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Dictatorship is the Most Informative Balanced
Function at the Extremes
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Abstract

Suppose X is a uniformly distributed n-dimensional binary vector
and Y is obtained by passing X through a binary symmetric channel
with crossover probability a. A recent conjecture by Courtade and
Kumar postulates that I(f(X);Y) <1 — h(«) for any Boolean func-
tion f. In this paper, we prove the conjecture for all « € [0, o,,], and
under the restriction to balanced functions, also for all o € [% — i, %],
where a,,, @y, — 0 as n — oco. In addition, we derive an upper bound
on I(f(X);Y) which holds for all balanced functions, and improves
upon the best known bound for all % <a< %

1 Introduction

Let X be an n-dimensional binary vector uniformly distributed over {0, 1}",
and Y be the output of passing each component of X through a binary
symmetric channel with crossover probability a < 1/2. The following was
recently conjectured by Courtade and Kumar [1].
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Conjecture 1 For any Boolean function f :{0,1}" — {0,1} it holds that
I(f(X);Y) <1=h(a), (1)
where h(p) = —plogp — (1 — p)log(1 — p) is the binary entropy function.'

For a dictatorship function, f(X) = X; the conjectured upper bound (1)
is attained with equality. Therefore, the conjecture can be interpreted as
postulating that dictatorship is the most “informative” Boolean function,
i.e., it achieves the maximal I(f(X);Y).

So far, the best known bound that holds universally for all Boolean func-
tions is

I(f(X);Y) < (1-20)" (2)

This bound can be established through various techniques, including an ap-
plication of Mrs. Gerber’s Lemma [2-4], the strong data-processing inequal-
ity [5,6] and standard Fourier analysis as described below. For very noisy
channels, i.e., in the limit of o — %, this bound implies that

I(f(X):Y)
1 — h(a) = log(e)

lim
1
o—r )

~ 1.3863. (3)

In the limit of & — 0, which corresponds to very clean channels, the ratio
(1 —2a)?/(1 — h(«)) approaches 1, but the derivative of (1 — 2a)? at o = 0
is finite, whereas the conjectured bound has an infinite (negative) slope at
a = 0.

In this paper, we prove Conjecture 1 for very clean channels, and under
the restriction to balanced functions, also for very noisy channels. In addi-
tion, we derive an upper bound on I(f(X);Y’) which holds for all balanced
functions, and improves upon (2) for all % <a< % Specifically, we obtain
the following results, proved in sections 5, 3 and 4, respectively.

Theorem 1 (Dictatorship is optimal for very clean channels) Let f :
{0,1}" +— {0,1} be any Boolean function. There exists o, > 0 such that
I(f(X);Y) <1—h(a) for all « € [0,c,]. In particular, dictatorship is the
most informative function in the noise interval o € [0, o]

LAll logarithms are taken to base 2.



Theorem 2 For any balanced Boolean function f(z) :{0,1}" — {0,1}, and

any % (1 - \%) <a< %, we have that

I(f(X);Y) < 10%(6) (1-2a)2+9 (1 - @) (1-2a)*

Theorem 3 (Dictatorship is optimal for very noisy channels) Let f :
{0,1}™ +— {0,1} be any balanced Boolean function. There exists &, > 0
such that I(f(X);Y) < 1 — h(a) for all « € [§—ay,3]. In particular,
dictatorship is the most informative balanced function in the noise interval

a € [2—a, .

The proof of Theorem 1 is based on the observation that, for o small
enough, 7/ 2 Pr(f(X)# f(Y)|Y =y) depends almost exclusively on the
number of binary vectors x € {0,1}" with Hamming distance 1 from y for
which f(x) # f(y) (i-e., the number of sensitive coordinates of the vector
y). This in turn implies that, for very small «, the conditional entropy
H(f(X)|Y) depends on f mostly through the expectation of this quantity.
This expectation is also known as the Total Influence of f, and is minimized
by the dictatorship function.

For the proof of Theorem 2, we first lower bound the conditional en-
tropy H(f(X)|Y) in terms of the second and fourth moments of the random
variable (1 — 2P}), where Pl £ Pr(f(X)=0]Y =y). Specifically, we show
that

HF(X)Y)>1— 1Og2(e)E(1 —oPl)? + (1 - log;e)> E(1—2P))%  (4)

To upper bound the second and fourth moments in (4), we use basic Fourier
analysis of Boolean functions along with a simple application of the Hyper-
contractivity Theorem [7-9], in order to derive universal upper bounds on
E(1 — 2P{)?" that hold for all balanced Boolean functions.? In particular,
these bounds show that E(1—2P{)? < (1—2a)? and E(1—2P{)* < 9(1—20)2.
Plugging these bounds in (4) yields the Theorem.

