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Abstract

We show that any q-query locally decodable code (LDC) gives a copy of `k1 with small
distortion in the Banach space of q-linear forms on `Np1

×· · ·× `Npq
, provided 1/p1 + · · ·+1/pq ≤ 1

and where k, N , and the distortion are simple functions of the code parameters. We exhibit
the copies of `k1 by constructing a basis directly from “smooth” LDC decoders, thus bypassing
a matching lemma often used in the LDC literature. Based on this, we give alternative proofs
for known lower bounds on the length of 2-query LDCs. Using similar techniques, we reprove
known lower bounds for larger q. We also discuss the relation with an alternative proof, due
to Pisier, of a result of Naor, Regev, and the author on cotype properties of projective tensor
products of `p spaces.

1 Introduction

A locally decodable code (LDC) is an error correcting code that maps a message string into a
codeword such that, even if part of the codeword is changed adversarially, any single message symbol
can be retrieved by querying only a small number of randomly selected codeword coordinates. More
formally, for positive integers k, N , and q, real numbers δ, ε ∈ (0, 1/2], and a finite alphabet Γ, a
map C : {0, 1}k → ΓN is a (q, δ, ε)-locally decodable code if there exists a decoder (a probabilistic
algorithm) A such that:

• For every message x ∈ {0, 1}k, index i ∈ [k], and string y ∈ ΓN that differs from the code-
word C(x) in at most δN coordinates,

Pr[A(i, y) = xi] ≥
1

2
+ ε.

• A (non-adaptively) queries at most q coordinates of y.

The most general decoder first samples a set S ⊆ [N ] of at most q codeword coordinates from a
probability distribution that depends on i only. Then, it outputs a random bit whose distribution
depends only on i, S, and the sequence (ys)s∈S of (possibly corrupted) codeword entries at S.1

The central problem regarding LDCs is to determine the smallest possible codeword length N
as a function of the message length k for various ranges of the query complexity q and alphabet
size |Γ| when δ and ε are fixed constants.
∗Center for Mathematics & Computer Science (CWI), The Netherlands. Funded by a Rubicon grant from the

Netherlands Organisation for Scientific Research (NWO). E-mail: j.briet@cwi.nl
1Adaptive decoders, whose queries depend on the values of previously queried coordinates, can be made non-

adaptive at the cost of a factor 1/|Γ|q−1 in the decoding bias ε.
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The topic of this paper (summarized in Theorem 1.1) is a link between LDCs and a geometric
property of certain Banach spaces of q-linear forms: the property of containing copies of `k1 with
small distortion. This link follows implicitly from work of Pisier [Pis73] and Naor, Regev, and the
author [BNR12]. But while presenting an alternative route to the main result of [BNR12] in a
workshop, Pisier [Pis12] made the link explicit using basic properties of an LDC construction of
Efremenko [Efr09], which unfortunately appears to be unpublished. Here we present a somewhat
more general and direct version of this result, but this paper may be seen as partly expository.

In particular, we explicitly construct copies of `k1 from general LDCs, while bypassing the “match-
ing lemma” [KT00, BARdW08] (also see Appendix A), which is a handy and often-used tool in the
analysis of LDCs, but which also appears to necessitate Elton’s theorem (also see Appendix A),
which was used by Pisier. The matching lemma identifies for each i ∈ [k] a q-matching of codeword
coordinates from which, on average over k-bit messages, the ith message bit can be decoded with
good probability from an uncorrupted codeword. Based on the q-matchings, one can find q-linear
forms A1, . . . , Ak such that the average norm of a randomly signed sum ±A1 + · · · + ±Ak is close
to k. Elton’s theorem then asserts that for some η ∈ (0, 1), an η-fraction of these forms span a
(distorted) copy of `ηk1 . We avoid these two steps and construct copies of `k1 using only a prerequisite
for the matching lemma, namely the fact that any decoder must sample from “smooth” distribution
in which no one coordinate is favored.

The main complexity-theoretic message of this paper is that due to a known upper bound on the
dimension k for which certain spaces of bilinear forms can accommodate `k1, we obtain new proofs
for known lower bounds on the length of 2-query LDCs (over binary alphabets and alphabets of
non-constant size). More generally, the above-mentioned link suggests a new avenue to explore for
proving such bounds when q ≥ 3, for which techniques are currently in short supply. In similar
geometric spirit, but inspired by techniques used by Kerenidis and de Wolf [KdW04], we reprove
known lower bounds for LDCs with a larger number of queries in the Appendix.

Origins and applications. The notion of LDCs originated from works on probabilistically check-
able proofs [BFLS91, Sud92] and private information retrieval (PIR) [CGKS98], though they where
first formally defined by Katz and Trevisan [KT00] in the context of noisy data transmission. Since
then, the range of areas where these codes turn out to play a role has grown steadily. Applica-
tions in theoretical computer science now include polynomial identity testing [DS07], data struc-
tures [Wol09, CGW13], and complexity theory [Dvi10]. In pure mathematics, they recently found
applications in discrete geometry [BDYW11, BDHS14] and Banach spaces [BNR12].

Constructions. Currently four constructions roughly cover the best-known trade-offs between
codeword length, query complexity, and alphabet size. The family of Reed-Muller codes, which
work based on polynomial interpolation, give LDCs for a large range of parameters [BFLS91]. For
example, the Hadamard code is a binary 2-query LDC of length N = 2k and for constant-sized
alphabets the Reed-Muller family gives LDCs with query complexity q = poly(log k) and length
poly(k). Great strides were made recently with the discovery of Matching Vector codes (MV-
codes) [Yek07, Efr09, DGY10] and Multiplicity codes [KSY11], which outperform Reed-Muller codes
in constant and poly(k) query-complexity regimes, respectively. See [Yek12] for a detailed survey,
and for very recent work on high query complexity expander-based codes, see [HOW14, KMRZS15].
Since our focus will be on the constant query complexity regime, we highlight that for constant q ≥ 3
there are q-query MV-codes with constant alphabet size and length exp exp(o(log k)).
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The best constructions of LDCs over large alphabets come from PIR schemes.2 A PIR scheme
replicates a k-bit database among q ≥ 2 non-communicating servers that interact with a user
wishing to know some entry i ∈ [k] of the database that he/she wants to keep hidden from the
servers. The goal is to find a scheme that achieves the above with minimal communication between
the user and the servers. Katz and Trevisan [KT00] observed (and [GKST06] showed formally)
that q-query LDCs are essentially equivalent to q-server PIRs where communication proceeds in
two rounds and the total number of communicated bits per index i ∈ [k] is given by 2 log(|Γ|N). A
recent breakthrough of Dvir and Gopi [DG14] gave two-round q-server PIRs with communication
cost exp(o(log k)); these schemes rely on the same combinatorial objects, called “matching vector
families,” as MV-codes. Most remarkably, their construction shows that there are 2-query LDCs
whose alphabet size and length is exp exp(o(log k)).

