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Abstract

We show an exponential gap between communication complexity and external

information complexity, by analyzing a communication task suggested as a candidate

by Braverman [Bra13]. Previously, only a separation of communication complexity and

internal information complexity was known [GKR14, GKR15].

More precisely, we obtain an explicit example of a search problem with external

information complexity ≤ O(k), with respect to any input distribution, and

distributional communication complexity ≥ 2k, with respect to some input distribution.

In particular, this shows that a communication protocol cannot always be compressed

to its external information. By a result of Braverman [Bra12], our gap is the largest

possible.

Moreover, since the upper bound of O(k) on the external information complexity

of the problem is obtained with respect to any input distribution, our result implies an

exponential gap between communication complexity and information complexity (both

internal and external) in the non-distributional setting of Braverman [Bra12]. In this

setting, no gap was previously known, even for internal information complexity.

1 Introduction

Communication complexity is a central model in complexity theory that has been extensively

studied in numerous works. In the two player distributional model, each player gets an input,

where the inputs are sampled from a joint distribution that is known to both players. The

players’ goal is to solve a communication task that depends on both inputs. The players
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can use both common and private random strings and are allowed to err with some small

probability. The players communicate in rounds, where in each round one of the players

sends a message to the other player. The communication complexity of a protocol is the

total number of bits communicated by the two players. The communication complexity of a

communication task is the minimal number of bits that the players need to communicate in

order to solve the task with high probability, where the minimum is taken over all protocols.

For excellent surveys on communication complexity see [KN97, LS09].

The information complexity model, first introduced by [CSWY01, BYJKS04, BBCR10],

studies the amount of information that the players need to reveal about their inputs in

order to solve a communication task. The model was motivated by fundamental information

theoretical questions of compressing communication, as well as by fascinating relations to

communication complexity, and in particular to the direct sum problem in communication

complexity.

In this paper, we will be interested in both internal and external information complexity

(a.k.a, internal and external information cost). Roughly speaking, the internal information

complexity of a protocol is the number of information bits that the players learn about each

other’s input, when running the protocol. The external information complexity of a protocol

is the number of information bits that an external observer, who watches the execution

of the protocol, learns about the players’ inputs. The (internal or external) information

complexity of a communication task is the infimum of the (internal or external) information

complexity of a protocol, where the infimum is over all protocols that solve the task with

high probability. It is well know that for any protocol (and thus also for any communication

task), the internal information complexity of the protocol is at most its external information

complexity, which is at most its communication complexity.

Many recent works focused on the problem of compressing interactive communication

protocols. Given a communication protocol with small (internal or external) information

complexity, can the protocol be compressed so that the total number of bits communicated

by the protocol is also small? There are several beautiful known results, showing how to

compress communication protocols in several cases [BBCR10, BR11, Bra12, BMY14, RR15].

Most relevant to our work are the result by Barak, Braverman, Chen and Rao that shows

how to compress any protocol with external information complexity k and communication

complexity c, to a protocol with communication complexity O(k ·polylog(c)) [BBCR10], and

the result by Braverman that shows how to compress any protocol with internal (or external)

information complexity k to a protocol with communication complexity 2O(k) [Bra12].

The above compression results leave open the question of whether any protocol can be

compressed all the way down to its (internal or external) information. Specifically, can a

protocol with (internal or external) information complexity k be compressed to a protocol

with communication complexity O(k)? In [GKR14, GKR15] (see also the simplification

by [RS15]), we showed an exponential gap between internal information complexity and

communication complexity. However, prior to the current work, no gap was known between

external information complexity and communication complexity (recall that the external
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information complexity is always at least as large as the internal information complexity).

1.1 Our Results

1.1.1 Separation of Communication and External Information

We give the first gap between external information complexity and communication

complexity. This is done by proving a tight lower bound for the communication complexity

of a communication task, suggested by Braverman as a candidate for separating information

complexity and communication complexity [Bra13]. We view this task as a search problem

and refer to it as the hidden layers game, parameterized by k ∈ N.

While both the internal and external information complexities of the hidden layers game

are O(k), with respect to every input distribution, we prove that for some input distribution,

any communication protocol solving the problem, with communication complexity at

most 2k, has success probability at most 2−k. By the above mentioned compression protocol

of Braverman [Bra12], our result gives the largest possible gap between external information

complexity and distributional communication complexity.

Theorem 1 (Communication Lower Bound). There exists an input distribution η, such

that every randomized protocol (with shared randomness) for the hidden layers game with

parameter k, that has communication complexity at most 2k, errs with probability at least

1− 2−k (over the input distribution η).

Theorem 2 (External Information Upper Bound, [Bra13]). There exists a zero-error

randomized protocol for the hidden layers game with parameter k, such that for any input

distribution, the protocol has external information cost O(k).

We note that the inputs to the hidden layers game are very long, namely,

quadruple exponential in k. The protocol that achieves information complexity O(k) has

communication complexity triple exponential in k.

1.1.2 Separation in the Non-Distributional Setting

In [Bra12], Braverman defined internal and external information complexity in a non-

distributional (a.k.a prior-free) setting, where there is no underlying input distribution.

Roughly speaking, the internal (or external) information complexity in this setting is defined

as the maximum over all possible input distributions of the internal (or external) information

complexity over that distribution.

Since the upper bound ofO(k) on the external information complexity of the hidden layers

game is obtained with respect to every input distribution, our result implies an exponential

gap between (randomized) communication complexity and information complexity (both

internal and external) also in the non-distributional setting. We note that in this setting, no

gap was previously known, even for internal information complexity.
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1.2 Techniques

Our result is ultimately proved by a reduction from the communication complexity problem

of set disjointness. However, the reduction is non-standard, in the sense that it is protocol-

dependant. Given a communication protocol, that supposedly solves the hidden layers game,

we use this protocol to solve set disjointness. This is done by embedding the inputs for the

set disjointness problem in the inputs for the hidden layers game. However, the embedding

is given by a different function for each protocol.

In this context, it may be interesting to note that the methods that were used to prove

lower bounds for the communication complexity of set disjointness (as well as most other

general methods for proving lower bounds for communication complexity) yield the same

lower bounds for information complexity, and hence are not strong enough to establish gaps

between communication complexity and information complexity [Bra12, BW12, KLL+12,

FJK+15].