2We remark that using similar techniques it is possible to obtain an upper bound on
I(f(X);Y) of a similar form that holds for any g¢-biased function (i.e., any function for
which E(f(X)) = 1 — 2¢). However, the obtained bound is not maximized at ¢ = %, and
therefore cannot be used to establish the conjecture in the limit of o — % for all Boolean
functions.



A straightforward consequence of Theorem 2 is that for any balanced
Boolean function f,

(X))

I —h(a) =1 (5)

lim
Ol‘)i

—_

which shows that the conjectured bound (1) becomes accurate for balanced
functions, in the limit o — %

Theorem 3 is essentially a corollary of Theorem 2. To prove the result,
we rely on the fact that dictatorship is the only balanced Boolean function
that attains the upper bound E(1 — 2P{)? < (1 — 2a)? with equality (i.e.,
dictatorships are the unique maximizers of the second moment). Further-
more, since the set of Boolean functions from {0,1}" — {0,1} is discrete,
there exists a constant ¢, > 0, independent of «, such that for any function g
other than dictatorship, E(1—2P¢)* < (1 —¢,)(1—2a)?. For a close enough
to 3 the second moment of (1— 2P/)? dominates H(f(X)|Y), and this shows
that no function can obtain conditional entropy H(f(X)|Y) smaller than
dictatorship.

2 Preliminaries

To prove our results, it will be more convenient to map the additive group
{0,1}" to the (isomorphic) multiplicative group {—1,1}". Specifically, let X
be an n-dimensional binary vector uniformly distributed over {—1,1}" and Y’
be the output of passing each component of X through a binary symmetric
channel with crossover probability o < 1/2. Thus, for all i € {1,--- ,n}
we have Y; = X, - Z;, where {Z;}; is an i.i.d. sequence of binary random
variables statistically independent of {X;}" ,, with Pr(Z; = —1) = a and
Pr(Z; = 1) = 1 — «. Note that Y is also uniformly distributed over {—1, 1}".

Let f:{—1,1}" — {—1,1} be a balanced Boolean function, i.e.,

Pr(f(X)=-1) =

N | =

Note that this condition is equivalent to Ex(f(X)) = 0. For each y €
{=1,1}" define the posterior distribution of f(X) given the observation y

Pf 2 Pr(f(X) = 1Y =y),
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and note that

E(f(X)]Y =y)=1-2P]. (6)

In what follows, we will extensively use Fourier analysis of real functions
on the hypercube {—1,1}". Let X be a random vector uniformly distributed
on {—1,1}" and define [n] £ {1,2,...,n}. The Fourier-Walsh transform of
a function f: {—1,1}" — R is given by

TOEDINION| Y
where

f(8) =Ex (f(X)HXi> (8)

€S

is the correlation of f with the “parity” function on the subset S. It is easy
to verify that the basis {¢s(z) = [[;cq i} scpn 18 orthonormal with respect

to the inner product < f,g >= E (f(X)g(X)), which implies that for any
two functions f,g: {—1,1}" — R it holds that

E(f(X)g(X)) = Y f(5)i(s). (9)
)

SCln

In particular, Parseval’s identity gives 3¢ f2(S) = E (f2(X)). Thus, if f is
a Boolean function, i.e., f: {—1,1}" — {—1,1}, we have ) F2(8) = 1.

The following proposition gives four simple properties of the Fourier co-
efficients that will be useful in the sequel.

Proposition 1 (Basic properties of the Fourier transform) Let f:{—1,1}" —
{—1,1} be a Boolean function. We have that

(i) [ is balanced if and only if f(0) = 0;
(ii) If|f(S)] > 0 then | f(S)] > 27

(iii) Any balanced function f which is not a dictatorship function must sat-

isfy . 1S|>2 f2(8) > 0;



(iv) Forxz,y € {—1,1}" write x ~ y to denote that x and y differ in exactly
one coordinate (i.e., edges of the hypercube), and define

K} £ {ze{-1,1}" : x~y, f(x)# fW)}. (10)
It holds that

2 > K= ISIf*(9).

y{-1,1}" SC[n]

We remark that the quantity 27" Zy Kg 1s sometimes called the total influ-
ence of f [7].