Lower bounds. What we know about the necessary length of LDCs has changed little during
the last decade and most of the best-known lower bounds are far from the parameters of the best-
known constructions. There are currently two general cases where optimal bounds are known.
First, it was shown in [KT00] that independent of the code length, 1-query LDCs can only encode a
constant number of message bits once we fix δ, ε, and |Γ|. The second case concerns binary 2-query
LDCs. Those turn out to require exponential length, as is achieved by the Hadamard code. The
original proof of the exponential bound due to Kerenidis and de Wolf [KdW04], which is based on
quantum-information-theoretic arguments, gives the bound

N ≥ 2Ω(δε2k).

Ben-Aroya, Regev and de Wolf [BARdW08] obtained a similar bound using a Fourier-analytic in-
equality for matrix-valued functions, which they derived from a deep result from Banach space theory
on uniform convexity of Schatten-1 [BCL94]. These proofs also form the basis for the best-known
lower bounds for q ≥ 3. For even integers q ≥ 4 and constant δ and ε, [KdW04] used a reduction
to maps akin to 2-query LDCs to prove that binary q-query LDCs have length Ω((k/ log k)q/(q−2)).
A similar reduction gives the same bound based on [BARdW08]. Later, Woodruff [Woo07] slightly
improved this bound to Ω(kq/(q−2)/ log k) using a more careful reduction. Oddly, for odd q ≥ 3, we
do not know how to prove better lower bounds other than by using the ones for q + 1 queries.

For 2-query LDCs over large alphabets, Wehner and de Wolf [WdW05] proved the bound
|Γ|2 logN ≥ Ω(k), which implies an Ω(log k) bound on the communication required in any (two-
round) 2-server PIR scheme.3 Their proof also used quantum information theory. Here too, there
thus remains a large gap with the best construction. Slightly better bounds are known when the
alphabet is {0, 1}n and the decoder, after sampling a set of codeword coordinates, returns a ran-
dom bit whose distribution depends on at most m ≤ n predetermined bits at those coordinates.
Such codes may be seen as PIR schemes where the servers send the user an n-bit string of which
the user only reads at most m bits. This happens, for example, in [DG14], where the best-known
constructions of matching vectors [Gro00] give m ≈

√
n. In [WdW05] it is proved that

2m
m∑
l=0

(
n

l

)
logN ≥ Ω(k).

2With information-theoretic security.
3The current best constant is obtained by combining their result with the bound logN ≥ 2 log k− 2 log |Γ| −O(1)

due to [KT00], which gives (5− o(1)) log k.
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For example, if m = nη for some constant η ∈ (0, 1), this implies a bound of Ω((log k)1/η−o(1)) on
the communication for two-round two-server PIRs.

Banach space geometry. Different results from Banach space theory were used on several oc-
casions to prove lower bounds on LDCs or similar objects [BARdW08, DSW14, BDHS14]. In the
opposite direction, the aforementioned 3-query MV-codes were used in [BNR12] to solve an open
problem on Banach spaces. The following basic definitions and facts will allow us to elaborate. For
p ∈ [1,∞], a distortion parameter K ≥ 1, and a positive integer d, a Banach space X is said to
contain a K-isomorphic copy of `dp if there exist A1, . . . , Ad ∈ X such for any vector α ∈ Rd,

‖α‖`p ≤
∥∥∥ d∑
i=1

αiAi

∥∥∥
X
≤ K‖α‖`p .

The containment of copies of certain finite-dimensional `p spaces is strongly linked with the notions
of (Rademacher) type and cotype, which are defined as follows. The space X has type p > 0 if there
exists a constant T <∞ such that for every positive integer d and A1, . . . , Ad ∈ X, we have

Ex∈{−1,1}d
∥∥∥ d∑
i=1

xiAi

∥∥∥
X
≤ T

( d∑
i=1

‖Ai‖pX
)1/p

. (1)

Observe that the right-hand side decreases as p increases and that by the triangle inequality, any
space has type 1. We say that a space fails nontrivial type if there is no p > 1 for which it has
type p. The infimum over T satisfying (1) for any d ∈ N and A1, . . . , Ad ∈ X is denoted by Tp(X).

A space X has cotype r > 0 if there exists a constant C < ∞ such that for every positive
integer d and A1, . . . , Ad ∈ X, we have

Ex∈{−1,1}d
∥∥∥ d∑
i=1

xiAi

∥∥∥
X
≥ 1

C

( d∑
i=1

‖Ai‖rX
)1/r

. (2)

By convexity of norms and Jensen’s inequality, any space has cotype ∞ and we say that a space
fails finite cotype if there is no r <∞ such that it has cotype r. The infimum over C satisfying (2)
for any d ∈ N and A1, . . . , Ad ∈ X is denoted by Cr(X).

As a well-behaved example, Hilbert space has type 2 and cotype 2. Two important examples
that fail one or the other are `1, which fails nontrivial type, and `∞, which fails finite cotype; both
failures are easily seen by setting the Ai to be distinct standard basis vectors. It turns out that
these are not just some examples that fail either nontrivial type or cotype, but in the sense alluded
to above, they are the only examples. Indeed, Pisier [Pis73] showed that a Banach space X fails
nontrivial type if and only if there exists a K <∞ such that X contains a K-isomorphic copy of `d1
for every positive integer d. Complementing this, Maurey and Pisier [MP73] equated failure of finite
cotype with containment of a K-isomorphic copy of `d∞ for every d.

LDCs and copies of `dp. The following Banach spaces are relevant to LDCs. For positive inte-
gers N and q ≥ 2, and a vector p = (p1, . . . , pq) ∈ (1,∞)q such that 1/p1 + · · ·+ 1/pq ≤ 1, we shall
consider the real N q-dimensional vector space of q-linear forms on RN endowed with the norm

‖A‖p = sup
{ A(z[1], . . . , z[q])

‖z[1]‖`p1 · · · ‖z[q]‖`pq
: z[1], . . . , z[q] ∈ RN r {0}

}
.
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We denote this Banach space by L(N ;p). Note that L(N ; (2, 2)) can be identified with the space
of matrices endowed with the Schatten-∞ norm and that the spaces (L(N ;p))N∈N are subspaces of
the Banach space of bounded q-linear forms on `p1 × · · · × `pq , which we denote by B(p).