2 The Hidden Layers Game

The hidden layers game can be viewed as a communication game between two parties, called

Alice and Bob. The game is specified by a parameter k ∈ N (we assume that k is larger

than some large enough constant). We set c = 228k , ` = 24k and h = 2c`. The game is played

on the 24k-ary tree T with h + 1 layers, where the root is in layer 0 and the leaves are in

layer h, with edges directed from the root to the leaves. Denote the vertex set of T by V .

Alice gets an input x = (a, f), where a ∈ {0, . . . , h− 1} is an even index and f is a set of

edges: The set f contains exactly one edge, xv, going out of the vertex v, for every vertex v

in layer a of T . Bob gets an input y = (b, g), where b ∈ {0, . . . , h− 1} is an odd index and g

is a set of edges: The set g contains exactly one edge, yv, going out of the vertex v, for every

vertex v in layer b of T . We denote by Ωx the set of all possible inputs for Alice, and by Ωy

the set of all possible inputs for Bob. We refer to a binary string in {0, 1}` as a “block”. We

will often think of a and b as sequences of c blocks, i.e., a, b ∈ {0, 1}c` = ({0, 1}`)c.
Let v ∈ V be a leaf of T . Let x = (a, f) ∈ Ωx and y = (b, g) ∈ Ωy. We say that v is

consistent with x if the path from the root to v contains an edge from the set f . We say

that v is consistent with y if the path from the root to v contains an edge from the set g.

On inputs (x, y), the players’ goal is to output the same leaf v, such that v is consistent

with both x and y.

2.1 The Hard Distribution µ

The distributions ρ, ρi,z. For every i ∈ [c] and z ∈ {0, 1}`(i−1), we define the

distribution ρi,z over pairs of indices (a, b) ∈ {0, 1}c` × {0, 1}c` as follows: Select w,w′ ∈R
{0, 1}`(c−(i−1)) (independently), such that w is even and w′ is odd (i.e., the least significant

4



bit of w is 0, and the least significant bit of w′ is 1). Define a = (z, w) (that is, the string z

concatenated with the string w), and b = (z, w′).

We define the distribution ρ over pairs of indices (a, b) ∈ {0, 1}c` × {0, 1}c` as:

ρ(a, b) = E
i∈R[c]

E
z∈R{0,1}`(i−1)

[
ρi,z(a, b)

]
.

The distributions µ, µi,z. For every i ∈ [c] and z ∈ {0, 1}`(i−1), we define the

distribution µi,z over pairs of inputs (x, y) ∈ Ωx × Ωy as follows: Select (a, b) according

to ρi,z. For every vertex v in layer a of T , we choose, independently at random, an edge xv
going out of v. We define f to be the set of all these edges. For every vertex v in layer b

of T , we choose, independently at random, an edge yv going out of v. We define g to be the

set of all these edges. Let x = (a, f) and y = (b, g).

We define the distribution µ over pairs of inputs (x, y) ∈ Ωx × Ωy as:

µ(x, y) = E
i∈R[c]

E
z∈R{0,1}`(i−1)

[
µi,z(x, y)

]
.

3 Overview of the Lower Bound Proof

In this section, we overview the proof of the lower bound for the communication complexity

of the hidden layers game with parameter k. We fix the random strings for the protocol so

that we have a deterministic protocol. The main part of the proof is devoted to showing

Theorem 8, that states that if the protocol communicates at most 8k bits, it errs with

probability at least 1/4 on inputs sampled according to µ. Given Theorem 8, we use Yao’s

Minimax principle and the fact that the correctness of the outputs can be verified, to show

that there exists a (possibly different) input distribution η, such that any protocol errs with

probability close to 1 on inputs sampled according to η.

We next sketch the proof of Theorem 8. Assume for contradiction that π is a

deterministic communication protocol for the hidden layers game with parameter k, that

has communication complexity at most 8k and success probability greater than 3/4. Let

{R1, . . . ,Rm} be the rectangle partition of the protocol π, where m ≤ 28k .

Fixing i, z. Lemma 11 shows that for most selections of i ∈ [c] and z ∈ {0, 1}`(i−1), if

(X, Y ) = ((A,F ), (B,G)) is distributed according to µi,z, then the following information

property holds: The transcript π(X, Y ) gives very little information on Ai, Bi, the ith blocks

of the indices A,B. Therefore, Ai, Bi are almost uniformly distributed in almost all the

rectangles Rt. The proof of the lemma is similar to the proof of Lemma 11 in [GKR14].

For the rest of the proof we fix i, z such that the above information property holds and,

in addition, the success probability of π on inputs distributed according to µi,z remains close

to 3/4. Note that µi,z is a product distribution, thus X, Y are independent.
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Unique answers. Observe that the protocol π may give many different answers on a

rectangle Rt, as the answer given by a player may depend on his input. Nevertheless,

since µi,z is a product distribution, by taking the most common answer in each rectangle,

we are able to obtain a protocol π′ where the answer on each rectangle is unique, without

compromising the success probability by much (see Lemma 14).

Fixing s. We next want to fix both Ai, Bi to the same value s ∈ {0, 1}`. Once this is

done, the distribution of the inputs becomes µi,z|Ai=s,Bi=s = µi+1,(z,s), where (z, s) is the

concatenation of z and s.

Recall that by Lemma 11, Ai, Bi are almost uniformly distributed in almost all the

rectangles Rt. We show that this implies that for at least a constant fraction of the selections

of a block assignment s ∈ {0, 1}`, the success probability of π′ on inputs with both Ai, Bi set

to s is still larger than some positive constant (see Lemma 16). This means that for at least

a constant fraction of the s’s, the success probability of π′ on the input distribution µi+1,(z,s)

is larger than some positive constant.

Let vt be the output given by both Alice and Bob when reaching the rectangle Rt in

the protocol π′. Let d ∈ {0, 1}c` be a layer of T . We say that layer d splits paths if there

exist vt and vt
′

whose lowest common ancestor in V is in layer d. That is, the path from the

root to vt and the path from the root to vt
′

are the same up-to layer d, and contain different

vertices in layer d + 1. Observe that there are at most m layers d that split paths, as there

are only m outputs vt.

