]). Since the Xj’s are independent under µ0, and therefore so are the messagesMj , the chain rule implies

that ICµ0(π) =
∑k
j=1 I(Mj ;Xj). We shall argue that

∑k
j=1 I(Mj ;Xj) ≥ Ω

(
log 1/δ
k , log k

k

)
, and if π is further a

symmetric protocol, then
∑k
j=1 I(Mj ;Xj) ≥ Ω

(
log 1/δ
k , log k

)
. To this end, let us denote by

h2(M j
1 ,M

j
0 ) := 1− zj

the (squared) Hellinger distance between player j’s message distributions in both cases. There are two cases: if there
is a player j for which zj = 0, then h2(M j

1 ,M
j
0 ) = 1, which means that I(Mj ;Xj) = H(Xj) = H(1/k) =

Ω(log(k)/k) and thus ICδµ0
(ANDk) ≥ Ω(log(k)/k). Furthermore, if π is symmetric, then z1 = z2 = . . . = zj ,
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which in this case implies by the same reasoning that I(Mj ;Xj) = Ω(log(k)/k) for all players j ∈ [k], and thus
ICSYM,δ
µ0

(ANDk) ≥ Ω(log k), as desired.
We may henceforth assume that all zj’s are non-zero, and the rest of the analysis applies for general (not necessarily

symmetric) SMP protocols. To this end, let us introduce one final notation: For a fixed input Xj , let M⊕tj denote (the
concatenation of) t independent copies of Mj |Xj (so M⊕tj = (M j

0 )t whenever Xj = 0 and M⊕tj = (M j
1 )t whenever

Xj = 1). By the conditional independence of the t copies of Mj (conditioned on Xj) and the product structure of the
Hellinger distance (Fact 2.2 in Section 2), we have that for each j ∈ [k], the total variation distance between the t-fold
message copies in the “YES” and “NO” cases is at least

∆

(
(M j

1 )t, (M j
0 )t
)
≥ h2

(
(M j

1 )t, (M j
0 )t
)

= 1− (zj)
t, (2)

where the first inequality follows from Lemma 2.3. Set tj = O(log k/ log(1/zj)) (note that this is well defined as we
assumed zj 6= 0). Thus, for each player j ∈ [k],

∆

(
(M j

1 )tj , (M j
0 )t
)
≥ 1− 1

10k
. (3)

Equation (3) implies that the error probability of the MLE predictor1 for predicting Xj given M⊕tjj is at most ε :=
1/(10k). Therefore, Fano’s inequality (Lemma 2.10) and the data processing inequality together imply that

∀ j ∈ [k], I(M
⊕tj
j ;Xj) ≥ H(Xj)−H(ε) ≥ H

(
1

k

)
−H

(
1

10k

)
≥ Ω

(
log k

k

)
, (4)

since Xj ∼ B(1/k) under µ0, and H(1/(10k)) ≤ 2
10k log(10k) ≤ 4

5k log(k) by Fact 2.8.

Now, by the chain rule for mutual information (Fact 2.9) we know that

I(M
⊕tj
j ;Xj) =

tj∑
s=1

I((Mj)s;Xj |(Mj)<s) ≤
tj∑
s=1

I((Mj)s;Xj), (5)

where the last inequality follows from Fact 2.11, as the messages (Mj)s and (Mj)<s are independent conditioned on
Xi (by construction). Notice that (Mj)s ∼ Mj for all s ∈ [t], as all the messages are equally distributed conditioned
on Xj . Combining equations (4) and (5) therefore implies

I(Mj ;Xj) ≥ Ω

(
log k

k · tj

)
≥ Ω

(
log(1/zj)

k

)
, (6)

recalling that tj = O(log k/ log(1/zj)). Since (6) holds for any player j ∈ [k], we have

k∑
j=1

I(Mj ;Xj) ≥ Ω

1

k
·
k∑
j=1

log

(
1

zj

) . (7)

We finish the proof by showing that

k∑
j=1

log

(
1

zj

)
≥ Ω(log(1/δ)). (8)

To this end, we first claim that the correctness of π implies that the total variation distance between the transcript
distributions of π on the input 0k and on the input 1k must be large (notice that below we crucially use the fact that our
information complexity definition requires the protocol to be correct on all inputs, so in particular, a δ-error protocol
must distinguish with comparable error, between “YES” and “NO” inputs):

1That is, the predictor which given M⊕t
j = m, outputs Y := argmaxx∈{0,1} Pr[(M

j
x)

t = m].
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Proposition 3.6. ∆(π(0k), π(1k)) ≥ 1− 2δ.

Proof. Let Y be the set of transcripts τ for which π(τ) = ANDk(1k) = 1. By the correctness assumption, Pr[π(1k) ∈
Y] ≥ 1− δ, and Pr[π(0k) ∈ Y] ≤ δ, so the above follows by definition of the total variation distance.

Since µ0 is a product distribution (the Xj’s are i.i.d), it holds that π(0k) = ×kj=1M
j
0 , and π(1k) = ×kj=1M

j
1 .

Therefore, recalling that zj := 1− h2(M j
0 ,M

j
1 ), the product structure of the Hellinger distance (Fact 2.2) implies

1−Πk
j=1 zj = 1−Πk

j=1(1− h2(M j
0 ,M

j
1 )) = h2(π(0k), π(1k)) ≥ 1− 4

√
δ (9)

where the last transition follows from the combination of Proposition 3.6 with Corollary 2.4 (taken with α = 2δ).
Rearranging (9), we get Πk

j=1 zj ≤ 4
√
δ, or equivalently,

k∑
j=1

log

(
1

zj

)
≥ 1

2
log

(
1

δ

)
− 2 = Ω (log 1/δ) , (10)

as desired. Combining equations (8) and (7), we conclude that ICµ0(π) ≥ Ω
(

log 1/δ
k

)
, which completes the proof of

Theorem 3.5.