In [BNR12] it is shown that for fixed q, δ, ε, and vector p as above, the existence of an infinite
family of binary q-query LDCs with sub-exponential length implies that for any r ∈ [2,∞), the
cotype-r constant of the dual of L(N ;p) satisfies

lim
N→∞

Cr
(
L(N ;p)∗

)
=∞. (3)

Since the MV-codes of [Efr09] have sub-exponential length, the above holds for q ≥ 3. It follows
that the infinite-dimensional space B(p)∗ fails finite cotype, which allowed [BNR12] to answer in
the negative a question of [DFS03] on the permanence of finite cotype under the projective tensor
product.4 This in turn has implications for the space B(p) itself. For any Banach space X and
any p, r ∈ (1,∞) such that 1/p + 1/r = 1, it holds that Tp(X) ≥ Cr(X

∗) [Pis99, Proposition 3.2].
It thus follows from (3) that for any p > 1, the type-p constants of L(N ;p) are unbounded and
hence B(p) fails nontrivial type. The LDCs therefore imply that there exists a K < ∞ such that
for every d ∈ N, the space B(p) contains a K-isomorphic copy of `d1.

1.1 Main result

Given that LDCs imply the existence of copies of `d1 in B(p), it is natural to ask what these copies
look like. Here we give explicit constructions of those copies. After stating the main theorem we
shall elaborate on its implications for LDC lower bounds and Banach space geometry.

Theorem 1.1. Let k, N , and q ≥ 2 be positive integers, δ, ε ∈ (0, 1/2], and let Γ be a finite
set. Assume there exists a (q, δ, ε)-LDC from {0, 1}k to ΓN . Then, for any p ∈ (1,∞)q such that
1/p1 + · · · + 1/pq ≤ 1, every integer N ′ ≥ 2|Γ|N , and any real number K ≥ 2q|Γ|(q+2)/2/(δε), the
space L(N ′;p) contains a K-isomorphic copy of `k1.

That is, there exist q-linear forms A1, . . . , Ak on `N
′

p1 × · · · × `
N ′
pq (that we give explicitly) such

that for any vector α ∈ Rk,

‖α‖`1 ≤
∥∥∥ k∑
i=1

αiAi

∥∥∥
p
≤ K‖α‖`1 . (4)

Moreover, if for positive integers m ≤ n, we have Γ = {0, 1}n and the LDC decoder’s output
depends on at most m predetermined bits of each queried codeword symbol, then the above holds for

N ′ ≥
(

n

≤ m

)
N and K ≥ q

(
n

≤ m

)(q+2)/2

/δε,

where
(
n
≤m
)

=
(
n
0

)
+
(
n
1

)
+ · · ·+

(
n
m

)
.

4 The space B(p)∗ is precisely the projective tensor product of the spaces `p1 , . . . , `pq , denoted `p1⊗̂ · · · ⊗̂`pq [Rya02,
Chapter 2, Section 2.2]. The result is stated only for the case q = 3 but the same proof works when q ≥ 3.
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Application for LDC lower bounds. If the known LDC lower bounds leave any room for
improvement, then the near lack thereof in the last decade could indicate that new techniques are
needed to make progress. Alternative techniques with which the known bounds can be reproved
were already asked for by Trevisan [Tre04, Question 3]. Theorem 1.1 gives a method based on
showing that L(N ;p) contains no copies of `d1 for large dimension d and small distortion. As we
show in Section 4, via this method we immediately recover the above-mentioned lower bounds for
2-query LDCs (up-to slightly poorer dependence on δ and |Γ|). Indeed, previous results easily imply
that any O(1)-isomorphic copy of `d1 in L(N ; (2, 2)) must satisfy d ≤ O(logN).

Application for cotype. As observed by Pisier [Pis12], Theorem 1.1 also gives an alternative
route from LDCs to the result (3) of [BNR12]. Indeed, for q ≥ 3, the theorem combined with
the parameters of q-query MV-codes of [Efr09] implies that L(N ;p) contains an O(1)-isomorphic
copy of `d1 for d ≥ (logN)ω(1)—in stark contrast with the case L(N ; (2, 2)) mentioned above. If
we now let the vector α in Theorem 1.1 be random and uniformly distributed over {−1, 1}k, then
averaging (4) gives that for any p > 1, we have

Tp(L(N ;p)) ≥ (logN)ω(1). (5)

A celebrated result of Pisier [Pis80] (which bounds the K-convexity constant of finite-dimensional
Banach spaces; see also [Mau03, Lemma 7, Theorem 13]) implies that there exists an absolute
constant c ∈ (0,∞) such that for any finite-dimensional Banach space X and any p, r ∈ (1,∞) such
that 1/p+ 1/r = 1, we have

Cr(X
∗) ≥ c Tp(X)

1 + log dim(X)
. (6)

Combining (5) and (6) with log dim(L(N ;p)) = q logN , we thus obtain (3).

Open questions. For proving LDC lower bounds it is of interest to know what is the largest d
such that L(N ;p) contains an O(1)-isomorphic copy of `d1 when q ≥ 3. For this purpose it in fact
suffices to restrict to copies of `d1 spanned by the type of forms appearing in the proof of Theorem 1.1
below, which may be seen as lying in a generalization of the Birkhoff polytope (the set of doubly
stochastic matrices). Another question is if there is a converse to Theorem 1.1: Can a copy of `k1
inside L(N ;p) be turned into an LDC-like object?

Outline. In Section 2 we set a few notational conventions and gather some basic facts of normed
spaces and Fourier analysis over the boolean hypercube. In Section 3 we prove the main result,
Theorem 1.1. In Section 4 we give alternative proofs for lower bounds on 2-query LDCs. In the
Appendix we combine similar ideas with a reduction inspired by [KdW04] to give alternative proofs
for lower bounds on LDCs with more queries.

Acknowledgements. I thank Oded Regev for inspiring conversations and useful comments on
an earlier version of this manuscript, and I thank Mark Kim for helpful discussions early on.

2 Preliminaries

Notation. For a positive integer n denote [n] = {1, . . . , n}. Denote by Bn,d ⊆ {0, 1}n the Ham-
ming ball of radius d around the origin. For a finite set S denote by Ex∈S the expectation with
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respect to a uniformly distributed random element x in S. For a probability distribution µ denote
by Ex∼µ the expectation with respect to a random variable with distribution µ. For sets Γ and S,
a positive integer r, and a pair of ordered tuples z ∈ ΓS and S = (s1, . . . , sr) ∈ Sr, we denote
by zS ∈ Γr the ordered tuple (zs1 , . . . , zsr). With some abuse of notation we will apply set opera-
tions to ordered tuples: for S,S as above write s ∈ S if s = sj for some j ∈ [r] and write S ∩ S for
the set {s ∈ S : sj = s for some j ∈ [r]}.