Proof.
(i) By definition f(0) = Ef(X) = 0 for f balanced.

(ii) We note that the sum > . ;30 f(2) [[;c5 % is an integer, and the
claim follows immediately.

(iii) Let f be a balanced BooleaAn function (f(0) = 0) with Do 15|22 F2(8) =
0. Then f(X) = > ¢, fripXi. Since there always exists some x €
{—=1,1}" for which f(z) = 3, |f(i)|, we must have that 3. |f(i)| = 1.
On the other hand, by Parseval’s identity we have ) ., fQ(Z) = 1.

Clearly, the last two equations can simultaneously hold if and only if
there is a unique ¢ for which |f;| > 0. Hence, f must be a dictatorship.

(iv) This statement is well-known, see, e.g., [7]. We give the proof for com-
pleteness. For every coordinate i € [n], let 1(,).fei) denote the indi-
cator of the event that f takes different values on y and on y with its
i’th bit flipped (y®%). Let us define the (real-valued) function

. _ @i
gi(y) 2 f(y) 2f(y ).
and observe that

o g7 (Y) = Lprrer)



e The Fourier coefficients of g; satisfy, for any S C [n]:

gi(s>:{f(5) ifies )

0 otherwise.

By definition of KJ , we thus have

my K] =2 ZZ1f V£ F ()

y{—-1,1}" Yy i€n

=2" Zzgl

Yy i€n

= Z Egi
i€ln]
=>4 (12)

i€[n] SC[n]

=Y > F (13)

i€[n] SCln]-ieS

=2 2./

SCln] i€S
=) I81/2(9). (14)
SC[n]

where (12) follows by Parseval’s inequality, and (13) by (11).

For any function f : {—1,1}" — R with Fourier coefficients {f(S)} and

p € R*, the noise operator T,f : {—1,1}" — R is defined as [7]

02 3 ()0 ] (15)

SC[n] €S

Recall that in our setting X and Y are the input and output of a binary
symmetric channel with crossover probability a. Thus we can use the Fourier
representation of f to write E (f(X)|Y = y) as follows [7]

E(fX)Y =y)=E[Y fSO]][X [y =y

SCln] €S
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=Y f(S)E (H in¢>

SCln] €S
Y e (H zi) e
SCln] i€S i€S
=2 fO]IE@E) v
SC[n] i€S i€S
Zf (1-2a) ‘S‘Hyz (16)
SCln] €S
= (T1-2a.f)(y), (17)

where we have used the fact that {Z;} is an i.i.d. sequence. Recalling equa-
tion (6), this also yields

12 = (Bl = 3 A0 -2 [T 09

€8

The following well-known theorem will play an important role in the
derivation of Theorem 2.

Theorem 4 (Hypercontractivity Theorem, [7-9]) Let 1 < p < ¢ <
0o. Then for all p < 1/ —, and all g : {=1,1}" — R, it holds that

Q|
S =

[E((Thg)"(X))]* < [E(¢"(X))] (19)

3 The Intermediate Noise Regime

In this section we prove Theorem 2, which gives a universal upper bound
on the mutual information I(f(X);Y), that holds for any balanced Boolean
function. The mutual information can be expressed as

I(f(X);Y) = H(f(X)) = H(f(X)|Y) = 1 — Eyh(P)). (20)



We note that h(-) admits the following Taylor series
l—p o~ log(e)
h{— | =1- —_ 21
( 2 ) ;21;(21{—1)29 ’ (21)

and can be lower bounded by replacing p?* with p? for all k > ¢, i.e.,

3 1—p >1_ i log(e) PP p?t i log(e)
2 - 2k(2k —1) p 2k(2k — 1)
t—1

_ log(e) o —_log(e) 1\ .
- _Z% 2k—1 - <1_;2k(2k—1)>p  (22)

where we have used the fact that h(0) = 0. Using (22), for any ¢t € N, we
can further lower bound Eyh(P)) as

Eyh(Pl) = Eyh <%‘2P‘/f)>
< log(e ok
z1- kzl zk(zi:(—) 1)EY <(1 ~2Py) )
. (1 . ; 2;%%) By ((1 . 2P{,‘)2t> . (23)

Thus, any upper bound on the first ¢ even moments E[(1 — QP{;)%], k =
1,...,t, would directly translate to an upper bound on I(f(X);Y).