Since communication is always lower bounded by information (Fact 2.15), combining Theorem 3.5 and Claim 3.4
directly implies Theorem 3.1:

Corollary 3.7. For any δ ≥ n · 2−k,

~Rδ(Disj
n
k ) ≥ Ω

(
n ·min

{
log 1/δ

k
,

log k

k

})
,

~RSYM
δ (Disjnk ) ≥ Ω

(
n ·min

{
log 1/δ

k
, log k

})
.

4 The Augmented Disjnk Problem
In this section we define the multiparty communication problem which we use as a proxy for our streaming application
(Theorem 6.1). This communication problem is constructed using a fairly standard hardness-amplification technique
(“augmentation”) of the k-party Disjointness problem, in a similar fashion to the work of [LW13] (who used this
technique for the L∞ communication problem).

Definition 4.1 (Aug-Disj(r, k, δ)). Aug-Disj(r, k, δ) is the following k-party communication problem: The players
receive r instances of Disjnk :

(X1
1, . . . ,X

1
k), (X2

1, . . . ,X
2
k), . . . , (Xr

1, . . . ,X
r
k)

In addition, the referee receives an index T ∈ [r] which is unknown to the players, along with the last (r − T ) inputs
{(X`

1, . . . ,X
`
k)}r`=T+1. By the end of the protocol, the referee should output the answer to the T ’th instance, i.e, the

players need to solve Disjnk (XT
1 , . . . ,X

T
k ) with probability 1− δ.

For convenience, we henceforth denote (X>t
1 , . . . ,X>t

k ) := {(X`
1, . . . ,X

`
k)}r`=t+1. The tuples

(
X<t

1 , . . . ,X<t
k

)
,

(X
{−t}
1 , . . . ,X

{−t}
k ) are defined analogously.

We now define a “hard” distribution ν for Aug-Disj(r, k, δ). To this end, recall the distributions η, η0 for Disjnk
from Section 3. The index T ∈ [r] is chosen independently and uniformly at random. All copies but the T ’th copy
are independently chosen according to the “NO” distribution for Disjnk , i.e.,

(
X
{−T}
1 , . . . ,X

{−T}
k

)
∼ ηr−1

0 , while

(XT
1 , . . . ,X

T
k ) ∼ η. The next lemma asserts that the the r-augmented Disjointness problem under the distribution ν

is r times harder than solving a single instance Disjnk under η.

10



Lemma 4.2 (Direct Sum for Aug-Disj(r, k, δ)).

~Rδ(Aug-Disj(r, k, δ)) ≥ r · ICδη0(Disjnk ).

Proof. The proof is essentially the same as that of Claim 3.4, using a standard “embedding” argument: Let Π be
a protocol for Aug-Disj(r, k, δ) under ν, such that ‖Π‖ = ~Rδ(Aug-Disj(r, k, δ)). The k players will use public
randomness to sample a random t ∈R [r] along with (r − t) “dummy” inputs (X>t

1 , . . . ,X>t
k ) where each copy is

independently drawn from η0, and “embed” their inputs (x1, . . . , xk) ∼ η (to Disjnk ) to the t’th coordinate of Π, having
the referee set T = t. Since in the augmented problem player’s inputs to each of the r copies are independent, and
since η0 is a product distribution, they can use private randomness to “fill in” their inputs to the rest of the coordinates
(X<t

1 , . . . ,X<t
k ) (for a formal argument see the essentially identical proof of Claim 3.4). This process defines a legal

input {(X`
1, . . . ,X

`
k)}r`=1 ∼ ν for Π, and so the players can now run Π on this input and output its answer. Call

this protocol π. By the premise
(
X
{−T}
1 , . . . ,X

{−T}
k ∼ ηr−1

0

)
, π outputs the correct answer to the t’th copy with

probability at least 1 − δ. Furthermore, we may analyze the information complexity of Π under the distribution ηr0
(notice that ~Dηr0 (Aug-Disj(r, k, δ)) = 0 trivially, but we are analyzing the information cost of Π which must be correct
with probability 1− δ over all inputs !). Similar to the argument in (22), we have

ICδη0(Disjnk ) ≤ ICη0(π) = Iη0(π;x1, . . . xk)

= Et∈R[r]

[
Iη0(Π;Xt

1, . . .X
t
k)
]

≤ Et∈R[r]

[
Iη0(Π;Xt

1, . . .X
t
k |X>t

1 , . . . ,X>t
k )
]

(By Lemma 2.11)

=
1

r

r∑
t=1

Iη0(Π;Xt
1, . . .X

t
k |X>t

1 , . . . ,X>t
k )

=
1

r
· Iηr0 (Π; (X1

1, . . . ,X
1
k), (X2

1, . . . ,X
2
k), . . . , (Xr

1, . . . ,X
r
k))

≤ ‖Π‖
r

= ~Rδ(Aug-Disj(r, k, δ)),

where the last equality follows from the chain rule for mutual information.

5 Path-Independent Stream Automata [LNW14]
As mentioned in the introduction, a central fact which facilitates our lower bound is the recent result of [LNW14],
asserting that in the turnstile streaming model, linear sketching algorithms achieve optimal space complexity, up to
a logarithmic factor. Since we cannot even afford losing a log n factor in our lower bound, we use the following
intermediate result of [LNW14], which shows that oblivious streaming algorithms are optimal up to a constant factor.
The following exposition largely follows that of [LNW14], from which a number of definitions also occur in the earlier
work of [Gan08].

The work of [LNW14] considers problems in which the input is a vector x ∈ Zn represented as a data stream
σ = (σ1, σ2, . . . ) in which each element σi belongs to Σ = {e1, . . . , en,−ei, . . . ,−en} (where the ei’s are canonical
basis vectors) such that

∑
i σi = x. We write x = freqσ.