We fix Ai, Bi to the same value s ∈ {0, 1}` that satisfies the followings: Let L be the

set of layers d ∈ {0, 1}c`, whose prefix is (z, s). The first requirement is that none of the

layers d ∈ L split paths. The second requirement is that the success probability of π′ on the

input distribution µi+1,(z,s) is larger than some positive constant. Such a value s exists, as a

constant fraction of the s’s satisfy the second requirement, and since at most m layers split

paths (and m is much smaller than 2`).

Reduction from disjointness. We consider the following unique disjointness problem:

Denote K = 24k (the arity of the tree T ). Alice gets an input S ⊂ [K2] of size K. Bob gets

an input T ⊂ [K2] of size K. Given an input (S, T ), the players’ goal is to distinguish a yes

instance, where |S ∩ T | = 1, from a no instance, where |S ∩ T | = 0. It is well known that

even for a small constant ε > 0, protocols with advantage ε for the above unique disjointness

problem, have communication complexity at least Ω(K) [BFS86, KS92, Raz92].

Recall that v1, . . . , vm are the possible outputs given by the protocol π′. We consider the

set {p1, . . . , pm
′} of all sub-paths that are restrictions to the layers in L of the path from the

root to vt, for some t ∈ [m].

Given inputs S, T for the unique disjointness problem, the players construct inputs x, y

for the hidden layers game. First, the players select independently at random a, b ∈ L, such

that a is even and b is odd. Then, using their shared random string, for every t ∈ [m′], the

players choose jt ∈R [K2]. Given S, Alice constructs f by selecting for every v in layer a, an
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edge xv going out of v as follows: If v is not contained in any of the sub-paths pt, then xv
is randomly chosen among the edges going out of v. Otherwise, v is contained in some

sub-path pt, for t ∈ [m′]. Since, by the first requirement of s, none of the layers in L split

paths, pt is unique. If jt ∈ S, then xv is set to be the edge going out of v that is contained

in sub-path pt. Otherwise, jt /∈ S, and xv is randomly selected among all edges that are

going out of v and are not contained in pt. Given T , Bob constructs g in a similar manner,

independently.

After obtaining the inputs x, y, the players run the protocol π′ on x, y, and get an

output vt. Let pt
′

be the sub-path associated with vt. The players check whether or not

jt
′ ∈ S ∩ T , and answer “yes” if and only if jt

′ ∈ S ∩ T .

If (S, T ) is a no instance, the protocol always outputs “no”. We prove that if (S, T )

is a yes instance, the protocol outputs “yes” with probability greater than some positive

constant. This is done by observing that for every yes instance (S, T ), the inputs (x, y)

are distributed according to µi+1,(z,s), and using the second requirement of s. Therefore, we

got a protocol for unique disjointness, with communication o(K) and constant advantage, a

contradiction.

4 Preliminaries

4.1 Notation

Let P,Q be two distributions. We denote by D(P‖Q) the relative entropy between P

and Q. We denote by |P −Q|1 the `1 distance between P and Q. Let X, Y be two random

variables. We denote by H(X) the Shannon entropy of X. We denote by I(X;Y ) the mutual

information between X and Y .

Let X be a random variable and E be an event. We denote by PX the distribution of

the random variables X. We denote by PX|E the distribution of the random variable X

conditioned on the event E.

4.2 Definitions

Definition 1 (Internal Information Cost). The internal information cost of a protocol π

over random inputs (X, Y ) that are drawn according to a joint distribution µ, is defined as

ICµ(π) = I(X; π(X, Y )|Y ) + I(Y ; π(X, Y )|X),

where π(X, Y ) is a random variable which is the transcript of the protocol π with respect to µ.

That is, π(X, Y ) is the concatenation of all the messages exchanged during the execution of π.

Definition 2 (External Information Cost). The external information cost of a protocol π

over random inputs (X, Y ) that are drawn according to a joint distribution µ, is defined as

Extµ(π) = I((X, Y );π(X, Y )),

7



where π(X, Y ) is a random variable which is the transcript of the protocol π with respect to µ.

That is, π(X, Y ) is the concatenation of all the messages exchanged during the execution of π.

4.3 Propositions

Proposition 3. For any two random variables A,B,

I(A;B) = E
b←B

[
D(PA|B=b‖PA)

]
.

Proposition 4. For any two random variables A,B,

E
b←B

[
|PA|B=b −PA|1

]
≤ 2
√

I(A;B).

Proof. It holds that(
E
b←B

[
|PA|B=b −PA|1

])2

≤ E
b←B

[(
|PA|B=b −PA|1

)2
]

≤ 4 E
b←B

[
D
(
PA|B=b ‖ PA

)]
(by Pinsker’s inequlity)

= 4 · I(A;B). (by Proposition 3)

Proposition 5. Let A,B,C be random variables, such that A,B are independent and A,B

are also independent given C. Then,

I(A,B;C) = I(A;C) + I(B;C).

Proof. It holds that

I(A,B;C) = H(A,B)−H(A,B|C)

= (H(A) + H(B))− (H(A|C) + H(B|C)) = I(A;C) + I(B;C).

Proposition 6. Let Ω 6= φ be a finite set. Let U be a random variable uniformly distributed

over Ω. Let E be any event with Pr[E] > 0. Then,

log(|Ω|)−H(U |E) ≤ log(1/Pr[E]).
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Proof. It holds that

log(|Ω|)−H(U |E)

= log(|Ω|) +
∑
u∈Ω

Pr[U = u|E] · log(Pr[U = u|E])

≤ log(|Ω|) +
∑
u∈Ω

Pr[U = u|E] · log

(
Pr[U = u]

Pr[E]

)
= log(|Ω|) +

∑
u∈Ω

Pr[U = u|E] · (log(Pr[U = u])− log(Pr[E]))

= −
∑
u∈Ω

Pr[U = u|E] · log(Pr[E]) = log(1/Pr[E]).

Proposition 7. Let L ∈ N. For i ∈ [L], let αi, βi ∈ [0, 1]. Then,

E
i∈R[L]

[αi · βi] ≥ E
i∈R[L]

[αi + βi]− 1.