Norms and spaces. For 1 ≤ p <∞, the `p-norm of a vector u ∈ RN is defined by

‖u‖`p =

(
N∑
i=1

|ui|p
)1/p

.

Moreover, ‖u‖`∞ = maxi∈[N ]{|ui|}. For p ∈ [1,∞] denote by `Np the Banach space (RN , ‖ ‖`p). For
a finite set S we denote by `q(S) = (RS , ‖ ‖`p) the space of vectors indexed by S endowed with
the `p norm.

Fourier analysis over the boolean hypercube. For a positive integer n, the n-dimensional
boolean hypercube, denoted Hn, is the group formed by the set {0, 1}n endowed with entry-wise
addition modulo 2. The character group of Hn is formed by the functions χu : Hn → R given by
χu(x) = (−1)u·x for each u ∈ {0, 1}n, where u · x = u1x1 + · · ·+ unxn. A character χu has degree d
if the string u has Hamming weight d. The character functions form a complete orthonormal basis
for the Hilbert space of functions f : Hn → R endowed with the inner product

〈f, g〉 = Ex∈Hn

[
f(x)g(x)

]
. (7)

The Fourier transform f̂ : Hn → R of a function f : Hn → R is given by f̂(u) = 〈f, χu〉. A
function f has degree d if its Fourier transform is supported by Bn,d. Orthogonality of the character
functions with respect to the inner product (7) easily gives the Fourier inversion formula

f(x) =
∑
u∈Hn

f̂(u)χu(x)

and Parseval’s identity ∑
u∈Hn

f̂(u)2 = Ex∈Hn

[
f(x)2

]
.

It also follows easily from the above that a function f depends only on a subset S ⊆ [n] of its
variables if and only if f̂(u) = 0 for every u ∈ Hn such that uj = 1 for some j 6∈ S. In particular,
such a function has degree |S|.

The above extends to Cartesian products of Hn, since for positive integers q, we have H
q
n
∼= Hqn.

The characters of Hq
n are given by χu = χu[1] · · ·χu[q] for every u = (u[1], . . . , u[q]) ∈ Hq

n and a
function f : Hq

n → R has degree d if its Fourier transform is supported by (Bn,d)
q.

3 Copies of `k1 from LDCs

In this section we prove Theorem 1.1. In the restatement below, we use the fact that at a loss of
at most a factor of 2 in |Γ|, we may assume that Γ = Hn for some positive integer n. Also, for
convenience later on, we will switch the message alphabet from {0, 1} to {−1, 1}.
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Theorem 3.1. Let δ, ε ∈ (0, 1/2] and k,N, q,m, n be positive integers such that q ≥ 2 and m ≤ n.
Suppose that there exists a (q, δ, ε)-LDC from {−1, 1}k to HN

n that has a decoder that uses at most m
predetermined bits of each queried codeword symbol. Then, for any vector p ∈ (1,∞)q such that
1/p1 + · · ·+ 1/pq ≤ 1, integer N ′ ≥

(
n
≤m
)
N , and real number

K ≥
q
(
n
≤m
)(q+2)/2

2δε
,

the space L(N ′;p) contains a K-isomorphic copy of `k1.

For the rest of this section, let k,N, q,m, n, δ, ε,p be as in Theorem 3.1.

3.1 Smooth decoding

The proof of Theorem 3.1 relies on a variant of a result of [KT00]. Qualitatively the result says that
an LDC allows us to retrieve any message bit with high probability from an uncorrupted codeword
by sampling q-tuples of codeword coordinates from a “smooth” distribution, in which the marginal
distribution over single coordinates is roughly uniform.

Lemma 3.2. Let C : {−1, 1}k → HN
n be a (q, δ, ε)-LDC. Then, for each i ∈ [k] there exists a

probability distribution µi over [N ]q and for each S ∈ [N ]q there exists a function f iS : Hq
n → [−1, 1]

such that:

• For every x ∈ {−1, 1}k, we have xi ES∼µi
[
f iS
(
C(x)S

)]
≥ 2ε.

• For every s ∈ [N ], we have PrS∼µi [s ∈ S] ≤ 2q/(δN).

Moreover, if the LDC decoder’s output depends on at most m predetermined bits of each queried
codeword symbol, then f iS has degree at most m.

Proof. Fix an i ∈ [k]. Let νi be a probability distribution over sets S ⊆ [N ] of cardinality at most q
and for every set S in the support of νi let φS be a map from HS

n to the set of {−1, 1}-valued random
variables. Suppose that upon receiving the index i and a string y ∈ HN

n , the decoder samples a
set S from νi and outputs the random variable φS(yS).

Let S be a random set with distribution νi. Let B ⊆ [N ] be the set of bad coordinates s ∈ [N ]
satisfying Pr[s ∈ S] ≥ q/(δN). Since νi is supported only on sets of size at most q, it follows
that |B| ≤ δN . Let S̃ = (s̃s)s∈S be the random sequence such that for each bad coordinate s ∈ S,
the entry s̃s is independent and uniformly distributed over [N ] and for the other coordinates, we
have s̃s = s. We claim that, similar to the second item in the lemma, for every s ∈ [N ], we have

Pr[s ∈ S̃] ≤ 2q

δN
. (8)

For s ∈ [N ] r B, the probability in (8) is at most Pr[s ∈ S] ≤ q/(δN) plus the probability
that s appears in a bad coordinate of S̃. By independence, the latter probability is at most q/N ,
showing (8) for [N ]rB. Bad elements s ∈ B only appear at bad coordinates of S̃. By independence,
such elements therefore appear with probability at most q/N , giving the claim.