Definition 5.1 (Deterministic stream automata). A deterministic stream automaton A is a deterministic Turing ma-
chine that uses two tapes, a one-way (unidirectional) read-only input tape and a (bidirectional) two way work-tape.
The input tape contains the input stream σ. After processing its input, the automaton writes an output, denoted by
φA(σ), on the work-tape.

A configuration of a stream automaton A is modeled as a triple (q, h, w), where, q is a state of the finite control, h
the current head position of the work-tape and w the content of the work-tape. The set of configurations of a stream
automaton A that are reachable from the initial configuration o on some input stream is denoted by C(A). A stream
automaton is a tuple (n,C, o,⊕, φ), where n specifies the dimension of the underlying vector, ⊕ : C × Σ→ C is the
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configuration transition function, o is the initial position of the automaton and φ : C → Zp(n) is the output function
and p(n) is the dimension of the output. For a stream σ we also write φ(o⊕ σ) as φ(σ) for simplicity.

The set of configurations of an automaton A that is reachable from the origin o for some input stream σ with
‖ freqσ‖∞ ≤ m is denoted by C(A,m). The space of the automaton A with stream parameter m is defined as
S(A,m) = log |C(A,m)|. An algorithm is said to be a correct randomized algorithm with error probability δ if for
any fixed stream σ with ‖ freqσ‖∞ ≤ m, with probability at least 1− δ the algorithm outputs the correct answer to a
relation P for the underlying vector x represented by σ. Note that the streaming algorithm should be correct even if
for a substream σ′ of σ we have ‖ freqσ′‖∞ > m, provided that ‖ freqσ‖∞ ≤ m. In this case we say A solves P on
Zn|m|.

Definition 5.2 (Path-independent stream automata). A stream automaton A is said to be path independent (PIA ) if
for each configuration s and input stream σ, s⊕ σ is dependent only on freqσ and s.

Suppose that A is a path independent automaton. We can define a function + : Zn × C → C as x + a = a ⊕ σ,
where freqσ = x. Since A is a path independent automaton, the function + is well-defined. In [Gan08] it is proved
that

Theorem 5.3. Suppose that A is a path independent automaton with initial configuration o. Let M = {x ∈ Zn :
x+ o = 0 + o}, then M is a submodule of Zn, and the mapping x+M 7→ x+ o is a set isomorphism between Zn/M
and the set of reachable configurations {x+ o : x ∈ Zn}.

Definition 5.4 (Randomized stream automata). A randomized stream automaton is a deterministic stream automaton
with one additional tape for the random bits. The random bit string R is initialized on the random bit tape before any
input record is read; thereafter the random bit string is used in a two way read-only manner. The rest of the execution
proceeds as in a deterministic stream automaton.

A randomized stream automaton A is said to be path-independent if for each randomness R the deterministic
instance AR is path-independent. The space complexity of A is defined to be

S(A,m) = max
R
{|R|+ S(AR,m)} .

Theorem 5.5 ([LNW14] Theorems 9 and 10). Suppose that a randomized algorithm A solves a relation P on any
stream σ with probability at least 1−δ. There exists a randomized path-independent automaton (PIA ) B which solves
P on Zn|m| with probability at least 1 − 7δ such that S(B,m) ≤ S(A,m) + O(log n + log logm + log 1

δ ). Further,
the number of random bits used by the algorithm is is O(log 1/δ + log n+ log logm).

Here we record the corollary of Theorem 5.5 that will be used in the proof of our main result (Theorem 6.1). To
this end, we will need the following (refined) restatement of the SMP communication model used in our paper:

Definition 5.6. Let P (x1, . . . , xk) be a k-ary relation. In the public-coin SMP communication model, k players
receive inputs x1, . . . , xk ∈ Zn respectively, such that x :=

∑
j xj ∈ Zn|m| (for some m ∈ N). The players

share a public random tape R of O(log 1/δ + log n + log logm) uniformly random bits. Each of the players si-
multaneously sends a message Mj(xj , R) to an external party called the referee , and the referee outputs an answer
v = v(M1(x1, R), . . . ,Mk(xk, R), R), such that PrR[v = P (x1, . . . , xk)] ≥ 1 − δ. Recall that the symmetric SMP

communication complexity of P is ~RSYM
δ (P ) := minπ : π is symmetric and δ-solves P

∑k
j=1 |Mj(xj , R)| where | · | denotes

the worst-case length of the messages, over all choices of x1, . . . , xs and R.

Corollary 5.7. Let P (x1, . . . , xk) be a relation such that ~RSYM
δ (P ) = c. Let A be a space-optimal streaming algo-

rithm in the turnstile model from which the output of A on an input stream σ with underlying vector x, can be used to
solve P with probability at least 1− δ. Then the space complexity of A is at least c/k.

Proof. By Theorem 5.5, we can assume thatA is a randomized path-independent automaton usingO(log 1/δ+log n+
log logm) random bits. The players in the public-coin simultaneous model of communication can therefore use the
public coin R to agree upon a deterministic path-independent automaton B. Each player can run B on his/her local
input vector xj , and transmit the state of B to the referee. Notice that each player uses the same function to compute
his message, and therefore this SMP protocol is also symmetric. By Theorem 5.3, the referee can associate these
states with elements of the quotient group Zn/M , where M is determined from the description of B (which is in turn
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determined by R), and perform arithmetic in Zn/M to add up the states to obtain the result of the execution of B on
the concatenation of streams σ1, . . . , σk, where σj is a stream generating xj . It follows that B will be executed on σ
with underlying vector x, and by hypothesis can be used to solve P with probability at least 1 − δ. As k times the
space complexity of B is the communication cost, the corollary follows.