Our simple argument yields an upper bound on all even moments of the
random variable 1 — QPS{, using a simple trick combined with the Hypercon-
tractivity Theorem. Formally, we prove the following lemma.

Lemma 1 Let k > 1 be an integer satisfying (1 —2a)v/2k —1 < 1. For any
balanced Boolean function f: {—1,1}" +— {—1,1} we have that

Ey ((1 — 2P{,c)2k> < (2k — 1)F(1 — 2a)*

For the proof, we will need the following proposition.



Proposition 2 For any balanced Boolean function f :{—1,1}" — {—1,1}
and any 0 < p < 1 we have that

vy (T,1)°(Y)) < p*.

Proof. By the definition of the operator 7,:

2

Ey (T,£)*(V) =By [ | D A9 ] Y

SC[n] i€S
e (X fisa T X s T )
516[] 1€S] SQE[TL JES?

- ¥ s X sisarter (I 1)

S1€[n] S2€[n 1€851 JES2
= 2 fs)p™ Z J(S2)9* 11,5,

S1€[n] S2€[n
_ Z fZ( pQ\S\’ (24)

where 1g,_g, is the indicator function on the event S; = S;. Recalling that
> sCn] f2(S) = 1 and our assumptions that p < 1 and that f(0) = E(f(X)) = 0,

the “weight” assignment f2(S) that maximizes > sciny £2(5)p5! puts all the
weight on characters S whose cardinality is |S| = 1. Hence

> () <

SC[n]

as desired. m

Proof of Lemma 1. Let f:{—1,1}" — {—1,1} be a boolean function
and let g £ T)_5of. Let k > 1 be an integer, and let p = \/1/(2k — 1) =
V(2 —1)/(2k — 1). By (18), we have

Ey((1—2P))*) = Ey (¢%*(Y))
=Ey (( Tl/pg ) Y))
< [By ((Ty/,9)%(V))]" (25)
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= [Ey (T _sayyaiif)*))]" (26)

where (25) follows from the Hypercontractivity Theorem taken with p =
2,q = 2k (as p satisfies the premise of the theorem), and (26) from the defini-
tion of the function g. Invoking Proposition 2 with p = (1—2a)v/2k — 1 < 1,
we obtain that for any balanced Boolean function and any £ > 1

Ey ((1 - 2P{f)2k> < (2k — 1)F(1 — 20)%* (27)

as desired. m

The following is an immediate consequence of Lemma 1 and (23).

Proposition 3 For any balanced Boolean function f: {—1,1}" +— {—1,1},

any integer t > 1 and any % (1 — ﬁ) <a< 1, we have that

t—1
log k 2k
(2k — 1)"(1 — 2
22/{21@—1 k=11 = 20)

t—1

Z %k;i _) 1)) (2t — 1){(1 — 2a)*. (28)

Theorem 2 now follows by evaluating (28) with ¢ = 2. Note that for
balanced functions the upper bound (1 — 2«)?, which was the best known
bound hitherto, is obtained as a special case of Proposition 3 by setting
t = 1. It is easy to verify that for % <a< % the upper bound in Theorem 2
is tighter. See Figure 1 for a comparison between the bounds.

4 The High Noise Regime

In this section we prove Theorem 3 and establish the optimality of the dicta-
torship function among all balanced functions in the very noisy regime. the
proof is essentially a simple consequence of Theorem 2 and the discreteness
of the space of Boolean functions from {—1,1}" — {—1,1}.

By equation (23) applied with ¢ = 2, we have that for any balanced
Boolean function (and any «),

T(f(X)Y) < @EY ((1 - 2P{ﬁ)2) + (1 - @) Ey ((1 - 2P;ﬁ)4> .

11
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Figure 1: A comparison between the bound from Theorem 2, the conjectured
bound and best known previous upper bound on I(f(X);Y). Note that the
bound from Theorem 2 is only valid for balanced functions.