Proof. We assume, without loss of generality, that for every i ∈ [L], it holds that αi ≥ βi,

otherwise we switch their values. Assume, without loss of generality, that for every i ∈ [L],

either αi = 1 or βi = 0. Otherwise, by increasing αi by ε and decreasing βi by ε, the left

hand side may only decrease, while the right hand side is not effected. Therefore,

E
i∈R[L]

[αi · βi] = E
i∈R[L]

[βi] = E
i∈R[L]

[βi + αi]− E
i∈R[L]

[αi] ≥ E
i∈R[L]

[βi + αi]− 1.

5 Communication Lower Bound

In this section, we prove Theorem 1. The proof follows easily from Theorem 8 below.

Theorem 8. Every randomized protocol (with shared randomness) for the hidden layers

game with parameter k, that has communication complexity at most 8k, errs with probability

at least 1/4 over the input distribution µ.

Proof of Theorem 1 given Theorem 8. Assume for contradiction that for every input

distribution η, there exists a randomized protocol for the hidden layers game with

parameter k, that has communication complexity at most 2k, and has success probability

at least 2−k (over the input distribution η). Then, by Yao’s Minimax principle, there exists

a randomized protocol τ that has communication complexity at most 2k, and has success

probability at least 2−k on every input pair.

Note that by exchanging O(k) bits, the players can check whether their answers are

correct, with error probability 2−100k: They check that their answers are equal (by exchanging
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O(k) hash values), and exchange two additional bits to make sure that the output (that is

now assumed to be the same for both players) is consistent with both x and y.

Consider the protocol τ ′ that on a given input (x, y), runs τ and checks the answer

100 ·2k times, and outputs a correct answer (if such an answer is found). The communication

complexity of τ ′ is at most (100 · 2k) · (2k + O(k)) ≤ 8k (for large enough k). The success

probability of τ ′ is greater than 3/4. In particular, τ ′ has communication complexity at

most 8k and success probability greater than 3/4, over the input distribution µ. This

contradicts Theorem 8.

The rest of the section is devoted to proving Theorem 8. Fix λ = 3/4 (the proof works for

any constant 1/
√

2 < λ ≤ 1). Assume that π is a deterministic communication protocol for

the hidden layers game with parameter k, that has communication complexity at most 8k.

The section is devoted to showing that π has success probability at most λ, when the inputs

are selected according to the distribution µ. Observe that this also implies that every

probabilistic protocol has success probability at most λ, since a probabilistic protocol is

a distribution over deterministic protocols.

Assume for contradiction that π has success probability more than λ.

5.1 Notation

Let {R1, . . . ,Rm} be the rectangle partition induced by the protocol π, where Rt = X t×Y t
for X t ⊆ Ωx and Y t ⊆ Ωy, and m ≤ 28k . We assume for simplicity and without loss of

generality that m = 28k (as empty rectangles can always be added).

For every i ∈ [c] and z ∈ {0, 1}`(i−1), let (X i,z, Y i,z) be a pair of random variables

distributed according to µi,z, where X i,z = (Ai,z, F i,z) and Y i,z = (Bi,z, Gi,z). Note that the

pair (Ai,z, Bi,z) is distributed according to ρi,z.

Let i ∈ [c]. Let ψ be either a random variable taking values in ({0, 1}`)c or an element

in ({0, 1}`)c. Define ψi ∈ {0, 1}` to be the ith block of ψ. Define ψ<i = (ψ1, . . . , ψi−1) ∈
{0, 1}`(i−1) to be the first i− 1 blocks of ψ.

The following two properties will be important for the rest of the proof:

Proposition 9. For every i ∈ [c] and z ∈ {0, 1}`(i−1), it holds that ρi,z and µi,z are product

distributions. Thus, X i,z and Y i,z are independent.

Proposition 10. For every i < i′ ∈ [c], z ∈ {0, 1}`(i−1), and z′ ∈ {0, 1}`(i′−1), such that z is

a prefix of z′, it holds that ρi
′,z′ = (ρi,z|Ai,z<i′ = z′, Bi,z

<i′ = z′). That is, ρi
′,z′ is ρi,z conditioned

on the event Ai,z<i′ = z′, Bi,z
<i′ = z′. Similarly, µi

′,z′ = (µi,z|Ai,z<i′ = z′, Bi,z
<i′ = z′).

The proofs follow immediately from the definitions.
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5.2 Bounding the Information on the ith Block

Let π(X i,z, Y i,z) be a random variable representing the transcript of π when it is run on

(X i,z, Y i,z). We associate a transcript with the rectangle Rt reached for this transcript.

That is, we think of π(X i,z, Y i,z) as taking values in [m].

Lemma 11. It holds that

E
i∈R[c]

E
z∈R{0,1}`(i−1)

[
I(Ai,zi ; π(X i,z, Y i,z))

]
≤ m

c
.

Similarly,

E
i∈R[c]

E
z∈R{0,1}`(i−1)

[
I(Bi,z

i ; π(X i,z, Y i,z))
]
≤ m

c
.

Proof. We prove the first inequality, the second is similar. For every i ∈ [c] and z ∈
{0, 1}`(i−1), it holds that

I(Ai,zi ; π(X i,z, Y i,z)) (1)

= H(Ai,zi )−H(Ai,zi |π(X i,z, Y i,z))

= `−H(Ai,zi |π(X i,z, Y i,z)) (Ai,zi is uniformly distributed)

=
∑
t∈[m]

Pr[π(X i,z, Y i,z) = t] · (`−H(Ai,zi |π(X i,z, Y i,z) = t))

=
∑
t∈[m]

Pr[(X i,z, Y i,z) ∈ Rt] · (`−H(Ai,zi |(X i,z, Y i,z) ∈ Rt))

=
∑
t∈[m]

Pr[X i,z ∈ X t] · Pr[Y i,z ∈ Y t] · (`−H(Ai,zi |X i,z ∈ X t)) (X i,z, Y i,z are independent)

≤
∑
t∈[m]

Pr[X i,z ∈ X t] · (`−H(Ai,zi |X i,z ∈ X t)). (as `−H(Ai,zi |X i,z ∈ X t) ≥ 0)

Recall the distribution ρ1,φ, that is, the distribution ρi,z for i = 1 and z that is the empty

string (string of length 0). The distribution ρ1,φ is uniform over {0, 1}c` × {0, 1}c`. In the

proof of this lemma we will denote ρU = ρ1,φ, µU = µ1,φ, AU = A1,φ, BU = B1,φ, XU = X1,φ,

Y U = Y 1,φ. By Proposition 10, ρi,z = (ρU |AU<i = z,BU<i = z). That is, ρi,z is ρU conditioned

on the event AU<i = z, BU<i = z. Similarly, µi,z = (µU |AU<i = z,BU<i = z).