Let S̃ = {s̃s : s ∈ S} be the random set of distinct entries of S̃ and let ν̃i be the distribution
of S̃. Let T ⊆ [N ] be a set of cardinality at most q. Recall from our notational convention (see

8



Section 2) that for a vector z ∈ HT
n , conditioned on the event S̃ = T , the vector z

S̃
= (zs̃s)s∈S is

well-defined as one lying in HS
n . This allows us to define a function giT : HT

n → [−1, 1] by

giT (z) = E
[
φiS(zS̃) | S̃ = T

]
, (9)

where the expectation is taken over the set S, the sequence S̃, and the random value in {−1, 1}
assumed by the function φiS . We show that these functions giT satisfy an inequality similar to the
first item in the lemma, namely, we show that for every x ∈ {−1, 1}k and random set T with
distribution ν̃i, we have

xi ET∼ν̃i
[
giT
(
C(x)T

)]
≥ 2ε. (10)

To show this, consider the random string y ∈ HN
n where for every s ∈ [N ]rB, we have ys = C(x)s

and for every s ∈ B, we set ys = C(x)ts where ts is independent and uniformly distributed over [N ].
As such, y is thus a random “corrupted” version of C(x) in which at most |B| ≤ δN entries are
replaced with other entries of the codeword. We claim that the random sequences C(x)

S̃
and yS

have the same distribution. Indeed, observe that we get the first sequence if we sample S and
then corrupt the sequence C(x)S by replacing its entries at bad coordinates s by the random value
C(x)ts for ts as above. The second sequence yS corresponds to doing things in reverse order: first
corrupt C(x), giving y, and then sample S. The claim follows since the corrupted entries in S are
independent of S. It follows that the random variables φiS

(
C(x)

S̃

)
and φiS(yS) also have the same

distribution and, since y differs from C(x) in at most δN coordinates,

Pr
[
φiS
(
C(x)

S̃

)
= xi

]
= Pr

[
φiS(yS) = xi

]
≥ 1

2
+ ε. (11)

Hence, since S̃ has the distribution ν̃i, we have

xi ET∼ν̃i
[
giT
(
C(x)T

)] (9)
= xi ET∼ν̃i

[
E
[
φiS
(
C(x)

S̃

)
| S̃ = T

]]
= xi E

[
φiS
(
C(x)

S̃

)]
(11)
= xi E

[
φiS(yS)

]
≥ 2ε,

where the first inner expectation and the second and third expectations are taken over the set S,
the sequence S̃, the set S̃, and the random value of the function φiS . This shows (10).

Define the probability distribution µi : [N ]q → [0, 1] as follows. For a set T ⊆ [N ] with
cardinality at most q, let F(T ) ⊆ T q be the family of ordered sequences that contain each element
of T at least once. For each T ∈ F(T ) set µi(T) = ν̃i(T )/|F(T )|. Then, by (8) we have

PrT∼µi [s ∈ T] = PrT∼ν̃i [s ∈ T ] ≤ 2q

δN

for each s ∈ [N ]. For each set T in the support of ν̃i and every T ∈ F(T ), there exists a function
f iT : Hq

n → [−1, 1] such that f iT
(
zT
)

= giT (z) holds for each z ∈ HT
n (as zT and z have entries from

the same set). Pick one such function arbitrarily. For all remaining T ∈ [N ]q let f iT be identically
zero. By (10), these functions satisfy the first item of the lemma.
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Finally, observe that if the decoder’s output depends on at most m predetermined bits of each
queried codeword symbol, then for each set T in the support of νi, the function hiT : HT

n → [−1, 1]
defined by hiT (z) = E[φiT (z)], where the expectation is taken over the randomness in φiT , has degree
at most m. Since the functions giT in (9) are linear combinations of these hiT , they also have degree
at most m. It follows that the functions f iT can be chosen to satisfy the same.

3.2 Norms of some forms

The proof of Theorem 1.1 uses the functions f iS and distributions µi of Lemma 3.2 to construct a
basis A1, . . . , Ak ∈ L(N ′;p) for a copy of `k1 as in (4). Viewed as a q-tensor, the form Ai will consist
of blocks, one block for each q-tuple S ∈ [N ]q, and the entries of each block will contain the Fourier
coefficients of the function f iS scaled by the probability µi(S). We use the following facts to show
that these forms have the desired properties.

Proposition 3.3. Let f : Hq
n → [−1, 1] be a function of degree at most m. Define the q-linear

form F on RBn,m by
F (z) =

∑
u∈Bq

n,m

f̂(u) z[1]u[1] · · · z[q]u[q]

for z = (z[1], . . . , z[q]) ∈ RBn,m × · · · ×RBn,m . Then, ‖F‖p ≤ |Bn,m|q/2.

Proof. Hölder’s inequality implies that a vector in the unit ball of `tp has `2-norm at most t1/2−1/p.
Hence, by the Cauchy-Schwarz inequality and Parseval’s identity,

|F (z)| ≤

 ∑
u∈Bq

n,m

f̂(u)2

1/2
q∏
j=1

‖z[j]‖`2

=

q∏
j=1

‖z[j]‖`2

≤
q∏
j=1

|Bn,m|1/2−1/pj‖z[j]‖`pj

≤ |Bn,m|q/2
q∏
j=1

‖z[j]‖`pj .

We use a generalization of a doubly-stochastic matrix. Let 1 ∈ RN denote the all-ones vector.

Definition 3.4 (Plane sub-stochastic form). A q-linear form A on RN is plane sub-stochastic if
the tensor T =

(
A(es1 , . . . , esq)

)
S∈[N ]q

is nonnegative and for every s ∈ [N ], we have

A(es,1,1, . . . ,1) ≤ 1

A(1, es,1, . . . ,1) ≤ 1

...
A(1,1, . . . ,1, es) ≤ 1. (12)
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Remark 1. The above definition gives the Birkhoff polytope when we set q = 2 and we change
the inequalities in (12) to equalities. Recall that the Birkhoff–von Neumann Theorem states that
the Birkhoff polytope is the convex hull of the set of N × N permutation matrices. Interestingly,
Linial and Luria [LL14] showed that for q ≥ 3, the polytope of q-linear “plane stochastic forms”
corresponding to equalities in (12) is not contained in the convex hull of the set of “permutation
tensors” defined as 0/1 tensors satisfying equality in (12).

Proposition 3.5. If A ∈ L(N ;p) is plane sub-stochastic, then ‖A‖p ≤ 1.

The proof uses the following result of Carlen, Loss, and Lieb [CLL06].

Theorem 3.6 (Multi-linear Riesz–Thorin Interpolation Theorem). Let A be a q-linear form on RN .
Let ψ : [0, 1]q → R+ be the function defined by ψ(1/r1, . . . , 1/rq) = ‖A‖r, for any r ∈ [1,∞]q. Then,
ln(ψ) is a convex function on [0, 1]q.

Proof of Proposition 3.5. We first show that ‖A‖r ≤ 1 for any r consisting of one 1 entry and all
the others ∞. Indeed, by Hölder’s inequality and the assumption that |A| is plane sub-stochastic,

|A(z[1], . . . , z[q])| ≤
∑

S∈[N ]q

|A(es1 , . . . esq)z[1]s1 · · · z[q]sq |

≤
( q−1∏
j=1

‖z[j]‖`∞
) N∑
s=1

A(1, . . . ,1, s)|z[q]s|

≤
( q−1∏
j=1

‖z[j]‖`∞
)
‖z[q]‖`1 .