Lemma 1 (applied with £ = 2) implies that for % (1 — \%) <a<

1
2

Ey ((1 . 2P{,‘)4> <(2-2-1)%(1 - 2a)* = 9(1 — 2a)". (29)
Furthermore, by equations (18) and (24), we have that for « in this range

By ((1-2P{)?) = 3 fA(S$)(1 —20)*

SC[n]

< | SR a-202+ [ 29| 200", 30

|5|=1 |51>2

where we have used the fact that f(@) = 0 for balanced functions (Propo-
sition 1). Combining the above three inequalities and using the fact that

12



: SI>2
B log(e) log(e) £2 — 904
+19 (1 — ) +—— g;zf (9) | (1 =20) (31)

Now, suppose that f is a balanced Boolean function which is not a dicta-
torship function. This implies (in fact, equivalent to) >7,¢5, f*(S) > 0. By
Proposition 1, it therefore must be the case that

Y S s =a,

IS|>2

Therefore, for such f, the RHS of (31) can be upper bounded by

log(e) (1—4")(1—=20)°+ <9 (1 _ M) 1 M4n) (1—-2a)*. (32)

2 2 2

It can be directly verified that for any a € [0.5—,, 0.5], where @, = 1 .27,

the expression in (32) is smaller than @(1 —2a)? < 1—h(a), and thus by
(31), for such a we have

I(f(X);Y) <1=h(a), (33)

which completes the proof.

5 The Low Noise Regime

In this section we prove Theorem 1, which shows that dictatorship is the

most informative Boolean function in the very low noise regime.

Proof of Theorem 1. Let a, = % and assume that o < «,. We

begin by showing that for any « in this regime I(g(X);Y) < 1 — h(«) for
any biased function g. As I(g(X);Y) < h(Pr(g(X)=1)), it suffices to

13



h (Pr(g(X)=1)). Note that if g is biased, then

show that h(a) < 1 —
%| > 27" and therefore

| Pr(g(X) =1) —
= h(Pr(g(X) = 1)) > 1—h (% - 2">

>1-— \/4 (% - 2n> (% + 2n) (34)

—1-V1—-4.272,

where we have used the bound h(p) < /4p(1 —p) in (34). On the other
hand, for « in this regime we have

1
h(a) < 2alog (—)
«
1
< 2aq,, log (—)
Qy

_ 1 1 log(n)
-9 2n [~ -
(4n * 2n? * 4n? )

< 2—2n

We therefore have that for any « in this regime and any biased function g

h(a) <272 <1—-v1—-4-2222<1-h(Pr(g(X)=1)),

as desired. Thus, it suffices to prove that I(f(X);Y) < 1 — h(«a) for all
balanced functions. In particular, we will show that I(f(X);Y) <1 — h(«)
for all functions f that are not a dictatorship.

Let f:{—1,1}" — {—1,1} be balanced, and assume it is not a dictator-
ship. Define

m £ Pr(f(X) # F(V)Y =),
Now, note that «/ € {P/,1— P/}, and hence h(P}) = h(n]). Thus,
H(f(X)|Y) = Eh(ny), (35)

We first show that Wg is roughly equal to KJ « for o small enough.

14



Lemma 2 For anyy € {—1,1}", it holds that

Kga —n2a? < 7r§ < Kg(x + 20?2

Proof. Let |z — y| denote the Hamming distance between x and y. Write

Wg _ Z alm—yl(l _ a)n—lm—yl

©:f(2) £ ()
=Kl -al—a)" '+ > al*=v(1 — q)nle=vl
(@) £ () Jo—y|>2

Therefore on the one hand we have
7T?Jj - Kga < Kga((l —a)" 1)+ 2% (1 — )" ? < 2"a?
and on the other hand, recalling also that Kg < n, we also have that
71'5 - Kga > Kga((l —a)" 1) > —KJ&Q(n —1) > —n?a?

and the claim follows. =

Our assumption that o < a,, combined with the upper bound in Lemma 2
(and recalling that Kg < n) guarantees that 7r5 < % Thus, continuing with
(35) and using the lower bound in Lemma 2, we can write

H(fX)Y)=2" Y (K a—-n’a?)

y:K{jZl
=-27" Z (Kgoz —n?a?) log(Kga —n?a?)
y: K >1
-2 Z (14 n2a® — Kgoz) log(1 + n*a? — Kga). (36)
yKf>1

The expectation E(K{;) will play an important role in the remainder of
the derivation. Note that by Proposition 1 we can write

EKY =) |SIf?(S) =1+6;

sC[n]

15



where 0 < d; < n — 1. Moreover, by Proposition 1 and the assumption that
f is not a dictatorship, §; > 272"

We proceed by separately bounding the first and second summands in (36).
For the first, we have

2" Z (Kga —n?a?) log(KJoz —n?a?)
y: K] >1
<2™" Z (KJo — n*a?)log(K] )
y:K)>1
<2 Z (K] a(loga +log KJ) — n*a”loga)
y:K)>1
< alogaEK] + oE(K{ log K1) — n*a*log o
< alogaEK{ + aEKY -log EK{ — n?a*log (37)
= a(1 + df)log(a(l +d;)) — n*a’log o
< a(l+272) -log(a(l 4 272")) — n*a’loga (38)
< aloga+ 2 aloga + a(l 427" 1og(1 +27*") — na’log o
<aloga+ (272" —n?a)aloga + a(l +272")2 " loge

log o

< aloga +27a ( + (1 +27") 1og e> (39)

< aloga (40)

where (37) is by virtue of Jensen’s inequality, (38) follows since xlogz is
monotonically decreasing in the regime of interest, and (39) and (40) follows
since o < q,,.