We first consider the term Pr[X i,z ∈ X t] ·H(Ai,zi |X i,z ∈ X t) in Equation (1). For every

t ∈ [m],

Pr[X i,z ∈ X t] ·H(Ai,zi |X i,z ∈ X t)

= Pr[XU ∈ X t|AU<i = z, BU<i = z] ·H(AUi |XU ∈ X t, AU<i = z,BU<i = z)

= Pr[XU ∈ X t|AU<i = z] ·H(AUi |XU ∈ X t, AU<i = z) (since XU , Y U are independent)

=
Pr[XU ∈ X t]

Pr[AU<i = z]
· Pr[AU<i = z|XU ∈ X t] ·H(AUi |XU ∈ X t, AU<i = z) (Bayes’ formula)
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By taking expectation over z,

E
z∈R{0,1}`(i−1)

[
Pr[X i,z ∈ X t] ·H(Ai,zi |X i,z ∈ X t)

]
=

∑
z∈{0,1}`(i−1)

Pr[XU ∈ X t] · Pr[AU<i = z|XU ∈ X t] ·H(AUi |XU ∈ X t, AU<i = z)

= Pr[XU ∈ X t] ·
∑

z∈{0,1}`(i−1)

Pr[AU<i = z|XU ∈ X t] ·H(AUi |AU<i = z,XU ∈ X t)

= Pr[XU ∈ X t] ·H(AUi |AU<i, XU ∈ X t).

By taking expectation over i,

E
i∈R[c]

E
z∈R{0,1}`(i−1)

[
Pr[X i,z ∈ X t] ·H(Ai,zi |X i,z ∈ X t)

]
(2)

= Pr[XU ∈ X t] · E
i∈R[c]

[
H(AUi |AU<i, XU ∈ X t)

]
=

1

c
Pr[XU ∈ X t] ·H(AU |XU ∈ X t). (by the chain rule for entropy)

We next consider the term Pr[X i,z ∈ X t] ·` in Equation (1). For every i ∈ [c] and t ∈ [m],

E
z∈R{0,1}`(i−1)

[
Pr[X i,z ∈ X t] · `

]
= Pr

[
XU ∈ X t

]
· `. (3)

Substituting (2) and (3) in (1), and taking expectation over i and z, we get

E
i∈R[c]

E
z∈R{0,1}`(i−1)

[
I(Ai,zi ; π(X i,z, Y i,z))

]
≤ 1

c

∑
t∈[m]

Pr[XU ∈ X t] · (c`−H(AU |XU ∈ X t))

≤ 1

c

∑
t∈[m]

Pr[XU ∈ X t] · log(1/Pr[XU ∈ X t]) (by Proposition 6)

≤ m/c. (as −p log(p) < 1 for p ∈ [0, 1])

5.3 Fixing i, z

Fix i ∈ [c− 1] and z ∈ {0, 1}`(i−1) such that the following two properties hold:

1. The protocol π has success probability at least λ− 2/m, when the inputs are selected

according to the distribution µi,z.

2. I(Ai,zi ; π(X i,z, Y i,z)) ≤ m2

c
and I(Bi,z

i ; π(X i,z, Y i,z)) ≤ m2

c
.

By Lemma 11 and Markov’s inequality, the probability that i ∈R [c] and z ∈R {0, 1}`(i−1) do

not satisfy the second item is at most 2/m. The probability for i = c is 1/c. If there were no
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i ∈ [c− 1] and z ∈ {0, 1}`(i−1) satisfying both items, then the success probability of π would

have been at most (2/m + 1/c) · 1 + (1 − (2/m + 1/c)) · (λ − 2/m) < λ, a contradiction.

Therefore, there exist such i and z that satisfy both of the above items.

Let U` be the uniform distribution over {0, 1}`.

Claim 12. It holds that

E
t←π(Xi,z ,Y i,z)

[
|PAi,zi |Xi,z∈X t − U`|1

]
≤ 2m/

√
c,

E
t←π(Xi,z ,Y i,z)

[
|PBi,zi |Y i,z∈Yt

− U`|1
]
≤ 2m/

√
c.

Proof. We prove the first inequality, the second is similar.

E
t←π(Xi,z ,Y i,z)

[
|PAi,zi |Xi,z∈X t − U`|1

]
= E

t←π(Xi,z ,Y i,z)

[
|PAi,zi |Xi,z∈X t −PAi,zi

|1
]

= E
t←π(Xi,z ,Y i,z)

[
|PAi,zi |π(Xi,z ,Y i,z)=t −PAi,zi

|1
]

(X i,z, Y i,z are independent)

≤ 2

√
I(Ai,zi ; π(X i,z, Y i,z)) (by Proposition 4)

≤ 2m/
√
c. (by the second proprety of i, z)

Claim 13. It holds that

E
s←U`

[∣∣Pπ(Xi,z ,Y i,z) −Pπ(Xi+1,(z,s),Y i+1,(z,s))

∣∣
1

]
≤ 2`+2m/

√
c.