6 Frequency Moments
Let x ∈ Rn represent a data stream in turnstile streaming model. We say that an algorithm solves the (p, ε, δ)-Norm
problem if its output v satisfies v ∈ (1± ε)‖x‖pp with probability at least 1− δ. Our main result is as follows:

Theorem 6.1. For any constant p > 2, there exists an absolute constant α > 1 such that for any ε > n−Ω(1) and
δ ≥ 2−o(n

1/p), any randomized streaming algorithm that solves the (p, ε, δ)-Norm problem for x ∈ [−M,M ]n where
M = Ω(nα/p), requires Ω

(
ε−2 · n1−2/p(logM) log 1/δ

)
bits of space. In particular, the space complexity of any ε-

approximate high-probability streaming algorithm (i.e, where δ = O(1/n)) is at least Ω
(
ε−2 · n1−2/p(log n)(logM)

)
.

Proof. Let s be the space complexity of a space-optimal streaming algorithm that solves the (p, ε, δ)-Norm. By The-
orem 5.5, there is a path-independent streaming algorithm A which solves (p, ε, 7δ)-Norm using s′ = s+O(log n+
log logM + log 1

δ ) bits of space. We will show that A can be used to (produce a symmetric SMP protocol) solving
Aug-Disj(r, k, 18δ) (on ZnM ), for r = (1 − 1/α) log10M,k = Θ(ε · n1/p), under the hard distribution ν. Corollary
5.7 then implies

s′ ≥
~RSYM
δ (Aug-Disj(r, k, 18δ))

k
≥ Ω

(
rn

k
·min

{
log 1/δ

k
, log k

})
=

Ω

(
min

{
n1− 2

p (logM) log 1/δ

ε2
,
n1− 1

p log n(logM)

ε

})
,

where the second inequality follows from Lemma 4.2 and Corollary 3.7 (as in our regime of parameters δ ≥ n ·
2−k = 2−Ω(n1/p)), and the last transition follows by substituting the values of the parameters k,M and noting that
log k = Θ(log n) in our regime. Since s′ = s+ O(log n+ log logM + log 1

δ ), the last equation implies that so long
as δ ≥ 2−o(n

1/p),

s ≥ Ω

(
n1− 2

p (logM) log 1/δ

ε2

)
, as claimed.

It therefore remains to prove thatA can be used to solve Aug-Disj(r, k, 18δ) under the input distribution ν. To this
end, recall that in the Aug-Disj(r, k, δ) problem under the distribution ν, k players receive r instances each, where all
instances but a single random instance t ∈R [r] are independently distributed according to η0, while (Xt

1, . . . ,X
t
k) ∼

η. The referee receives t along with (X>t
1 , . . . ,X>t

k ) and needs to solve Disjnk (Xt
1, . . . ,X

t
k), i.e., distinguish between

the “NO” case and the “YES” case in definition 3.2. Recall that for every instance (X`
1, . . . ,X

`
k), the referee also

receives the “spiked” coordinate I` ∈ [n] of this instance (see the definition of η, η0 in Subsection 3.1). The players
will use the PIA algorithm A to design the SMP protocol π for Aug-Disj described in Figure 1.

We now turn to analyze the correctness of π. For the rest of this analysis, we fix the value of the “special”
coordinate T = t. Notice that the value v the referee computes in π corresponds to the p-norm of the stream
(with underlying frequency vector) z := (Y≤t1 , . . . ,Y≤tk ,C≤t). Furthermore, ‖v‖∞ ≤

(∑t
`=1

∑k
j=1 Y

`
j

)
+ C ≤∑r

`=1

∑k
j=1 10`−1 + C ≤ 10r · k + C ≤ O(10r · n1/p) ≤ M for a sufficiently small constant α > 1, by our

assumption k ≤ O(n1/p), C ≤ O(10r · n1/p) , and our assumption that M = Ω(nα/p). Therefore, the correctness of
the streaming algorithm A guarantees that the output v of the referee satisfies

Pr
[
v /∈ (1± ε)‖z‖pp

]
≤ 7δ. (11)

Define Li :=
∑
j∈[k]

∑
`∈[t] Y

`
j,i + 1I · C, where 1I is the indicator random variable for the event I = i. In this

notation, ‖z‖pp =
∑n
i=1(Li)

p. Recall that for any i 6= I , both in the “NO” and “YES” distributions, X`
j,i ∼ B(1/k)

independently of each other, and in particular, theseLi’s are independent random variables. We will need the following
concentration bounds on the contribution of the Li’s:
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The SMP protocol π

Input : (X1
1, . . . ,X

1
k), (X2

1, . . . ,X
2
k), . . . , (Xr

1, . . . ,X
r
k).

1. Set γ ←− 4ep, C ←− 10t · γ · n1/p, ρ←− (1 + ε)(Ep + (1 + 7ε)Cp) (Ep is defined below).

2. Each player j ∈ [k] locally defines Y`
j := 10`−1 ·X`

j ∀` ∈ [r], and generates the stream

σj := Y1
j , . . . ,Y

r
j

according to his input, and sends the referee the message A(σj).

3. The referee locally computesA>t :=
∑k
j=1A(Yt+1

j ,Yt+2
j , . . . ,Yr

j ) where the addition is over the quotient
ring Zn/M (and M is the module representing the kernel of the automatona A).
Notice that he can do so as he has t and (X>t

1 , . . . ,X>t
k ).

4. The referee adds the value C to the “spiked” coordinate I` of the `-th instance, for each ` ∈ [r]. Let
C := C1, . . . ,Cr denote the underlying stream representing this vector (notice that he can do so since he
receives the “spiked” coordinate I` of each instance).

5. The referee adds up the messages he receive from the players, over the quotient ring Zn/M , and outputs 1
(“YES”) iff
v :=

(∑k
j=1A(σj)

)
+A(C≤t)−A>t > ρ.

aSee Section 5 for the formal definitions and statement.