We bound the second summand in (36) as follows

27" Z (14 n2a® — Kgoz) log(1 + n*a® — Kga)

y:Kj>1
<2 Z (1+n%a?)log(1 + n’a? — Kga) - Kgalog(l — Kga)
y:Ki>1
Kfa —n%a?
< —2™n loge | (1+na? Y — (K a)? 41
5 oo (0t S0 )
y: Ky >1

16



22
<-27" ) loge ((1 T n%% - <na>2> (42)
y: K >1
=-27" Z loge (Kgoz — 2n2a2)
y:K)>1
< -« (EK; — 2n2a) loge
= —a —a(f; —2n%a)loge
< —aloge
< (1—a)log(l— a). (43)
where we have used the fact that —tloge < log(l —¢) < —1loge for
0 <t < 1in (41), the fact that K] < n in (42), and the fact that (1 —
a)log(l —a) > —aloge for any a € (0,1).
From (36), (40) and (43), we conclude that for any 0 < a < @, it holds
that H(f(X)|Y) > h(«a), concluding the proof. m

6 Discussion

In light of our results (Theorem 1 and Theorem 3), to prove Conjecture 1, it
suffices to prove one the following weaker conjectures:

Conjecture 2 (Existence of a global optimal function) There is a Boolean
function that mazximizes the mutual information, simultaneously for all noise
parameters:

3 fVael0,1/2] Vg: I(g(X);Y)<T(f(X);Y).

Conjecture 3 (The information of dictatorship is unique) For any value
a € (0,1/2), the unique Boolean function f (up to permutation) for which

T(f(X);Y) =1=h(a),
is the dictatorship function f(X) = Xj.
Indeed, Conjecture 3 implies Conjecture 1 by a standard continuity ar-
gument (at «,) combined with Theorem 1 (and for balanced functions, by
a continuity argument (at @,) and Theorem 3). Notice that this conjecture

only requires ruling out strict equality, and is thus logically different than
Conjecture 1.
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limitations of our approach. A natural question is: What are the limits
of the approach pursued in this paper? The result for the low-noise regime
(Theorem 1) is clearly very specialized for tiny values of «, and so we focus
the discussion below on the proof techniques of Theorems 2 and 3. To this
end we note the following two limitations:

Firstly, the dictatorship function, which is conjectured to be optimal,
satisfies Ey <(1 - QP{,C)%) = (1 — 2a)* for every k € N. The ratio between

the bound in Lemma 1 on the k-th moment of any balanced Boolean function
and (1 — 2a)? grows rapidly with k. For this reason, we only get mileage
from applying the lemma with £ = 1,2 and not for higher moments.

The second limitation is that Lemma 1 upper bounds each moment sep-
arately, while we are seeking an upper bound on the entire distribution
(weighted sum) of the moments: Quantifying the tradeoff between higher
and lower moments seems to be one of the “brick walls” in proving the
conjecture. For example, the dictatorship function has the largest second
moment among all balanced functions, but it is not hard to see that the
majority function, for example, has a much larger (relatively speaking) kth
moment for very large values of k. To see this, note that for & > 2",

Ey ((1 - 2P§)2’€) 2 27" max|1 - 2B

For the majority function, the maximum is attained at y = (1,1,,1...,1) for
1 | e
which P/ ~ 2_RD<2HQ> and consequently max, |1 —2PM%| ~ 1 —2 (5l )

For dictatorship, on the other hand, |1 — 2P{;| = 1 — 2« for every y, and
therefore

max |1 — 2PyM“j|2k > max |1 — QPZPMP’“.
v

Therefore, one cannot hope to prove that there is a single function that si-
multaneously maximizes all moments; rather, the conjecture postulates that
there is some tradeoff between these values and the largest mutual informa-
tion is attained by functions that maximize lower moments at the expense
of higher ones.
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