Proof. It holds that

E
s←U`

[∣∣Pπ(Xi,z ,Y i,z) −Pπ(Xi+1,(z,s),Y i+1,(z,s))

∣∣
1

]
= E

s←U`

[∣∣∣Pπ(Xi,z ,Y i,z) −Pπ(Xi,z ,Y i,z)|Ai,zi =s,Bi,zi =s

∣∣∣
1

]
(by Proposition 10)

≤
∑

s′∈{0,1}`
E

s←U`

[∣∣∣Pπ(Xi,z ,Y i,z)|Ai,zi =s,Bi,zi =s′ −Pπ(Xi,z ,Y i,z)

∣∣∣
1

]
= 2` · E

s,s′←U`

[∣∣∣Pπ(Xi,z ,Y i,z)|Ai,zi =s,Bi,zi =s′ −Pπ(Xi,z ,Y i,z)

∣∣∣
1

]
≤ 2`+1

√
I
(
(Ai,zi , B

i,z
i );π(X i,z, Y i,z)

)
(by Proposition 4)

= 2`+1
√

I
(
Ai,zi ; π(X i,z, Y i,z)

)
+ I
(
Bi,z
i ; π(X i,z, Y i,z)

)
(by Proposition 5)

≤ 2`+2m/
√
c. (by the second proprety of i, z)
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5.4 The Unique Answer Protocol π′

5.4.1 A General Conversion to a Unique Answer Protocol

Lemma 14. Let π be a deterministic communication protocol. At the beginning of the

protocol, Alice holds an input in the set Ωx and Bob holds an input in the set Ωy. When the

protocol ends, each player returns an output from the output set Θ. Let {R1, . . . ,Rm} be the

rectangle partition induced by the protocol π, where Rt = X t×Y t for X t ⊆ Ωx and Y t ⊆ Ωy.

Let γ be a product distribution over Ωx ×Ωy. Let λ ≥ 0. Assume that with probability at

least λ, over the selection of inputs according to γ, Alice and Bob output the same answer

in the protocol π.

Then, there exists a deterministic communication protocol π′, that on every pair of

inputs exchanges the same messages as π (and, in particular, has the same communication

complexity and rectangle partition as π), such that the followings hold:

1. For every t ∈ [m], there exists θ ∈ Θ such that for every (x, y) ∈ Rt, both Alice and

Bob output θ in the protocol π′.

2. With probability at least λ2, over the selection of inputs according to γ, the outputs

given by both Alice and Bob in the protocol π′ are the same as their outputs in the

protocol π.

Proof. Let t ∈ [m]. Consider the outputs given by Alice and Bob in the rectangle Rt by

the protocol π. For θ ∈ Θ, let pt(θ) be the probability that both Alice and Bob answer

by the same answer θ, in the rectangle Rt by the protocol π, where the probability is over

the distribution γ (conditioned on reaching the rectangle Rt). Let θt be an output with

maximal pt(θ).

Let π′ be the protocol that on every pair of inputs exchanges the same messages as π.

For every t ∈ [m], when the rectangle Rt is reached by π′, both Alice and Bob output θt.

The protocol π′ clearly satisfies Property (1). We next show that π′ satisfies Property (2).

Claim 15. Let t ∈ [m]. Assume that in the protocol π, when reaching the rectangle Rt,

Alice and Bob give the same answer with probability δ, where the probability is over the

distribution γ.

Then, with probability at least δ2, the outputs given by both Alice and Bob in the

rectangle Rt by the protocol π′ are the same as their outputs by the protocol π.

Proof. For θ ∈ Θ, let αθ be the probability that Alice outputs θ in the rectangle Rt by

the protocol π. Let βθ be the probability that Bob outputs θ in the rectangle Rt by the

protocol π. It holds that
∑

θ∈Θ αθ =
∑

θ∈Θ βθ = 1. Since γ is a product distribution, we also

have that
∑

θ∈Θ αθ · βθ = δ. By the inequality of arithmetic and geometric means, for every

αθ, βθ it holds that αθ+βθ
2
≥
√
αθ · βθ. Summing over Θ, we get 1 ≥

∑
θ∈Θ

√
αθ · βθ. It holds
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that

δ =
∑
θ∈Θ

αθ · βθ ≤ max
θ∈Θ

{√
αθ · βθ

}
·
∑
θ∈Θ

√
αθ · βθ ≤ max

θ∈Θ

{√
αθ · βθ

}
=
√
pt(θt).

Observe that the probability that the outputs given by both Alice and Bob in the

rectangle Rt by the protocol π′ are the same as their outputs by the protocol π is

exactly pt(θt). By the last equation, pt(θt) ≥ δ2.

For t ∈ [m], let δt be the probability that Alice and Bob give the same answer in the

rectangle Rt, in the protocol π, as defined in Claim 15. Let γt be the probability that the

protocol π reaches the rectangle Rt, where the probability is over the distribution γ.

Since we assume that with probability at least λ, Alice and Bob output the same answer

in the protocol π, it holds that
∑

t∈[m] γ
t · δt ≥ λ. By Claim 15, the probability that the

outputs given by both Alice and Bob by the protocol π′ are the same as their outputs by the

protocol π is at least
∑

t∈[m] γ
t ·(δt)2. It holds that

∑
t∈[m] γ

t ·(δt)2 ≥ (
∑

t∈[m] γ
t ·δt)2 ≥ λ2.

5.4.2 The Unique Answer Protocol π′

We assume, without loss of generality, that in the protocol π, on every input (x, y), Alice

outputs a leaf v ∈ V that is consistent with x, and Bob outputs a leaf v ∈ V that is consistent

with y. The reason is that if Alice outputs a leaf that is inconsistent with x, the players fail.

Therefore, by outputting a leaf v that is consistent with x instead, the success probability can

only increase. Since the players’ goal is to output the same leaf v, such that v is consistent

with both x and y, they succeed if and only if they output the same leaf.

Recall that µi,z is a product distribution. Therefore, we can apply Lemma 14 to the

protocol π and the distribution µi,z, and get a protocol π′ satisfying the following properties:

1. The protocol π′ has success probability at least (λ − 2/m)2 ≥ λ2 − 4/m, when the

inputs are selected according to the distribution µi,z. This property is implied by

Properties (1) and (2) of Lemma 14, and the fact that the players succeed in π if and

only if they output the same leaf.

2. The rectangle partition induced by π′ is {R1, . . . ,Rm} (the same as the partition

induced by π). Furthermore, for every t ∈ [m], there exists a leaf vt ∈ V such that for

every (x, y) ∈ Rt, both Alice and Bob output vt in the protocol π′.

5.5 Fixing the ith Block

Recall that we fixed i and z.

5.5.1 Fixing the ith Block while Keeping π′ Success Probability

Lemma 16. There exist more than m values s ∈ {0, 1}`, such that the protocol π′ has

success probability at least 2λ2 − 1 − ok(1), when the inputs are selected according to the
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distribution µi+1,(z,s) (where (z, s) is the string with i blocks obtained by concatenating the

string z with the string s).