Figure 1: An SMP protocol for Aug-Disj(r, k, 18δ) using the PIA A

Claim 6.2 (Concentration bounds). It holds that:

• Eηr0 [
∑
i 6=I(Li)

p] ≤ 2n · 10tp(2ep)p.

• Let K be the universal constant from Lemma 2.5. Then for every m ∈ N,

σm

∑
i 6=I

(Li)
p

 :=

E

∣∣∣∣∣∣
∑
i6=I

(Li)
p − E

∑
i 6=I

(Li)
p

∣∣∣∣∣∣
m

1
m

≤ n1/m · (4Kemp)p · 10tp.

• For every m ≤ o(n1/p), Prη0 [(LI)
p ≥ (1 + 7ε)Cp] ≤ δ.

We defer the proof of this technical claim to the end of this argument. In the following denote Ep := Eη0
[∑

i6=I(Li)
p
]

(note that δ can be computed by the referee as it is public knowledge). Applying the generalized Chebychev’s inequal-
ity (Lemma 2.6) with m = log 1/δ and λ = 2, the first two propositions of Claim 6.2 guarantee that

Pr

∣∣∣∣∣∣
∑
i 6=I

(Li)
p − Ep

∣∣∣∣∣∣ > ε · Cp
 = Pr

∣∣∣∣∣∣
∑
i 6=I

(Li)
p − E

∑
i 6=I

(Li)
p

∣∣∣∣∣∣ > ε · Cp


≤ Pr

∣∣∣∣∣∣
∑
i 6=I

(Li)
p − E

∑
i 6=I

(Li)
p

∣∣∣∣∣∣ > 2 · σm

∑
i 6=I

(Li)
p

 ≤ 2−m = 2− log 1/δ < δ, (12)

where the first inequality is by the second proposition of Claim 6.2 (which implies that 2 · σm
(∑

i 6=I(Li)
p
)
≤ εCp

whenever ε ≥ Ω(n1/m−1) = n−Ω(1)), and the second inequality holds by our assumption that δ > 2−o(n
1/p).
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Combining (12) with the third proposition of Claim 6.2 implies

Pr
η0

[
‖z‖pp > Ep + Cp(1 + 7ε)

]
= Pr

η0

[
‖z‖pp > (Ep + εCp) + Cp(1 + 7ε)

]
≤ 2δ.

Hence, by definition of the “threshold” ρ := (1 + ε)[Ep + (1 + 7ε)Cp], we conclude by (11) that in the “NO” case,

Pr
η0

[v > ρ] ≤ Pr
[
‖z‖pp > Ep + (1 + 7ε)Cp

]
≤ 9δ. (13)

On the other hand, in the “YES” case, the coordinate I is such that X`
j,I = 1 for all j ∈ [k], ` ∈ [r]. Setting

k = 128eε · n1/p = Θ(ε · n1/p), the contribution of this coordinate to the p-norm of z is(
C +

t∑
`=1

10`−1 · k

)p
≥
(

10t · γ · n1/p + 10t · 128eε · n1/p
)p

=

= n · 10tp · γp (1 + 128ε/γ)
p ≥ n · 10tp · γp · e

128eεp
2γ (since 128eε/γ < 1/2)

= n · 10tp · γp · e
128eεp

8ep ≥ n · 10tp · γp · (1 + 16ε) = (1 + 16ε)Cp.

Furthermore, (12) ensures that, except with probability δ, the contribution of all the rest coordinates (i 6= I) is at
least Ep − εCp, and thus in the “YES” case,

Pr
[
‖z‖pp > Ep + (1 + 15ε)Cp

]
= Pr

[
‖z‖pp > (Ep − εCp) + Cp(1 + 16ε)

]
≥ 1− 2δ

Finally, (11) implies that under the “YES” distribution,

Pr [v > ρ]

≥ Pr
[
‖z‖pp > (1 + ε)ρ

]
− 7δ = Pr

[
v > (1 + ε)2 · (Ep + (1 + 7ε)Cp)

]
− 7δ

≥ Pr
[
‖z‖pp > Ep + 3εEp + (1 + 3ε)(1 + 7ε)Cp

]
− 7δ

≥ Pr
[
‖z‖pp > Ep + 3εCp + (1 + 11ε)Cp

]
− 7δ (since Ep ≤ Cp)

= Pr
[
‖z‖pp > Ep + (1 + 14ε)Cp

]
≥ 1− 9δ (14)

We conclude from equations (13) and (14) that setting the threshold ρ guarantees that π is correct with probability
at least 1− 18δ, which completes the reduction and the proof of Theorem 6.1.

It remains to prove Claim 6.2.

Proof of Claim 6.2. First proposition: Since all coordinates except coordinate I are identically distributed, we can
write Eη0 [

∑
i 6=I(Li)

p] = (n− 1) · E[(Lt)
p] + E[(C + Lt)

p], where

Lt :=
∑
j∈[k]

∑
`∈[t]

10`−1X`
j , and X`

j’s are i.i.d B(1/k).

We first prove the following lemma, which upper bounds the p’th moment of a single coordinate (i 6= I) in a “NO”
instance. Though it is a spacial case of Lemma 2.5, for completeness we present an elementary (yet slightly weaker)
proof that will be sufficient in our applications.

Lemma 6.3. For every p ≥ 1, E[(Lt)
p] ≤ (2ep)p · 10tp.