Hence, if r = (∞, . . . ,∞, 1), we have ‖A‖r ≤ 1. The cases for the other positions of the 1-entry are
proved in the same way. Since for these choices of r, the vectors (1/r1, . . . , 1/rq) are the q standard
basis vectors, the vector p lies in their convex hull, and the result follows from Theorem 3.6.

3.3 Proof of the main result

With this, the proof of Theorem 3.1 is straightforward.

Proof of Theorem 3.1. Let C : {−1, 1}k → HN
n be a (q, δ, ε)-LDC as in the theorem. For each

index i ∈ [k] and S = (s1, . . . , sq) ∈ [N ]q let µi and f iS be a distribution and function as in
Lemma 3.2. Note that the Fourier transform of each f iS is supported by the Cartesian product of
Hamming balls (Bn,m)q. Define a q-linear form F iS on RBn,m based on the Fourier coefficients of
the function f iS as in Proposition 3.3. For a vector z ∈ R[N ]×Bn,m and s ∈ [N ] write zs for the
projection of z onto the coordinates (s, u) with u ∈ Bn,m, that is, zs = (z(s,u))u∈Bn,m ∈ RBn,m . For
a tuple z = (z[1], . . . , z[q]) with each z[j] ∈ R[N ]×Bn,m , write zS = (z[1]s1 , . . . , z[q]sq). Let Ai be
the q-linear form on R[N ]×Bn,m defined by

Ai(z) = ES∼µi
[
F iS(zS)

]
= ES∼µi

[ ∑
u∈(Bn,m)q

f̂ iS(u) z[1](s1,u[1]) · · · z[q](sq ,u[q])

]
. (13)
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Fix a vector α ∈ Rk, let x = (sign(αi))
k
i=1 and let y = C(x) be the codeword in HN

n correspond-
ing to the message x. Define the sign vector ŷ = (χu(ys))s∈[N ],u∈Bn,m

. Let ŷ = (ŷ, . . . , ŷ) (q times).
By the Fourier Inversion Formula,

F iS
(
ŷS

)
=

∑
u∈(Bn,m)q

f̂ iS(u)χu(yS) = f iS
(
yS
)

= f iS
(
C(x)S

)
. (14)

Combining (14) with the first property of the f iS in Lemma 3.2 then gives

αi ES∼µi
[
F iS
(
ŷS

)]
≥ 2|αi|ε. (15)

Since ŷ is a sign vector of dimension N |Bn,m|, it has `p-norm (N |Bn,m|)1/p. Normalizing accordingly
and using q-linearity of the Ai, we get∥∥∥ k∑

i=1

αiAi

∥∥∥
p
≥ 1

(N |Bn,m|)1/p1+···+1/pq

(
k∑
i=1

αiAi

)(
ŷ
)

(13)
≥ 1

N |Bn,m|

k∑
i=1

αiES∼µi
[
F iS
(
ŷS

)]
(14),(15)
≥ 2ε

N |Bn,m|
‖α‖`1 . (16)

Next, we bound the norms of the forms Ai themselves. Let z = (z[1], . . . , z[q]) be a q-tuple of
nonzero vectors in R[N ]×Bn,m . Recall from Proposition 3.3 that each F iS has norm at most |Bn,m|q/2.
This implies ∣∣Ai(z)

∣∣ (13)
≤ ES∼µi

[∣∣F iS(zS)
∣∣]

≤ |Bn,m|q/2 ES∼µi

[
‖z[1]s1‖`p1 · · · ‖z[q]sq‖`pq

]
. (17)

To bound the above expectation define the q-tuple a = (a[1], . . . , a[q]) of (nonnegative) vectors

a[j] =
(
‖z[j]s‖`pj

)N
s=1

, j ∈ [q]. (18)

Define the q-linear form M on RN given by M(b) = ES∼µi [b[1]s1 · · · b[q]sq ]. Then, the expectation
in (17) equals M(a). The form M is clearly nonnegative and by the second item in Lemma 3.2, the
scaled version (δN/q)M is plane sub-stochastic since for each t ∈ [N ] and j ∈ [q], we have

M [1, . . . ,1︸ ︷︷ ︸
1,...,j−1

, et︸︷︷︸
j

,1, . . . ,1︸ ︷︷ ︸
j+1,...,q

] = ES∼µi
[
(et)sj

]
= PrS∼µi [sj = t] ≤ q

δN
.

By Proposition 3.5, the form M therefore has norm at most ‖M‖p ≤ q/(δN). Since each a[j] as
in (18) has norm ‖a[j]‖`pj = ‖z[j]‖`pj , we conclude that each Ai has norm ‖Ai‖p ≤ q|Bn,m|

q/2/(δN).
Hence, for any vector α ∈ Rk, by (16) and the triangle inequality,

2ε

N |Bn,m|
‖α‖`1 ≤

∥∥∥ k∑
i=1

αiAi

∥∥∥
p
≤ q|Bn,m|q/2

δN
‖α‖`1 .

Scaling the Ai by N |Bn,m|/(2ε) then gives the copy of `k1 as desired.
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4 Lower bounds on 2-query LDCs

In this section we use Theorem 1.1 to prove the 2-query LDC lower bounds mentioned in the
Introduction (up-to slightly poorer dependence on δ and |Γ|). The key is the following bound on
the dimension k for which L(N ; (2, 2)) can accommodate a copy of `k1 with distortion K. The bound
is surely well-known, but it does not appear to be published in the form below.

Lemma 4.1. There exists an absolute constant C ∈ (0,∞) such that the following holds. Suppose
that for K <∞ the space L(N ; (2, 2)) contains a K-isomorphic copy of `k1. Then k ≤ CK2 log(2N).

Lemma 4.1 follows easily from a random-matrix inequality belonging to a family of “non-
commutative Khintchine inequalities” due to Tomczak-Jaegermann [TJ74] (not to be confused with
the stronger non-commutative Khintchine inequalities of Lust-Piquard and Pisier [LPP91]). Recall
that the Schatten-∞ norm ‖A‖S∞ of a matrix A ∈ RN×N is the supremum of |uTAv|/‖u‖2‖v‖2
over nonzero vectors u, v ∈ RN .