Proof. Recall that by the second property of the protocol π′ in Section 5.4.2, the rectangle

partition induced by π′ is the same as the rectangle partition induced by π. In particular,

the probability of reaching each rectangle when running π′ is the same as the probability of

reaching that rectangle when running π (under any input distribution). Fix t ∈ [m]. Denote

by λt the success probability of the protocol π′ when it reaches the rectangle Rt, where the

probability is over the distribution µi,z. Let X̂ t ⊆ X t be the set of inputs x for Alice, such

that vt is consistent with x. Let Ŷ t ⊆ Y t be the set of inputs y for Bob, such that vt is

consistent with y.

Let s ∈ {0, 1}`. Let

αt,s = Pr
[
X i+1,(z,s) ∈ X̂ t | X i+1,(z,s) ∈ X t

]
= Pr

[
X i,z ∈ X̂ t | X i,z ∈ X t, Ai,zi = s, Bi,z

i = s
]

(by Proposition 10)

= Pr
[
X i,z ∈ X̂ t | X i,z ∈ X t, Ai,zi = s

]
. (X i,z, Y i,z are independent)

Similarly, let

βt,s = Pr
[
Y i+1,(z,s) ∈ Ŷ t | Y i+1,(z,s) ∈ Y t

]
= Pr

[
Y i,z ∈ Ŷ t | Y i,z ∈ Y t, Bi,z

i = s
]
.

Observe that for any s and t, the term αt,s · βt,s is the success probability of π′, on the

rectangle Rt, when the inputs are selected according to the distribution µi+1,(z,s) (as µi+1,(z,s)

is a product distribution).

It holds that

Pr
[
X i,z ∈ X̂ t | X i,z ∈ X t

]
=

∑
s∈{0,1}`

Pr[Ai,zi = s | X i,z ∈ X t] · Pr
[
X i,z ∈ X̂ t | X i,z ∈ X t, Ai,zi = s

]
=

∑
s∈{0,1}`

Pr[Ai,zi = s | X i,z ∈ X t] · αt,s

= E
s←(Ai,zi |Xi,z∈X t)

[αt,s].

Similarly,

Pr
[
Y i,z ∈ Ŷ t | Y i,z ∈ Y t

]
= E

s←(Bi,zi |Y i,z∈Yt)
[βt,s].

Therefore,

E
s←(Ai,zi |Xi,z∈X t)

[
αt,s
]
· E
s←(Bi,zi |Y i,z∈Yt)

[
βt,s
]

= λt.
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By the inequality of arithmetic and geometric means, it holds that

E
s←(Ai,zi |Xi,z∈X t)

[
αt,s
]

+ E
s←(Bi,zi |Y i,z∈Yt)

[
βt,s
]
≥ 2
√
λt.

Let U` be the uniform distribution over {0, 1}`. Denote ∆t = |PAi,zi |Xi,z∈X t − U`|1 +

|PBi,zi |Y i,z∈Yt
− U`|1. Then, by the triangle inequlity,

E
s←U`

[
αt,s
]

+ E
s←U`

[
βt,s
]
≥ 2
√
λt −∆t.

By Proposition 7,

E
s←U`

[
αt,s · βt,s

]
≥ 2
√
λt −∆t − 1.

We take expectation over t and get

E
t←π(Xi,z ,Y i,z)

E
s←U`

[
αt,s · βt,s

]
≥ E

t←π(Xi,z ,Y i,z)

[
2
√
λt −∆t

]
− 1. (4)

We first consider the left hand side of Equation (4). By Claim 13,

E
s←U`

[∣∣Pπ(Xi,z ,Y i,z) −Pπ(Xi+1,(z,s),Y i+1,(z,s))

∣∣
1

]
≤ 2`+2m/

√
c.

Therefore, by the triangle inequality,

E
t←π(Xi,z ,Y i,z)

E
s←U`

[
αt,s · βt,s

]
= E

s←U`
E

t←π(Xi,z ,Y i,z)

[
αt,s · βt,s

]
≤ E

s←U`
E

t←π(Xi+1,(z,s),Y i+1,(z,s))

[
αt,s · βt,s

]
+ 2`+2m/

√
c.

We now consider the right hand side of Equation (4).

E
t←π(Xi,z ,Y i,z)

[
2
√
λt −∆t

]
− 1

≥ E
t←π(Xi,z ,Y i,z)

[
2λt
]
− 4m/

√
c− 1 (by Claim 12)

≥ 2
(
λ2 − 4/m

)
− 4m/

√
c− 1 (by Property 1 of π′ in Section 5.4.2)

Therefore, Equation (4) implies that

E
s←U`

E
t←π(Xi+1,(z,s),Y i+1,(z,s))

[
αt,s · βt,s

]
≥ 2λ2 − 1− ok(1).

Since m/2` = ok(1), it holds that for at least m+ 1 possible values s ∈ {0, 1}`,

E
t←π(Xi+1,(z,s),Y i+1,(z,s))

[
αt,s · βt,s

]
≥ 2λ2 − 1− ok(1).

Recall that for any s and t, the term αt,s · βt,s is the success probability of π′, on the

rectangle Rt, when the inputs are selected according to the distribution µi+1,(z,s). Therefore,

there exist at least m+ 1 values s ∈ {0, 1}`, such that the protocol π′ has success probability
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at least 2λ2−1−ok(1), when the inputs are selected according to the distribution µi+1,(z,s).

5.5.2 Splitting Paths

Recall that vt is the output given by both Alice and Bob when reaching the rectangle Rt in

the protocol π′. Let d ∈ {0, 1}c` be a layer of T . We say that layer d splits paths if there

exist vt and vt
′

whose lowest common ancestor in V is in layer d. That is, the path from the

root to vt and the path from the root to vt
′

are the same up-to layer d, and contain different

vertices in layer d+ 1.

5.5.3 Fixing s

For s ∈ {0, 1}`, we denote by Lz,s the set of layers d ∈ {0, 1}c`, whose prefix is (z, s) (that

is, the most significant bits of d are (z, s)).

We fix a value s ∈ {0, 1}` such that the followings hold:

1. None of the layers in Lz,s split paths.

2. The protocol π′ has success probability at least 2λ2 − 1 − ok(1), when the inputs are

selected according to the distribution µi+1,(z,s).