Proof. We shall show by induction on t, that there exists a function f(p) ≤ (2ep)p for which

E[(Lt)
p] ≤ f(p) · 10tp. (15)

Indeed, define the function f(p) recursively by the formula: f(p+ 1) := (ep)p + f(p). It follows that

f(p) = (ep)p + (e(p− 1))p−1 + (e(p− 2))p−2 + . . .+ 1 ≤ (2ep)p,
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as desired. The proof for the base case (t = 1) is very similar to the general case, so we postpone it to the end of the
proof. Suppose (15) is true for for all integers up to t. We shall show that

E[(Lt+1)p] ≤ f(p+ 1) · 10(t+1)p. (16)

To this end, we may write Lt+1 := ∆t+1 + Lt, where ∆t+1 := 10t ·
∑
j∈[k] X

t+1
j . We first bound E[(∆t+1)p]:

E[(∆t+1)p] = (10tp) · E

∑
j∈[k]

Xt+1
j

p
≤ 10tp ·

p∑
r=1

(
k

r

)
· pr · E

[
r∏
i=1

Xt+1
ji

]
(By the multinomial formula)

≤ 10tp ·
p∑
r=1

(
ek

r

)r
· pr ·

(
1

k

)r
(By Stirling’s approximation and in dependence of Xt+1

j ’s)

≤ 10tp ·
p∑
r=1

(ep
r

)r
≤ (ep)p · 10tp. (17)

We therefore have

E[(Lt+1)p] = E[(∆t+1 + Lt)
p]

≤ 2p−1 · (E[(∆t+1)p] + E[(Lt)
p])

≤ 2p−1 ·
(
E[(∆t+1)p] + f(p) · 10tp

)
(by the inductive hypothesis)

≤ 2p−1 · 10tp [(ep)p + f(p)] (by (17))

≤ 10(t+1)p · [(2ep)p + f(p)]

= 10(t+1)p · f(p+ 1) ,

which finishes the proof of (16). For the base case (t = 1), we need to show that E[(L1)p] := E[(
∑
j∈[k] X

1
j )
p] ≤

10p · f(p). Indeed, repeating essentially the same calculation as in (17), one obtains

E[(L1)p] ≤ (2ep)p = 2p · (ep)p ≤ 10p · (e(p− 1))p−1

≤ 10p ·
[
(e(p− 1))p−1 + f(p− 1)

]
= 10p · f(p).

This finishes the proof of (15), and therefore concludes the proof of Claim 6.3.

Substituting the value of C = 10t · γ · n1/p, we conclude by Lemma 6.3 and (18) that

Eη0

∑
i6=I

(Li)
p

 = (n− 1) · E[(Lt)
p] + E[(C + Lt)

p]

≤ (n− 1) · (2ep)p · 10tp + 2Cp

= (n− 1) · (2ep)p · 10tp + 2n · γp · 10tp

≤ n · 10tp (2γp + (2ep)p) .

Second proposition: To upper bound the m-th moment of
∑
i 6=I(Li)

p, we note that
∑
i 6=I(Li)

p is a sum of
independent random variables, and thus Lemma 2.5 implies that

E

∣∣∣∣∣∣
∑
i6=I

(Li)
p

∣∣∣∣∣∣
m ≤ ( Km

logm

)m
·
∑
i 6=I

E[(Li)
mp]

≤ (n− 1) · (3eKm)m · (2emp)mp · 10tmp

≤ n · (4Kemp)mp · 10tmp,
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where the second inequality follows again from Lemma 6.3, taken with p := mp. The second proposition of Lemma
6.2 now follows by raising both sides of the above inequality to the 1/m power.

Third proposition: We first upper bound the expected contribution of the I’th coordinate under η0:

Eη0 [(LI)
p] = E[(C + Lt)

p] = Cp ·
p∑
r=0

(
p

r

)
· E
[(

Lt
C

)r]
≤ Cp ·

p∑
r=0

(ep
r

)r
· (2er)r · 10tr

Cr

= Cp ·
p∑
r=0

(
2e2 · p · 10t

C

)r
≤ Cp

∞∑
r=0

ε−r ≤ 1

1− ε
· Cp ≤ (1 + 2ε)Cp, (18)

where the third transition follows from Lemma 6.3 (applied p times with p = r), and the second before last transition
follows since 2e2·p·10t

C = 2e2·p·10t

10t·γ·n1/p � ε for large enough n.

Next, we upper bound the m-th moment of LpI . Similar to the calculations in (18), we have

σm((LpI))
m := Eη0 [|(Lt + C)p − E[(Lt + C)p]|m] ≤

≤ Eη0 [|(Lt + C)p − Cp]|m] ≤ Eη0

[
Cpm ·

(
p∑
r=0

( ep

r · C

)r
· Lrt − 1

)m]

= Eη0

[
Cpm ·

(
p∑
r=1

( ep

r · C

)r
· Lrt

)m]
≤ Eη0

[
Cpm · pm ·

p∑
r=1

( ep

r · C

)rm
· Lrmt

]
(19)

≤ Cpm ·
p∑
r=1

(
ep2

r · C

)rm
· Eη0 [Lrmt ] ≤ Cpm ·

p∑
r=1

(
ep2

r · C

)rm
· (2eprm)rm · 10trm (By Lemma 6.3)

= Cpm ·
p∑
r=1

(
10t · 2e2p3m

C

)rm
≤ Cpm · εm

1− εm
≤ (2εCp)m, (20)

where (19) follows from Jensen’s inequality ((
∑n
i=1 ai)

m ≤ nm ·
∑n
i=1 a

m
i ), and the second before last transition

again follows since 10t·2e2p3m
C = 10t·2e2p3m

10t·γ·n1/p � ε by the premise m = o(n1/p).

Given the assumption δ > 2−o(n
1/p), we can now apply Lemma 2.6 with m = log 1/δ (≤ o(n1/p))), λ = 2, to

conclude that

Pr
η0

[(LI)
p ≥ (1 + 7ε)Cp] ≤ Pr

η0
[|(LI)p − E[(LI)

p]| > 4εCp]]

≤ Pr
η0

[ |(LI)p − E[(LI)
p]| > 2 · σm((LI)

p)] ] ≤ 2−m = δ,

where the first and second transitions follow from (18) and (20) respectively.
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A Direct Sum for Set-Disjointness
Proof of Lemma 3.4. Let Π be a δ-error protocol for Disjnk , and denote

ICµn0 (Π) = Iµn0 (Π;X1, . . .Xk) := I. (21)

We will use the n-fold protocol Π to generate a 2δ-error protocol π for ANDk (under any input (x, . . . , xk) ∈ {0, 1}k),
whose information cost under µ0 is at most I/n, completing the proof (since ‖Π‖ ≥ I). The protocol π(x1, . . . , xk)
is defined as follows:

• The players use public randomness to sample a random coordinate i ∈R [n].