Theorem 4.2 (Tomczak-Jaegermann). There exists an absolute constant C ∈ (0,∞) such that the
following holds. Let N and k be positive integers, let A1, . . . , Ak ∈ RN×N , and let ε1, . . . , εk be
independent uniformly distributed {−1, 1}-valued random variables. Then,

E
[∥∥∥ k∑

i=1

εiAi

∥∥∥
S∞

]
≤ C

√
log(2N)

( k∑
i=1

‖Ai‖2S∞
)1/2

. (19)

Remark 2. To extract the above from [TJ74, Theorem 3.1] we used the standard and easy fact that
for p = logN , the Schatten-p norm of a matrix A ∈ RN×N , defined as the `p-norm of the vector of
singular values of A, satisfies ‖A‖S∞ ≤ ‖A‖p ≤ C‖A‖S∞ for some absolute constant C ∈ [1,∞).

Remark 3. Similar (stronger) estimates were proved in [LPP91, Buc05, Oli10, Tro12].

Proof of Lemma 4.1. Identify the space L(N ; (2, 2)) with (RN×N , ‖ ‖S∞). Let A1, . . . , Ak ∈ RN×N

be matrices such that (4) holds (with X = S∞). Setting the vector α in (4) to be a standard basis
vector we see that ‖Ai‖S∞ ≤ K for each i ∈ [k]. Hence, by (4) and Theorem 4.2,

k ≤ E
[∥∥∥ k∑

i=1

εiAi

∥∥∥
S∞

]
≤ CK

√
k log(2N).

Theorem 1.1 asserts that a (2, δ, ε)-LDC from {0, 1}k to ΓN gives a 4|Γ|2/(δε)-isomorphic copy
of `k1 in the space L(2|Γ|N ; (2, 2)). Combining this with Lemma 4.1 immediately gives the following
exponential lower bounds on binary 2-query LDCs.

Corollary 4.3. Any binary (2, δ, ε)-LDC satisfies N ≥ 2Ω(δ2ε2k).

For LDCs over larger alphabets we obtain the following bound.

Corollary 4.4. Any (2, δ, ε)-LDC with Γ = Hn and a decoder that uses at most m out of n prede-
termined bits of each queried codeword symbol satisfies(

n

≤ m

)3(
logN + log

(
n

≤ m

))
≥ Ω(δ2ε2k). (20)

Remark 4. A more careful analysis in Section 3 for the case 1/p1 + · · · + 1/pq = 1 allows one to
replace the third power in the left-hand side of (20) with a square.
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A Lower bounds on LDCs with more queries

Here we prove lower bounds on binary q-query LDCs for q ≥ 3 using a method similar to the
reductions to the two-query case used in [KdW04], but in the spirit of Theorem 1.1.

Theorem A.1. Let δ, ε ∈ (0, 1/2] and let k, l,N, r be positive integers such that r ≥ 2 and

δε

(2r)3
lr ≥ (2rN)r−1. (21)

Suppose that there exists a (2r, δ, ε)-LDC from {−1, 1}k to {−1, 1}N . Then, there exist matrices
A1, . . . , Ak ∈ RN l×N l such that ‖Ai‖S∞ ≤ 1 for each i ∈ [k], and for independent uniformly dis-
tributed {−1, 1}-valued random variables ε1, . . . , εk, we have

E
[∥∥∥ k∑

i=1

εiAi

∥∥∥
S∞

]
≥ εk

8r
. (22)

Elton’s Theorem asserts that the above is sufficient to find a finite-dimensional copy of `1 (see
Vershynin and Mendelson [MV03, Theorem 3] for the quantitatively optimal form stated below).

Theorem A.2 (Elton’s Theorem). There exists a absolute constant c > 0 such that the following
holds. Let X be a Banach space, let A1, . . . , Ak be vectors in the unit ball of X, and let η > 0 be
such that for independent uniformly distributed {−1, 1}-valued random variables ε1, . . . , εk, we have

E
[∥∥∥ k∑

i=1

εiAi

∥∥∥
X

]
≥ ηk.

Then, there exists a set I ⊆ [k] of cardinality |I| ≥ cη2k such that for any α ∈ RI , we have

cη‖α‖`1 ≤
∥∥∥∑
i∈I

αiAi

∥∥∥
X
≤ ‖α‖`1 .

Combining Theorem A.1 with Elton’s Theorem shows that, for a positive integer r ≥ 2, a
(2r, δ, ε)-LDC gives a K-isomorphic copy of `d1 inside L(N l; (2, 2)) for K = δ(ε/q)2 and d ≥ ck/K2.
Through Lemma 4.1 this leads to a lower bound on (2r)-LDCs similar to the one stated in the
Introduction. However, combining Theorem A.1 with Theorem 4.2 gives the following lower bound
that has slightly better dependence on δ, ε, and r.
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Corollary A.3. For every integer r ≥ 2 there exists a c > 0 such that the following holds. Suppose
that for positive integers k and N and δ, ε ∈ (0, 1/2], there exists a (2r, δ, ε)-LDC from {−1, 1}k
to {−1, 1}N . Then, N ≥ c(δε3k/ log k)r/(r−1).

Proof. Let l be the smallest integer satisfying (21) and let A1, . . . , Ak be matrices as in Theorem A.1.
Theorem 4.2 then gives

εk

8r
≤ E

[∥∥∥ k∑
i=1

εiAi

∥∥∥
S∞

]
≤
√

2k log(2eN l) ≤ c

√
kN (r−1)/r logN

(δε)1/r
,

where c < ∞ is a constant depending on r only. Rearranging gives N (r−1)/r logN ≥ c′(δε)2/rεk,
where c′ > 0 is a constant depending on r only, which implies the claim.

The above bound is slightly poorer than the one stated in [Woo07], albeit only by a poly(log k)
factor. It would be interesting to see if Elton’s Theorem can be avoided in creating a copy of `d1
inside L(N ; (2, 2)).

We proceed with the proof of Theorem A.1, for which we use the following slight variant of a
standard “matching lemma” of [BARdW08, Appendix B], shown in [BNR12] for q = 3. We omit
the proof, which is a straightforward modification of [BNR12, Lemma 3.1].

Lemma A.4 (Ben-Aroya–Regev–de Wolf). Let C : {−1, 1}k → {−1, 1}N be a (q, δ, ε)-LDC. Then,
there exists a function C ′ : {−1, 1}k → {−1, 1}qN such that the following holds. For every i ∈ [k]
there exists a familyMi of at least δεN/q2 pairwise disjoint sets S ⊆ [qN ] of q elements each, such
that for a uniformly distributed random string x ∈ {−1, 1}k, we have∣∣∣E[xi ∏

s∈S
C ′(x)s

]∣∣∣ ≥ ε

2q
. (23)

We also use the following proposition, which may be interpreted as a generalization of the
Birthday Paradox.