Observe that such a value s exists, as by Lemma 16 there are more than m possible values s

that satisfy the second property, and because there are at most m layers d that split paths,

as there are only m leaves vt.

5.6 Reduction from Disjointness

5.6.1 Unique Disjointness

We consider the following unique disjointness problem: Recall that 24k is the arity of the

tree T . Denote K = 24k. Alice gets an input S ⊂ [K2] of size K. Bob gets an input

T ⊂ [K2] of size K. We define the set of yes instances to be {(S, T ) | |S ∩ T | = 1}, and the

set of no instances to be {(S, T ) | |S ∩ T | = 0}. Given an input (S, T ), the players’ goal is

to distinguish a yes instance from a no instance.

It is well known that even for a small constant ε > 0, protocols with advantage ε

for the above unique disjointness problem, have communication complexity at least Ω(K)

[BFS86, KS92, Raz92]. (A protocol has advantage ε, if on every yes instance it outputs “yes”

with probability at least p + ε, and on every no instance it outputs “yes” with probability

at most p, for some p ≥ 0).

5.6.2 The Reduction

Constructing inputs for the hidden layers game. Recall that v1, . . . , vm are the

possible outputs given by the protocol π′. We consider the set {p1, . . . , pm
′} of all sub-

18



paths that are restrictions to the layers in Lz,s of the path from the root to vt, for some

t ∈ [m].

Given inputs S, T for the unique disjointness problem, the players construct inputs x, y

for the hidden layers game. First, the players select independently at random a, b ∈ Lz,s,
such that a is even and b is odd. Then, using their shared random string, for every t ∈ [m′],

the players choose jt ∈R [K2]. Given S, Alice constructs f by selecting for every v in layer a,

an edge xv going out of v as follows: If v is not contained in any of the sub-paths pt, then xv
is randomly chosen among the edges going out of v. Otherwise, v is contained in some

sub-path pt, for t ∈ [m′]. Since, by the first property of s in Section 5.5.3, none of the layers

in Lz,s split paths, pt is unique. If jt ∈ S, then xv is set to be the edge going out of v that

is contained in sub-path pt. Otherwise, jt /∈ S, and xv is randomly selected among all edges

that are going out of v and are not contained in pt. Given T , Bob constructs g in a similar

manner, independently.

Running π′ to solve unique disjointness. After obtaining the inputs x, y, the players

run the protocol π′ on x, y, and get an output vt (recall that by the second property of the

protocol π′ in Section 5.4.2, both players get the same output). Let pt
′

be the sub-path

associated with vt. The players check if jt
′ ∈ S ∩ T , by having Alice check if jt

′ ∈ S and

having Bob check if jt
′ ∈ T . If indeed jt

′ ∈ S ∩ T , the players output “yes”, otherwise, they

output “no”.

Reduction analysis. Clearly, if (S, T ) is a no instance, the protocol always outputs “no”.

We claim that if (S, T ) is a yes instance, the protocol outputs “yes” with probability at least

2λ2 − 1− ok(1), where the probability is over the random selections the players make when

constructing x, y from S, T . To see this, first observe that for every yes instance (S, T ), the

inputs (x, y) are distributed according to µi+1,(z,s): The indices a, b are clearly distributed

according to ρi+1,(z,s), by the definition of ρi+1,(z,s). For vertices v in layer a, such that v is not

on any of the sub-paths pt, the element xv is selected at random, independently of all other

selections (as it should be selected by the distribution µi+1,(z,s)). Similarly, for vertices v in

layer b, such that v is not on any of the sub-paths pt, the element yv is selected at random,

independently of all other selections. For every t ∈ [m′], the elements xv, yv′ for v, v′ on the

same sub-path pt are selected independently of all other selections, as the coordinate jt is

selected independently for every t ∈ [m′]. These elements xv, yv′ have the correct distribution:

Both xv and yv′ are uniformly distributed because Prjt [j
t ∈ S] = Prjt [j

t ∈ T ] = 1/K (as

|S| = |T | = K and jt ∈ [K2] is uniform). The pair (xv, yv′) has the correct joint distribution

because Prjt [j
t ∈ S ∩ T ] = 1/K2 (as |S ∩ T | = 1 and jt ∈ [K2] is uniform).

By the second property of s in Section 5.5.3, the protocol π′ has success probability at

least 2λ2 − 1 − ok(1), when the inputs are selected according to the distribution µi+1,(z,s).

Whenever π′ succeeds in returning a leaf vt that is consistent with both x and y, the

corresponding jt
′

satisfies jt
′ ∈ S ∩ T , and the players return “yes”. Thus, for every

yes instance (S, T ), the players return “yes” with probability at least 2λ2 − 1 − ok(1).
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Hence, π′ must have communication complexity at least Ω(K) > 8k (for large enough k), a

contradiction.

6 External Information Upper Bound

In this section, we prove Theorem 2. Let (x, y) be an input pair to the hidden layers game,

where x = (a, f) and y = (b, g). Consider the following protocol π for the hidden layers

game. Starting from the root of the tree T , until reaching a leaf, at every vertex v: If v is

in layer a, Alice sends xv. If v is in an even layer other than a, Alice samples and sends a

random edge going out of v. If v is in layer b, Bob sends yv. If v is in an odd layer other

than b, Bob samples and sends a random edge going out of v. Both players then proceed to

the vertex indicated by the communicated edge. The players output the leaf reached.

Clearly, the output of the protocol π is always correct. We show that the external

information cost of π over any input distribution is O(k). Recall that 24k is the arity of

the tree T . Denote K = 24k. Let η be an input distribution, and let (X, Y ) be a pair of

random variables distributed according to η. For every input (x, y), all edges sent in all the

rounds but the rounds corresponding to layers a and b, are random edges. The edges sent

in rounds corresponding to layers a and b are determined by x and y (and the messages

communicated so far). Therefore, H(π(X, Y )|X = x, Y = y) = log(K) · (h − 2). Clearly,

H(π(X, Y )) ≤ log(K) · h. We get that

Extη(π) = I((X, Y ); π(X, Y )) = H(π(X, Y ))−H(π(X, Y )|X, Y ) ≤ 2 log(K) = O(k).
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