• The players “embed” their inputs to the i’th coordinate of Π, and sample the rest of the coordinates privately2

according to µ0: Each player j ∈ [k] sets

Xj := (Xj,1, . . . , Xj,i−1, xj , Xj,i+1, . . . , Xj,n), where Xj,t ∼ B(1/k) for all t 6= i.

• The players run Π(X1, . . . ,Xk) and output its answer.

To argue about the correctness of π, notice that since all coordinates [n]−{i} are sampled according to µ0, (1) implies
that except with probability δ,

Disjnk (X1, . . . ,Xk) =

n∨
i=1

ANDk(X1,i, . . . ,Xk,i) = ANDk(x1, . . . , xk),

and since Π itself is correct with probability 1− δ, we get that π is correct with probability at least 1− 2δ, as claimed.
To analyze the information cost of π under µ0, we write

ICµ0(π) = Ei [Iµ0(Π;X1,i, . . .Xk,i)]

≤ 1

n

n∑
i=1

Iµ0(Π;X1,i, . . .Xk,i | X1,≤i,X2,≤i, . . . ,Xk,≤i)

=
1

n
· Iµn0 (Π;X1, . . .Xk) =

I

n
, (22)

where the inequality follows from Lemma 2.11, since for any t 6= i and j, ` ∈ [k] , Xt
` ⊥ Xi

j , and the last equality
follows from the chain rule for mutual information.

B Tightness of [LW13] Communication Problem
As noted in the introduction, Li and Woodruff [LW13] prove their lower bound via a reduction to a 2-party 1-way
communication problem : In the Gap-L∞[B] problem, Alice and Bob are each given an n-dimensional vector x, y ∈
[B]n with the promise that either ∀ i ∈ [n] |xi − yi| ≤ 1 (“NO”) or ∃ i ∈ [n] |xi − yi| = B (“YES”), and they need
to determine which case it is using a 1-way protocol between Alice and Bob. To facilitate a direct-sum based lower
bound, [LW13] analyzed the information complexity of this problem under the following distribution µ supported on
“NO” instances: For each coordinate i ∈ [n], set x ∈R [B], and set y ∈ [x, x+1] independently at random conditioned
on x (y = B if x = B).

We now sketch a proof showing that there is an exp(−Ω(n/B2))-error randomized 1-way protocol for Gap-
L∞[B], whose communication cost under the distribution µ is O(n/B2). This in turn implies that the lower bound
of [LW13] cannot be improved in terms of its error parameter, at least using the direct-sum technique (which must
analyze the information/communication complexity under the “NO” distribution in order to prove communication
lower bounds for the composite problem).

We actually present a 0-error protocol for Gap-L∞[B] whose (internal) information cost isO(n/B2), and then use
the compression result of [BR11] to compress this protocol (at the price of a tiny error probability). Indeed, consider
the protocol τ in which, Bob sends Alice the following vector vB ∈ {0, 1, 2}n:

2Note that this is indeed possible since µ0 is a product distribution over the coordinates in [k].
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• For each coordinate i ∈ [n], independently perform the following:

• if yi = 0, Bob sends Alice 0.

• if yi = B/2, Bob sends Alice 1.

• if yi = B, Bob sends Alice 2.

• For all 0 < j < B/2: If yi = j, Bob sends 0 with probability cos(πj/B), and 1 with probability 1 −
cos(πj/B) = sin(πj/B) (i.e., Alice sends 0 with probability “evenly” spread on the unit circle).

• For all B/2 < j < B: If yi = j Bob sends 1 with probability cos(πj/B), and 2 with probability 1 −
cos(πj/B) = sin(πj/B).

• Alice generates a vector vA ∈ {0, 1, 2}n in the exact same process according to her input x = x1, . . . , xn.
When she receives vB from Bob, she declares “YES” iff there is some i ∈ [n] for which (vA(i), vB(i)) = (0, 2)
or (vA(i), vB(i)) = (2, 0). Otherwise, she declares “NO”.

The protocol has 0 error since in a “NO” instance, there is no distribution on transcripts of τ on a j and a j + 1 with
a 0 in support of distribution for j and 2 in support of distribution for j + 1. In a “YES” instance clearly the protocol
is correct with zero error. To analyze the information cost of τ , we will use the well know connection between mutual
information and KL divergence

I(A;B|C) = Eb,c [D (A|b, c‖A|c)] ,

wehre D (A|b, c‖A|c) := Ea
[
log p(a|bc)

p(a|c)

]
. We will also need the following proposition in our analysis:

Proposition B.1 (Jensen-Shannon divergence vs. Hellinger distance, [Lin06]). For two distributions µ, ν, define the
Jensen-Shannon divergence as JS(µ, ν) := 1

2

(
D
(
µ‖µ+ν

2

)
+ D

(
ν‖µ+ν

2

))
. Then

h2(µ, ν) ≤ JS(µ, ν) ≤ ln 2 · h2(µ, ν).