Proposition A.5. For η > 0 and positive integers N and r ≥ 2, let F be a family of ηN pairwise
disjoint subsets S ⊆ [N ], each of cardinality |S| = 2r. Let l be a positive integer such that

ηlr ≥ N r−1. (24)

Then, there exists a set I ⊆ [N ]l of cardinality at least N l/4r such that for each sequence S ∈ I,
there exists an S ∈ F for which |S ∩ S| ≥ r.

The proof of Proposition A.5 uses a standard Poisson approximation result for “balls and bins”
problems [MU05, Theorem 5.10]. A discrete Poisson random variable Y with expectation µ is
nonnegative, integer valued, and has probability density function

Pr[Y = m] =
e−µµm

m!
, ∀m = 0, 1, 2, . . . (25)

Theorem A.6 (Poisson approximation). For positive integers l and N , suppose we toss l balls
into N bins independently and uniformly at random. For each s ∈ [N ] let Xs be the random variable
counting the number of balls in bin number s. Let Y1, . . . , YN be independent Poisson random vari-
ables with expectation l/N . Then, for any function f : {0, . . . , l}N → R such that E[f(X1, . . . , XN )]
increases or decreases monotonically with l, we have E[f(X1, . . . , XN )] ≤ 2E[f(Y1, . . . , YN )].
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Proof of Proposition A.5. Let us assume for simplicity that N is a multiple of 2r. Partition the
elements in [N ] not covered by any set in F into disjoint sets of size 2r. With F , this gives a
partition P of [N ] into M = N/(2r) sets of size 2r. Label the sets in F with distinct numbers
in [ηN ] and label the remaining partitions with distinct numbers in {ηN + 1, . . . ,M}.

Let b1, . . . , bl be independent uniformly distributed random variables over [N ], the balls. Say
that ball bj lands in bin S ∈ P if bj ∈ S and notice that the balls land in a uniformly random bin.
For each s ∈ [M ] let Xs be the random variable counting the number of balls in bin number s and
let Ys be a discrete Poisson random variable with expectation µ = l/M .

Let f : {0, 1, 2, . . . }M → {0, 1} be the function that assumes the value 1 if and only if its first ηN
variables have value strictly less than r. Clearly E[f(X1, . . . , XM )] decreases monotonically with l,
the number of balls we toss, since this expectation equals the probability that all bins in F have
strictly less than r balls. Therefore, by Theorem A.6, we have

Pr[f(X1, . . . , XM ) = 1] ≤ 2Pr[f(Y1, . . . , YM ) = 1]. (26)

Independence of the Yj gives

Pr[f(Y1, . . . , YM ) = 1] =

ηN∏
j=1

Pr[Yj < r]

=

(
r−1∑
m=0

e−µµm

m!

)ηN

=

(
1− e−µ

∞∑
m=r

µm

m!

)ηN

≤
(

1− µr

r!

)ηN
, (27)

where in the third line we used the Taylor expansion of the exponential function at zero. By our
assumption (24) on l and the easy bound rr/r! ≥ 1, we have

µr

r!
=

1

r!

( l

M

)r
=

1

r!

(2rl

N

)r
≥ 1

ηN
.

Hence, (27) is at most 1/e and it follows from (26) that with probability 1− 2/e ≥ 1/4, one of the
first ηN bins has at least r balls. In other words, for at least N l/4 sequences S ∈ [N ]l there exists
an S ∈ F such that r entries of S belong to S. Of those sequences, a 2r(2r− 1) · · · r/(2r)r ≥ (1/2)r

fraction has those entries distinct. Since we assumed that r ≥ 2, at least N l/(22+r) ≥ N l/4r of the
sequences have the desired property.

Proof of Theorem A.1. Let C : {−1, 1}k → {−1, 1}N be a (2r, δ, ε)-LDC. Let C ′ : {−1, 1}k →
{−1, 1}2rN be a map andMi be families as in Lemma A.4. Let N ′ = 2rN and recall that eachMi

consists of at least δεN ′/(2r)3 pairwise disjoint sets S ⊆ [N ′] of cardinality 2r each. Let l be an
integer such that (21) holds. Fix an i ∈ [k]. By proposition A.5, there is a set Ii ⊆ [N ′]l of at
least (N ′)l/4r sequences S ∈ [N ′]l such that |S ∩ S| ≥ r for some S ∈Mi.

We define a partial matching Pi in [N ′]l. For each S ∈ Ii and associated S ∈ Mi, pick a
set T ⊆ [l] of r coordinates such that |ST ∩ S| = r. Let S′ ∈ [N ′]l be a sequence such that S′t = St
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for every t 6∈ T and such that (with slight abuse of notation) ST ∪ S′T = S. There are r! choices
of S′T . Choose one arbitrarily but uniquely. Let Pi be the family of said {S,S′} pairs and observe
that |Pi| = |Ii|/2 ≥ (N ′)l)/4r.

Define a matrix Ai : [N ′]l × [N ′]l → {−1, 0, 1} as follows. Let x be a uniformly distributed
random string over {−1, 1}k and notice that x1, . . . , xk are independent and uniformly distributed
over {−1, 1}. For each pair {S,S′} ∈ Pi with associated set S ∈Mi as above, set

Ai(S,S
′) = sign

(
E
[
xi
∏
s∈S

C ′(x)s

])
. (28)

Set the other entries of Ai to zero. Moreover, since Pi is a (partial) matching, each row and column
of Ai has at most one nonzero element and it follows that ‖Ai‖S∞ ≤ 1. For each x ∈ {−1, 1}n
let D(x) = C ′(x)⊗l. Then, for each {S = (s1, . . . , sl),S

′ = (s′1, . . . , s
′
l)} ∈ Pi, with associated

sets S ∈Mi and T ⊆ [l] as above,

D(x)SD(x)S′ =
(∏
t6∈T

C ′(x)2
st

)∏
t∈T

C ′(x)stC
′(x)s′t =

∏
s∈S

C ′(x)s. (29)

Hence, by Lemma A.4, for a uniformly distributed x ∈ {−1, 1}k, we have

E
[∥∥∥ k∑

i=1

xiAi

∥∥∥
S∞

]
≥ E

[ D(x)T√
(N ′)l

(
k∑
i=1

xiAi

)
D(x)√
(N ′)l

]
(28)
= E

[ 2

(N ′)l

k∑
i=1

∑
{S,S′}∈Pi

xiD(x)SD(x)S′ Ai(S,S
′)
]

(29)
=

2

(N ′)l

k∑
i=1

∑
{S,S′}∈Pi

∣∣∣Ex[xi ∏
s∈S

C(x)s

]∣∣∣ (23)
≥ εk

8r
.
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