We are now ready to show that I(τ ;Y |X) ≤ O(n/B2). To see this, let T denote the transcript of Bob’s message
in τ and let Ti denote Bob’s transcript of the i’th coordinate. Recall that by definition, (Ti|yi = j) ∼ B(j2/B2) for
all 0 < j < B (indeed, we will not need to distinguish between the case where the support of this binary random
variable is (0, 1) or (1, 2) since for information purposes these distributions are the same). Therefore,

I(Ti;Yi|Xi) = E(xi,yi)∼µD (Ti|xi, yi‖Ti|xi)

=
1

B
·
B/2∑
j=1

1

2

(
D (Ti|xi = j, yi = j‖Ti|xi = j) + D (Ti|xi = j, yi = j + 1‖Ti|xi = j)

)
=

1

B
·
B/2∑
j=1

JS(Ti|xi = j, yi = j , Ti|xi = j, yi = j + 1) (By the definition in B.1)

≤ ln 2

B
·
B/2∑
j=1

h2(Ti|xi = j, yi = j , Ti|xi = j, yi = j + 1) (By proposition B.1) (23)

Define the vector uj := (cos(πj/B), sin(πj/B)) ∈ R2. By definition of the protocol and the Hellinger distance,

h2(Ti|xi = j, yi = j , Ti|xi = j, yi = j + 1) = ‖√uj −
√
uj+1‖2 = 1 + 1− 2〈uj , uj+1〉

= 2− 2‖uj‖‖uj+1‖ cos(π/2B) (since the angle between uj , uj+1 is π/2B)

= 2− 2(
√

1− (π/2B)2) (since uj , uj+1 are unit vectors and sin(x) ≤ x)

≤ 2− 2(1− (π/2B)2) (since
√

1− x ≥ 1− x for x ∈ [0, 1])

≤
( π

2B

)2

= Θ

(
1

B2

)
.
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Thus, by (23) we have that

I(Ti;Yi|Xi) ≤
ln 2

B
·
B/2∑
j=1

O(1/B2) = O(1/B2).

By independence of the coordinates and the chain rule, we have I(T ;Y |X) ≤ O(n/B2), as claimed.
To compress his (1-round) message T , Bob can now use a 1-round version of the correlated-smapling scheme

of [BR11] (Theorem 4.1, setting P := T |Y and Q := T |X). This simulation asserts that Bob can send Alice a
message T ′ (using shared randomness) such that Alice produces from T ′ a correct sample v ∼ T |Y except with
error δ = 2−Ω(n/B2), and E[|T ′|] ≤ 2 · I(T ;Y |X) + log(1/δ) ≤ O(n/B2). To turn this expected communication
into a worst-case guarantee, observe that under the distribution µ, T = T1T2 . . . Tn is a collection of i.i.d random
variables, and so a standard Chernoff bound implies that the log-ratio of the distributions T |Y and T |X for any
T = t, is sharply concentrated around I := I(T ;Y |X) = O(n/B2) (in other words, Prx,y,t

[
Pr[(T |y)=t]
Pr[T |x=t] > 2O(I)

]
≤

exp(−Ω(I)) ≤ exp(−Ω(n/B2)). Therefore, the simulation of [BR11] would succeed in a single round with proba-
bility 1− exp(−Ω(n/B2)), provided that we set δ = 2−Θ(n/B2), Ct = 2O(I) in Step 4 of their compression scheme.
In this case, Theorem 4.1 in [BR11] guarantees that the simulation requires only O(I) bits of communication, and
by a union bound, the error of this protocol under µ is at most δ + 2−Ω(I) = 2−Ω(n/B2) = exp(−Ω(n/B2)), which
completes the proof.

C 1-way Upper Bound for k-Party Disjointness
Here we sketch a proof showing that, in contrast to our SMP lower bound, the k-party communication complexity of
Set-Disjointness in the 1-way model under the distribution η (defined in Section 3) is upper bounded by O(n/k) (and
therefore resorting to the weaker SMP model is necessary for gaining the extra min{log k, log 1/δ} factor in our lower
bound).

The proof is very similar to the 2-party public-coin protocol for sparse Set-Disjointness of Håstad and Wigderson
[HW07]: Stage 1 : The first player can interpret the public coin as a sequence S1, S2, S3 . . . of random subsets of [n]
where each item is independently included with probability 1/2. Player 1 starts by sending player 2 the index t1 of
the first subset St1 containing his set x1. Note that since under η0 Xj,i ∼ B(1/k), E[|x1|] = n/k, and therefore the
probability that a random subset St contains x1 is 2−O(n/k), and therefore after scanning 2O(n/k) random subsets, one
of them contains the set x1 with probability 1− exp(−n/k), in which case t1 ≤ O(n/k).

When player 2 receives the index t1, he sets x′2 := x2 ∩ St1 . Since St1 is random (conditioned on containing
x1), E[x2 ∩ St1 ] = n

2k (and the intersection size is concentrated around n/2k by a Chernoff bound). Player 2 then
sends player 3 the first index t2(> t1) for which x′2 ⊂ St2 , using n/(2k) bits (in expectation). Player 3 then sets
x′3 := x3 ∩ St2 and continues as before. The players continue in this fashion until player j0 := O(log log n). Notice
that with probability 1− exp(−n/k), |x′j0 | = O

(
n

k·2−j0+1

)
= O

(
n

k·log2(n)

)
.

Stage 2 : The next players j0, . . . j0 +O(log n) now sequentially communicate their entire remaining sets x′j from

one to another, using O
(

log2(n) · n
k·log2(n)

)
= O

(
n
k

)
bits, where x′j is the set of elements of player j which belong

to x′j−i (note that this stage is deterministic).

Not that the protocol is correct whenever the stage 1 succeeds (that is, assuming |x′j0 | = O
(

n
k·log2(n)

)
), and the

communication bounds in stage 1 are satisfied. which (by a union bound) happens with probability 1 − exp(n/k).
Furthermore, in this event the total communication of this protocol is upper bounded byO(log log(n))∑

j=1

n

k · 2j−1

+O
(n
k

)
≤ O

(n
k

)
, as desired.

22

 

ECCC                 ISSN 1433-8092 

http://eccc.hpi-web.de 


